linux/kernel/locking/rtmutex.c
<<
>>
Prefs
   1/*
   2 * RT-Mutexes: simple blocking mutual exclusion locks with PI support
   3 *
   4 * started by Ingo Molnar and Thomas Gleixner.
   5 *
   6 *  Copyright (C) 2004-2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   7 *  Copyright (C) 2005-2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
   8 *  Copyright (C) 2005 Kihon Technologies Inc., Steven Rostedt
   9 *  Copyright (C) 2006 Esben Nielsen
  10 *
  11 *  See Documentation/locking/rt-mutex-design.txt for details.
  12 */
  13#include <linux/spinlock.h>
  14#include <linux/export.h>
  15#include <linux/sched/signal.h>
  16#include <linux/sched/rt.h>
  17#include <linux/sched/deadline.h>
  18#include <linux/sched/wake_q.h>
  19#include <linux/sched/debug.h>
  20#include <linux/timer.h>
  21
  22#include "rtmutex_common.h"
  23
  24/*
  25 * lock->owner state tracking:
  26 *
  27 * lock->owner holds the task_struct pointer of the owner. Bit 0
  28 * is used to keep track of the "lock has waiters" state.
  29 *
  30 * owner        bit0
  31 * NULL         0       lock is free (fast acquire possible)
  32 * NULL         1       lock is free and has waiters and the top waiter
  33 *                              is going to take the lock*
  34 * taskpointer  0       lock is held (fast release possible)
  35 * taskpointer  1       lock is held and has waiters**
  36 *
  37 * The fast atomic compare exchange based acquire and release is only
  38 * possible when bit 0 of lock->owner is 0.
  39 *
  40 * (*) It also can be a transitional state when grabbing the lock
  41 * with ->wait_lock is held. To prevent any fast path cmpxchg to the lock,
  42 * we need to set the bit0 before looking at the lock, and the owner may be
  43 * NULL in this small time, hence this can be a transitional state.
  44 *
  45 * (**) There is a small time when bit 0 is set but there are no
  46 * waiters. This can happen when grabbing the lock in the slow path.
  47 * To prevent a cmpxchg of the owner releasing the lock, we need to
  48 * set this bit before looking at the lock.
  49 */
  50
  51static void
  52rt_mutex_set_owner(struct rt_mutex *lock, struct task_struct *owner)
  53{
  54        unsigned long val = (unsigned long)owner;
  55
  56        if (rt_mutex_has_waiters(lock))
  57                val |= RT_MUTEX_HAS_WAITERS;
  58
  59        lock->owner = (struct task_struct *)val;
  60}
  61
  62static inline void clear_rt_mutex_waiters(struct rt_mutex *lock)
  63{
  64        lock->owner = (struct task_struct *)
  65                        ((unsigned long)lock->owner & ~RT_MUTEX_HAS_WAITERS);
  66}
  67
  68static void fixup_rt_mutex_waiters(struct rt_mutex *lock)
  69{
  70        unsigned long owner, *p = (unsigned long *) &lock->owner;
  71
  72        if (rt_mutex_has_waiters(lock))
  73                return;
  74
  75        /*
  76         * The rbtree has no waiters enqueued, now make sure that the
  77         * lock->owner still has the waiters bit set, otherwise the
  78         * following can happen:
  79         *
  80         * CPU 0        CPU 1           CPU2
  81         * l->owner=T1
  82         *              rt_mutex_lock(l)
  83         *              lock(l->lock)
  84         *              l->owner = T1 | HAS_WAITERS;
  85         *              enqueue(T2)
  86         *              boost()
  87         *                unlock(l->lock)
  88         *              block()
  89         *
  90         *                              rt_mutex_lock(l)
  91         *                              lock(l->lock)
  92         *                              l->owner = T1 | HAS_WAITERS;
  93         *                              enqueue(T3)
  94         *                              boost()
  95         *                                unlock(l->lock)
  96         *                              block()
  97         *              signal(->T2)    signal(->T3)
  98         *              lock(l->lock)
  99         *              dequeue(T2)
 100         *              deboost()
 101         *                unlock(l->lock)
 102         *                              lock(l->lock)
 103         *                              dequeue(T3)
 104         *                               ==> wait list is empty
 105         *                              deboost()
 106         *                               unlock(l->lock)
 107         *              lock(l->lock)
 108         *              fixup_rt_mutex_waiters()
 109         *                if (wait_list_empty(l) {
 110         *                  l->owner = owner
 111         *                  owner = l->owner & ~HAS_WAITERS;
 112         *                    ==> l->owner = T1
 113         *                }
 114         *                              lock(l->lock)
 115         * rt_mutex_unlock(l)           fixup_rt_mutex_waiters()
 116         *                                if (wait_list_empty(l) {
 117         *                                  owner = l->owner & ~HAS_WAITERS;
 118         * cmpxchg(l->owner, T1, NULL)
 119         *  ===> Success (l->owner = NULL)
 120         *
 121         *                                  l->owner = owner
 122         *                                    ==> l->owner = T1
 123         *                                }
 124         *
 125         * With the check for the waiter bit in place T3 on CPU2 will not
 126         * overwrite. All tasks fiddling with the waiters bit are
 127         * serialized by l->lock, so nothing else can modify the waiters
 128         * bit. If the bit is set then nothing can change l->owner either
 129         * so the simple RMW is safe. The cmpxchg() will simply fail if it
 130         * happens in the middle of the RMW because the waiters bit is
 131         * still set.
 132         */
 133        owner = READ_ONCE(*p);
 134        if (owner & RT_MUTEX_HAS_WAITERS)
 135                WRITE_ONCE(*p, owner & ~RT_MUTEX_HAS_WAITERS);
 136}
 137
 138/*
 139 * We can speed up the acquire/release, if there's no debugging state to be
 140 * set up.
 141 */
 142#ifndef CONFIG_DEBUG_RT_MUTEXES
 143# define rt_mutex_cmpxchg_relaxed(l,c,n) (cmpxchg_relaxed(&l->owner, c, n) == c)
 144# define rt_mutex_cmpxchg_acquire(l,c,n) (cmpxchg_acquire(&l->owner, c, n) == c)
 145# define rt_mutex_cmpxchg_release(l,c,n) (cmpxchg_release(&l->owner, c, n) == c)
 146
 147/*
 148 * Callers must hold the ->wait_lock -- which is the whole purpose as we force
 149 * all future threads that attempt to [Rmw] the lock to the slowpath. As such
 150 * relaxed semantics suffice.
 151 */
 152static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 153{
 154        unsigned long owner, *p = (unsigned long *) &lock->owner;
 155
 156        do {
 157                owner = *p;
 158        } while (cmpxchg_relaxed(p, owner,
 159                                 owner | RT_MUTEX_HAS_WAITERS) != owner);
 160}
 161
 162/*
 163 * Safe fastpath aware unlock:
 164 * 1) Clear the waiters bit
 165 * 2) Drop lock->wait_lock
 166 * 3) Try to unlock the lock with cmpxchg
 167 */
 168static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 169                                        unsigned long flags)
 170        __releases(lock->wait_lock)
 171{
 172        struct task_struct *owner = rt_mutex_owner(lock);
 173
 174        clear_rt_mutex_waiters(lock);
 175        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 176        /*
 177         * If a new waiter comes in between the unlock and the cmpxchg
 178         * we have two situations:
 179         *
 180         * unlock(wait_lock);
 181         *                                      lock(wait_lock);
 182         * cmpxchg(p, owner, 0) == owner
 183         *                                      mark_rt_mutex_waiters(lock);
 184         *                                      acquire(lock);
 185         * or:
 186         *
 187         * unlock(wait_lock);
 188         *                                      lock(wait_lock);
 189         *                                      mark_rt_mutex_waiters(lock);
 190         *
 191         * cmpxchg(p, owner, 0) != owner
 192         *                                      enqueue_waiter();
 193         *                                      unlock(wait_lock);
 194         * lock(wait_lock);
 195         * wake waiter();
 196         * unlock(wait_lock);
 197         *                                      lock(wait_lock);
 198         *                                      acquire(lock);
 199         */
 200        return rt_mutex_cmpxchg_release(lock, owner, NULL);
 201}
 202
 203#else
 204# define rt_mutex_cmpxchg_relaxed(l,c,n)        (0)
 205# define rt_mutex_cmpxchg_acquire(l,c,n)        (0)
 206# define rt_mutex_cmpxchg_release(l,c,n)        (0)
 207
 208static inline void mark_rt_mutex_waiters(struct rt_mutex *lock)
 209{
 210        lock->owner = (struct task_struct *)
 211                        ((unsigned long)lock->owner | RT_MUTEX_HAS_WAITERS);
 212}
 213
 214/*
 215 * Simple slow path only version: lock->owner is protected by lock->wait_lock.
