linux/kernel/sched/deadline.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Deadline Scheduling Class (SCHED_DEADLINE)
   4 *
   5 * Earliest Deadline First (EDF) + Constant Bandwidth Server (CBS).
   6 *
   7 * Tasks that periodically executes their instances for less than their
   8 * runtime won't miss any of their deadlines.
   9 * Tasks that are not periodic or sporadic or that tries to execute more
  10 * than their reserved bandwidth will be slowed down (and may potentially
  11 * miss some of their deadlines), and won't affect any other task.
  12 *
  13 * Copyright (C) 2012 Dario Faggioli <raistlin@linux.it>,
  14 *                    Juri Lelli <juri.lelli@gmail.com>,
  15 *                    Michael Trimarchi <michael@amarulasolutions.com>,
  16 *                    Fabio Checconi <fchecconi@gmail.com>
  17 */
  18#include "sched.h"
  19#include "pelt.h"
  20
  21struct dl_bandwidth def_dl_bandwidth;
  22
  23static inline struct task_struct *dl_task_of(struct sched_dl_entity *dl_se)
  24{
  25        return container_of(dl_se, struct task_struct, dl);
  26}
  27
  28static inline struct rq *rq_of_dl_rq(struct dl_rq *dl_rq)
  29{
  30        return container_of(dl_rq, struct rq, dl);
  31}
  32
  33static inline struct dl_rq *dl_rq_of_se(struct sched_dl_entity *dl_se)
  34{
  35        struct task_struct *p = dl_task_of(dl_se);
  36        struct rq *rq = task_rq(p);
  37
  38        return &rq->dl;
  39}
  40
  41static inline int on_dl_rq(struct sched_dl_entity *dl_se)
  42{
  43        return !RB_EMPTY_NODE(&dl_se->rb_node);
  44}
  45
  46#ifdef CONFIG_SMP
  47static inline struct dl_bw *dl_bw_of(int i)
  48{
  49        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  50                         "sched RCU must be held");
  51        return &cpu_rq(i)->rd->dl_bw;
  52}
  53
  54static inline int dl_bw_cpus(int i)
  55{
  56        struct root_domain *rd = cpu_rq(i)->rd;
  57        int cpus = 0;
  58
  59        RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
  60                         "sched RCU must be held");
  61        for_each_cpu_and(i, rd->span, cpu_active_mask)
  62                cpus++;
  63
  64        return cpus;
  65}
  66#else
  67static inline struct dl_bw *dl_bw_of(int i)
  68{
  69        return &cpu_rq(i)->dl.dl_bw;
  70}
  71
  72static inline int dl_bw_cpus(int i)
  73{
  74        return 1;
  75}
  76#endif
  77
  78static inline
  79void __add_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  80{
  81        u64 old = dl_rq->running_bw;
  82
  83        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  84        dl_rq->running_bw += dl_bw;
  85        SCHED_WARN_ON(dl_rq->running_bw < old); /* overflow */
  86        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
  87        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
  88        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
  89}
  90
  91static inline
  92void __sub_running_bw(u64 dl_bw, struct dl_rq *dl_rq)
  93{
  94        u64 old = dl_rq->running_bw;
  95
  96        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
  97        dl_rq->running_bw -= dl_bw;
  98        SCHED_WARN_ON(dl_rq->running_bw > old); /* underflow */
  99        if (dl_rq->running_bw > old)
 100                dl_rq->running_bw = 0;
 101        /* kick cpufreq (see the comment in kernel/sched/sched.h). */
 102        cpufreq_update_util(rq_of_dl_rq(dl_rq), 0);
 103}
 104
 105static inline
 106void __add_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 107{
 108        u64 old = dl_rq->this_bw;
 109
 110        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 111        dl_rq->this_bw += dl_bw;
 112        SCHED_WARN_ON(dl_rq->this_bw < old); /* overflow */
 113}
 114
 115static inline
 116void __sub_rq_bw(u64 dl_bw, struct dl_rq *dl_rq)
 117{
 118        u64 old = dl_rq->this_bw;
 119
 120        lockdep_assert_held(&(rq_of_dl_rq(dl_rq))->lock);
 121        dl_rq->this_bw -= dl_bw;
 122        SCHED_WARN_ON(dl_rq->this_bw > old); /* underflow */
 123        if (dl_rq->this_bw > old)
 124                dl_rq->this_bw = 0;
 125        SCHED_WARN_ON(dl_rq->running_bw > dl_rq->this_bw);
 126}
 127
 128static inline
 129void add_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 130{
 131        if (!dl_entity_is_special(dl_se))
 132                __add_rq_bw(dl_se->dl_bw, dl_rq);
 133}
 134
 135static inline
 136void sub_rq_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 137{
 138        if (!dl_entity_is_special(dl_se))
 139                __sub_rq_bw(dl_se->dl_bw, dl_rq);
 140}
 141
 142static inline
 143void add_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 144{
 145        if (!dl_entity_is_special(dl_se))
 146                __add_running_bw(dl_se->dl_bw, dl_rq);
 147}
 148
 149static inline
 150void sub_running_bw(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 151{
 152        if (!dl_entity_is_special(dl_se))
 153                __sub_running_bw(dl_se->dl_bw, dl_rq);
 154}
 155
 156void dl_change_utilization(struct task_struct *p, u64 new_bw)
 157{
 158        struct rq *rq;
 159
 160        BUG_ON(p->dl.flags & SCHED_FLAG_SUGOV);
 161
 162        if (task_on_rq_queued(p))
 163                return;
 164
 165        rq = task_rq(p);
 166        if (p->dl.dl_non_contending) {
 167                sub_running_bw(&p->dl, &rq->dl);
 168                p->dl.dl_non_contending = 0;
 169                /*
 170                 * If the timer handler is currently running and the
 171                 * timer cannot be cancelled, inactive_task_timer()
 172                 * will see that dl_not_contending is not set, and
 173                 * will not touch the rq's active utilization,
 174                 * so we are still safe.
 175                 */
 176                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
 177                        put_task_struct(p);
 178        }
 179        __sub_rq_bw(p->dl.dl_bw, &rq->dl);
 180        __add_rq_bw(new_bw, &rq->dl);
 181}
 182
 183/*
 184 * The utilization of a task cannot be immediately removed from
 185 * the rq active utilization (running_bw) when the task blocks.
 186 * Instead, we have to wait for the so called "0-lag time".
 187 *
 188 * If a task blocks before the "0-lag time", a timer (the inactive
 189 * timer) is armed, and running_bw is decreased when the timer
 190 * fires.
 191 *
 192 * If the task wakes up again before the inactive timer fires,
 193 * the timer is cancelled, whereas if the task wakes up after the
 194 * inactive timer fired (and running_bw has been decreased) the
 195 * task's utilization has to be added to running_bw again.
 196 * A flag in the deadline scheduling entity (dl_non_contending)
 197 * is used to avoid race conditions between the inactive timer handler
 198 * and task wakeups.
 199 *
 200 * The following diagram shows how running_bw is updated. A task is
 201 * "ACTIVE" when its utilization contributes to running_bw; an
 202 * "ACTIVE contending" task is in the TASK_RUNNING state, while an
 203 * "ACTIVE non contending" task is a blocked task for which the "0-lag time"
 204 * has not passed yet. An "INACTIVE" task is a task for which the "0-lag"
 205 * time already passed, which does not contribute to running_bw anymore.
 206 *                              +------------------+
 207 *             wakeup           |    ACTIVE        |
 208 *          +------------------>+   contending     |
 209 *          | add_running_bw    |                  |
 210 *          |                   +----+------+------+
 211 *          |                        |      ^
 212 *          |                dequeue |      |
 213 * +--------+-------+                |      |
 214 * |                |   t >= 0-lag   |      | wakeup
 215 * |    INACTIVE    |<---------------+      |
 216 * |                | sub_running_bw |      |
 217 * +--------+-------+                |      |
 218 *          ^                        |      |
 219 *          |              t < 0-lag |      |
 220 *          |                        |      |
 221 *          |                        V      |
 222 *          |                   +----+------+------+
 223 *          | sub_running_bw    |    ACTIVE        |
 224 *          +-------------------+                  |
 225 *            inactive timer    |  non contending  |
 226 *            fired             +------------------+
 227 *
 228 * The task_non_contending() function is invoked when a task
 229 * blocks, and checks if the 0-lag time already passed or
 230 * not (in the first case, it directly updates running_bw;
 231 * in the second case, it arms the inactive timer).
 232 *
 233 * The task_contending() function is invoked when a task wakes
 234 * up, and checks if the task is still in the "ACTIVE non contending"
 235 * state or not (in the second case, it updates running_bw).
 236 */
 237static void task_non_contending(struct task_struct *p)
 238{
 239        struct sched_dl_entity *dl_se = &p->dl;
 240        struct hrtimer *timer = &dl_se->inactive_timer;
 241        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 242        struct rq *rq = rq_of_dl_rq(dl_rq);
 243        s64 zerolag_time;
 244
 245        /*
 246         * If this is a non-deadline task that has been boosted,
 247         * do nothing
 248         */
 249        if (dl_se->dl_runtime == 0)
 250                return;
 251
 252        if (dl_entity_is_special(dl_se))
 253                return;
 254
 255        WARN_ON(hrtimer_active(&dl_se->inactive_timer));
 256        WARN_ON(dl_se->dl_non_contending);
 257
 258        zerolag_time = dl_se->deadline -
 259                 div64_long((dl_se->runtime * dl_se->dl_period),
 260                        dl_se->dl_runtime);
 261
 262        /*
 263         * Using relative times instead of the absolute "0-lag time"
 264         * allows to simplify the code
 265         */
 266        zerolag_time -= rq_clock(rq);
 267
 268        /*
 269         * If the "0-lag time" already passed, decrease the active
 270         * utilization now, instead of starting a timer
 271         */
 272        if (zerolag_time < 0) {
 273                if (dl_task(p))
 274                        sub_running_bw(dl_se, dl_rq);
 275                if (!dl_task(p) || p->state == TASK_DEAD) {
 276                        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
 277
 278                        if (p->state == TASK_DEAD)
 279                                sub_rq_bw(&p->dl, &rq->dl);
 280                        raw_spin_lock(&dl_b->lock);
 281                        __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
 282                        __dl_clear_params(p);
 283                        raw_spin_unlock(&dl_b->lock);
 284                }
 285
 286                return;
 287        }
 288
 289        dl_se->dl_non_contending = 1;
 290        get_task_struct(p);
 291        hrtimer_start(timer, ns_to_ktime(zerolag_time), HRTIMER_MODE_REL);
 292}
 293
 294static void task_contending(struct sched_dl_entity *dl_se, int flags)
 295{
 296        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 297
 298        /*
 299         * If this is a non-deadline task that has been boosted,
 300         * do nothing
 301         */
 302        if (dl_se->dl_runtime == 0)
 303                return;
 304
 305        if (flags & ENQUEUE_MIGRATED)
 306                add_rq_bw(dl_se, dl_rq);
 307
 308        if (dl_se->dl_non_contending) {
 309                dl_se->dl_non_contending = 0;
 310                /*
 311                 * If the timer handler is currently running and the
 312                 * timer cannot be cancelled, inactive_task_timer()
 313                 * will see that dl_not_contending is not set, and
 314                 * will not touch the rq's active utilization,
 315                 * so we are still safe.
 316                 */
 317                if (hrtimer_try_to_cancel(&dl_se->inactive_timer) == 1)
 318                        put_task_struct(dl_task_of(dl_se));
 319        } else {
 320                /*
 321                 * Since "dl_non_contending" is not set, the
 322                 * task's utilization has already been removed from
 323                 * active utilization (either when the task blocked,
 324                 * when the "inactive timer" fired).
 325                 * So, add it back.
