linux/kernel/cpu.c
<<
>>
Prefs
   1/* CPU control.
   2 * (C) 2001, 2002, 2003, 2004 Rusty Russell
   3 *
   4 * This code is licenced under the GPL.
   5 */
   6#include <linux/proc_fs.h>
   7#include <linux/smp.h>
   8#include <linux/init.h>
   9#include <linux/notifier.h>
  10#include <linux/sched/signal.h>
  11#include <linux/sched/hotplug.h>
  12#include <linux/sched/task.h>
  13#include <linux/unistd.h>
  14#include <linux/cpu.h>
  15#include <linux/oom.h>
  16#include <linux/rcupdate.h>
  17#include <linux/export.h>
  18#include <linux/bug.h>
  19#include <linux/kthread.h>
  20#include <linux/stop_machine.h>
  21#include <linux/mutex.h>
  22#include <linux/gfp.h>
  23#include <linux/suspend.h>
  24#include <linux/lockdep.h>
  25#include <linux/tick.h>
  26#include <linux/irq.h>
  27#include <linux/nmi.h>
  28#include <linux/smpboot.h>
  29#include <linux/relay.h>
  30#include <linux/slab.h>
  31#include <linux/percpu-rwsem.h>
  32
  33#include <trace/events/power.h>
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/cpuhp.h>
  36
  37#include "smpboot.h"
  38
  39/**
  40 * cpuhp_cpu_state - Per cpu hotplug state storage
  41 * @state:      The current cpu state
  42 * @target:     The target state
  43 * @thread:     Pointer to the hotplug thread
  44 * @should_run: Thread should execute
  45 * @rollback:   Perform a rollback
  46 * @single:     Single callback invocation
  47 * @bringup:    Single callback bringup or teardown selector
  48 * @cb_state:   The state for a single callback (install/uninstall)
  49 * @result:     Result of the operation
  50 * @done_up:    Signal completion to the issuer of the task for cpu-up
  51 * @done_down:  Signal completion to the issuer of the task for cpu-down
  52 */
  53struct cpuhp_cpu_state {
  54        enum cpuhp_state        state;
  55        enum cpuhp_state        target;
  56        enum cpuhp_state        fail;
  57#ifdef CONFIG_SMP
  58        struct task_struct      *thread;
  59        bool                    should_run;
  60        bool                    rollback;
  61        bool                    single;
  62        bool                    bringup;
  63        bool                    booted_once;
  64        struct hlist_node       *node;
  65        struct hlist_node       *last;
  66        enum cpuhp_state        cb_state;
  67        int                     result;
  68        struct completion       done_up;
  69        struct completion       done_down;
  70#endif
  71};
  72
  73static DEFINE_PER_CPU(struct cpuhp_cpu_state, cpuhp_state) = {
  74        .fail = CPUHP_INVALID,
  75};
  76
  77#if defined(CONFIG_LOCKDEP) && defined(CONFIG_SMP)
  78static struct lockdep_map cpuhp_state_up_map =
  79        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-up", &cpuhp_state_up_map);
  80static struct lockdep_map cpuhp_state_down_map =
  81        STATIC_LOCKDEP_MAP_INIT("cpuhp_state-down", &cpuhp_state_down_map);
  82
  83
  84static inline void cpuhp_lock_acquire(bool bringup)
  85{
  86        lock_map_acquire(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  87}
  88
  89static inline void cpuhp_lock_release(bool bringup)
  90{
  91        lock_map_release(bringup ? &cpuhp_state_up_map : &cpuhp_state_down_map);
  92}
  93#else
  94
  95static inline void cpuhp_lock_acquire(bool bringup) { }
  96static inline void cpuhp_lock_release(bool bringup) { }
  97
  98#endif
  99
 100/**
 101 * cpuhp_step - Hotplug state machine step
 102 * @name:       Name of the step
 103 * @startup:    Startup function of the step
 104 * @teardown:   Teardown function of the step
 105 * @cant_stop:  Bringup/teardown can't be stopped at this step
 106 */
 107struct cpuhp_step {
 108        const char              *name;
 109        union {
 110                int             (*single)(unsigned int cpu);
 111                int             (*multi)(unsigned int cpu,
 112                                         struct hlist_node *node);
 113        } startup;
 114        union {
 115                int             (*single)(unsigned int cpu);
 116                int             (*multi)(unsigned int cpu,
 117                                         struct hlist_node *node);
 118        } teardown;
 119        struct hlist_head       list;
 120        bool                    cant_stop;
 121        bool                    multi_instance;
 122};
 123
 124static DEFINE_MUTEX(cpuhp_state_mutex);
 125static struct cpuhp_step cpuhp_hp_states[];
 126
 127static struct cpuhp_step *cpuhp_get_step(enum cpuhp_state state)
 128{
 129        return cpuhp_hp_states + state;
 130}
 131
 132/**
 133 * cpuhp_invoke_callback _ Invoke the callbacks for a given state
 134 * @cpu:        The cpu for which the callback should be invoked
 135 * @state:      The state to do callbacks for
 136 * @bringup:    True if the bringup callback should be invoked
 137 * @node:       For multi-instance, do a single entry callback for install/remove
 138 * @lastp:      For multi-instance rollback, remember how far we got
 139 *
 140 * Called from cpu hotplug and from the state register machinery.
 141 */
 142static int cpuhp_invoke_callback(unsigned int cpu, enum cpuhp_state state,
 143                                 bool bringup, struct hlist_node *node,
 144                                 struct hlist_node **lastp)
 145{
 146        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 147        struct cpuhp_step *step = cpuhp_get_step(state);
 148        int (*cbm)(unsigned int cpu, struct hlist_node *node);
 149        int (*cb)(unsigned int cpu);
 150        int ret, cnt;
 151
 152        if (st->fail == state) {
 153                st->fail = CPUHP_INVALID;
 154
 155                if (!(bringup ? step->startup.single : step->teardown.single))
 156                        return 0;
 157
 158                return -EAGAIN;
 159        }
 160
 161        if (!step->multi_instance) {
 162                WARN_ON_ONCE(lastp && *lastp);
 163                cb = bringup ? step->startup.single : step->teardown.single;
 164                if (!cb)
 165                        return 0;
 166                trace_cpuhp_enter(cpu, st->target, state, cb);
 167                ret = cb(cpu);
 168                trace_cpuhp_exit(cpu, st->state, state, ret);
 169                return ret;
 170        }
 171        cbm = bringup ? step->startup.multi : step->teardown.multi;
 172        if (!cbm)
 173                return 0;
 174
 175        /* Single invocation for instance add/remove */
 176        if (node) {
 177                WARN_ON_ONCE(lastp && *lastp);
 178                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 179                ret = cbm(cpu, node);
 180                trace_cpuhp_exit(cpu, st->state, state, ret);
 181                return ret;
 182        }
 183
 184        /* State transition. Invoke on all instances */
 185        cnt = 0;
 186        hlist_for_each(node, &step->list) {
 187                if (lastp && node == *lastp)
 188                        break;
 189
 190                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 191                ret = cbm(cpu, node);
 192                trace_cpuhp_exit(cpu, st->state, state, ret);
 193                if (ret) {
 194                        if (!lastp)
 195                                goto err;
 196
 197                        *lastp = node;
 198                        return ret;
 199                }
 200                cnt++;
 201        }
 202        if (lastp)
 203                *lastp = NULL;
 204        return 0;
 205err:
 206        /* Rollback the instances if one failed */
 207        cbm = !bringup ? step->startup.multi : step->teardown.multi;
 208        if (!cbm)
 209                return ret;
 210
 211        hlist_for_each(node, &step->list) {
 212                if (!cnt--)
 213                        break;
 214
 215                trace_cpuhp_multi_enter(cpu, st->target, state, cbm, node);
 216                ret = cbm(cpu, node);
 217                trace_cpuhp_exit(cpu, st->state, state, ret);
 218                /*
 219                 * Rollback must not fail,
 220                 */
 221                WARN_ON_ONCE(ret);
 222        }
 223        return ret;
 224}
 225
 226#ifdef CONFIG_SMP
 227static bool cpuhp_is_ap_state(enum cpuhp_state state)
 228{
 229        /*
 230         * The extra check for CPUHP_TEARDOWN_CPU is only for documentation
 231         * purposes as that state is handled explicitly in cpu_down.
 232         */
 233        return state > CPUHP_BRINGUP_CPU && state != CPUHP_TEARDOWN_CPU;
 234}
 235
 236static inline void wait_for_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 237{
 238        struct completion *done = bringup ? &st->done_up : &st->done_down;
 239        wait_for_completion(done);
 240}
 241
 242static inline void complete_ap_thread(struct cpuhp_cpu_state *st, bool bringup)
 243{
 244        struct completion *done = bringup ? &st->done_up : &st->done_down;
 245        complete(done);
 246}
 247
 248/*
 249 * The former STARTING/DYING states, ran with IRQs disabled and must not fail.
 250 */
 251static bool cpuhp_is_atomic_state(enum cpuhp_state state)
 252{
 253        return CPUHP_AP_IDLE_DEAD <= state && state < CPUHP_AP_ONLINE;
 254}
 255
 256/* Serializes the updates to cpu_online_mask, cpu_present_mask */
 257static DEFINE_MUTEX(cpu_add_remove_lock);
 258bool cpuhp_tasks_frozen;
 259EXPORT_SYMBOL_GPL(cpuhp_tasks_frozen);
 260
 261/*
 262 * The following two APIs (cpu_maps_update_begin/done) must be used when
 263 * attempting to serialize the updates to cpu_online_mask & cpu_present_mask.
 264 */
 265void cpu_maps_update_begin(void)
 266{
 267        mutex_lock(&cpu_add_remove_lock);
 268}
 269
 270void cpu_maps_update_done(void)
 271{
 272        mutex_unlock(&cpu_add_remove_lock);
 273}
 274
 275/*
 276 * If set, cpu_up and cpu_down will return -EBUSY and do nothing.
