linux/include/linux/sched/signal.h
<<
>>
Prefs
   1/* SPDX-License-Identifier: GPL-2.0 */
   2#ifndef _LINUX_SCHED_SIGNAL_H
   3#define _LINUX_SCHED_SIGNAL_H
   4
   5#include <linux/rculist.h>
   6#include <linux/signal.h>
   7#include <linux/sched.h>
   8#include <linux/sched/jobctl.h>
   9#include <linux/sched/task.h>
  10#include <linux/cred.h>
  11
  12/*
  13 * Types defining task->signal and task->sighand and APIs using them:
  14 */
  15
  16struct sighand_struct {
  17        atomic_t                count;
  18        struct k_sigaction      action[_NSIG];
  19        spinlock_t              siglock;
  20        wait_queue_head_t       signalfd_wqh;
  21};
  22
  23/*
  24 * Per-process accounting stats:
  25 */
  26struct pacct_struct {
  27        int                     ac_flag;
  28        long                    ac_exitcode;
  29        unsigned long           ac_mem;
  30        u64                     ac_utime, ac_stime;
  31        unsigned long           ac_minflt, ac_majflt;
  32};
  33
  34struct cpu_itimer {
  35        u64 expires;
  36        u64 incr;
  37};
  38
  39/*
  40 * This is the atomic variant of task_cputime, which can be used for
  41 * storing and updating task_cputime statistics without locking.
  42 */
  43struct task_cputime_atomic {
  44        atomic64_t utime;
  45        atomic64_t stime;
  46        atomic64_t sum_exec_runtime;
  47};
  48
  49#define INIT_CPUTIME_ATOMIC \
  50        (struct task_cputime_atomic) {                          \
  51                .utime = ATOMIC64_INIT(0),                      \
  52                .stime = ATOMIC64_INIT(0),                      \
  53                .sum_exec_runtime = ATOMIC64_INIT(0),           \
  54        }
  55/**
  56 * struct thread_group_cputimer - thread group interval timer counts
  57 * @cputime_atomic:     atomic thread group interval timers.
  58 * @running:            true when there are timers running and
  59 *                      @cputime_atomic receives updates.
  60 * @checking_timer:     true when a thread in the group is in the
  61 *                      process of checking for thread group timers.
  62 *
  63 * This structure contains the version of task_cputime, above, that is
  64 * used for thread group CPU timer calculations.
  65 */
  66struct thread_group_cputimer {
  67        struct task_cputime_atomic cputime_atomic;
  68        bool running;
  69        bool checking_timer;
  70};
  71
  72struct multiprocess_signals {
  73        sigset_t signal;
  74        struct hlist_node node;
  75};
  76
  77/*
  78 * NOTE! "signal_struct" does not have its own
  79 * locking, because a shared signal_struct always
  80 * implies a shared sighand_struct, so locking
  81 * sighand_struct is always a proper superset of
  82 * the locking of signal_struct.
  83 */
  84struct signal_struct {
  85        atomic_t                sigcnt;
  86        atomic_t                live;
  87        int                     nr_threads;
  88        struct list_head        thread_head;
  89
  90        wait_queue_head_t       wait_chldexit;  /* for wait4() */
  91
  92        /* current thread group signal load-balancing target: */
  93        struct task_struct      *curr_target;
  94
  95        /* shared signal handling: */
  96        struct sigpending       shared_pending;
  97
  98        /* For collecting multiprocess signals during fork */
  99        struct hlist_head       multiprocess;
 100
 101        /* thread group exit support */
 102        int                     group_exit_code;
 103        /* overloaded:
 104         * - notify group_exit_task when ->count is equal to notify_count
 105         * - everyone except group_exit_task is stopped during signal delivery
 106         *   of fatal signals, group_exit_task processes the signal.
 107         */
 108        int                     notify_count;
 109        struct task_struct      *group_exit_task;
 110
 111        /* thread group stop support, overloads group_exit_code too */
 112        int                     group_stop_count;
 113        unsigned int            flags; /* see SIGNAL_* flags below */
 114
 115        /*
 116         * PR_SET_CHILD_SUBREAPER marks a process, like a service
 117         * manager, to re-parent orphan (double-forking) child processes
 118         * to this process instead of 'init'. The service manager is
 119         * able to receive SIGCHLD signals and is able to investigate
 120         * the process until it calls wait(). All children of this
 121         * process will inherit a flag if they should look for a
 122         * child_subreaper process at exit.