 326                 */
 327                add_running_bw(dl_se, dl_rq);
 328        }
 329}
 330
 331static inline int is_leftmost(struct task_struct *p, struct dl_rq *dl_rq)
 332{
 333        struct sched_dl_entity *dl_se = &p->dl;
 334
 335        return dl_rq->root.rb_leftmost == &dl_se->rb_node;
 336}
 337
 338void init_dl_bandwidth(struct dl_bandwidth *dl_b, u64 period, u64 runtime)
 339{
 340        raw_spin_lock_init(&dl_b->dl_runtime_lock);
 341        dl_b->dl_period = period;
 342        dl_b->dl_runtime = runtime;
 343}
 344
 345void init_dl_bw(struct dl_bw *dl_b)
 346{
 347        raw_spin_lock_init(&dl_b->lock);
 348        raw_spin_lock(&def_dl_bandwidth.dl_runtime_lock);
 349        if (global_rt_runtime() == RUNTIME_INF)
 350                dl_b->bw = -1;
 351        else
 352                dl_b->bw = to_ratio(global_rt_period(), global_rt_runtime());
 353        raw_spin_unlock(&def_dl_bandwidth.dl_runtime_lock);
 354        dl_b->total_bw = 0;
 355}
 356
 357void init_dl_rq(struct dl_rq *dl_rq)
 358{
 359        dl_rq->root = RB_ROOT_CACHED;
 360
 361#ifdef CONFIG_SMP
 362        /* zero means no -deadline tasks */
 363        dl_rq->earliest_dl.curr = dl_rq->earliest_dl.next = 0;
 364
 365        dl_rq->dl_nr_migratory = 0;
 366        dl_rq->overloaded = 0;
 367        dl_rq->pushable_dl_tasks_root = RB_ROOT_CACHED;
 368#else
 369        init_dl_bw(&dl_rq->dl_bw);
 370#endif
 371
 372        dl_rq->running_bw = 0;
 373        dl_rq->this_bw = 0;
 374        init_dl_rq_bw_ratio(dl_rq);
 375}
 376
 377#ifdef CONFIG_SMP
 378
 379static inline int dl_overloaded(struct rq *rq)
 380{
 381        return atomic_read(&rq->rd->dlo_count);
 382}
 383
 384static inline void dl_set_overload(struct rq *rq)
 385{
 386        if (!rq->online)
 387                return;
 388
 389        cpumask_set_cpu(rq->cpu, rq->rd->dlo_mask);
 390        /*
 391         * Must be visible before the overload count is
 392         * set (as in sched_rt.c).
 393         *
 394         * Matched by the barrier in pull_dl_task().
 395         */
 396        smp_wmb();
 397        atomic_inc(&rq->rd->dlo_count);
 398}
 399
 400static inline void dl_clear_overload(struct rq *rq)
 401{
 402        if (!rq->online)
 403                return;
 404
 405        atomic_dec(&rq->rd->dlo_count);
 406        cpumask_clear_cpu(rq->cpu, rq->rd->dlo_mask);
 407}
 408
 409static void update_dl_migration(struct dl_rq *dl_rq)
 410{
 411        if (dl_rq->dl_nr_migratory && dl_rq->dl_nr_running > 1) {
 412                if (!dl_rq->overloaded) {
 413                        dl_set_overload(rq_of_dl_rq(dl_rq));
 414                        dl_rq->overloaded = 1;
 415                }
 416        } else if (dl_rq->overloaded) {
 417                dl_clear_overload(rq_of_dl_rq(dl_rq));
 418                dl_rq->overloaded = 0;
 419        }
 420}
 421
 422static void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 423{
 424        struct task_struct *p = dl_task_of(dl_se);
 425
 426        if (p->nr_cpus_allowed > 1)
 427                dl_rq->dl_nr_migratory++;
 428
 429        update_dl_migration(dl_rq);
 430}
 431
 432static void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 433{
 434        struct task_struct *p = dl_task_of(dl_se);
 435
 436        if (p->nr_cpus_allowed > 1)
 437                dl_rq->dl_nr_migratory--;
 438
 439        update_dl_migration(dl_rq);
 440}
 441
 442/*
 443 * The list of pushable -deadline task is not a plist, like in
 444 * sched_rt.c, it is an rb-tree with tasks ordered by deadline.
 445 */
 446static void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 447{
 448        struct dl_rq *dl_rq = &rq->dl;
 449        struct rb_node **link = &dl_rq->pushable_dl_tasks_root.rb_root.rb_node;
 450        struct rb_node *parent = NULL;
 451        struct task_struct *entry;
 452        bool leftmost = true;
 453
 454        BUG_ON(!RB_EMPTY_NODE(&p->pushable_dl_tasks));
 455
 456        while (*link) {
 457                parent = *link;
 458                entry = rb_entry(parent, struct task_struct,
 459                                 pushable_dl_tasks);
 460                if (dl_entity_preempt(&p->dl, &entry->dl))
 461                        link = &parent->rb_left;
 462                else {
 463                        link = &parent->rb_right;
 464                        leftmost = false;
 465                }
 466        }
 467
 468        if (leftmost)
 469                dl_rq->earliest_dl.next = p->dl.deadline;
 470
 471        rb_link_node(&p->pushable_dl_tasks, parent, link);
 472        rb_insert_color_cached(&p->pushable_dl_tasks,
 473                               &dl_rq->pushable_dl_tasks_root, leftmost);
 474}
 475
 476static void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 477{
 478        struct dl_rq *dl_rq = &rq->dl;
 479
 480        if (RB_EMPTY_NODE(&p->pushable_dl_tasks))
 481                return;
 482
 483        if (dl_rq->pushable_dl_tasks_root.rb_leftmost == &p->pushable_dl_tasks) {
 484                struct rb_node *next_node;
 485
 486                next_node = rb_next(&p->pushable_dl_tasks);
 487                if (next_node) {
 488                        dl_rq->earliest_dl.next = rb_entry(next_node,
 489                                struct task_struct, pushable_dl_tasks)->dl.deadline;
 490                }
 491        }
 492
 493        rb_erase_cached(&p->pushable_dl_tasks, &dl_rq->pushable_dl_tasks_root);
 494        RB_CLEAR_NODE(&p->pushable_dl_tasks);
 495}
 496
 497static inline int has_pushable_dl_tasks(struct rq *rq)
 498{
 499        return !RB_EMPTY_ROOT(&rq->dl.pushable_dl_tasks_root.rb_root);
 500}
 501
 502static int push_dl_task(struct rq *rq);
 503
 504static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 505{
 506        return dl_task(prev);
 507}
 508
 509static DEFINE_PER_CPU(struct callback_head, dl_push_head);
 510static DEFINE_PER_CPU(struct callback_head, dl_pull_head);
 511
 512static void push_dl_tasks(struct rq *);
 513static void pull_dl_task(struct rq *);
 514
 515static inline void deadline_queue_push_tasks(struct rq *rq)
 516{
 517        if (!has_pushable_dl_tasks(rq))
 518                return;
 519
 520        queue_balance_callback(rq, &per_cpu(dl_push_head, rq->cpu), push_dl_tasks);
 521}
 522
 523static inline void deadline_queue_pull_task(struct rq *rq)
 524{
 525        queue_balance_callback(rq, &per_cpu(dl_pull_head, rq->cpu), pull_dl_task);
 526}
 527
 528static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq);
 529
 530static struct rq *dl_task_offline_migration(struct rq *rq, struct task_struct *p)
 531{
 532        struct rq *later_rq = NULL;
 533
 534        later_rq = find_lock_later_rq(p, rq);
 535        if (!later_rq) {
 536                int cpu;
 537
 538                /*
 539                 * If we cannot preempt any rq, fall back to pick any
 540                 * online CPU:
 541                 */
 542                cpu = cpumask_any_and(cpu_active_mask, &p->cpus_allowed);
 543                if (cpu >= nr_cpu_ids) {
 544                        /*
 545                         * Failed to find any suitable CPU.
 546                         * The task will never come back!
 547                         */
 548                        BUG_ON(dl_bandwidth_enabled());
 549
 550                        /*
 551                         * If admission control is disabled we
 552                         * try a little harder to let the task
 553                         * run.
 554                         */
 555                        cpu = cpumask_any(cpu_active_mask);
 556                }
 557                later_rq = cpu_rq(cpu);
 558                double_lock_balance(rq, later_rq);
 559        }
 560
 561        set_task_cpu(p, later_rq->cpu);
 562        double_unlock_balance(later_rq, rq);
 563
 564        return later_rq;
 565}
 566
 567#else
 568
 569static inline
 570void enqueue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 571{
 572}
 573
 574static inline
 575void dequeue_pushable_dl_task(struct rq *rq, struct task_struct *p)
 576{
 577}
 578
 579static inline
 580void inc_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 581{
 582}
 583
 584static inline
 585void dec_dl_migration(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
 586{
 587}
 588
 589static inline bool need_pull_dl_task(struct rq *rq, struct task_struct *prev)
 590{
 591        return false;
 592}
 593
 594static inline void pull_dl_task(struct rq *rq)
 595{
 596}
 597
 598static inline void deadline_queue_push_tasks(struct rq *rq)
 599{
 600}
 601
 602static inline void deadline_queue_pull_task(struct rq *rq)
 603{
 604}
 605#endif /* CONFIG_SMP */
 606
 607static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 608static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags);
 609static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p, int flags);
 610
 611/*
 612 * We are being explicitly informed that a new instance is starting,
 613 * and this means that:
 614 *  - the absolute deadline of the entity has to be placed at
 615 *    current time + relative deadline;
 616 *  - the runtime of the entity has to be set to the maximum value.
 617 *
 618 * The capability of specifying such event is useful whenever a -deadline
 619 * entity wants to (try to!) synchronize its behaviour with the scheduler's
 620 * one, and to (try to!) reconcile itself with its own scheduling
 621 * parameters.
 622 */
 623static inline void setup_new_dl_entity(struct sched_dl_entity *dl_se)
 624{
 625        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 626        struct rq *rq = rq_of_dl_rq(dl_rq);
 627
 628        WARN_ON(dl_se->dl_boosted);
 629        WARN_ON(dl_time_before(rq_clock(rq), dl_se->deadline));
 630
 631        /*
 632         * We are racing with the deadline timer. So, do nothing because
 633         * the deadline timer handler will take care of properly recharging
 634         * the runtime and postponing the deadline
 635         */
 636        if (dl_se->dl_throttled)
 637                return;
 638
 639        /*
 640         * We use the regular wall clock time to set deadlines in the
 641         * future; in fact, we must consider execution overheads (time
 642         * spent on hardirq context, etc.).
 643         */
 644        dl_se->deadline = rq_clock(rq) + dl_se->dl_deadline;
 645        dl_se->runtime = dl_se->dl_runtime;
 646}
 647
 648/*
 649 * Pure Earliest Deadline First (EDF) scheduling does not deal with the
 650 * possibility of a entity lasting more than what it declared, and thus
 651 * exhausting its runtime.
 652 *
 653 * Here we are interested in making runtime overrun possible, but we do
 654 * not want a entity which is misbehaving to affect the scheduling of all
 655 * other entities.
 656 * Therefore, a budgeting strategy called Constant Bandwidth Server (CBS)
 657 * is used, in order to confine each entity within its own bandwidth.
 658 *
 659 * This function deals exactly with that, and ensures that when the runtime
 660 * of a entity is replenished, its deadline is also postponed. That ensures
 661 * the overrunning entity can't interfere with other entity in the system and
 662 * can't make them miss their deadlines. Reasons why this kind of overruns
 663 * could happen are, typically, a entity voluntarily trying to overcome its
 664 * runtime, or it just underestimated it during sched_setattr().