 277 * Should always be manipulated under cpu_add_remove_lock
 278 */
 279static int cpu_hotplug_disabled;
 280
 281#ifdef CONFIG_HOTPLUG_CPU
 282
 283DEFINE_STATIC_PERCPU_RWSEM(cpu_hotplug_lock);
 284
 285void cpus_read_lock(void)
 286{
 287        percpu_down_read(&cpu_hotplug_lock);
 288}
 289EXPORT_SYMBOL_GPL(cpus_read_lock);
 290
 291int cpus_read_trylock(void)
 292{
 293        return percpu_down_read_trylock(&cpu_hotplug_lock);
 294}
 295EXPORT_SYMBOL_GPL(cpus_read_trylock);
 296
 297void cpus_read_unlock(void)
 298{
 299        percpu_up_read(&cpu_hotplug_lock);
 300}
 301EXPORT_SYMBOL_GPL(cpus_read_unlock);
 302
 303void cpus_write_lock(void)
 304{
 305        percpu_down_write(&cpu_hotplug_lock);
 306}
 307
 308void cpus_write_unlock(void)
 309{
 310        percpu_up_write(&cpu_hotplug_lock);
 311}
 312
 313void lockdep_assert_cpus_held(void)
 314{
 315        percpu_rwsem_assert_held(&cpu_hotplug_lock);
 316}
 317
 318/*
 319 * Wait for currently running CPU hotplug operations to complete (if any) and
 320 * disable future CPU hotplug (from sysfs). The 'cpu_add_remove_lock' protects
 321 * the 'cpu_hotplug_disabled' flag. The same lock is also acquired by the
 322 * hotplug path before performing hotplug operations. So acquiring that lock
 323 * guarantees mutual exclusion from any currently running hotplug operations.
 324 */
 325void cpu_hotplug_disable(void)
 326{
 327        cpu_maps_update_begin();
 328        cpu_hotplug_disabled++;
 329        cpu_maps_update_done();
 330}
 331EXPORT_SYMBOL_GPL(cpu_hotplug_disable);
 332
 333static void __cpu_hotplug_enable(void)
 334{
 335        if (WARN_ONCE(!cpu_hotplug_disabled, "Unbalanced cpu hotplug enable\n"))
 336                return;
 337        cpu_hotplug_disabled--;
 338}
 339
 340void cpu_hotplug_enable(void)
 341{
 342        cpu_maps_update_begin();
 343        __cpu_hotplug_enable();
 344        cpu_maps_update_done();
 345}
 346EXPORT_SYMBOL_GPL(cpu_hotplug_enable);
 347#endif  /* CONFIG_HOTPLUG_CPU */
 348
 349#ifdef CONFIG_HOTPLUG_SMT
 350enum cpuhp_smt_control cpu_smt_control __read_mostly = CPU_SMT_ENABLED;
 351EXPORT_SYMBOL_GPL(cpu_smt_control);
 352
 353static bool cpu_smt_available __read_mostly;
 354
 355void __init cpu_smt_disable(bool force)
 356{
 357        if (cpu_smt_control == CPU_SMT_FORCE_DISABLED ||
 358                cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
 359                return;
 360
 361        if (force) {
 362                pr_info("SMT: Force disabled\n");
 363                cpu_smt_control = CPU_SMT_FORCE_DISABLED;
 364        } else {
 365                cpu_smt_control = CPU_SMT_DISABLED;
 366        }
 367}
 368
 369/*
 370 * The decision whether SMT is supported can only be done after the full
 371 * CPU identification. Called from architecture code before non boot CPUs
 372 * are brought up.
 373 */
 374void __init cpu_smt_check_topology_early(void)
 375{
 376        if (!topology_smt_supported())
 377                cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 378}
 379
 380/*
 381 * If SMT was disabled by BIOS, detect it here, after the CPUs have been
 382 * brought online. This ensures the smt/l1tf sysfs entries are consistent
 383 * with reality. cpu_smt_available is set to true during the bringup of non
 384 * boot CPUs when a SMT sibling is detected. Note, this may overwrite
 385 * cpu_smt_control's previous setting.
 386 */
 387void __init cpu_smt_check_topology(void)
 388{
 389        if (!cpu_smt_available)
 390                cpu_smt_control = CPU_SMT_NOT_SUPPORTED;
 391}
 392
 393static int __init smt_cmdline_disable(char *str)
 394{
 395        cpu_smt_disable(str && !strcmp(str, "force"));
 396        return 0;
 397}
 398early_param("nosmt", smt_cmdline_disable);
 399
 400static inline bool cpu_smt_allowed(unsigned int cpu)
 401{
 402        if (topology_is_primary_thread(cpu))
 403                return true;
 404
 405        /*
 406         * If the CPU is not a 'primary' thread and the booted_once bit is
 407         * set then the processor has SMT support. Store this information
 408         * for the late check of SMT support in cpu_smt_check_topology().
 409         */
 410        if (per_cpu(cpuhp_state, cpu).booted_once)
 411                cpu_smt_available = true;
 412
 413        if (cpu_smt_control == CPU_SMT_ENABLED)
 414                return true;
 415
 416        /*
 417         * On x86 it's required to boot all logical CPUs at least once so
 418         * that the init code can get a chance to set CR4.MCE on each
 419         * CPU. Otherwise, a broadacasted MCE observing CR4.MCE=0b on any
 420         * core will shutdown the machine.
 421         */
 422        return !per_cpu(cpuhp_state, cpu).booted_once;
 423}
 424#else
 425static inline bool cpu_smt_allowed(unsigned int cpu) { return true; }
 426#endif
 427
 428static inline enum cpuhp_state
 429cpuhp_set_state(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 430{
 431        enum cpuhp_state prev_state = st->state;
 432
 433        st->rollback = false;
 434        st->last = NULL;
 435
 436        st->target = target;
 437        st->single = false;
 438        st->bringup = st->state < target;
 439
 440        return prev_state;
 441}
 442
 443static inline void
 444cpuhp_reset_state(struct cpuhp_cpu_state *st, enum cpuhp_state prev_state)
 445{
 446        st->rollback = true;
 447
 448        /*
 449         * If we have st->last we need to undo partial multi_instance of this
 450         * state first. Otherwise start undo at the previous state.
 451         */
 452        if (!st->last) {
 453                if (st->bringup)
 454                        st->state--;
 455                else
 456                        st->state++;
 457        }
 458
 459        st->target = prev_state;
 460        st->bringup = !st->bringup;
 461}
 462
 463/* Regular hotplug invocation of the AP hotplug thread */
 464static void __cpuhp_kick_ap(struct cpuhp_cpu_state *st)
 465{
 466        if (!st->single && st->state == st->target)
 467                return;
 468
 469        st->result = 0;
 470        /*
 471         * Make sure the above stores are visible before should_run becomes
 472         * true. Paired with the mb() above in cpuhp_thread_fun()
 473         */
 474        smp_mb();
 475        st->should_run = true;
 476        wake_up_process(st->thread);
 477        wait_for_ap_thread(st, st->bringup);
 478}
 479
 480static int cpuhp_kick_ap(struct cpuhp_cpu_state *st, enum cpuhp_state target)
 481{
 482        enum cpuhp_state prev_state;
 483        int ret;
 484
 485        prev_state = cpuhp_set_state(st, target);
 486        __cpuhp_kick_ap(st);
 487        if ((ret = st->result)) {
 488                cpuhp_reset_state(st, prev_state);
 489                __cpuhp_kick_ap(st);
 490        }
 491
 492        return ret;
 493}
 494
 495static int bringup_wait_for_ap(unsigned int cpu)
 496{
 497        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 498
 499        /* Wait for the CPU to reach CPUHP_AP_ONLINE_IDLE */
 500        wait_for_ap_thread(st, true);
 501        if (WARN_ON_ONCE((!cpu_online(cpu))))
 502                return -ECANCELED;
 503
 504        /* Unpark the stopper thread and the hotplug thread of the target cpu */
 505        stop_machine_unpark(cpu);
 506        kthread_unpark(st->thread);
 507
 508        /*
 509         * SMT soft disabling on X86 requires to bring the CPU out of the
 510         * BIOS 'wait for SIPI' state in order to set the CR4.MCE bit.  The
 511         * CPU marked itself as booted_once in cpu_notify_starting() so the
 512         * cpu_smt_allowed() check will now return false if this is not the
 513         * primary sibling.
 514         */
 515        if (!cpu_smt_allowed(cpu))
 516                return -ECANCELED;
 517
 518        if (st->target <= CPUHP_AP_ONLINE_IDLE)
 519                return 0;
 520
 521        return cpuhp_kick_ap(st, st->target);
 522}
 523
 524static int bringup_cpu(unsigned int cpu)
 525{
 526        struct task_struct *idle = idle_thread_get(cpu);
 527        int ret;
 528
 529        /*
 530         * Some architectures have to walk the irq descriptors to
 531         * setup the vector space for the cpu which comes online.
 532         * Prevent irq alloc/free across the bringup.
 533         */
 534        irq_lock_sparse();
 535
 536        /* Arch-specific enabling code. */
 537        ret = __cpu_up(cpu, idle);
 538        irq_unlock_sparse();
 539        if (ret)
 540                return ret;
 541        return bringup_wait_for_ap(cpu);
 542}
 543
 544/*
 545 * Hotplug state machine related functions
 546 */
 547
 548static void undo_cpu_up(unsigned int cpu, struct cpuhp_cpu_state *st)
 549{
 550        for (st->state--; st->state > st->target; st->state--)
 551                cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 552}
 553
 554static int cpuhp_up_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 555                              enum cpuhp_state target)
 556{
 557        enum cpuhp_state prev_state = st->state;
 558        int ret = 0;
 559
 560        while (st->state < target) {
 561                st->state++;
 562                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 563                if (ret) {
 564                        st->target = prev_state;
 565                        undo_cpu_up(cpu, st);
 566                        break;
 567                }
 568        }
 569        return ret;
 570}
 571
 572/*
 573 * The cpu hotplug threads manage the bringup and teardown of the cpus
 574 */
 575static void cpuhp_create(unsigned int cpu)
 576{
 577        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 578
 579        init_completion(&st->done_up);
 580        init_completion(&st->done_down);
 581}
 582
 583static int cpuhp_should_run(unsigned int cpu)
 584{
 585        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 586
 587        return st->should_run;
 588}
 589
 590/*
 591 * Execute teardown/startup callbacks on the plugged cpu. Also used to invoke
 592 * callbacks when a state gets [un]installed at runtime.
