linux/kernel/fork.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/fork.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 */
   6
   7/*
   8 *  'fork.c' contains the help-routines for the 'fork' system call
   9 * (see also entry.S and others).
  10 * Fork is rather simple, once you get the hang of it, but the memory
  11 * management can be a bitch. See 'mm/memory.c': 'copy_page_range()'
  12 */
  13
  14#include <linux/slab.h>
  15#include <linux/sched/autogroup.h>
  16#include <linux/sched/mm.h>
  17#include <linux/sched/coredump.h>
  18#include <linux/sched/user.h>
  19#include <linux/sched/numa_balancing.h>
  20#include <linux/sched/stat.h>
  21#include <linux/sched/task.h>
  22#include <linux/sched/task_stack.h>
  23#include <linux/sched/cputime.h>
  24#include <linux/rtmutex.h>
  25#include <linux/init.h>
  26#include <linux/unistd.h>
  27#include <linux/module.h>
  28#include <linux/vmalloc.h>
  29#include <linux/completion.h>
  30#include <linux/personality.h>
  31#include <linux/mempolicy.h>
  32#include <linux/sem.h>
  33#include <linux/file.h>
  34#include <linux/fdtable.h>
  35#include <linux/iocontext.h>
  36#include <linux/key.h>
  37#include <linux/binfmts.h>
  38#include <linux/mman.h>
  39#include <linux/mmu_notifier.h>
  40#include <linux/hmm.h>
  41#include <linux/fs.h>
  42#include <linux/mm.h>
  43#include <linux/vmacache.h>
  44#include <linux/nsproxy.h>
  45#include <linux/capability.h>
  46#include <linux/cpu.h>
  47#include <linux/cgroup.h>
  48#include <linux/security.h>
  49#include <linux/hugetlb.h>
  50#include <linux/seccomp.h>
  51#include <linux/swap.h>
  52#include <linux/syscalls.h>
  53#include <linux/jiffies.h>
  54#include <linux/futex.h>
  55#include <linux/compat.h>
  56#include <linux/kthread.h>
  57#include <linux/task_io_accounting_ops.h>
  58#include <linux/rcupdate.h>
  59#include <linux/ptrace.h>
  60#include <linux/mount.h>
  61#include <linux/audit.h>
  62#include <linux/memcontrol.h>
  63#include <linux/ftrace.h>
  64#include <linux/proc_fs.h>
  65#include <linux/profile.h>
  66#include <linux/rmap.h>
  67#include <linux/ksm.h>
  68#include <linux/acct.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/tsacct_kern.h>
  71#include <linux/cn_proc.h>
  72#include <linux/freezer.h>
  73#include <linux/delayacct.h>
  74#include <linux/taskstats_kern.h>
  75#include <linux/random.h>
  76#include <linux/tty.h>
  77#include <linux/blkdev.h>
  78#include <linux/fs_struct.h>
  79#include <linux/magic.h>
  80#include <linux/sched/mm.h>
  81#include <linux/perf_event.h>
  82#include <linux/posix-timers.h>
  83#include <linux/user-return-notifier.h>
  84#include <linux/oom.h>
  85#include <linux/khugepaged.h>
  86#include <linux/signalfd.h>
  87#include <linux/uprobes.h>
  88#include <linux/aio.h>
  89#include <linux/compiler.h>
  90#include <linux/sysctl.h>
  91#include <linux/kcov.h>
  92#include <linux/livepatch.h>
  93#include <linux/thread_info.h>
  94
  95#include <asm/pgtable.h>
  96#include <asm/pgalloc.h>
  97#include <linux/uaccess.h>
  98#include <asm/mmu_context.h>
  99#include <asm/cacheflush.h>
 100#include <asm/tlbflush.h>
 101
 102#include <trace/events/sched.h>
 103
 104#define CREATE_TRACE_POINTS
 105#include <trace/events/task.h>
 106
 107/*
 108 * Minimum number of threads to boot the kernel
 109 */
 110#define MIN_THREADS 20
 111
 112/*
 113 * Maximum number of threads
 114 */
 115#define MAX_THREADS FUTEX_TID_MASK
 116
 117/*
 118 * Protected counters by write_lock_irq(&tasklist_lock)
 119 */
 120unsigned long total_forks;      /* Handle normal Linux uptimes. */
 121int nr_threads;                 /* The idle threads do not count.. */
 122
 123int max_threads;                /* tunable limit on nr_threads */
 124
 125DEFINE_PER_CPU(unsigned long, process_counts) = 0;
 126
 127__cacheline_aligned DEFINE_RWLOCK(tasklist_lock);  /* outer */
 128
 129#ifdef CONFIG_PROVE_RCU
 130int lockdep_tasklist_lock_is_held(void)
 131{
 132        return lockdep_is_held(&tasklist_lock);
 133}
 134EXPORT_SYMBOL_GPL(lockdep_tasklist_lock_is_held);
 135#endif /* #ifdef CONFIG_PROVE_RCU */
 136
 137int nr_processes(void)
 138{
 139        int cpu;
 140        int total = 0;
 141
 142        for_each_possible_cpu(cpu)
 143                total += per_cpu(process_counts, cpu);
 144
 145        return total;
 146}
 147
 148void __weak arch_release_task_struct(struct task_struct *tsk)
 149{
 150}
 151
 152#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 153static struct kmem_cache *task_struct_cachep;
 154
 155static inline struct task_struct *alloc_task_struct_node(int node)
 156{
 157        return kmem_cache_alloc_node(task_struct_cachep, GFP_KERNEL, node);
 158}
 159
 160static inline void free_task_struct(struct task_struct *tsk)
 161{
 162        kmem_cache_free(task_struct_cachep, tsk);
 163}
 164#endif
 165
 166void __weak arch_release_thread_stack(unsigned long *stack)
 167{
 168}
 169
 170#ifndef CONFIG_ARCH_THREAD_STACK_ALLOCATOR
 171
 172/*
 173 * Allocate pages if THREAD_SIZE is >= PAGE_SIZE, otherwise use a
 174 * kmemcache based allocator.
 175 */
 176# if THREAD_SIZE >= PAGE_SIZE || defined(CONFIG_VMAP_STACK)
 177
 178#ifdef CONFIG_VMAP_STACK
 179/*
 180 * vmalloc() is a bit slow, and calling vfree() enough times will force a TLB
 181 * flush.  Try to minimize the number of calls by caching stacks.
 182 */
 183#define NR_CACHED_STACKS 2
 184static DEFINE_PER_CPU(struct vm_struct *, cached_stacks[NR_CACHED_STACKS]);
 185
 186static int free_vm_stack_cache(unsigned int cpu)
 187{
 188        struct vm_struct **cached_vm_stacks = per_cpu_ptr(cached_stacks, cpu);
 189        int i;
 190
 191        for (i = 0; i < NR_CACHED_STACKS; i++) {
 192                struct vm_struct *vm_stack = cached_vm_stacks[i];
 193
 194                if (!vm_stack)
 195                        continue;
 196
 197                vfree(vm_stack->addr);
 198                cached_vm_stacks[i] = NULL;
 199        }
 200
 201        return 0;
 202}
 203#endif
 204
 205static unsigned long *alloc_thread_stack_node(struct task_struct *tsk, int node)
 206{
 207#ifdef CONFIG_VMAP_STACK
 208        void *stack;
 209        int i;
 210
 211        for (i = 0; i < NR_CACHED_STACKS; i++) {
 212                struct vm_struct *s;
 213
 214                s = this_cpu_xchg(cached_stacks[i], NULL);
 215
 216                if (!s)
 217                        continue;
 218
 219                /* Clear stale pointers from reused stack. */
 220                memset(s->addr, 0, THREAD_SIZE);
 221
 222                tsk->stack_vm_area = s;
 223                return s->addr;
 224        }
 225
 226        stack = __vmalloc_node_range(THREAD_SIZE, THREAD_ALIGN,
 227                                     VMALLOC_START, VMALLOC_END,
 228                                     THREADINFO_GFP,
 229                                     PAGE_KERNEL,
 230                                     0, node, __builtin_return_address(0));
 231
 232        /*
 233         * We can't call find_vm_area() in interrupt context, and
 234         * free_thread_stack() can be called in interrupt context,
 235         * so cache the vm_struct.
 236         */
 237        if (stack)
 238                tsk->stack_vm_area = find_vm_area(stack);
 239        return stack;
 240#else
 241        struct page *page = alloc_pages_node(node, THREADINFO_GFP,
 242                                             THREAD_SIZE_ORDER);
 243
 244        return page ? page_address(page) : NULL;
 245#endif
 246}
 247
 248static inline void free_thread_stack(struct task_struct *tsk)
 249{
 250#ifdef CONFIG_VMAP_STACK
 251        if (task_stack_vm_area(tsk)) {
 252                int i;
 253
 254                for (i = 0; i < NR_CACHED_STACKS; i++) {
 255                        if (this_cpu_cmpxchg(cached_stacks[i],
 256                                        NULL, tsk->stack_vm_area) != NULL)
 257                                continue;
 258
 259                        return;
 260                }
 261
 262                vfree_atomic(tsk->stack);
 263                return;
 264        }
 265#endif
 266
 267        __free_pages(virt_to_page(tsk->stack), THREAD_SIZE_ORDER);
 268}
 269# else
 270static struct kmem_cache *thread_stack_cache;
 271
 272static unsigned long *alloc_thread_stack_node(struct task_struct *tsk,
 273                                                  int node)
 274{
 275        return kmem_cache_alloc_node(thread_stack_cache, THREADINFO_GFP, node);
 276}
 277
 278static void free_thread_stack(struct task_struct *tsk)
 279{
 280        kmem_cache_free(thread_stack_cache, tsk->stack);
 281}
 282
 283void thread_stack_cache_init(void)
 284{
 285        thread_stack_cache = kmem_cache_create_usercopy("thread_stack",
 286                                        THREAD_SIZE, THREAD_SIZE, 0, 0,
 287                                        THREAD_SIZE, NULL);
 288        BUG_ON(thread_stack_cache == NULL);
 289}
 290# endif
 291#endif
 292
 293/* SLAB cache for signal_struct structures (tsk->signal) */
 294static struct kmem_cache *signal_cachep;
 295
 296/* SLAB cache for sighand_struct structures (tsk->sighand) */
 297struct kmem_cache *sighand_cachep;
 298
 299/* SLAB cache for files_struct structures (tsk->files) */
 300struct kmem_cache *files_cachep;
 301
 302/* SLAB cache for fs_struct structures (tsk->fs) */
 303struct kmem_cache *fs_cachep;
 304
 305/* SLAB cache for vm_area_struct structures */
 306static struct kmem_cache *vm_area_cachep;
 307
 308/* SLAB cache for mm_struct structures (tsk->mm) */
 309static struct kmem_cache *mm_cachep;
 310
 311struct vm_area_struct *vm_area_alloc(struct mm_struct *mm)
 312{
 313        struct vm_area_struct *vma;
 314
 315        vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 316        if (vma)
 317                vma_init(vma, mm);
 318        return vma;
 319}
 320
 321struct vm_area_struct *vm_area_dup(struct vm_area_struct *orig)
 322{
 323        struct vm_area_struct *new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
 324
 325        if (new) {
 326                *new = *orig;
 327                INIT_LIST_HEAD(&new->anon_vma_chain);
 328        }
 329        return new;
 330}
 331
 332void vm_area_free(struct vm_area_struct *vma)
 333{
 334        kmem_cache_free(vm_area_cachep, vma);
 335}
 336
 337static void account_kernel_stack(struct task_struct *tsk, int account)
 338{
 339        void *stack = task_stack_page(tsk);
 340        struct vm_struct *vm = task_stack_vm_area(tsk);
 341
 342        BUILD_BUG_ON(IS_ENABLED(CONFIG_VMAP_STACK) && PAGE_SIZE % 1024 != 0);
 343
 344        if (vm) {
 345                int i;
 346
 347                BUG_ON(vm->nr_pages != THREAD_SIZE / PAGE_SIZE);
 348
 349                for (i = 0; i < THREAD_SIZE / PAGE_SIZE; i++) {
 350                        mod_zone_page_state(page_zone(vm->pages[i]),
 351                                            NR_KERNEL_STACK_KB,
 352                                            PAGE_SIZE / 1024 * account);
 353                }
 354
 355                /* All stack pages belong to the same memcg. */
 356                mod_memcg_page_state(vm->pages[0], MEMCG_KERNEL_STACK_KB,
 357                                     account * (THREAD_SIZE / 1024));
 358        } else {
 359                /*
 360                 * All stack pages are in the same zone and belong to the
 361                 * same memcg.
