linux/kernel/audit.c
<<
>>
Prefs
   1/* audit.c -- Auditing support
   2 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
   3 * System-call specific features have moved to auditsc.c
   4 *
   5 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
   6 * All Rights Reserved.
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License as published by
  10 * the Free Software Foundation; either version 2 of the License, or
  11 * (at your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  16 * GNU General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  21 *
  22 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
  23 *
  24 * Goals: 1) Integrate fully with Security Modules.
  25 *        2) Minimal run-time overhead:
  26 *           a) Minimal when syscall auditing is disabled (audit_enable=0).
  27 *           b) Small when syscall auditing is enabled and no audit record
  28 *              is generated (defer as much work as possible to record
  29 *              generation time):
  30 *              i) context is allocated,
  31 *              ii) names from getname are stored without a copy, and
  32 *              iii) inode information stored from path_lookup.
  33 *        3) Ability to disable syscall auditing at boot time (audit=0).
  34 *        4) Usable by other parts of the kernel (if audit_log* is called,
  35 *           then a syscall record will be generated automatically for the
  36 *           current syscall).
  37 *        5) Netlink interface to user-space.
  38 *        6) Support low-overhead kernel-based filtering to minimize the
  39 *           information that must be passed to user-space.
  40 *
  41 * Audit userspace, documentation, tests, and bug/issue trackers:
  42 *      https://github.com/linux-audit
  43 */
  44
  45#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  46
  47#include <linux/file.h>
  48#include <linux/init.h>
  49#include <linux/types.h>
  50#include <linux/atomic.h>
  51#include <linux/mm.h>
  52#include <linux/export.h>
  53#include <linux/slab.h>
  54#include <linux/err.h>
  55#include <linux/kthread.h>
  56#include <linux/kernel.h>
  57#include <linux/syscalls.h>
  58#include <linux/spinlock.h>
  59#include <linux/rcupdate.h>
  60#include <linux/mutex.h>
  61#include <linux/gfp.h>
  62#include <linux/pid.h>
  63#include <linux/slab.h>
  64
  65#include <linux/audit.h>
  66
  67#include <net/sock.h>
  68#include <net/netlink.h>
  69#include <linux/skbuff.h>
  70#ifdef CONFIG_SECURITY
  71#include <linux/security.h>
  72#endif
  73#include <linux/freezer.h>
  74#include <linux/pid_namespace.h>
  75#include <net/netns/generic.h>
  76
  77#include "audit.h"
  78
  79/* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
  80 * (Initialization happens after skb_init is called.) */
  81#define AUDIT_DISABLED          -1
  82#define AUDIT_UNINITIALIZED     0
  83#define AUDIT_INITIALIZED       1
  84static int      audit_initialized;
  85
  86u32             audit_enabled = AUDIT_OFF;
  87bool            audit_ever_enabled = !!AUDIT_OFF;
  88
  89EXPORT_SYMBOL_GPL(audit_enabled);
  90
  91/* Default state when kernel boots without any parameters. */
  92static u32      audit_default = AUDIT_OFF;
  93
  94/* If auditing cannot proceed, audit_failure selects what happens. */
  95static u32      audit_failure = AUDIT_FAIL_PRINTK;
  96
  97/* private audit network namespace index */
  98static unsigned int audit_net_id;
  99
 100/**
 101 * struct audit_net - audit private network namespace data
 102 * @sk: communication socket
 103 */
 104struct audit_net {
 105        struct sock *sk;
 106};
 107
 108/**
 109 * struct auditd_connection - kernel/auditd connection state
 110 * @pid: auditd PID
 111 * @portid: netlink portid
 112 * @net: the associated network namespace
 113 * @rcu: RCU head
 114 *
 115 * Description:
 116 * This struct is RCU protected; you must either hold the RCU lock for reading
 117 * or the associated spinlock for writing.
 118 */
 119static struct auditd_connection {
 120        struct pid *pid;
 121        u32 portid;
 122        struct net *net;
 123        struct rcu_head rcu;
 124} *auditd_conn = NULL;
 125static DEFINE_SPINLOCK(auditd_conn_lock);
 126
 127/* If audit_rate_limit is non-zero, limit the rate of sending audit records
 128 * to that number per second.  This prevents DoS attacks, but results in
 129 * audit records being dropped. */
 130static u32      audit_rate_limit;
 131
 132/* Number of outstanding audit_buffers allowed.
 133 * When set to zero, this means unlimited. */
 134static u32      audit_backlog_limit = 64;
 135#define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
 136static u32      audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
 137
 138/* The identity of the user shutting down the audit system. */
 139kuid_t          audit_sig_uid = INVALID_UID;
 140pid_t           audit_sig_pid = -1;
 141u32             audit_sig_sid = 0;
 142
 143/* Records can be lost in several ways:
 144   0) [suppressed in audit_alloc]
 145   1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
 146   2) out of memory in audit_log_move [alloc_skb]
 147   3) suppressed due to audit_rate_limit
 148   4) suppressed due to audit_backlog_limit
 149*/
 150static atomic_t audit_lost = ATOMIC_INIT(0);
 151
 152/* Hash for inode-based rules */
 153struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
 154
 155static struct kmem_cache *audit_buffer_cache;
 156
 157/* queue msgs to send via kauditd_task */
 158static struct sk_buff_head audit_queue;
 159/* queue msgs due to temporary unicast send problems */
 160static struct sk_buff_head audit_retry_queue;
 161/* queue msgs waiting for new auditd connection */
 162static struct sk_buff_head audit_hold_queue;
 163
 164/* queue servicing thread */
 165static struct task_struct *kauditd_task;
 166static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
 167
 168/* waitqueue for callers who are blocked on the audit backlog */
 169static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
 170
 171static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
 172                                   .mask = -1,
 173                                   .features = 0,
 174                                   .lock = 0,};
 175
 176static char *audit_feature_names[2] = {
 177        "only_unset_loginuid",
 178        "loginuid_immutable",
 179};
 180
 181/**
 182 * struct audit_ctl_mutex - serialize requests from userspace
 183 * @lock: the mutex used for locking
 184 * @owner: the task which owns the lock
 185 *
 186 * Description:
 187 * This is the lock struct used to ensure we only process userspace requests
 188 * in an orderly fashion.  We can't simply use a mutex/lock here because we
 189 * need to track lock ownership so we don't end up blocking the lock owner in
 190 * audit_log_start() or similar.
 191 */
 192static struct audit_ctl_mutex {
 193        struct mutex lock;
 194        void *owner;
 195} audit_cmd_mutex;
 196
 197/* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
 198 * audit records.  Since printk uses a 1024 byte buffer, this buffer
 199 * should be at least that large. */
 200#define AUDIT_BUFSIZ 1024
 201
 202/* The audit_buffer is used when formatting an audit record.  The caller
 203 * locks briefly to get the record off the freelist or to allocate the
 204 * buffer, and locks briefly to send the buffer to the netlink layer or
 205 * to place it on a transmit queue.  Multiple audit_buffers can be in
 206 * use simultaneously. */
 207struct audit_buffer {
 208        struct sk_buff       *skb;      /* formatted skb ready to send */
 209        struct audit_context *ctx;      /* NULL or associated context */
 210        gfp_t                gfp_mask;
 211};
 212
 213struct audit_reply {
 214        __u32 portid;
 215        struct net *net;
 216        struct sk_buff *skb;
 217};
 218
 219/**
 220 * auditd_test_task - Check to see if a given task is an audit daemon
 221 * @task: the task to check
 222 *
 223 * Description:
 224 * Return 1 if the task is a registered audit daemon, 0 otherwise.
 225 */
 226int auditd_test_task(struct task_struct *task)
 227{
 228        int rc;
 229        struct auditd_connection *ac;
 230
 231        rcu_read_lock();
 232        ac = rcu_dereference(auditd_conn);
 233        rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
 234        rcu_read_unlock();
 235
 236        return rc;
 237}
 238
 239/**
 240 * audit_ctl_lock - Take the audit control lock
 241 */
 242void audit_ctl_lock(void)
 243{
 244        mutex_lock(&audit_cmd_mutex.lock);
 245        audit_cmd_mutex.owner = current;
 246}
 247
 248/**
 249 * audit_ctl_unlock - Drop the audit control lock
 250 */
 251void audit_ctl_unlock(void)
 252{
 253        audit_cmd_mutex.owner = NULL;
 254        mutex_unlock(&audit_cmd_mutex.lock);
 255}
 256
 257/**
 258 * audit_ctl_owner_current - Test to see if the current task owns the lock
 259 *
 260 * Description:
 261 * Return true if the current task owns the audit control lock, false if it
 262 * doesn't own the lock.
 263 */
 264static bool audit_ctl_owner_current(void)
 265{
 266        return (current == audit_cmd_mutex.owner);
 267}
 268
 269/**
 270 * auditd_pid_vnr - Return the auditd PID relative to the namespace
 271 *
 272 * Description:
 273 * Returns the PID in relation to the namespace, 0 on failure.
 274 */
 275static pid_t auditd_pid_vnr(void)
 276{
 277        pid_t pid;
 278        const struct auditd_connection *ac;
 279
 280        rcu_read_lock();
 281        ac = rcu_dereference(auditd_conn);
 282        if (!ac || !ac->pid)
 283                pid = 0;
 284        else
 285                pid = pid_vnr(ac->pid);
 286        rcu_read_unlock();
 287
 288        return pid;
 289}
 290
 291/**
 292 * audit_get_sk - Return the audit socket for the given network namespace
 293 * @net: the destination network namespace
 294 *
 295 * Description:
 296 * Returns the sock pointer if valid, NULL otherwise.  The caller must ensure
 297 * that a reference is held for the network namespace while the sock is in use.