 593 *
 594 * Each invocation of this function by the smpboot thread does a single AP
 595 * state callback.
 596 *
 597 * It has 3 modes of operation:
 598 *  - single: runs st->cb_state
 599 *  - up:     runs ++st->state, while st->state < st->target
 600 *  - down:   runs st->state--, while st->state > st->target
 601 *
 602 * When complete or on error, should_run is cleared and the completion is fired.
 603 */
 604static void cpuhp_thread_fun(unsigned int cpu)
 605{
 606        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 607        bool bringup = st->bringup;
 608        enum cpuhp_state state;
 609
 610        if (WARN_ON_ONCE(!st->should_run))
 611                return;
 612
 613        /*
 614         * ACQUIRE for the cpuhp_should_run() load of ->should_run. Ensures
 615         * that if we see ->should_run we also see the rest of the state.
 616         */
 617        smp_mb();
 618
 619        cpuhp_lock_acquire(bringup);
 620
 621        if (st->single) {
 622                state = st->cb_state;
 623                st->should_run = false;
 624        } else {
 625                if (bringup) {
 626                        st->state++;
 627                        state = st->state;
 628                        st->should_run = (st->state < st->target);
 629                        WARN_ON_ONCE(st->state > st->target);
 630                } else {
 631                        state = st->state;
 632                        st->state--;
 633                        st->should_run = (st->state > st->target);
 634                        WARN_ON_ONCE(st->state < st->target);
 635                }
 636        }
 637
 638        WARN_ON_ONCE(!cpuhp_is_ap_state(state));
 639
 640        if (cpuhp_is_atomic_state(state)) {
 641                local_irq_disable();
 642                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 643                local_irq_enable();
 644
 645                /*
 646                 * STARTING/DYING must not fail!
 647                 */
 648                WARN_ON_ONCE(st->result);
 649        } else {
 650                st->result = cpuhp_invoke_callback(cpu, state, bringup, st->node, &st->last);
 651        }
 652
 653        if (st->result) {
 654                /*
 655                 * If we fail on a rollback, we're up a creek without no
 656                 * paddle, no way forward, no way back. We loose, thanks for
 657                 * playing.
 658                 */
 659                WARN_ON_ONCE(st->rollback);
 660                st->should_run = false;
 661        }
 662
 663        cpuhp_lock_release(bringup);
 664
 665        if (!st->should_run)
 666                complete_ap_thread(st, bringup);
 667}
 668
 669/* Invoke a single callback on a remote cpu */
 670static int
 671cpuhp_invoke_ap_callback(int cpu, enum cpuhp_state state, bool bringup,
 672                         struct hlist_node *node)
 673{
 674        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 675        int ret;
 676
 677        if (!cpu_online(cpu))
 678                return 0;
 679
 680        cpuhp_lock_acquire(false);
 681        cpuhp_lock_release(false);
 682
 683        cpuhp_lock_acquire(true);
 684        cpuhp_lock_release(true);
 685
 686        /*
 687         * If we are up and running, use the hotplug thread. For early calls
 688         * we invoke the thread function directly.
 689         */
 690        if (!st->thread)
 691                return cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
 692
 693        st->rollback = false;
 694        st->last = NULL;
 695
 696        st->node = node;
 697        st->bringup = bringup;
 698        st->cb_state = state;
 699        st->single = true;
 700
 701        __cpuhp_kick_ap(st);
 702
 703        /*
 704         * If we failed and did a partial, do a rollback.
 705         */
 706        if ((ret = st->result) && st->last) {
 707                st->rollback = true;
 708                st->bringup = !bringup;
 709
 710                __cpuhp_kick_ap(st);
 711        }
 712
 713        /*
 714         * Clean up the leftovers so the next hotplug operation wont use stale
 715         * data.
 716         */
 717        st->node = st->last = NULL;
 718        return ret;
 719}
 720
 721static int cpuhp_kick_ap_work(unsigned int cpu)
 722{
 723        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 724        enum cpuhp_state prev_state = st->state;
 725        int ret;
 726
 727        cpuhp_lock_acquire(false);
 728        cpuhp_lock_release(false);
 729
 730        cpuhp_lock_acquire(true);
 731        cpuhp_lock_release(true);
 732
 733        trace_cpuhp_enter(cpu, st->target, prev_state, cpuhp_kick_ap_work);
 734        ret = cpuhp_kick_ap(st, st->target);
 735        trace_cpuhp_exit(cpu, st->state, prev_state, ret);
 736
 737        return ret;
 738}
 739
 740static struct smp_hotplug_thread cpuhp_threads = {
 741        .store                  = &cpuhp_state.thread,
 742        .create                 = &cpuhp_create,
 743        .thread_should_run      = cpuhp_should_run,
 744        .thread_fn              = cpuhp_thread_fun,
 745        .thread_comm            = "cpuhp/%u",
 746        .selfparking            = true,
 747};
 748
 749void __init cpuhp_threads_init(void)
 750{
 751        BUG_ON(smpboot_register_percpu_thread(&cpuhp_threads));
 752        kthread_unpark(this_cpu_read(cpuhp_state.thread));
 753}
 754
 755#ifdef CONFIG_HOTPLUG_CPU
 756/**
 757 * clear_tasks_mm_cpumask - Safely clear tasks' mm_cpumask for a CPU
 758 * @cpu: a CPU id
 759 *
 760 * This function walks all processes, finds a valid mm struct for each one and
 761 * then clears a corresponding bit in mm's cpumask.  While this all sounds
 762 * trivial, there are various non-obvious corner cases, which this function
 763 * tries to solve in a safe manner.
 764 *
 765 * Also note that the function uses a somewhat relaxed locking scheme, so it may
 766 * be called only for an already offlined CPU.
 767 */
 768void clear_tasks_mm_cpumask(int cpu)
 769{
 770        struct task_struct *p;
 771
 772        /*
 773         * This function is called after the cpu is taken down and marked
 774         * offline, so its not like new tasks will ever get this cpu set in
 775         * their mm mask. -- Peter Zijlstra
 776         * Thus, we may use rcu_read_lock() here, instead of grabbing
 777         * full-fledged tasklist_lock.
 778         */
 779        WARN_ON(cpu_online(cpu));
 780        rcu_read_lock();
 781        for_each_process(p) {
 782                struct task_struct *t;
 783
 784                /*
 785                 * Main thread might exit, but other threads may still have
 786                 * a valid mm. Find one.
 787                 */
 788                t = find_lock_task_mm(p);
 789                if (!t)
 790                        continue;
 791                cpumask_clear_cpu(cpu, mm_cpumask(t->mm));
 792                task_unlock(t);
 793        }
 794        rcu_read_unlock();
 795}
 796
 797/* Take this CPU down. */
 798static int take_cpu_down(void *_param)
 799{
 800        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 801        enum cpuhp_state target = max((int)st->target, CPUHP_AP_OFFLINE);
 802        int err, cpu = smp_processor_id();
 803        int ret;
 804
 805        /* Ensure this CPU doesn't handle any more interrupts. */
 806        err = __cpu_disable();
 807        if (err < 0)
 808                return err;
 809
 810        /*
 811         * We get here while we are in CPUHP_TEARDOWN_CPU state and we must not
 812         * do this step again.
 813         */
 814        WARN_ON(st->state != CPUHP_TEARDOWN_CPU);
 815        st->state--;
 816        /* Invoke the former CPU_DYING callbacks */
 817        for (; st->state > target; st->state--) {
 818                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 819                /*
 820                 * DYING must not fail!
 821                 */
 822                WARN_ON_ONCE(ret);
 823        }
 824
 825        /* Give up timekeeping duties */
 826        tick_handover_do_timer();
 827        /* Park the stopper thread */
 828        stop_machine_park(cpu);
 829        return 0;
 830}
 831
 832static int takedown_cpu(unsigned int cpu)
 833{
 834        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 835        int err;
 836
 837        /* Park the smpboot threads */
 838        kthread_park(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 839
 840        /*
 841         * Prevent irq alloc/free while the dying cpu reorganizes the
 842         * interrupt affinities.
 843         */
 844        irq_lock_sparse();
 845
 846        /*
 847         * So now all preempt/rcu users must observe !cpu_active().
 848         */
 849        err = stop_machine_cpuslocked(take_cpu_down, NULL, cpumask_of(cpu));
 850        if (err) {
 851                /* CPU refused to die */
 852                irq_unlock_sparse();
 853                /* Unpark the hotplug thread so we can rollback there */
 854                kthread_unpark(per_cpu_ptr(&cpuhp_state, cpu)->thread);
 855                return err;
 856        }
 857        BUG_ON(cpu_online(cpu));
 858
 859        /*
 860         * The teardown callback for CPUHP_AP_SCHED_STARTING will have removed
 861         * all runnable tasks from the CPU, there's only the idle task left now
 862         * that the migration thread is done doing the stop_machine thing.
 863         *
 864         * Wait for the stop thread to go away.
