linux/kernel/irq/manage.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Copyright (C) 1992, 1998-2006 Linus Torvalds, Ingo Molnar
   4 * Copyright (C) 2005-2006 Thomas Gleixner
   5 *
   6 * This file contains driver APIs to the irq subsystem.
   7 */
   8
   9#define pr_fmt(fmt) "genirq: " fmt
  10
  11#include <linux/irq.h>
  12#include <linux/kthread.h>
  13#include <linux/module.h>
  14#include <linux/random.h>
  15#include <linux/interrupt.h>
  16#include <linux/slab.h>
  17#include <linux/sched.h>
  18#include <linux/sched/rt.h>
  19#include <linux/sched/task.h>
  20#include <uapi/linux/sched/types.h>
  21#include <linux/task_work.h>
  22
  23#include "internals.h"
  24
  25#ifdef CONFIG_IRQ_FORCED_THREADING
  26__read_mostly bool force_irqthreads;
  27EXPORT_SYMBOL_GPL(force_irqthreads);
  28
  29static int __init setup_forced_irqthreads(char *arg)
  30{
  31        force_irqthreads = true;
  32        return 0;
  33}
  34early_param("threadirqs", setup_forced_irqthreads);
  35#endif
  36
  37static void __synchronize_hardirq(struct irq_desc *desc)
  38{
  39        bool inprogress;
  40
  41        do {
  42                unsigned long flags;
  43
  44                /*
  45                 * Wait until we're out of the critical section.  This might
  46                 * give the wrong answer due to the lack of memory barriers.
  47                 */
  48                while (irqd_irq_inprogress(&desc->irq_data))
  49                        cpu_relax();
  50
  51                /* Ok, that indicated we're done: double-check carefully. */
  52                raw_spin_lock_irqsave(&desc->lock, flags);
  53                inprogress = irqd_irq_inprogress(&desc->irq_data);
  54                raw_spin_unlock_irqrestore(&desc->lock, flags);
  55
  56                /* Oops, that failed? */
  57        } while (inprogress);
  58}
  59
  60/**
  61 *      synchronize_hardirq - wait for pending hard IRQ handlers (on other CPUs)
  62 *      @irq: interrupt number to wait for
  63 *
  64 *      This function waits for any pending hard IRQ handlers for this
  65 *      interrupt to complete before returning. If you use this
  66 *      function while holding a resource the IRQ handler may need you
  67 *      will deadlock. It does not take associated threaded handlers
  68 *      into account.
  69 *
  70 *      Do not use this for shutdown scenarios where you must be sure
  71 *      that all parts (hardirq and threaded handler) have completed.
  72 *
  73 *      Returns: false if a threaded handler is active.
  74 *
  75 *      This function may be called - with care - from IRQ context.
  76 */
  77bool synchronize_hardirq(unsigned int irq)
  78{
  79        struct irq_desc *desc = irq_to_desc(irq);
  80
  81        if (desc) {
  82                __synchronize_hardirq(desc);
  83                return !atomic_read(&desc->threads_active);
  84        }
  85
  86        return true;
  87}
  88EXPORT_SYMBOL(synchronize_hardirq);
  89
  90/**
  91 *      synchronize_irq - wait for pending IRQ handlers (on other CPUs)
  92 *      @irq: interrupt number to wait for
  93 *
  94 *      This function waits for any pending IRQ handlers for this interrupt
  95 *      to complete before returning. If you use this function while
  96 *      holding a resource the IRQ handler may need you will deadlock.
  97 *
  98 *      This function may be called - with care - from IRQ context.
  99 */
 100void synchronize_irq(unsigned int irq)
 101{
 102        struct irq_desc *desc = irq_to_desc(irq);
 103
 104        if (desc) {
 105                __synchronize_hardirq(desc);
 106                /*
 107                 * We made sure that no hardirq handler is
 108                 * running. Now verify that no threaded handlers are
 109                 * active.
 110                 */
 111                wait_event(desc->wait_for_threads,
 112                           !atomic_read(&desc->threads_active));
 113        }
 114}
 115EXPORT_SYMBOL(synchronize_irq);
 116
 117#ifdef CONFIG_SMP
 118cpumask_var_t irq_default_affinity;
 119
 120static bool __irq_can_set_affinity(struct irq_desc *desc)
 121{
 122        if (!desc || !irqd_can_balance(&desc->irq_data) ||
 123            !desc->irq_data.chip || !desc->irq_data.chip->irq_set_affinity)
 124                return false;
 125        return true;
 126}
 127
 128/**
 129 *      irq_can_set_affinity - Check if the affinity of a given irq can be set
 130 *      @irq:           Interrupt to check
 131 *
 132 */
 133int irq_can_set_affinity(unsigned int irq)
 134{
 135        return __irq_can_set_affinity(irq_to_desc(irq));
 136}
 137
 138/**
 139 * irq_can_set_affinity_usr - Check if affinity of a irq can be set from user space
 140 * @irq:        Interrupt to check
 141 *
 142 * Like irq_can_set_affinity() above, but additionally checks for the
 143 * AFFINITY_MANAGED flag.
 144 */
 145bool irq_can_set_affinity_usr(unsigned int irq)
 146{
 147        struct irq_desc *desc = irq_to_desc(irq);
 148
 149        return __irq_can_set_affinity(desc) &&
 150                !irqd_affinity_is_managed(&desc->irq_data);
 151}
 152
 153/**
 154 *      irq_set_thread_affinity - Notify irq threads to adjust affinity
 155 *      @desc:          irq descriptor which has affitnity changed
 156 *
 157 *      We just set IRQTF_AFFINITY and delegate the affinity setting
 158 *      to the interrupt thread itself. We can not call
 159 *      set_cpus_allowed_ptr() here as we hold desc->lock and this
 160 *      code can be called from hard interrupt context.
 161 */
 162void irq_set_thread_affinity(struct irq_desc *desc)
 163{
 164        struct irqaction *action;
 165
 166        for_each_action_of_desc(desc, action)
 167                if (action->thread)
 168                        set_bit(IRQTF_AFFINITY, &action->thread_flags);
 169}
 170
 171static void irq_validate_effective_affinity(struct irq_data *data)
 172{
 173#ifdef CONFIG_GENERIC_IRQ_EFFECTIVE_AFF_MASK
 174        const struct cpumask *m = irq_data_get_effective_affinity_mask(data);
 175        struct irq_chip *chip = irq_data_get_irq_chip(data);
 176
 177        if (!cpumask_empty(m))
 178                return;
 179        pr_warn_once("irq_chip %s did not update eff. affinity mask of irq %u\n",
 180                     chip->name, data->irq);
 181#endif
 182}
 183
 184int irq_do_set_affinity(struct irq_data *data, const struct cpumask *mask,
 185                        bool force)
 186{
 187        struct irq_desc *desc = irq_data_to_desc(data);
 188        struct irq_chip *chip = irq_data_get_irq_chip(data);
 189        int ret;
 190
 191        if (!chip || !chip->irq_set_affinity)
 192                return -EINVAL;
 193
 194        ret = chip->irq_set_affinity(data, mask, force);
 195        switch (ret) {
 196        case IRQ_SET_MASK_OK:
 197        case IRQ_SET_MASK_OK_DONE:
 198                cpumask_copy(desc->irq_common_data.affinity, mask);
 199        case IRQ_SET_MASK_OK_NOCOPY:
 200                irq_validate_effective_affinity(data);
 201                irq_set_thread_affinity(desc);
 202                ret = 0;
 203        }
 204
 205        return ret;
 206}
 207
 208#ifdef CONFIG_GENERIC_PENDING_IRQ
 209static inline int irq_set_affinity_pending(struct irq_data *data,
 210                                           const struct cpumask *dest)
 211{
 212        struct irq_desc *desc = irq_data_to_desc(data);
 213
 214        irqd_set_move_pending(data);
 215        irq_copy_pending(desc, dest);
 216        return 0;
 217}
 218#else
 219static inline int irq_set_affinity_pending(struct irq_data *data,
 220                                           const struct cpumask *dest)
 221{
 222        return -EBUSY;
 223}
 224#endif
 225
 226static int irq_try_set_affinity(struct irq_data *data,
 227                                const struct cpumask *dest, bool force)
 228{
 229        int ret = irq_do_set_affinity(data, dest, force);
 230
 231        /*
 232         * In case that the underlying vector management is busy and the
 233         * architecture supports the generic pending mechanism then utilize
 234         * this to avoid returning an error to user space.
 235         */
 236        if (ret == -EBUSY && !force)
 237                ret = irq_set_affinity_pending(data, dest);
 238        return ret;
 239}
 240
 241int irq_set_affinity_locked(struct irq_data *data, const struct cpumask *mask,
 242                            bool force)
 243{
 244        struct irq_chip *chip = irq_data_get_irq_chip(data);
 245        struct irq_desc *desc = irq_data_to_desc(data);
 246        int ret = 0;
 247
 248        if (!chip || !chip->irq_set_affinity)
 249                return -EINVAL;
 250
 251        if (irq_can_move_pcntxt(data) && !irqd_is_setaffinity_pending(data)) {
 252                ret = irq_try_set_affinity(data, mask, force);
 253        } else {
 254                irqd_set_move_pending(data);
 255                irq_copy_pending(desc, mask);
 256        }
 257
 258        if (desc->affinity_notify) {
 259                kref_get(&desc->affinity_notify->kref);
 260                schedule_work(&desc->affinity_notify->work);
 261        }
 262        irqd_set(data, IRQD_AFFINITY_SET);
 263
 264        return ret;
 265}
 266
 267int __irq_set_affinity(unsigned int irq, const struct cpumask *mask, bool force)
 268{
 269        struct irq_desc *desc = irq_to_desc(irq);
 270        unsigned long flags;
 271        int ret;
 272
 273        if (!desc)
 274                return -EINVAL;
 275
 276        raw_spin_lock_irqsave(&desc->lock, flags);
 277        ret = irq_set_affinity_locked(irq_desc_get_irq_data(desc), mask, force);
 278        raw_spin_unlock_irqrestore(&desc->lock, flags);
 279        return ret;
 280}
 281
 282int irq_set_affinity_hint(unsigned int irq, const struct cpumask *m)
 283{
 284        unsigned long flags;
 285        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 286
 287        if (!desc)
 288                return -EINVAL;
 289        desc->affinity_hint = m;
 290        irq_put_desc_unlock(desc, flags);
 291        /* set the initial affinity to prevent every interrupt being on CPU0 */
 292        if (m)
 293                __irq_set_affinity(irq, m, false);
 294        return 0;
 295}
 296EXPORT_SYMBOL_GPL(irq_set_affinity_hint);
 297
 298static void irq_affinity_notify(struct work_struct *work)
 299{
 300        struct irq_affinity_notify *notify =
 301                container_of(work, struct irq_affinity_notify, work);
 302        struct irq_desc *desc = irq_to_desc(notify->irq);
 303        cpumask_var_t cpumask;
 304        unsigned long flags;
 305
 306        if (!desc || !alloc_cpumask_var(&cpumask, GFP_KERNEL))
 307                goto out;
 308
 309        raw_spin_lock_irqsave(&desc->lock, flags);
 310        if (irq_move_pending(&desc->irq_data))
 311                irq_get_pending(cpumask, desc);
 312        else
 313                cpumask_copy(cpumask, desc->irq_common_data.affinity);
 314        raw_spin_unlock_irqrestore(&desc->lock, flags);
 315
 316        notify->notify(notify, cpumask);
 317
 318        free_cpumask_var(cpumask);
 319out:
 320        kref_put(&notify->kref, notify->release);
 321}
 322
 323/**
 324 *      irq_set_affinity_notifier - control notification of IRQ affinity changes
 325 *      @irq:           Interrupt for which to enable/disable notification
 326 *      @notify:        Context for notification, or %NULL to disable
 327 *                      notification.  Function pointers must be initialised;
 328 *                      the other fields will be initialised by this function.