 298 */
 299static struct sock *audit_get_sk(const struct net *net)
 300{
 301        struct audit_net *aunet;
 302
 303        if (!net)
 304                return NULL;
 305
 306        aunet = net_generic(net, audit_net_id);
 307        return aunet->sk;
 308}
 309
 310void audit_panic(const char *message)
 311{
 312        switch (audit_failure) {
 313        case AUDIT_FAIL_SILENT:
 314                break;
 315        case AUDIT_FAIL_PRINTK:
 316                if (printk_ratelimit())
 317                        pr_err("%s\n", message);
 318                break;
 319        case AUDIT_FAIL_PANIC:
 320                panic("audit: %s\n", message);
 321                break;
 322        }
 323}
 324
 325static inline int audit_rate_check(void)
 326{
 327        static unsigned long    last_check = 0;
 328        static int              messages   = 0;
 329        static DEFINE_SPINLOCK(lock);
 330        unsigned long           flags;
 331        unsigned long           now;
 332        unsigned long           elapsed;
 333        int                     retval     = 0;
 334
 335        if (!audit_rate_limit) return 1;
 336
 337        spin_lock_irqsave(&lock, flags);
 338        if (++messages < audit_rate_limit) {
 339                retval = 1;
 340        } else {
 341                now     = jiffies;
 342                elapsed = now - last_check;
 343                if (elapsed > HZ) {
 344                        last_check = now;
 345                        messages   = 0;
 346                        retval     = 1;
 347                }
 348        }
 349        spin_unlock_irqrestore(&lock, flags);
 350
 351        return retval;
 352}
 353
 354/**
 355 * audit_log_lost - conditionally log lost audit message event
 356 * @message: the message stating reason for lost audit message
 357 *
 358 * Emit at least 1 message per second, even if audit_rate_check is
 359 * throttling.
 360 * Always increment the lost messages counter.
 361*/
 362void audit_log_lost(const char *message)
 363{
 364        static unsigned long    last_msg = 0;
 365        static DEFINE_SPINLOCK(lock);
 366        unsigned long           flags;
 367        unsigned long           now;
 368        int                     print;
 369
 370        atomic_inc(&audit_lost);
 371
 372        print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
 373
 374        if (!print) {
 375                spin_lock_irqsave(&lock, flags);
 376                now = jiffies;
 377                if (now - last_msg > HZ) {
 378                        print = 1;
 379                        last_msg = now;
 380                }
 381                spin_unlock_irqrestore(&lock, flags);
 382        }
 383
 384        if (print) {
 385                if (printk_ratelimit())
 386                        pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
 387                                atomic_read(&audit_lost),
 388                                audit_rate_limit,
 389                                audit_backlog_limit);
 390                audit_panic(message);
 391        }
 392}
 393
 394static int audit_log_config_change(char *function_name, u32 new, u32 old,
 395                                   int allow_changes)
 396{
 397        struct audit_buffer *ab;
 398        int rc = 0;
 399
 400        ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_CONFIG_CHANGE);
 401        if (unlikely(!ab))
 402                return rc;
 403        audit_log_format(ab, "%s=%u old=%u", function_name, new, old);
 404        audit_log_session_info(ab);
 405        rc = audit_log_task_context(ab);
 406        if (rc)
 407                allow_changes = 0; /* Something weird, deny request */
 408        audit_log_format(ab, " res=%d", allow_changes);
 409        audit_log_end(ab);
 410        return rc;
 411}
 412
 413static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
 414{
 415        int allow_changes, rc = 0;
 416        u32 old = *to_change;
 417
 418        /* check if we are locked */
 419        if (audit_enabled == AUDIT_LOCKED)
 420                allow_changes = 0;
 421        else
 422                allow_changes = 1;
 423
 424        if (audit_enabled != AUDIT_OFF) {
 425                rc = audit_log_config_change(function_name, new, old, allow_changes);
 426                if (rc)
 427                        allow_changes = 0;
 428        }
 429
 430        /* If we are allowed, make the change */
 431        if (allow_changes == 1)
 432                *to_change = new;
 433        /* Not allowed, update reason */
 434        else if (rc == 0)
 435                rc = -EPERM;
 436        return rc;
 437}
 438
 439static int audit_set_rate_limit(u32 limit)
 440{
 441        return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
 442}
 443
 444static int audit_set_backlog_limit(u32 limit)
 445{
 446        return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
 447}
 448
 449static int audit_set_backlog_wait_time(u32 timeout)
 450{
 451        return audit_do_config_change("audit_backlog_wait_time",
 452                                      &audit_backlog_wait_time, timeout);
 453}
 454
 455static int audit_set_enabled(u32 state)
 456{
 457        int rc;
 458        if (state > AUDIT_LOCKED)
 459                return -EINVAL;
 460
 461        rc =  audit_do_config_change("audit_enabled", &audit_enabled, state);
 462        if (!rc)
 463                audit_ever_enabled |= !!state;
 464
 465        return rc;
 466}
 467
 468static int audit_set_failure(u32 state)
 469{
 470        if (state != AUDIT_FAIL_SILENT
 471            && state != AUDIT_FAIL_PRINTK
 472            && state != AUDIT_FAIL_PANIC)
 473                return -EINVAL;
 474
 475        return audit_do_config_change("audit_failure", &audit_failure, state);
 476}
 477
 478/**
 479 * auditd_conn_free - RCU helper to release an auditd connection struct
 480 * @rcu: RCU head
 481 *
 482 * Description:
 483 * Drop any references inside the auditd connection tracking struct and free
 484 * the memory.
 485 */
 486static void auditd_conn_free(struct rcu_head *rcu)
 487{
 488        struct auditd_connection *ac;
 489
 490        ac = container_of(rcu, struct auditd_connection, rcu);
 491        put_pid(ac->pid);
 492        put_net(ac->net);
 493        kfree(ac);
 494}
 495
 496/**
 497 * auditd_set - Set/Reset the auditd connection state
 498 * @pid: auditd PID
 499 * @portid: auditd netlink portid
 500 * @net: auditd network namespace pointer
 501 *
 502 * Description:
 503 * This function will obtain and drop network namespace references as
 504 * necessary.  Returns zero on success, negative values on failure.
 505 */
 506static int auditd_set(struct pid *pid, u32 portid, struct net *net)
 507{
 508        unsigned long flags;
 509        struct auditd_connection *ac_old, *ac_new;
 510
 511        if (!pid || !net)
 512                return -EINVAL;
 513
 514        ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
 515        if (!ac_new)
 516                return -ENOMEM;
 517        ac_new->pid = get_pid(pid);
 518        ac_new->portid = portid;
 519        ac_new->net = get_net(net);
 520
 521        spin_lock_irqsave(&auditd_conn_lock, flags);
 522        ac_old = rcu_dereference_protected(auditd_conn,
 523                                           lockdep_is_held(&auditd_conn_lock));
 524        rcu_assign_pointer(auditd_conn, ac_new);
 525        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 526
 527        if (ac_old)
 528                call_rcu(&ac_old->rcu, auditd_conn_free);
 529
 530        return 0;
 531}
 532
 533/**
 534 * kauditd_print_skb - Print the audit record to the ring buffer
 535 * @skb: audit record
 536 *
 537 * Whatever the reason, this packet may not make it to the auditd connection
 538 * so write it via printk so the information isn't completely lost.
 539 */
 540static void kauditd_printk_skb(struct sk_buff *skb)
 541{
 542        struct nlmsghdr *nlh = nlmsg_hdr(skb);
 543        char *data = nlmsg_data(nlh);
 544
 545        if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
 546                pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
 547}
 548
 549/**
 550 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
 551 * @skb: audit record
 552 *
 553 * Description:
 554 * This should only be used by the kauditd_thread when it fails to flush the
 555 * hold queue.
 556 */
 557static void kauditd_rehold_skb(struct sk_buff *skb)
 558{
 559        /* put the record back in the queue at the same place */
 560        skb_queue_head(&audit_hold_queue, skb);
 561}
 562
 563/**
 564 * kauditd_hold_skb - Queue an audit record, waiting for auditd
 565 * @skb: audit record
 566 *
 567 * Description:
 568 * Queue the audit record, waiting for an instance of auditd.  When this
 569 * function is called we haven't given up yet on sending the record, but things
 570 * are not looking good.  The first thing we want to do is try to write the
 571 * record via printk and then see if we want to try and hold on to the record
 572 * and queue it, if we have room.  If we want to hold on to the record, but we
 573 * don't have room, record a record lost message.
 574 */
 575static void kauditd_hold_skb(struct sk_buff *skb)
 576{
 577        /* at this point it is uncertain if we will ever send this to auditd so
 578         * try to send the message via printk before we go any further */
 579        kauditd_printk_skb(skb);
 580
 581        /* can we just silently drop the message? */
 582        if (!audit_default) {
 583                kfree_skb(skb);
 584                return;
 585        }
 586
 587        /* if we have room, queue the message */
 588        if (!audit_backlog_limit ||
 589            skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
 590                skb_queue_tail(&audit_hold_queue, skb);
 591                return;
 592        }
 593
 594        /* we have no other options - drop the message */
 595        audit_log_lost("kauditd hold queue overflow");
 596        kfree_skb(skb);
 597}
 598
 599/**
 600 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
 601 * @skb: audit record
 602 *
 603 * Description:
 604 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
 605 * but for some reason we are having problems sending it audit records so
 606 * queue the given record and attempt to resend.
 607 */
 608static void kauditd_retry_skb(struct sk_buff *skb)
 609{
 610        /* NOTE: because records should only live in the retry queue for a
 611         * short period of time, before either being sent or moved to the hold
 612         * queue, we don't currently enforce a limit on this queue */
 613        skb_queue_tail(&audit_retry_queue, skb);
 614}
 615
 616/**
 617 * auditd_reset - Disconnect the auditd connection
 618 * @ac: auditd connection state
 619 *
 620 * Description:
 621 * Break the auditd/kauditd connection and move all the queued records into the
 622 * hold queue in case auditd reconnects.  It is important to note that the @ac
 623 * pointer should never be dereferenced inside this function as it may be NULL
 624 * or invalid, you can only compare the memory address!  If @ac is NULL then
 625 * the connection will always be reset.