 362                 */
 363                struct page *first_page = virt_to_page(stack);
 364
 365                mod_zone_page_state(page_zone(first_page), NR_KERNEL_STACK_KB,
 366                                    THREAD_SIZE / 1024 * account);
 367
 368                mod_memcg_page_state(first_page, MEMCG_KERNEL_STACK_KB,
 369                                     account * (THREAD_SIZE / 1024));
 370        }
 371}
 372
 373static void release_task_stack(struct task_struct *tsk)
 374{
 375        if (WARN_ON(tsk->state != TASK_DEAD))
 376                return;  /* Better to leak the stack than to free prematurely */
 377
 378        account_kernel_stack(tsk, -1);
 379        arch_release_thread_stack(tsk->stack);
 380        free_thread_stack(tsk);
 381        tsk->stack = NULL;
 382#ifdef CONFIG_VMAP_STACK
 383        tsk->stack_vm_area = NULL;
 384#endif
 385}
 386
 387#ifdef CONFIG_THREAD_INFO_IN_TASK
 388void put_task_stack(struct task_struct *tsk)
 389{
 390        if (atomic_dec_and_test(&tsk->stack_refcount))
 391                release_task_stack(tsk);
 392}
 393#endif
 394
 395void free_task(struct task_struct *tsk)
 396{
 397#ifndef CONFIG_THREAD_INFO_IN_TASK
 398        /*
 399         * The task is finally done with both the stack and thread_info,
 400         * so free both.
 401         */
 402        release_task_stack(tsk);
 403#else
 404        /*
 405         * If the task had a separate stack allocation, it should be gone
 406         * by now.
 407         */
 408        WARN_ON_ONCE(atomic_read(&tsk->stack_refcount) != 0);
 409#endif
 410        rt_mutex_debug_task_free(tsk);
 411        ftrace_graph_exit_task(tsk);
 412        put_seccomp_filter(tsk);
 413        arch_release_task_struct(tsk);
 414        if (tsk->flags & PF_KTHREAD)
 415                free_kthread_struct(tsk);
 416        free_task_struct(tsk);
 417}
 418EXPORT_SYMBOL(free_task);
 419
 420#ifdef CONFIG_MMU
 421static __latent_entropy int dup_mmap(struct mm_struct *mm,
 422                                        struct mm_struct *oldmm)
 423{
 424        struct vm_area_struct *mpnt, *tmp, *prev, **pprev;
 425        struct rb_node **rb_link, *rb_parent;
 426        int retval;
 427        unsigned long charge;
 428        LIST_HEAD(uf);
 429
 430        uprobe_start_dup_mmap();
 431        if (down_write_killable(&oldmm->mmap_sem)) {
 432                retval = -EINTR;
 433                goto fail_uprobe_end;
 434        }
 435        flush_cache_dup_mm(oldmm);
 436        uprobe_dup_mmap(oldmm, mm);
 437        /*
 438         * Not linked in yet - no deadlock potential:
 439         */
 440        down_write_nested(&mm->mmap_sem, SINGLE_DEPTH_NESTING);
 441
 442        /* No ordering required: file already has been exposed. */
 443        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 444
 445        mm->total_vm = oldmm->total_vm;
 446        mm->data_vm = oldmm->data_vm;
 447        mm->exec_vm = oldmm->exec_vm;
 448        mm->stack_vm = oldmm->stack_vm;
 449
 450        rb_link = &mm->mm_rb.rb_node;
 451        rb_parent = NULL;
 452        pprev = &mm->mmap;
 453        retval = ksm_fork(mm, oldmm);
 454        if (retval)
 455                goto out;
 456        retval = khugepaged_fork(mm, oldmm);
 457        if (retval)
 458                goto out;
 459
 460        prev = NULL;
 461        for (mpnt = oldmm->mmap; mpnt; mpnt = mpnt->vm_next) {
 462                struct file *file;
 463
 464                if (mpnt->vm_flags & VM_DONTCOPY) {
 465                        vm_stat_account(mm, mpnt->vm_flags, -vma_pages(mpnt));
 466                        continue;
 467                }
 468                charge = 0;
 469                /*
 470                 * Don't duplicate many vmas if we've been oom-killed (for
 471                 * example)
 472                 */
 473                if (fatal_signal_pending(current)) {
 474                        retval = -EINTR;
 475                        goto out;
 476                }
 477                if (mpnt->vm_flags & VM_ACCOUNT) {
 478                        unsigned long len = vma_pages(mpnt);
 479
 480                        if (security_vm_enough_memory_mm(oldmm, len)) /* sic */
 481                                goto fail_nomem;
 482                        charge = len;
 483                }
 484                tmp = vm_area_dup(mpnt);
 485                if (!tmp)
 486                        goto fail_nomem;
 487                retval = vma_dup_policy(mpnt, tmp);
 488                if (retval)
 489                        goto fail_nomem_policy;
 490                tmp->vm_mm = mm;
 491                retval = dup_userfaultfd(tmp, &uf);
 492                if (retval)
 493                        goto fail_nomem_anon_vma_fork;
 494                if (tmp->vm_flags & VM_WIPEONFORK) {
 495                        /* VM_WIPEONFORK gets a clean slate in the child. */
 496                        tmp->anon_vma = NULL;
 497                        if (anon_vma_prepare(tmp))
 498                                goto fail_nomem_anon_vma_fork;
 499                } else if (anon_vma_fork(tmp, mpnt))
 500                        goto fail_nomem_anon_vma_fork;
 501                tmp->vm_flags &= ~(VM_LOCKED | VM_LOCKONFAULT);
 502                tmp->vm_next = tmp->vm_prev = NULL;
 503                file = tmp->vm_file;
 504                if (file) {
 505                        struct inode *inode = file_inode(file);
 506                        struct address_space *mapping = file->f_mapping;
 507
 508                        get_file(file);
 509                        if (tmp->vm_flags & VM_DENYWRITE)
 510                                atomic_dec(&inode->i_writecount);
 511                        i_mmap_lock_write(mapping);
 512                        if (tmp->vm_flags & VM_SHARED)
 513                                atomic_inc(&mapping->i_mmap_writable);
 514                        flush_dcache_mmap_lock(mapping);
 515                        /* insert tmp into the share list, just after mpnt */
 516                        vma_interval_tree_insert_after(tmp, mpnt,
 517                                        &mapping->i_mmap);
 518                        flush_dcache_mmap_unlock(mapping);
 519                        i_mmap_unlock_write(mapping);
 520                }
 521
 522                /*
 523                 * Clear hugetlb-related page reserves for children. This only
 524                 * affects MAP_PRIVATE mappings. Faults generated by the child
 525                 * are not guaranteed to succeed, even if read-only
 526                 */
 527                if (is_vm_hugetlb_page(tmp))
 528                        reset_vma_resv_huge_pages(tmp);
 529
 530                /*
 531                 * Link in the new vma and copy the page table entries.
 532                 */
 533                *pprev = tmp;
 534                pprev = &tmp->vm_next;
 535                tmp->vm_prev = prev;
 536                prev = tmp;
 537
 538                __vma_link_rb(mm, tmp, rb_link, rb_parent);
 539                rb_link = &tmp->vm_rb.rb_right;
 540                rb_parent = &tmp->vm_rb;
 541
 542                mm->map_count++;
 543                if (!(tmp->vm_flags & VM_WIPEONFORK))
 544                        retval = copy_page_range(mm, oldmm, mpnt);
 545
 546                if (tmp->vm_ops && tmp->vm_ops->open)
 547                        tmp->vm_ops->open(tmp);
 548
 549                if (retval)
 550                        goto out;
 551        }
 552        /* a new mm has just been created */
 553        retval = arch_dup_mmap(oldmm, mm);
 554out:
 555        up_write(&mm->mmap_sem);
 556        flush_tlb_mm(oldmm);
 557        up_write(&oldmm->mmap_sem);
 558        dup_userfaultfd_complete(&uf);
 559fail_uprobe_end:
 560        uprobe_end_dup_mmap();
 561        return retval;
 562fail_nomem_anon_vma_fork:
 563        mpol_put(vma_policy(tmp));
 564fail_nomem_policy:
 565        vm_area_free(tmp);
 566fail_nomem:
 567        retval = -ENOMEM;
 568        vm_unacct_memory(charge);
 569        goto out;
 570}
 571
 572static inline int mm_alloc_pgd(struct mm_struct *mm)
 573{
 574        mm->pgd = pgd_alloc(mm);
 575        if (unlikely(!mm->pgd))
 576                return -ENOMEM;
 577        return 0;
 578}
 579
 580static inline void mm_free_pgd(struct mm_struct *mm)
 581{
 582        pgd_free(mm, mm->pgd);
 583}
 584#else
 585static int dup_mmap(struct mm_struct *mm, struct mm_struct *oldmm)
 586{
 587        down_write(&oldmm->mmap_sem);
 588        RCU_INIT_POINTER(mm->exe_file, get_mm_exe_file(oldmm));
 589        up_write(&oldmm->mmap_sem);
 590        return 0;
 591}
 592#define mm_alloc_pgd(mm)        (0)
 593#define mm_free_pgd(mm)
 594#endif /* CONFIG_MMU */
 595
 596static void check_mm(struct mm_struct *mm)
 597{
 598        int i;
 599
 600        for (i = 0; i < NR_MM_COUNTERS; i++) {
 601                long x = atomic_long_read(&mm->rss_stat.count[i]);
 602
 603                if (unlikely(x))
 604                        printk(KERN_ALERT "BUG: Bad rss-counter state "
 605                                          "mm:%p idx:%d val:%ld\n", mm, i, x);
 606        }
 607
 608        if (mm_pgtables_bytes(mm))
 609                pr_alert("BUG: non-zero pgtables_bytes on freeing mm: %ld\n",
 610                                mm_pgtables_bytes(mm));
 611
 612#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 613        VM_BUG_ON_MM(mm->pmd_huge_pte, mm);
 614#endif
 615}
 616
 617#define allocate_mm()   (kmem_cache_alloc(mm_cachep, GFP_KERNEL))
 618#define free_mm(mm)     (kmem_cache_free(mm_cachep, (mm)))
 619
 620/*
 621 * Called when the last reference to the mm
 622 * is dropped: either by a lazy thread or by
 623 * mmput. Free the page directory and the mm.