 329 *
 330 *      Must be called in process context.  Notification may only be enabled
 331 *      after the IRQ is allocated and must be disabled before the IRQ is
 332 *      freed using free_irq().
 333 */
 334int
 335irq_set_affinity_notifier(unsigned int irq, struct irq_affinity_notify *notify)
 336{
 337        struct irq_desc *desc = irq_to_desc(irq);
 338        struct irq_affinity_notify *old_notify;
 339        unsigned long flags;
 340
 341        /* The release function is promised process context */
 342        might_sleep();
 343
 344        if (!desc)
 345                return -EINVAL;
 346
 347        /* Complete initialisation of *notify */
 348        if (notify) {
 349                notify->irq = irq;
 350                kref_init(&notify->kref);
 351                INIT_WORK(&notify->work, irq_affinity_notify);
 352        }
 353
 354        raw_spin_lock_irqsave(&desc->lock, flags);
 355        old_notify = desc->affinity_notify;
 356        desc->affinity_notify = notify;
 357        raw_spin_unlock_irqrestore(&desc->lock, flags);
 358
 359        if (old_notify)
 360                kref_put(&old_notify->kref, old_notify->release);
 361
 362        return 0;
 363}
 364EXPORT_SYMBOL_GPL(irq_set_affinity_notifier);
 365
 366#ifndef CONFIG_AUTO_IRQ_AFFINITY
 367/*
 368 * Generic version of the affinity autoselector.
 369 */
 370int irq_setup_affinity(struct irq_desc *desc)
 371{
 372        struct cpumask *set = irq_default_affinity;
 373        int ret, node = irq_desc_get_node(desc);
 374        static DEFINE_RAW_SPINLOCK(mask_lock);
 375        static struct cpumask mask;
 376
 377        /* Excludes PER_CPU and NO_BALANCE interrupts */
 378        if (!__irq_can_set_affinity(desc))
 379                return 0;
 380
 381        raw_spin_lock(&mask_lock);
 382        /*
 383         * Preserve the managed affinity setting and a userspace affinity
 384         * setup, but make sure that one of the targets is online.
 385         */
 386        if (irqd_affinity_is_managed(&desc->irq_data) ||
 387            irqd_has_set(&desc->irq_data, IRQD_AFFINITY_SET)) {
 388                if (cpumask_intersects(desc->irq_common_data.affinity,
 389                                       cpu_online_mask))
 390                        set = desc->irq_common_data.affinity;
 391                else
 392                        irqd_clear(&desc->irq_data, IRQD_AFFINITY_SET);
 393        }
 394
 395        cpumask_and(&mask, cpu_online_mask, set);
 396        if (node != NUMA_NO_NODE) {
 397                const struct cpumask *nodemask = cpumask_of_node(node);
 398
 399                /* make sure at least one of the cpus in nodemask is online */
 400                if (cpumask_intersects(&mask, nodemask))
 401                        cpumask_and(&mask, &mask, nodemask);
 402        }
 403        ret = irq_do_set_affinity(&desc->irq_data, &mask, false);
 404        raw_spin_unlock(&mask_lock);
 405        return ret;
 406}
 407#else
 408/* Wrapper for ALPHA specific affinity selector magic */
 409int irq_setup_affinity(struct irq_desc *desc)
 410{
 411        return irq_select_affinity(irq_desc_get_irq(desc));
 412}
 413#endif
 414
 415/*
 416 * Called when a bogus affinity is set via /proc/irq
 417 */
 418int irq_select_affinity_usr(unsigned int irq)
 419{
 420        struct irq_desc *desc = irq_to_desc(irq);
 421        unsigned long flags;
 422        int ret;
 423
 424        raw_spin_lock_irqsave(&desc->lock, flags);
 425        ret = irq_setup_affinity(desc);
 426        raw_spin_unlock_irqrestore(&desc->lock, flags);
 427        return ret;
 428}
 429#endif
 430
 431/**
 432 *      irq_set_vcpu_affinity - Set vcpu affinity for the interrupt
 433 *      @irq: interrupt number to set affinity
 434 *      @vcpu_info: vCPU specific data or pointer to a percpu array of vCPU
 435 *                  specific data for percpu_devid interrupts
 436 *
 437 *      This function uses the vCPU specific data to set the vCPU
 438 *      affinity for an irq. The vCPU specific data is passed from
 439 *      outside, such as KVM. One example code path is as below:
 440 *      KVM -> IOMMU -> irq_set_vcpu_affinity().
 441 */
 442int irq_set_vcpu_affinity(unsigned int irq, void *vcpu_info)
 443{
 444        unsigned long flags;
 445        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 446        struct irq_data *data;
 447        struct irq_chip *chip;
 448        int ret = -ENOSYS;
 449
 450        if (!desc)
 451                return -EINVAL;
 452
 453        data = irq_desc_get_irq_data(desc);
 454        do {
 455                chip = irq_data_get_irq_chip(data);
 456                if (chip && chip->irq_set_vcpu_affinity)
 457                        break;
 458#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
 459                data = data->parent_data;
 460#else
 461                data = NULL;
 462#endif
 463        } while (data);
 464
 465        if (data)
 466                ret = chip->irq_set_vcpu_affinity(data, vcpu_info);
 467        irq_put_desc_unlock(desc, flags);
 468
 469        return ret;
 470}
 471EXPORT_SYMBOL_GPL(irq_set_vcpu_affinity);
 472
 473void __disable_irq(struct irq_desc *desc)
 474{
 475        if (!desc->depth++)
 476                irq_disable(desc);
 477}
 478
 479static int __disable_irq_nosync(unsigned int irq)
 480{
 481        unsigned long flags;
 482        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 483
 484        if (!desc)
 485                return -EINVAL;
 486        __disable_irq(desc);
 487        irq_put_desc_busunlock(desc, flags);
 488        return 0;
 489}
 490
 491/**
 492 *      disable_irq_nosync - disable an irq without waiting
 493 *      @irq: Interrupt to disable
 494 *
 495 *      Disable the selected interrupt line.  Disables and Enables are
 496 *      nested.
 497 *      Unlike disable_irq(), this function does not ensure existing
 498 *      instances of the IRQ handler have completed before returning.
 499 *
 500 *      This function may be called from IRQ context.
 501 */
 502void disable_irq_nosync(unsigned int irq)
 503{
 504        __disable_irq_nosync(irq);
 505}
 506EXPORT_SYMBOL(disable_irq_nosync);
 507
 508/**
 509 *      disable_irq - disable an irq and wait for completion
 510 *      @irq: Interrupt to disable
 511 *
 512 *      Disable the selected interrupt line.  Enables and Disables are
 513 *      nested.
 514 *      This function waits for any pending IRQ handlers for this interrupt
 515 *      to complete before returning. If you use this function while
 516 *      holding a resource the IRQ handler may need you will deadlock.
 517 *
 518 *      This function may be called - with care - from IRQ context.
 519 */
 520void disable_irq(unsigned int irq)
 521{
 522        if (!__disable_irq_nosync(irq))
 523                synchronize_irq(irq);
 524}
 525EXPORT_SYMBOL(disable_irq);
 526
 527/**
 528 *      disable_hardirq - disables an irq and waits for hardirq completion
 529 *      @irq: Interrupt to disable
 530 *
 531 *      Disable the selected interrupt line.  Enables and Disables are
 532 *      nested.
 533 *      This function waits for any pending hard IRQ handlers for this
 534 *      interrupt to complete before returning. If you use this function while
 535 *      holding a resource the hard IRQ handler may need you will deadlock.
 536 *
 537 *      When used to optimistically disable an interrupt from atomic context
 538 *      the return value must be checked.
 539 *
 540 *      Returns: false if a threaded handler is active.
 541 *
 542 *      This function may be called - with care - from IRQ context.
 543 */
 544bool disable_hardirq(unsigned int irq)
 545{
 546        if (!__disable_irq_nosync(irq))
 547                return synchronize_hardirq(irq);
 548
 549        return false;
 550}
 551EXPORT_SYMBOL_GPL(disable_hardirq);
 552
 553void __enable_irq(struct irq_desc *desc)
 554{
 555        switch (desc->depth) {
 556        case 0:
 557 err_out:
 558                WARN(1, KERN_WARNING "Unbalanced enable for IRQ %d\n",
 559                     irq_desc_get_irq(desc));
 560                break;
 561        case 1: {
 562                if (desc->istate & IRQS_SUSPENDED)
 563                        goto err_out;
 564                /* Prevent probing on this irq: */
 565                irq_settings_set_noprobe(desc);
 566                /*
 567                 * Call irq_startup() not irq_enable() here because the
 568                 * interrupt might be marked NOAUTOEN. So irq_startup()
 569                 * needs to be invoked when it gets enabled the first
 570                 * time. If it was already started up, then irq_startup()
 571                 * will invoke irq_enable() under the hood.