 216 */
 217static inline bool unlock_rt_mutex_safe(struct rt_mutex *lock,
 218                                        unsigned long flags)
 219        __releases(lock->wait_lock)
 220{
 221        lock->owner = NULL;
 222        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
 223        return true;
 224}
 225#endif
 226
 227/*
 228 * Only use with rt_mutex_waiter_{less,equal}()
 229 */
 230#define task_to_waiter(p)       \
 231        &(struct rt_mutex_waiter){ .prio = (p)->prio, .deadline = (p)->dl.deadline }
 232
 233static inline int
 234rt_mutex_waiter_less(struct rt_mutex_waiter *left,
 235                     struct rt_mutex_waiter *right)
 236{
 237        if (left->prio < right->prio)
 238                return 1;
 239
 240        /*
 241         * If both waiters have dl_prio(), we check the deadlines of the
 242         * associated tasks.
 243         * If left waiter has a dl_prio(), and we didn't return 1 above,
 244         * then right waiter has a dl_prio() too.
 245         */
 246        if (dl_prio(left->prio))
 247                return dl_time_before(left->deadline, right->deadline);
 248
 249        return 0;
 250}
 251
 252static inline int
 253rt_mutex_waiter_equal(struct rt_mutex_waiter *left,
 254                      struct rt_mutex_waiter *right)
 255{
 256        if (left->prio != right->prio)
 257                return 0;
 258
 259        /*
 260         * If both waiters have dl_prio(), we check the deadlines of the
 261         * associated tasks.
 262         * If left waiter has a dl_prio(), and we didn't return 0 above,
 263         * then right waiter has a dl_prio() too.
 264         */
 265        if (dl_prio(left->prio))
 266                return left->deadline == right->deadline;
 267
 268        return 1;
 269}
 270
 271static void
 272rt_mutex_enqueue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 273{
 274        struct rb_node **link = &lock->waiters.rb_root.rb_node;
 275        struct rb_node *parent = NULL;
 276        struct rt_mutex_waiter *entry;
 277        bool leftmost = true;
 278
 279        while (*link) {
 280                parent = *link;
 281                entry = rb_entry(parent, struct rt_mutex_waiter, tree_entry);
 282                if (rt_mutex_waiter_less(waiter, entry)) {
 283                        link = &parent->rb_left;
 284                } else {
 285                        link = &parent->rb_right;
 286                        leftmost = false;
 287                }
 288        }
 289
 290        rb_link_node(&waiter->tree_entry, parent, link);
 291        rb_insert_color_cached(&waiter->tree_entry, &lock->waiters, leftmost);
 292}
 293
 294static void
 295rt_mutex_dequeue(struct rt_mutex *lock, struct rt_mutex_waiter *waiter)
 296{
 297        if (RB_EMPTY_NODE(&waiter->tree_entry))
 298                return;
 299
 300        rb_erase_cached(&waiter->tree_entry, &lock->waiters);
 301        RB_CLEAR_NODE(&waiter->tree_entry);
 302}
 303
 304static void
 305rt_mutex_enqueue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 306{
 307        struct rb_node **link = &task->pi_waiters.rb_root.rb_node;
 308        struct rb_node *parent = NULL;
 309        struct rt_mutex_waiter *entry;
 310        bool leftmost = true;
 311
 312        while (*link) {
 313                parent = *link;
 314                entry = rb_entry(parent, struct rt_mutex_waiter, pi_tree_entry);
 315                if (rt_mutex_waiter_less(waiter, entry)) {
 316                        link = &parent->rb_left;
 317                } else {
 318                        link = &parent->rb_right;
 319                        leftmost = false;
 320                }
 321        }
 322
 323        rb_link_node(&waiter->pi_tree_entry, parent, link);
 324        rb_insert_color_cached(&waiter->pi_tree_entry, &task->pi_waiters, leftmost);
 325}
 326
 327static void
 328rt_mutex_dequeue_pi(struct task_struct *task, struct rt_mutex_waiter *waiter)
 329{
 330        if (RB_EMPTY_NODE(&waiter->pi_tree_entry))
 331                return;
 332
 333        rb_erase_cached(&waiter->pi_tree_entry, &task->pi_waiters);
 334        RB_CLEAR_NODE(&waiter->pi_tree_entry);
 335}
 336
 337static void rt_mutex_adjust_prio(struct task_struct *p)
 338{
 339        struct task_struct *pi_task = NULL;
 340
 341        lockdep_assert_held(&p->pi_lock);
 342
 343        if (task_has_pi_waiters(p))
 344                pi_task = task_top_pi_waiter(p)->task;
 345
 346        rt_mutex_setprio(p, pi_task);
 347}
 348
 349/*
 350 * Deadlock detection is conditional:
 351 *
 352 * If CONFIG_DEBUG_RT_MUTEXES=n, deadlock detection is only conducted
 353 * if the detect argument is == RT_MUTEX_FULL_CHAINWALK.
 354 *
 355 * If CONFIG_DEBUG_RT_MUTEXES=y, deadlock detection is always
 356 * conducted independent of the detect argument.
 357 *
 358 * If the waiter argument is NULL this indicates the deboost path and
 359 * deadlock detection is disabled independent of the detect argument
 360 * and the config settings.
 361 */
 362static bool rt_mutex_cond_detect_deadlock(struct rt_mutex_waiter *waiter,
 363                                          enum rtmutex_chainwalk chwalk)
 364{
 365        /*
 366         * This is just a wrapper function for the following call,
 367         * because debug_rt_mutex_detect_deadlock() smells like a magic
 368         * debug feature and I wanted to keep the cond function in the
 369         * main source file along with the comments instead of having
 370         * two of the same in the headers.
 371         */
 372        return debug_rt_mutex_detect_deadlock(waiter, chwalk);
 373}
 374
 375/*
 376 * Max number of times we'll walk the boosting chain:
 377 */
 378int max_lock_depth = 1024;
 379
 380static inline struct rt_mutex *task_blocked_on_lock(struct task_struct *p)
 381{
 382        return p->pi_blocked_on ? p->pi_blocked_on->lock : NULL;
 383}
 384
 385/*
 386 * Adjust the priority chain. Also used for deadlock detection.
 387 * Decreases task's usage by one - may thus free the task.
 388 *
 389 * @task:       the task owning the mutex (owner) for which a chain walk is
 390 *              probably needed
 391 * @chwalk:     do we have to carry out deadlock detection?
 392 * @orig_lock:  the mutex (can be NULL if we are walking the chain to recheck
 393 *              things for a task that has just got its priority adjusted, and
 394 *              is waiting on a mutex)
 395 * @next_lock:  the mutex on which the owner of @orig_lock was blocked before
 396 *              we dropped its pi_lock. Is never dereferenced, only used for
 397 *              comparison to detect lock chain changes.
 398 * @orig_waiter: rt_mutex_waiter struct for the task that has just donated
 399 *              its priority to the mutex owner (can be NULL in the case
 400 *              depicted above or if the top waiter is gone away and we are
 401 *              actually deboosting the owner)
 402 * @top_task:   the current top waiter
 403 *
 404 * Returns 0 or -EDEADLK.
 405 *
 406 * Chain walk basics and protection scope
 407 *
 408 * [R] refcount on task
 409 * [P] task->pi_lock held
 410 * [L] rtmutex->wait_lock held
 411 *
 412 * Step Description                             Protected by
 413 *      function arguments:
 414 *      @task                                   [R]
 415 *      @orig_lock if != NULL                   @top_task is blocked on it
 416 *      @next_lock                              Unprotected. Cannot be
 417 *                                              dereferenced. Only used for
 418 *                                              comparison.