 624 */
 625void __mmdrop(struct mm_struct *mm)
 626{
 627        BUG_ON(mm == &init_mm);
 628        WARN_ON_ONCE(mm == current->mm);
 629        WARN_ON_ONCE(mm == current->active_mm);
 630        mm_free_pgd(mm);
 631        destroy_context(mm);
 632        hmm_mm_destroy(mm);
 633        mmu_notifier_mm_destroy(mm);
 634        check_mm(mm);
 635        put_user_ns(mm->user_ns);
 636        free_mm(mm);
 637}
 638EXPORT_SYMBOL_GPL(__mmdrop);
 639
 640static void mmdrop_async_fn(struct work_struct *work)
 641{
 642        struct mm_struct *mm;
 643
 644        mm = container_of(work, struct mm_struct, async_put_work);
 645        __mmdrop(mm);
 646}
 647
 648static void mmdrop_async(struct mm_struct *mm)
 649{
 650        if (unlikely(atomic_dec_and_test(&mm->mm_count))) {
 651                INIT_WORK(&mm->async_put_work, mmdrop_async_fn);
 652                schedule_work(&mm->async_put_work);
 653        }
 654}
 655
 656static inline void free_signal_struct(struct signal_struct *sig)
 657{
 658        taskstats_tgid_free(sig);
 659        sched_autogroup_exit(sig);
 660        /*
 661         * __mmdrop is not safe to call from softirq context on x86 due to
 662         * pgd_dtor so postpone it to the async context
 663         */
 664        if (sig->oom_mm)
 665                mmdrop_async(sig->oom_mm);
 666        kmem_cache_free(signal_cachep, sig);
 667}
 668
 669static inline void put_signal_struct(struct signal_struct *sig)
 670{
 671        if (atomic_dec_and_test(&sig->sigcnt))
 672                free_signal_struct(sig);
 673}
 674
 675void __put_task_struct(struct task_struct *tsk)
 676{
 677        WARN_ON(!tsk->exit_state);
 678        WARN_ON(atomic_read(&tsk->usage));
 679        WARN_ON(tsk == current);
 680
 681        cgroup_free(tsk);
 682        task_numa_free(tsk);
 683        security_task_free(tsk);
 684        exit_creds(tsk);
 685        delayacct_tsk_free(tsk);
 686        put_signal_struct(tsk->signal);
 687
 688        if (!profile_handoff_task(tsk))
 689                free_task(tsk);
 690}
 691EXPORT_SYMBOL_GPL(__put_task_struct);
 692
 693void __init __weak arch_task_cache_init(void) { }
 694
 695/*
 696 * set_max_threads
 697 */
 698static void set_max_threads(unsigned int max_threads_suggested)
 699{
 700        u64 threads;
 701
 702        /*
 703         * The number of threads shall be limited such that the thread
 704         * structures may only consume a small part of the available memory.
 705         */
 706        if (fls64(totalram_pages) + fls64(PAGE_SIZE) > 64)
 707                threads = MAX_THREADS;
 708        else
 709                threads = div64_u64((u64) totalram_pages * (u64) PAGE_SIZE,
 710                                    (u64) THREAD_SIZE * 8UL);
 711
 712        if (threads > max_threads_suggested)
 713                threads = max_threads_suggested;
 714
 715        max_threads = clamp_t(u64, threads, MIN_THREADS, MAX_THREADS);
 716}
 717
 718#ifdef CONFIG_ARCH_WANTS_DYNAMIC_TASK_STRUCT
 719/* Initialized by the architecture: */
 720int arch_task_struct_size __read_mostly;
 721#endif
 722
 723static void task_struct_whitelist(unsigned long *offset, unsigned long *size)
 724{
 725        /* Fetch thread_struct whitelist for the architecture. */
 726        arch_thread_struct_whitelist(offset, size);
 727
 728        /*
 729         * Handle zero-sized whitelist or empty thread_struct, otherwise
 730         * adjust offset to position of thread_struct in task_struct.
 731         */
 732        if (unlikely(*size == 0))
 733                *offset = 0;
 734        else
 735                *offset += offsetof(struct task_struct, thread);
 736}
 737
 738void __init fork_init(void)
 739{
 740        int i;
 741#ifndef CONFIG_ARCH_TASK_STRUCT_ALLOCATOR
 742#ifndef ARCH_MIN_TASKALIGN
 743#define ARCH_MIN_TASKALIGN      0
 744#endif
 745        int align = max_t(int, L1_CACHE_BYTES, ARCH_MIN_TASKALIGN);
 746        unsigned long useroffset, usersize;
 747
 748        /* create a slab on which task_structs can be allocated */
 749        task_struct_whitelist(&useroffset, &usersize);
 750        task_struct_cachep = kmem_cache_create_usercopy("task_struct",
 751                        arch_task_struct_size, align,
 752                        SLAB_PANIC|SLAB_ACCOUNT,
 753                        useroffset, usersize, NULL);
 754#endif
 755
 756        /* do the arch specific task caches init */
 757        arch_task_cache_init();
 758
 759        set_max_threads(MAX_THREADS);
 760
 761        init_task.signal->rlim[RLIMIT_NPROC].rlim_cur = max_threads/2;
 762        init_task.signal->rlim[RLIMIT_NPROC].rlim_max = max_threads/2;
 763        init_task.signal->rlim[RLIMIT_SIGPENDING] =
 764                init_task.signal->rlim[RLIMIT_NPROC];
 765
 766        for (i = 0; i < UCOUNT_COUNTS; i++) {
 767                init_user_ns.ucount_max[i] = max_threads/2;
 768        }
 769
 770#ifdef CONFIG_VMAP_STACK
 771        cpuhp_setup_state(CPUHP_BP_PREPARE_DYN, "fork:vm_stack_cache",
 772                          NULL, free_vm_stack_cache);
 773#endif
 774
 775        lockdep_init_task(&init_task);
 776}
 777
 778int __weak arch_dup_task_struct(struct task_struct *dst,
 779                                               struct task_struct *src)
 780{
 781        *dst = *src;
 782        return 0;
 783}
 784
 785void set_task_stack_end_magic(struct task_struct *tsk)
 786{
 787        unsigned long *stackend;
 788
 789        stackend = end_of_stack(tsk);
 790        *stackend = STACK_END_MAGIC;    /* for overflow detection */
 791}
 792
 793static struct task_struct *dup_task_struct(struct task_struct *orig, int node)
 794{
 795        struct task_struct *tsk;
 796        unsigned long *stack;
 797        struct vm_struct *stack_vm_area;
 798        int err;
 799
 800        if (node == NUMA_NO_NODE)
 801                node = tsk_fork_get_node(orig);
 802        tsk = alloc_task_struct_node(node);
 803        if (!tsk)
 804                return NULL;
 805
 806        stack = alloc_thread_stack_node(tsk, node);
 807        if (!stack)
 808                goto free_tsk;
 809
 810        stack_vm_area = task_stack_vm_area(tsk);
 811
 812        err = arch_dup_task_struct(tsk, orig);
 813
 814        /*
 815         * arch_dup_task_struct() clobbers the stack-related fields.  Make
 816         * sure they're properly initialized before using any stack-related
 817         * functions again.
 818         */
 819        tsk->stack = stack;
 820#ifdef CONFIG_VMAP_STACK
 821        tsk->stack_vm_area = stack_vm_area;
 822#endif
 823#ifdef CONFIG_THREAD_INFO_IN_TASK
 824        atomic_set(&tsk->stack_refcount, 1);
 825#endif
 826
 827        if (err)
 828                goto free_stack;
 829
 830#ifdef CONFIG_SECCOMP
 831        /*
 832         * We must handle setting up seccomp filters once we're under
 833         * the sighand lock in case orig has changed between now and
 834         * then. Until then, filter must be NULL to avoid messing up
 835         * the usage counts on the error path calling free_task.
 836         */
 837        tsk->seccomp.filter = NULL;
 838#endif
 839
 840        setup_thread_stack(tsk, orig);
 841        clear_user_return_notifier(tsk);
 842        clear_tsk_need_resched(tsk);
 843        set_task_stack_end_magic(tsk);
 844
 845#ifdef CONFIG_STACKPROTECTOR
 846        tsk->stack_canary = get_random_canary();
 847#endif
 848
 849        /*
 850         * One for us, one for whoever does the "release_task()" (usually
 851         * parent)
 852         */
 853        atomic_set(&tsk->usage, 2);
 854#ifdef CONFIG_BLK_DEV_IO_TRACE
 855        tsk->btrace_seq = 0;
 856#endif
 857        tsk->splice_pipe = NULL;
 858        tsk->task_frag.page = NULL;
 859        tsk->wake_q.next = NULL;
 860
 861        account_kernel_stack(tsk, 1);
 862
 863        kcov_task_init(tsk);
 864
 865#ifdef CONFIG_FAULT_INJECTION
 866        tsk->fail_nth = 0;
 867#endif
 868
 869#ifdef CONFIG_BLK_CGROUP
 870        tsk->throttle_queue = NULL;
 871        tsk->use_memdelay = 0;
 872#endif
 873
 874#ifdef CONFIG_MEMCG
 875        tsk->active_memcg = NULL;
 876#endif
 877        return tsk;
 878
 879free_stack:
 880        free_thread_stack(tsk);
 881free_tsk:
 882        free_task_struct(tsk);
 883        return NULL;
 884}
 885
 886__cacheline_aligned_in_smp DEFINE_SPINLOCK(mmlist_lock);
 887
 888static unsigned long default_dump_filter = MMF_DUMP_FILTER_DEFAULT;
 889
 890static int __init coredump_filter_setup(char *s)
 891{
 892        default_dump_filter =
 893                (simple_strtoul(s, NULL, 0) << MMF_DUMP_FILTER_SHIFT) &
 894                MMF_DUMP_FILTER_MASK;
 895        return 1;
 896}
 897
 898__setup("coredump_filter=", coredump_filter_setup);
 899
 900#include <linux/init_task.h>
 901
 902static void mm_init_aio(struct mm_struct *mm)
 903{
 904#ifdef CONFIG_AIO
 905        spin_lock_init(&mm->ioctx_lock);
 906        mm->ioctx_table = NULL;
 907#endif
 908}
 909
 910static void mm_init_owner(struct mm_struct *mm, struct task_struct *p)
 911{
 912#ifdef CONFIG_MEMCG
 913        mm->owner = p;
 914#endif
 915}
 916
 917static void mm_init_uprobes_state(struct mm_struct *mm)
 918{
 919#ifdef CONFIG_UPROBES
 920        mm->uprobes_state.xol_area = NULL;
 921#endif
 922}
 923
 924static struct mm_struct *mm_init(struct mm_struct *mm, struct task_struct *p,
 925        struct user_namespace *user_ns)
 926{
 927        mm->mmap = NULL;
 928        mm->mm_rb = RB_ROOT;
 929        mm->vmacache_seqnum = 0;
 930        atomic_set(&mm->mm_users, 1);
 931        atomic_set(&mm->mm_count, 1);
 932        init_rwsem(&mm->mmap_sem);
 933        INIT_LIST_HEAD(&mm->mmlist);
 934        mm->core_state = NULL;
 935        mm_pgtables_bytes_init(mm);
 936        mm->map_count = 0;
 937        mm->locked_vm = 0;
 938        mm->pinned_vm = 0;
 939        memset(&mm->rss_stat, 0, sizeof(mm->rss_stat));
 940        spin_lock_init(&mm->page_table_lock);
 941        spin_lock_init(&mm->arg_lock);
 942        mm_init_cpumask(mm);
 943        mm_init_aio(mm);
 944        mm_init_owner(mm, p);
 945        RCU_INIT_POINTER(mm->exe_file, NULL);
 946        mmu_notifier_mm_init(mm);
 947        hmm_mm_init(mm);
 948        init_tlb_flush_pending(mm);
 949#if defined(CONFIG_TRANSPARENT_HUGEPAGE) && !USE_SPLIT_PMD_PTLOCKS
 950        mm->pmd_huge_pte = NULL;
 951#endif
 952        mm_init_uprobes_state(mm);
 953
 954        if (current->mm) {
 955                mm->flags = current->mm->flags & MMF_INIT_MASK;
 956                mm->def_flags = current->mm->def_flags & VM_INIT_DEF_MASK;
 957        } else {
 958                mm->flags = default_dump_filter;
 959                mm->def_flags = 0;
 960        }
 961
 962        if (mm_alloc_pgd(mm))
 963                goto fail_nopgd;
 964
 965        if (init_new_context(p, mm))
 966                goto fail_nocontext;
 967
 968        mm->user_ns = get_user_ns(user_ns);
 969        return mm;
 970
 971fail_nocontext:
 972        mm_free_pgd(mm);
 973fail_nopgd:
 974        free_mm(mm);
 975        return NULL;
 976}
 977
 978/*
 979 * Allocate and initialize an mm_struct.