 572                 */
 573                irq_startup(desc, IRQ_RESEND, IRQ_START_FORCE);
 574                break;
 575        }
 576        default:
 577                desc->depth--;
 578        }
 579}
 580
 581/**
 582 *      enable_irq - enable handling of an irq
 583 *      @irq: Interrupt to enable
 584 *
 585 *      Undoes the effect of one call to disable_irq().  If this
 586 *      matches the last disable, processing of interrupts on this
 587 *      IRQ line is re-enabled.
 588 *
 589 *      This function may be called from IRQ context only when
 590 *      desc->irq_data.chip->bus_lock and desc->chip->bus_sync_unlock are NULL !
 591 */
 592void enable_irq(unsigned int irq)
 593{
 594        unsigned long flags;
 595        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 596
 597        if (!desc)
 598                return;
 599        if (WARN(!desc->irq_data.chip,
 600                 KERN_ERR "enable_irq before setup/request_irq: irq %u\n", irq))
 601                goto out;
 602
 603        __enable_irq(desc);
 604out:
 605        irq_put_desc_busunlock(desc, flags);
 606}
 607EXPORT_SYMBOL(enable_irq);
 608
 609static int set_irq_wake_real(unsigned int irq, unsigned int on)
 610{
 611        struct irq_desc *desc = irq_to_desc(irq);
 612        int ret = -ENXIO;
 613
 614        if (irq_desc_get_chip(desc)->flags &  IRQCHIP_SKIP_SET_WAKE)
 615                return 0;
 616
 617        if (desc->irq_data.chip->irq_set_wake)
 618                ret = desc->irq_data.chip->irq_set_wake(&desc->irq_data, on);
 619
 620        return ret;
 621}
 622
 623/**
 624 *      irq_set_irq_wake - control irq power management wakeup
 625 *      @irq:   interrupt to control
 626 *      @on:    enable/disable power management wakeup
 627 *
 628 *      Enable/disable power management wakeup mode, which is
 629 *      disabled by default.  Enables and disables must match,
 630 *      just as they match for non-wakeup mode support.
 631 *
 632 *      Wakeup mode lets this IRQ wake the system from sleep
 633 *      states like "suspend to RAM".
 634 */
 635int irq_set_irq_wake(unsigned int irq, unsigned int on)
 636{
 637        unsigned long flags;
 638        struct irq_desc *desc = irq_get_desc_buslock(irq, &flags, IRQ_GET_DESC_CHECK_GLOBAL);
 639        int ret = 0;
 640
 641        if (!desc)
 642                return -EINVAL;
 643
 644        /* wakeup-capable irqs can be shared between drivers that
 645         * don't need to have the same sleep mode behaviors.
 646         */
 647        if (on) {
 648                if (desc->wake_depth++ == 0) {
 649                        ret = set_irq_wake_real(irq, on);
 650                        if (ret)
 651                                desc->wake_depth = 0;
 652                        else
 653                                irqd_set(&desc->irq_data, IRQD_WAKEUP_STATE);
 654                }
 655        } else {
 656                if (desc->wake_depth == 0) {
 657                        WARN(1, "Unbalanced IRQ %d wake disable\n", irq);
 658                } else if (--desc->wake_depth == 0) {
 659                        ret = set_irq_wake_real(irq, on);
 660                        if (ret)
 661                                desc->wake_depth = 1;
 662                        else
 663                                irqd_clear(&desc->irq_data, IRQD_WAKEUP_STATE);
 664                }
 665        }
 666        irq_put_desc_busunlock(desc, flags);
 667        return ret;
 668}
 669EXPORT_SYMBOL(irq_set_irq_wake);
 670
 671/*
 672 * Internal function that tells the architecture code whether a
 673 * particular irq has been exclusively allocated or is available
 674 * for driver use.
 675 */
 676int can_request_irq(unsigned int irq, unsigned long irqflags)
 677{
 678        unsigned long flags;
 679        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 680        int canrequest = 0;
 681
 682        if (!desc)
 683                return 0;
 684
 685        if (irq_settings_can_request(desc)) {
 686                if (!desc->action ||
 687                    irqflags & desc->action->flags & IRQF_SHARED)
 688                        canrequest = 1;
 689        }
 690        irq_put_desc_unlock(desc, flags);
 691        return canrequest;
 692}
 693
 694int __irq_set_trigger(struct irq_desc *desc, unsigned long flags)
 695{
 696        struct irq_chip *chip = desc->irq_data.chip;
 697        int ret, unmask = 0;
 698
 699        if (!chip || !chip->irq_set_type) {
 700                /*
 701                 * IRQF_TRIGGER_* but the PIC does not support multiple
 702                 * flow-types?
 703                 */
 704                pr_debug("No set_type function for IRQ %d (%s)\n",
 705                         irq_desc_get_irq(desc),
 706                         chip ? (chip->name ? : "unknown") : "unknown");
 707                return 0;
 708        }
 709
 710        if (chip->flags & IRQCHIP_SET_TYPE_MASKED) {
 711                if (!irqd_irq_masked(&desc->irq_data))
 712                        mask_irq(desc);
 713                if (!irqd_irq_disabled(&desc->irq_data))
 714                        unmask = 1;
 715        }
 716
 717        /* Mask all flags except trigger mode */
 718        flags &= IRQ_TYPE_SENSE_MASK;
 719        ret = chip->irq_set_type(&desc->irq_data, flags);
 720
 721        switch (ret) {
 722        case IRQ_SET_MASK_OK:
 723        case IRQ_SET_MASK_OK_DONE:
 724                irqd_clear(&desc->irq_data, IRQD_TRIGGER_MASK);
 725                irqd_set(&desc->irq_data, flags);
 726
 727        case IRQ_SET_MASK_OK_NOCOPY:
 728                flags = irqd_get_trigger_type(&desc->irq_data);
 729                irq_settings_set_trigger_mask(desc, flags);
 730                irqd_clear(&desc->irq_data, IRQD_LEVEL);
 731                irq_settings_clr_level(desc);
 732                if (flags & IRQ_TYPE_LEVEL_MASK) {
 733                        irq_settings_set_level(desc);
 734                        irqd_set(&desc->irq_data, IRQD_LEVEL);
 735                }
 736
 737                ret = 0;
 738                break;
 739        default:
 740                pr_err("Setting trigger mode %lu for irq %u failed (%pF)\n",
 741                       flags, irq_desc_get_irq(desc), chip->irq_set_type);
 742        }
 743        if (unmask)
 744                unmask_irq(desc);
 745        return ret;
 746}
 747
 748#ifdef CONFIG_HARDIRQS_SW_RESEND
 749int irq_set_parent(int irq, int parent_irq)
 750{
 751        unsigned long flags;
 752        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, 0);
 753
 754        if (!desc)
 755                return -EINVAL;
 756
 757        desc->parent_irq = parent_irq;
 758
 759        irq_put_desc_unlock(desc, flags);
 760        return 0;
 761}
 762EXPORT_SYMBOL_GPL(irq_set_parent);
 763#endif
 764
 765/*
 766 * Default primary interrupt handler for threaded interrupts. Is
 767 * assigned as primary handler when request_threaded_irq is called
 768 * with handler == NULL. Useful for oneshot interrupts.
 769 */
 770static irqreturn_t irq_default_primary_handler(int irq, void *dev_id)
 771{
 772        return IRQ_WAKE_THREAD;
 773}
 774
 775/*
 776 * Primary handler for nested threaded interrupts. Should never be
 777 * called.
 778 */
 779static irqreturn_t irq_nested_primary_handler(int irq, void *dev_id)
 780{
 781        WARN(1, "Primary handler called for nested irq %d\n", irq);
 782        return IRQ_NONE;
 783}
 784
 785static irqreturn_t irq_forced_secondary_handler(int irq, void *dev_id)
 786{
 787        WARN(1, "Secondary action handler called for irq %d\n", irq);
 788        return IRQ_NONE;
 789}
 790
 791static int irq_wait_for_interrupt(struct irqaction *action)
 792{
 793        for (;;) {
 794                set_current_state(TASK_INTERRUPTIBLE);
 795
 796                if (kthread_should_stop()) {
 797                        /* may need to run one last time */
 798                        if (test_and_clear_bit(IRQTF_RUNTHREAD,
 799                                               &action->thread_flags)) {
 800                                __set_current_state(TASK_RUNNING);
 801                                return 0;
 802                        }
 803                        __set_current_state(TASK_RUNNING);
 804                        return -1;
 805                }
 806
 807                if (test_and_clear_bit(IRQTF_RUNTHREAD,
 808                                       &action->thread_flags)) {
 809                        __set_current_state(TASK_RUNNING);
 810                        return 0;
 811                }
 812                schedule();
 813        }
 814}
 815
 816/*
 817 * Oneshot interrupts keep the irq line masked until the threaded
 818 * handler finished. unmask if the interrupt has not been disabled and
 819 * is marked MASKED.
 820 */
 821static void irq_finalize_oneshot(struct irq_desc *desc,
 822                                 struct irqaction *action)
 823{
 824        if (!(desc->istate & IRQS_ONESHOT) ||
 825            action->handler == irq_forced_secondary_handler)
 826                return;
 827again:
 828        chip_bus_lock(desc);
 829        raw_spin_lock_irq(&desc->lock);
 830
 831        /*
 832         * Implausible though it may be we need to protect us against
 833         * the following scenario:
 834         *
 835         * The thread is faster done than the hard interrupt handler
 836         * on the other CPU. If we unmask the irq line then the
 837         * interrupt can come in again and masks the line, leaves due
 838         * to IRQS_INPROGRESS and the irq line is masked forever.
 839         *
 840         * This also serializes the state of shared oneshot handlers
 841         * versus "desc->threads_onehsot |= action->thread_mask;" in
 842         * irq_wake_thread(). See the comment there which explains the
 843         * serialization.