 665 */
 666static void replenish_dl_entity(struct sched_dl_entity *dl_se,
 667                                struct sched_dl_entity *pi_se)
 668{
 669        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 670        struct rq *rq = rq_of_dl_rq(dl_rq);
 671
 672        BUG_ON(pi_se->dl_runtime <= 0);
 673
 674        /*
 675         * This could be the case for a !-dl task that is boosted.
 676         * Just go with full inherited parameters.
 677         */
 678        if (dl_se->dl_deadline == 0) {
 679                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 680                dl_se->runtime = pi_se->dl_runtime;
 681        }
 682
 683        if (dl_se->dl_yielded && dl_se->runtime > 0)
 684                dl_se->runtime = 0;
 685
 686        /*
 687         * We keep moving the deadline away until we get some
 688         * available runtime for the entity. This ensures correct
 689         * handling of situations where the runtime overrun is
 690         * arbitrary large.
 691         */
 692        while (dl_se->runtime <= 0) {
 693                dl_se->deadline += pi_se->dl_period;
 694                dl_se->runtime += pi_se->dl_runtime;
 695        }
 696
 697        /*
 698         * At this point, the deadline really should be "in
 699         * the future" with respect to rq->clock. If it's
 700         * not, we are, for some reason, lagging too much!
 701         * Anyway, after having warn userspace abut that,
 702         * we still try to keep the things running by
 703         * resetting the deadline and the budget of the
 704         * entity.
 705         */
 706        if (dl_time_before(dl_se->deadline, rq_clock(rq))) {
 707                printk_deferred_once("sched: DL replenish lagged too much\n");
 708                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 709                dl_se->runtime = pi_se->dl_runtime;
 710        }
 711
 712        if (dl_se->dl_yielded)
 713                dl_se->dl_yielded = 0;
 714        if (dl_se->dl_throttled)
 715                dl_se->dl_throttled = 0;
 716}
 717
 718/*
 719 * Here we check if --at time t-- an entity (which is probably being
 720 * [re]activated or, in general, enqueued) can use its remaining runtime
 721 * and its current deadline _without_ exceeding the bandwidth it is
 722 * assigned (function returns true if it can't). We are in fact applying
 723 * one of the CBS rules: when a task wakes up, if the residual runtime
 724 * over residual deadline fits within the allocated bandwidth, then we
 725 * can keep the current (absolute) deadline and residual budget without
 726 * disrupting the schedulability of the system. Otherwise, we should
 727 * refill the runtime and set the deadline a period in the future,
 728 * because keeping the current (absolute) deadline of the task would
 729 * result in breaking guarantees promised to other tasks (refer to
 730 * Documentation/scheduler/sched-deadline.txt for more informations).
 731 *
 732 * This function returns true if:
 733 *
 734 *   runtime / (deadline - t) > dl_runtime / dl_deadline ,
 735 *
 736 * IOW we can't recycle current parameters.
 737 *
 738 * Notice that the bandwidth check is done against the deadline. For
 739 * task with deadline equal to period this is the same of using
 740 * dl_period instead of dl_deadline in the equation above.
 741 */
 742static bool dl_entity_overflow(struct sched_dl_entity *dl_se,
 743                               struct sched_dl_entity *pi_se, u64 t)
 744{
 745        u64 left, right;
 746
 747        /*
 748         * left and right are the two sides of the equation above,
 749         * after a bit of shuffling to use multiplications instead
 750         * of divisions.
 751         *
 752         * Note that none of the time values involved in the two
 753         * multiplications are absolute: dl_deadline and dl_runtime
 754         * are the relative deadline and the maximum runtime of each
 755         * instance, runtime is the runtime left for the last instance
 756         * and (deadline - t), since t is rq->clock, is the time left
 757         * to the (absolute) deadline. Even if overflowing the u64 type
 758         * is very unlikely to occur in both cases, here we scale down
 759         * as we want to avoid that risk at all. Scaling down by 10
 760         * means that we reduce granularity to 1us. We are fine with it,
 761         * since this is only a true/false check and, anyway, thinking
 762         * of anything below microseconds resolution is actually fiction
 763         * (but still we want to give the user that illusion >;).
 764         */
 765        left = (pi_se->dl_deadline >> DL_SCALE) * (dl_se->runtime >> DL_SCALE);
 766        right = ((dl_se->deadline - t) >> DL_SCALE) *
 767                (pi_se->dl_runtime >> DL_SCALE);
 768
 769        return dl_time_before(right, left);
 770}
 771
 772/*
 773 * Revised wakeup rule [1]: For self-suspending tasks, rather then
 774 * re-initializing task's runtime and deadline, the revised wakeup
 775 * rule adjusts the task's runtime to avoid the task to overrun its
 776 * density.
 777 *
 778 * Reasoning: a task may overrun the density if:
 779 *    runtime / (deadline - t) > dl_runtime / dl_deadline
 780 *
 781 * Therefore, runtime can be adjusted to:
 782 *     runtime = (dl_runtime / dl_deadline) * (deadline - t)
 783 *
 784 * In such way that runtime will be equal to the maximum density
 785 * the task can use without breaking any rule.
 786 *
 787 * [1] Luca Abeni, Giuseppe Lipari, and Juri Lelli. 2015. Constant
 788 * bandwidth server revisited. SIGBED Rev. 11, 4 (January 2015), 19-24.
 789 */
 790static void
 791update_dl_revised_wakeup(struct sched_dl_entity *dl_se, struct rq *rq)
 792{
 793        u64 laxity = dl_se->deadline - rq_clock(rq);
 794
 795        /*
 796         * If the task has deadline < period, and the deadline is in the past,
 797         * it should already be throttled before this check.
 798         *
 799         * See update_dl_entity() comments for further details.
 800         */
 801        WARN_ON(dl_time_before(dl_se->deadline, rq_clock(rq)));
 802
 803        dl_se->runtime = (dl_se->dl_density * laxity) >> BW_SHIFT;
 804}
 805
 806/*
 807 * Regarding the deadline, a task with implicit deadline has a relative
 808 * deadline == relative period. A task with constrained deadline has a
 809 * relative deadline <= relative period.
 810 *
 811 * We support constrained deadline tasks. However, there are some restrictions
 812 * applied only for tasks which do not have an implicit deadline. See
 813 * update_dl_entity() to know more about such restrictions.
 814 *
 815 * The dl_is_implicit() returns true if the task has an implicit deadline.
 816 */
 817static inline bool dl_is_implicit(struct sched_dl_entity *dl_se)
 818{
 819        return dl_se->dl_deadline == dl_se->dl_period;
 820}
 821
 822/*
 823 * When a deadline entity is placed in the runqueue, its runtime and deadline
 824 * might need to be updated. This is done by a CBS wake up rule. There are two
 825 * different rules: 1) the original CBS; and 2) the Revisited CBS.
 826 *
 827 * When the task is starting a new period, the Original CBS is used. In this
 828 * case, the runtime is replenished and a new absolute deadline is set.
 829 *
 830 * When a task is queued before the begin of the next period, using the
 831 * remaining runtime and deadline could make the entity to overflow, see
 832 * dl_entity_overflow() to find more about runtime overflow. When such case
 833 * is detected, the runtime and deadline need to be updated.
 834 *
 835 * If the task has an implicit deadline, i.e., deadline == period, the Original
 836 * CBS is applied. the runtime is replenished and a new absolute deadline is
 837 * set, as in the previous cases.
 838 *
 839 * However, the Original CBS does not work properly for tasks with
 840 * deadline < period, which are said to have a constrained deadline. By
 841 * applying the Original CBS, a constrained deadline task would be able to run
 842 * runtime/deadline in a period. With deadline < period, the task would
 843 * overrun the runtime/period allowed bandwidth, breaking the admission test.
 844 *
 845 * In order to prevent this misbehave, the Revisited CBS is used for
 846 * constrained deadline tasks when a runtime overflow is detected. In the
 847 * Revisited CBS, rather than replenishing & setting a new absolute deadline,
 848 * the remaining runtime of the task is reduced to avoid runtime overflow.
 849 * Please refer to the comments update_dl_revised_wakeup() function to find
 850 * more about the Revised CBS rule.
 851 */
 852static void update_dl_entity(struct sched_dl_entity *dl_se,
 853                             struct sched_dl_entity *pi_se)
 854{
 855        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
 856        struct rq *rq = rq_of_dl_rq(dl_rq);
 857
 858        if (dl_time_before(dl_se->deadline, rq_clock(rq)) ||
 859            dl_entity_overflow(dl_se, pi_se, rq_clock(rq))) {
 860
 861                if (unlikely(!dl_is_implicit(dl_se) &&
 862                             !dl_time_before(dl_se->deadline, rq_clock(rq)) &&
 863                             !dl_se->dl_boosted)){
 864                        update_dl_revised_wakeup(dl_se, rq);
 865                        return;
 866                }
 867
 868                dl_se->deadline = rq_clock(rq) + pi_se->dl_deadline;
 869                dl_se->runtime = pi_se->dl_runtime;
 870        }
 871}
 872
 873static inline u64 dl_next_period(struct sched_dl_entity *dl_se)
 874{
 875        return dl_se->deadline - dl_se->dl_deadline + dl_se->dl_period;
 876}
 877
 878/*
 879 * If the entity depleted all its runtime, and if we want it to sleep
 880 * while waiting for some new execution time to become available, we
 881 * set the bandwidth replenishment timer to the replenishment instant
 882 * and try to activate it.
 883 *
 884 * Notice that it is important for the caller to know if the timer
 885 * actually started or not (i.e., the replenishment instant is in
 886 * the future or in the past).
 887 */
 888static int start_dl_timer(struct task_struct *p)
 889{
 890        struct sched_dl_entity *dl_se = &p->dl;
 891        struct hrtimer *timer = &dl_se->dl_timer;
 892        struct rq *rq = task_rq(p);
 893        ktime_t now, act;
 894        s64 delta;
 895
 896        lockdep_assert_held(&rq->lock);
 897
 898        /*
 899         * We want the timer to fire at the deadline, but considering
 900         * that it is actually coming from rq->clock and not from
 901         * hrtimer's time base reading.
 902         */
 903        act = ns_to_ktime(dl_next_period(dl_se));
 904        now = hrtimer_cb_get_time(timer);
 905        delta = ktime_to_ns(now) - rq_clock(rq);
 906        act = ktime_add_ns(act, delta);
 907
 908        /*
 909         * If the expiry time already passed, e.g., because the value
 910         * chosen as the deadline is too small, don't even try to
 911         * start the timer in the past!
 912         */
 913        if (ktime_us_delta(act, now) < 0)
 914                return 0;
 915
 916        /*
 917         * !enqueued will guarantee another callback; even if one is already in
 918         * progress. This ensures a balanced {get,put}_task_struct().
 919         *
 920         * The race against __run_timer() clearing the enqueued state is
 921         * harmless because we're holding task_rq()->lock, therefore the timer
 922         * expiring after we've done the check will wait on its task_rq_lock()
 923         * and observe our state.
 924         */
 925        if (!hrtimer_is_queued(timer)) {
 926                get_task_struct(p);
 927                hrtimer_start(timer, act, HRTIMER_MODE_ABS);
 928        }
 929
 930        return 1;
 931}
 932
 933/*
 934 * This is the bandwidth enforcement timer callback. If here, we know
 935 * a task is not on its dl_rq, since the fact that the timer was running
 936 * means the task is throttled and needs a runtime replenishment.
 937 *
 938 * However, what we actually do depends on the fact the task is active,
 939 * (it is on its rq) or has been removed from there by a call to
 940 * dequeue_task_dl(). In the former case we must issue the runtime
 941 * replenishment and add the task back to the dl_rq; in the latter, we just
 942 * do nothing but clearing dl_throttled, so that runtime and deadline
 943 * updating (and the queueing back to dl_rq) will be done by the
 944 * next call to enqueue_task_dl().