 419 *      @orig_waiter if != NULL                 @top_task is blocked on it
 420 *      @top_task                               current, or in case of proxy
 421 *                                              locking protected by calling
 422 *                                              code
 423 *      again:
 424 *        loop_sanity_check();
 425 *      retry:
 426 * [1]    lock(task->pi_lock);                  [R] acquire [P]
 427 * [2]    waiter = task->pi_blocked_on;         [P]
 428 * [3]    check_exit_conditions_1();            [P]
 429 * [4]    lock = waiter->lock;                  [P]
 430 * [5]    if (!try_lock(lock->wait_lock)) {     [P] try to acquire [L]
 431 *          unlock(task->pi_lock);              release [P]
 432 *          goto retry;
 433 *        }
 434 * [6]    check_exit_conditions_2();            [P] + [L]
 435 * [7]    requeue_lock_waiter(lock, waiter);    [P] + [L]
 436 * [8]    unlock(task->pi_lock);                release [P]
 437 *        put_task_struct(task);                release [R]
 438 * [9]    check_exit_conditions_3();            [L]
 439 * [10]   task = owner(lock);                   [L]
 440 *        get_task_struct(task);                [L] acquire [R]
 441 *        lock(task->pi_lock);                  [L] acquire [P]
 442 * [11]   requeue_pi_waiter(tsk, waiters(lock));[P] + [L]
 443 * [12]   check_exit_conditions_4();            [P] + [L]
 444 * [13]   unlock(task->pi_lock);                release [P]
 445 *        unlock(lock->wait_lock);              release [L]
 446 *        goto again;
 447 */
 448static int rt_mutex_adjust_prio_chain(struct task_struct *task,
 449                                      enum rtmutex_chainwalk chwalk,
 450                                      struct rt_mutex *orig_lock,
 451                                      struct rt_mutex *next_lock,
 452                                      struct rt_mutex_waiter *orig_waiter,
 453                                      struct task_struct *top_task)
 454{
 455        struct rt_mutex_waiter *waiter, *top_waiter = orig_waiter;
 456        struct rt_mutex_waiter *prerequeue_top_waiter;
 457        int ret = 0, depth = 0;
 458        struct rt_mutex *lock;
 459        bool detect_deadlock;
 460        bool requeue = true;
 461
 462        detect_deadlock = rt_mutex_cond_detect_deadlock(orig_waiter, chwalk);
 463
 464        /*
 465         * The (de)boosting is a step by step approach with a lot of
 466         * pitfalls. We want this to be preemptible and we want hold a
 467         * maximum of two locks per step. So we have to check
 468         * carefully whether things change under us.
 469         */
 470 again:
 471        /*
 472         * We limit the lock chain length for each invocation.
 473         */
 474        if (++depth > max_lock_depth) {
 475                static int prev_max;
 476
 477                /*
 478                 * Print this only once. If the admin changes the limit,
 479                 * print a new message when reaching the limit again.
 480                 */
 481                if (prev_max != max_lock_depth) {
 482                        prev_max = max_lock_depth;
 483                        printk(KERN_WARNING "Maximum lock depth %d reached "
 484                               "task: %s (%d)\n", max_lock_depth,
 485                               top_task->comm, task_pid_nr(top_task));
 486                }
 487                put_task_struct(task);
 488
 489                return -EDEADLK;
 490        }
 491
 492        /*
 493         * We are fully preemptible here and only hold the refcount on
 494         * @task. So everything can have changed under us since the
 495         * caller or our own code below (goto retry/again) dropped all
 496         * locks.
 497         */
 498 retry:
 499        /*
 500         * [1] Task cannot go away as we did a get_task() before !
 501         */
 502        raw_spin_lock_irq(&task->pi_lock);
 503
 504        /*
 505         * [2] Get the waiter on which @task is blocked on.
 506         */
 507        waiter = task->pi_blocked_on;
 508
 509        /*
 510         * [3] check_exit_conditions_1() protected by task->pi_lock.
 511         */
 512
 513        /*
 514         * Check whether the end of the boosting chain has been
 515         * reached or the state of the chain has changed while we
 516         * dropped the locks.
 517         */
 518        if (!waiter)
 519                goto out_unlock_pi;
 520
 521        /*
 522         * Check the orig_waiter state. After we dropped the locks,
 523         * the previous owner of the lock might have released the lock.
 524         */
 525        if (orig_waiter && !rt_mutex_owner(orig_lock))
 526                goto out_unlock_pi;
 527
 528        /*
 529         * We dropped all locks after taking a refcount on @task, so
 530         * the task might have moved on in the lock chain or even left
 531         * the chain completely and blocks now on an unrelated lock or
 532         * on @orig_lock.
 533         *
 534         * We stored the lock on which @task was blocked in @next_lock,
 535         * so we can detect the chain change.
 536         */
 537        if (next_lock != waiter->lock)
 538                goto out_unlock_pi;
 539
 540        /*
 541         * Drop out, when the task has no waiters. Note,
 542         * top_waiter can be NULL, when we are in the deboosting
 543         * mode!
 544         */
 545        if (top_waiter) {
 546                if (!task_has_pi_waiters(task))
 547                        goto out_unlock_pi;
 548                /*
 549                 * If deadlock detection is off, we stop here if we
 550                 * are not the top pi waiter of the task. If deadlock
 551                 * detection is enabled we continue, but stop the
 552                 * requeueing in the chain walk.
 553                 */
 554                if (top_waiter != task_top_pi_waiter(task)) {
 555                        if (!detect_deadlock)
 556                                goto out_unlock_pi;
 557                        else
 558                                requeue = false;
 559                }
 560        }
 561
 562        /*
 563         * If the waiter priority is the same as the task priority
 564         * then there is no further priority adjustment necessary.  If
 565         * deadlock detection is off, we stop the chain walk. If its
 566         * enabled we continue, but stop the requeueing in the chain
 567         * walk.
 568         */
 569        if (rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
 570                if (!detect_deadlock)
 571                        goto out_unlock_pi;
 572                else
 573                        requeue = false;
 574        }
 575
 576        /*
 577         * [4] Get the next lock
 578         */
 579        lock = waiter->lock;
 580        /*
 581         * [5] We need to trylock here as we are holding task->pi_lock,
 582         * which is the reverse lock order versus the other rtmutex
 583         * operations.
 584         */
 585        if (!raw_spin_trylock(&lock->wait_lock)) {
 586                raw_spin_unlock_irq(&task->pi_lock);
 587                cpu_relax();
 588                goto retry;
 589        }
 590
 591        /*
 592         * [6] check_exit_conditions_2() protected by task->pi_lock and
 593         * lock->wait_lock.
 594         *
 595         * Deadlock detection. If the lock is the same as the original
 596         * lock which caused us to walk the lock chain or if the
 597         * current lock is owned by the task which initiated the chain
 598         * walk, we detected a deadlock.
 599         */
 600        if (lock == orig_lock || rt_mutex_owner(lock) == top_task) {
 601                debug_rt_mutex_deadlock(chwalk, orig_waiter, lock);
 602                raw_spin_unlock(&lock->wait_lock);
 603                ret = -EDEADLK;
 604                goto out_unlock_pi;
 605        }
 606
 607        /*
 608         * If we just follow the lock chain for deadlock detection, no
 609         * need to do all the requeue operations. To avoid a truckload
 610         * of conditionals around the various places below, just do the
 611         * minimum chain walk checks.
 612         */
 613        if (!requeue) {
 614                /*
 615                 * No requeue[7] here. Just release @task [8]
 616                 */
 617                raw_spin_unlock(&task->pi_lock);
 618                put_task_struct(task);
 619
 620                /*
 621                 * [9] check_exit_conditions_3 protected by lock->wait_lock.
 622                 * If there is no owner of the lock, end of chain.
 623                 */
 624                if (!rt_mutex_owner(lock)) {
 625                        raw_spin_unlock_irq(&lock->wait_lock);
 626                        return 0;
 627                }
 628
 629                /* [10] Grab the next task, i.e. owner of @lock */
 630                task = rt_mutex_owner(lock);
 631                get_task_struct(task);
 632                raw_spin_lock(&task->pi_lock);
 633
 634                /*
 635                 * No requeue [11] here. We just do deadlock detection.
 636                 *
 637                 * [12] Store whether owner is blocked
 638                 * itself. Decision is made after dropping the locks
 639                 */
 640                next_lock = task_blocked_on_lock(task);
 641                /*
 642                 * Get the top waiter for the next iteration
 643                 */
 644                top_waiter = rt_mutex_top_waiter(lock);
 645
 646                /* [13] Drop locks */
 647                raw_spin_unlock(&task->pi_lock);
 648                raw_spin_unlock_irq(&lock->wait_lock);
 649
 650                /* If owner is not blocked, end of chain. */
 651                if (!next_lock)
 652                        goto out_put_task;
 653                goto again;
 654        }
 655
 656        /*
 657         * Store the current top waiter before doing the requeue
 658         * operation on @lock. We need it for the boost/deboost
 659         * decision below.
 660         */
 661        prerequeue_top_waiter = rt_mutex_top_waiter(lock);
 662
 663        /* [7] Requeue the waiter in the lock waiter tree. */
 664        rt_mutex_dequeue(lock, waiter);
 665
 666        /*
 667         * Update the waiter prio fields now that we're dequeued.
 668         *
 669         * These values can have changed through either:
 670         *
 671         *   sys_sched_set_scheduler() / sys_sched_setattr()
 672         *
 673         * or
 674         *
 675         *   DL CBS enforcement advancing the effective deadline.
 676         *
 677         * Even though pi_waiters also uses these fields, and that tree is only
 678         * updated in [11], we can do this here, since we hold [L], which
 679         * serializes all pi_waiters access and rb_erase() does not care about
 680         * the values of the node being removed.
 681         */
 682        waiter->prio = task->prio;
 683        waiter->deadline = task->dl.deadline;
 684
 685        rt_mutex_enqueue(lock, waiter);
 686
 687        /* [8] Release the task */
 688        raw_spin_unlock(&task->pi_lock);
 689        put_task_struct(task);
 690
 691        /*
 692         * [9] check_exit_conditions_3 protected by lock->wait_lock.