 844         */
 845        if (unlikely(irqd_irq_inprogress(&desc->irq_data))) {
 846                raw_spin_unlock_irq(&desc->lock);
 847                chip_bus_sync_unlock(desc);
 848                cpu_relax();
 849                goto again;
 850        }
 851
 852        /*
 853         * Now check again, whether the thread should run. Otherwise
 854         * we would clear the threads_oneshot bit of this thread which
 855         * was just set.
 856         */
 857        if (test_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 858                goto out_unlock;
 859
 860        desc->threads_oneshot &= ~action->thread_mask;
 861
 862        if (!desc->threads_oneshot && !irqd_irq_disabled(&desc->irq_data) &&
 863            irqd_irq_masked(&desc->irq_data))
 864                unmask_threaded_irq(desc);
 865
 866out_unlock:
 867        raw_spin_unlock_irq(&desc->lock);
 868        chip_bus_sync_unlock(desc);
 869}
 870
 871#ifdef CONFIG_SMP
 872/*
 873 * Check whether we need to change the affinity of the interrupt thread.
 874 */
 875static void
 876irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action)
 877{
 878        cpumask_var_t mask;
 879        bool valid = true;
 880
 881        if (!test_and_clear_bit(IRQTF_AFFINITY, &action->thread_flags))
 882                return;
 883
 884        /*
 885         * In case we are out of memory we set IRQTF_AFFINITY again and
 886         * try again next time
 887         */
 888        if (!alloc_cpumask_var(&mask, GFP_KERNEL)) {
 889                set_bit(IRQTF_AFFINITY, &action->thread_flags);
 890                return;
 891        }
 892
 893        raw_spin_lock_irq(&desc->lock);
 894        /*
 895         * This code is triggered unconditionally. Check the affinity
 896         * mask pointer. For CPU_MASK_OFFSTACK=n this is optimized out.
 897         */
 898        if (cpumask_available(desc->irq_common_data.affinity)) {
 899                const struct cpumask *m;
 900
 901                m = irq_data_get_effective_affinity_mask(&desc->irq_data);
 902                cpumask_copy(mask, m);
 903        } else {
 904                valid = false;
 905        }
 906        raw_spin_unlock_irq(&desc->lock);
 907
 908        if (valid)
 909                set_cpus_allowed_ptr(current, mask);
 910        free_cpumask_var(mask);
 911}
 912#else
 913static inline void
 914irq_thread_check_affinity(struct irq_desc *desc, struct irqaction *action) { }
 915#endif
 916
 917/*
 918 * Interrupts which are not explicitely requested as threaded
 919 * interrupts rely on the implicit bh/preempt disable of the hard irq
 920 * context. So we need to disable bh here to avoid deadlocks and other
 921 * side effects.
 922 */
 923static irqreturn_t
 924irq_forced_thread_fn(struct irq_desc *desc, struct irqaction *action)
 925{
 926        irqreturn_t ret;
 927
 928        local_bh_disable();
 929        ret = action->thread_fn(action->irq, action->dev_id);
 930        irq_finalize_oneshot(desc, action);
 931        local_bh_enable();
 932        return ret;
 933}
 934
 935/*
 936 * Interrupts explicitly requested as threaded interrupts want to be
 937 * preemtible - many of them need to sleep and wait for slow busses to
 938 * complete.
 939 */
 940static irqreturn_t irq_thread_fn(struct irq_desc *desc,
 941                struct irqaction *action)
 942{
 943        irqreturn_t ret;
 944
 945        ret = action->thread_fn(action->irq, action->dev_id);
 946        irq_finalize_oneshot(desc, action);
 947        return ret;
 948}
 949
 950static void wake_threads_waitq(struct irq_desc *desc)
 951{
 952        if (atomic_dec_and_test(&desc->threads_active))
 953                wake_up(&desc->wait_for_threads);
 954}
 955
 956static void irq_thread_dtor(struct callback_head *unused)
 957{
 958        struct task_struct *tsk = current;
 959        struct irq_desc *desc;
 960        struct irqaction *action;
 961
 962        if (WARN_ON_ONCE(!(current->flags & PF_EXITING)))
 963                return;
 964
 965        action = kthread_data(tsk);
 966
 967        pr_err("exiting task \"%s\" (%d) is an active IRQ thread (irq %d)\n",
 968               tsk->comm, tsk->pid, action->irq);
 969
 970
 971        desc = irq_to_desc(action->irq);
 972        /*
 973         * If IRQTF_RUNTHREAD is set, we need to decrement
 974         * desc->threads_active and wake possible waiters.
 975         */
 976        if (test_and_clear_bit(IRQTF_RUNTHREAD, &action->thread_flags))
 977                wake_threads_waitq(desc);
 978
 979        /* Prevent a stale desc->threads_oneshot */
 980        irq_finalize_oneshot(desc, action);
 981}
 982
 983static void irq_wake_secondary(struct irq_desc *desc, struct irqaction *action)
 984{
 985        struct irqaction *secondary = action->secondary;
 986
 987        if (WARN_ON_ONCE(!secondary))
 988                return;
 989
 990        raw_spin_lock_irq(&desc->lock);
 991        __irq_wake_thread(desc, secondary);
 992        raw_spin_unlock_irq(&desc->lock);
 993}
 994
 995/*
 996 * Interrupt handler thread
 997 */
 998static int irq_thread(void *data)
 999{
1000        struct callback_head on_exit_work;
1001        struct irqaction *action = data;
1002        struct irq_desc *desc = irq_to_desc(action->irq);
1003        irqreturn_t (*handler_fn)(struct irq_desc *desc,
1004                        struct irqaction *action);
1005
1006        if (force_irqthreads && test_bit(IRQTF_FORCED_THREAD,
1007                                        &action->thread_flags))
1008                handler_fn = irq_forced_thread_fn;
1009        else
1010                handler_fn = irq_thread_fn;
1011
1012        init_task_work(&on_exit_work, irq_thread_dtor);
1013        task_work_add(current, &on_exit_work, false);
1014
1015        irq_thread_check_affinity(desc, action);
1016
1017        while (!irq_wait_for_interrupt(action)) {
1018                irqreturn_t action_ret;
1019
1020                irq_thread_check_affinity(desc, action);
1021
1022                action_ret = handler_fn(desc, action);
1023                if (action_ret == IRQ_HANDLED)
1024                        atomic_inc(&desc->threads_handled);
1025                if (action_ret == IRQ_WAKE_THREAD)
1026                        irq_wake_secondary(desc, action);
1027
1028                wake_threads_waitq(desc);
1029        }
1030
1031        /*
1032         * This is the regular exit path. __free_irq() is stopping the
1033         * thread via kthread_stop() after calling
1034         * synchronize_hardirq(). So neither IRQTF_RUNTHREAD nor the
1035         * oneshot mask bit can be set.
1036         */
1037        task_work_cancel(current, irq_thread_dtor);
1038        return 0;
1039}
1040
1041/**
1042 *      irq_wake_thread - wake the irq thread for the action identified by dev_id
1043 *      @irq:           Interrupt line
1044 *      @dev_id:        Device identity for which the thread should be woken
1045 *
1046 */
1047void irq_wake_thread(unsigned int irq, void *dev_id)
1048{
1049        struct irq_desc *desc = irq_to_desc(irq);
1050        struct irqaction *action;
1051        unsigned long flags;
1052
1053        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1054                return;
1055
1056        raw_spin_lock_irqsave(&desc->lock, flags);
1057        for_each_action_of_desc(desc, action) {
1058                if (action->dev_id == dev_id) {
1059                        if (action->thread)
1060                                __irq_wake_thread(desc, action);
1061                        break;
1062                }
1063        }
1064        raw_spin_unlock_irqrestore(&desc->lock, flags);
1065}
1066EXPORT_SYMBOL_GPL(irq_wake_thread);
1067
1068static int irq_setup_forced_threading(struct irqaction *new)
1069{
1070        if (!force_irqthreads)
1071                return 0;
1072        if (new->flags & (IRQF_NO_THREAD | IRQF_PERCPU | IRQF_ONESHOT))
1073                return 0;
1074
1075        /*
1076         * No further action required for interrupts which are requested as
1077         * threaded interrupts already
1078         */
1079        if (new->handler == irq_default_primary_handler)
1080                return 0;
1081
1082        new->flags |= IRQF_ONESHOT;
1083
1084        /*
1085         * Handle the case where we have a real primary handler and a
1086         * thread handler. We force thread them as well by creating a
1087         * secondary action.
1088         */
1089        if (new->handler && new->thread_fn) {
1090                /* Allocate the secondary action */
1091                new->secondary = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1092                if (!new->secondary)
1093                        return -ENOMEM;
1094                new->secondary->handler = irq_forced_secondary_handler;
1095                new->secondary->thread_fn = new->thread_fn;
1096                new->secondary->dev_id = new->dev_id;
1097                new->secondary->irq = new->irq;
1098                new->secondary->name = new->name;
1099        }
1100        /* Deal with the primary handler */
1101        set_bit(IRQTF_FORCED_THREAD, &new->thread_flags);
1102        new->thread_fn = new->handler;
1103        new->handler = irq_default_primary_handler;
1104        return 0;
1105}
1106
1107static int irq_request_resources(struct irq_desc *desc)
1108{
1109        struct irq_data *d = &desc->irq_data;
1110        struct irq_chip *c = d->chip;
1111
1112        return c->irq_request_resources ? c->irq_request_resources(d) : 0;
1113}
1114
1115static void irq_release_resources(struct irq_desc *desc)
1116{
1117        struct irq_data *d = &desc->irq_data;
1118        struct irq_chip *c = d->chip;
1119
1120        if (c->irq_release_resources)
1121                c->irq_release_resources(d);
1122}
1123
1124static int
1125setup_irq_thread(struct irqaction *new, unsigned int irq, bool secondary)
1126{
1127        struct task_struct *t;
1128        struct sched_param param = {
1129                .sched_priority = MAX_USER_RT_PRIO/2,
1130        };
1131
1132        if (!secondary) {
1133                t = kthread_create(irq_thread, new, "irq/%d-%s", irq,
1134                                   new->name);
1135        } else {
1136                t = kthread_create(irq_thread, new, "irq/%d-s-%s", irq,
1137                                   new->name);
1138                param.sched_priority -= 1;
1139        }
1140
1141        if (IS_ERR(t))
1142                return PTR_ERR(t);
1143
1144        sched_setscheduler_nocheck(t, SCHED_FIFO, &param);
1145
1146        /*
1147         * We keep the reference to the task struct even if
1148         * the thread dies to avoid that the interrupt code
1149         * references an already freed task_struct.