 980 */
 981struct mm_struct *mm_alloc(void)
 982{
 983        struct mm_struct *mm;
 984
 985        mm = allocate_mm();
 986        if (!mm)
 987                return NULL;
 988
 989        memset(mm, 0, sizeof(*mm));
 990        return mm_init(mm, current, current_user_ns());
 991}
 992
 993static inline void __mmput(struct mm_struct *mm)
 994{
 995        VM_BUG_ON(atomic_read(&mm->mm_users));
 996
 997        uprobe_clear_state(mm);
 998        exit_aio(mm);
 999        ksm_exit(mm);
1000        khugepaged_exit(mm); /* must run before exit_mmap */
1001        exit_mmap(mm);
1002        mm_put_huge_zero_page(mm);
1003        set_mm_exe_file(mm, NULL);
1004        if (!list_empty(&mm->mmlist)) {
1005                spin_lock(&mmlist_lock);
1006                list_del(&mm->mmlist);
1007                spin_unlock(&mmlist_lock);
1008        }
1009        if (mm->binfmt)
1010                module_put(mm->binfmt->module);
1011        mmdrop(mm);
1012}
1013
1014/*
1015 * Decrement the use count and release all resources for an mm.
1016 */
1017void mmput(struct mm_struct *mm)
1018{
1019        might_sleep();
1020
1021        if (atomic_dec_and_test(&mm->mm_users))
1022                __mmput(mm);
1023}
1024EXPORT_SYMBOL_GPL(mmput);
1025
1026#ifdef CONFIG_MMU
1027static void mmput_async_fn(struct work_struct *work)
1028{
1029        struct mm_struct *mm = container_of(work, struct mm_struct,
1030                                            async_put_work);
1031
1032        __mmput(mm);
1033}
1034
1035void mmput_async(struct mm_struct *mm)
1036{
1037        if (atomic_dec_and_test(&mm->mm_users)) {
1038                INIT_WORK(&mm->async_put_work, mmput_async_fn);
1039                schedule_work(&mm->async_put_work);
1040        }
1041}
1042#endif
1043
1044/**
1045 * set_mm_exe_file - change a reference to the mm's executable file
1046 *
1047 * This changes mm's executable file (shown as symlink /proc/[pid]/exe).
1048 *
1049 * Main users are mmput() and sys_execve(). Callers prevent concurrent
1050 * invocations: in mmput() nobody alive left, in execve task is single
1051 * threaded. sys_prctl(PR_SET_MM_MAP/EXE_FILE) also needs to set the
1052 * mm->exe_file, but does so without using set_mm_exe_file() in order
1053 * to do avoid the need for any locks.
1054 */
1055void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file)
1056{
1057        struct file *old_exe_file;
1058
1059        /*
1060         * It is safe to dereference the exe_file without RCU as
1061         * this function is only called if nobody else can access
1062         * this mm -- see comment above for justification.
1063         */
1064        old_exe_file = rcu_dereference_raw(mm->exe_file);
1065
1066        if (new_exe_file)
1067                get_file(new_exe_file);
1068        rcu_assign_pointer(mm->exe_file, new_exe_file);
1069        if (old_exe_file)
1070                fput(old_exe_file);
1071}
1072
1073/**
1074 * get_mm_exe_file - acquire a reference to the mm's executable file
1075 *
1076 * Returns %NULL if mm has no associated executable file.
1077 * User must release file via fput().
1078 */
1079struct file *get_mm_exe_file(struct mm_struct *mm)
1080{
1081        struct file *exe_file;
1082
1083        rcu_read_lock();
1084        exe_file = rcu_dereference(mm->exe_file);
1085        if (exe_file && !get_file_rcu(exe_file))
1086                exe_file = NULL;
1087        rcu_read_unlock();
1088        return exe_file;
1089}
1090EXPORT_SYMBOL(get_mm_exe_file);
1091
1092/**
1093 * get_task_exe_file - acquire a reference to the task's executable file
1094 *
1095 * Returns %NULL if task's mm (if any) has no associated executable file or
1096 * this is a kernel thread with borrowed mm (see the comment above get_task_mm).
1097 * User must release file via fput().
1098 */
1099struct file *get_task_exe_file(struct task_struct *task)
1100{
1101        struct file *exe_file = NULL;
1102        struct mm_struct *mm;
1103
1104        task_lock(task);
1105        mm = task->mm;
1106        if (mm) {
1107                if (!(task->flags & PF_KTHREAD))
1108                        exe_file = get_mm_exe_file(mm);
1109        }
1110        task_unlock(task);
1111        return exe_file;
1112}
1113EXPORT_SYMBOL(get_task_exe_file);
1114
1115/**
1116 * get_task_mm - acquire a reference to the task's mm
1117 *
1118 * Returns %NULL if the task has no mm.  Checks PF_KTHREAD (meaning
1119 * this kernel workthread has transiently adopted a user mm with use_mm,
1120 * to do its AIO) is not set and if so returns a reference to it, after
1121 * bumping up the use count.  User must release the mm via mmput()
1122 * after use.  Typically used by /proc and ptrace.
1123 */
1124struct mm_struct *get_task_mm(struct task_struct *task)
1125{
1126        struct mm_struct *mm;
1127
1128        task_lock(task);
1129        mm = task->mm;
1130        if (mm) {
1131                if (task->flags & PF_KTHREAD)
1132                        mm = NULL;
1133                else
1134                        mmget(mm);
1135        }
1136        task_unlock(task);
1137        return mm;
1138}
1139EXPORT_SYMBOL_GPL(get_task_mm);
1140
1141struct mm_struct *mm_access(struct task_struct *task, unsigned int mode)
1142{
1143        struct mm_struct *mm;
1144        int err;
1145
1146        err =  mutex_lock_killable(&task->signal->cred_guard_mutex);
1147        if (err)
1148                return ERR_PTR(err);
1149
1150        mm = get_task_mm(task);
1151        if (mm && mm != current->mm &&
1152                        !ptrace_may_access(task, mode)) {
1153                mmput(mm);
1154                mm = ERR_PTR(-EACCES);
1155        }
1156        mutex_unlock(&task->signal->cred_guard_mutex);
1157
1158        return mm;
1159}
1160
1161static void complete_vfork_done(struct task_struct *tsk)
1162{
1163        struct completion *vfork;
1164
1165        task_lock(tsk);
1166        vfork = tsk->vfork_done;
1167        if (likely(vfork)) {
1168                tsk->vfork_done = NULL;
1169                complete(vfork);
1170        }
1171        task_unlock(tsk);
1172}
1173
1174static int wait_for_vfork_done(struct task_struct *child,
1175                                struct completion *vfork)
1176{
1177        int killed;
1178
1179        freezer_do_not_count();
1180        killed = wait_for_completion_killable(vfork);
1181        freezer_count();
1182
1183        if (killed) {
1184                task_lock(child);
1185                child->vfork_done = NULL;
1186                task_unlock(child);
1187        }
1188
1189        put_task_struct(child);
1190        return killed;
1191}
1192
1193/* Please note the differences between mmput and mm_release.
1194 * mmput is called whenever we stop holding onto a mm_struct,
1195 * error success whatever.
1196 *
1197 * mm_release is called after a mm_struct has been removed
1198 * from the current process.
1199 *
1200 * This difference is important for error handling, when we
1201 * only half set up a mm_struct for a new process and need to restore
1202 * the old one.  Because we mmput the new mm_struct before
1203 * restoring the old one. . .
1204 * Eric Biederman 10 January 1998
1205 */
1206void mm_release(struct task_struct *tsk, struct mm_struct *mm)
1207{
1208        /* Get rid of any futexes when releasing the mm */
1209#ifdef CONFIG_FUTEX
1210        if (unlikely(tsk->robust_list)) {
1211                exit_robust_list(tsk);
1212                tsk->robust_list = NULL;
1213        }
1214#ifdef CONFIG_COMPAT
1215        if (unlikely(tsk->compat_robust_list)) {
1216                compat_exit_robust_list(tsk);
1217                tsk->compat_robust_list = NULL;
1218        }
1219#endif
1220        if (unlikely(!list_empty(&tsk->pi_state_list)))
1221                exit_pi_state_list(tsk);
1222#endif
1223
1224        uprobe_free_utask(tsk);
1225
1226        /* Get rid of any cached register state */
1227        deactivate_mm(tsk, mm);
1228
1229        /*
1230         * Signal userspace if we're not exiting with a core dump
1231         * because we want to leave the value intact for debugging
1232         * purposes.
1233         */
1234        if (tsk->clear_child_tid) {
1235                if (!(tsk->signal->flags & SIGNAL_GROUP_COREDUMP) &&
1236                    atomic_read(&mm->mm_users) > 1) {
1237                        /*
1238                         * We don't check the error code - if userspace has
1239                         * not set up a proper pointer then tough luck.
1240                         */
1241                        put_user(0, tsk->clear_child_tid);
1242                        do_futex(tsk->clear_child_tid, FUTEX_WAKE,
1243                                        1, NULL, NULL, 0, 0);
1244                }
1245                tsk->clear_child_tid = NULL;
1246        }
1247
1248        /*
1249         * All done, finally we can wake up parent and return this mm to him.
1250         * Also kthread_stop() uses this completion for synchronization.
1251         */
1252        if (tsk->vfork_done)
1253                complete_vfork_done(tsk);
1254}
1255
1256/*
1257 * Allocate a new mm structure and copy contents from the
1258 * mm structure of the passed in task structure.
1259 */
1260static struct mm_struct *dup_mm(struct task_struct *tsk)
1261{
1262        struct mm_struct *mm, *oldmm = current->mm;
1263        int err;
1264
1265        mm = allocate_mm();
1266        if (!mm)
1267                goto fail_nomem;
1268
1269        memcpy(mm, oldmm, sizeof(*mm));
1270
1271        if (!mm_init(mm, tsk, mm->user_ns))
1272                goto fail_nomem;
1273
1274        err = dup_mmap(mm, oldmm);
1275        if (err)
1276                goto free_pt;
1277
1278        mm->hiwater_rss = get_mm_rss(mm);
1279        mm->hiwater_vm = mm->total_vm;
1280
1281        if (mm->binfmt && !try_module_get(mm->binfmt->module))
1282                goto free_pt;
1283
1284        return mm;
1285
1286free_pt:
1287        /* don't put binfmt in mmput, we haven't got module yet */
1288        mm->binfmt = NULL;
1289        mmput(mm);
1290
1291fail_nomem:
1292        return NULL;
1293}
1294
1295static int copy_mm(unsigned long clone_flags, struct task_struct *tsk)
1296{
1297        struct mm_struct *mm, *oldmm;
1298        int retval;
1299
1300        tsk->min_flt = tsk->maj_flt = 0;
1301        tsk->nvcsw = tsk->nivcsw = 0;
1302#ifdef CONFIG_DETECT_HUNG_TASK
1303        tsk->last_switch_count = tsk->nvcsw + tsk->nivcsw;
1304        tsk->last_switch_time = 0;
1305#endif
1306
1307        tsk->mm = NULL;
1308        tsk->active_mm = NULL;
1309
1310        /*
1311         * Are we cloning a kernel thread?
1312         *
1313         * We need to steal a active VM for that..