 693         *
 694         * We must abort the chain walk if there is no lock owner even
 695         * in the dead lock detection case, as we have nothing to
 696         * follow here. This is the end of the chain we are walking.
 697         */
 698        if (!rt_mutex_owner(lock)) {
 699                /*
 700                 * If the requeue [7] above changed the top waiter,
 701                 * then we need to wake the new top waiter up to try
 702                 * to get the lock.
 703                 */
 704                if (prerequeue_top_waiter != rt_mutex_top_waiter(lock))
 705                        wake_up_process(rt_mutex_top_waiter(lock)->task);
 706                raw_spin_unlock_irq(&lock->wait_lock);
 707                return 0;
 708        }
 709
 710        /* [10] Grab the next task, i.e. the owner of @lock */
 711        task = rt_mutex_owner(lock);
 712        get_task_struct(task);
 713        raw_spin_lock(&task->pi_lock);
 714
 715        /* [11] requeue the pi waiters if necessary */
 716        if (waiter == rt_mutex_top_waiter(lock)) {
 717                /*
 718                 * The waiter became the new top (highest priority)
 719                 * waiter on the lock. Replace the previous top waiter
 720                 * in the owner tasks pi waiters tree with this waiter
 721                 * and adjust the priority of the owner.
 722                 */
 723                rt_mutex_dequeue_pi(task, prerequeue_top_waiter);
 724                rt_mutex_enqueue_pi(task, waiter);
 725                rt_mutex_adjust_prio(task);
 726
 727        } else if (prerequeue_top_waiter == waiter) {
 728                /*
 729                 * The waiter was the top waiter on the lock, but is
 730                 * no longer the top prority waiter. Replace waiter in
 731                 * the owner tasks pi waiters tree with the new top
 732                 * (highest priority) waiter and adjust the priority
 733                 * of the owner.
 734                 * The new top waiter is stored in @waiter so that
 735                 * @waiter == @top_waiter evaluates to true below and
 736                 * we continue to deboost the rest of the chain.
 737                 */
 738                rt_mutex_dequeue_pi(task, waiter);
 739                waiter = rt_mutex_top_waiter(lock);
 740                rt_mutex_enqueue_pi(task, waiter);
 741                rt_mutex_adjust_prio(task);
 742        } else {
 743                /*
 744                 * Nothing changed. No need to do any priority
 745                 * adjustment.
 746                 */
 747        }
 748
 749        /*
 750         * [12] check_exit_conditions_4() protected by task->pi_lock
 751         * and lock->wait_lock. The actual decisions are made after we
 752         * dropped the locks.
 753         *
 754         * Check whether the task which owns the current lock is pi
 755         * blocked itself. If yes we store a pointer to the lock for
 756         * the lock chain change detection above. After we dropped
 757         * task->pi_lock next_lock cannot be dereferenced anymore.
 758         */
 759        next_lock = task_blocked_on_lock(task);
 760        /*
 761         * Store the top waiter of @lock for the end of chain walk
 762         * decision below.
 763         */
 764        top_waiter = rt_mutex_top_waiter(lock);
 765
 766        /* [13] Drop the locks */
 767        raw_spin_unlock(&task->pi_lock);
 768        raw_spin_unlock_irq(&lock->wait_lock);
 769
 770        /*
 771         * Make the actual exit decisions [12], based on the stored
 772         * values.
 773         *
 774         * We reached the end of the lock chain. Stop right here. No
 775         * point to go back just to figure that out.
 776         */
 777        if (!next_lock)
 778                goto out_put_task;
 779
 780        /*
 781         * If the current waiter is not the top waiter on the lock,
 782         * then we can stop the chain walk here if we are not in full
 783         * deadlock detection mode.
 784         */
 785        if (!detect_deadlock && waiter != top_waiter)
 786                goto out_put_task;
 787
 788        goto again;
 789
 790 out_unlock_pi:
 791        raw_spin_unlock_irq(&task->pi_lock);
 792 out_put_task:
 793        put_task_struct(task);
 794
 795        return ret;
 796}
 797
 798/*
 799 * Try to take an rt-mutex
 800 *
 801 * Must be called with lock->wait_lock held and interrupts disabled
 802 *
 803 * @lock:   The lock to be acquired.
 804 * @task:   The task which wants to acquire the lock
 805 * @waiter: The waiter that is queued to the lock's wait tree if the
 806 *          callsite called task_blocked_on_lock(), otherwise NULL
 807 */
 808static int try_to_take_rt_mutex(struct rt_mutex *lock, struct task_struct *task,
 809                                struct rt_mutex_waiter *waiter)
 810{
 811        lockdep_assert_held(&lock->wait_lock);
 812
 813        /*
 814         * Before testing whether we can acquire @lock, we set the
 815         * RT_MUTEX_HAS_WAITERS bit in @lock->owner. This forces all
 816         * other tasks which try to modify @lock into the slow path
 817         * and they serialize on @lock->wait_lock.
 818         *
 819         * The RT_MUTEX_HAS_WAITERS bit can have a transitional state
 820         * as explained at the top of this file if and only if:
 821         *
 822         * - There is a lock owner. The caller must fixup the
 823         *   transient state if it does a trylock or leaves the lock
 824         *   function due to a signal or timeout.
 825         *
 826         * - @task acquires the lock and there are no other
 827         *   waiters. This is undone in rt_mutex_set_owner(@task) at
 828         *   the end of this function.
 829         */
 830        mark_rt_mutex_waiters(lock);
 831
 832        /*
 833         * If @lock has an owner, give up.
 834         */
 835        if (rt_mutex_owner(lock))
 836                return 0;
 837
 838        /*
 839         * If @waiter != NULL, @task has already enqueued the waiter
 840         * into @lock waiter tree. If @waiter == NULL then this is a
 841         * trylock attempt.
 842         */
 843        if (waiter) {
 844                /*
 845                 * If waiter is not the highest priority waiter of
 846                 * @lock, give up.
 847                 */
 848                if (waiter != rt_mutex_top_waiter(lock))
 849                        return 0;
 850
 851                /*
 852                 * We can acquire the lock. Remove the waiter from the
 853                 * lock waiters tree.
 854                 */
 855                rt_mutex_dequeue(lock, waiter);
 856
 857        } else {
 858                /*
 859                 * If the lock has waiters already we check whether @task is
 860                 * eligible to take over the lock.
 861                 *
 862                 * If there are no other waiters, @task can acquire
 863                 * the lock.  @task->pi_blocked_on is NULL, so it does
 864                 * not need to be dequeued.
 865                 */
 866                if (rt_mutex_has_waiters(lock)) {
 867                        /*
 868                         * If @task->prio is greater than or equal to
 869                         * the top waiter priority (kernel view),
 870                         * @task lost.
 871                         */
 872                        if (!rt_mutex_waiter_less(task_to_waiter(task),
 873                                                  rt_mutex_top_waiter(lock)))
 874                                return 0;
 875
 876                        /*
 877                         * The current top waiter stays enqueued. We
 878                         * don't have to change anything in the lock
 879                         * waiters order.
 880                         */
 881                } else {
 882                        /*
 883                         * No waiters. Take the lock without the
 884                         * pi_lock dance.@task->pi_blocked_on is NULL
 885                         * and we have no waiters to enqueue in @task
 886                         * pi waiters tree.
 887                         */
 888                        goto takeit;
 889                }
 890        }
 891
 892        /*
 893         * Clear @task->pi_blocked_on. Requires protection by
 894         * @task->pi_lock. Redundant operation for the @waiter == NULL
 895         * case, but conditionals are more expensive than a redundant
 896         * store.
 897         */
 898        raw_spin_lock(&task->pi_lock);
 899        task->pi_blocked_on = NULL;
 900        /*
 901         * Finish the lock acquisition. @task is the new owner. If
 902         * other waiters exist we have to insert the highest priority
 903         * waiter into @task->pi_waiters tree.
 904         */
 905        if (rt_mutex_has_waiters(lock))
 906                rt_mutex_enqueue_pi(task, rt_mutex_top_waiter(lock));
 907        raw_spin_unlock(&task->pi_lock);
 908
 909takeit:
 910        /* We got the lock. */
 911        debug_rt_mutex_lock(lock);
 912
 913        /*
 914         * This either preserves the RT_MUTEX_HAS_WAITERS bit if there
 915         * are still waiters or clears it.
 916         */
 917        rt_mutex_set_owner(lock, task);
 918
 919        return 1;
 920}
 921
 922/*
 923 * Task blocks on lock.