 123         */
 124        unsigned int            is_child_subreaper:1;
 125        unsigned int            has_child_subreaper:1;
 126
 127#ifdef CONFIG_POSIX_TIMERS
 128
 129        /* POSIX.1b Interval Timers */
 130        int                     posix_timer_id;
 131        struct list_head        posix_timers;
 132
 133        /* ITIMER_REAL timer for the process */
 134        struct hrtimer real_timer;
 135        ktime_t it_real_incr;
 136
 137        /*
 138         * ITIMER_PROF and ITIMER_VIRTUAL timers for the process, we use
 139         * CPUCLOCK_PROF and CPUCLOCK_VIRT for indexing array as these
 140         * values are defined to 0 and 1 respectively
 141         */
 142        struct cpu_itimer it[2];
 143
 144        /*
 145         * Thread group totals for process CPU timers.
 146         * See thread_group_cputimer(), et al, for details.
 147         */
 148        struct thread_group_cputimer cputimer;
 149
 150        /* Earliest-expiration cache. */
 151        struct task_cputime cputime_expires;
 152
 153        struct list_head cpu_timers[3];
 154
 155#endif
 156
 157        /* PID/PID hash table linkage. */
 158        struct pid *pids[PIDTYPE_MAX];
 159
 160#ifdef CONFIG_NO_HZ_FULL
 161        atomic_t tick_dep_mask;
 162#endif
 163
 164        struct pid *tty_old_pgrp;
 165
 166        /* boolean value for session group leader */
 167        int leader;
 168
 169        struct tty_struct *tty; /* NULL if no tty */
 170
 171#ifdef CONFIG_SCHED_AUTOGROUP
 172        struct autogroup *autogroup;
 173#endif
 174        /*
 175         * Cumulative resource counters for dead threads in the group,
 176         * and for reaped dead child processes forked by this group.
 177         * Live threads maintain their own counters and add to these
 178         * in __exit_signal, except for the group leader.
 179         */
 180        seqlock_t stats_lock;
 181        u64 utime, stime, cutime, cstime;
 182        u64 gtime;
 183        u64 cgtime;
 184        struct prev_cputime prev_cputime;
 185        unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
 186        unsigned long min_flt, maj_flt, cmin_flt, cmaj_flt;
 187        unsigned long inblock, oublock, cinblock, coublock;
 188        unsigned long maxrss, cmaxrss;
 189        struct task_io_accounting ioac;
 190
 191        /*
 192         * Cumulative ns of schedule CPU time fo dead threads in the
 193         * group, not including a zombie group leader, (This only differs
 194         * from jiffies_to_ns(utime + stime) if sched_clock uses something
 195         * other than jiffies.)
 196         */
 197        unsigned long long sum_sched_runtime;
 198
 199        /*
 200         * We don't bother to synchronize most readers of this at all,
 201         * because there is no reader checking a limit that actually needs
 202         * to get both rlim_cur and rlim_max atomically, and either one
 203         * alone is a single word that can safely be read normally.
 204         * getrlimit/setrlimit use task_lock(current->group_leader) to
 205         * protect this instead of the siglock, because they really
 206         * have no need to disable irqs.
 207         */
 208        struct rlimit rlim[RLIM_NLIMITS];
 209
 210#ifdef CONFIG_BSD_PROCESS_ACCT
 211        struct pacct_struct pacct;      /* per-process accounting information */
 212#endif
 213#ifdef CONFIG_TASKSTATS
 214        struct taskstats *stats;
 215#endif
 216#ifdef CONFIG_AUDIT
 217        unsigned audit_tty;
 218        struct tty_audit_buf *tty_audit_buf;
 219#endif
 220
 221        /*
 222         * Thread is the potential origin of an oom condition; kill first on
 223         * oom
 224         */
 225        bool oom_flag_origin;
 226        short oom_score_adj;            /* OOM kill score adjustment */
 227        short oom_score_adj_min;        /* OOM kill score adjustment min value.
 228                                         * Only settable by CAP_SYS_RESOURCE. */
 229        struct mm_struct *oom_mm;       /* recorded mm when the thread group got
 230                                         * killed by the oom killer */
 231
 232        struct mutex cred_guard_mutex;  /* guard against foreign influences on
 233                                         * credential calculations
 234                                         * (notably. ptrace) */
 235} __randomize_layout;
 236
 237/*
 238 * Bits in flags field of signal_struct.