1314         */
1315        oldmm = current->mm;
1316        if (!oldmm)
1317                return 0;
1318
1319        /* initialize the new vmacache entries */
1320        vmacache_flush(tsk);
1321
1322        if (clone_flags & CLONE_VM) {
1323                mmget(oldmm);
1324                mm = oldmm;
1325                goto good_mm;
1326        }
1327
1328        retval = -ENOMEM;
1329        mm = dup_mm(tsk);
1330        if (!mm)
1331                goto fail_nomem;
1332
1333good_mm:
1334        tsk->mm = mm;
1335        tsk->active_mm = mm;
1336        return 0;
1337
1338fail_nomem:
1339        return retval;
1340}
1341
1342static int copy_fs(unsigned long clone_flags, struct task_struct *tsk)
1343{
1344        struct fs_struct *fs = current->fs;
1345        if (clone_flags & CLONE_FS) {
1346                /* tsk->fs is already what we want */
1347                spin_lock(&fs->lock);
1348                if (fs->in_exec) {
1349                        spin_unlock(&fs->lock);
1350                        return -EAGAIN;
1351                }
1352                fs->users++;
1353                spin_unlock(&fs->lock);
1354                return 0;
1355        }
1356        tsk->fs = copy_fs_struct(fs);
1357        if (!tsk->fs)
1358                return -ENOMEM;
1359        return 0;
1360}
1361
1362static int copy_files(unsigned long clone_flags, struct task_struct *tsk)
1363{
1364        struct files_struct *oldf, *newf;
1365        int error = 0;
1366
1367        /*
1368         * A background process may not have any files ...
1369         */
1370        oldf = current->files;
1371        if (!oldf)
1372                goto out;
1373
1374        if (clone_flags & CLONE_FILES) {
1375                atomic_inc(&oldf->count);
1376                goto out;
1377        }
1378
1379        newf = dup_fd(oldf, &error);
1380        if (!newf)
1381                goto out;
1382
1383        tsk->files = newf;
1384        error = 0;
1385out:
1386        return error;
1387}
1388
1389static int copy_io(unsigned long clone_flags, struct task_struct *tsk)
1390{
1391#ifdef CONFIG_BLOCK
1392        struct io_context *ioc = current->io_context;
1393        struct io_context *new_ioc;
1394
1395        if (!ioc)
1396                return 0;
1397        /*
1398         * Share io context with parent, if CLONE_IO is set
1399         */
1400        if (clone_flags & CLONE_IO) {
1401                ioc_task_link(ioc);
1402                tsk->io_context = ioc;
1403        } else if (ioprio_valid(ioc->ioprio)) {
1404                new_ioc = get_task_io_context(tsk, GFP_KERNEL, NUMA_NO_NODE);
1405                if (unlikely(!new_ioc))
1406                        return -ENOMEM;
1407
1408                new_ioc->ioprio = ioc->ioprio;
1409                put_io_context(new_ioc);
1410        }
1411#endif
1412        return 0;
1413}
1414
1415static int copy_sighand(unsigned long clone_flags, struct task_struct *tsk)
1416{
1417        struct sighand_struct *sig;
1418
1419        if (clone_flags & CLONE_SIGHAND) {
1420                atomic_inc(&current->sighand->count);
1421                return 0;
1422        }
1423        sig = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1424        rcu_assign_pointer(tsk->sighand, sig);
1425        if (!sig)
1426                return -ENOMEM;
1427
1428        atomic_set(&sig->count, 1);
1429        spin_lock_irq(&current->sighand->siglock);
1430        memcpy(sig->action, current->sighand->action, sizeof(sig->action));
1431        spin_unlock_irq(&current->sighand->siglock);
1432        return 0;
1433}
1434
1435void __cleanup_sighand(struct sighand_struct *sighand)
1436{
1437        if (atomic_dec_and_test(&sighand->count)) {
1438                signalfd_cleanup(sighand);
1439                /*
1440                 * sighand_cachep is SLAB_TYPESAFE_BY_RCU so we can free it
1441                 * without an RCU grace period, see __lock_task_sighand().
1442                 */
1443                kmem_cache_free(sighand_cachep, sighand);
1444        }
1445}
1446
1447#ifdef CONFIG_POSIX_TIMERS
1448/*
1449 * Initialize POSIX timer handling for a thread group.
1450 */
1451static void posix_cpu_timers_init_group(struct signal_struct *sig)
1452{
1453        unsigned long cpu_limit;
1454
1455        cpu_limit = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
1456        if (cpu_limit != RLIM_INFINITY) {
1457                sig->cputime_expires.prof_exp = cpu_limit * NSEC_PER_SEC;
1458                sig->cputimer.running = true;
1459        }
1460
1461        /* The timer lists. */
1462        INIT_LIST_HEAD(&sig->cpu_timers[0]);
1463        INIT_LIST_HEAD(&sig->cpu_timers[1]);
1464        INIT_LIST_HEAD(&sig->cpu_timers[2]);
1465}
1466#else
1467static inline void posix_cpu_timers_init_group(struct signal_struct *sig) { }
1468#endif
1469
1470static int copy_signal(unsigned long clone_flags, struct task_struct *tsk)
1471{
1472        struct signal_struct *sig;
1473
1474        if (clone_flags & CLONE_THREAD)
1475                return 0;
1476
1477        sig = kmem_cache_zalloc(signal_cachep, GFP_KERNEL);
1478        tsk->signal = sig;
1479        if (!sig)
1480                return -ENOMEM;
1481
1482        sig->nr_threads = 1;
1483        atomic_set(&sig->live, 1);
1484        atomic_set(&sig->sigcnt, 1);
1485
1486        /* list_add(thread_node, thread_head) without INIT_LIST_HEAD() */
1487        sig->thread_head = (struct list_head)LIST_HEAD_INIT(tsk->thread_node);
1488        tsk->thread_node = (struct list_head)LIST_HEAD_INIT(sig->thread_head);
1489
1490        init_waitqueue_head(&sig->wait_chldexit);
1491        sig->curr_target = tsk;
1492        init_sigpending(&sig->shared_pending);
1493        INIT_HLIST_HEAD(&sig->multiprocess);
1494        seqlock_init(&sig->stats_lock);
1495        prev_cputime_init(&sig->prev_cputime);
1496
1497#ifdef CONFIG_POSIX_TIMERS
1498        INIT_LIST_HEAD(&sig->posix_timers);
1499        hrtimer_init(&sig->real_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1500        sig->real_timer.function = it_real_fn;
1501#endif
1502
1503        task_lock(current->group_leader);
1504        memcpy(sig->rlim, current->signal->rlim, sizeof sig->rlim);
1505        task_unlock(current->group_leader);
1506
1507        posix_cpu_timers_init_group(sig);
1508
1509        tty_audit_fork(sig);
1510        sched_autogroup_fork(sig);
1511
1512        sig->oom_score_adj = current->signal->oom_score_adj;
1513        sig->oom_score_adj_min = current->signal->oom_score_adj_min;
1514
1515        mutex_init(&sig->cred_guard_mutex);
1516
1517        return 0;
1518}
1519
1520static void copy_seccomp(struct task_struct *p)
1521{
1522#ifdef CONFIG_SECCOMP
1523        /*
1524         * Must be called with sighand->lock held, which is common to
1525         * all threads in the group. Holding cred_guard_mutex is not
1526         * needed because this new task is not yet running and cannot
1527         * be racing exec.
1528         */
1529        assert_spin_locked(&current->sighand->siglock);
1530
1531        /* Ref-count the new filter user, and assign it. */
1532        get_seccomp_filter(current);
1533        p->seccomp = current->seccomp;
1534
1535        /*
1536         * Explicitly enable no_new_privs here in case it got set
1537         * between the task_struct being duplicated and holding the
1538         * sighand lock. The seccomp state and nnp must be in sync.
1539         */
1540        if (task_no_new_privs(current))
1541                task_set_no_new_privs(p);
1542
1543        /*
1544         * If the parent gained a seccomp mode after copying thread
1545         * flags and between before we held the sighand lock, we have
1546         * to manually enable the seccomp thread flag here.
1547         */
1548        if (p->seccomp.mode != SECCOMP_MODE_DISABLED)
1549                set_tsk_thread_flag(p, TIF_SECCOMP);
1550#endif
1551}
1552
1553SYSCALL_DEFINE1(set_tid_address, int __user *, tidptr)
1554{
1555        current->clear_child_tid = tidptr;
1556
1557        return task_pid_vnr(current);
1558}
1559
1560static void rt_mutex_init_task(struct task_struct *p)
1561{
1562        raw_spin_lock_init(&p->pi_lock);
1563#ifdef CONFIG_RT_MUTEXES
1564        p->pi_waiters = RB_ROOT_CACHED;
1565        p->pi_top_task = NULL;
1566        p->pi_blocked_on = NULL;
1567#endif
1568}
1569
1570#ifdef CONFIG_POSIX_TIMERS
1571/*
1572 * Initialize POSIX timer handling for a single task.
1573 */
1574static void posix_cpu_timers_init(struct task_struct *tsk)
1575{
1576        tsk->cputime_expires.prof_exp = 0;
1577        tsk->cputime_expires.virt_exp = 0;
1578        tsk->cputime_expires.sched_exp = 0;
1579        INIT_LIST_HEAD(&tsk->cpu_timers[0]);
1580        INIT_LIST_HEAD(&tsk->cpu_timers[1]);
1581        INIT_LIST_HEAD(&tsk->cpu_timers[2]);
1582}
1583#else
1584static inline void posix_cpu_timers_init(struct task_struct *tsk) { }
1585#endif
1586
1587static inline void init_task_pid_links(struct task_struct *task)
1588{
1589        enum pid_type type;
1590
1591        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
1592                INIT_HLIST_NODE(&task->pid_links[type]);
1593        }
1594}
1595
1596static inline void
1597init_task_pid(struct task_struct *task, enum pid_type type, struct pid *pid)
1598{
1599        if (type == PIDTYPE_PID)
1600                task->thread_pid = pid;
1601        else
1602                task->signal->pids[type] = pid;
1603}
1604
1605static inline void rcu_copy_process(struct task_struct *p)
1606{
1607#ifdef CONFIG_PREEMPT_RCU
1608        p->rcu_read_lock_nesting = 0;
1609        p->rcu_read_unlock_special.s = 0;
1610        p->rcu_blocked_node = NULL;
1611        INIT_LIST_HEAD(&p->rcu_node_entry);
1612#endif /* #ifdef CONFIG_PREEMPT_RCU */
1613#ifdef CONFIG_TASKS_RCU
1614        p->rcu_tasks_holdout = false;
1615        INIT_LIST_HEAD(&p->rcu_tasks_holdout_list);
1616        p->rcu_tasks_idle_cpu = -1;
1617#endif /* #ifdef CONFIG_TASKS_RCU */
1618}
1619
1620/*
1621 * This creates a new process as a copy of the old one,
1622 * but does not actually start it yet.
1623 *
1624 * It copies the registers, and all the appropriate
1625 * parts of the process environment (as per the clone
1626 * flags). The actual kick-off is left to the caller.
1627 */
1628static __latent_entropy struct task_struct *copy_process(
1629                                        unsigned long clone_flags,
1630                                        unsigned long stack_start,
1631                                        unsigned long stack_size,
1632                                        int __user *child_tidptr,
1633                                        struct pid *pid,
1634                                        int trace,
1635                                        unsigned long tls,
1636                                        int node)
1637{
1638        int retval;
1639        struct task_struct *p;
1640        struct multiprocess_signals delayed;
1641
1642        /*
1643         * Don't allow sharing the root directory with processes in a different
1644         * namespace
1645         */
1646        if ((clone_flags & (CLONE_NEWNS|CLONE_FS)) == (CLONE_NEWNS|CLONE_FS))
1647                return ERR_PTR(-EINVAL);
1648
1649        if ((clone_flags & (CLONE_NEWUSER|CLONE_FS)) == (CLONE_NEWUSER|CLONE_FS))
1650                return ERR_PTR(-EINVAL);
1651
1652        /*
1653         * Thread groups must share signals as well, and detached threads
1654         * can only be started up within the thread group.
1655         */
1656        if ((clone_flags & CLONE_THREAD) && !(clone_flags & CLONE_SIGHAND))
1657                return ERR_PTR(-EINVAL);
1658
1659        /*
1660         * Shared signal handlers imply shared VM. By way of the above,
1661         * thread groups also imply shared VM. Blocking this case allows
1662         * for various simplifications in other code.