 626 */
 627static void auditd_reset(const struct auditd_connection *ac)
 628{
 629        unsigned long flags;
 630        struct sk_buff *skb;
 631        struct auditd_connection *ac_old;
 632
 633        /* if it isn't already broken, break the connection */
 634        spin_lock_irqsave(&auditd_conn_lock, flags);
 635        ac_old = rcu_dereference_protected(auditd_conn,
 636                                           lockdep_is_held(&auditd_conn_lock));
 637        if (ac && ac != ac_old) {
 638                /* someone already registered a new auditd connection */
 639                spin_unlock_irqrestore(&auditd_conn_lock, flags);
 640                return;
 641        }
 642        rcu_assign_pointer(auditd_conn, NULL);
 643        spin_unlock_irqrestore(&auditd_conn_lock, flags);
 644
 645        if (ac_old)
 646                call_rcu(&ac_old->rcu, auditd_conn_free);
 647
 648        /* flush the retry queue to the hold queue, but don't touch the main
 649         * queue since we need to process that normally for multicast */
 650        while ((skb = skb_dequeue(&audit_retry_queue)))
 651                kauditd_hold_skb(skb);
 652}
 653
 654/**
 655 * auditd_send_unicast_skb - Send a record via unicast to auditd
 656 * @skb: audit record
 657 *
 658 * Description:
 659 * Send a skb to the audit daemon, returns positive/zero values on success and
 660 * negative values on failure; in all cases the skb will be consumed by this
 661 * function.  If the send results in -ECONNREFUSED the connection with auditd
 662 * will be reset.  This function may sleep so callers should not hold any locks
 663 * where this would cause a problem.
 664 */
 665static int auditd_send_unicast_skb(struct sk_buff *skb)
 666{
 667        int rc;
 668        u32 portid;
 669        struct net *net;
 670        struct sock *sk;
 671        struct auditd_connection *ac;
 672
 673        /* NOTE: we can't call netlink_unicast while in the RCU section so
 674         *       take a reference to the network namespace and grab local
 675         *       copies of the namespace, the sock, and the portid; the
 676         *       namespace and sock aren't going to go away while we hold a
 677         *       reference and if the portid does become invalid after the RCU
 678         *       section netlink_unicast() should safely return an error */
 679
 680        rcu_read_lock();
 681        ac = rcu_dereference(auditd_conn);
 682        if (!ac) {
 683                rcu_read_unlock();
 684                kfree_skb(skb);
 685                rc = -ECONNREFUSED;
 686                goto err;
 687        }
 688        net = get_net(ac->net);
 689        sk = audit_get_sk(net);
 690        portid = ac->portid;
 691        rcu_read_unlock();
 692
 693        rc = netlink_unicast(sk, skb, portid, 0);
 694        put_net(net);
 695        if (rc < 0)
 696                goto err;
 697
 698        return rc;
 699
 700err:
 701        if (ac && rc == -ECONNREFUSED)
 702                auditd_reset(ac);
 703        return rc;
 704}
 705
 706/**
 707 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
 708 * @sk: the sending sock
 709 * @portid: the netlink destination
 710 * @queue: the skb queue to process
 711 * @retry_limit: limit on number of netlink unicast failures
 712 * @skb_hook: per-skb hook for additional processing
 713 * @err_hook: hook called if the skb fails the netlink unicast send
 714 *
 715 * Description:
 716 * Run through the given queue and attempt to send the audit records to auditd,
 717 * returns zero on success, negative values on failure.  It is up to the caller
 718 * to ensure that the @sk is valid for the duration of this function.
 719 *
 720 */
 721static int kauditd_send_queue(struct sock *sk, u32 portid,
 722                              struct sk_buff_head *queue,
 723                              unsigned int retry_limit,
 724                              void (*skb_hook)(struct sk_buff *skb),
 725                              void (*err_hook)(struct sk_buff *skb))
 726{
 727        int rc = 0;
 728        struct sk_buff *skb;
 729        static unsigned int failed = 0;
 730
 731        /* NOTE: kauditd_thread takes care of all our locking, we just use
 732         *       the netlink info passed to us (e.g. sk and portid) */
 733
 734        while ((skb = skb_dequeue(queue))) {
 735                /* call the skb_hook for each skb we touch */
 736                if (skb_hook)
 737                        (*skb_hook)(skb);
 738
 739                /* can we send to anyone via unicast? */
 740                if (!sk) {
 741                        if (err_hook)
 742                                (*err_hook)(skb);
 743                        continue;
 744                }
 745
 746                /* grab an extra skb reference in case of error */
 747                skb_get(skb);
 748                rc = netlink_unicast(sk, skb, portid, 0);
 749                if (rc < 0) {
 750                        /* fatal failure for our queue flush attempt? */
 751                        if (++failed >= retry_limit ||
 752                            rc == -ECONNREFUSED || rc == -EPERM) {
 753                                /* yes - error processing for the queue */
 754                                sk = NULL;
 755                                if (err_hook)
 756                                        (*err_hook)(skb);
 757                                if (!skb_hook)
 758                                        goto out;
 759                                /* keep processing with the skb_hook */
 760                                continue;
 761                        } else
 762                                /* no - requeue to preserve ordering */
 763                                skb_queue_head(queue, skb);
 764                } else {
 765                        /* it worked - drop the extra reference and continue */
 766                        consume_skb(skb);
 767                        failed = 0;
 768                }
 769        }
 770
 771out:
 772        return (rc >= 0 ? 0 : rc);
 773}
 774
 775/*
 776 * kauditd_send_multicast_skb - Send a record to any multicast listeners
 777 * @skb: audit record
 778 *
 779 * Description:
 780 * Write a multicast message to anyone listening in the initial network
 781 * namespace.  This function doesn't consume an skb as might be expected since
 782 * it has to copy it anyways.
 783 */
 784static void kauditd_send_multicast_skb(struct sk_buff *skb)
 785{
 786        struct sk_buff *copy;
 787        struct sock *sock = audit_get_sk(&init_net);
 788        struct nlmsghdr *nlh;
 789
 790        /* NOTE: we are not taking an additional reference for init_net since
 791         *       we don't have to worry about it going away */
 792
 793        if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
 794                return;
 795
 796        /*
 797         * The seemingly wasteful skb_copy() rather than bumping the refcount
 798         * using skb_get() is necessary because non-standard mods are made to
 799         * the skb by the original kaudit unicast socket send routine.  The
 800         * existing auditd daemon assumes this breakage.  Fixing this would
 801         * require co-ordinating a change in the established protocol between
 802         * the kaudit kernel subsystem and the auditd userspace code.  There is
 803         * no reason for new multicast clients to continue with this
 804         * non-compliance.
 805         */
 806        copy = skb_copy(skb, GFP_KERNEL);
 807        if (!copy)
 808                return;
 809        nlh = nlmsg_hdr(copy);
 810        nlh->nlmsg_len = skb->len;
 811
 812        nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
 813}
 814
 815/**
 816 * kauditd_thread - Worker thread to send audit records to userspace
 817 * @dummy: unused
 818 */
 819static int kauditd_thread(void *dummy)
 820{
 821        int rc;
 822        u32 portid = 0;
 823        struct net *net = NULL;
 824        struct sock *sk = NULL;
 825        struct auditd_connection *ac;
 826
 827#define UNICAST_RETRIES 5
 828
 829        set_freezable();
 830        while (!kthread_should_stop()) {
 831                /* NOTE: see the lock comments in auditd_send_unicast_skb() */
 832                rcu_read_lock();
 833                ac = rcu_dereference(auditd_conn);
 834                if (!ac) {
 835                        rcu_read_unlock();
 836                        goto main_queue;
 837                }
 838                net = get_net(ac->net);
 839                sk = audit_get_sk(net);
 840                portid = ac->portid;
 841                rcu_read_unlock();
 842
 843                /* attempt to flush the hold queue */
 844                rc = kauditd_send_queue(sk, portid,
 845                                        &audit_hold_queue, UNICAST_RETRIES,
 846                                        NULL, kauditd_rehold_skb);
 847                if (ac && rc < 0) {
 848                        sk = NULL;
 849                        auditd_reset(ac);
 850                        goto main_queue;
 851                }
 852
 853                /* attempt to flush the retry queue */
 854                rc = kauditd_send_queue(sk, portid,
 855                                        &audit_retry_queue, UNICAST_RETRIES,
 856                                        NULL, kauditd_hold_skb);
 857                if (ac && rc < 0) {
 858                        sk = NULL;
 859                        auditd_reset(ac);
 860                        goto main_queue;
 861                }
 862
 863main_queue:
 864                /* process the main queue - do the multicast send and attempt
 865                 * unicast, dump failed record sends to the retry queue; if
 866                 * sk == NULL due to previous failures we will just do the
 867                 * multicast send and move the record to the hold queue */
 868                rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
 869                                        kauditd_send_multicast_skb,
 870                                        (sk ?