1150         */
1151        get_task_struct(t);
1152        new->thread = t;
1153        /*
1154         * Tell the thread to set its affinity. This is
1155         * important for shared interrupt handlers as we do
1156         * not invoke setup_affinity() for the secondary
1157         * handlers as everything is already set up. Even for
1158         * interrupts marked with IRQF_NO_BALANCE this is
1159         * correct as we want the thread to move to the cpu(s)
1160         * on which the requesting code placed the interrupt.
1161         */
1162        set_bit(IRQTF_AFFINITY, &new->thread_flags);
1163        return 0;
1164}
1165
1166/*
1167 * Internal function to register an irqaction - typically used to
1168 * allocate special interrupts that are part of the architecture.
1169 *
1170 * Locking rules:
1171 *
1172 * desc->request_mutex  Provides serialization against a concurrent free_irq()
1173 *   chip_bus_lock      Provides serialization for slow bus operations
1174 *     desc->lock       Provides serialization against hard interrupts
1175 *
1176 * chip_bus_lock and desc->lock are sufficient for all other management and
1177 * interrupt related functions. desc->request_mutex solely serializes
1178 * request/free_irq().
1179 */
1180static int
1181__setup_irq(unsigned int irq, struct irq_desc *desc, struct irqaction *new)
1182{
1183        struct irqaction *old, **old_ptr;
1184        unsigned long flags, thread_mask = 0;
1185        int ret, nested, shared = 0;
1186
1187        if (!desc)
1188                return -EINVAL;
1189
1190        if (desc->irq_data.chip == &no_irq_chip)
1191                return -ENOSYS;
1192        if (!try_module_get(desc->owner))
1193                return -ENODEV;
1194
1195        new->irq = irq;
1196
1197        /*
1198         * If the trigger type is not specified by the caller,
1199         * then use the default for this interrupt.
1200         */
1201        if (!(new->flags & IRQF_TRIGGER_MASK))
1202                new->flags |= irqd_get_trigger_type(&desc->irq_data);
1203
1204        /*
1205         * Check whether the interrupt nests into another interrupt
1206         * thread.
1207         */
1208        nested = irq_settings_is_nested_thread(desc);
1209        if (nested) {
1210                if (!new->thread_fn) {
1211                        ret = -EINVAL;
1212                        goto out_mput;
1213                }
1214                /*
1215                 * Replace the primary handler which was provided from
1216                 * the driver for non nested interrupt handling by the
1217                 * dummy function which warns when called.
1218                 */
1219                new->handler = irq_nested_primary_handler;
1220        } else {
1221                if (irq_settings_can_thread(desc)) {
1222                        ret = irq_setup_forced_threading(new);
1223                        if (ret)
1224                                goto out_mput;
1225                }
1226        }
1227
1228        /*
1229         * Create a handler thread when a thread function is supplied
1230         * and the interrupt does not nest into another interrupt
1231         * thread.
1232         */
1233        if (new->thread_fn && !nested) {
1234                ret = setup_irq_thread(new, irq, false);
1235                if (ret)
1236                        goto out_mput;
1237                if (new->secondary) {
1238                        ret = setup_irq_thread(new->secondary, irq, true);
1239                        if (ret)
1240                                goto out_thread;
1241                }
1242        }
1243
1244        /*
1245         * Drivers are often written to work w/o knowledge about the
1246         * underlying irq chip implementation, so a request for a
1247         * threaded irq without a primary hard irq context handler
1248         * requires the ONESHOT flag to be set. Some irq chips like
1249         * MSI based interrupts are per se one shot safe. Check the
1250         * chip flags, so we can avoid the unmask dance at the end of
1251         * the threaded handler for those.
1252         */
1253        if (desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)
1254                new->flags &= ~IRQF_ONESHOT;
1255
1256        /*
1257         * Protects against a concurrent __free_irq() call which might wait
1258         * for synchronize_hardirq() to complete without holding the optional
1259         * chip bus lock and desc->lock. Also protects against handing out
1260         * a recycled oneshot thread_mask bit while it's still in use by
1261         * its previous owner.
1262         */
1263        mutex_lock(&desc->request_mutex);
1264
1265        /*
1266         * Acquire bus lock as the irq_request_resources() callback below
1267         * might rely on the serialization or the magic power management
1268         * functions which are abusing the irq_bus_lock() callback,
1269         */
1270        chip_bus_lock(desc);
1271
1272        /* First installed action requests resources. */
1273        if (!desc->action) {
1274                ret = irq_request_resources(desc);
1275                if (ret) {
1276                        pr_err("Failed to request resources for %s (irq %d) on irqchip %s\n",
1277                               new->name, irq, desc->irq_data.chip->name);
1278                        goto out_bus_unlock;
1279                }
1280        }
1281
1282        /*
1283         * The following block of code has to be executed atomically
1284         * protected against a concurrent interrupt and any of the other
1285         * management calls which are not serialized via
1286         * desc->request_mutex or the optional bus lock.
1287         */
1288        raw_spin_lock_irqsave(&desc->lock, flags);
1289        old_ptr = &desc->action;
1290        old = *old_ptr;
1291        if (old) {
1292                /*
1293                 * Can't share interrupts unless both agree to and are
1294                 * the same type (level, edge, polarity). So both flag
1295                 * fields must have IRQF_SHARED set and the bits which
1296                 * set the trigger type must match. Also all must
1297                 * agree on ONESHOT.
1298                 */
1299                unsigned int oldtype;
1300
1301                /*
1302                 * If nobody did set the configuration before, inherit
1303                 * the one provided by the requester.
1304                 */
1305                if (irqd_trigger_type_was_set(&desc->irq_data)) {
1306                        oldtype = irqd_get_trigger_type(&desc->irq_data);
1307                } else {
1308                        oldtype = new->flags & IRQF_TRIGGER_MASK;
1309                        irqd_set_trigger_type(&desc->irq_data, oldtype);
1310                }
1311
1312                if (!((old->flags & new->flags) & IRQF_SHARED) ||
1313                    (oldtype != (new->flags & IRQF_TRIGGER_MASK)) ||
1314                    ((old->flags ^ new->flags) & IRQF_ONESHOT))
1315                        goto mismatch;
1316
1317                /* All handlers must agree on per-cpuness */
1318                if ((old->flags & IRQF_PERCPU) !=
1319                    (new->flags & IRQF_PERCPU))
1320                        goto mismatch;
1321
1322                /* add new interrupt at end of irq queue */
1323                do {
1324                        /*
1325                         * Or all existing action->thread_mask bits,
1326                         * so we can find the next zero bit for this
1327                         * new action.
1328                         */
1329                        thread_mask |= old->thread_mask;
1330                        old_ptr = &old->next;
1331                        old = *old_ptr;
1332                } while (old);
1333                shared = 1;
1334        }
1335
1336        /*
1337         * Setup the thread mask for this irqaction for ONESHOT. For
1338         * !ONESHOT irqs the thread mask is 0 so we can avoid a
1339         * conditional in irq_wake_thread().
1340         */
1341        if (new->flags & IRQF_ONESHOT) {
1342                /*
1343                 * Unlikely to have 32 resp 64 irqs sharing one line,
1344                 * but who knows.
1345                 */
1346                if (thread_mask == ~0UL) {
1347                        ret = -EBUSY;
1348                        goto out_unlock;
1349                }
1350                /*
1351                 * The thread_mask for the action is or'ed to
1352                 * desc->thread_active to indicate that the
1353                 * IRQF_ONESHOT thread handler has been woken, but not
1354                 * yet finished. The bit is cleared when a thread
1355                 * completes. When all threads of a shared interrupt
1356                 * line have completed desc->threads_active becomes
1357                 * zero and the interrupt line is unmasked. See
1358                 * handle.c:irq_wake_thread() for further information.
1359                 *
1360                 * If no thread is woken by primary (hard irq context)
1361                 * interrupt handlers, then desc->threads_active is
1362                 * also checked for zero to unmask the irq line in the
1363                 * affected hard irq flow handlers
1364                 * (handle_[fasteoi|level]_irq).
1365                 *
1366                 * The new action gets the first zero bit of
1367                 * thread_mask assigned. See the loop above which or's
1368                 * all existing action->thread_mask bits.
1369                 */
1370                new->thread_mask = 1UL << ffz(thread_mask);
1371
1372        } else if (new->handler == irq_default_primary_handler &&
1373                   !(desc->irq_data.chip->flags & IRQCHIP_ONESHOT_SAFE)) {
1374                /*
1375                 * The interrupt was requested with handler = NULL, so
1376                 * we use the default primary handler for it. But it
1377                 * does not have the oneshot flag set. In combination
1378                 * with level interrupts this is deadly, because the
1379                 * default primary handler just wakes the thread, then
1380                 * the irq lines is reenabled, but the device still
1381                 * has the level irq asserted. Rinse and repeat....
1382                 *
1383                 * While this works for edge type interrupts, we play
1384                 * it safe and reject unconditionally because we can't
1385                 * say for sure which type this interrupt really
1386                 * has. The type flags are unreliable as the
1387                 * underlying chip implementation can override them.
1388                 */
1389                pr_err("Threaded irq requested with handler=NULL and !ONESHOT for irq %d\n",
1390                       irq);
1391                ret = -EINVAL;
1392                goto out_unlock;
1393        }
1394
1395        if (!shared) {
1396                init_waitqueue_head(&desc->wait_for_threads);
1397
1398                /* Setup the type (level, edge polarity) if configured: */
1399                if (new->flags & IRQF_TRIGGER_MASK) {
1400                        ret = __irq_set_trigger(desc,
1401                                                new->flags & IRQF_TRIGGER_MASK);
1402
1403                        if (ret)
1404                                goto out_unlock;
1405                }
1406
1407                /*
1408                 * Activate the interrupt. That activation must happen
1409                 * independently of IRQ_NOAUTOEN. request_irq() can fail
1410                 * and the callers are supposed to handle
1411                 * that. enable_irq() of an interrupt requested with
1412                 * IRQ_NOAUTOEN is not supposed to fail. The activation
1413                 * keeps it in shutdown mode, it merily associates
1414                 * resources if necessary and if that's not possible it
1415                 * fails. Interrupts which are in managed shutdown mode
1416                 * will simply ignore that activation request.