 239 */
 240#define SIGNAL_STOP_STOPPED     0x00000001 /* job control stop in effect */
 241#define SIGNAL_STOP_CONTINUED   0x00000002 /* SIGCONT since WCONTINUED reap */
 242#define SIGNAL_GROUP_EXIT       0x00000004 /* group exit in progress */
 243#define SIGNAL_GROUP_COREDUMP   0x00000008 /* coredump in progress */
 244/*
 245 * Pending notifications to parent.
 246 */
 247#define SIGNAL_CLD_STOPPED      0x00000010
 248#define SIGNAL_CLD_CONTINUED    0x00000020
 249#define SIGNAL_CLD_MASK         (SIGNAL_CLD_STOPPED|SIGNAL_CLD_CONTINUED)
 250
 251#define SIGNAL_UNKILLABLE       0x00000040 /* for init: ignore fatal signals */
 252
 253#define SIGNAL_STOP_MASK (SIGNAL_CLD_MASK | SIGNAL_STOP_STOPPED | \
 254                          SIGNAL_STOP_CONTINUED)
 255
 256static inline void signal_set_stop_flags(struct signal_struct *sig,
 257                                         unsigned int flags)
 258{
 259        WARN_ON(sig->flags & (SIGNAL_GROUP_EXIT|SIGNAL_GROUP_COREDUMP));
 260        sig->flags = (sig->flags & ~SIGNAL_STOP_MASK) | flags;
 261}
 262
 263/* If true, all threads except ->group_exit_task have pending SIGKILL */
 264static inline int signal_group_exit(const struct signal_struct *sig)
 265{
 266        return  (sig->flags & SIGNAL_GROUP_EXIT) ||
 267                (sig->group_exit_task != NULL);
 268}
 269
 270extern void flush_signals(struct task_struct *);
 271extern void ignore_signals(struct task_struct *);
 272extern void flush_signal_handlers(struct task_struct *, int force_default);
 273extern int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info);
 274
 275static inline int kernel_dequeue_signal(siginfo_t *info)
 276{
 277        struct task_struct *tsk = current;
 278        siginfo_t __info;
 279        int ret;
 280
 281        spin_lock_irq(&tsk->sighand->siglock);
 282        ret = dequeue_signal(tsk, &tsk->blocked, info ?: &__info);
 283        spin_unlock_irq(&tsk->sighand->siglock);
 284
 285        return ret;
 286}
 287
 288static inline void kernel_signal_stop(void)
 289{
 290        spin_lock_irq(&current->sighand->siglock);
 291        if (current->jobctl & JOBCTL_STOP_DEQUEUED)
 292                set_special_state(TASK_STOPPED);
 293        spin_unlock_irq(&current->sighand->siglock);
 294
 295        schedule();
 296}
 297#ifdef __ARCH_SI_TRAPNO
 298# define ___ARCH_SI_TRAPNO(_a1) , _a1
 299#else
 300# define ___ARCH_SI_TRAPNO(_a1)
 301#endif
 302#ifdef __ia64__
 303# define ___ARCH_SI_IA64(_a1, _a2, _a3) , _a1, _a2, _a3
 304#else
 305# define ___ARCH_SI_IA64(_a1, _a2, _a3)
 306#endif
 307
 308int force_sig_fault(int sig, int code, void __user *addr
 309        ___ARCH_SI_TRAPNO(int trapno)
 310        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 311        , struct task_struct *t);
 312int send_sig_fault(int sig, int code, void __user *addr
 313        ___ARCH_SI_TRAPNO(int trapno)
 314        ___ARCH_SI_IA64(int imm, unsigned int flags, unsigned long isr)
 315        , struct task_struct *t);
 316
 317int force_sig_mceerr(int code, void __user *, short, struct task_struct *);
 318int send_sig_mceerr(int code, void __user *, short, struct task_struct *);
 319
 320int force_sig_bnderr(void __user *addr, void __user *lower, void __user *upper);
 321int force_sig_pkuerr(void __user *addr, u32 pkey);
 322
 323int force_sig_ptrace_errno_trap(int errno, void __user *addr);
 324
 325extern int send_sig_info(int, struct siginfo *, struct task_struct *);
 326extern void force_sigsegv(int sig, struct task_struct *p);
 327extern int force_sig_info(int, struct siginfo *, struct task_struct *);