 871                                         kauditd_retry_skb : kauditd_hold_skb));
 872                if (ac && rc < 0)
 873                        auditd_reset(ac);
 874                sk = NULL;
 875
 876                /* drop our netns reference, no auditd sends past this line */
 877                if (net) {
 878                        put_net(net);
 879                        net = NULL;
 880                }
 881
 882                /* we have processed all the queues so wake everyone */
 883                wake_up(&audit_backlog_wait);
 884
 885                /* NOTE: we want to wake up if there is anything on the queue,
 886                 *       regardless of if an auditd is connected, as we need to
 887                 *       do the multicast send and rotate records from the
 888                 *       main queue to the retry/hold queues */
 889                wait_event_freezable(kauditd_wait,
 890                                     (skb_queue_len(&audit_queue) ? 1 : 0));
 891        }
 892
 893        return 0;
 894}
 895
 896int audit_send_list(void *_dest)
 897{
 898        struct audit_netlink_list *dest = _dest;
 899        struct sk_buff *skb;
 900        struct sock *sk = audit_get_sk(dest->net);
 901
 902        /* wait for parent to finish and send an ACK */
 903        audit_ctl_lock();
 904        audit_ctl_unlock();
 905
 906        while ((skb = __skb_dequeue(&dest->q)) != NULL)
 907                netlink_unicast(sk, skb, dest->portid, 0);
 908
 909        put_net(dest->net);
 910        kfree(dest);
 911
 912        return 0;
 913}
 914
 915struct sk_buff *audit_make_reply(int seq, int type, int done,
 916                                 int multi, const void *payload, int size)
 917{
 918        struct sk_buff  *skb;
 919        struct nlmsghdr *nlh;
 920        void            *data;
 921        int             flags = multi ? NLM_F_MULTI : 0;
 922        int             t     = done  ? NLMSG_DONE  : type;
 923
 924        skb = nlmsg_new(size, GFP_KERNEL);
 925        if (!skb)
 926                return NULL;
 927
 928        nlh     = nlmsg_put(skb, 0, seq, t, size, flags);
 929        if (!nlh)
 930                goto out_kfree_skb;
 931        data = nlmsg_data(nlh);
 932        memcpy(data, payload, size);
 933        return skb;
 934
 935out_kfree_skb:
 936        kfree_skb(skb);
 937        return NULL;
 938}
 939
 940static int audit_send_reply_thread(void *arg)
 941{
 942        struct audit_reply *reply = (struct audit_reply *)arg;
 943        struct sock *sk = audit_get_sk(reply->net);
 944
 945        audit_ctl_lock();
 946        audit_ctl_unlock();
 947
 948        /* Ignore failure. It'll only happen if the sender goes away,
 949           because our timeout is set to infinite. */
 950        netlink_unicast(sk, reply->skb, reply->portid, 0);
 951        put_net(reply->net);
 952        kfree(reply);
 953        return 0;
 954}
 955
 956/**
 957 * audit_send_reply - send an audit reply message via netlink
 958 * @request_skb: skb of request we are replying to (used to target the reply)
 959 * @seq: sequence number
 960 * @type: audit message type
 961 * @done: done (last) flag
 962 * @multi: multi-part message flag
 963 * @payload: payload data
 964 * @size: payload size
 965 *
 966 * Allocates an skb, builds the netlink message, and sends it to the port id.
 967 * No failure notifications.
 968 */
 969static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
 970                             int multi, const void *payload, int size)
 971{
 972        struct net *net = sock_net(NETLINK_CB(request_skb).sk);
 973        struct sk_buff *skb;
 974        struct task_struct *tsk;
 975        struct audit_reply *reply = kmalloc(sizeof(struct audit_reply),
 976                                            GFP_KERNEL);
 977
 978        if (!reply)
 979                return;
 980
 981        skb = audit_make_reply(seq, type, done, multi, payload, size);
 982        if (!skb)
 983                goto out;
 984
 985        reply->net = get_net(net);
 986        reply->portid = NETLINK_CB(request_skb).portid;
 987        reply->skb = skb;
 988
 989        tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
 990        if (!IS_ERR(tsk))
 991                return;
 992        kfree_skb(skb);
 993out:
 994        kfree(reply);
 995}
 996
 997/*
 998 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
 999 * control messages.
1000 */
1001static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
1002{
1003        int err = 0;
1004
1005        /* Only support initial user namespace for now. */
1006        /*
1007         * We return ECONNREFUSED because it tricks userspace into thinking
1008         * that audit was not configured into the kernel.  Lots of users
1009         * configure their PAM stack (because that's what the distro does)
1010         * to reject login if unable to send messages to audit.  If we return
1011         * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1012         * configured in and will let login proceed.  If we return EPERM
1013         * userspace will reject all logins.  This should be removed when we
1014         * support non init namespaces!!
1015         */
1016        if (current_user_ns() != &init_user_ns)
1017                return -ECONNREFUSED;
1018
1019        switch (msg_type) {
1020        case AUDIT_LIST:
1021        case AUDIT_ADD:
1022        case AUDIT_DEL:
1023                return -EOPNOTSUPP;
1024        case AUDIT_GET:
1025        case AUDIT_SET:
1026        case AUDIT_GET_FEATURE:
1027        case AUDIT_SET_FEATURE:
1028        case AUDIT_LIST_RULES:
1029        case AUDIT_ADD_RULE:
1030        case AUDIT_DEL_RULE:
1031        case AUDIT_SIGNAL_INFO:
1032        case AUDIT_TTY_GET:
1033        case AUDIT_TTY_SET:
1034        case AUDIT_TRIM:
1035        case AUDIT_MAKE_EQUIV:
1036                /* Only support auditd and auditctl in initial pid namespace
1037                 * for now. */
1038                if (task_active_pid_ns(current) != &init_pid_ns)
1039                        return -EPERM;
1040
1041                if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1042                        err = -EPERM;
1043                break;
1044        case AUDIT_USER:
1045        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1046        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1047                if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1048                        err = -EPERM;
1049                break;
1050        default:  /* bad msg */
1051                err = -EINVAL;
1052        }
1053
1054        return err;
1055}
1056
1057static void audit_log_common_recv_msg(struct audit_buffer **ab, u16 msg_type)
1058{
1059        uid_t uid = from_kuid(&init_user_ns, current_uid());
1060        pid_t pid = task_tgid_nr(current);
1061
1062        if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1063                *ab = NULL;
1064                return;
1065        }
1066
1067        *ab = audit_log_start(NULL, GFP_KERNEL, msg_type);
1068        if (unlikely(!*ab))
1069                return;
1070        audit_log_format(*ab, "pid=%d uid=%u", pid, uid);
1071        audit_log_session_info(*ab);
1072        audit_log_task_context(*ab);
1073}
1074
1075int is_audit_feature_set(int i)
1076{
1077        return af.features & AUDIT_FEATURE_TO_MASK(i);
1078}
1079
1080
1081static int audit_get_feature(struct sk_buff *skb)
1082{
1083        u32 seq;
1084
1085        seq = nlmsg_hdr(skb)->nlmsg_seq;
1086
1087        audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1088
1089        return 0;
1090}
1091
1092static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1093                                     u32 old_lock, u32 new_lock, int res)
1094{
1095        struct audit_buffer *ab;
1096
1097        if (audit_enabled == AUDIT_OFF)
1098                return;
1099        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1100        if (!ab)
1101                return;
1102        audit_log_task_info(ab, current);
1103        audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1104                         audit_feature_names[which], !!old_feature, !!new_feature,
1105                         !!old_lock, !!new_lock, res);
1106        audit_log_end(ab);
1107}
1108
1109static int audit_set_feature(struct sk_buff *skb)
1110{
1111        struct audit_features *uaf;
1112        int i;
1113
1114        BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1115        uaf = nlmsg_data(nlmsg_hdr(skb));
1116
1117        /* if there is ever a version 2 we should handle that here */
1118
1119        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1120                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1121                u32 old_feature, new_feature, old_lock, new_lock;
1122
1123                /* if we are not changing this feature, move along */
1124                if (!(feature & uaf->mask))
1125                        continue;
1126
1127                old_feature = af.features & feature;
1128                new_feature = uaf->features & feature;
1129                new_lock = (uaf->lock | af.lock) & feature;
1130                old_lock = af.lock & feature;
1131
1132                /* are we changing a locked feature? */
1133                if (old_lock && (new_feature != old_feature)) {
1134                        audit_log_feature_change(i, old_feature, new_feature,
1135                                                 old_lock, new_lock, 0);
1136                        return -EPERM;
1137                }
1138        }
1139        /* nothing invalid, do the changes */
1140        for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1141                u32 feature = AUDIT_FEATURE_TO_MASK(i);
1142                u32 old_feature, new_feature, old_lock, new_lock;
1143
1144                /* if we are not changing this feature, move along */
1145                if (!(feature & uaf->mask))
1146                        continue;
1147
1148                old_feature = af.features & feature;
1149                new_feature = uaf->features & feature;
1150                old_lock = af.lock & feature;
1151                new_lock = (uaf->lock | af.lock) & feature;
1152
1153                if (new_feature != old_feature)
1154                        audit_log_feature_change(i, old_feature, new_feature,
1155                                                 old_lock, new_lock, 1);
1156
1157                if (new_feature)
1158                        af.features |= feature;
1159                else
1160                        af.features &= ~feature;
1161                af.lock |= new_lock;
1162        }
1163
1164        return 0;
1165}
1166
1167static int audit_replace(struct pid *pid)
1168{
1169        pid_t pvnr;
1170        struct sk_buff *skb;
1171
1172        pvnr = pid_vnr(pid);
1173        skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1174        if (!skb)
1175                return -ENOMEM;
1176        return auditd_send_unicast_skb(skb);
1177}
1178
1179static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1180{
1181        u32                     seq;
1182        void                    *data;
1183        int                     err;
1184        struct audit_buffer     *ab;
1185        u16                     msg_type = nlh->nlmsg_type;
1186        struct audit_sig_info   *sig_data;
1187        char                    *ctx = NULL;
1188        u32                     len;
1189
1190        err = audit_netlink_ok(skb, msg_type);
1191        if (err)
1192                return err;
1193
1194        seq  = nlh->nlmsg_seq;
1195        data = nlmsg_data(nlh);
1196
1197        switch (msg_type) {
1198        case AUDIT_GET: {
1199                struct audit_status     s;
1200                memset(&s, 0, sizeof(s));
1201                s.enabled               = audit_enabled;
1202                s.failure               = audit_failure;
1203                /* NOTE: use pid_vnr() so the PID is relative to the current
1204                 *       namespace */
1205                s.pid                   = auditd_pid_vnr();
1206                s.rate_limit            = audit_rate_limit;
1207                s.backlog_limit         = audit_backlog_limit;
1208                s.lost                  = atomic_read(&audit_lost);
1209                s.backlog               = skb_queue_len(&audit_queue);
1210                s.feature_bitmap        = AUDIT_FEATURE_BITMAP_ALL;
1211                s.backlog_wait_time     = audit_backlog_wait_time;
1212                audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1213                break;
1214        }
1215        case AUDIT_SET: {
1216                struct audit_status     s;
1217                memset(&s, 0, sizeof(s));
1218                /* guard against past and future API changes */
1219                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1220                if (s.mask & AUDIT_STATUS_ENABLED) {
1221                        err = audit_set_enabled(s.enabled);
1222                        if (err < 0)
1223                                return err;