1417                 */
1418                ret = irq_activate(desc);
1419                if (ret)
1420                        goto out_unlock;
1421
1422                desc->istate &= ~(IRQS_AUTODETECT | IRQS_SPURIOUS_DISABLED | \
1423                                  IRQS_ONESHOT | IRQS_WAITING);
1424                irqd_clear(&desc->irq_data, IRQD_IRQ_INPROGRESS);
1425
1426                if (new->flags & IRQF_PERCPU) {
1427                        irqd_set(&desc->irq_data, IRQD_PER_CPU);
1428                        irq_settings_set_per_cpu(desc);
1429                }
1430
1431                if (new->flags & IRQF_ONESHOT)
1432                        desc->istate |= IRQS_ONESHOT;
1433
1434                /* Exclude IRQ from balancing if requested */
1435                if (new->flags & IRQF_NOBALANCING) {
1436                        irq_settings_set_no_balancing(desc);
1437                        irqd_set(&desc->irq_data, IRQD_NO_BALANCING);
1438                }
1439
1440                if (irq_settings_can_autoenable(desc)) {
1441                        irq_startup(desc, IRQ_RESEND, IRQ_START_COND);
1442                } else {
1443                        /*
1444                         * Shared interrupts do not go well with disabling
1445                         * auto enable. The sharing interrupt might request
1446                         * it while it's still disabled and then wait for
1447                         * interrupts forever.
1448                         */
1449                        WARN_ON_ONCE(new->flags & IRQF_SHARED);
1450                        /* Undo nested disables: */
1451                        desc->depth = 1;
1452                }
1453
1454        } else if (new->flags & IRQF_TRIGGER_MASK) {
1455                unsigned int nmsk = new->flags & IRQF_TRIGGER_MASK;
1456                unsigned int omsk = irqd_get_trigger_type(&desc->irq_data);
1457
1458                if (nmsk != omsk)
1459                        /* hope the handler works with current  trigger mode */
1460                        pr_warn("irq %d uses trigger mode %u; requested %u\n",
1461                                irq, omsk, nmsk);
1462        }
1463
1464        *old_ptr = new;
1465
1466        irq_pm_install_action(desc, new);
1467
1468        /* Reset broken irq detection when installing new handler */
1469        desc->irq_count = 0;
1470        desc->irqs_unhandled = 0;
1471
1472        /*
1473         * Check whether we disabled the irq via the spurious handler
1474         * before. Reenable it and give it another chance.
1475         */
1476        if (shared && (desc->istate & IRQS_SPURIOUS_DISABLED)) {
1477                desc->istate &= ~IRQS_SPURIOUS_DISABLED;
1478                __enable_irq(desc);
1479        }
1480
1481        raw_spin_unlock_irqrestore(&desc->lock, flags);
1482        chip_bus_sync_unlock(desc);
1483        mutex_unlock(&desc->request_mutex);
1484
1485        irq_setup_timings(desc, new);
1486
1487        /*
1488         * Strictly no need to wake it up, but hung_task complains
1489         * when no hard interrupt wakes the thread up.
1490         */
1491        if (new->thread)
1492                wake_up_process(new->thread);
1493        if (new->secondary)
1494                wake_up_process(new->secondary->thread);
1495
1496        register_irq_proc(irq, desc);
1497        new->dir = NULL;
1498        register_handler_proc(irq, new);
1499        return 0;
1500
1501mismatch:
1502        if (!(new->flags & IRQF_PROBE_SHARED)) {
1503                pr_err("Flags mismatch irq %d. %08x (%s) vs. %08x (%s)\n",
1504                       irq, new->flags, new->name, old->flags, old->name);
1505#ifdef CONFIG_DEBUG_SHIRQ
1506                dump_stack();
1507#endif
1508        }
1509        ret = -EBUSY;
1510
1511out_unlock:
1512        raw_spin_unlock_irqrestore(&desc->lock, flags);
1513
1514        if (!desc->action)
1515                irq_release_resources(desc);
1516out_bus_unlock:
1517        chip_bus_sync_unlock(desc);
1518        mutex_unlock(&desc->request_mutex);
1519
1520out_thread:
1521        if (new->thread) {
1522                struct task_struct *t = new->thread;
1523
1524                new->thread = NULL;
1525                kthread_stop(t);
1526                put_task_struct(t);
1527        }
1528        if (new->secondary && new->secondary->thread) {
1529                struct task_struct *t = new->secondary->thread;
1530
1531                new->secondary->thread = NULL;
1532                kthread_stop(t);
1533                put_task_struct(t);
1534        }
1535out_mput:
1536        module_put(desc->owner);
1537        return ret;
1538}
1539
1540/**
1541 *      setup_irq - setup an interrupt
1542 *      @irq: Interrupt line to setup
1543 *      @act: irqaction for the interrupt
1544 *
1545 * Used to statically setup interrupts in the early boot process.
1546 */
1547int setup_irq(unsigned int irq, struct irqaction *act)
1548{
1549        int retval;
1550        struct irq_desc *desc = irq_to_desc(irq);
1551
1552        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1553                return -EINVAL;
1554
1555        retval = irq_chip_pm_get(&desc->irq_data);
1556        if (retval < 0)
1557                return retval;
1558
1559        retval = __setup_irq(irq, desc, act);
1560
1561        if (retval)
1562                irq_chip_pm_put(&desc->irq_data);
1563
1564        return retval;
1565}
1566EXPORT_SYMBOL_GPL(setup_irq);
1567
1568/*
1569 * Internal function to unregister an irqaction - used to free
1570 * regular and special interrupts that are part of the architecture.
1571 */
1572static struct irqaction *__free_irq(struct irq_desc *desc, void *dev_id)
1573{
1574        unsigned irq = desc->irq_data.irq;
1575        struct irqaction *action, **action_ptr;
1576        unsigned long flags;
1577
1578        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
1579
1580        mutex_lock(&desc->request_mutex);
1581        chip_bus_lock(desc);
1582        raw_spin_lock_irqsave(&desc->lock, flags);
1583
1584        /*
1585         * There can be multiple actions per IRQ descriptor, find the right
1586         * one based on the dev_id:
1587         */
1588        action_ptr = &desc->action;
1589        for (;;) {
1590                action = *action_ptr;
1591
1592                if (!action) {
1593                        WARN(1, "Trying to free already-free IRQ %d\n", irq);
1594                        raw_spin_unlock_irqrestore(&desc->lock, flags);
1595                        chip_bus_sync_unlock(desc);
1596                        mutex_unlock(&desc->request_mutex);
1597                        return NULL;
1598                }
1599
1600                if (action->dev_id == dev_id)
1601                        break;
1602                action_ptr = &action->next;
1603        }
1604
1605        /* Found it - now remove it from the list of entries: */
1606        *action_ptr = action->next;
1607
1608        irq_pm_remove_action(desc, action);
1609
1610        /* If this was the last handler, shut down the IRQ line: */
1611        if (!desc->action) {
1612                irq_settings_clr_disable_unlazy(desc);
1613                irq_shutdown(desc);
1614        }
1615
1616#ifdef CONFIG_SMP
1617        /* make sure affinity_hint is cleaned up */
1618        if (WARN_ON_ONCE(desc->affinity_hint))
1619                desc->affinity_hint = NULL;
1620#endif
1621
1622        raw_spin_unlock_irqrestore(&desc->lock, flags);
1623        /*
1624         * Drop bus_lock here so the changes which were done in the chip
1625         * callbacks above are synced out to the irq chips which hang
1626         * behind a slow bus (I2C, SPI) before calling synchronize_hardirq().
1627         *
1628         * Aside of that the bus_lock can also be taken from the threaded
1629         * handler in irq_finalize_oneshot() which results in a deadlock
1630         * because kthread_stop() would wait forever for the thread to
1631         * complete, which is blocked on the bus lock.
1632         *
1633         * The still held desc->request_mutex() protects against a
1634         * concurrent request_irq() of this irq so the release of resources
1635         * and timing data is properly serialized.
1636         */
1637        chip_bus_sync_unlock(desc);
1638
1639        unregister_handler_proc(irq, action);
1640
1641        /* Make sure it's not being used on another CPU: */
1642        synchronize_hardirq(irq);
1643
1644#ifdef CONFIG_DEBUG_SHIRQ
1645        /*
1646         * It's a shared IRQ -- the driver ought to be prepared for an IRQ
1647         * event to happen even now it's being freed, so let's make sure that
1648         * is so by doing an extra call to the handler ....
1649         *
1650         * ( We do this after actually deregistering it, to make sure that a
1651         *   'real' IRQ doesn't run in parallel with our fake. )
1652         */
1653        if (action->flags & IRQF_SHARED) {
1654                local_irq_save(flags);
1655                action->handler(irq, dev_id);
1656                local_irq_restore(flags);
1657        }
1658#endif
1659
1660        /*
1661         * The action has already been removed above, but the thread writes
1662         * its oneshot mask bit when it completes. Though request_mutex is
1663         * held across this which prevents __setup_irq() from handing out
1664         * the same bit to a newly requested action.
1665         */
1666        if (action->thread) {
1667                kthread_stop(action->thread);
1668                put_task_struct(action->thread);
1669                if (action->secondary && action->secondary->thread) {
1670                        kthread_stop(action->secondary->thread);
1671                        put_task_struct(action->secondary->thread);
1672                }
1673        }
1674
1675        /* Last action releases resources */
1676        if (!desc->action) {
1677                /*
1678                 * Reaquire bus lock as irq_release_resources() might
1679                 * require it to deallocate resources over the slow bus.