 945 */
 946static enum hrtimer_restart dl_task_timer(struct hrtimer *timer)
 947{
 948        struct sched_dl_entity *dl_se = container_of(timer,
 949                                                     struct sched_dl_entity,
 950                                                     dl_timer);
 951        struct task_struct *p = dl_task_of(dl_se);
 952        struct rq_flags rf;
 953        struct rq *rq;
 954
 955        rq = task_rq_lock(p, &rf);
 956
 957        /*
 958         * The task might have changed its scheduling policy to something
 959         * different than SCHED_DEADLINE (through switched_from_dl()).
 960         */
 961        if (!dl_task(p))
 962                goto unlock;
 963
 964        /*
 965         * The task might have been boosted by someone else and might be in the
 966         * boosting/deboosting path, its not throttled.
 967         */
 968        if (dl_se->dl_boosted)
 969                goto unlock;
 970
 971        /*
 972         * Spurious timer due to start_dl_timer() race; or we already received
 973         * a replenishment from rt_mutex_setprio().
 974         */
 975        if (!dl_se->dl_throttled)
 976                goto unlock;
 977
 978        sched_clock_tick();
 979        update_rq_clock(rq);
 980
 981        /*
 982         * If the throttle happened during sched-out; like:
 983         *
 984         *   schedule()
 985         *     deactivate_task()
 986         *       dequeue_task_dl()
 987         *         update_curr_dl()
 988         *           start_dl_timer()
 989         *         __dequeue_task_dl()
 990         *     prev->on_rq = 0;
 991         *
 992         * We can be both throttled and !queued. Replenish the counter
 993         * but do not enqueue -- wait for our wakeup to do that.
 994         */
 995        if (!task_on_rq_queued(p)) {
 996                replenish_dl_entity(dl_se, dl_se);
 997                goto unlock;
 998        }
 999
1000#ifdef CONFIG_SMP
1001        if (unlikely(!rq->online)) {
1002                /*
1003                 * If the runqueue is no longer available, migrate the
1004                 * task elsewhere. This necessarily changes rq.
1005                 */
1006                lockdep_unpin_lock(&rq->lock, rf.cookie);
1007                rq = dl_task_offline_migration(rq, p);
1008                rf.cookie = lockdep_pin_lock(&rq->lock);
1009                update_rq_clock(rq);
1010
1011                /*
1012                 * Now that the task has been migrated to the new RQ and we
1013                 * have that locked, proceed as normal and enqueue the task
1014                 * there.
1015                 */
1016        }
1017#endif
1018
1019        enqueue_task_dl(rq, p, ENQUEUE_REPLENISH);
1020        if (dl_task(rq->curr))
1021                check_preempt_curr_dl(rq, p, 0);
1022        else
1023                resched_curr(rq);
1024
1025#ifdef CONFIG_SMP
1026        /*
1027         * Queueing this task back might have overloaded rq, check if we need
1028         * to kick someone away.
1029         */
1030        if (has_pushable_dl_tasks(rq)) {
1031                /*
1032                 * Nothing relies on rq->lock after this, so its safe to drop
1033                 * rq->lock.
1034                 */
1035                rq_unpin_lock(rq, &rf);
1036                push_dl_task(rq);
1037                rq_repin_lock(rq, &rf);
1038        }
1039#endif
1040
1041unlock:
1042        task_rq_unlock(rq, p, &rf);
1043
1044        /*
1045         * This can free the task_struct, including this hrtimer, do not touch
1046         * anything related to that after this.
1047         */
1048        put_task_struct(p);
1049
1050        return HRTIMER_NORESTART;
1051}
1052
1053void init_dl_task_timer(struct sched_dl_entity *dl_se)
1054{
1055        struct hrtimer *timer = &dl_se->dl_timer;
1056
1057        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1058        timer->function = dl_task_timer;
1059}
1060
1061/*
1062 * During the activation, CBS checks if it can reuse the current task's
1063 * runtime and period. If the deadline of the task is in the past, CBS
1064 * cannot use the runtime, and so it replenishes the task. This rule
1065 * works fine for implicit deadline tasks (deadline == period), and the
1066 * CBS was designed for implicit deadline tasks. However, a task with
1067 * constrained deadline (deadine < period) might be awakened after the
1068 * deadline, but before the next period. In this case, replenishing the
1069 * task would allow it to run for runtime / deadline. As in this case
1070 * deadline < period, CBS enables a task to run for more than the
1071 * runtime / period. In a very loaded system, this can cause a domino
1072 * effect, making other tasks miss their deadlines.
1073 *
1074 * To avoid this problem, in the activation of a constrained deadline
1075 * task after the deadline but before the next period, throttle the
1076 * task and set the replenishing timer to the begin of the next period,
1077 * unless it is boosted.
1078 */
1079static inline void dl_check_constrained_dl(struct sched_dl_entity *dl_se)
1080{
1081        struct task_struct *p = dl_task_of(dl_se);
1082        struct rq *rq = rq_of_dl_rq(dl_rq_of_se(dl_se));
1083
1084        if (dl_time_before(dl_se->deadline, rq_clock(rq)) &&
1085            dl_time_before(rq_clock(rq), dl_next_period(dl_se))) {
1086                if (unlikely(dl_se->dl_boosted || !start_dl_timer(p)))
1087                        return;
1088                dl_se->dl_throttled = 1;
1089                if (dl_se->runtime > 0)
1090                        dl_se->runtime = 0;
1091        }
1092}
1093
1094static
1095int dl_runtime_exceeded(struct sched_dl_entity *dl_se)
1096{
1097        return (dl_se->runtime <= 0);
1098}
1099
1100extern bool sched_rt_bandwidth_account(struct rt_rq *rt_rq);
1101
1102/*
1103 * This function implements the GRUB accounting rule:
1104 * according to the GRUB reclaiming algorithm, the runtime is
1105 * not decreased as "dq = -dt", but as
1106 * "dq = -max{u / Umax, (1 - Uinact - Uextra)} dt",
1107 * where u is the utilization of the task, Umax is the maximum reclaimable
1108 * utilization, Uinact is the (per-runqueue) inactive utilization, computed
1109 * as the difference between the "total runqueue utilization" and the
1110 * runqueue active utilization, and Uextra is the (per runqueue) extra
1111 * reclaimable utilization.
1112 * Since rq->dl.running_bw and rq->dl.this_bw contain utilizations
1113 * multiplied by 2^BW_SHIFT, the result has to be shifted right by
1114 * BW_SHIFT.
1115 * Since rq->dl.bw_ratio contains 1 / Umax multipled by 2^RATIO_SHIFT,
1116 * dl_bw is multiped by rq->dl.bw_ratio and shifted right by RATIO_SHIFT.
1117 * Since delta is a 64 bit variable, to have an overflow its value
1118 * should be larger than 2^(64 - 20 - 8), which is more than 64 seconds.
1119 * So, overflow is not an issue here.
1120 */
1121static u64 grub_reclaim(u64 delta, struct rq *rq, struct sched_dl_entity *dl_se)
1122{
1123        u64 u_inact = rq->dl.this_bw - rq->dl.running_bw; /* Utot - Uact */
1124        u64 u_act;
1125        u64 u_act_min = (dl_se->dl_bw * rq->dl.bw_ratio) >> RATIO_SHIFT;
1126
1127        /*
1128         * Instead of computing max{u * bw_ratio, (1 - u_inact - u_extra)},
1129         * we compare u_inact + rq->dl.extra_bw with
1130         * 1 - (u * rq->dl.bw_ratio >> RATIO_SHIFT), because
1131         * u_inact + rq->dl.extra_bw can be larger than
1132         * 1 * (so, 1 - u_inact - rq->dl.extra_bw would be negative
1133         * leading to wrong results)
1134         */
1135        if (u_inact + rq->dl.extra_bw > BW_UNIT - u_act_min)
1136                u_act = u_act_min;
1137        else
1138                u_act = BW_UNIT - u_inact - rq->dl.extra_bw;
1139
1140        return (delta * u_act) >> BW_SHIFT;
1141}
1142
1143/*
1144 * Update the current task's runtime statistics (provided it is still
1145 * a -deadline task and has not been removed from the dl_rq).
1146 */
1147static void update_curr_dl(struct rq *rq)
1148{
1149        struct task_struct *curr = rq->curr;
1150        struct sched_dl_entity *dl_se = &curr->dl;
1151        u64 delta_exec, scaled_delta_exec;
1152        int cpu = cpu_of(rq);
1153        u64 now;
1154
1155        if (!dl_task(curr) || !on_dl_rq(dl_se))
1156                return;
1157
1158        /*
1159         * Consumed budget is computed considering the time as
1160         * observed by schedulable tasks (excluding time spent
1161         * in hardirq context, etc.). Deadlines are instead
1162         * computed using hard walltime. This seems to be the more
1163         * natural solution, but the full ramifications of this
1164         * approach need further study.
1165         */
1166        now = rq_clock_task(rq);
1167        delta_exec = now - curr->se.exec_start;
1168        if (unlikely((s64)delta_exec <= 0)) {
1169                if (unlikely(dl_se->dl_yielded))
1170                        goto throttle;
1171                return;
1172        }
1173
1174        schedstat_set(curr->se.statistics.exec_max,
1175                      max(curr->se.statistics.exec_max, delta_exec));
1176
1177        curr->se.sum_exec_runtime += delta_exec;
1178        account_group_exec_runtime(curr, delta_exec);
1179
1180        curr->se.exec_start = now;
1181        cgroup_account_cputime(curr, delta_exec);
1182
1183        if (dl_entity_is_special(dl_se))
1184                return;
1185
1186        /*
1187         * For tasks that participate in GRUB, we implement GRUB-PA: the
1188         * spare reclaimed bandwidth is used to clock down frequency.
1189         *
1190         * For the others, we still need to scale reservation parameters
1191         * according to current frequency and CPU maximum capacity.
1192         */
1193        if (unlikely(dl_se->flags & SCHED_FLAG_RECLAIM)) {
1194                scaled_delta_exec = grub_reclaim(delta_exec,
1195                                                 rq,
1196                                                 &curr->dl);
1197        } else {
1198                unsigned long scale_freq = arch_scale_freq_capacity(cpu);
1199                unsigned long scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
1200
1201                scaled_delta_exec = cap_scale(delta_exec, scale_freq);
1202                scaled_delta_exec = cap_scale(scaled_delta_exec, scale_cpu);
1203        }
1204
1205        dl_se->runtime -= scaled_delta_exec;
1206
1207throttle:
1208        if (dl_runtime_exceeded(dl_se) || dl_se->dl_yielded) {
1209                dl_se->dl_throttled = 1;
1210
1211                /* If requested, inform the user about runtime overruns. */
1212                if (dl_runtime_exceeded(dl_se) &&
1213                    (dl_se->flags & SCHED_FLAG_DL_OVERRUN))
1214                        dl_se->dl_overrun = 1;
1215
1216                __dequeue_task_dl(rq, curr, 0);
1217                if (unlikely(dl_se->dl_boosted || !start_dl_timer(curr)))
1218                        enqueue_task_dl(rq, curr, ENQUEUE_REPLENISH);
1219
1220                if (!is_leftmost(curr, &rq->dl))
1221                        resched_curr(rq);
1222        }
1223
1224        /*
1225         * Because -- for now -- we share the rt bandwidth, we need to
1226         * account our runtime there too, otherwise actual rt tasks
1227         * would be able to exceed the shared quota.
1228         *
1229         * Account to the root rt group for now.
1230         *
1231         * The solution we're working towards is having the RT groups scheduled
1232         * using deadline servers -- however there's a few nasties to figure
1233         * out before that can happen.