1224                }
1225                if (s.mask & AUDIT_STATUS_FAILURE) {
1226                        err = audit_set_failure(s.failure);
1227                        if (err < 0)
1228                                return err;
1229                }
1230                if (s.mask & AUDIT_STATUS_PID) {
1231                        /* NOTE: we are using the vnr PID functions below
1232                         *       because the s.pid value is relative to the
1233                         *       namespace of the caller; at present this
1234                         *       doesn't matter much since you can really only
1235                         *       run auditd from the initial pid namespace, but
1236                         *       something to keep in mind if this changes */
1237                        pid_t new_pid = s.pid;
1238                        pid_t auditd_pid;
1239                        struct pid *req_pid = task_tgid(current);
1240
1241                        /* Sanity check - PID values must match. Setting
1242                         * pid to 0 is how auditd ends auditing. */
1243                        if (new_pid && (new_pid != pid_vnr(req_pid)))
1244                                return -EINVAL;
1245
1246                        /* test the auditd connection */
1247                        audit_replace(req_pid);
1248
1249                        auditd_pid = auditd_pid_vnr();
1250                        if (auditd_pid) {
1251                                /* replacing a healthy auditd is not allowed */
1252                                if (new_pid) {
1253                                        audit_log_config_change("audit_pid",
1254                                                        new_pid, auditd_pid, 0);
1255                                        return -EEXIST;
1256                                }
1257                                /* only current auditd can unregister itself */
1258                                if (pid_vnr(req_pid) != auditd_pid) {
1259                                        audit_log_config_change("audit_pid",
1260                                                        new_pid, auditd_pid, 0);
1261                                        return -EACCES;
1262                                }
1263                        }
1264
1265                        if (new_pid) {
1266                                /* register a new auditd connection */
1267                                err = auditd_set(req_pid,
1268                                                 NETLINK_CB(skb).portid,
1269                                                 sock_net(NETLINK_CB(skb).sk));
1270                                if (audit_enabled != AUDIT_OFF)
1271                                        audit_log_config_change("audit_pid",
1272                                                                new_pid,
1273                                                                auditd_pid,
1274                                                                err ? 0 : 1);
1275                                if (err)
1276                                        return err;
1277
1278                                /* try to process any backlog */
1279                                wake_up_interruptible(&kauditd_wait);
1280                        } else {
1281                                if (audit_enabled != AUDIT_OFF)
1282                                        audit_log_config_change("audit_pid",
1283                                                                new_pid,
1284                                                                auditd_pid, 1);
1285
1286                                /* unregister the auditd connection */
1287                                auditd_reset(NULL);
1288                        }
1289                }
1290                if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1291                        err = audit_set_rate_limit(s.rate_limit);
1292                        if (err < 0)
1293                                return err;
1294                }
1295                if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1296                        err = audit_set_backlog_limit(s.backlog_limit);
1297                        if (err < 0)
1298                                return err;
1299                }
1300                if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1301                        if (sizeof(s) > (size_t)nlh->nlmsg_len)
1302                                return -EINVAL;
1303                        if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1304                                return -EINVAL;
1305                        err = audit_set_backlog_wait_time(s.backlog_wait_time);
1306                        if (err < 0)
1307                                return err;
1308                }
1309                if (s.mask == AUDIT_STATUS_LOST) {
1310                        u32 lost = atomic_xchg(&audit_lost, 0);
1311
1312                        audit_log_config_change("lost", 0, lost, 1);
1313                        return lost;
1314                }
1315                break;
1316        }
1317        case AUDIT_GET_FEATURE:
1318                err = audit_get_feature(skb);
1319                if (err)
1320                        return err;
1321                break;
1322        case AUDIT_SET_FEATURE:
1323                err = audit_set_feature(skb);
1324                if (err)
1325                        return err;
1326                break;
1327        case AUDIT_USER:
1328        case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1329        case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1330                if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1331                        return 0;
1332
1333                err = audit_filter(msg_type, AUDIT_FILTER_USER);
1334                if (err == 1) { /* match or error */
1335                        err = 0;
1336                        if (msg_type == AUDIT_USER_TTY) {
1337                                err = tty_audit_push();
1338                                if (err)
1339                                        break;
1340                        }
1341                        audit_log_common_recv_msg(&ab, msg_type);
1342                        if (msg_type != AUDIT_USER_TTY)
1343                                audit_log_format(ab, " msg='%.*s'",
1344                                                 AUDIT_MESSAGE_TEXT_MAX,
1345                                                 (char *)data);
1346                        else {
1347                                int size;
1348
1349                                audit_log_format(ab, " data=");
1350                                size = nlmsg_len(nlh);
1351                                if (size > 0 &&
1352                                    ((unsigned char *)data)[size - 1] == '\0')
1353                                        size--;
1354                                audit_log_n_untrustedstring(ab, data, size);
1355                        }
1356                        audit_log_end(ab);
1357                }
1358                break;
1359        case AUDIT_ADD_RULE:
1360        case AUDIT_DEL_RULE:
1361                if (nlmsg_len(nlh) < sizeof(struct audit_rule_data))
1362                        return -EINVAL;
1363                if (audit_enabled == AUDIT_LOCKED) {
1364                        audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1365                        audit_log_format(ab, " audit_enabled=%d res=0", audit_enabled);
1366                        audit_log_end(ab);
1367                        return -EPERM;
1368                }
1369                err = audit_rule_change(msg_type, seq, data, nlmsg_len(nlh));
1370                break;
1371        case AUDIT_LIST_RULES:
1372                err = audit_list_rules_send(skb, seq);
1373                break;
1374        case AUDIT_TRIM:
1375                audit_trim_trees();
1376                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1377                audit_log_format(ab, " op=trim res=1");
1378                audit_log_end(ab);
1379                break;
1380        case AUDIT_MAKE_EQUIV: {
1381                void *bufp = data;
1382                u32 sizes[2];
1383                size_t msglen = nlmsg_len(nlh);
1384                char *old, *new;
1385
1386                err = -EINVAL;
1387                if (msglen < 2 * sizeof(u32))
1388                        break;
1389                memcpy(sizes, bufp, 2 * sizeof(u32));
1390                bufp += 2 * sizeof(u32);
1391                msglen -= 2 * sizeof(u32);
1392                old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1393                if (IS_ERR(old)) {
1394                        err = PTR_ERR(old);
1395                        break;
1396                }
1397                new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1398                if (IS_ERR(new)) {
1399                        err = PTR_ERR(new);
1400                        kfree(old);
1401                        break;
1402                }
1403                /* OK, here comes... */
1404                err = audit_tag_tree(old, new);
1405
1406                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1407
1408                audit_log_format(ab, " op=make_equiv old=");
1409                audit_log_untrustedstring(ab, old);
1410                audit_log_format(ab, " new=");
1411                audit_log_untrustedstring(ab, new);
1412                audit_log_format(ab, " res=%d", !err);
1413                audit_log_end(ab);
1414                kfree(old);
1415                kfree(new);
1416                break;
1417        }
1418        case AUDIT_SIGNAL_INFO:
1419                len = 0;
1420                if (audit_sig_sid) {
1421                        err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1422                        if (err)
1423                                return err;
1424                }
1425                sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1426                if (!sig_data) {
1427                        if (audit_sig_sid)
1428                                security_release_secctx(ctx, len);
1429                        return -ENOMEM;
1430                }
1431                sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1432                sig_data->pid = audit_sig_pid;
1433                if (audit_sig_sid) {
1434                        memcpy(sig_data->ctx, ctx, len);
1435                        security_release_secctx(ctx, len);
1436                }
1437                audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1438                                 sig_data, sizeof(*sig_data) + len);
1439                kfree(sig_data);
1440                break;
1441        case AUDIT_TTY_GET: {
1442                struct audit_tty_status s;
1443                unsigned int t;
1444
1445                t = READ_ONCE(current->signal->audit_tty);
1446                s.enabled = t & AUDIT_TTY_ENABLE;
1447                s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1448
1449                audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1450                break;
1451        }
1452        case AUDIT_TTY_SET: {
1453                struct audit_tty_status s, old;
1454                struct audit_buffer     *ab;
1455                unsigned int t;
1456
1457                memset(&s, 0, sizeof(s));
1458                /* guard against past and future API changes */
1459                memcpy(&s, data, min_t(size_t, sizeof(s), nlmsg_len(nlh)));
1460                /* check if new data is valid */
1461                if ((s.enabled != 0 && s.enabled != 1) ||
1462                    (s.log_passwd != 0 && s.log_passwd != 1))
1463                        err = -EINVAL;
1464
1465                if (err)
1466                        t = READ_ONCE(current->signal->audit_tty);
1467                else {
1468                        t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1469                        t = xchg(&current->signal->audit_tty, t);
1470                }
1471                old.enabled = t & AUDIT_TTY_ENABLE;
1472                old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1473
1474                audit_log_common_recv_msg(&ab, AUDIT_CONFIG_CHANGE);
1475                audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1476                                 " old-log_passwd=%d new-log_passwd=%d res=%d",
1477                                 old.enabled, s.enabled, old.log_passwd,
1478                                 s.log_passwd, !err);
1479                audit_log_end(ab);
1480                break;
1481        }
1482        default:
1483                err = -EINVAL;
1484                break;
1485        }
1486
1487        return err < 0 ? err : 0;
1488}
1489
1490/**
1491 * audit_receive - receive messages from a netlink control socket
1492 * @skb: the message buffer
1493 *
1494 * Parse the provided skb and deal with any messages that may be present,
1495 * malformed skbs are discarded.