 924 *
 925 * Prepare waiter and propagate pi chain
 926 *
 927 * This must be called with lock->wait_lock held and interrupts disabled
 928 */
 929static int task_blocks_on_rt_mutex(struct rt_mutex *lock,
 930                                   struct rt_mutex_waiter *waiter,
 931                                   struct task_struct *task,
 932                                   enum rtmutex_chainwalk chwalk)
 933{
 934        struct task_struct *owner = rt_mutex_owner(lock);
 935        struct rt_mutex_waiter *top_waiter = waiter;
 936        struct rt_mutex *next_lock;
 937        int chain_walk = 0, res;
 938
 939        lockdep_assert_held(&lock->wait_lock);
 940
 941        /*
 942         * Early deadlock detection. We really don't want the task to
 943         * enqueue on itself just to untangle the mess later. It's not
 944         * only an optimization. We drop the locks, so another waiter
 945         * can come in before the chain walk detects the deadlock. So
 946         * the other will detect the deadlock and return -EDEADLOCK,
 947         * which is wrong, as the other waiter is not in a deadlock
 948         * situation.
 949         */
 950        if (owner == task)
 951                return -EDEADLK;
 952
 953        raw_spin_lock(&task->pi_lock);
 954        waiter->task = task;
 955        waiter->lock = lock;
 956        waiter->prio = task->prio;
 957        waiter->deadline = task->dl.deadline;
 958
 959        /* Get the top priority waiter on the lock */
 960        if (rt_mutex_has_waiters(lock))
 961                top_waiter = rt_mutex_top_waiter(lock);
 962        rt_mutex_enqueue(lock, waiter);
 963
 964        task->pi_blocked_on = waiter;
 965
 966        raw_spin_unlock(&task->pi_lock);
 967
 968        if (!owner)
 969                return 0;
 970
 971        raw_spin_lock(&owner->pi_lock);
 972        if (waiter == rt_mutex_top_waiter(lock)) {
 973                rt_mutex_dequeue_pi(owner, top_waiter);
 974                rt_mutex_enqueue_pi(owner, waiter);
 975
 976                rt_mutex_adjust_prio(owner);
 977                if (owner->pi_blocked_on)
 978                        chain_walk = 1;
 979        } else if (rt_mutex_cond_detect_deadlock(waiter, chwalk)) {
 980                chain_walk = 1;
 981        }
 982
 983        /* Store the lock on which owner is blocked or NULL */
 984        next_lock = task_blocked_on_lock(owner);
 985
 986        raw_spin_unlock(&owner->pi_lock);
 987        /*
 988         * Even if full deadlock detection is on, if the owner is not
 989         * blocked itself, we can avoid finding this out in the chain
 990         * walk.
 991         */
 992        if (!chain_walk || !next_lock)
 993                return 0;
 994
 995        /*
 996         * The owner can't disappear while holding a lock,
 997         * so the owner struct is protected by wait_lock.
 998         * Gets dropped in rt_mutex_adjust_prio_chain()!
 999         */
1000        get_task_struct(owner);
1001
1002        raw_spin_unlock_irq(&lock->wait_lock);
1003
1004        res = rt_mutex_adjust_prio_chain(owner, chwalk, lock,
1005                                         next_lock, waiter, task);
1006
1007        raw_spin_lock_irq(&lock->wait_lock);
1008
1009        return res;
1010}
1011
1012/*
1013 * Remove the top waiter from the current tasks pi waiter tree and
1014 * queue it up.
1015 *
1016 * Called with lock->wait_lock held and interrupts disabled.
1017 */
1018static void mark_wakeup_next_waiter(struct wake_q_head *wake_q,
1019                                    struct rt_mutex *lock)
1020{
1021        struct rt_mutex_waiter *waiter;
1022
1023        raw_spin_lock(&current->pi_lock);
1024
1025        waiter = rt_mutex_top_waiter(lock);
1026
1027        /*
1028         * Remove it from current->pi_waiters and deboost.
1029         *
1030         * We must in fact deboost here in order to ensure we call
1031         * rt_mutex_setprio() to update p->pi_top_task before the
1032         * task unblocks.
1033         */
1034        rt_mutex_dequeue_pi(current, waiter);
1035        rt_mutex_adjust_prio(current);
1036
1037        /*
1038         * As we are waking up the top waiter, and the waiter stays
1039         * queued on the lock until it gets the lock, this lock
1040         * obviously has waiters. Just set the bit here and this has
1041         * the added benefit of forcing all new tasks into the
1042         * slow path making sure no task of lower priority than
1043         * the top waiter can steal this lock.
1044         */
1045        lock->owner = (void *) RT_MUTEX_HAS_WAITERS;
1046
1047        /*
1048         * We deboosted before waking the top waiter task such that we don't
1049         * run two tasks with the 'same' priority (and ensure the
1050         * p->pi_top_task pointer points to a blocked task). This however can
1051         * lead to priority inversion if we would get preempted after the
1052         * deboost but before waking our donor task, hence the preempt_disable()
1053         * before unlock.
1054         *
1055         * Pairs with preempt_enable() in rt_mutex_postunlock();
1056         */
1057        preempt_disable();
1058        wake_q_add(wake_q, waiter->task);
1059        raw_spin_unlock(&current->pi_lock);
1060}
1061
1062/*
1063 * Remove a waiter from a lock and give up
1064 *
1065 * Must be called with lock->wait_lock held and interrupts disabled. I must
1066 * have just failed to try_to_take_rt_mutex().
1067 */
1068static void remove_waiter(struct rt_mutex *lock,
1069                          struct rt_mutex_waiter *waiter)
1070{
1071        bool is_top_waiter = (waiter == rt_mutex_top_waiter(lock));
1072        struct task_struct *owner = rt_mutex_owner(lock);
1073        struct rt_mutex *next_lock;
1074
1075        lockdep_assert_held(&lock->wait_lock);
1076
1077        raw_spin_lock(&current->pi_lock);
1078        rt_mutex_dequeue(lock, waiter);
1079        current->pi_blocked_on = NULL;
1080        raw_spin_unlock(&current->pi_lock);
1081
1082        /*
1083         * Only update priority if the waiter was the highest priority
1084         * waiter of the lock and there is an owner to update.
1085         */
1086        if (!owner || !is_top_waiter)
1087                return;
1088
1089        raw_spin_lock(&owner->pi_lock);
1090
1091        rt_mutex_dequeue_pi(owner, waiter);
1092
1093        if (rt_mutex_has_waiters(lock))
1094                rt_mutex_enqueue_pi(owner, rt_mutex_top_waiter(lock));
1095
1096        rt_mutex_adjust_prio(owner);
1097
1098        /* Store the lock on which owner is blocked or NULL */
1099        next_lock = task_blocked_on_lock(owner);
1100
1101        raw_spin_unlock(&owner->pi_lock);
1102
1103        /*
1104         * Don't walk the chain, if the owner task is not blocked
1105         * itself.
1106         */
1107        if (!next_lock)
1108                return;
1109
1110        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1111        get_task_struct(owner);
1112
1113        raw_spin_unlock_irq(&lock->wait_lock);
1114
1115        rt_mutex_adjust_prio_chain(owner, RT_MUTEX_MIN_CHAINWALK, lock,
1116                                   next_lock, NULL, current);
1117
1118        raw_spin_lock_irq(&lock->wait_lock);
1119}
1120
1121/*
1122 * Recheck the pi chain, in case we got a priority setting
1123 *
1124 * Called from sched_setscheduler
1125 */
1126void rt_mutex_adjust_pi(struct task_struct *task)
1127{
1128        struct rt_mutex_waiter *waiter;
1129        struct rt_mutex *next_lock;
1130        unsigned long flags;
1131
1132        raw_spin_lock_irqsave(&task->pi_lock, flags);
1133
1134        waiter = task->pi_blocked_on;
1135        if (!waiter || rt_mutex_waiter_equal(waiter, task_to_waiter(task))) {
1136                raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1137                return;
1138        }
1139        next_lock = waiter->lock;
1140        raw_spin_unlock_irqrestore(&task->pi_lock, flags);
1141
1142        /* gets dropped in rt_mutex_adjust_prio_chain()! */
1143        get_task_struct(task);
1144
1145        rt_mutex_adjust_prio_chain(task, RT_MUTEX_MIN_CHAINWALK, NULL,
1146                                   next_lock, NULL, task);
1147}
1148
1149void rt_mutex_init_waiter(struct rt_mutex_waiter *waiter)
1150{
1151        debug_rt_mutex_init_waiter(waiter);
1152        RB_CLEAR_NODE(&waiter->pi_tree_entry);
1153        RB_CLEAR_NODE(&waiter->tree_entry);
1154        waiter->task = NULL;
1155}
1156
1157/**
1158 * __rt_mutex_slowlock() - Perform the wait-wake-try-to-take loop
1159 * @lock:                the rt_mutex to take
1160 * @state:               the state the task should block in (TASK_INTERRUPTIBLE
1161 *                       or TASK_UNINTERRUPTIBLE)
1162 * @timeout:             the pre-initialized and started timer, or NULL for none
1163 * @waiter:              the pre-initialized rt_mutex_waiter
1164 *
1165 * Must be called with lock->wait_lock held and interrupts disabled
1166 */
1167static int __sched
1168__rt_mutex_slowlock(struct rt_mutex *lock, int state,
1169                    struct hrtimer_sleeper *timeout,
1170                    struct rt_mutex_waiter *waiter)
1171{
1172        int ret = 0;
1173
1174        for (;;) {
1175                /* Try to acquire the lock: */
1176                if (try_to_take_rt_mutex(lock, current, waiter))
1177                        break;
1178
1179                /*
1180                 * TASK_INTERRUPTIBLE checks for signals and
1181                 * timeout. Ignored otherwise.