 328extern int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp);
 329extern int kill_pid_info(int sig, struct siginfo *info, struct pid *pid);
 330extern int kill_pid_info_as_cred(int, struct siginfo *, struct pid *,
 331                                const struct cred *);
 332extern int kill_pgrp(struct pid *pid, int sig, int priv);
 333extern int kill_pid(struct pid *pid, int sig, int priv);
 334extern __must_check bool do_notify_parent(struct task_struct *, int);
 335extern void __wake_up_parent(struct task_struct *p, struct task_struct *parent);
 336extern void force_sig(int, struct task_struct *);
 337extern int send_sig(int, struct task_struct *, int);
 338extern int zap_other_threads(struct task_struct *p);
 339extern struct sigqueue *sigqueue_alloc(void);
 340extern void sigqueue_free(struct sigqueue *);
 341extern int send_sigqueue(struct sigqueue *, struct pid *, enum pid_type);
 342extern int do_sigaction(int, struct k_sigaction *, struct k_sigaction *);
 343
 344static inline int restart_syscall(void)
 345{
 346        set_tsk_thread_flag(current, TIF_SIGPENDING);
 347        return -ERESTARTNOINTR;
 348}
 349
 350static inline int signal_pending(struct task_struct *p)
 351{
 352        return unlikely(test_tsk_thread_flag(p,TIF_SIGPENDING));
 353}
 354
 355static inline int __fatal_signal_pending(struct task_struct *p)
 356{
 357        return unlikely(sigismember(&p->pending.signal, SIGKILL));
 358}
 359
 360static inline int fatal_signal_pending(struct task_struct *p)
 361{
 362        return signal_pending(p) && __fatal_signal_pending(p);
 363}
 364
 365static inline int signal_pending_state(long state, struct task_struct *p)
 366{
 367        if (!(state & (TASK_INTERRUPTIBLE | TASK_WAKEKILL)))
 368                return 0;
 369        if (!signal_pending(p))
 370                return 0;
 371
 372        return (state & TASK_INTERRUPTIBLE) || __fatal_signal_pending(p);
 373}
 374
 375/*
 376 * Reevaluate whether the task has signals pending delivery.
 377 * Wake the task if so.
 378 * This is required every time the blocked sigset_t changes.
 379 * callers must hold sighand->siglock.
 380 */
 381extern void recalc_sigpending_and_wake(struct task_struct *t);
 382extern void recalc_sigpending(void);
 383extern void calculate_sigpending(void);
 384
 385extern void signal_wake_up_state(struct task_struct *t, unsigned int state);
 386
 387static inline void signal_wake_up(struct task_struct *t, bool resume)
 388{
 389        signal_wake_up_state(t, resume ? TASK_WAKEKILL : 0);
 390}
 391static inline void ptrace_signal_wake_up(struct task_struct *t, bool resume)
 392{
 393        signal_wake_up_state(t, resume ? __TASK_TRACED : 0);
 394}
 395
 396void task_join_group_stop(struct task_struct *task);
 397
 398#ifdef TIF_RESTORE_SIGMASK
 399/*
 400 * Legacy restore_sigmask accessors.  These are inefficient on
 401 * SMP architectures because they require atomic operations.
 402 */
 403
 404/**
 405 * set_restore_sigmask() - make sure saved_sigmask processing gets done
 406 *
 407 * This sets TIF_RESTORE_SIGMASK and ensures that the arch signal code
 408 * will run before returning to user mode, to process the flag.  For
 409 * all callers, TIF_SIGPENDING is already set or it's no harm to set
 410 * it.  TIF_RESTORE_SIGMASK need not be in the set of bits that the
 411 * arch code will notice on return to user mode, in case those bits
 412 * are scarce.  We set TIF_SIGPENDING here to ensure that the arch
 413 * signal code always gets run when TIF_RESTORE_SIGMASK is set.