1234         */
1235        if (rt_bandwidth_enabled()) {
1236                struct rt_rq *rt_rq = &rq->rt;
1237
1238                raw_spin_lock(&rt_rq->rt_runtime_lock);
1239                /*
1240                 * We'll let actual RT tasks worry about the overflow here, we
1241                 * have our own CBS to keep us inline; only account when RT
1242                 * bandwidth is relevant.
1243                 */
1244                if (sched_rt_bandwidth_account(rt_rq))
1245                        rt_rq->rt_time += delta_exec;
1246                raw_spin_unlock(&rt_rq->rt_runtime_lock);
1247        }
1248}
1249
1250static enum hrtimer_restart inactive_task_timer(struct hrtimer *timer)
1251{
1252        struct sched_dl_entity *dl_se = container_of(timer,
1253                                                     struct sched_dl_entity,
1254                                                     inactive_timer);
1255        struct task_struct *p = dl_task_of(dl_se);
1256        struct rq_flags rf;
1257        struct rq *rq;
1258
1259        rq = task_rq_lock(p, &rf);
1260
1261        sched_clock_tick();
1262        update_rq_clock(rq);
1263
1264        if (!dl_task(p) || p->state == TASK_DEAD) {
1265                struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
1266
1267                if (p->state == TASK_DEAD && dl_se->dl_non_contending) {
1268                        sub_running_bw(&p->dl, dl_rq_of_se(&p->dl));
1269                        sub_rq_bw(&p->dl, dl_rq_of_se(&p->dl));
1270                        dl_se->dl_non_contending = 0;
1271                }
1272
1273                raw_spin_lock(&dl_b->lock);
1274                __dl_sub(dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
1275                raw_spin_unlock(&dl_b->lock);
1276                __dl_clear_params(p);
1277
1278                goto unlock;
1279        }
1280        if (dl_se->dl_non_contending == 0)
1281                goto unlock;
1282
1283        sub_running_bw(dl_se, &rq->dl);
1284        dl_se->dl_non_contending = 0;
1285unlock:
1286        task_rq_unlock(rq, p, &rf);
1287        put_task_struct(p);
1288
1289        return HRTIMER_NORESTART;
1290}
1291
1292void init_dl_inactive_task_timer(struct sched_dl_entity *dl_se)
1293{
1294        struct hrtimer *timer = &dl_se->inactive_timer;
1295
1296        hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1297        timer->function = inactive_task_timer;
1298}
1299
1300#ifdef CONFIG_SMP
1301
1302static void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1303{
1304        struct rq *rq = rq_of_dl_rq(dl_rq);
1305
1306        if (dl_rq->earliest_dl.curr == 0 ||
1307            dl_time_before(deadline, dl_rq->earliest_dl.curr)) {
1308                dl_rq->earliest_dl.curr = deadline;
1309                cpudl_set(&rq->rd->cpudl, rq->cpu, deadline);
1310        }
1311}
1312
1313static void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline)
1314{
1315        struct rq *rq = rq_of_dl_rq(dl_rq);
1316
1317        /*
1318         * Since we may have removed our earliest (and/or next earliest)
1319         * task we must recompute them.
1320         */
1321        if (!dl_rq->dl_nr_running) {
1322                dl_rq->earliest_dl.curr = 0;
1323                dl_rq->earliest_dl.next = 0;
1324                cpudl_clear(&rq->rd->cpudl, rq->cpu);
1325        } else {
1326                struct rb_node *leftmost = dl_rq->root.rb_leftmost;
1327                struct sched_dl_entity *entry;
1328
1329                entry = rb_entry(leftmost, struct sched_dl_entity, rb_node);
1330                dl_rq->earliest_dl.curr = entry->deadline;
1331                cpudl_set(&rq->rd->cpudl, rq->cpu, entry->deadline);
1332        }
1333}
1334
1335#else
1336
1337static inline void inc_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1338static inline void dec_dl_deadline(struct dl_rq *dl_rq, u64 deadline) {}
1339
1340#endif /* CONFIG_SMP */
1341
1342static inline
1343void inc_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1344{
1345        int prio = dl_task_of(dl_se)->prio;
1346        u64 deadline = dl_se->deadline;
1347
1348        WARN_ON(!dl_prio(prio));
1349        dl_rq->dl_nr_running++;
1350        add_nr_running(rq_of_dl_rq(dl_rq), 1);
1351
1352        inc_dl_deadline(dl_rq, deadline);
1353        inc_dl_migration(dl_se, dl_rq);
1354}
1355
1356static inline
1357void dec_dl_tasks(struct sched_dl_entity *dl_se, struct dl_rq *dl_rq)
1358{
1359        int prio = dl_task_of(dl_se)->prio;
1360
1361        WARN_ON(!dl_prio(prio));
1362        WARN_ON(!dl_rq->dl_nr_running);
1363        dl_rq->dl_nr_running--;
1364        sub_nr_running(rq_of_dl_rq(dl_rq), 1);
1365
1366        dec_dl_deadline(dl_rq, dl_se->deadline);
1367        dec_dl_migration(dl_se, dl_rq);
1368}
1369
1370static void __enqueue_dl_entity(struct sched_dl_entity *dl_se)
1371{
1372        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1373        struct rb_node **link = &dl_rq->root.rb_root.rb_node;
1374        struct rb_node *parent = NULL;
1375        struct sched_dl_entity *entry;
1376        int leftmost = 1;
1377
1378        BUG_ON(!RB_EMPTY_NODE(&dl_se->rb_node));
1379
1380        while (*link) {
1381                parent = *link;
1382                entry = rb_entry(parent, struct sched_dl_entity, rb_node);
1383                if (dl_time_before(dl_se->deadline, entry->deadline))
1384                        link = &parent->rb_left;
1385                else {
1386                        link = &parent->rb_right;
1387                        leftmost = 0;
1388                }
1389        }
1390
1391        rb_link_node(&dl_se->rb_node, parent, link);
1392        rb_insert_color_cached(&dl_se->rb_node, &dl_rq->root, leftmost);
1393
1394        inc_dl_tasks(dl_se, dl_rq);
1395}
1396
1397static void __dequeue_dl_entity(struct sched_dl_entity *dl_se)
1398{
1399        struct dl_rq *dl_rq = dl_rq_of_se(dl_se);
1400
1401        if (RB_EMPTY_NODE(&dl_se->rb_node))
1402                return;
1403
1404        rb_erase_cached(&dl_se->rb_node, &dl_rq->root);
1405        RB_CLEAR_NODE(&dl_se->rb_node);
1406
1407        dec_dl_tasks(dl_se, dl_rq);
1408}
1409
1410static void
1411enqueue_dl_entity(struct sched_dl_entity *dl_se,
1412                  struct sched_dl_entity *pi_se, int flags)
1413{
1414        BUG_ON(on_dl_rq(dl_se));
1415
1416        /*
1417         * If this is a wakeup or a new instance, the scheduling
1418         * parameters of the task might need updating. Otherwise,
1419         * we want a replenishment of its runtime.
1420         */
1421        if (flags & ENQUEUE_WAKEUP) {
1422                task_contending(dl_se, flags);
1423                update_dl_entity(dl_se, pi_se);
1424        } else if (flags & ENQUEUE_REPLENISH) {
1425                replenish_dl_entity(dl_se, pi_se);
1426        } else if ((flags & ENQUEUE_RESTORE) &&
1427                  dl_time_before(dl_se->deadline,
1428                                 rq_clock(rq_of_dl_rq(dl_rq_of_se(dl_se))))) {
1429                setup_new_dl_entity(dl_se);
1430        }
1431
1432        __enqueue_dl_entity(dl_se);
1433}
1434
1435static void dequeue_dl_entity(struct sched_dl_entity *dl_se)
1436{
1437        __dequeue_dl_entity(dl_se);
1438}
1439
1440static void enqueue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1441{
1442        struct task_struct *pi_task = rt_mutex_get_top_task(p);
1443        struct sched_dl_entity *pi_se = &p->dl;
1444
1445        /*
1446         * Use the scheduling parameters of the top pi-waiter task if:
1447         * - we have a top pi-waiter which is a SCHED_DEADLINE task AND
1448         * - our dl_boosted is set (i.e. the pi-waiter's (absolute) deadline is
1449         *   smaller than our deadline OR we are a !SCHED_DEADLINE task getting
1450         *   boosted due to a SCHED_DEADLINE pi-waiter).
1451         * Otherwise we keep our runtime and deadline.
1452         */
1453        if (pi_task && dl_prio(pi_task->normal_prio) && p->dl.dl_boosted) {
1454                pi_se = &pi_task->dl;
1455        } else if (!dl_prio(p->normal_prio)) {
1456                /*
1457                 * Special case in which we have a !SCHED_DEADLINE task
1458                 * that is going to be deboosted, but exceeds its
1459                 * runtime while doing so. No point in replenishing
1460                 * it, as it's going to return back to its original
1461                 * scheduling class after this.
1462                 */
1463                BUG_ON(!p->dl.dl_boosted || flags != ENQUEUE_REPLENISH);
1464                return;
1465        }
1466
1467        /*
1468         * Check if a constrained deadline task was activated
1469         * after the deadline but before the next period.
1470         * If that is the case, the task will be throttled and
1471         * the replenishment timer will be set to the next period.
1472         */
1473        if (!p->dl.dl_throttled && !dl_is_implicit(&p->dl))
1474                dl_check_constrained_dl(&p->dl);
1475
1476        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & ENQUEUE_RESTORE) {
1477                add_rq_bw(&p->dl, &rq->dl);
1478                add_running_bw(&p->dl, &rq->dl);
1479        }
1480
1481        /*
1482         * If p is throttled, we do not enqueue it. In fact, if it exhausted
1483         * its budget it needs a replenishment and, since it now is on
1484         * its rq, the bandwidth timer callback (which clearly has not
1485         * run yet) will take care of this.
1486         * However, the active utilization does not depend on the fact
1487         * that the task is on the runqueue or not (but depends on the
1488         * task's state - in GRUB parlance, "inactive" vs "active contending").
1489         * In other words, even if a task is throttled its utilization must
1490         * be counted in the active utilization; hence, we need to call
1491         * add_running_bw().
1492         */
1493        if (p->dl.dl_throttled && !(flags & ENQUEUE_REPLENISH)) {
1494                if (flags & ENQUEUE_WAKEUP)
1495                        task_contending(&p->dl, flags);
1496
1497                return;
1498        }
1499
1500        enqueue_dl_entity(&p->dl, pi_se, flags);
1501
1502        if (!task_current(rq, p) && p->nr_cpus_allowed > 1)
1503                enqueue_pushable_dl_task(rq, p);
1504}
1505
1506static void __dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1507{
1508        dequeue_dl_entity(&p->dl);
1509        dequeue_pushable_dl_task(rq, p);
1510}
1511
1512static void dequeue_task_dl(struct rq *rq, struct task_struct *p, int flags)
1513{
1514        update_curr_dl(rq);
1515        __dequeue_task_dl(rq, p, flags);
1516
1517        if (p->on_rq == TASK_ON_RQ_MIGRATING || flags & DEQUEUE_SAVE) {
1518                sub_running_bw(&p->dl, &rq->dl);
1519                sub_rq_bw(&p->dl, &rq->dl);
1520        }
1521
1522        /*
1523         * This check allows to start the inactive timer (or to immediately
1524         * decrease the active utilization, if needed) in two cases:
1525         * when the task blocks and when it is terminating
1526         * (p->state == TASK_DEAD). We can handle the two cases in the same
1527         * way, because from GRUB's point of view the same thing is happening
1528         * (the task moves from "active contending" to "active non contending"
1529         * or "inactive")
1530         */
1531        if (flags & DEQUEUE_SLEEP)
1532                task_non_contending(p);
1533}
1534
1535/*
1536 * Yield task semantic for -deadline tasks is:
1537 *
1538 *   get off from the CPU until our next instance, with
1539 *   a new runtime. This is of little use now, since we
1540 *   don't have a bandwidth reclaiming mechanism. Anyway,
1541 *   bandwidth reclaiming is planned for the future, and
1542 *   yield_task_dl will indicate that some spare budget
1543 *   is available for other task instances to use it.