1182                 */
1183                if (likely(state == TASK_INTERRUPTIBLE)) {
1184                        /* Signal pending? */
1185                        if (signal_pending(current))
1186                                ret = -EINTR;
1187                        if (timeout && !timeout->task)
1188                                ret = -ETIMEDOUT;
1189                        if (ret)
1190                                break;
1191                }
1192
1193                raw_spin_unlock_irq(&lock->wait_lock);
1194
1195                debug_rt_mutex_print_deadlock(waiter);
1196
1197                schedule();
1198
1199                raw_spin_lock_irq(&lock->wait_lock);
1200                set_current_state(state);
1201        }
1202
1203        __set_current_state(TASK_RUNNING);
1204        return ret;
1205}
1206
1207static void rt_mutex_handle_deadlock(int res, int detect_deadlock,
1208                                     struct rt_mutex_waiter *w)
1209{
1210        /*
1211         * If the result is not -EDEADLOCK or the caller requested
1212         * deadlock detection, nothing to do here.
1213         */
1214        if (res != -EDEADLOCK || detect_deadlock)
1215                return;
1216
1217        /*
1218         * Yell lowdly and stop the task right here.
1219         */
1220        rt_mutex_print_deadlock(w);
1221        while (1) {
1222                set_current_state(TASK_INTERRUPTIBLE);
1223                schedule();
1224        }
1225}
1226
1227/*
1228 * Slow path lock function:
1229 */
1230static int __sched
1231rt_mutex_slowlock(struct rt_mutex *lock, int state,
1232                  struct hrtimer_sleeper *timeout,
1233                  enum rtmutex_chainwalk chwalk)
1234{
1235        struct rt_mutex_waiter waiter;
1236        unsigned long flags;
1237        int ret = 0;
1238
1239        rt_mutex_init_waiter(&waiter);
1240
1241        /*
1242         * Technically we could use raw_spin_[un]lock_irq() here, but this can
1243         * be called in early boot if the cmpxchg() fast path is disabled
1244         * (debug, no architecture support). In this case we will acquire the
1245         * rtmutex with lock->wait_lock held. But we cannot unconditionally
1246         * enable interrupts in that early boot case. So we need to use the
1247         * irqsave/restore variants.
1248         */
1249        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1250
1251        /* Try to acquire the lock again: */
1252        if (try_to_take_rt_mutex(lock, current, NULL)) {
1253                raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1254                return 0;
1255        }
1256
1257        set_current_state(state);
1258
1259        /* Setup the timer, when timeout != NULL */
1260        if (unlikely(timeout))
1261                hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1262
1263        ret = task_blocks_on_rt_mutex(lock, &waiter, current, chwalk);
1264
1265        if (likely(!ret))
1266                /* sleep on the mutex */
1267                ret = __rt_mutex_slowlock(lock, state, timeout, &waiter);
1268
1269        if (unlikely(ret)) {
1270                __set_current_state(TASK_RUNNING);
1271                remove_waiter(lock, &waiter);
1272                rt_mutex_handle_deadlock(ret, chwalk, &waiter);
1273        }
1274
1275        /*
1276         * try_to_take_rt_mutex() sets the waiter bit
1277         * unconditionally. We might have to fix that up.
1278         */
1279        fixup_rt_mutex_waiters(lock);
1280
1281        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1282
1283        /* Remove pending timer: */
1284        if (unlikely(timeout))
1285                hrtimer_cancel(&timeout->timer);
1286
1287        debug_rt_mutex_free_waiter(&waiter);
1288
1289        return ret;
1290}
1291
1292static inline int __rt_mutex_slowtrylock(struct rt_mutex *lock)
1293{
1294        int ret = try_to_take_rt_mutex(lock, current, NULL);
1295
1296        /*
1297         * try_to_take_rt_mutex() sets the lock waiters bit
1298         * unconditionally. Clean this up.
1299         */
1300        fixup_rt_mutex_waiters(lock);
1301
1302        return ret;
1303}
1304
1305/*
1306 * Slow path try-lock function:
1307 */
1308static inline int rt_mutex_slowtrylock(struct rt_mutex *lock)
1309{
1310        unsigned long flags;
1311        int ret;
1312
1313        /*
1314         * If the lock already has an owner we fail to get the lock.
1315         * This can be done without taking the @lock->wait_lock as
1316         * it is only being read, and this is a trylock anyway.
1317         */
1318        if (rt_mutex_owner(lock))
1319                return 0;
1320
1321        /*
1322         * The mutex has currently no owner. Lock the wait lock and try to
1323         * acquire the lock. We use irqsave here to support early boot calls.
1324         */
1325        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1326
1327        ret = __rt_mutex_slowtrylock(lock);
1328
1329        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1330
1331        return ret;
1332}
1333
1334/*
1335 * Slow path to release a rt-mutex.
1336 *
1337 * Return whether the current task needs to call rt_mutex_postunlock().
1338 */
1339static bool __sched rt_mutex_slowunlock(struct rt_mutex *lock,
1340                                        struct wake_q_head *wake_q)
1341{
1342        unsigned long flags;
1343
1344        /* irqsave required to support early boot calls */
1345        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1346
1347        debug_rt_mutex_unlock(lock);
1348
1349        /*
1350         * We must be careful here if the fast path is enabled. If we
1351         * have no waiters queued we cannot set owner to NULL here
1352         * because of:
1353         *
1354         * foo->lock->owner = NULL;
1355         *                      rtmutex_lock(foo->lock);   <- fast path
1356         *                      free = atomic_dec_and_test(foo->refcnt);
1357         *                      rtmutex_unlock(foo->lock); <- fast path
1358         *                      if (free)
1359         *                              kfree(foo);
1360         * raw_spin_unlock(foo->lock->wait_lock);
1361         *
1362         * So for the fastpath enabled kernel:
1363         *
1364         * Nothing can set the waiters bit as long as we hold
1365         * lock->wait_lock. So we do the following sequence:
1366         *
1367         *      owner = rt_mutex_owner(lock);
1368         *      clear_rt_mutex_waiters(lock);
1369         *      raw_spin_unlock(&lock->wait_lock);
1370         *      if (cmpxchg(&lock->owner, owner, 0) == owner)
1371         *              return;
1372         *      goto retry;
1373         *
1374         * The fastpath disabled variant is simple as all access to
1375         * lock->owner is serialized by lock->wait_lock:
1376         *
1377         *      lock->owner = NULL;
1378         *      raw_spin_unlock(&lock->wait_lock);
1379         */
1380        while (!rt_mutex_has_waiters(lock)) {
1381                /* Drops lock->wait_lock ! */
1382                if (unlock_rt_mutex_safe(lock, flags) == true)
1383                        return false;
1384                /* Relock the rtmutex and try again */
1385                raw_spin_lock_irqsave(&lock->wait_lock, flags);
1386        }
1387
1388        /*
1389         * The wakeup next waiter path does not suffer from the above
1390         * race. See the comments there.
1391         *
1392         * Queue the next waiter for wakeup once we release the wait_lock.
1393         */
1394        mark_wakeup_next_waiter(wake_q, lock);
1395        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1396
1397        return true; /* call rt_mutex_postunlock() */
1398}
1399
1400/*
1401 * debug aware fast / slowpath lock,trylock,unlock
1402 *
1403 * The atomic acquire/release ops are compiled away, when either the
1404 * architecture does not support cmpxchg or when debugging is enabled.