1663         */
1664        if ((clone_flags & CLONE_SIGHAND) && !(clone_flags & CLONE_VM))
1665                return ERR_PTR(-EINVAL);
1666
1667        /*
1668         * Siblings of global init remain as zombies on exit since they are
1669         * not reaped by their parent (swapper). To solve this and to avoid
1670         * multi-rooted process trees, prevent global and container-inits
1671         * from creating siblings.
1672         */
1673        if ((clone_flags & CLONE_PARENT) &&
1674                                current->signal->flags & SIGNAL_UNKILLABLE)
1675                return ERR_PTR(-EINVAL);
1676
1677        /*
1678         * If the new process will be in a different pid or user namespace
1679         * do not allow it to share a thread group with the forking task.
1680         */
1681        if (clone_flags & CLONE_THREAD) {
1682                if ((clone_flags & (CLONE_NEWUSER | CLONE_NEWPID)) ||
1683                    (task_active_pid_ns(current) !=
1684                                current->nsproxy->pid_ns_for_children))
1685                        return ERR_PTR(-EINVAL);
1686        }
1687
1688        /*
1689         * Force any signals received before this point to be delivered
1690         * before the fork happens.  Collect up signals sent to multiple
1691         * processes that happen during the fork and delay them so that
1692         * they appear to happen after the fork.
1693         */
1694        sigemptyset(&delayed.signal);
1695        INIT_HLIST_NODE(&delayed.node);
1696
1697        spin_lock_irq(&current->sighand->siglock);
1698        if (!(clone_flags & CLONE_THREAD))
1699                hlist_add_head(&delayed.node, &current->signal->multiprocess);
1700        recalc_sigpending();
1701        spin_unlock_irq(&current->sighand->siglock);
1702        retval = -ERESTARTNOINTR;
1703        if (signal_pending(current))
1704                goto fork_out;
1705
1706        retval = -ENOMEM;
1707        p = dup_task_struct(current, node);
1708        if (!p)
1709                goto fork_out;
1710
1711        /*
1712         * This _must_ happen before we call free_task(), i.e. before we jump
1713         * to any of the bad_fork_* labels. This is to avoid freeing
1714         * p->set_child_tid which is (ab)used as a kthread's data pointer for
1715         * kernel threads (PF_KTHREAD).
1716         */
1717        p->set_child_tid = (clone_flags & CLONE_CHILD_SETTID) ? child_tidptr : NULL;
1718        /*
1719         * Clear TID on mm_release()?
1720         */
1721        p->clear_child_tid = (clone_flags & CLONE_CHILD_CLEARTID) ? child_tidptr : NULL;
1722
1723        ftrace_graph_init_task(p);
1724
1725        rt_mutex_init_task(p);
1726
1727#ifdef CONFIG_PROVE_LOCKING
1728        DEBUG_LOCKS_WARN_ON(!p->hardirqs_enabled);
1729        DEBUG_LOCKS_WARN_ON(!p->softirqs_enabled);
1730#endif
1731        retval = -EAGAIN;
1732        if (atomic_read(&p->real_cred->user->processes) >=
1733                        task_rlimit(p, RLIMIT_NPROC)) {
1734                if (p->real_cred->user != INIT_USER &&
1735                    !capable(CAP_SYS_RESOURCE) && !capable(CAP_SYS_ADMIN))
1736                        goto bad_fork_free;
1737        }
1738        current->flags &= ~PF_NPROC_EXCEEDED;
1739
1740        retval = copy_creds(p, clone_flags);
1741        if (retval < 0)
1742                goto bad_fork_free;
1743
1744        /*
1745         * If multiple threads are within copy_process(), then this check
1746         * triggers too late. This doesn't hurt, the check is only there
1747         * to stop root fork bombs.
1748         */
1749        retval = -EAGAIN;
1750        if (nr_threads >= max_threads)
1751                goto bad_fork_cleanup_count;
1752
1753        delayacct_tsk_init(p);  /* Must remain after dup_task_struct() */
1754        p->flags &= ~(PF_SUPERPRIV | PF_WQ_WORKER | PF_IDLE);
1755        p->flags |= PF_FORKNOEXEC;
1756        INIT_LIST_HEAD(&p->children);
1757        INIT_LIST_HEAD(&p->sibling);
1758        rcu_copy_process(p);
1759        p->vfork_done = NULL;
1760        spin_lock_init(&p->alloc_lock);
1761
1762        init_sigpending(&p->pending);
1763
1764        p->utime = p->stime = p->gtime = 0;
1765#ifdef CONFIG_ARCH_HAS_SCALED_CPUTIME
1766        p->utimescaled = p->stimescaled = 0;
1767#endif
1768        prev_cputime_init(&p->prev_cputime);
1769
1770#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
1771        seqcount_init(&p->vtime.seqcount);
1772        p->vtime.starttime = 0;
1773        p->vtime.state = VTIME_INACTIVE;
1774#endif
1775
1776#if defined(SPLIT_RSS_COUNTING)
1777        memset(&p->rss_stat, 0, sizeof(p->rss_stat));
1778#endif
1779
1780        p->default_timer_slack_ns = current->timer_slack_ns;
1781
1782        task_io_accounting_init(&p->ioac);
1783        acct_clear_integrals(p);
1784
1785        posix_cpu_timers_init(p);
1786
1787        p->start_time = ktime_get_ns();
1788        p->real_start_time = ktime_get_boot_ns();
1789        p->io_context = NULL;
1790        audit_set_context(p, NULL);
1791        cgroup_fork(p);
1792#ifdef CONFIG_NUMA
1793        p->mempolicy = mpol_dup(p->mempolicy);
1794        if (IS_ERR(p->mempolicy)) {
1795                retval = PTR_ERR(p->mempolicy);
1796                p->mempolicy = NULL;
1797                goto bad_fork_cleanup_threadgroup_lock;
1798        }
1799#endif
1800#ifdef CONFIG_CPUSETS
1801        p->cpuset_mem_spread_rotor = NUMA_NO_NODE;
1802        p->cpuset_slab_spread_rotor = NUMA_NO_NODE;
1803        seqcount_init(&p->mems_allowed_seq);
1804#endif
1805#ifdef CONFIG_TRACE_IRQFLAGS
1806        p->irq_events = 0;
1807        p->hardirqs_enabled = 0;
1808        p->hardirq_enable_ip = 0;
1809        p->hardirq_enable_event = 0;
1810        p->hardirq_disable_ip = _THIS_IP_;
1811        p->hardirq_disable_event = 0;
1812        p->softirqs_enabled = 1;
1813        p->softirq_enable_ip = _THIS_IP_;
1814        p->softirq_enable_event = 0;
1815        p->softirq_disable_ip = 0;
1816        p->softirq_disable_event = 0;
1817        p->hardirq_context = 0;
1818        p->softirq_context = 0;
1819#endif
1820
1821        p->pagefault_disabled = 0;
1822
1823#ifdef CONFIG_LOCKDEP
1824        p->lockdep_depth = 0; /* no locks held yet */
1825        p->curr_chain_key = 0;
1826        p->lockdep_recursion = 0;
1827        lockdep_init_task(p);
1828#endif
1829
1830#ifdef CONFIG_DEBUG_MUTEXES
1831        p->blocked_on = NULL; /* not blocked yet */
1832#endif
1833#ifdef CONFIG_BCACHE
1834        p->sequential_io        = 0;
1835        p->sequential_io_avg    = 0;
1836#endif
1837
1838        /* Perform scheduler related setup. Assign this task to a CPU. */
1839        retval = sched_fork(clone_flags, p);
1840        if (retval)
1841                goto bad_fork_cleanup_policy;
1842
1843        retval = perf_event_init_task(p);
1844        if (retval)
1845                goto bad_fork_cleanup_policy;
1846        retval = audit_alloc(p);
1847        if (retval)
1848                goto bad_fork_cleanup_perf;
1849        /* copy all the process information */
1850        shm_init_task(p);
1851        retval = security_task_alloc(p, clone_flags);
1852        if (retval)
1853                goto bad_fork_cleanup_audit;
1854        retval = copy_semundo(clone_flags, p);
1855        if (retval)
1856                goto bad_fork_cleanup_security;
1857        retval = copy_files(clone_flags, p);
1858        if (retval)
1859                goto bad_fork_cleanup_semundo;
1860        retval = copy_fs(clone_flags, p);
1861        if (retval)
1862                goto bad_fork_cleanup_files;
1863        retval = copy_sighand(clone_flags, p);
1864        if (retval)
1865                goto bad_fork_cleanup_fs;
1866        retval = copy_signal(clone_flags, p);
1867        if (retval)
1868                goto bad_fork_cleanup_sighand;
1869        retval = copy_mm(clone_flags, p);
1870        if (retval)
1871                goto bad_fork_cleanup_signal;
1872        retval = copy_namespaces(clone_flags, p);
1873        if (retval)
1874                goto bad_fork_cleanup_mm;
1875        retval = copy_io(clone_flags, p);
1876        if (retval)
1877                goto bad_fork_cleanup_namespaces;
1878        retval = copy_thread_tls(clone_flags, stack_start, stack_size, p, tls);
1879        if (retval)
1880                goto bad_fork_cleanup_io;
1881
1882        if (pid != &init_struct_pid) {
1883                pid = alloc_pid(p->nsproxy->pid_ns_for_children);
1884                if (IS_ERR(pid)) {
1885                        retval = PTR_ERR(pid);
1886                        goto bad_fork_cleanup_thread;
1887                }
1888        }
1889
1890#ifdef CONFIG_BLOCK
1891        p->plug = NULL;
1892#endif
1893#ifdef CONFIG_FUTEX
1894        p->robust_list = NULL;
1895#ifdef CONFIG_COMPAT
1896        p->compat_robust_list = NULL;
1897#endif
1898        INIT_LIST_HEAD(&p->pi_state_list);
1899        p->pi_state_cache = NULL;
1900#endif
1901        /*
1902         * sigaltstack should be cleared when sharing the same VM
1903         */
1904        if ((clone_flags & (CLONE_VM|CLONE_VFORK)) == CLONE_VM)
1905                sas_ss_reset(p);
1906
1907        /*
1908         * Syscall tracing and stepping should be turned off in the
1909         * child regardless of CLONE_PTRACE.
1910         */
1911        user_disable_single_step(p);
1912        clear_tsk_thread_flag(p, TIF_SYSCALL_TRACE);
1913#ifdef TIF_SYSCALL_EMU
1914        clear_tsk_thread_flag(p, TIF_SYSCALL_EMU);
1915#endif
1916        clear_all_latency_tracing(p);
1917
1918        /* ok, now we should be set up.. */
1919        p->pid = pid_nr(pid);
1920        if (clone_flags & CLONE_THREAD) {
1921                p->exit_signal = -1;
1922                p->group_leader = current->group_leader;
1923                p->tgid = current->tgid;
1924        } else {
1925                if (clone_flags & CLONE_PARENT)
1926                        p->exit_signal = current->group_leader->exit_signal;
1927                else
1928                        p->exit_signal = (clone_flags & CSIGNAL);
1929                p->group_leader = p;
1930                p->tgid = p->pid;
1931        }
1932
1933        p->nr_dirtied = 0;
1934        p->nr_dirtied_pause = 128 >> (PAGE_SHIFT - 10);
1935        p->dirty_paused_when = 0;
1936
1937        p->pdeath_signal = 0;
1938        INIT_LIST_HEAD(&p->thread_group);
1939        p->task_works = NULL;
1940
1941        cgroup_threadgroup_change_begin(current);
1942        /*
1943         * Ensure that the cgroup subsystem policies allow the new process to be
1944         * forked. It should be noted the the new process's css_set can be changed
1945         * between here and cgroup_post_fork() if an organisation operation is in
1946         * progress.