1680                 */
1681                chip_bus_lock(desc);
1682                irq_release_resources(desc);
1683                chip_bus_sync_unlock(desc);
1684                irq_remove_timings(desc);
1685        }
1686
1687        mutex_unlock(&desc->request_mutex);
1688
1689        irq_chip_pm_put(&desc->irq_data);
1690        module_put(desc->owner);
1691        kfree(action->secondary);
1692        return action;
1693}
1694
1695/**
1696 *      remove_irq - free an interrupt
1697 *      @irq: Interrupt line to free
1698 *      @act: irqaction for the interrupt
1699 *
1700 * Used to remove interrupts statically setup by the early boot process.
1701 */
1702void remove_irq(unsigned int irq, struct irqaction *act)
1703{
1704        struct irq_desc *desc = irq_to_desc(irq);
1705
1706        if (desc && !WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1707                __free_irq(desc, act->dev_id);
1708}
1709EXPORT_SYMBOL_GPL(remove_irq);
1710
1711/**
1712 *      free_irq - free an interrupt allocated with request_irq
1713 *      @irq: Interrupt line to free
1714 *      @dev_id: Device identity to free
1715 *
1716 *      Remove an interrupt handler. The handler is removed and if the
1717 *      interrupt line is no longer in use by any driver it is disabled.
1718 *      On a shared IRQ the caller must ensure the interrupt is disabled
1719 *      on the card it drives before calling this function. The function
1720 *      does not return until any executing interrupts for this IRQ
1721 *      have completed.
1722 *
1723 *      This function must not be called from interrupt context.
1724 *
1725 *      Returns the devname argument passed to request_irq.
1726 */
1727const void *free_irq(unsigned int irq, void *dev_id)
1728{
1729        struct irq_desc *desc = irq_to_desc(irq);
1730        struct irqaction *action;
1731        const char *devname;
1732
1733        if (!desc || WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1734                return NULL;
1735
1736#ifdef CONFIG_SMP
1737        if (WARN_ON(desc->affinity_notify))
1738                desc->affinity_notify = NULL;
1739#endif
1740
1741        action = __free_irq(desc, dev_id);
1742
1743        if (!action)
1744                return NULL;
1745
1746        devname = action->name;
1747        kfree(action);
1748        return devname;
1749}
1750EXPORT_SYMBOL(free_irq);
1751
1752/**
1753 *      request_threaded_irq - allocate an interrupt line
1754 *      @irq: Interrupt line to allocate
1755 *      @handler: Function to be called when the IRQ occurs.
1756 *                Primary handler for threaded interrupts
1757 *                If NULL and thread_fn != NULL the default
1758 *                primary handler is installed
1759 *      @thread_fn: Function called from the irq handler thread
1760 *                  If NULL, no irq thread is created
1761 *      @irqflags: Interrupt type flags
1762 *      @devname: An ascii name for the claiming device
1763 *      @dev_id: A cookie passed back to the handler function
1764 *
1765 *      This call allocates interrupt resources and enables the
1766 *      interrupt line and IRQ handling. From the point this
1767 *      call is made your handler function may be invoked. Since
1768 *      your handler function must clear any interrupt the board
1769 *      raises, you must take care both to initialise your hardware
1770 *      and to set up the interrupt handler in the right order.
1771 *
1772 *      If you want to set up a threaded irq handler for your device
1773 *      then you need to supply @handler and @thread_fn. @handler is
1774 *      still called in hard interrupt context and has to check
1775 *      whether the interrupt originates from the device. If yes it
1776 *      needs to disable the interrupt on the device and return
1777 *      IRQ_WAKE_THREAD which will wake up the handler thread and run
1778 *      @thread_fn. This split handler design is necessary to support
1779 *      shared interrupts.
1780 *
1781 *      Dev_id must be globally unique. Normally the address of the
1782 *      device data structure is used as the cookie. Since the handler
1783 *      receives this value it makes sense to use it.
1784 *
1785 *      If your interrupt is shared you must pass a non NULL dev_id
1786 *      as this is required when freeing the interrupt.
1787 *
1788 *      Flags:
1789 *
1790 *      IRQF_SHARED             Interrupt is shared
1791 *      IRQF_TRIGGER_*          Specify active edge(s) or level
1792 *
1793 */
1794int request_threaded_irq(unsigned int irq, irq_handler_t handler,
1795                         irq_handler_t thread_fn, unsigned long irqflags,
1796                         const char *devname, void *dev_id)
1797{
1798        struct irqaction *action;
1799        struct irq_desc *desc;
1800        int retval;
1801
1802        if (irq == IRQ_NOTCONNECTED)
1803                return -ENOTCONN;
1804
1805        /*
1806         * Sanity-check: shared interrupts must pass in a real dev-ID,
1807         * otherwise we'll have trouble later trying to figure out
1808         * which interrupt is which (messes up the interrupt freeing
1809         * logic etc).
1810         *
1811         * Also IRQF_COND_SUSPEND only makes sense for shared interrupts and
1812         * it cannot be set along with IRQF_NO_SUSPEND.
1813         */
1814        if (((irqflags & IRQF_SHARED) && !dev_id) ||
1815            (!(irqflags & IRQF_SHARED) && (irqflags & IRQF_COND_SUSPEND)) ||
1816            ((irqflags & IRQF_NO_SUSPEND) && (irqflags & IRQF_COND_SUSPEND)))
1817                return -EINVAL;
1818
1819        desc = irq_to_desc(irq);
1820        if (!desc)
1821                return -EINVAL;
1822
1823        if (!irq_settings_can_request(desc) ||
1824            WARN_ON(irq_settings_is_per_cpu_devid(desc)))
1825                return -EINVAL;
1826
1827        if (!handler) {
1828                if (!thread_fn)
1829                        return -EINVAL;
1830                handler = irq_default_primary_handler;
1831        }
1832
1833        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
1834        if (!action)
1835                return -ENOMEM;
1836
1837        action->handler = handler;
1838        action->thread_fn = thread_fn;
1839        action->flags = irqflags;
1840        action->name = devname;
1841        action->dev_id = dev_id;
1842
1843        retval = irq_chip_pm_get(&desc->irq_data);
1844        if (retval < 0) {
1845                kfree(action);
1846                return retval;
1847        }
1848
1849        retval = __setup_irq(irq, desc, action);
1850
1851        if (retval) {
1852                irq_chip_pm_put(&desc->irq_data);
1853                kfree(action->secondary);
1854                kfree(action);
1855        }
1856
1857#ifdef CONFIG_DEBUG_SHIRQ_FIXME
1858        if (!retval && (irqflags & IRQF_SHARED)) {
1859                /*
1860                 * It's a shared IRQ -- the driver ought to be prepared for it
1861                 * to happen immediately, so let's make sure....
1862                 * We disable the irq to make sure that a 'real' IRQ doesn't
1863                 * run in parallel with our fake.
1864                 */
1865                unsigned long flags;
1866
1867                disable_irq(irq);
1868                local_irq_save(flags);
1869
1870                handler(irq, dev_id);
1871
1872                local_irq_restore(flags);
1873                enable_irq(irq);
1874        }
1875#endif
1876        return retval;
1877}
1878EXPORT_SYMBOL(request_threaded_irq);
1879
1880/**
1881 *      request_any_context_irq - allocate an interrupt line
1882 *      @irq: Interrupt line to allocate
1883 *      @handler: Function to be called when the IRQ occurs.
1884 *                Threaded handler for threaded interrupts.
1885 *      @flags: Interrupt type flags
1886 *      @name: An ascii name for the claiming device
1887 *      @dev_id: A cookie passed back to the handler function
1888 *
1889 *      This call allocates interrupt resources and enables the
1890 *      interrupt line and IRQ handling. It selects either a
1891 *      hardirq or threaded handling method depending on the
1892 *      context.
1893 *
1894 *      On failure, it returns a negative value. On success,
1895 *      it returns either IRQC_IS_HARDIRQ or IRQC_IS_NESTED.
1896 */
1897int request_any_context_irq(unsigned int irq, irq_handler_t handler,
1898                            unsigned long flags, const char *name, void *dev_id)
1899{
1900        struct irq_desc *desc;
1901        int ret;
1902
1903        if (irq == IRQ_NOTCONNECTED)
1904                return -ENOTCONN;
1905
1906        desc = irq_to_desc(irq);
1907        if (!desc)
1908                return -EINVAL;
1909
1910        if (irq_settings_is_nested_thread(desc)) {
1911                ret = request_threaded_irq(irq, NULL, handler,
1912                                           flags, name, dev_id);
1913                return !ret ? IRQC_IS_NESTED : ret;
1914        }
1915
1916        ret = request_irq(irq, handler, flags, name, dev_id);
1917        return !ret ? IRQC_IS_HARDIRQ : ret;
1918}
1919EXPORT_SYMBOL_GPL(request_any_context_irq);
1920
1921void enable_percpu_irq(unsigned int irq, unsigned int type)
1922{
1923        unsigned int cpu = smp_processor_id();
1924        unsigned long flags;
1925        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1926
1927        if (!desc)
1928                return;
1929
1930        /*
1931         * If the trigger type is not specified by the caller, then
1932         * use the default for this interrupt.
1933         */
1934        type &= IRQ_TYPE_SENSE_MASK;
1935        if (type == IRQ_TYPE_NONE)
1936                type = irqd_get_trigger_type(&desc->irq_data);
1937
1938        if (type != IRQ_TYPE_NONE) {
1939                int ret;
1940
1941                ret = __irq_set_trigger(desc, type);
1942
1943                if (ret) {
1944                        WARN(1, "failed to set type for IRQ%d\n", irq);
1945                        goto out;
1946                }
1947        }
1948
1949        irq_percpu_enable(desc, cpu);
1950out:
1951        irq_put_desc_unlock(desc, flags);
1952}
1953EXPORT_SYMBOL_GPL(enable_percpu_irq);
1954
1955/**
1956 * irq_percpu_is_enabled - Check whether the per cpu irq is enabled
1957 * @irq:        Linux irq number to check for
1958 *
1959 * Must be called from a non migratable context. Returns the enable
1960 * state of a per cpu interrupt on the current cpu.