1405 */
1406static inline int
1407rt_mutex_fastlock(struct rt_mutex *lock, int state,
1408                  int (*slowfn)(struct rt_mutex *lock, int state,
1409                                struct hrtimer_sleeper *timeout,
1410                                enum rtmutex_chainwalk chwalk))
1411{
1412        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1413                return 0;
1414
1415        return slowfn(lock, state, NULL, RT_MUTEX_MIN_CHAINWALK);
1416}
1417
1418static inline int
1419rt_mutex_timed_fastlock(struct rt_mutex *lock, int state,
1420                        struct hrtimer_sleeper *timeout,
1421                        enum rtmutex_chainwalk chwalk,
1422                        int (*slowfn)(struct rt_mutex *lock, int state,
1423                                      struct hrtimer_sleeper *timeout,
1424                                      enum rtmutex_chainwalk chwalk))
1425{
1426        if (chwalk == RT_MUTEX_MIN_CHAINWALK &&
1427            likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1428                return 0;
1429
1430        return slowfn(lock, state, timeout, chwalk);
1431}
1432
1433static inline int
1434rt_mutex_fasttrylock(struct rt_mutex *lock,
1435                     int (*slowfn)(struct rt_mutex *lock))
1436{
1437        if (likely(rt_mutex_cmpxchg_acquire(lock, NULL, current)))
1438                return 1;
1439
1440        return slowfn(lock);
1441}
1442
1443/*
1444 * Performs the wakeup of the the top-waiter and re-enables preemption.
1445 */
1446void rt_mutex_postunlock(struct wake_q_head *wake_q)
1447{
1448        wake_up_q(wake_q);
1449
1450        /* Pairs with preempt_disable() in rt_mutex_slowunlock() */
1451        preempt_enable();
1452}
1453
1454static inline void
1455rt_mutex_fastunlock(struct rt_mutex *lock,
1456                    bool (*slowfn)(struct rt_mutex *lock,
1457                                   struct wake_q_head *wqh))
1458{
1459        DEFINE_WAKE_Q(wake_q);
1460
1461        if (likely(rt_mutex_cmpxchg_release(lock, current, NULL)))
1462                return;
1463
1464        if (slowfn(lock, &wake_q))
1465                rt_mutex_postunlock(&wake_q);
1466}
1467
1468static inline void __rt_mutex_lock(struct rt_mutex *lock, unsigned int subclass)
1469{
1470        might_sleep();
1471
1472        mutex_acquire(&lock->dep_map, subclass, 0, _RET_IP_);
1473        rt_mutex_fastlock(lock, TASK_UNINTERRUPTIBLE, rt_mutex_slowlock);
1474}
1475
1476#ifdef CONFIG_DEBUG_LOCK_ALLOC
1477/**
1478 * rt_mutex_lock_nested - lock a rt_mutex
1479 *
1480 * @lock: the rt_mutex to be locked
1481 * @subclass: the lockdep subclass
1482 */
1483void __sched rt_mutex_lock_nested(struct rt_mutex *lock, unsigned int subclass)
1484{
1485        __rt_mutex_lock(lock, subclass);
1486}
1487EXPORT_SYMBOL_GPL(rt_mutex_lock_nested);
1488#endif
1489
1490#ifndef CONFIG_DEBUG_LOCK_ALLOC
1491/**
1492 * rt_mutex_lock - lock a rt_mutex
1493 *
1494 * @lock: the rt_mutex to be locked
1495 */
1496void __sched rt_mutex_lock(struct rt_mutex *lock)
1497{
1498        __rt_mutex_lock(lock, 0);
1499}
1500EXPORT_SYMBOL_GPL(rt_mutex_lock);
1501#endif
1502
1503/**
1504 * rt_mutex_lock_interruptible - lock a rt_mutex interruptible
1505 *
1506 * @lock:               the rt_mutex to be locked
1507 *
1508 * Returns:
1509 *  0           on success
1510 * -EINTR       when interrupted by a signal
1511 */
1512int __sched rt_mutex_lock_interruptible(struct rt_mutex *lock)
1513{
1514        int ret;
1515
1516        might_sleep();
1517
1518        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1519        ret = rt_mutex_fastlock(lock, TASK_INTERRUPTIBLE, rt_mutex_slowlock);
1520        if (ret)
1521                mutex_release(&lock->dep_map, 1, _RET_IP_);
1522
1523        return ret;
1524}
1525EXPORT_SYMBOL_GPL(rt_mutex_lock_interruptible);
1526
1527/*
1528 * Futex variant, must not use fastpath.
1529 */
1530int __sched rt_mutex_futex_trylock(struct rt_mutex *lock)
1531{
1532        return rt_mutex_slowtrylock(lock);
1533}
1534
1535int __sched __rt_mutex_futex_trylock(struct rt_mutex *lock)
1536{
1537        return __rt_mutex_slowtrylock(lock);
1538}
1539
1540/**
1541 * rt_mutex_timed_lock - lock a rt_mutex interruptible
1542 *                      the timeout structure is provided
1543 *                      by the caller
1544 *
1545 * @lock:               the rt_mutex to be locked
1546 * @timeout:            timeout structure or NULL (no timeout)
1547 *
1548 * Returns:
1549 *  0           on success
1550 * -EINTR       when interrupted by a signal
1551 * -ETIMEDOUT   when the timeout expired
1552 */
1553int
1554rt_mutex_timed_lock(struct rt_mutex *lock, struct hrtimer_sleeper *timeout)
1555{
1556        int ret;
1557
1558        might_sleep();
1559
1560        mutex_acquire(&lock->dep_map, 0, 0, _RET_IP_);
1561        ret = rt_mutex_timed_fastlock(lock, TASK_INTERRUPTIBLE, timeout,
1562                                       RT_MUTEX_MIN_CHAINWALK,
1563                                       rt_mutex_slowlock);
1564        if (ret)
1565                mutex_release(&lock->dep_map, 1, _RET_IP_);
1566
1567        return ret;
1568}
1569EXPORT_SYMBOL_GPL(rt_mutex_timed_lock);
1570
1571/**
1572 * rt_mutex_trylock - try to lock a rt_mutex
1573 *
1574 * @lock:       the rt_mutex to be locked
1575 *
1576 * This function can only be called in thread context. It's safe to
1577 * call it from atomic regions, but not from hard interrupt or soft
1578 * interrupt context.
1579 *
1580 * Returns 1 on success and 0 on contention
1581 */
1582int __sched rt_mutex_trylock(struct rt_mutex *lock)
1583{
1584        int ret;
1585
1586        if (WARN_ON_ONCE(in_irq() || in_nmi() || in_serving_softirq()))
1587                return 0;
1588
1589        ret = rt_mutex_fasttrylock(lock, rt_mutex_slowtrylock);
1590        if (ret)
1591                mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
1592
1593        return ret;
1594}
1595EXPORT_SYMBOL_GPL(rt_mutex_trylock);
1596
1597/**
1598 * rt_mutex_unlock - unlock a rt_mutex
1599 *
1600 * @lock: the rt_mutex to be unlocked
1601 */
1602void __sched rt_mutex_unlock(struct rt_mutex *lock)
1603{
1604        mutex_release(&lock->dep_map, 1, _RET_IP_);
1605        rt_mutex_fastunlock(lock, rt_mutex_slowunlock);
1606}
1607EXPORT_SYMBOL_GPL(rt_mutex_unlock);
1608
1609/**
1610 * Futex variant, that since futex variants do not use the fast-path, can be
1611 * simple and will not need to retry.
1612 */
1613bool __sched __rt_mutex_futex_unlock(struct rt_mutex *lock,
1614                                    struct wake_q_head *wake_q)
1615{
1616        lockdep_assert_held(&lock->wait_lock);
1617
1618        debug_rt_mutex_unlock(lock);
1619
1620        if (!rt_mutex_has_waiters(lock)) {
1621                lock->owner = NULL;
1622                return false; /* done */
1623        }
1624
1625        /*
1626         * We've already deboosted, mark_wakeup_next_waiter() will
1627         * retain preempt_disabled when we drop the wait_lock, to
1628         * avoid inversion prior to the wakeup.  preempt_disable()
1629         * therein pairs with rt_mutex_postunlock().
1630         */
1631        mark_wakeup_next_waiter(wake_q, lock);
1632
1633        return true; /* call postunlock() */
1634}
1635
1636void __sched rt_mutex_futex_unlock(struct rt_mutex *lock)
1637{
1638        DEFINE_WAKE_Q(wake_q);
1639        unsigned long flags;
1640        bool postunlock;
1641
1642        raw_spin_lock_irqsave(&lock->wait_lock, flags);
1643        postunlock = __rt_mutex_futex_unlock(lock, &wake_q);
1644        raw_spin_unlock_irqrestore(&lock->wait_lock, flags);
1645
1646        if (postunlock)
1647                rt_mutex_postunlock(&wake_q);
1648}
1649
1650/**
1651 * rt_mutex_destroy - mark a mutex unusable
1652 * @lock: the mutex to be destroyed
1653 *
1654 * This function marks the mutex uninitialized, and any subsequent
1655 * use of the mutex is forbidden. The mutex must not be locked when
1656 * this function is called.
1657 */
1658void rt_mutex_destroy(struct rt_mutex *lock)
1659{
1660        WARN_ON(rt_mutex_is_locked(lock));
1661#ifdef CONFIG_DEBUG_RT_MUTEXES
1662        lock->magic = NULL;
1663#endif
1664}
1665EXPORT_SYMBOL_GPL(rt_mutex_destroy);
1666
1667/**
1668 * __rt_mutex_init - initialize the rt lock
1669 *
1670 * @lock: the rt lock to be initialized
1671 *
1672 * Initialize the rt lock to unlocked state.