1947         */
1948        retval = cgroup_can_fork(p);
1949        if (retval)
1950                goto bad_fork_free_pid;
1951
1952        /*
1953         * Make it visible to the rest of the system, but dont wake it up yet.
1954         * Need tasklist lock for parent etc handling!
1955         */
1956        write_lock_irq(&tasklist_lock);
1957
1958        /* CLONE_PARENT re-uses the old parent */
1959        if (clone_flags & (CLONE_PARENT|CLONE_THREAD)) {
1960                p->real_parent = current->real_parent;
1961                p->parent_exec_id = current->parent_exec_id;
1962        } else {
1963                p->real_parent = current;
1964                p->parent_exec_id = current->self_exec_id;
1965        }
1966
1967        klp_copy_process(p);
1968
1969        spin_lock(&current->sighand->siglock);
1970
1971        /*
1972         * Copy seccomp details explicitly here, in case they were changed
1973         * before holding sighand lock.
1974         */
1975        copy_seccomp(p);
1976
1977        rseq_fork(p, clone_flags);
1978
1979        /* Don't start children in a dying pid namespace */
1980        if (unlikely(!(ns_of_pid(pid)->pid_allocated & PIDNS_ADDING))) {
1981                retval = -ENOMEM;
1982                goto bad_fork_cancel_cgroup;
1983        }
1984
1985        /* Let kill terminate clone/fork in the middle */
1986        if (fatal_signal_pending(current)) {
1987                retval = -EINTR;
1988                goto bad_fork_cancel_cgroup;
1989        }
1990
1991
1992        init_task_pid_links(p);
1993        if (likely(p->pid)) {
1994                ptrace_init_task(p, (clone_flags & CLONE_PTRACE) || trace);
1995
1996                init_task_pid(p, PIDTYPE_PID, pid);
1997                if (thread_group_leader(p)) {
1998                        init_task_pid(p, PIDTYPE_TGID, pid);
1999                        init_task_pid(p, PIDTYPE_PGID, task_pgrp(current));
2000                        init_task_pid(p, PIDTYPE_SID, task_session(current));
2001
2002                        if (is_child_reaper(pid)) {
2003                                ns_of_pid(pid)->child_reaper = p;
2004                                p->signal->flags |= SIGNAL_UNKILLABLE;
2005                        }
2006                        p->signal->shared_pending.signal = delayed.signal;
2007                        p->signal->tty = tty_kref_get(current->signal->tty);
2008                        /*
2009                         * Inherit has_child_subreaper flag under the same
2010                         * tasklist_lock with adding child to the process tree
2011                         * for propagate_has_child_subreaper optimization.
2012                         */
2013                        p->signal->has_child_subreaper = p->real_parent->signal->has_child_subreaper ||
2014                                                         p->real_parent->signal->is_child_subreaper;
2015                        list_add_tail(&p->sibling, &p->real_parent->children);
2016                        list_add_tail_rcu(&p->tasks, &init_task.tasks);
2017                        attach_pid(p, PIDTYPE_TGID);
2018                        attach_pid(p, PIDTYPE_PGID);
2019                        attach_pid(p, PIDTYPE_SID);
2020                        __this_cpu_inc(process_counts);
2021                } else {
2022                        current->signal->nr_threads++;
2023                        atomic_inc(&current->signal->live);
2024                        atomic_inc(&current->signal->sigcnt);
2025                        task_join_group_stop(p);
2026                        list_add_tail_rcu(&p->thread_group,
2027                                          &p->group_leader->thread_group);
2028                        list_add_tail_rcu(&p->thread_node,
2029                                          &p->signal->thread_head);
2030                }
2031                attach_pid(p, PIDTYPE_PID);
2032                nr_threads++;
2033        }
2034        total_forks++;
2035        hlist_del_init(&delayed.node);
2036        spin_unlock(&current->sighand->siglock);
2037        syscall_tracepoint_update(p);
2038        write_unlock_irq(&tasklist_lock);
2039
2040        proc_fork_connector(p);
2041        cgroup_post_fork(p);
2042        cgroup_threadgroup_change_end(current);
2043        perf_event_fork(p);
2044
2045        trace_task_newtask(p, clone_flags);
2046        uprobe_copy_process(p, clone_flags);
2047
2048        return p;
2049
2050bad_fork_cancel_cgroup:
2051        spin_unlock(&current->sighand->siglock);
2052        write_unlock_irq(&tasklist_lock);
2053        cgroup_cancel_fork(p);
2054bad_fork_free_pid:
2055        cgroup_threadgroup_change_end(current);
2056        if (pid != &init_struct_pid)
2057                free_pid(pid);
2058bad_fork_cleanup_thread:
2059        exit_thread(p);
2060bad_fork_cleanup_io:
2061        if (p->io_context)
2062                exit_io_context(p);
2063bad_fork_cleanup_namespaces:
2064        exit_task_namespaces(p);
2065bad_fork_cleanup_mm:
2066        if (p->mm)
2067                mmput(p->mm);
2068bad_fork_cleanup_signal:
2069        if (!(clone_flags & CLONE_THREAD))
2070                free_signal_struct(p->signal);
2071bad_fork_cleanup_sighand:
2072        __cleanup_sighand(p->sighand);
2073bad_fork_cleanup_fs:
2074        exit_fs(p); /* blocking */
2075bad_fork_cleanup_files:
2076        exit_files(p); /* blocking */
2077bad_fork_cleanup_semundo:
2078        exit_sem(p);
2079bad_fork_cleanup_security:
2080        security_task_free(p);
2081bad_fork_cleanup_audit:
2082        audit_free(p);
2083bad_fork_cleanup_perf:
2084        perf_event_free_task(p);
2085bad_fork_cleanup_policy:
2086        lockdep_free_task(p);
2087#ifdef CONFIG_NUMA
2088        mpol_put(p->mempolicy);
2089bad_fork_cleanup_threadgroup_lock:
2090#endif
2091        delayacct_tsk_free(p);
2092bad_fork_cleanup_count:
2093        atomic_dec(&p->cred->user->processes);
2094        exit_creds(p);
2095bad_fork_free:
2096        p->state = TASK_DEAD;
2097        put_task_stack(p);
2098        free_task(p);
2099fork_out:
2100        spin_lock_irq(&current->sighand->siglock);
2101        hlist_del_init(&delayed.node);
2102        spin_unlock_irq(&current->sighand->siglock);
2103        return ERR_PTR(retval);
2104}
2105
2106static inline void init_idle_pids(struct task_struct *idle)
2107{
2108        enum pid_type type;
2109
2110        for (type = PIDTYPE_PID; type < PIDTYPE_MAX; ++type) {
2111                INIT_HLIST_NODE(&idle->pid_links[type]); /* not really needed */
2112                init_task_pid(idle, type, &init_struct_pid);
2113        }
2114}
2115
2116struct task_struct *fork_idle(int cpu)
2117{
2118        struct task_struct *task;
2119        task = copy_process(CLONE_VM, 0, 0, NULL, &init_struct_pid, 0, 0,
2120                            cpu_to_node(cpu));
2121        if (!IS_ERR(task)) {
2122                init_idle_pids(task);
2123                init_idle(task, cpu);
2124        }
2125
2126        return task;
2127}
2128
2129/*
2130 *  Ok, this is the main fork-routine.
2131 *
2132 * It copies the process, and if successful kick-starts
2133 * it and waits for it to finish using the VM if required.
2134 */
2135long _do_fork(unsigned long clone_flags,
2136              unsigned long stack_start,
2137              unsigned long stack_size,
2138              int __user *parent_tidptr,
2139              int __user *child_tidptr,
2140              unsigned long tls)
2141{
2142        struct completion vfork;
2143        struct pid *pid;
2144        struct task_struct *p;
2145        int trace = 0;
2146        long nr;
2147
2148        /*
2149         * Determine whether and which event to report to ptracer.  When
2150         * called from kernel_thread or CLONE_UNTRACED is explicitly
2151         * requested, no event is reported; otherwise, report if the event
2152         * for the type of forking is enabled.
2153         */
2154        if (!(clone_flags & CLONE_UNTRACED)) {
2155                if (clone_flags & CLONE_VFORK)
2156                        trace = PTRACE_EVENT_VFORK;
2157                else if ((clone_flags & CSIGNAL) != SIGCHLD)
2158                        trace = PTRACE_EVENT_CLONE;
2159                else
2160                        trace = PTRACE_EVENT_FORK;
2161
2162                if (likely(!ptrace_event_enabled(current, trace)))
2163                        trace = 0;
2164        }
2165
2166        p = copy_process(clone_flags, stack_start, stack_size,
2167                         child_tidptr, NULL, trace, tls, NUMA_NO_NODE);
2168        add_latent_entropy();
2169
2170        if (IS_ERR(p))
2171                return PTR_ERR(p);
2172
2173        /*
2174         * Do this prior waking up the new thread - the thread pointer
2175         * might get invalid after that point, if the thread exits quickly.
2176         */
2177        trace_sched_process_fork(current, p);
2178
2179        pid = get_task_pid(p, PIDTYPE_PID);
2180        nr = pid_vnr(pid);
2181
2182        if (clone_flags & CLONE_PARENT_SETTID)
2183                put_user(nr, parent_tidptr);
2184
2185        if (clone_flags & CLONE_VFORK) {
2186                p->vfork_done = &vfork;
2187                init_completion(&vfork);
2188                get_task_struct(p);
2189        }
2190
2191        wake_up_new_task(p);
2192
2193        /* forking complete and child started to run, tell ptracer */
2194        if (unlikely(trace))
2195                ptrace_event_pid(trace, pid);
2196
2197        if (clone_flags & CLONE_VFORK) {
2198                if (!wait_for_vfork_done(p, &vfork))
2199                        ptrace_event_pid(PTRACE_EVENT_VFORK_DONE, pid);
2200        }
2201
2202        put_pid(pid);
2203        return nr;
2204}
2205
2206#ifndef CONFIG_HAVE_COPY_THREAD_TLS
2207/* For compatibility with architectures that call do_fork directly rather than
2208 * using the syscall entry points below. */
2209long do_fork(unsigned long clone_flags,
2210              unsigned long stack_start,
2211              unsigned long stack_size,
2212              int __user *parent_tidptr,
2213              int __user *child_tidptr)
2214{
2215        return _do_fork(clone_flags, stack_start, stack_size,
2216                        parent_tidptr, child_tidptr, 0);
2217}
2218#endif
2219
2220/*
2221 * Create a kernel thread.