1544 */
1545static void yield_task_dl(struct rq *rq)
1546{
1547        /*
1548         * We make the task go to sleep until its current deadline by
1549         * forcing its runtime to zero. This way, update_curr_dl() stops
1550         * it and the bandwidth timer will wake it up and will give it
1551         * new scheduling parameters (thanks to dl_yielded=1).
1552         */
1553        rq->curr->dl.dl_yielded = 1;
1554
1555        update_rq_clock(rq);
1556        update_curr_dl(rq);
1557        /*
1558         * Tell update_rq_clock() that we've just updated,
1559         * so we don't do microscopic update in schedule()
1560         * and double the fastpath cost.
1561         */
1562        rq_clock_skip_update(rq);
1563}
1564
1565#ifdef CONFIG_SMP
1566
1567static int find_later_rq(struct task_struct *task);
1568
1569static int
1570select_task_rq_dl(struct task_struct *p, int cpu, int sd_flag, int flags)
1571{
1572        struct task_struct *curr;
1573        struct rq *rq;
1574
1575        if (sd_flag != SD_BALANCE_WAKE)
1576                goto out;
1577
1578        rq = cpu_rq(cpu);
1579
1580        rcu_read_lock();
1581        curr = READ_ONCE(rq->curr); /* unlocked access */
1582
1583        /*
1584         * If we are dealing with a -deadline task, we must
1585         * decide where to wake it up.
1586         * If it has a later deadline and the current task
1587         * on this rq can't move (provided the waking task
1588         * can!) we prefer to send it somewhere else. On the
1589         * other hand, if it has a shorter deadline, we
1590         * try to make it stay here, it might be important.
1591         */
1592        if (unlikely(dl_task(curr)) &&
1593            (curr->nr_cpus_allowed < 2 ||
1594             !dl_entity_preempt(&p->dl, &curr->dl)) &&
1595            (p->nr_cpus_allowed > 1)) {
1596                int target = find_later_rq(p);
1597
1598                if (target != -1 &&
1599                                (dl_time_before(p->dl.deadline,
1600                                        cpu_rq(target)->dl.earliest_dl.curr) ||
1601                                (cpu_rq(target)->dl.dl_nr_running == 0)))
1602                        cpu = target;
1603        }
1604        rcu_read_unlock();
1605
1606out:
1607        return cpu;
1608}
1609
1610static void migrate_task_rq_dl(struct task_struct *p, int new_cpu __maybe_unused)
1611{
1612        struct rq *rq;
1613
1614        if (p->state != TASK_WAKING)
1615                return;
1616
1617        rq = task_rq(p);
1618        /*
1619         * Since p->state == TASK_WAKING, set_task_cpu() has been called
1620         * from try_to_wake_up(). Hence, p->pi_lock is locked, but
1621         * rq->lock is not... So, lock it
1622         */
1623        raw_spin_lock(&rq->lock);
1624        if (p->dl.dl_non_contending) {
1625                sub_running_bw(&p->dl, &rq->dl);
1626                p->dl.dl_non_contending = 0;
1627                /*
1628                 * If the timer handler is currently running and the
1629                 * timer cannot be cancelled, inactive_task_timer()
1630                 * will see that dl_not_contending is not set, and
1631                 * will not touch the rq's active utilization,
1632                 * so we are still safe.
1633                 */
1634                if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
1635                        put_task_struct(p);
1636        }
1637        sub_rq_bw(&p->dl, &rq->dl);
1638        raw_spin_unlock(&rq->lock);
1639}
1640
1641static void check_preempt_equal_dl(struct rq *rq, struct task_struct *p)
1642{
1643        /*
1644         * Current can't be migrated, useless to reschedule,
1645         * let's hope p can move out.
1646         */
1647        if (rq->curr->nr_cpus_allowed == 1 ||
1648            !cpudl_find(&rq->rd->cpudl, rq->curr, NULL))
1649                return;
1650
1651        /*
1652         * p is migratable, so let's not schedule it and
1653         * see if it is pushed or pulled somewhere else.
1654         */
1655        if (p->nr_cpus_allowed != 1 &&
1656            cpudl_find(&rq->rd->cpudl, p, NULL))
1657                return;
1658
1659        resched_curr(rq);
1660}
1661
1662#endif /* CONFIG_SMP */
1663
1664/*
1665 * Only called when both the current and waking task are -deadline
1666 * tasks.
1667 */
1668static void check_preempt_curr_dl(struct rq *rq, struct task_struct *p,
1669                                  int flags)
1670{
1671        if (dl_entity_preempt(&p->dl, &rq->curr->dl)) {
1672                resched_curr(rq);
1673                return;
1674        }
1675
1676#ifdef CONFIG_SMP
1677        /*
1678         * In the unlikely case current and p have the same deadline
1679         * let us try to decide what's the best thing to do...
1680         */
1681        if ((p->dl.deadline == rq->curr->dl.deadline) &&
1682            !test_tsk_need_resched(rq->curr))
1683                check_preempt_equal_dl(rq, p);
1684#endif /* CONFIG_SMP */
1685}
1686
1687#ifdef CONFIG_SCHED_HRTICK
1688static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1689{
1690        hrtick_start(rq, p->dl.runtime);
1691}
1692#else /* !CONFIG_SCHED_HRTICK */
1693static void start_hrtick_dl(struct rq *rq, struct task_struct *p)
1694{
1695}
1696#endif
1697
1698static struct sched_dl_entity *pick_next_dl_entity(struct rq *rq,
1699                                                   struct dl_rq *dl_rq)
1700{
1701        struct rb_node *left = rb_first_cached(&dl_rq->root);
1702
1703        if (!left)
1704                return NULL;
1705
1706        return rb_entry(left, struct sched_dl_entity, rb_node);
1707}
1708
1709static struct task_struct *
1710pick_next_task_dl(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
1711{
1712        struct sched_dl_entity *dl_se;
1713        struct task_struct *p;
1714        struct dl_rq *dl_rq;
1715
1716        dl_rq = &rq->dl;
1717
1718        if (need_pull_dl_task(rq, prev)) {
1719                /*
1720                 * This is OK, because current is on_cpu, which avoids it being
1721                 * picked for load-balance and preemption/IRQs are still
1722                 * disabled avoiding further scheduler activity on it and we're
1723                 * being very careful to re-start the picking loop.
1724                 */
1725                rq_unpin_lock(rq, rf);
1726                pull_dl_task(rq);
1727                rq_repin_lock(rq, rf);
1728                /*
1729                 * pull_dl_task() can drop (and re-acquire) rq->lock; this
1730                 * means a stop task can slip in, in which case we need to
1731                 * re-start task selection.
1732                 */
1733                if (rq->stop && task_on_rq_queued(rq->stop))
1734                        return RETRY_TASK;
1735        }
1736
1737        /*
1738         * When prev is DL, we may throttle it in put_prev_task().
1739         * So, we update time before we check for dl_nr_running.
1740         */
1741        if (prev->sched_class == &dl_sched_class)
1742                update_curr_dl(rq);
1743
1744        if (unlikely(!dl_rq->dl_nr_running))
1745                return NULL;
1746
1747        put_prev_task(rq, prev);
1748
1749        dl_se = pick_next_dl_entity(rq, dl_rq);
1750        BUG_ON(!dl_se);
1751
1752        p = dl_task_of(dl_se);
1753        p->se.exec_start = rq_clock_task(rq);
1754
1755        /* Running task will never be pushed. */
1756       dequeue_pushable_dl_task(rq, p);
1757
1758        if (hrtick_enabled(rq))
1759                start_hrtick_dl(rq, p);
1760
1761        deadline_queue_push_tasks(rq);
1762
1763        if (rq->curr->sched_class != &dl_sched_class)
1764                update_dl_rq_load_avg(rq_clock_task(rq), rq, 0);
1765
1766        return p;
1767}
1768
1769static void put_prev_task_dl(struct rq *rq, struct task_struct *p)
1770{
1771        update_curr_dl(rq);
1772
1773        update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
1774        if (on_dl_rq(&p->dl) && p->nr_cpus_allowed > 1)
1775                enqueue_pushable_dl_task(rq, p);
1776}
1777
1778/*
1779 * scheduler tick hitting a task of our scheduling class.
1780 *
1781 * NOTE: This function can be called remotely by the tick offload that
1782 * goes along full dynticks. Therefore no local assumption can be made
1783 * and everything must be accessed through the @rq and @curr passed in
1784 * parameters.
1785 */
1786static void task_tick_dl(struct rq *rq, struct task_struct *p, int queued)
1787{
1788        update_curr_dl(rq);
1789
1790        update_dl_rq_load_avg(rq_clock_task(rq), rq, 1);
1791        /*
1792         * Even when we have runtime, update_curr_dl() might have resulted in us
1793         * not being the leftmost task anymore. In that case NEED_RESCHED will
1794         * be set and schedule() will start a new hrtick for the next task.
1795         */
1796        if (hrtick_enabled(rq) && queued && p->dl.runtime > 0 &&
1797            is_leftmost(p, &rq->dl))
1798                start_hrtick_dl(rq, p);
1799}
1800
1801static void task_fork_dl(struct task_struct *p)
1802{
1803        /*
1804         * SCHED_DEADLINE tasks cannot fork and this is achieved through
1805         * sched_fork()
1806         */
1807}
1808
1809static void set_curr_task_dl(struct rq *rq)
1810{
1811        struct task_struct *p = rq->curr;
1812
1813        p->se.exec_start = rq_clock_task(rq);
1814
1815        /* You can't push away the running task */
1816        dequeue_pushable_dl_task(rq, p);
1817}
1818
1819#ifdef CONFIG_SMP
1820
1821/* Only try algorithms three times */
1822#define DL_MAX_TRIES 3
1823
1824static int pick_dl_task(struct rq *rq, struct task_struct *p, int cpu)
1825{
1826        if (!task_running(rq, p) &&
1827            cpumask_test_cpu(cpu, &p->cpus_allowed))
1828                return 1;
1829        return 0;
1830}
1831
1832/*
1833 * Return the earliest pushable rq's task, which is suitable to be executed
1834 * on the CPU, NULL otherwise:
1835 */
1836static struct task_struct *pick_earliest_pushable_dl_task(struct rq *rq, int cpu)
1837{
1838        struct rb_node *next_node = rq->dl.pushable_dl_tasks_root.rb_leftmost;
1839        struct task_struct *p = NULL;
1840
1841        if (!has_pushable_dl_tasks(rq))
1842                return NULL;
1843
1844next_node:
1845        if (next_node) {
1846                p = rb_entry(next_node, struct task_struct, pushable_dl_tasks);
1847
1848                if (pick_dl_task(rq, p, cpu))
1849                        return p;
1850
1851                next_node = rb_next(next_node);
1852                goto next_node;
1853        }
1854
1855        return NULL;
1856}
1857
1858static DEFINE_PER_CPU(cpumask_var_t, local_cpu_mask_dl);
1859
1860static int find_later_rq(struct task_struct *task)
1861{
1862        struct sched_domain *sd;
1863        struct cpumask *later_mask = this_cpu_cpumask_var_ptr(local_cpu_mask_dl);
1864        int this_cpu = smp_processor_id();
1865        int cpu = task_cpu(task);
1866
1867        /* Make sure the mask is initialized first */
1868        if (unlikely(!later_mask))
1869                return -1;
1870
1871        if (task->nr_cpus_allowed == 1)
1872                return -1;
1873
1874        /*
1875         * We have to consider system topology and task affinity
1876         * first, then we can look for a suitable CPU.