1673 *
1674 * Initializing of a locked rt lock is not allowed
1675 */
1676void __rt_mutex_init(struct rt_mutex *lock, const char *name,
1677                     struct lock_class_key *key)
1678{
1679        lock->owner = NULL;
1680        raw_spin_lock_init(&lock->wait_lock);
1681        lock->waiters = RB_ROOT_CACHED;
1682
1683        if (name && key)
1684                debug_rt_mutex_init(lock, name, key);
1685}
1686EXPORT_SYMBOL_GPL(__rt_mutex_init);
1687
1688/**
1689 * rt_mutex_init_proxy_locked - initialize and lock a rt_mutex on behalf of a
1690 *                              proxy owner
1691 *
1692 * @lock:       the rt_mutex to be locked
1693 * @proxy_owner:the task to set as owner
1694 *
1695 * No locking. Caller has to do serializing itself
1696 *
1697 * Special API call for PI-futex support. This initializes the rtmutex and
1698 * assigns it to @proxy_owner. Concurrent operations on the rtmutex are not
1699 * possible at this point because the pi_state which contains the rtmutex
1700 * is not yet visible to other tasks.
1701 */
1702void rt_mutex_init_proxy_locked(struct rt_mutex *lock,
1703                                struct task_struct *proxy_owner)
1704{
1705        __rt_mutex_init(lock, NULL, NULL);
1706        debug_rt_mutex_proxy_lock(lock, proxy_owner);
1707        rt_mutex_set_owner(lock, proxy_owner);
1708}
1709
1710/**
1711 * rt_mutex_proxy_unlock - release a lock on behalf of owner
1712 *
1713 * @lock:       the rt_mutex to be locked
1714 *
1715 * No locking. Caller has to do serializing itself
1716 *
1717 * Special API call for PI-futex support. This merrily cleans up the rtmutex
1718 * (debugging) state. Concurrent operations on this rt_mutex are not
1719 * possible because it belongs to the pi_state which is about to be freed
1720 * and it is not longer visible to other tasks.
1721 */
1722void rt_mutex_proxy_unlock(struct rt_mutex *lock,
1723                           struct task_struct *proxy_owner)
1724{
1725        debug_rt_mutex_proxy_unlock(lock);
1726        rt_mutex_set_owner(lock, NULL);
1727}
1728
1729int __rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1730                              struct rt_mutex_waiter *waiter,
1731                              struct task_struct *task)
1732{
1733        int ret;
1734
1735        if (try_to_take_rt_mutex(lock, task, NULL))
1736                return 1;
1737
1738        /* We enforce deadlock detection for futexes */
1739        ret = task_blocks_on_rt_mutex(lock, waiter, task,
1740                                      RT_MUTEX_FULL_CHAINWALK);
1741
1742        if (ret && !rt_mutex_owner(lock)) {
1743                /*
1744                 * Reset the return value. We might have
1745                 * returned with -EDEADLK and the owner
1746                 * released the lock while we were walking the
1747                 * pi chain.  Let the waiter sort it out.
1748                 */
1749                ret = 0;
1750        }
1751
1752        if (unlikely(ret))
1753                remove_waiter(lock, waiter);
1754
1755        debug_rt_mutex_print_deadlock(waiter);
1756
1757        return ret;
1758}
1759
1760/**
1761 * rt_mutex_start_proxy_lock() - Start lock acquisition for another task
1762 * @lock:               the rt_mutex to take
1763 * @waiter:             the pre-initialized rt_mutex_waiter
1764 * @task:               the task to prepare
1765 *
1766 * Returns:
1767 *  0 - task blocked on lock
1768 *  1 - acquired the lock for task, caller should wake it up
1769 * <0 - error
1770 *
1771 * Special API call for FUTEX_REQUEUE_PI support.
1772 */
1773int rt_mutex_start_proxy_lock(struct rt_mutex *lock,
1774                              struct rt_mutex_waiter *waiter,
1775                              struct task_struct *task)
1776{
1777        int ret;
1778
1779        raw_spin_lock_irq(&lock->wait_lock);
1780        ret = __rt_mutex_start_proxy_lock(lock, waiter, task);
1781        raw_spin_unlock_irq(&lock->wait_lock);
1782
1783        return ret;
1784}
1785
1786/**
1787 * rt_mutex_next_owner - return the next owner of the lock
1788 *
1789 * @lock: the rt lock query
1790 *
1791 * Returns the next owner of the lock or NULL
1792 *
1793 * Caller has to serialize against other accessors to the lock
1794 * itself.
1795 *
1796 * Special API call for PI-futex support
1797 */
1798struct task_struct *rt_mutex_next_owner(struct rt_mutex *lock)
1799{
1800        if (!rt_mutex_has_waiters(lock))
1801                return NULL;
1802
1803        return rt_mutex_top_waiter(lock)->task;
1804}
1805
1806/**
1807 * rt_mutex_wait_proxy_lock() - Wait for lock acquisition
1808 * @lock:               the rt_mutex we were woken on
1809 * @to:                 the timeout, null if none. hrtimer should already have
1810 *                      been started.
1811 * @waiter:             the pre-initialized rt_mutex_waiter
1812 *
1813 * Wait for the the lock acquisition started on our behalf by
1814 * rt_mutex_start_proxy_lock(). Upon failure, the caller must call
1815 * rt_mutex_cleanup_proxy_lock().
1816 *
1817 * Returns:
1818 *  0 - success
1819 * <0 - error, one of -EINTR, -ETIMEDOUT
1820 *
1821 * Special API call for PI-futex support
1822 */
1823int rt_mutex_wait_proxy_lock(struct rt_mutex *lock,
1824                               struct hrtimer_sleeper *to,
1825                               struct rt_mutex_waiter *waiter)
1826{
1827        int ret;
1828
1829        raw_spin_lock_irq(&lock->wait_lock);
1830        /* sleep on the mutex */
1831        set_current_state(TASK_INTERRUPTIBLE);
1832        ret = __rt_mutex_slowlock(lock, TASK_INTERRUPTIBLE, to, waiter);
1833        /*
1834         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1835         * have to fix that up.
1836         */
1837        fixup_rt_mutex_waiters(lock);
1838        raw_spin_unlock_irq(&lock->wait_lock);
1839
1840        return ret;
1841}
1842
1843/**
1844 * rt_mutex_cleanup_proxy_lock() - Cleanup failed lock acquisition
1845 * @lock:               the rt_mutex we were woken on
1846 * @waiter:             the pre-initialized rt_mutex_waiter
1847 *
1848 * Attempt to clean up after a failed rt_mutex_wait_proxy_lock().
1849 *
1850 * Unless we acquired the lock; we're still enqueued on the wait-list and can
1851 * in fact still be granted ownership until we're removed. Therefore we can
1852 * find we are in fact the owner and must disregard the
1853 * rt_mutex_wait_proxy_lock() failure.
1854 *
1855 * Returns:
1856 *  true  - did the cleanup, we done.
1857 *  false - we acquired the lock after rt_mutex_wait_proxy_lock() returned,
1858 *          caller should disregards its return value.
1859 *
1860 * Special API call for PI-futex support
1861 */
1862bool rt_mutex_cleanup_proxy_lock(struct rt_mutex *lock,
1863                                 struct rt_mutex_waiter *waiter)
1864{
1865        bool cleanup = false;
1866
1867        raw_spin_lock_irq(&lock->wait_lock);
1868        /*
1869         * Do an unconditional try-lock, this deals with the lock stealing
1870         * state where __rt_mutex_futex_unlock() -> mark_wakeup_next_waiter()
1871         * sets a NULL owner.
1872         *
1873         * We're not interested in the return value, because the subsequent
1874         * test on rt_mutex_owner() will infer that. If the trylock succeeded,
1875         * we will own the lock and it will have removed the waiter. If we
1876         * failed the trylock, we're still not owner and we need to remove
1877         * ourselves.
1878         */
1879        try_to_take_rt_mutex(lock, current, waiter);
1880        /*
1881         * Unless we're the owner; we're still enqueued on the wait_list.
1882         * So check if we became owner, if not, take us off the wait_list.
1883         */
1884        if (rt_mutex_owner(lock) != current) {
1885                remove_waiter(lock, waiter);
1886                cleanup = true;
1887        }
1888        /*
1889         * try_to_take_rt_mutex() sets the waiter bit unconditionally. We might
1890         * have to fix that up.
1891         */
1892        fixup_rt_mutex_waiters(lock);
1893
1894        raw_spin_unlock_irq(&lock->wait_lock);
1895
1896        return cleanup;
1897}
1898