 865         */
 866        wait_for_ap_thread(st, false);
 867        BUG_ON(st->state != CPUHP_AP_IDLE_DEAD);
 868
 869        /* Interrupts are moved away from the dying cpu, reenable alloc/free */
 870        irq_unlock_sparse();
 871
 872        hotplug_cpu__broadcast_tick_pull(cpu);
 873        /* This actually kills the CPU. */
 874        __cpu_die(cpu);
 875
 876        tick_cleanup_dead_cpu(cpu);
 877        rcutree_migrate_callbacks(cpu);
 878        return 0;
 879}
 880
 881static void cpuhp_complete_idle_dead(void *arg)
 882{
 883        struct cpuhp_cpu_state *st = arg;
 884
 885        complete_ap_thread(st, false);
 886}
 887
 888void cpuhp_report_idle_dead(void)
 889{
 890        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
 891
 892        BUG_ON(st->state != CPUHP_AP_OFFLINE);
 893        rcu_report_dead(smp_processor_id());
 894        st->state = CPUHP_AP_IDLE_DEAD;
 895        /*
 896         * We cannot call complete after rcu_report_dead() so we delegate it
 897         * to an online cpu.
 898         */
 899        smp_call_function_single(cpumask_first(cpu_online_mask),
 900                                 cpuhp_complete_idle_dead, st, 0);
 901}
 902
 903static void undo_cpu_down(unsigned int cpu, struct cpuhp_cpu_state *st)
 904{
 905        for (st->state++; st->state < st->target; st->state++)
 906                cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
 907}
 908
 909static int cpuhp_down_callbacks(unsigned int cpu, struct cpuhp_cpu_state *st,
 910                                enum cpuhp_state target)
 911{
 912        enum cpuhp_state prev_state = st->state;
 913        int ret = 0;
 914
 915        for (; st->state > target; st->state--) {
 916                ret = cpuhp_invoke_callback(cpu, st->state, false, NULL, NULL);
 917                if (ret) {
 918                        st->target = prev_state;
 919                        if (st->state < prev_state)
 920                                undo_cpu_down(cpu, st);
 921                        break;
 922                }
 923        }
 924        return ret;
 925}
 926
 927/* Requires cpu_add_remove_lock to be held */
 928static int __ref _cpu_down(unsigned int cpu, int tasks_frozen,
 929                           enum cpuhp_state target)
 930{
 931        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
 932        int prev_state, ret = 0;
 933
 934        if (num_online_cpus() == 1)
 935                return -EBUSY;
 936
 937        if (!cpu_present(cpu))
 938                return -EINVAL;
 939
 940        cpus_write_lock();
 941
 942        cpuhp_tasks_frozen = tasks_frozen;
 943
 944        prev_state = cpuhp_set_state(st, target);
 945        /*
 946         * If the current CPU state is in the range of the AP hotplug thread,
 947         * then we need to kick the thread.
 948         */
 949        if (st->state > CPUHP_TEARDOWN_CPU) {
 950                st->target = max((int)target, CPUHP_TEARDOWN_CPU);
 951                ret = cpuhp_kick_ap_work(cpu);
 952                /*
 953                 * The AP side has done the error rollback already. Just
 954                 * return the error code..
 955                 */
 956                if (ret)
 957                        goto out;
 958
 959                /*
 960                 * We might have stopped still in the range of the AP hotplug
 961                 * thread. Nothing to do anymore.
 962                 */
 963                if (st->state > CPUHP_TEARDOWN_CPU)
 964                        goto out;
 965
 966                st->target = target;
 967        }
 968        /*
 969         * The AP brought itself down to CPUHP_TEARDOWN_CPU. So we need
 970         * to do the further cleanups.
 971         */
 972        ret = cpuhp_down_callbacks(cpu, st, target);
 973        if (ret && st->state == CPUHP_TEARDOWN_CPU && st->state < prev_state) {
 974                cpuhp_reset_state(st, prev_state);
 975                __cpuhp_kick_ap(st);
 976        }
 977
 978out:
 979        cpus_write_unlock();
 980        /*
 981         * Do post unplug cleanup. This is still protected against
 982         * concurrent CPU hotplug via cpu_add_remove_lock.
 983         */
 984        lockup_detector_cleanup();
 985        return ret;
 986}
 987
 988static int cpu_down_maps_locked(unsigned int cpu, enum cpuhp_state target)
 989{
 990        if (cpu_hotplug_disabled)
 991                return -EBUSY;
 992        return _cpu_down(cpu, 0, target);
 993}
 994
 995static int do_cpu_down(unsigned int cpu, enum cpuhp_state target)
 996{
 997        int err;
 998
 999        cpu_maps_update_begin();
1000        err = cpu_down_maps_locked(cpu, target);
1001        cpu_maps_update_done();
1002        return err;
1003}
1004
1005int cpu_down(unsigned int cpu)
1006{
1007        return do_cpu_down(cpu, CPUHP_OFFLINE);
1008}
1009EXPORT_SYMBOL(cpu_down);
1010
1011#else
1012#define takedown_cpu            NULL
1013#endif /*CONFIG_HOTPLUG_CPU*/
1014
1015/**
1016 * notify_cpu_starting(cpu) - Invoke the callbacks on the starting CPU
1017 * @cpu: cpu that just started
1018 *
1019 * It must be called by the arch code on the new cpu, before the new cpu
1020 * enables interrupts and before the "boot" cpu returns from __cpu_up().
1021 */
1022void notify_cpu_starting(unsigned int cpu)
1023{
1024        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1025        enum cpuhp_state target = min((int)st->target, CPUHP_AP_ONLINE);
1026        int ret;
1027
1028        rcu_cpu_starting(cpu);  /* Enables RCU usage on this CPU. */
1029        st->booted_once = true;
1030        while (st->state < target) {
1031                st->state++;
1032                ret = cpuhp_invoke_callback(cpu, st->state, true, NULL, NULL);
1033                /*
1034                 * STARTING must not fail!
1035                 */
1036                WARN_ON_ONCE(ret);
1037        }
1038}
1039
1040/*
1041 * Called from the idle task. Wake up the controlling task which brings the
1042 * stopper and the hotplug thread of the upcoming CPU up and then delegates
1043 * the rest of the online bringup to the hotplug thread.
1044 */
1045void cpuhp_online_idle(enum cpuhp_state state)
1046{
1047        struct cpuhp_cpu_state *st = this_cpu_ptr(&cpuhp_state);
1048
1049        /* Happens for the boot cpu */
1050        if (state != CPUHP_AP_ONLINE_IDLE)
1051                return;
1052
1053        st->state = CPUHP_AP_ONLINE_IDLE;
1054        complete_ap_thread(st, true);
1055}
1056
1057/* Requires cpu_add_remove_lock to be held */
1058static int _cpu_up(unsigned int cpu, int tasks_frozen, enum cpuhp_state target)
1059{
1060        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1061        struct task_struct *idle;
1062        int ret = 0;
1063
1064        cpus_write_lock();
1065
1066        if (!cpu_present(cpu)) {
1067                ret = -EINVAL;
1068                goto out;
1069        }
1070
1071        /*
1072         * The caller of do_cpu_up might have raced with another
1073         * caller. Ignore it for now.
1074         */
1075        if (st->state >= target)
1076                goto out;
1077
1078        if (st->state == CPUHP_OFFLINE) {
1079                /* Let it fail before we try to bring the cpu up */
1080                idle = idle_thread_get(cpu);
1081                if (IS_ERR(idle)) {
1082                        ret = PTR_ERR(idle);
1083                        goto out;
1084                }
1085        }
1086
1087        cpuhp_tasks_frozen = tasks_frozen;
1088
1089        cpuhp_set_state(st, target);
1090        /*
1091         * If the current CPU state is in the range of the AP hotplug thread,
1092         * then we need to kick the thread once more.
1093         */
1094        if (st->state > CPUHP_BRINGUP_CPU) {
1095                ret = cpuhp_kick_ap_work(cpu);
1096                /*
1097                 * The AP side has done the error rollback already. Just
1098                 * return the error code..
1099                 */
1100                if (ret)
1101                        goto out;
1102        }
1103
1104        /*
1105         * Try to reach the target state. We max out on the BP at
1106         * CPUHP_BRINGUP_CPU. After that the AP hotplug thread is
1107         * responsible for bringing it up to the target state.
1108         */
1109        target = min((int)target, CPUHP_BRINGUP_CPU);
1110        ret = cpuhp_up_callbacks(cpu, st, target);
1111out:
1112        cpus_write_unlock();
1113        return ret;
1114}
1115
1116static int do_cpu_up(unsigned int cpu, enum cpuhp_state target)
1117{
1118        int err = 0;
1119
1120        if (!cpu_possible(cpu)) {
1121                pr_err("can't online cpu %d because it is not configured as may-hotadd at boot time\n",
1122                       cpu);
1123#if defined(CONFIG_IA64)
1124                pr_err("please check additional_cpus= boot parameter\n");
1125#endif
1126                return -EINVAL;
1127        }
1128
1129        err = try_online_node(cpu_to_node(cpu));
1130        if (err)
1131                return err;
1132
1133        cpu_maps_update_begin();
1134
1135        if (cpu_hotplug_disabled) {
1136                err = -EBUSY;
1137                goto out;
1138        }
1139        if (!cpu_smt_allowed(cpu)) {
1140                err = -EPERM;
1141                goto out;
1142        }
1143
1144        err = _cpu_up(cpu, 0, target);
1145out:
1146        cpu_maps_update_done();
1147        return err;
1148}
1149
1150int cpu_up(unsigned int cpu)
1151{
1152        return do_cpu_up(cpu, CPUHP_ONLINE);
1153}
1154EXPORT_SYMBOL_GPL(cpu_up);
1155
1156#ifdef CONFIG_PM_SLEEP_SMP
1157static cpumask_var_t frozen_cpus;
1158
1159int freeze_secondary_cpus(int primary)
1160{
1161        int cpu, error = 0;
1162
1163        cpu_maps_update_begin();
1164        if (!cpu_online(primary))
1165                primary = cpumask_first(cpu_online_mask);
1166        /*
1167         * We take down all of the non-boot CPUs in one shot to avoid races
1168         * with the userspace trying to use the CPU hotplug at the same time
1169         */
1170        cpumask_clear(frozen_cpus);
1171
1172        pr_info("Disabling non-boot CPUs ...\n");
1173        for_each_online_cpu(cpu) {
1174                if (cpu == primary)
1175                        continue;
1176                trace_suspend_resume(TPS("CPU_OFF"), cpu, true);
1177                error = _cpu_down(cpu, 1, CPUHP_OFFLINE);
1178                trace_suspend_resume(TPS("CPU_OFF"), cpu, false);
1179                if (!error)
1180                        cpumask_set_cpu(cpu, frozen_cpus);
1181                else {
1182                        pr_err("Error taking CPU%d down: %d\n", cpu, error);
1183                        break;
1184                }
1185        }
1186
1187        if (!error)
1188                BUG_ON(num_online_cpus() > 1);
1189        else
1190                pr_err("Non-boot CPUs are not disabled\n");
1191
1192        /*
1193         * Make sure the CPUs won't be enabled by someone else. We need to do
1194         * this even in case of failure as all disable_nonboot_cpus() users are
1195         * supposed to do enable_nonboot_cpus() on the failure path.