2222 */
2223pid_t kernel_thread(int (*fn)(void *), void *arg, unsigned long flags)
2224{
2225        return _do_fork(flags|CLONE_VM|CLONE_UNTRACED, (unsigned long)fn,
2226                (unsigned long)arg, NULL, NULL, 0);
2227}
2228
2229#ifdef __ARCH_WANT_SYS_FORK
2230SYSCALL_DEFINE0(fork)
2231{
2232#ifdef CONFIG_MMU
2233        return _do_fork(SIGCHLD, 0, 0, NULL, NULL, 0);
2234#else
2235        /* can not support in nommu mode */
2236        return -EINVAL;
2237#endif
2238}
2239#endif
2240
2241#ifdef __ARCH_WANT_SYS_VFORK
2242SYSCALL_DEFINE0(vfork)
2243{
2244        return _do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, 0,
2245                        0, NULL, NULL, 0);
2246}
2247#endif
2248
2249#ifdef __ARCH_WANT_SYS_CLONE
2250#ifdef CONFIG_CLONE_BACKWARDS
2251SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2252                 int __user *, parent_tidptr,
2253                 unsigned long, tls,
2254                 int __user *, child_tidptr)
2255#elif defined(CONFIG_CLONE_BACKWARDS2)
2256SYSCALL_DEFINE5(clone, unsigned long, newsp, unsigned long, clone_flags,
2257                 int __user *, parent_tidptr,
2258                 int __user *, child_tidptr,
2259                 unsigned long, tls)
2260#elif defined(CONFIG_CLONE_BACKWARDS3)
2261SYSCALL_DEFINE6(clone, unsigned long, clone_flags, unsigned long, newsp,
2262                int, stack_size,
2263                int __user *, parent_tidptr,
2264                int __user *, child_tidptr,
2265                unsigned long, tls)
2266#else
2267SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
2268                 int __user *, parent_tidptr,
2269                 int __user *, child_tidptr,
2270                 unsigned long, tls)
2271#endif
2272{
2273        return _do_fork(clone_flags, newsp, 0, parent_tidptr, child_tidptr, tls);
2274}
2275#endif
2276
2277void walk_process_tree(struct task_struct *top, proc_visitor visitor, void *data)
2278{
2279        struct task_struct *leader, *parent, *child;
2280        int res;
2281
2282        read_lock(&tasklist_lock);
2283        leader = top = top->group_leader;
2284down:
2285        for_each_thread(leader, parent) {
2286                list_for_each_entry(child, &parent->children, sibling) {
2287                        res = visitor(child, data);
2288                        if (res) {
2289                                if (res < 0)
2290                                        goto out;
2291                                leader = child;
2292                                goto down;
2293                        }
2294up:
2295                        ;
2296                }
2297        }
2298
2299        if (leader != top) {
2300                child = leader;
2301                parent = child->real_parent;
2302                leader = parent->group_leader;
2303                goto up;
2304        }
2305out:
2306        read_unlock(&tasklist_lock);
2307}
2308
2309#ifndef ARCH_MIN_MMSTRUCT_ALIGN
2310#define ARCH_MIN_MMSTRUCT_ALIGN 0
2311#endif
2312
2313static void sighand_ctor(void *data)
2314{
2315        struct sighand_struct *sighand = data;
2316
2317        spin_lock_init(&sighand->siglock);
2318        init_waitqueue_head(&sighand->signalfd_wqh);
2319}
2320
2321void __init proc_caches_init(void)
2322{
2323        unsigned int mm_size;
2324
2325        sighand_cachep = kmem_cache_create("sighand_cache",
2326                        sizeof(struct sighand_struct), 0,
2327                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_TYPESAFE_BY_RCU|
2328                        SLAB_ACCOUNT, sighand_ctor);
2329        signal_cachep = kmem_cache_create("signal_cache",
2330                        sizeof(struct signal_struct), 0,
2331                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2332                        NULL);
2333        files_cachep = kmem_cache_create("files_cache",
2334                        sizeof(struct files_struct), 0,
2335                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2336                        NULL);
2337        fs_cachep = kmem_cache_create("fs_cache",
2338                        sizeof(struct fs_struct), 0,
2339                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2340                        NULL);
2341
2342        /*
2343         * The mm_cpumask is located at the end of mm_struct, and is
2344         * dynamically sized based on the maximum CPU number this system
2345         * can have, taking hotplug into account (nr_cpu_ids).
2346         */
2347        mm_size = sizeof(struct mm_struct) + cpumask_size();
2348
2349        mm_cachep = kmem_cache_create_usercopy("mm_struct",
2350                        mm_size, ARCH_MIN_MMSTRUCT_ALIGN,
2351                        SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT,
2352                        offsetof(struct mm_struct, saved_auxv),
2353                        sizeof_field(struct mm_struct, saved_auxv),
2354                        NULL);
2355        vm_area_cachep = KMEM_CACHE(vm_area_struct, SLAB_PANIC|SLAB_ACCOUNT);
2356        mmap_init();
2357        nsproxy_cache_init();
2358}
2359
2360/*
2361 * Check constraints on flags passed to the unshare system call.
2362 */
2363static int check_unshare_flags(unsigned long unshare_flags)
2364{
2365        if (unshare_flags & ~(CLONE_THREAD|CLONE_FS|CLONE_NEWNS|CLONE_SIGHAND|
2366                                CLONE_VM|CLONE_FILES|CLONE_SYSVSEM|
2367                                CLONE_NEWUTS|CLONE_NEWIPC|CLONE_NEWNET|
2368                                CLONE_NEWUSER|CLONE_NEWPID|CLONE_NEWCGROUP))
2369                return -EINVAL;
2370        /*
2371         * Not implemented, but pretend it works if there is nothing
2372         * to unshare.  Note that unsharing the address space or the
2373         * signal handlers also need to unshare the signal queues (aka
2374         * CLONE_THREAD).
2375         */
2376        if (unshare_flags & (CLONE_THREAD | CLONE_SIGHAND | CLONE_VM)) {
2377                if (!thread_group_empty(current))
2378                        return -EINVAL;
2379        }
2380        if (unshare_flags & (CLONE_SIGHAND | CLONE_VM)) {
2381                if (atomic_read(&current->sighand->count) > 1)
2382                        return -EINVAL;
2383        }
2384        if (unshare_flags & CLONE_VM) {
2385                if (!current_is_single_threaded())
2386                        return -EINVAL;
2387        }
2388
2389        return 0;
2390}
2391
2392/*
2393 * Unshare the filesystem structure if it is being shared
2394 */
2395static int unshare_fs(unsigned long unshare_flags, struct fs_struct **new_fsp)
2396{
2397        struct fs_struct *fs = current->fs;
2398
2399        if (!(unshare_flags & CLONE_FS) || !fs)
2400                return 0;
2401
2402        /* don't need lock here; in the worst case we'll do useless copy */
2403        if (fs->users == 1)
2404                return 0;
2405
2406        *new_fsp = copy_fs_struct(fs);
2407        if (!*new_fsp)
2408                return -ENOMEM;
2409
2410        return 0;
2411}
2412
2413/*
2414 * Unshare file descriptor table if it is being shared
2415 */
2416static int unshare_fd(unsigned long unshare_flags, struct files_struct **new_fdp)
2417{
2418        struct files_struct *fd = current->files;
2419        int error = 0;
2420
2421        if ((unshare_flags & CLONE_FILES) &&
2422            (fd && atomic_read(&fd->count) > 1)) {
2423                *new_fdp = dup_fd(fd, &error);
2424                if (!*new_fdp)
2425                        return error;
2426        }
2427
2428        return 0;
2429}
2430
2431/*
2432 * unshare allows a process to 'unshare' part of the process
2433 * context which was originally shared using clone.  copy_*
2434 * functions used by do_fork() cannot be used here directly
2435 * because they modify an inactive task_struct that is being
2436 * constructed. Here we are modifying the current, active,
2437 * task_struct.
2438 */
2439int ksys_unshare(unsigned long unshare_flags)
2440{
2441        struct fs_struct *fs, *new_fs = NULL;
2442        struct files_struct *fd, *new_fd = NULL;
2443        struct cred *new_cred = NULL;
2444        struct nsproxy *new_nsproxy = NULL;
2445        int do_sysvsem = 0;
2446        int err;
2447
2448        /*
2449         * If unsharing a user namespace must also unshare the thread group
2450         * and unshare the filesystem root and working directories.
2451         */
2452        if (unshare_flags & CLONE_NEWUSER)
2453                unshare_flags |= CLONE_THREAD | CLONE_FS;
2454        /*
2455         * If unsharing vm, must also unshare signal handlers.
2456         */
2457        if (unshare_flags & CLONE_VM)
2458                unshare_flags |= CLONE_SIGHAND;
2459        /*
2460         * If unsharing a signal handlers, must also unshare the signal queues.
2461         */
2462        if (unshare_flags & CLONE_SIGHAND)
2463                unshare_flags |= CLONE_THREAD;
2464        /*
2465         * If unsharing namespace, must also unshare filesystem information.
2466         */
2467        if (unshare_flags & CLONE_NEWNS)
2468                unshare_flags |= CLONE_FS;
2469
2470        err = check_unshare_flags(unshare_flags);
2471        if (err)
2472                goto bad_unshare_out;
2473        /*
2474         * CLONE_NEWIPC must also detach from the undolist: after switching
2475         * to a new ipc namespace, the semaphore arrays from the old
2476         * namespace are unreachable.
2477         */
2478        if (unshare_flags & (CLONE_NEWIPC|CLONE_SYSVSEM))
2479                do_sysvsem = 1;
2480        err = unshare_fs(unshare_flags, &new_fs);
2481        if (err)
2482                goto bad_unshare_out;
2483        err = unshare_fd(unshare_flags, &new_fd);
2484        if (err)
2485                goto bad_unshare_cleanup_fs;
2486        err = unshare_userns(unshare_flags, &new_cred);
2487        if (err)
2488                goto bad_unshare_cleanup_fd;
2489        err = unshare_nsproxy_namespaces(unshare_flags, &new_nsproxy,
2490                                         new_cred, new_fs);
2491        if (err)
2492                goto bad_unshare_cleanup_cred;
2493
2494        if (new_fs || new_fd || do_sysvsem || new_cred || new_nsproxy) {
2495                if (do_sysvsem) {
2496                        /*
2497                         * CLONE_SYSVSEM is equivalent to sys_exit().
2498                         */
2499                        exit_sem(current);
2500                }
2501                if (unshare_flags & CLONE_NEWIPC) {
2502                        /* Orphan segments in old ns (see sem above). */
2503                        exit_shm(current);
2504                        shm_init_task(current);
2505                }
2506
2507                if (new_nsproxy)
2508                        switch_task_namespaces(current, new_nsproxy);
2509
2510                task_lock(current);
2511
2512                if (new_fs) {
2513                        fs = current->fs;
2514                        spin_lock(&fs->lock);
2515                        current->fs = new_fs;
2516                        if (--fs->users)
2517                                new_fs = NULL;
2518                        else
2519                                new_fs = fs;
2520                        spin_unlock(&fs->lock);
2521                }
2522
2523                if (new_fd) {
2524                        fd = current->files;
2525                        current->files = new_fd;
2526                        new_fd = fd;
2527                }
2528
2529                task_unlock(current);
2530
2531                if (new_cred) {
2532                        /* Install the new user namespace */
2533                        commit_creds(new_cred);
2534                        new_cred = NULL;
2535                }
2536        }
2537
2538        perf_event_namespaces(current);
2539
2540bad_unshare_cleanup_cred:
2541        if (new_cred)
2542                put_cred(new_cred);
2543bad_unshare_cleanup_fd:
2544        if (new_fd)
2545                put_files_struct(new_fd);
2546
2547bad_unshare_cleanup_fs:
2548        if (new_fs)
2549                free_fs_struct(new_fs);
2550
2551bad_unshare_out:
2552        return err;
2553}
2554
2555SYSCALL_DEFINE1(unshare, unsigned long, unshare_flags)
2556{
2557        return ksys_unshare(unshare_flags);
2558}
2559
2560/*
2561 *      Helper to unshare the files of the current task.
2562 *      We don't want to expose copy_files internals to
2563 *      the exec layer of the kernel.
2564 */
2565
2566int unshare_files(struct files_struct **displaced)
2567{
2568        struct task_struct *task = current;
2569        struct files_struct *copy = NULL;
2570        int error;
2571
2572        error = unshare_fd(CLONE_FILES, &copy);
2573        if (error || !copy) {
2574                *displaced = NULL;
2575                return error;
2576        }
2577        *displaced = task->files;
2578        task_lock(task);
2579        task->files = copy;
2580        task_unlock(task);
2581        return 0;
2582}
2583
2584int sysctl_max_threads(struct ctl_table *table, int write,
2585                       void __user *buffer, size_t *lenp, loff_t *ppos)
2586{
2587        struct ctl_table t;
2588        int ret;
2589        int threads = max_threads;
2590        int min = MIN_THREADS;
2591        int max = MAX_THREADS;
2592
2593        t = *table;
2594        t.data = &threads;
2595        t.extra1 = &min;
2596        t.extra2 = &max;
2597
2598        ret = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2599        if (ret || !write)
2600                return ret;
2601
2602        set_max_threads(threads);
2603
2604        return 0;
2605}
2606