1496 */
1497static void audit_receive(struct sk_buff  *skb)
1498{
1499        struct nlmsghdr *nlh;
1500        /*
1501         * len MUST be signed for nlmsg_next to be able to dec it below 0
1502         * if the nlmsg_len was not aligned
1503         */
1504        int len;
1505        int err;
1506
1507        nlh = nlmsg_hdr(skb);
1508        len = skb->len;
1509
1510        audit_ctl_lock();
1511        while (nlmsg_ok(nlh, len)) {
1512                err = audit_receive_msg(skb, nlh);
1513                /* if err or if this message says it wants a response */
1514                if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1515                        netlink_ack(skb, nlh, err, NULL);
1516
1517                nlh = nlmsg_next(nlh, &len);
1518        }
1519        audit_ctl_unlock();
1520}
1521
1522/* Run custom bind function on netlink socket group connect or bind requests. */
1523static int audit_bind(struct net *net, int group)
1524{
1525        if (!capable(CAP_AUDIT_READ))
1526                return -EPERM;
1527
1528        return 0;
1529}
1530
1531static int __net_init audit_net_init(struct net *net)
1532{
1533        struct netlink_kernel_cfg cfg = {
1534                .input  = audit_receive,
1535                .bind   = audit_bind,
1536                .flags  = NL_CFG_F_NONROOT_RECV,
1537                .groups = AUDIT_NLGRP_MAX,
1538        };
1539
1540        struct audit_net *aunet = net_generic(net, audit_net_id);
1541
1542        aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1543        if (aunet->sk == NULL) {
1544                audit_panic("cannot initialize netlink socket in namespace");
1545                return -ENOMEM;
1546        }
1547        aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1548
1549        return 0;
1550}
1551
1552static void __net_exit audit_net_exit(struct net *net)
1553{
1554        struct audit_net *aunet = net_generic(net, audit_net_id);
1555
1556        /* NOTE: you would think that we would want to check the auditd
1557         * connection and potentially reset it here if it lives in this
1558         * namespace, but since the auditd connection tracking struct holds a
1559         * reference to this namespace (see auditd_set()) we are only ever
1560         * going to get here after that connection has been released */
1561
1562        netlink_kernel_release(aunet->sk);
1563}
1564
1565static struct pernet_operations audit_net_ops __net_initdata = {
1566        .init = audit_net_init,
1567        .exit = audit_net_exit,
1568        .id = &audit_net_id,
1569        .size = sizeof(struct audit_net),
1570};
1571
1572/* Initialize audit support at boot time. */
1573static int __init audit_init(void)
1574{
1575        int i;
1576
1577        if (audit_initialized == AUDIT_DISABLED)
1578                return 0;
1579
1580        audit_buffer_cache = kmem_cache_create("audit_buffer",
1581                                               sizeof(struct audit_buffer),
1582                                               0, SLAB_PANIC, NULL);
1583
1584        skb_queue_head_init(&audit_queue);
1585        skb_queue_head_init(&audit_retry_queue);
1586        skb_queue_head_init(&audit_hold_queue);
1587
1588        for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1589                INIT_LIST_HEAD(&audit_inode_hash[i]);
1590
1591        mutex_init(&audit_cmd_mutex.lock);
1592        audit_cmd_mutex.owner = NULL;
1593
1594        pr_info("initializing netlink subsys (%s)\n",
1595                audit_default ? "enabled" : "disabled");
1596        register_pernet_subsys(&audit_net_ops);
1597
1598        audit_initialized = AUDIT_INITIALIZED;
1599
1600        kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1601        if (IS_ERR(kauditd_task)) {
1602                int err = PTR_ERR(kauditd_task);
1603                panic("audit: failed to start the kauditd thread (%d)\n", err);
1604        }
1605
1606        audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1607                "state=initialized audit_enabled=%u res=1",
1608                 audit_enabled);
1609
1610        return 0;
1611}
1612postcore_initcall(audit_init);
1613
1614/*
1615 * Process kernel command-line parameter at boot time.
1616 * audit={0|off} or audit={1|on}.
1617 */
1618static int __init audit_enable(char *str)
1619{
1620        if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1621                audit_default = AUDIT_OFF;
1622        else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1623                audit_default = AUDIT_ON;
1624        else {
1625                pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1626                audit_default = AUDIT_ON;
1627        }
1628
1629        if (audit_default == AUDIT_OFF)
1630                audit_initialized = AUDIT_DISABLED;
1631        if (audit_set_enabled(audit_default))
1632                pr_err("audit: error setting audit state (%d)\n",
1633                       audit_default);
1634
1635        pr_info("%s\n", audit_default ?
1636                "enabled (after initialization)" : "disabled (until reboot)");
1637
1638        return 1;
1639}
1640__setup("audit=", audit_enable);
1641
1642/* Process kernel command-line parameter at boot time.
1643 * audit_backlog_limit=<n> */
1644static int __init audit_backlog_limit_set(char *str)
1645{
1646        u32 audit_backlog_limit_arg;
1647
1648        pr_info("audit_backlog_limit: ");
1649        if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1650                pr_cont("using default of %u, unable to parse %s\n",
1651                        audit_backlog_limit, str);
1652                return 1;
1653        }
1654
1655        audit_backlog_limit = audit_backlog_limit_arg;
1656        pr_cont("%d\n", audit_backlog_limit);
1657
1658        return 1;
1659}
1660__setup("audit_backlog_limit=", audit_backlog_limit_set);
1661
1662static void audit_buffer_free(struct audit_buffer *ab)
1663{
1664        if (!ab)
1665                return;
1666
1667        kfree_skb(ab->skb);
1668        kmem_cache_free(audit_buffer_cache, ab);
1669}
1670
1671static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1672                                               gfp_t gfp_mask, int type)
1673{
1674        struct audit_buffer *ab;
1675
1676        ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1677        if (!ab)
1678                return NULL;
1679
1680        ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1681        if (!ab->skb)
1682                goto err;
1683        if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1684                goto err;
1685
1686        ab->ctx = ctx;
1687        ab->gfp_mask = gfp_mask;
1688
1689        return ab;
1690
1691err:
1692        audit_buffer_free(ab);
1693        return NULL;
1694}
1695
1696/**
1697 * audit_serial - compute a serial number for the audit record
1698 *
1699 * Compute a serial number for the audit record.  Audit records are
1700 * written to user-space as soon as they are generated, so a complete
1701 * audit record may be written in several pieces.  The timestamp of the
1702 * record and this serial number are used by the user-space tools to
1703 * determine which pieces belong to the same audit record.  The
1704 * (timestamp,serial) tuple is unique for each syscall and is live from
1705 * syscall entry to syscall exit.
1706 *
1707 * NOTE: Another possibility is to store the formatted records off the
1708 * audit context (for those records that have a context), and emit them
1709 * all at syscall exit.  However, this could delay the reporting of
1710 * significant errors until syscall exit (or never, if the system
1711 * halts).
1712 */
1713unsigned int audit_serial(void)
1714{
1715        static atomic_t serial = ATOMIC_INIT(0);
1716
1717        return atomic_add_return(1, &serial);
1718}
1719
1720static inline void audit_get_stamp(struct audit_context *ctx,
1721                                   struct timespec64 *t, unsigned int *serial)
1722{
1723        if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1724                ktime_get_coarse_real_ts64(t);
1725                *serial = audit_serial();
1726        }
1727}
1728
1729/**
1730 * audit_log_start - obtain an audit buffer
1731 * @ctx: audit_context (may be NULL)
1732 * @gfp_mask: type of allocation
1733 * @type: audit message type
1734 *
1735 * Returns audit_buffer pointer on success or NULL on error.
1736 *
1737 * Obtain an audit buffer.  This routine does locking to obtain the
1738 * audit buffer, but then no locking is required for calls to
1739 * audit_log_*format.  If the task (ctx) is a task that is currently in a
1740 * syscall, then the syscall is marked as auditable and an audit record
1741 * will be written at syscall exit.  If there is no associated task, then
1742 * task context (ctx) should be NULL.
1743 */
1744struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1745                                     int type)
1746{
1747        struct audit_buffer *ab;
1748        struct timespec64 t;
1749        unsigned int uninitialized_var(serial);
1750
1751        if (audit_initialized != AUDIT_INITIALIZED)
1752                return NULL;
1753
1754        if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1755                return NULL;
1756
1757        /* NOTE: don't ever fail/sleep on these two conditions:
1758         * 1. auditd generated record - since we need auditd to drain the
1759         *    queue; also, when we are checking for auditd, compare PIDs using
1760         *    task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1761         *    using a PID anchored in the caller's namespace
1762         * 2. generator holding the audit_cmd_mutex - we don't want to block
1763         *    while holding the mutex */
1764        if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1765                long stime = audit_backlog_wait_time;
1766
1767                while (audit_backlog_limit &&
1768                       (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1769                        /* wake kauditd to try and flush the queue */
1770                        wake_up_interruptible(&kauditd_wait);
1771
1772                        /* sleep if we are allowed and we haven't exhausted our
1773                         * backlog wait limit */
1774                        if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1775                                DECLARE_WAITQUEUE(wait, current);
1776
1777                                add_wait_queue_exclusive(&audit_backlog_wait,
1778                                                         &wait);
1779                                set_current_state(TASK_UNINTERRUPTIBLE);
1780                                stime = schedule_timeout(stime);
1781                                remove_wait_queue(&audit_backlog_wait, &wait);
1782                        } else {
1783                                if (audit_rate_check() && printk_ratelimit())
1784                                        pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1785                                                skb_queue_len(&audit_queue),
1786                                                audit_backlog_limit);
1787                                audit_log_lost("backlog limit exceeded");
1788                                return NULL;
1789                        }
1790                }
1791        }
1792
1793        ab = audit_buffer_alloc(ctx, gfp_mask, type);
1794        if (!ab) {
1795                audit_log_lost("out of memory in audit_log_start");
1796                return NULL;
1797        }
1798
1799        audit_get_stamp(ab->ctx, &t, &serial);
1800        audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1801                         (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1802
1803        return ab;
1804}
1805
1806/**
1807 * audit_expand - expand skb in the audit buffer
1808 * @ab: audit_buffer
1809 * @extra: space to add at tail of the skb
1810 *
1811 * Returns 0 (no space) on failed expansion, or available space if
1812 * successful.