1877         */
1878        if (!cpudl_find(&task_rq(task)->rd->cpudl, task, later_mask))
1879                return -1;
1880
1881        /*
1882         * If we are here, some targets have been found, including
1883         * the most suitable which is, among the runqueues where the
1884         * current tasks have later deadlines than the task's one, the
1885         * rq with the latest possible one.
1886         *
1887         * Now we check how well this matches with task's
1888         * affinity and system topology.
1889         *
1890         * The last CPU where the task run is our first
1891         * guess, since it is most likely cache-hot there.
1892         */
1893        if (cpumask_test_cpu(cpu, later_mask))
1894                return cpu;
1895        /*
1896         * Check if this_cpu is to be skipped (i.e., it is
1897         * not in the mask) or not.
1898         */
1899        if (!cpumask_test_cpu(this_cpu, later_mask))
1900                this_cpu = -1;
1901
1902        rcu_read_lock();
1903        for_each_domain(cpu, sd) {
1904                if (sd->flags & SD_WAKE_AFFINE) {
1905                        int best_cpu;
1906
1907                        /*
1908                         * If possible, preempting this_cpu is
1909                         * cheaper than migrating.
1910                         */
1911                        if (this_cpu != -1 &&
1912                            cpumask_test_cpu(this_cpu, sched_domain_span(sd))) {
1913                                rcu_read_unlock();
1914                                return this_cpu;
1915                        }
1916
1917                        best_cpu = cpumask_first_and(later_mask,
1918                                                        sched_domain_span(sd));
1919                        /*
1920                         * Last chance: if a CPU being in both later_mask
1921                         * and current sd span is valid, that becomes our
1922                         * choice. Of course, the latest possible CPU is
1923                         * already under consideration through later_mask.
1924                         */
1925                        if (best_cpu < nr_cpu_ids) {
1926                                rcu_read_unlock();
1927                                return best_cpu;
1928                        }
1929                }
1930        }
1931        rcu_read_unlock();
1932
1933        /*
1934         * At this point, all our guesses failed, we just return
1935         * 'something', and let the caller sort the things out.
1936         */
1937        if (this_cpu != -1)
1938                return this_cpu;
1939
1940        cpu = cpumask_any(later_mask);
1941        if (cpu < nr_cpu_ids)
1942                return cpu;
1943
1944        return -1;
1945}
1946
1947/* Locks the rq it finds */
1948static struct rq *find_lock_later_rq(struct task_struct *task, struct rq *rq)
1949{
1950        struct rq *later_rq = NULL;
1951        int tries;
1952        int cpu;
1953
1954        for (tries = 0; tries < DL_MAX_TRIES; tries++) {
1955                cpu = find_later_rq(task);
1956
1957                if ((cpu == -1) || (cpu == rq->cpu))
1958                        break;
1959
1960                later_rq = cpu_rq(cpu);
1961
1962                if (later_rq->dl.dl_nr_running &&
1963                    !dl_time_before(task->dl.deadline,
1964                                        later_rq->dl.earliest_dl.curr)) {
1965                        /*
1966                         * Target rq has tasks of equal or earlier deadline,
1967                         * retrying does not release any lock and is unlikely
1968                         * to yield a different result.
1969                         */
1970                        later_rq = NULL;
1971                        break;
1972                }
1973
1974                /* Retry if something changed. */
1975                if (double_lock_balance(rq, later_rq)) {
1976                        if (unlikely(task_rq(task) != rq ||
1977                                     !cpumask_test_cpu(later_rq->cpu, &task->cpus_allowed) ||
1978                                     task_running(rq, task) ||
1979                                     !dl_task(task) ||
1980                                     !task_on_rq_queued(task))) {
1981                                double_unlock_balance(rq, later_rq);
1982                                later_rq = NULL;
1983                                break;
1984                        }
1985                }
1986
1987                /*
1988                 * If the rq we found has no -deadline task, or
1989                 * its earliest one has a later deadline than our
1990                 * task, the rq is a good one.
1991                 */
1992                if (!later_rq->dl.dl_nr_running ||
1993                    dl_time_before(task->dl.deadline,
1994                                   later_rq->dl.earliest_dl.curr))
1995                        break;
1996
1997                /* Otherwise we try again. */
1998                double_unlock_balance(rq, later_rq);
1999                later_rq = NULL;
2000        }
2001
2002        return later_rq;
2003}
2004
2005static struct task_struct *pick_next_pushable_dl_task(struct rq *rq)
2006{
2007        struct task_struct *p;
2008
2009        if (!has_pushable_dl_tasks(rq))
2010                return NULL;
2011
2012        p = rb_entry(rq->dl.pushable_dl_tasks_root.rb_leftmost,
2013                     struct task_struct, pushable_dl_tasks);
2014
2015        BUG_ON(rq->cpu != task_cpu(p));
2016        BUG_ON(task_current(rq, p));
2017        BUG_ON(p->nr_cpus_allowed <= 1);
2018
2019        BUG_ON(!task_on_rq_queued(p));
2020        BUG_ON(!dl_task(p));
2021
2022        return p;
2023}
2024
2025/*
2026 * See if the non running -deadline tasks on this rq
2027 * can be sent to some other CPU where they can preempt
2028 * and start executing.
2029 */
2030static int push_dl_task(struct rq *rq)
2031{
2032        struct task_struct *next_task;
2033        struct rq *later_rq;
2034        int ret = 0;
2035
2036        if (!rq->dl.overloaded)
2037                return 0;
2038
2039        next_task = pick_next_pushable_dl_task(rq);
2040        if (!next_task)
2041                return 0;
2042
2043retry:
2044        if (unlikely(next_task == rq->curr)) {
2045                WARN_ON(1);
2046                return 0;
2047        }
2048
2049        /*
2050         * If next_task preempts rq->curr, and rq->curr
2051         * can move away, it makes sense to just reschedule
2052         * without going further in pushing next_task.
2053         */
2054        if (dl_task(rq->curr) &&
2055            dl_time_before(next_task->dl.deadline, rq->curr->dl.deadline) &&
2056            rq->curr->nr_cpus_allowed > 1) {
2057                resched_curr(rq);
2058                return 0;
2059        }
2060
2061        /* We might release rq lock */
2062        get_task_struct(next_task);
2063
2064        /* Will lock the rq it'll find */
2065        later_rq = find_lock_later_rq(next_task, rq);
2066        if (!later_rq) {
2067                struct task_struct *task;
2068
2069                /*
2070                 * We must check all this again, since
2071                 * find_lock_later_rq releases rq->lock and it is
2072                 * then possible that next_task has migrated.
2073                 */
2074                task = pick_next_pushable_dl_task(rq);
2075                if (task == next_task) {
2076                        /*
2077                         * The task is still there. We don't try
2078                         * again, some other CPU will pull it when ready.
2079                         */
2080                        goto out;
2081                }
2082
2083                if (!task)
2084                        /* No more tasks */
2085                        goto out;
2086
2087                put_task_struct(next_task);
2088                next_task = task;
2089                goto retry;
2090        }
2091
2092        deactivate_task(rq, next_task, 0);
2093        sub_running_bw(&next_task->dl, &rq->dl);
2094        sub_rq_bw(&next_task->dl, &rq->dl);
2095        set_task_cpu(next_task, later_rq->cpu);
2096        add_rq_bw(&next_task->dl, &later_rq->dl);
2097
2098        /*
2099         * Update the later_rq clock here, because the clock is used
2100         * by the cpufreq_update_util() inside __add_running_bw().
2101         */
2102        update_rq_clock(later_rq);
2103        add_running_bw(&next_task->dl, &later_rq->dl);
2104        activate_task(later_rq, next_task, ENQUEUE_NOCLOCK);
2105        ret = 1;
2106
2107        resched_curr(later_rq);
2108
2109        double_unlock_balance(rq, later_rq);
2110
2111out:
2112        put_task_struct(next_task);
2113
2114        return ret;
2115}
2116
2117static void push_dl_tasks(struct rq *rq)
2118{
2119        /* push_dl_task() will return true if it moved a -deadline task */
2120        while (push_dl_task(rq))
2121                ;
2122}
2123
2124static void pull_dl_task(struct rq *this_rq)
2125{
2126        int this_cpu = this_rq->cpu, cpu;
2127        struct task_struct *p;
2128        bool resched = false;
2129        struct rq *src_rq;
2130        u64 dmin = LONG_MAX;
2131
2132        if (likely(!dl_overloaded(this_rq)))
2133                return;
2134
2135        /*
2136         * Match the barrier from dl_set_overloaded; this guarantees that if we
2137         * see overloaded we must also see the dlo_mask bit.
2138         */
2139        smp_rmb();
2140
2141        for_each_cpu(cpu, this_rq->rd->dlo_mask) {
2142                if (this_cpu == cpu)
2143                        continue;
2144
2145                src_rq = cpu_rq(cpu);
2146
2147                /*
2148                 * It looks racy, abd it is! However, as in sched_rt.c,
2149                 * we are fine with this.
2150                 */
2151                if (this_rq->dl.dl_nr_running &&
2152                    dl_time_before(this_rq->dl.earliest_dl.curr,
2153                                   src_rq->dl.earliest_dl.next))
2154                        continue;
2155
2156                /* Might drop this_rq->lock */
2157                double_lock_balance(this_rq, src_rq);
2158
2159                /*
2160                 * If there are no more pullable tasks on the
2161                 * rq, we're done with it.
2162                 */
2163                if (src_rq->dl.dl_nr_running <= 1)
2164                        goto skip;
2165
2166                p = pick_earliest_pushable_dl_task(src_rq, this_cpu);
2167
2168                /*
2169                 * We found a task to be pulled if:
2170                 *  - it preempts our current (if there's one),
2171                 *  - it will preempt the last one we pulled (if any).
2172                 */
2173                if (p && dl_time_before(p->dl.deadline, dmin) &&
2174                    (!this_rq->dl.dl_nr_running ||
2175                     dl_time_before(p->dl.deadline,
2176                                    this_rq->dl.earliest_dl.curr))) {
2177                        WARN_ON(p == src_rq->curr);
2178                        WARN_ON(!task_on_rq_queued(p));
2179
2180                        /*
2181                         * Then we pull iff p has actually an earlier
2182                         * deadline than the current task of its runqueue.
2183                         */
2184                        if (dl_time_before(p->dl.deadline,
2185                                           src_rq->curr->dl.deadline))
2186                                goto skip;
2187
2188                        resched = true;
2189
2190                        deactivate_task(src_rq, p, 0);
2191                        sub_running_bw(&p->dl, &src_rq->dl);
2192                        sub_rq_bw(&p->dl, &src_rq->dl);
2193                        set_task_cpu(p, this_cpu);
2194                        add_rq_bw(&p->dl, &this_rq->dl);
2195                        add_running_bw(&p->dl, &this_rq->dl);
2196                        activate_task(this_rq, p, 0);
2197                        dmin = p->dl.deadline;
2198
2199                        /* Is there any other task even earlier? */
2200                }
2201skip:
2202                double_unlock_balance(this_rq, src_rq);
2203        }
2204
2205        if (resched)
2206                resched_curr(this_rq);
2207}
2208
2209/*
2210 * Since the task is not running and a reschedule is not going to happen
2211 * anytime soon on its runqueue, we try pushing it away now.