1196         */
1197        cpu_hotplug_disabled++;
1198
1199        cpu_maps_update_done();
1200        return error;
1201}
1202
1203void __weak arch_enable_nonboot_cpus_begin(void)
1204{
1205}
1206
1207void __weak arch_enable_nonboot_cpus_end(void)
1208{
1209}
1210
1211void enable_nonboot_cpus(void)
1212{
1213        int cpu, error;
1214
1215        /* Allow everyone to use the CPU hotplug again */
1216        cpu_maps_update_begin();
1217        __cpu_hotplug_enable();
1218        if (cpumask_empty(frozen_cpus))
1219                goto out;
1220
1221        pr_info("Enabling non-boot CPUs ...\n");
1222
1223        arch_enable_nonboot_cpus_begin();
1224
1225        for_each_cpu(cpu, frozen_cpus) {
1226                trace_suspend_resume(TPS("CPU_ON"), cpu, true);
1227                error = _cpu_up(cpu, 1, CPUHP_ONLINE);
1228                trace_suspend_resume(TPS("CPU_ON"), cpu, false);
1229                if (!error) {
1230                        pr_info("CPU%d is up\n", cpu);
1231                        continue;
1232                }
1233                pr_warn("Error taking CPU%d up: %d\n", cpu, error);
1234        }
1235
1236        arch_enable_nonboot_cpus_end();
1237
1238        cpumask_clear(frozen_cpus);
1239out:
1240        cpu_maps_update_done();
1241}
1242
1243static int __init alloc_frozen_cpus(void)
1244{
1245        if (!alloc_cpumask_var(&frozen_cpus, GFP_KERNEL|__GFP_ZERO))
1246                return -ENOMEM;
1247        return 0;
1248}
1249core_initcall(alloc_frozen_cpus);
1250
1251/*
1252 * When callbacks for CPU hotplug notifications are being executed, we must
1253 * ensure that the state of the system with respect to the tasks being frozen
1254 * or not, as reported by the notification, remains unchanged *throughout the
1255 * duration* of the execution of the callbacks.
1256 * Hence we need to prevent the freezer from racing with regular CPU hotplug.
1257 *
1258 * This synchronization is implemented by mutually excluding regular CPU
1259 * hotplug and Suspend/Hibernate call paths by hooking onto the Suspend/
1260 * Hibernate notifications.
1261 */
1262static int
1263cpu_hotplug_pm_callback(struct notifier_block *nb,
1264                        unsigned long action, void *ptr)
1265{
1266        switch (action) {
1267
1268        case PM_SUSPEND_PREPARE:
1269        case PM_HIBERNATION_PREPARE:
1270                cpu_hotplug_disable();
1271                break;
1272
1273        case PM_POST_SUSPEND:
1274        case PM_POST_HIBERNATION:
1275                cpu_hotplug_enable();
1276                break;
1277
1278        default:
1279                return NOTIFY_DONE;
1280        }
1281
1282        return NOTIFY_OK;
1283}
1284
1285
1286static int __init cpu_hotplug_pm_sync_init(void)
1287{
1288        /*
1289         * cpu_hotplug_pm_callback has higher priority than x86
1290         * bsp_pm_callback which depends on cpu_hotplug_pm_callback
1291         * to disable cpu hotplug to avoid cpu hotplug race.
1292         */
1293        pm_notifier(cpu_hotplug_pm_callback, 0);
1294        return 0;
1295}
1296core_initcall(cpu_hotplug_pm_sync_init);
1297
1298#endif /* CONFIG_PM_SLEEP_SMP */
1299
1300int __boot_cpu_id;
1301
1302#endif /* CONFIG_SMP */
1303
1304/* Boot processor state steps */
1305static struct cpuhp_step cpuhp_hp_states[] = {
1306        [CPUHP_OFFLINE] = {
1307                .name                   = "offline",
1308                .startup.single         = NULL,
1309                .teardown.single        = NULL,
1310        },
1311#ifdef CONFIG_SMP
1312        [CPUHP_CREATE_THREADS]= {
1313                .name                   = "threads:prepare",
1314                .startup.single         = smpboot_create_threads,
1315                .teardown.single        = NULL,
1316                .cant_stop              = true,
1317        },
1318        [CPUHP_PERF_PREPARE] = {
1319                .name                   = "perf:prepare",
1320                .startup.single         = perf_event_init_cpu,
1321                .teardown.single        = perf_event_exit_cpu,
1322        },
1323        [CPUHP_WORKQUEUE_PREP] = {
1324                .name                   = "workqueue:prepare",
1325                .startup.single         = workqueue_prepare_cpu,
1326                .teardown.single        = NULL,
1327        },
1328        [CPUHP_HRTIMERS_PREPARE] = {
1329                .name                   = "hrtimers:prepare",
1330                .startup.single         = hrtimers_prepare_cpu,
1331                .teardown.single        = hrtimers_dead_cpu,
1332        },
1333        [CPUHP_SMPCFD_PREPARE] = {
1334                .name                   = "smpcfd:prepare",
1335                .startup.single         = smpcfd_prepare_cpu,
1336                .teardown.single        = smpcfd_dead_cpu,
1337        },
1338        [CPUHP_RELAY_PREPARE] = {
1339                .name                   = "relay:prepare",
1340                .startup.single         = relay_prepare_cpu,
1341                .teardown.single        = NULL,
1342        },
1343        [CPUHP_SLAB_PREPARE] = {
1344                .name                   = "slab:prepare",
1345                .startup.single         = slab_prepare_cpu,
1346                .teardown.single        = slab_dead_cpu,
1347        },
1348        [CPUHP_RCUTREE_PREP] = {
1349                .name                   = "RCU/tree:prepare",
1350                .startup.single         = rcutree_prepare_cpu,
1351                .teardown.single        = rcutree_dead_cpu,
1352        },
1353        /*
1354         * On the tear-down path, timers_dead_cpu() must be invoked
1355         * before blk_mq_queue_reinit_notify() from notify_dead(),
1356         * otherwise a RCU stall occurs.
1357         */
1358        [CPUHP_TIMERS_PREPARE] = {
1359                .name                   = "timers:prepare",
1360                .startup.single         = timers_prepare_cpu,
1361                .teardown.single        = timers_dead_cpu,
1362        },
1363        /* Kicks the plugged cpu into life */
1364        [CPUHP_BRINGUP_CPU] = {
1365                .name                   = "cpu:bringup",
1366                .startup.single         = bringup_cpu,
1367                .teardown.single        = NULL,
1368                .cant_stop              = true,
1369        },
1370        /* Final state before CPU kills itself */
1371        [CPUHP_AP_IDLE_DEAD] = {
1372                .name                   = "idle:dead",
1373        },
1374        /*
1375         * Last state before CPU enters the idle loop to die. Transient state
1376         * for synchronization.
1377         */
1378        [CPUHP_AP_OFFLINE] = {
1379                .name                   = "ap:offline",
1380                .cant_stop              = true,
1381        },
1382        /* First state is scheduler control. Interrupts are disabled */
1383        [CPUHP_AP_SCHED_STARTING] = {
1384                .name                   = "sched:starting",
1385                .startup.single         = sched_cpu_starting,
1386                .teardown.single        = sched_cpu_dying,
1387        },
1388        [CPUHP_AP_RCUTREE_DYING] = {
1389                .name                   = "RCU/tree:dying",
1390                .startup.single         = NULL,
1391                .teardown.single        = rcutree_dying_cpu,
1392        },
1393        [CPUHP_AP_SMPCFD_DYING] = {
1394                .name                   = "smpcfd:dying",
1395                .startup.single         = NULL,
1396                .teardown.single        = smpcfd_dying_cpu,
1397        },
1398        /* Entry state on starting. Interrupts enabled from here on. Transient
1399         * state for synchronsization */
1400        [CPUHP_AP_ONLINE] = {
1401                .name                   = "ap:online",
1402        },
1403        /*
1404         * Handled on controll processor until the plugged processor manages
1405         * this itself.