1813 */
1814static inline int audit_expand(struct audit_buffer *ab, int extra)
1815{
1816        struct sk_buff *skb = ab->skb;
1817        int oldtail = skb_tailroom(skb);
1818        int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1819        int newtail = skb_tailroom(skb);
1820
1821        if (ret < 0) {
1822                audit_log_lost("out of memory in audit_expand");
1823                return 0;
1824        }
1825
1826        skb->truesize += newtail - oldtail;
1827        return newtail;
1828}
1829
1830/*
1831 * Format an audit message into the audit buffer.  If there isn't enough
1832 * room in the audit buffer, more room will be allocated and vsnprint
1833 * will be called a second time.  Currently, we assume that a printk
1834 * can't format message larger than 1024 bytes, so we don't either.
1835 */
1836static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1837                              va_list args)
1838{
1839        int len, avail;
1840        struct sk_buff *skb;
1841        va_list args2;
1842
1843        if (!ab)
1844                return;
1845
1846        BUG_ON(!ab->skb);
1847        skb = ab->skb;
1848        avail = skb_tailroom(skb);
1849        if (avail == 0) {
1850                avail = audit_expand(ab, AUDIT_BUFSIZ);
1851                if (!avail)
1852                        goto out;
1853        }
1854        va_copy(args2, args);
1855        len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1856        if (len >= avail) {
1857                /* The printk buffer is 1024 bytes long, so if we get
1858                 * here and AUDIT_BUFSIZ is at least 1024, then we can
1859                 * log everything that printk could have logged. */
1860                avail = audit_expand(ab,
1861                        max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1862                if (!avail)
1863                        goto out_va_end;
1864                len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1865        }
1866        if (len > 0)
1867                skb_put(skb, len);
1868out_va_end:
1869        va_end(args2);
1870out:
1871        return;
1872}
1873
1874/**
1875 * audit_log_format - format a message into the audit buffer.
1876 * @ab: audit_buffer
1877 * @fmt: format string
1878 * @...: optional parameters matching @fmt string
1879 *
1880 * All the work is done in audit_log_vformat.
1881 */
1882void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1883{
1884        va_list args;
1885
1886        if (!ab)
1887                return;
1888        va_start(args, fmt);
1889        audit_log_vformat(ab, fmt, args);
1890        va_end(args);
1891}
1892
1893/**
1894 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1895 * @ab: the audit_buffer
1896 * @buf: buffer to convert to hex
1897 * @len: length of @buf to be converted
1898 *
1899 * No return value; failure to expand is silently ignored.
1900 *
1901 * This function will take the passed buf and convert it into a string of
1902 * ascii hex digits. The new string is placed onto the skb.
1903 */
1904void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1905                size_t len)
1906{
1907        int i, avail, new_len;
1908        unsigned char *ptr;
1909        struct sk_buff *skb;
1910
1911        if (!ab)
1912                return;
1913
1914        BUG_ON(!ab->skb);
1915        skb = ab->skb;
1916        avail = skb_tailroom(skb);
1917        new_len = len<<1;
1918        if (new_len >= avail) {
1919                /* Round the buffer request up to the next multiple */
1920                new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1921                avail = audit_expand(ab, new_len);
1922                if (!avail)
1923                        return;
1924        }
1925
1926        ptr = skb_tail_pointer(skb);
1927        for (i = 0; i < len; i++)
1928                ptr = hex_byte_pack_upper(ptr, buf[i]);
1929        *ptr = 0;
1930        skb_put(skb, len << 1); /* new string is twice the old string */
1931}
1932
1933/*
1934 * Format a string of no more than slen characters into the audit buffer,
1935 * enclosed in quote marks.
1936 */
1937void audit_log_n_string(struct audit_buffer *ab, const char *string,
1938                        size_t slen)
1939{
1940        int avail, new_len;
1941        unsigned char *ptr;
1942        struct sk_buff *skb;
1943
1944        if (!ab)
1945                return;
1946
1947        BUG_ON(!ab->skb);
1948        skb = ab->skb;
1949        avail = skb_tailroom(skb);
1950        new_len = slen + 3;     /* enclosing quotes + null terminator */
1951        if (new_len > avail) {
1952                avail = audit_expand(ab, new_len);
1953                if (!avail)
1954                        return;
1955        }
1956        ptr = skb_tail_pointer(skb);
1957        *ptr++ = '"';
1958        memcpy(ptr, string, slen);
1959        ptr += slen;
1960        *ptr++ = '"';
1961        *ptr = 0;
1962        skb_put(skb, slen + 2); /* don't include null terminator */
1963}
1964
1965/**
1966 * audit_string_contains_control - does a string need to be logged in hex
1967 * @string: string to be checked
1968 * @len: max length of the string to check
1969 */
1970bool audit_string_contains_control(const char *string, size_t len)
1971{
1972        const unsigned char *p;
1973        for (p = string; p < (const unsigned char *)string + len; p++) {
1974                if (*p == '"' || *p < 0x21 || *p > 0x7e)
1975                        return true;
1976        }
1977        return false;
1978}
1979
1980/**
1981 * audit_log_n_untrustedstring - log a string that may contain random characters
1982 * @ab: audit_buffer
1983 * @len: length of string (not including trailing null)
1984 * @string: string to be logged
1985 *
1986 * This code will escape a string that is passed to it if the string
1987 * contains a control character, unprintable character, double quote mark,
1988 * or a space. Unescaped strings will start and end with a double quote mark.
1989 * Strings that are escaped are printed in hex (2 digits per char).
1990 *
1991 * The caller specifies the number of characters in the string to log, which may
1992 * or may not be the entire string.
1993 */
1994void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
1995                                 size_t len)
1996{
1997        if (audit_string_contains_control(string, len))
1998                audit_log_n_hex(ab, string, len);
1999        else
2000                audit_log_n_string(ab, string, len);
2001}
2002
2003/**
2004 * audit_log_untrustedstring - log a string that may contain random characters
2005 * @ab: audit_buffer
2006 * @string: string to be logged
2007 *
2008 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2009 * determine string length.