 414 */
 415static inline void set_restore_sigmask(void)
 416{
 417        set_thread_flag(TIF_RESTORE_SIGMASK);
 418        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 419}
 420static inline void clear_restore_sigmask(void)
 421{
 422        clear_thread_flag(TIF_RESTORE_SIGMASK);
 423}
 424static inline bool test_restore_sigmask(void)
 425{
 426        return test_thread_flag(TIF_RESTORE_SIGMASK);
 427}
 428static inline bool test_and_clear_restore_sigmask(void)
 429{
 430        return test_and_clear_thread_flag(TIF_RESTORE_SIGMASK);
 431}
 432
 433#else   /* TIF_RESTORE_SIGMASK */
 434
 435/* Higher-quality implementation, used if TIF_RESTORE_SIGMASK doesn't exist. */
 436static inline void set_restore_sigmask(void)
 437{
 438        current->restore_sigmask = true;
 439        WARN_ON(!test_thread_flag(TIF_SIGPENDING));
 440}
 441static inline void clear_restore_sigmask(void)
 442{
 443        current->restore_sigmask = false;
 444}
 445static inline bool test_restore_sigmask(void)
 446{
 447        return current->restore_sigmask;
 448}
 449static inline bool test_and_clear_restore_sigmask(void)
 450{
 451        if (!current->restore_sigmask)
 452                return false;
 453        current->restore_sigmask = false;
 454        return true;
 455}
 456#endif
 457
 458static inline void restore_saved_sigmask(void)
 459{
 460        if (test_and_clear_restore_sigmask())
 461                __set_current_blocked(&current->saved_sigmask);
 462}
 463
 464static inline sigset_t *sigmask_to_save(void)
 465{
 466        sigset_t *res = &current->blocked;
 467        if (unlikely(test_restore_sigmask()))
 468                res = &current->saved_sigmask;
 469        return res;
 470}
 471
 472static inline int kill_cad_pid(int sig, int priv)
 473{
 474        return kill_pid(cad_pid, sig, priv);
 475}
 476
 477/* These can be the second arg to send_sig_info/send_group_sig_info.  */
 478#define SEND_SIG_NOINFO ((struct siginfo *) 0)
 479#define SEND_SIG_PRIV   ((struct siginfo *) 1)
 480#define SEND_SIG_FORCED ((struct siginfo *) 2)
 481
 482/*
 483 * True if we are on the alternate signal stack.
 484 */
 485static inline int on_sig_stack(unsigned long sp)
 486{
 487        /*
 488         * If the signal stack is SS_AUTODISARM then, by construction, we
 489         * can't be on the signal stack unless user code deliberately set
 490         * SS_AUTODISARM when we were already on it.
 491         *
 492         * This improves reliability: if user state gets corrupted such that
 493         * the stack pointer points very close to the end of the signal stack,
 494         * then this check will enable the signal to be handled anyway.
 495         */
 496        if (current->sas_ss_flags & SS_AUTODISARM)
 497                return 0;
 498
 499#ifdef CONFIG_STACK_GROWSUP
 500        return sp >= current->sas_ss_sp &&
 501                sp - current->sas_ss_sp < current->sas_ss_size;
 502#else
 503        return sp > current->sas_ss_sp &&
 504                sp - current->sas_ss_sp <= current->sas_ss_size;
 505#endif
 506}
 507
 508static inline int sas_ss_flags(unsigned long sp)
 509{
 510        if (!current->sas_ss_size)
 511                return SS_DISABLE;
 512
 513        return on_sig_stack(sp) ? SS_ONSTACK : 0;
 514}
 515
 516static inline void sas_ss_reset(struct task_struct *p)
 517{
 518        p->sas_ss_sp = 0;
 519        p->sas_ss_size = 0;
 520        p->sas_ss_flags = SS_DISABLE;
 521}
 522
 523static inline unsigned long sigsp(unsigned long sp, struct ksignal *ksig)
 524{
 525        if (unlikely((ksig->ka.sa.sa_flags & SA_ONSTACK)) && ! sas_ss_flags(sp))
 526#ifdef CONFIG_STACK_GROWSUP
 527                return current->sas_ss_sp;
 528#else
 529                return current->sas_ss_sp + current->sas_ss_size;
 530#endif
 531        return sp;
 532}
 533
 534extern void __cleanup_sighand(struct sighand_struct *);
 535extern void flush_itimer_signals(void);
 536
 537#define tasklist_empty() \
 538        list_empty(&init_task.tasks)
 539
 540#define next_task(p) \
 541        list_entry_rcu((p)->tasks.next, struct task_struct, tasks)
 542
 543#define for_each_process(p) \
 544        for (p = &init_task ; (p = next_task(p)) != &init_task ; )
 545
 546extern bool current_is_single_threaded(void);
 547
 548/*
 549 * Careful: do_each_thread/while_each_thread is a double loop so
 550 *          'break' will not work as expected - use goto instead.