1406         */
1407        [CPUHP_TEARDOWN_CPU] = {
1408                .name                   = "cpu:teardown",
1409                .startup.single         = NULL,
1410                .teardown.single        = takedown_cpu,
1411                .cant_stop              = true,
1412        },
1413        /* Handle smpboot threads park/unpark */
1414        [CPUHP_AP_SMPBOOT_THREADS] = {
1415                .name                   = "smpboot/threads:online",
1416                .startup.single         = smpboot_unpark_threads,
1417                .teardown.single        = smpboot_park_threads,
1418        },
1419        [CPUHP_AP_IRQ_AFFINITY_ONLINE] = {
1420                .name                   = "irq/affinity:online",
1421                .startup.single         = irq_affinity_online_cpu,
1422                .teardown.single        = NULL,
1423        },
1424        [CPUHP_AP_PERF_ONLINE] = {
1425                .name                   = "perf:online",
1426                .startup.single         = perf_event_init_cpu,
1427                .teardown.single        = perf_event_exit_cpu,
1428        },
1429        [CPUHP_AP_WATCHDOG_ONLINE] = {
1430                .name                   = "lockup_detector:online",
1431                .startup.single         = lockup_detector_online_cpu,
1432                .teardown.single        = lockup_detector_offline_cpu,
1433        },
1434        [CPUHP_AP_WORKQUEUE_ONLINE] = {
1435                .name                   = "workqueue:online",
1436                .startup.single         = workqueue_online_cpu,
1437                .teardown.single        = workqueue_offline_cpu,
1438        },
1439        [CPUHP_AP_RCUTREE_ONLINE] = {
1440                .name                   = "RCU/tree:online",
1441                .startup.single         = rcutree_online_cpu,
1442                .teardown.single        = rcutree_offline_cpu,
1443        },
1444#endif
1445        /*
1446         * The dynamically registered state space is here
1447         */
1448
1449#ifdef CONFIG_SMP
1450        /* Last state is scheduler control setting the cpu active */
1451        [CPUHP_AP_ACTIVE] = {
1452                .name                   = "sched:active",
1453                .startup.single         = sched_cpu_activate,
1454                .teardown.single        = sched_cpu_deactivate,
1455        },
1456#endif
1457
1458        /* CPU is fully up and running. */
1459        [CPUHP_ONLINE] = {
1460                .name                   = "online",
1461                .startup.single         = NULL,
1462                .teardown.single        = NULL,
1463        },
1464};
1465
1466/* Sanity check for callbacks */
1467static int cpuhp_cb_check(enum cpuhp_state state)
1468{
1469        if (state <= CPUHP_OFFLINE || state >= CPUHP_ONLINE)
1470                return -EINVAL;
1471        return 0;
1472}
1473
1474/*
1475 * Returns a free for dynamic slot assignment of the Online state. The states
1476 * are protected by the cpuhp_slot_states mutex and an empty slot is identified
1477 * by having no name assigned.
1478 */
1479static int cpuhp_reserve_state(enum cpuhp_state state)
1480{
1481        enum cpuhp_state i, end;
1482        struct cpuhp_step *step;
1483
1484        switch (state) {
1485        case CPUHP_AP_ONLINE_DYN:
1486                step = cpuhp_hp_states + CPUHP_AP_ONLINE_DYN;
1487                end = CPUHP_AP_ONLINE_DYN_END;
1488                break;
1489        case CPUHP_BP_PREPARE_DYN:
1490                step = cpuhp_hp_states + CPUHP_BP_PREPARE_DYN;
1491                end = CPUHP_BP_PREPARE_DYN_END;
1492                break;
1493        default:
1494                return -EINVAL;
1495        }
1496
1497        for (i = state; i <= end; i++, step++) {
1498                if (!step->name)
1499                        return i;
1500        }
1501        WARN(1, "No more dynamic states available for CPU hotplug\n");
1502        return -ENOSPC;
1503}
1504
1505static int cpuhp_store_callbacks(enum cpuhp_state state, const char *name,
1506                                 int (*startup)(unsigned int cpu),
1507                                 int (*teardown)(unsigned int cpu),
1508                                 bool multi_instance)
1509{
1510        /* (Un)Install the callbacks for further cpu hotplug operations */
1511        struct cpuhp_step *sp;
1512        int ret = 0;
1513
1514        /*
1515         * If name is NULL, then the state gets removed.
1516         *
1517         * CPUHP_AP_ONLINE_DYN and CPUHP_BP_PREPARE_DYN are handed out on
1518         * the first allocation from these dynamic ranges, so the removal
1519         * would trigger a new allocation and clear the wrong (already
1520         * empty) state, leaving the callbacks of the to be cleared state
1521         * dangling, which causes wreckage on the next hotplug operation.
1522         */
1523        if (name && (state == CPUHP_AP_ONLINE_DYN ||
1524                     state == CPUHP_BP_PREPARE_DYN)) {
1525                ret = cpuhp_reserve_state(state);
1526                if (ret < 0)
1527                        return ret;
1528                state = ret;
1529        }
1530        sp = cpuhp_get_step(state);
1531        if (name && sp->name)
1532                return -EBUSY;
1533
1534        sp->startup.single = startup;
1535        sp->teardown.single = teardown;
1536        sp->name = name;
1537        sp->multi_instance = multi_instance;
1538        INIT_HLIST_HEAD(&sp->list);
1539        return ret;
1540}
1541
1542static void *cpuhp_get_teardown_cb(enum cpuhp_state state)
1543{
1544        return cpuhp_get_step(state)->teardown.single;
1545}
1546
1547/*
1548 * Call the startup/teardown function for a step either on the AP or
1549 * on the current CPU.
1550 */
1551static int cpuhp_issue_call(int cpu, enum cpuhp_state state, bool bringup,
1552                            struct hlist_node *node)
1553{
1554        struct cpuhp_step *sp = cpuhp_get_step(state);
1555        int ret;
1556
1557        /*
1558         * If there's nothing to do, we done.
1559         * Relies on the union for multi_instance.
1560         */
1561        if ((bringup && !sp->startup.single) ||
1562            (!bringup && !sp->teardown.single))
1563                return 0;
1564        /*
1565         * The non AP bound callbacks can fail on bringup. On teardown
1566         * e.g. module removal we crash for now.
1567         */
1568#ifdef CONFIG_SMP
1569        if (cpuhp_is_ap_state(state))
1570                ret = cpuhp_invoke_ap_callback(cpu, state, bringup, node);
1571        else
1572                ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1573#else
1574        ret = cpuhp_invoke_callback(cpu, state, bringup, node, NULL);
1575#endif
1576        BUG_ON(ret && !bringup);
1577        return ret;
1578}
1579
1580/*
1581 * Called from __cpuhp_setup_state on a recoverable failure.
1582 *
1583 * Note: The teardown callbacks for rollback are not allowed to fail!
1584 */
1585static void cpuhp_rollback_install(int failedcpu, enum cpuhp_state state,
1586                                   struct hlist_node *node)
1587{
1588        int cpu;
1589
1590        /* Roll back the already executed steps on the other cpus */
1591        for_each_present_cpu(cpu) {
1592                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1593                int cpustate = st->state;
1594
1595                if (cpu >= failedcpu)
1596                        break;
1597
1598                /* Did we invoke the startup call on that cpu ? */
1599                if (cpustate >= state)
1600                        cpuhp_issue_call(cpu, state, false, node);
1601        }
1602}
1603
1604int __cpuhp_state_add_instance_cpuslocked(enum cpuhp_state state,
1605                                          struct hlist_node *node,
1606                                          bool invoke)
1607{
1608        struct cpuhp_step *sp;
1609        int cpu;
1610        int ret;
1611
1612        lockdep_assert_cpus_held();
1613
1614        sp = cpuhp_get_step(state);
1615        if (sp->multi_instance == false)
1616                return -EINVAL;
1617
1618        mutex_lock(&cpuhp_state_mutex);
1619
1620        if (!invoke || !sp->startup.multi)
1621                goto add_node;
1622
1623        /*
1624         * Try to call the startup callback for each present cpu
1625         * depending on the hotplug state of the cpu.
1626         */
1627        for_each_present_cpu(cpu) {
1628                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1629                int cpustate = st->state;
1630
1631                if (cpustate < state)
1632                        continue;
1633
1634                ret = cpuhp_issue_call(cpu, state, true, node);
1635                if (ret) {
1636                        if (sp->teardown.multi)
1637                                cpuhp_rollback_install(cpu, state, node);
1638                        goto unlock;
1639                }
1640        }
1641add_node:
1642        ret = 0;
1643        hlist_add_head(node, &sp->list);
1644unlock:
1645        mutex_unlock(&cpuhp_state_mutex);
1646        return ret;
1647}
1648
1649int __cpuhp_state_add_instance(enum cpuhp_state state, struct hlist_node *node,
1650                               bool invoke)
1651{
1652        int ret;
1653
1654        cpus_read_lock();
1655        ret = __cpuhp_state_add_instance_cpuslocked(state, node, invoke);
1656        cpus_read_unlock();
1657        return ret;
1658}
1659EXPORT_SYMBOL_GPL(__cpuhp_state_add_instance);
1660
1661/**
1662 * __cpuhp_setup_state_cpuslocked - Setup the callbacks for an hotplug machine state
1663 * @state:              The state to setup
1664 * @invoke:             If true, the startup function is invoked for cpus where
1665 *                      cpu state >= @state
1666 * @startup:            startup callback function
1667 * @teardown:           teardown callback function
1668 * @multi_instance:     State is set up for multiple instances which get
1669 *                      added afterwards.
1670 *
1671 * The caller needs to hold cpus read locked while calling this function.
1672 * Returns:
1673 *   On success:
1674 *      Positive state number if @state is CPUHP_AP_ONLINE_DYN
1675 *      0 for all other states
1676 *   On failure: proper (negative) error code
1677 */
1678int __cpuhp_setup_state_cpuslocked(enum cpuhp_state state,
1679                                   const char *name, bool invoke,
1680                                   int (*startup)(unsigned int cpu),
1681                                   int (*teardown)(unsigned int cpu),
1682                                   bool multi_instance)
1683{
1684        int cpu, ret = 0;
1685        bool dynstate;
1686
1687        lockdep_assert_cpus_held();
1688
1689        if (cpuhp_cb_check(state) || !name)
1690                return -EINVAL;
1691
1692        mutex_lock(&cpuhp_state_mutex);
1693
1694        ret = cpuhp_store_callbacks(state, name, startup, teardown,
1695                                    multi_instance);
1696
1697        dynstate = state == CPUHP_AP_ONLINE_DYN;
1698        if (ret > 0 && dynstate) {
1699                state = ret;
1700                ret = 0;
1701        }
1702
1703        if (ret || !invoke || !startup)
1704                goto out;
1705
1706        /*
1707         * Try to call the startup callback for each present cpu
1708         * depending on the hotplug state of the cpu.