2010 */
2011void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2012{
2013        audit_log_n_untrustedstring(ab, string, strlen(string));
2014}
2015
2016/* This is a helper-function to print the escaped d_path */
2017void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2018                      const struct path *path)
2019{
2020        char *p, *pathname;
2021
2022        if (prefix)
2023                audit_log_format(ab, "%s", prefix);
2024
2025        /* We will allow 11 spaces for ' (deleted)' to be appended */
2026        pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2027        if (!pathname) {
2028                audit_log_string(ab, "<no_memory>");
2029                return;
2030        }
2031        p = d_path(path, pathname, PATH_MAX+11);
2032        if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2033                /* FIXME: can we save some information here? */
2034                audit_log_string(ab, "<too_long>");
2035        } else
2036                audit_log_untrustedstring(ab, p);
2037        kfree(pathname);
2038}
2039
2040void audit_log_session_info(struct audit_buffer *ab)
2041{
2042        unsigned int sessionid = audit_get_sessionid(current);
2043        uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2044
2045        audit_log_format(ab, " auid=%u ses=%u", auid, sessionid);
2046}
2047
2048void audit_log_key(struct audit_buffer *ab, char *key)
2049{
2050        audit_log_format(ab, " key=");
2051        if (key)
2052                audit_log_untrustedstring(ab, key);
2053        else
2054                audit_log_format(ab, "(null)");
2055}
2056
2057void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
2058{
2059        int i;
2060
2061        audit_log_format(ab, " %s=", prefix);
2062        CAP_FOR_EACH_U32(i) {
2063                audit_log_format(ab, "%08x",
2064                                 cap->cap[CAP_LAST_U32 - i]);
2065        }
2066}
2067
2068static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
2069{
2070        audit_log_cap(ab, "cap_fp", &name->fcap.permitted);
2071        audit_log_cap(ab, "cap_fi", &name->fcap.inheritable);
2072        audit_log_format(ab, " cap_fe=%d cap_fver=%x",
2073                         name->fcap.fE, name->fcap_ver);
2074}
2075
2076static inline int audit_copy_fcaps(struct audit_names *name,
2077                                   const struct dentry *dentry)
2078{
2079        struct cpu_vfs_cap_data caps;
2080        int rc;
2081
2082        if (!dentry)
2083                return 0;
2084
2085        rc = get_vfs_caps_from_disk(dentry, &caps);
2086        if (rc)
2087                return rc;
2088
2089        name->fcap.permitted = caps.permitted;
2090        name->fcap.inheritable = caps.inheritable;
2091        name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
2092        name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >>
2093                                VFS_CAP_REVISION_SHIFT;
2094
2095        return 0;
2096}
2097
2098/* Copy inode data into an audit_names. */
2099void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
2100                      struct inode *inode)
2101{
2102        name->ino   = inode->i_ino;
2103        name->dev   = inode->i_sb->s_dev;
2104        name->mode  = inode->i_mode;
2105        name->uid   = inode->i_uid;
2106        name->gid   = inode->i_gid;
2107        name->rdev  = inode->i_rdev;
2108        security_inode_getsecid(inode, &name->osid);
2109        audit_copy_fcaps(name, dentry);
2110}
2111
2112/**
2113 * audit_log_name - produce AUDIT_PATH record from struct audit_names
2114 * @context: audit_context for the task
2115 * @n: audit_names structure with reportable details
2116 * @path: optional path to report instead of audit_names->name
2117 * @record_num: record number to report when handling a list of names
2118 * @call_panic: optional pointer to int that will be updated if secid fails
2119 */
2120void audit_log_name(struct audit_context *context, struct audit_names *n,
2121                    const struct path *path, int record_num, int *call_panic)
2122{
2123        struct audit_buffer *ab;
2124        ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
2125        if (!ab)
2126                return;
2127
2128        audit_log_format(ab, "item=%d", record_num);
2129
2130        if (path)
2131                audit_log_d_path(ab, " name=", path);
2132        else if (n->name) {
2133                switch (n->name_len) {
2134                case AUDIT_NAME_FULL:
2135                        /* log the full path */
2136                        audit_log_format(ab, " name=");
2137                        audit_log_untrustedstring(ab, n->name->name);
2138                        break;
2139                case 0:
2140                        /* name was specified as a relative path and the
2141                         * directory component is the cwd */
2142                        audit_log_d_path(ab, " name=", &context->pwd);
2143                        break;
2144                default:
2145                        /* log the name's directory component */
2146                        audit_log_format(ab, " name=");
2147                        audit_log_n_untrustedstring(ab, n->name->name,
2148                                                    n->name_len);
2149                }
2150        } else
2151                audit_log_format(ab, " name=(null)");
2152
2153        if (n->ino != AUDIT_INO_UNSET)
2154                audit_log_format(ab, " inode=%lu"
2155                                 " dev=%02x:%02x mode=%#ho"
2156                                 " ouid=%u ogid=%u rdev=%02x:%02x",
2157                                 n->ino,
2158                                 MAJOR(n->dev),
2159                                 MINOR(n->dev),
2160                                 n->mode,
2161                                 from_kuid(&init_user_ns, n->uid),
2162                                 from_kgid(&init_user_ns, n->gid),
2163                                 MAJOR(n->rdev),
2164                                 MINOR(n->rdev));
2165        if (n->osid != 0) {
2166                char *ctx = NULL;
2167                u32 len;
2168                if (security_secid_to_secctx(
2169                        n->osid, &ctx, &len)) {
2170                        audit_log_format(ab, " osid=%u", n->osid);
2171                        if (call_panic)
2172                                *call_panic = 2;
2173                } else {
2174                        audit_log_format(ab, " obj=%s", ctx);
2175                        security_release_secctx(ctx, len);
2176                }
2177        }
2178
2179        /* log the audit_names record type */
2180        audit_log_format(ab, " nametype=");
2181        switch(n->type) {
2182        case AUDIT_TYPE_NORMAL:
2183                audit_log_format(ab, "NORMAL");
2184                break;
2185        case AUDIT_TYPE_PARENT:
2186                audit_log_format(ab, "PARENT");
2187                break;
2188        case AUDIT_TYPE_CHILD_DELETE:
2189                audit_log_format(ab, "DELETE");
2190                break;
2191        case AUDIT_TYPE_CHILD_CREATE:
2192                audit_log_format(ab, "CREATE");
2193                break;
2194        default:
2195                audit_log_format(ab, "UNKNOWN");
2196                break;
2197        }
2198
2199        audit_log_fcaps(ab, n);
2200        audit_log_end(ab);
2201}
2202
2203int audit_log_task_context(struct audit_buffer *ab)
2204{
2205        char *ctx = NULL;
2206        unsigned len;
2207        int error;
2208        u32 sid;
2209
2210        security_task_getsecid(current, &sid);
2211        if (!sid)
2212                return 0;
2213
2214        error = security_secid_to_secctx(sid, &ctx, &len);
2215        if (error) {
2216                if (error != -EINVAL)
2217                        goto error_path;
2218                return 0;
2219        }
2220
2221        audit_log_format(ab, " subj=%s", ctx);
2222        security_release_secctx(ctx, len);
2223        return 0;
2224
2225error_path:
2226        audit_panic("error in audit_log_task_context");
2227        return error;
2228}
2229EXPORT_SYMBOL(audit_log_task_context);
2230
2231void audit_log_d_path_exe(struct audit_buffer *ab,
2232                          struct mm_struct *mm)
2233{
2234        struct file *exe_file;
2235
2236        if (!mm)
2237                goto out_null;
2238
2239        exe_file = get_mm_exe_file(mm);
2240        if (!exe_file)
2241                goto out_null;
2242
2243        audit_log_d_path(ab, " exe=", &exe_file->f_path);
2244        fput(exe_file);
2245        return;
2246out_null:
2247        audit_log_format(ab, " exe=(null)");
2248}
2249
2250struct tty_struct *audit_get_tty(struct task_struct *tsk)
2251{
2252        struct tty_struct *tty = NULL;
2253        unsigned long flags;
2254
2255        spin_lock_irqsave(&tsk->sighand->siglock, flags);
2256        if (tsk->signal)
2257                tty = tty_kref_get(tsk->signal->tty);
2258        spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
2259        return tty;
2260}
2261
2262void audit_put_tty(struct tty_struct *tty)
2263{
2264        tty_kref_put(tty);
2265}
2266
2267void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
2268{
2269        const struct cred *cred;
2270        char comm[sizeof(tsk->comm)];
2271        struct tty_struct *tty;
2272
2273        if (!ab)
2274                return;
2275
2276        /* tsk == current */
2277        cred = current_cred();
2278        tty = audit_get_tty(tsk);
2279        audit_log_format(ab,
2280                         " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2281                         " euid=%u suid=%u fsuid=%u"
2282                         " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2283                         task_ppid_nr(tsk),
2284                         task_tgid_nr(tsk),
2285                         from_kuid(&init_user_ns, audit_get_loginuid(tsk)),
2286                         from_kuid(&init_user_ns, cred->uid),
2287                         from_kgid(&init_user_ns, cred->gid),
2288                         from_kuid(&init_user_ns, cred->euid),
2289                         from_kuid(&init_user_ns, cred->suid),
2290                         from_kuid(&init_user_ns, cred->fsuid),
2291                         from_kgid(&init_user_ns, cred->egid),
2292                         from_kgid(&init_user_ns, cred->sgid),
2293                         from_kgid(&init_user_ns, cred->fsgid),
2294                         tty ? tty_name(tty) : "(none)",
2295                         audit_get_sessionid(tsk));
2296        audit_put_tty(tty);
2297        audit_log_format(ab, " comm=");
2298        audit_log_untrustedstring(ab, get_task_comm(comm, tsk));
2299        audit_log_d_path_exe(ab, tsk->mm);
2300        audit_log_task_context(ab);
2301}
2302EXPORT_SYMBOL(audit_log_task_info);
2303
2304/**
2305 * audit_log_link_denied - report a link restriction denial
2306 * @operation: specific link operation
2307 */
2308void audit_log_link_denied(const char *operation)
2309{
2310        struct audit_buffer *ab;
2311
2312        if (!audit_enabled || audit_dummy_context())
2313                return;
2314
2315        /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2316        ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2317        if (!ab)
2318                return;
2319        audit_log_format(ab, "op=%s", operation);
2320        audit_log_task_info(ab, current);
2321        audit_log_format(ab, " res=0");
2322        audit_log_end(ab);
2323}
2324
2325/**
2326 * audit_log_end - end one audit record
2327 * @ab: the audit_buffer
2328 *
2329 * We can not do a netlink send inside an irq context because it blocks (last
2330 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2331 * queue and a tasklet is scheduled to remove them from the queue outside the
2332 * irq context.  May be called in any context.
2333 */
2334void audit_log_end(struct audit_buffer *ab)
2335{
2336        struct sk_buff *skb;
2337        struct nlmsghdr *nlh;
2338
2339        if (!ab)
2340                return;
2341
2342        if (audit_rate_check()) {
2343                skb = ab->skb;
2344                ab->skb = NULL;
2345
2346                /* setup the netlink header, see the comments in
2347                 * kauditd_send_multicast_skb() for length quirks */
2348                nlh = nlmsg_hdr(skb);
2349                nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2350
2351                /* queue the netlink packet and poke the kauditd thread */
2352                skb_queue_tail(&audit_queue, skb);
2353                wake_up_interruptible(&kauditd_wait);
2354        } else
2355                audit_log_lost("rate limit exceeded");
2356
2357        audit_buffer_free(ab);
2358}
2359
2360/**
2361 * audit_log - Log an audit record
2362 * @ctx: audit context
2363 * @gfp_mask: type of allocation
2364 * @type: audit message type
2365 * @fmt: format string to use
2366 * @...: variable parameters matching the format string
2367 *
2368 * This is a convenience function that calls audit_log_start,
2369 * audit_log_vformat, and audit_log_end.  It may be called
2370 * in any context.
2371 */
2372void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2373               const char *fmt, ...)
2374{
2375        struct audit_buffer *ab;
2376        va_list args;
2377
2378        ab = audit_log_start(ctx, gfp_mask, type);
2379        if (ab) {
2380                va_start(args, fmt);
2381                audit_log_vformat(ab, fmt, args);
2382                va_end(args);
2383                audit_log_end(ab);
2384        }
2385}
2386
2387EXPORT_SYMBOL(audit_log_start);
2388EXPORT_SYMBOL(audit_log_end);
2389EXPORT_SYMBOL(audit_log_format);
2390EXPORT_SYMBOL(audit_log);
2391