 551 */
 552#define do_each_thread(g, t) \
 553        for (g = t = &init_task ; (g = t = next_task(g)) != &init_task ; ) do
 554
 555#define while_each_thread(g, t) \
 556        while ((t = next_thread(t)) != g)
 557
 558#define __for_each_thread(signal, t)    \
 559        list_for_each_entry_rcu(t, &(signal)->thread_head, thread_node)
 560
 561#define for_each_thread(p, t)           \
 562        __for_each_thread((p)->signal, t)
 563
 564/* Careful: this is a double loop, 'break' won't work as expected. */
 565#define for_each_process_thread(p, t)   \
 566        for_each_process(p) for_each_thread(p, t)
 567
 568typedef int (*proc_visitor)(struct task_struct *p, void *data);
 569void walk_process_tree(struct task_struct *top, proc_visitor, void *);
 570
 571static inline
 572struct pid *task_pid_type(struct task_struct *task, enum pid_type type)
 573{
 574        struct pid *pid;
 575        if (type == PIDTYPE_PID)
 576                pid = task_pid(task);
 577        else
 578                pid = task->signal->pids[type];
 579        return pid;
 580}
 581
 582static inline struct pid *task_tgid(struct task_struct *task)
 583{
 584        return task->signal->pids[PIDTYPE_TGID];
 585}
 586
 587/*
 588 * Without tasklist or RCU lock it is not safe to dereference
 589 * the result of task_pgrp/task_session even if task == current,
 590 * we can race with another thread doing sys_setsid/sys_setpgid.
 591 */
 592static inline struct pid *task_pgrp(struct task_struct *task)
 593{
 594        return task->signal->pids[PIDTYPE_PGID];
 595}
 596
 597static inline struct pid *task_session(struct task_struct *task)
 598{
 599        return task->signal->pids[PIDTYPE_SID];
 600}
 601
 602static inline int get_nr_threads(struct task_struct *tsk)
 603{
 604        return tsk->signal->nr_threads;
 605}
 606
 607static inline bool thread_group_leader(struct task_struct *p)
 608{
 609        return p->exit_signal >= 0;
 610}
 611
 612/* Do to the insanities of de_thread it is possible for a process
 613 * to have the pid of the thread group leader without actually being
 614 * the thread group leader.  For iteration through the pids in proc
 615 * all we care about is that we have a task with the appropriate
 616 * pid, we don't actually care if we have the right task.
 617 */
 618static inline bool has_group_leader_pid(struct task_struct *p)
 619{
 620        return task_pid(p) == task_tgid(p);
 621}
 622
 623static inline
 624bool same_thread_group(struct task_struct *p1, struct task_struct *p2)
 625{
 626        return p1->signal == p2->signal;
 627}
 628
 629static inline struct task_struct *next_thread(const struct task_struct *p)
 630{
 631        return list_entry_rcu(p->thread_group.next,
 632                              struct task_struct, thread_group);
 633}
 634
 635static inline int thread_group_empty(struct task_struct *p)
 636{
 637        return list_empty(&p->thread_group);
 638}
 639
 640#define delay_group_leader(p) \
 641                (thread_group_leader(p) && !thread_group_empty(p))
 642
 643extern struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
 644                                                        unsigned long *flags);
 645
 646static inline struct sighand_struct *lock_task_sighand(struct task_struct *tsk,
 647                                                       unsigned long *flags)
 648{
 649        struct sighand_struct *ret;
 650
 651        ret = __lock_task_sighand(tsk, flags);
 652        (void)__cond_lock(&tsk->sighand->siglock, ret);
 653        return ret;
 654}
 655
 656static inline void unlock_task_sighand(struct task_struct *tsk,
 657                                                unsigned long *flags)
 658{
 659        spin_unlock_irqrestore(&tsk->sighand->siglock, *flags);
 660}
 661
 662static inline unsigned long task_rlimit(const struct task_struct *tsk,
 663                unsigned int limit)
 664{
 665        return READ_ONCE(tsk->signal->rlim[limit].rlim_cur);
 666}
 667
 668static inline unsigned long task_rlimit_max(const struct task_struct *tsk,
 669                unsigned int limit)
 670{
 671        return READ_ONCE(tsk->signal->rlim[limit].rlim_max);
 672}
 673
 674static inline unsigned long rlimit(unsigned int limit)
 675{
 676        return task_rlimit(current, limit);
 677}
 678
 679static inline unsigned long rlimit_max(unsigned int limit)
 680{
 681        return task_rlimit_max(current, limit);
 682}
 683
 684#endif /* _LINUX_SCHED_SIGNAL_H */
 685