1709         */
1710        for_each_present_cpu(cpu) {
1711                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1712                int cpustate = st->state;
1713
1714                if (cpustate < state)
1715                        continue;
1716
1717                ret = cpuhp_issue_call(cpu, state, true, NULL);
1718                if (ret) {
1719                        if (teardown)
1720                                cpuhp_rollback_install(cpu, state, NULL);
1721                        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1722                        goto out;
1723                }
1724        }
1725out:
1726        mutex_unlock(&cpuhp_state_mutex);
1727        /*
1728         * If the requested state is CPUHP_AP_ONLINE_DYN, return the
1729         * dynamically allocated state in case of success.
1730         */
1731        if (!ret && dynstate)
1732                return state;
1733        return ret;
1734}
1735EXPORT_SYMBOL(__cpuhp_setup_state_cpuslocked);
1736
1737int __cpuhp_setup_state(enum cpuhp_state state,
1738                        const char *name, bool invoke,
1739                        int (*startup)(unsigned int cpu),
1740                        int (*teardown)(unsigned int cpu),
1741                        bool multi_instance)
1742{
1743        int ret;
1744
1745        cpus_read_lock();
1746        ret = __cpuhp_setup_state_cpuslocked(state, name, invoke, startup,
1747                                             teardown, multi_instance);
1748        cpus_read_unlock();
1749        return ret;
1750}
1751EXPORT_SYMBOL(__cpuhp_setup_state);
1752
1753int __cpuhp_state_remove_instance(enum cpuhp_state state,
1754                                  struct hlist_node *node, bool invoke)
1755{
1756        struct cpuhp_step *sp = cpuhp_get_step(state);
1757        int cpu;
1758
1759        BUG_ON(cpuhp_cb_check(state));
1760
1761        if (!sp->multi_instance)
1762                return -EINVAL;
1763
1764        cpus_read_lock();
1765        mutex_lock(&cpuhp_state_mutex);
1766
1767        if (!invoke || !cpuhp_get_teardown_cb(state))
1768                goto remove;
1769        /*
1770         * Call the teardown callback for each present cpu depending
1771         * on the hotplug state of the cpu. This function is not
1772         * allowed to fail currently!
1773         */
1774        for_each_present_cpu(cpu) {
1775                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1776                int cpustate = st->state;
1777
1778                if (cpustate >= state)
1779                        cpuhp_issue_call(cpu, state, false, node);
1780        }
1781
1782remove:
1783        hlist_del(node);
1784        mutex_unlock(&cpuhp_state_mutex);
1785        cpus_read_unlock();
1786
1787        return 0;
1788}
1789EXPORT_SYMBOL_GPL(__cpuhp_state_remove_instance);
1790
1791/**
1792 * __cpuhp_remove_state_cpuslocked - Remove the callbacks for an hotplug machine state
1793 * @state:      The state to remove
1794 * @invoke:     If true, the teardown function is invoked for cpus where
1795 *              cpu state >= @state
1796 *
1797 * The caller needs to hold cpus read locked while calling this function.
1798 * The teardown callback is currently not allowed to fail. Think
1799 * about module removal!
1800 */
1801void __cpuhp_remove_state_cpuslocked(enum cpuhp_state state, bool invoke)
1802{
1803        struct cpuhp_step *sp = cpuhp_get_step(state);
1804        int cpu;
1805
1806        BUG_ON(cpuhp_cb_check(state));
1807
1808        lockdep_assert_cpus_held();
1809
1810        mutex_lock(&cpuhp_state_mutex);
1811        if (sp->multi_instance) {
1812                WARN(!hlist_empty(&sp->list),
1813                     "Error: Removing state %d which has instances left.\n",
1814                     state);
1815                goto remove;
1816        }
1817
1818        if (!invoke || !cpuhp_get_teardown_cb(state))
1819                goto remove;
1820
1821        /*
1822         * Call the teardown callback for each present cpu depending
1823         * on the hotplug state of the cpu. This function is not
1824         * allowed to fail currently!
1825         */
1826        for_each_present_cpu(cpu) {
1827                struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, cpu);
1828                int cpustate = st->state;
1829
1830                if (cpustate >= state)
1831                        cpuhp_issue_call(cpu, state, false, NULL);
1832        }
1833remove:
1834        cpuhp_store_callbacks(state, NULL, NULL, NULL, false);
1835        mutex_unlock(&cpuhp_state_mutex);
1836}
1837EXPORT_SYMBOL(__cpuhp_remove_state_cpuslocked);
1838
1839void __cpuhp_remove_state(enum cpuhp_state state, bool invoke)
1840{
1841        cpus_read_lock();
1842        __cpuhp_remove_state_cpuslocked(state, invoke);
1843        cpus_read_unlock();
1844}
1845EXPORT_SYMBOL(__cpuhp_remove_state);
1846
1847#if defined(CONFIG_SYSFS) && defined(CONFIG_HOTPLUG_CPU)
1848static ssize_t show_cpuhp_state(struct device *dev,
1849                                struct device_attribute *attr, char *buf)
1850{
1851        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1852
1853        return sprintf(buf, "%d\n", st->state);
1854}
1855static DEVICE_ATTR(state, 0444, show_cpuhp_state, NULL);
1856
1857static ssize_t write_cpuhp_target(struct device *dev,
1858                                  struct device_attribute *attr,
1859                                  const char *buf, size_t count)
1860{
1861        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1862        struct cpuhp_step *sp;
1863        int target, ret;
1864
1865        ret = kstrtoint(buf, 10, &target);
1866        if (ret)
1867                return ret;
1868
1869#ifdef CONFIG_CPU_HOTPLUG_STATE_CONTROL
1870        if (target < CPUHP_OFFLINE || target > CPUHP_ONLINE)
1871                return -EINVAL;
1872#else
1873        if (target != CPUHP_OFFLINE && target != CPUHP_ONLINE)
1874                return -EINVAL;
1875#endif
1876
1877        ret = lock_device_hotplug_sysfs();
1878        if (ret)
1879                return ret;
1880
1881        mutex_lock(&cpuhp_state_mutex);
1882        sp = cpuhp_get_step(target);
1883        ret = !sp->name || sp->cant_stop ? -EINVAL : 0;
1884        mutex_unlock(&cpuhp_state_mutex);
1885        if (ret)
1886                goto out;
1887
1888        if (st->state < target)
1889                ret = do_cpu_up(dev->id, target);
1890        else
1891                ret = do_cpu_down(dev->id, target);
1892out:
1893        unlock_device_hotplug();
1894        return ret ? ret : count;
1895}
1896
1897static ssize_t show_cpuhp_target(struct device *dev,
1898                                 struct device_attribute *attr, char *buf)
1899{
1900        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1901
1902        return sprintf(buf, "%d\n", st->target);
1903}
1904static DEVICE_ATTR(target, 0644, show_cpuhp_target, write_cpuhp_target);
1905
1906
1907static ssize_t write_cpuhp_fail(struct device *dev,
1908                                struct device_attribute *attr,
1909                                const char *buf, size_t count)
1910{
1911        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1912        struct cpuhp_step *sp;
1913        int fail, ret;
1914
1915        ret = kstrtoint(buf, 10, &fail);
1916        if (ret)
1917                return ret;
1918
1919        /*
1920         * Cannot fail STARTING/DYING callbacks.
1921         */
1922        if (cpuhp_is_atomic_state(fail))
1923                return -EINVAL;
1924
1925        /*
1926         * Cannot fail anything that doesn't have callbacks.
1927         */
1928        mutex_lock(&cpuhp_state_mutex);
1929        sp = cpuhp_get_step(fail);
1930        if (!sp->startup.single && !sp->teardown.single)
1931                ret = -EINVAL;
1932        mutex_unlock(&cpuhp_state_mutex);
1933        if (ret)
1934                return ret;
1935
1936        st->fail = fail;
1937
1938        return count;
1939}
1940
1941static ssize_t show_cpuhp_fail(struct device *dev,
1942                               struct device_attribute *attr, char *buf)
1943{
1944        struct cpuhp_cpu_state *st = per_cpu_ptr(&cpuhp_state, dev->id);
1945
1946        return sprintf(buf, "%d\n", st->fail);
1947}
1948
1949static DEVICE_ATTR(fail, 0644, show_cpuhp_fail, write_cpuhp_fail);
1950
1951static struct attribute *cpuhp_cpu_attrs[] = {
1952        &dev_attr_state.attr,
1953        &dev_attr_target.attr,
1954        &dev_attr_fail.attr,
1955        NULL
1956};
1957
1958static const struct attribute_group cpuhp_cpu_attr_group = {
1959        .attrs = cpuhp_cpu_attrs,
1960        .name = "hotplug",
1961        NULL
1962};
1963
1964static ssize_t show_cpuhp_states(struct device *dev,
1965                                 struct device_attribute *attr, char *buf)
1966{
1967        ssize_t cur, res = 0;
1968        int i;
1969
1970        mutex_lock(&cpuhp_state_mutex);
1971        for (i = CPUHP_OFFLINE; i <= CPUHP_ONLINE; i++) {
1972                struct cpuhp_step *sp = cpuhp_get_step(i);
1973
1974                if (sp->name) {
1975                        cur = sprintf(buf, "%3d: %s\n", i, sp->name);
1976                        buf += cur;
1977                        res += cur;
1978                }
1979        }
1980        mutex_unlock(&cpuhp_state_mutex);
1981        return res;
1982}
1983static DEVICE_ATTR(states, 0444, show_cpuhp_states, NULL);
1984
1985static struct attribute *cpuhp_cpu_root_attrs[] = {
1986        &dev_attr_states.attr,
1987        NULL
1988};
1989
1990static const struct attribute_group cpuhp_cpu_root_attr_group = {
1991        .attrs = cpuhp_cpu_root_attrs,
1992        .name = "hotplug",
1993        NULL
1994};
1995
1996#ifdef CONFIG_HOTPLUG_SMT
1997
1998static const char *smt_states[] = {
1999        [CPU_SMT_ENABLED]               = "on",
2000        [CPU_SMT_DISABLED]              = "off",
2001        [CPU_SMT_FORCE_DISABLED]        = "forceoff",
2002        [CPU_SMT_NOT_SUPPORTED]         = "notsupported",
2003};
2004
2005static ssize_t
2006show_smt_control(struct device *dev, struct device_attribute *attr, char *buf)
2007{
2008        return snprintf(buf, PAGE_SIZE - 2, "%s\n", smt_states[cpu_smt_control]);
2009}
2010
2011static void cpuhp_offline_cpu_device(unsigned int cpu)
2012{
2013        struct device *dev = get_cpu_device(cpu);
2014
2015        dev->offline = true;
2016        /* Tell user space about the state change */
2017        kobject_uevent(&dev->kobj, KOBJ_OFFLINE);
2018}
2019
2020static void cpuhp_online_cpu_device(unsigned int cpu)
2021{
2022        struct device *dev = get_cpu_device(cpu);
2023
2024        dev->offline = false;
2025        /* Tell user space about the state change */
2026        kobject_uevent(&dev->kobj, KOBJ_ONLINE);
2027}
2028
2029static int cpuhp_smt_disable(enum cpuhp_smt_control ctrlval)
2030{
2031        int cpu, ret = 0;
2032
2033        cpu_maps_update_begin();
2034        for_each_online_cpu(cpu) {
2035                if (topology_is_primary_thread(cpu))
2036                        continue;
2037                ret = cpu_down_maps_locked(cpu, CPUHP_OFFLINE);
2038                if (ret)
2039                        break;
2040                /*
2041                 * As this needs to hold the cpu maps lock it's impossible
2042                 * to call device_offline() because that ends up calling
2043                 * cpu_down() which takes cpu maps lock. cpu maps lock
2044                 * needs to be held as this might race against in kernel
2045                 * abusers of the hotplug machinery (thermal management).