1961 */
1962bool irq_percpu_is_enabled(unsigned int irq)
1963{
1964        unsigned int cpu = smp_processor_id();
1965        struct irq_desc *desc;
1966        unsigned long flags;
1967        bool is_enabled;
1968
1969        desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1970        if (!desc)
1971                return false;
1972
1973        is_enabled = cpumask_test_cpu(cpu, desc->percpu_enabled);
1974        irq_put_desc_unlock(desc, flags);
1975
1976        return is_enabled;
1977}
1978EXPORT_SYMBOL_GPL(irq_percpu_is_enabled);
1979
1980void disable_percpu_irq(unsigned int irq)
1981{
1982        unsigned int cpu = smp_processor_id();
1983        unsigned long flags;
1984        struct irq_desc *desc = irq_get_desc_lock(irq, &flags, IRQ_GET_DESC_CHECK_PERCPU);
1985
1986        if (!desc)
1987                return;
1988
1989        irq_percpu_disable(desc, cpu);
1990        irq_put_desc_unlock(desc, flags);
1991}
1992EXPORT_SYMBOL_GPL(disable_percpu_irq);
1993
1994/*
1995 * Internal function to unregister a percpu irqaction.
1996 */
1997static struct irqaction *__free_percpu_irq(unsigned int irq, void __percpu *dev_id)
1998{
1999        struct irq_desc *desc = irq_to_desc(irq);
2000        struct irqaction *action;
2001        unsigned long flags;
2002
2003        WARN(in_interrupt(), "Trying to free IRQ %d from IRQ context!\n", irq);
2004
2005        if (!desc)
2006                return NULL;
2007
2008        raw_spin_lock_irqsave(&desc->lock, flags);
2009
2010        action = desc->action;
2011        if (!action || action->percpu_dev_id != dev_id) {
2012                WARN(1, "Trying to free already-free IRQ %d\n", irq);
2013                goto bad;
2014        }
2015
2016        if (!cpumask_empty(desc->percpu_enabled)) {
2017                WARN(1, "percpu IRQ %d still enabled on CPU%d!\n",
2018                     irq, cpumask_first(desc->percpu_enabled));
2019                goto bad;
2020        }
2021
2022        /* Found it - now remove it from the list of entries: */
2023        desc->action = NULL;
2024
2025        raw_spin_unlock_irqrestore(&desc->lock, flags);
2026
2027        unregister_handler_proc(irq, action);
2028
2029        irq_chip_pm_put(&desc->irq_data);
2030        module_put(desc->owner);
2031        return action;
2032
2033bad:
2034        raw_spin_unlock_irqrestore(&desc->lock, flags);
2035        return NULL;
2036}
2037
2038/**
2039 *      remove_percpu_irq - free a per-cpu interrupt
2040 *      @irq: Interrupt line to free
2041 *      @act: irqaction for the interrupt
2042 *
2043 * Used to remove interrupts statically setup by the early boot process.
2044 */
2045void remove_percpu_irq(unsigned int irq, struct irqaction *act)
2046{
2047        struct irq_desc *desc = irq_to_desc(irq);
2048
2049        if (desc && irq_settings_is_per_cpu_devid(desc))
2050            __free_percpu_irq(irq, act->percpu_dev_id);
2051}
2052
2053/**
2054 *      free_percpu_irq - free an interrupt allocated with request_percpu_irq
2055 *      @irq: Interrupt line to free
2056 *      @dev_id: Device identity to free
2057 *
2058 *      Remove a percpu interrupt handler. The handler is removed, but
2059 *      the interrupt line is not disabled. This must be done on each
2060 *      CPU before calling this function. The function does not return
2061 *      until any executing interrupts for this IRQ have completed.
2062 *
2063 *      This function must not be called from interrupt context.
2064 */
2065void free_percpu_irq(unsigned int irq, void __percpu *dev_id)
2066{
2067        struct irq_desc *desc = irq_to_desc(irq);
2068
2069        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2070                return;
2071
2072        chip_bus_lock(desc);
2073        kfree(__free_percpu_irq(irq, dev_id));
2074        chip_bus_sync_unlock(desc);
2075}
2076EXPORT_SYMBOL_GPL(free_percpu_irq);
2077
2078/**
2079 *      setup_percpu_irq - setup a per-cpu interrupt
2080 *      @irq: Interrupt line to setup
2081 *      @act: irqaction for the interrupt
2082 *
2083 * Used to statically setup per-cpu interrupts in the early boot process.
2084 */
2085int setup_percpu_irq(unsigned int irq, struct irqaction *act)
2086{
2087        struct irq_desc *desc = irq_to_desc(irq);
2088        int retval;
2089
2090        if (!desc || !irq_settings_is_per_cpu_devid(desc))
2091                return -EINVAL;
2092
2093        retval = irq_chip_pm_get(&desc->irq_data);
2094        if (retval < 0)
2095                return retval;
2096
2097        retval = __setup_irq(irq, desc, act);
2098
2099        if (retval)
2100                irq_chip_pm_put(&desc->irq_data);
2101
2102        return retval;
2103}
2104
2105/**
2106 *      __request_percpu_irq - allocate a percpu interrupt line
2107 *      @irq: Interrupt line to allocate
2108 *      @handler: Function to be called when the IRQ occurs.
2109 *      @flags: Interrupt type flags (IRQF_TIMER only)
2110 *      @devname: An ascii name for the claiming device
2111 *      @dev_id: A percpu cookie passed back to the handler function
2112 *
2113 *      This call allocates interrupt resources and enables the
2114 *      interrupt on the local CPU. If the interrupt is supposed to be
2115 *      enabled on other CPUs, it has to be done on each CPU using
2116 *      enable_percpu_irq().
2117 *
2118 *      Dev_id must be globally unique. It is a per-cpu variable, and
2119 *      the handler gets called with the interrupted CPU's instance of
2120 *      that variable.
2121 */
2122int __request_percpu_irq(unsigned int irq, irq_handler_t handler,
2123                         unsigned long flags, const char *devname,
2124                         void __percpu *dev_id)
2125{
2126        struct irqaction *action;
2127        struct irq_desc *desc;
2128        int retval;
2129
2130        if (!dev_id)
2131                return -EINVAL;
2132
2133        desc = irq_to_desc(irq);
2134        if (!desc || !irq_settings_can_request(desc) ||
2135            !irq_settings_is_per_cpu_devid(desc))
2136                return -EINVAL;
2137
2138        if (flags && flags != IRQF_TIMER)
2139                return -EINVAL;
2140
2141        action = kzalloc(sizeof(struct irqaction), GFP_KERNEL);
2142        if (!action)
2143                return -ENOMEM;
2144
2145        action->handler = handler;
2146        action->flags = flags | IRQF_PERCPU | IRQF_NO_SUSPEND;
2147        action->name = devname;
2148        action->percpu_dev_id = dev_id;
2149
2150        retval = irq_chip_pm_get(&desc->irq_data);
2151        if (retval < 0) {
2152                kfree(action);
2153                return retval;
2154        }
2155
2156        retval = __setup_irq(irq, desc, action);
2157
2158        if (retval) {
2159                irq_chip_pm_put(&desc->irq_data);
2160                kfree(action);
2161        }
2162
2163        return retval;
2164}
2165EXPORT_SYMBOL_GPL(__request_percpu_irq);
2166
2167/**
2168 *      irq_get_irqchip_state - returns the irqchip state of a interrupt.
2169 *      @irq: Interrupt line that is forwarded to a VM
2170 *      @which: One of IRQCHIP_STATE_* the caller wants to know about
2171 *      @state: a pointer to a boolean where the state is to be storeed
2172 *
2173 *      This call snapshots the internal irqchip state of an
2174 *      interrupt, returning into @state the bit corresponding to
2175 *      stage @which
2176 *
2177 *      This function should be called with preemption disabled if the
2178 *      interrupt controller has per-cpu registers.
2179 */
2180int irq_get_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2181                          bool *state)
2182{
2183        struct irq_desc *desc;
2184        struct irq_data *data;
2185        struct irq_chip *chip;
2186        unsigned long flags;
2187        int err = -EINVAL;
2188
2189        desc = irq_get_desc_buslock(irq, &flags, 0);
2190        if (!desc)
2191                return err;
2192
2193        data = irq_desc_get_irq_data(desc);
2194
2195        do {
2196                chip = irq_data_get_irq_chip(data);
2197                if (chip->irq_get_irqchip_state)
2198                        break;
2199#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2200                data = data->parent_data;
2201#else
2202                data = NULL;
2203#endif
2204        } while (data);
2205
2206        if (data)
2207                err = chip->irq_get_irqchip_state(data, which, state);
2208
2209        irq_put_desc_busunlock(desc, flags);
2210        return err;
2211}
2212EXPORT_SYMBOL_GPL(irq_get_irqchip_state);
2213
2214/**
2215 *      irq_set_irqchip_state - set the state of a forwarded interrupt.
2216 *      @irq: Interrupt line that is forwarded to a VM
2217 *      @which: State to be restored (one of IRQCHIP_STATE_*)
2218 *      @val: Value corresponding to @which
2219 *
2220 *      This call sets the internal irqchip state of an interrupt,
2221 *      depending on the value of @which.
2222 *
2223 *      This function should be called with preemption disabled if the
2224 *      interrupt controller has per-cpu registers.
2225 */
2226int irq_set_irqchip_state(unsigned int irq, enum irqchip_irq_state which,
2227                          bool val)
2228{
2229        struct irq_desc *desc;
2230        struct irq_data *data;
2231        struct irq_chip *chip;
2232        unsigned long flags;
2233        int err = -EINVAL;
2234
2235        desc = irq_get_desc_buslock(irq, &flags, 0);
2236        if (!desc)
2237                return err;
2238
2239        data = irq_desc_get_irq_data(desc);
2240
2241        do {
2242                chip = irq_data_get_irq_chip(data);
2243                if (chip->irq_set_irqchip_state)
2244                        break;
2245#ifdef CONFIG_IRQ_DOMAIN_HIERARCHY
2246                data = data->parent_data;
2247#else
2248                data = NULL;
2249#endif
2250        } while (data);
2251
2252        if (data)
2253                err = chip->irq_set_irqchip_state(data, which, val);
2254
2255        irq_put_desc_busunlock(desc, flags);
2256        return err;
2257}
2258EXPORT_SYMBOL_GPL(irq_set_irqchip_state);
2259