2046                 *
2047                 * So nothing would update device:offline state. That would
2048                 * leave the sysfs entry stale and prevent onlining after
2049                 * smt control has been changed to 'off' again. This is
2050                 * called under the sysfs hotplug lock, so it is properly
2051                 * serialized against the regular offline usage.
2052                 */
2053                cpuhp_offline_cpu_device(cpu);
2054        }
2055        if (!ret)
2056                cpu_smt_control = ctrlval;
2057        cpu_maps_update_done();
2058        return ret;
2059}
2060
2061static int cpuhp_smt_enable(void)
2062{
2063        int cpu, ret = 0;
2064
2065        cpu_maps_update_begin();
2066        cpu_smt_control = CPU_SMT_ENABLED;
2067        for_each_present_cpu(cpu) {
2068                /* Skip online CPUs and CPUs on offline nodes */
2069                if (cpu_online(cpu) || !node_online(cpu_to_node(cpu)))
2070                        continue;
2071                ret = _cpu_up(cpu, 0, CPUHP_ONLINE);
2072                if (ret)
2073                        break;
2074                /* See comment in cpuhp_smt_disable() */
2075                cpuhp_online_cpu_device(cpu);
2076        }
2077        cpu_maps_update_done();
2078        return ret;
2079}
2080
2081static ssize_t
2082store_smt_control(struct device *dev, struct device_attribute *attr,
2083                  const char *buf, size_t count)
2084{
2085        int ctrlval, ret;
2086
2087        if (sysfs_streq(buf, "on"))
2088                ctrlval = CPU_SMT_ENABLED;
2089        else if (sysfs_streq(buf, "off"))
2090                ctrlval = CPU_SMT_DISABLED;
2091        else if (sysfs_streq(buf, "forceoff"))
2092                ctrlval = CPU_SMT_FORCE_DISABLED;
2093        else
2094                return -EINVAL;
2095
2096        if (cpu_smt_control == CPU_SMT_FORCE_DISABLED)
2097                return -EPERM;
2098
2099        if (cpu_smt_control == CPU_SMT_NOT_SUPPORTED)
2100                return -ENODEV;
2101
2102        ret = lock_device_hotplug_sysfs();
2103        if (ret)
2104                return ret;
2105
2106        if (ctrlval != cpu_smt_control) {
2107                switch (ctrlval) {
2108                case CPU_SMT_ENABLED:
2109                        ret = cpuhp_smt_enable();
2110                        break;
2111                case CPU_SMT_DISABLED:
2112                case CPU_SMT_FORCE_DISABLED:
2113                        ret = cpuhp_smt_disable(ctrlval);
2114                        break;
2115                }
2116        }
2117
2118        unlock_device_hotplug();
2119        return ret ? ret : count;
2120}
2121static DEVICE_ATTR(control, 0644, show_smt_control, store_smt_control);
2122
2123static ssize_t
2124show_smt_active(struct device *dev, struct device_attribute *attr, char *buf)
2125{
2126        bool active = topology_max_smt_threads() > 1;
2127
2128        return snprintf(buf, PAGE_SIZE - 2, "%d\n", active);
2129}
2130static DEVICE_ATTR(active, 0444, show_smt_active, NULL);
2131
2132static struct attribute *cpuhp_smt_attrs[] = {
2133        &dev_attr_control.attr,
2134        &dev_attr_active.attr,
2135        NULL
2136};
2137
2138static const struct attribute_group cpuhp_smt_attr_group = {
2139        .attrs = cpuhp_smt_attrs,
2140        .name = "smt",
2141        NULL
2142};
2143
2144static int __init cpu_smt_state_init(void)
2145{
2146        return sysfs_create_group(&cpu_subsys.dev_root->kobj,
2147                                  &cpuhp_smt_attr_group);
2148}
2149
2150#else
2151static inline int cpu_smt_state_init(void) { return 0; }
2152#endif
2153
2154static int __init cpuhp_sysfs_init(void)
2155{
2156        int cpu, ret;
2157
2158        ret = cpu_smt_state_init();
2159        if (ret)
2160                return ret;
2161
2162        ret = sysfs_create_group(&cpu_subsys.dev_root->kobj,
2163                                 &cpuhp_cpu_root_attr_group);
2164        if (ret)
2165                return ret;
2166
2167        for_each_possible_cpu(cpu) {
2168                struct device *dev = get_cpu_device(cpu);
2169
2170                if (!dev)
2171                        continue;
2172                ret = sysfs_create_group(&dev->kobj, &cpuhp_cpu_attr_group);
2173                if (ret)
2174                        return ret;
2175        }
2176        return 0;
2177}
2178device_initcall(cpuhp_sysfs_init);
2179#endif
2180
2181/*
2182 * cpu_bit_bitmap[] is a special, "compressed" data structure that
2183 * represents all NR_CPUS bits binary values of 1<<nr.
2184 *
2185 * It is used by cpumask_of() to get a constant address to a CPU
2186 * mask value that has a single bit set only.
2187 */
2188
2189/* cpu_bit_bitmap[0] is empty - so we can back into it */
2190#define MASK_DECLARE_1(x)       [x+1][0] = (1UL << (x))
2191#define MASK_DECLARE_2(x)       MASK_DECLARE_1(x), MASK_DECLARE_1(x+1)
2192#define MASK_DECLARE_4(x)       MASK_DECLARE_2(x), MASK_DECLARE_2(x+2)
2193#define MASK_DECLARE_8(x)       MASK_DECLARE_4(x), MASK_DECLARE_4(x+4)
2194
2195const unsigned long cpu_bit_bitmap[BITS_PER_LONG+1][BITS_TO_LONGS(NR_CPUS)] = {
2196
2197        MASK_DECLARE_8(0),      MASK_DECLARE_8(8),
2198        MASK_DECLARE_8(16),     MASK_DECLARE_8(24),
2199#if BITS_PER_LONG > 32
2200        MASK_DECLARE_8(32),     MASK_DECLARE_8(40),
2201        MASK_DECLARE_8(48),     MASK_DECLARE_8(56),
2202#endif
2203};
2204EXPORT_SYMBOL_GPL(cpu_bit_bitmap);
2205
2206const DECLARE_BITMAP(cpu_all_bits, NR_CPUS) = CPU_BITS_ALL;
2207EXPORT_SYMBOL(cpu_all_bits);
2208
2209#ifdef CONFIG_INIT_ALL_POSSIBLE
2210struct cpumask __cpu_possible_mask __read_mostly
2211        = {CPU_BITS_ALL};
2212#else
2213struct cpumask __cpu_possible_mask __read_mostly;
2214#endif
2215EXPORT_SYMBOL(__cpu_possible_mask);
2216
2217struct cpumask __cpu_online_mask __read_mostly;
2218EXPORT_SYMBOL(__cpu_online_mask);
2219
2220struct cpumask __cpu_present_mask __read_mostly;
2221EXPORT_SYMBOL(__cpu_present_mask);
2222
2223struct cpumask __cpu_active_mask __read_mostly;
2224EXPORT_SYMBOL(__cpu_active_mask);
2225
2226void init_cpu_present(const struct cpumask *src)
2227{
2228        cpumask_copy(&__cpu_present_mask, src);
2229}
2230
2231void init_cpu_possible(const struct cpumask *src)
2232{
2233        cpumask_copy(&__cpu_possible_mask, src);
2234}
2235
2236void init_cpu_online(const struct cpumask *src)
2237{
2238        cpumask_copy(&__cpu_online_mask, src);
2239}
2240
2241/*
2242 * Activate the first processor.
2243 */
2244void __init boot_cpu_init(void)
2245{
2246        int cpu = smp_processor_id();
2247
2248        /* Mark the boot cpu "present", "online" etc for SMP and UP case */
2249        set_cpu_online(cpu, true);
2250        set_cpu_active(cpu, true);
2251        set_cpu_present(cpu, true);
2252        set_cpu_possible(cpu, true);
2253
2254#ifdef CONFIG_SMP
2255        __boot_cpu_id = cpu;
2256#endif
2257}
2258
2259/*
2260 * Must be called _AFTER_ setting up the per_cpu areas
2261 */
2262void __init boot_cpu_hotplug_init(void)
2263{
2264#ifdef CONFIG_SMP
2265        this_cpu_write(cpuhp_state.booted_once, true);
2266#endif
2267        this_cpu_write(cpuhp_state.state, CPUHP_ONLINE);
2268}
2269