2212 */
2213static void task_woken_dl(struct rq *rq, struct task_struct *p)
2214{
2215        if (!task_running(rq, p) &&
2216            !test_tsk_need_resched(rq->curr) &&
2217            p->nr_cpus_allowed > 1 &&
2218            dl_task(rq->curr) &&
2219            (rq->curr->nr_cpus_allowed < 2 ||
2220             !dl_entity_preempt(&p->dl, &rq->curr->dl))) {
2221                push_dl_tasks(rq);
2222        }
2223}
2224
2225static void set_cpus_allowed_dl(struct task_struct *p,
2226                                const struct cpumask *new_mask)
2227{
2228        struct root_domain *src_rd;
2229        struct rq *rq;
2230
2231        BUG_ON(!dl_task(p));
2232
2233        rq = task_rq(p);
2234        src_rd = rq->rd;
2235        /*
2236         * Migrating a SCHED_DEADLINE task between exclusive
2237         * cpusets (different root_domains) entails a bandwidth
2238         * update. We already made space for us in the destination
2239         * domain (see cpuset_can_attach()).
2240         */
2241        if (!cpumask_intersects(src_rd->span, new_mask)) {
2242                struct dl_bw *src_dl_b;
2243
2244                src_dl_b = dl_bw_of(cpu_of(rq));
2245                /*
2246                 * We now free resources of the root_domain we are migrating
2247                 * off. In the worst case, sched_setattr() may temporary fail
2248                 * until we complete the update.
2249                 */
2250                raw_spin_lock(&src_dl_b->lock);
2251                __dl_sub(src_dl_b, p->dl.dl_bw, dl_bw_cpus(task_cpu(p)));
2252                raw_spin_unlock(&src_dl_b->lock);
2253        }
2254
2255        set_cpus_allowed_common(p, new_mask);
2256}
2257
2258/* Assumes rq->lock is held */
2259static void rq_online_dl(struct rq *rq)
2260{
2261        if (rq->dl.overloaded)
2262                dl_set_overload(rq);
2263
2264        cpudl_set_freecpu(&rq->rd->cpudl, rq->cpu);
2265        if (rq->dl.dl_nr_running > 0)
2266                cpudl_set(&rq->rd->cpudl, rq->cpu, rq->dl.earliest_dl.curr);
2267}
2268
2269/* Assumes rq->lock is held */
2270static void rq_offline_dl(struct rq *rq)
2271{
2272        if (rq->dl.overloaded)
2273                dl_clear_overload(rq);
2274
2275        cpudl_clear(&rq->rd->cpudl, rq->cpu);
2276        cpudl_clear_freecpu(&rq->rd->cpudl, rq->cpu);
2277}
2278
2279void __init init_sched_dl_class(void)
2280{
2281        unsigned int i;
2282
2283        for_each_possible_cpu(i)
2284                zalloc_cpumask_var_node(&per_cpu(local_cpu_mask_dl, i),
2285                                        GFP_KERNEL, cpu_to_node(i));
2286}
2287
2288#endif /* CONFIG_SMP */
2289
2290static void switched_from_dl(struct rq *rq, struct task_struct *p)
2291{
2292        /*
2293         * task_non_contending() can start the "inactive timer" (if the 0-lag
2294         * time is in the future). If the task switches back to dl before
2295         * the "inactive timer" fires, it can continue to consume its current
2296         * runtime using its current deadline. If it stays outside of
2297         * SCHED_DEADLINE until the 0-lag time passes, inactive_task_timer()
2298         * will reset the task parameters.
2299         */
2300        if (task_on_rq_queued(p) && p->dl.dl_runtime)
2301                task_non_contending(p);
2302
2303        if (!task_on_rq_queued(p)) {
2304                /*
2305                 * Inactive timer is armed. However, p is leaving DEADLINE and
2306                 * might migrate away from this rq while continuing to run on
2307                 * some other class. We need to remove its contribution from
2308                 * this rq running_bw now, or sub_rq_bw (below) will complain.
2309                 */
2310                if (p->dl.dl_non_contending)
2311                        sub_running_bw(&p->dl, &rq->dl);
2312                sub_rq_bw(&p->dl, &rq->dl);
2313        }
2314
2315        /*
2316         * We cannot use inactive_task_timer() to invoke sub_running_bw()
2317         * at the 0-lag time, because the task could have been migrated
2318         * while SCHED_OTHER in the meanwhile.
2319         */
2320        if (p->dl.dl_non_contending)
2321                p->dl.dl_non_contending = 0;
2322
2323        /*
2324         * Since this might be the only -deadline task on the rq,
2325         * this is the right place to try to pull some other one
2326         * from an overloaded CPU, if any.
2327         */
2328        if (!task_on_rq_queued(p) || rq->dl.dl_nr_running)
2329                return;
2330
2331        deadline_queue_pull_task(rq);
2332}
2333
2334/*
2335 * When switching to -deadline, we may overload the rq, then
2336 * we try to push someone off, if possible.
2337 */
2338static void switched_to_dl(struct rq *rq, struct task_struct *p)
2339{
2340        if (hrtimer_try_to_cancel(&p->dl.inactive_timer) == 1)
2341                put_task_struct(p);
2342
2343        /* If p is not queued we will update its parameters at next wakeup. */
2344        if (!task_on_rq_queued(p)) {
2345                add_rq_bw(&p->dl, &rq->dl);
2346
2347                return;
2348        }
2349
2350        if (rq->curr != p) {
2351#ifdef CONFIG_SMP
2352                if (p->nr_cpus_allowed > 1 && rq->dl.overloaded)
2353                        deadline_queue_push_tasks(rq);
2354#endif
2355                if (dl_task(rq->curr))
2356                        check_preempt_curr_dl(rq, p, 0);
2357                else
2358                        resched_curr(rq);
2359        }
2360}
2361
2362/*
2363 * If the scheduling parameters of a -deadline task changed,
2364 * a push or pull operation might be needed.
2365 */
2366static void prio_changed_dl(struct rq *rq, struct task_struct *p,
2367                            int oldprio)
2368{
2369        if (task_on_rq_queued(p) || rq->curr == p) {
2370#ifdef CONFIG_SMP
2371                /*
2372                 * This might be too much, but unfortunately
2373                 * we don't have the old deadline value, and
2374                 * we can't argue if the task is increasing
2375                 * or lowering its prio, so...
2376                 */
2377                if (!rq->dl.overloaded)
2378                        deadline_queue_pull_task(rq);
2379
2380                /*
2381                 * If we now have a earlier deadline task than p,
2382                 * then reschedule, provided p is still on this
2383                 * runqueue.
2384                 */
2385                if (dl_time_before(rq->dl.earliest_dl.curr, p->dl.deadline))
2386                        resched_curr(rq);
2387#else
2388                /*
2389                 * Again, we don't know if p has a earlier
2390                 * or later deadline, so let's blindly set a
2391                 * (maybe not needed) rescheduling point.
2392                 */
2393                resched_curr(rq);
2394#endif /* CONFIG_SMP */
2395        }
2396}
2397
2398const struct sched_class dl_sched_class = {
2399        .next                   = &rt_sched_class,
2400        .enqueue_task           = enqueue_task_dl,
2401        .dequeue_task           = dequeue_task_dl,
2402        .yield_task             = yield_task_dl,
2403
2404        .check_preempt_curr     = check_preempt_curr_dl,
2405
2406        .pick_next_task         = pick_next_task_dl,
2407        .put_prev_task          = put_prev_task_dl,
2408
2409#ifdef CONFIG_SMP
2410        .select_task_rq         = select_task_rq_dl,
2411        .migrate_task_rq        = migrate_task_rq_dl,
2412        .set_cpus_allowed       = set_cpus_allowed_dl,
2413        .rq_online              = rq_online_dl,
2414        .rq_offline             = rq_offline_dl,
2415        .task_woken             = task_woken_dl,
2416#endif
2417
2418        .set_curr_task          = set_curr_task_dl,
2419        .task_tick              = task_tick_dl,
2420        .task_fork              = task_fork_dl,
2421
2422        .prio_changed           = prio_changed_dl,
2423        .switched_from          = switched_from_dl,
2424        .switched_to            = switched_to_dl,
2425
2426        .update_curr            = update_curr_dl,
2427};
2428
2429int sched_dl_global_validate(void)
2430{
2431        u64 runtime = global_rt_runtime();
2432        u64 period = global_rt_period();
2433        u64 new_bw = to_ratio(period, runtime);
2434        struct dl_bw *dl_b;
2435        int cpu, ret = 0;
2436        unsigned long flags;
2437
2438        /*
2439         * Here we want to check the bandwidth not being set to some
2440         * value smaller than the currently allocated bandwidth in
2441         * any of the root_domains.
2442         *
2443         * FIXME: Cycling on all the CPUs is overdoing, but simpler than
2444         * cycling on root_domains... Discussion on different/better
2445         * solutions is welcome!
2446         */
2447        for_each_possible_cpu(cpu) {
2448                rcu_read_lock_sched();
2449                dl_b = dl_bw_of(cpu);
2450
2451                raw_spin_lock_irqsave(&dl_b->lock, flags);
2452                if (new_bw < dl_b->total_bw)
2453                        ret = -EBUSY;
2454                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2455
2456                rcu_read_unlock_sched();
2457
2458                if (ret)
2459                        break;
2460        }
2461
2462        return ret;
2463}
2464
2465void init_dl_rq_bw_ratio(struct dl_rq *dl_rq)
2466{
2467        if (global_rt_runtime() == RUNTIME_INF) {
2468                dl_rq->bw_ratio = 1 << RATIO_SHIFT;
2469                dl_rq->extra_bw = 1 << BW_SHIFT;
2470        } else {
2471                dl_rq->bw_ratio = to_ratio(global_rt_runtime(),
2472                          global_rt_period()) >> (BW_SHIFT - RATIO_SHIFT);
2473                dl_rq->extra_bw = to_ratio(global_rt_period(),
2474                                                    global_rt_runtime());
2475        }
2476}
2477
2478void sched_dl_do_global(void)
2479{
2480        u64 new_bw = -1;
2481        struct dl_bw *dl_b;
2482        int cpu;
2483        unsigned long flags;
2484
2485        def_dl_bandwidth.dl_period = global_rt_period();
2486        def_dl_bandwidth.dl_runtime = global_rt_runtime();
2487
2488        if (global_rt_runtime() != RUNTIME_INF)
2489                new_bw = to_ratio(global_rt_period(), global_rt_runtime());
2490
2491        /*
2492         * FIXME: As above...
2493         */
2494        for_each_possible_cpu(cpu) {
2495                rcu_read_lock_sched();
2496                dl_b = dl_bw_of(cpu);
2497
2498                raw_spin_lock_irqsave(&dl_b->lock, flags);
2499                dl_b->bw = new_bw;
2500                raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2501
2502                rcu_read_unlock_sched();
2503                init_dl_rq_bw_ratio(&cpu_rq(cpu)->dl);
2504        }
2505}
2506
2507/*
2508 * We must be sure that accepting a new task (or allowing changing the
2509 * parameters of an existing one) is consistent with the bandwidth
2510 * constraints. If yes, this function also accordingly updates the currently
2511 * allocated bandwidth to reflect the new situation.
2512 *
2513 * This function is called while holding p's rq->lock.
2514 */
2515int sched_dl_overflow(struct task_struct *p, int policy,
2516                      const struct sched_attr *attr)
2517{
2518        struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
2519        u64 period = attr->sched_period ?: attr->sched_deadline;
2520        u64 runtime = attr->sched_runtime;
2521        u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
2522        int cpus, err = -1;
2523
2524        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2525                return 0;
2526
2527        /* !deadline task may carry old deadline bandwidth */
2528        if (new_bw == p->dl.dl_bw && task_has_dl_policy(p))
2529                return 0;
2530
2531        /*
2532         * Either if a task, enters, leave, or stays -deadline but changes
2533         * its parameters, we may need to update accordingly the total
2534         * allocated bandwidth of the container.
2535         */
2536        raw_spin_lock(&dl_b->lock);
2537        cpus = dl_bw_cpus(task_cpu(p));
2538        if (dl_policy(policy) && !task_has_dl_policy(p) &&
2539            !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2540                if (hrtimer_active(&p->dl.inactive_timer))
2541                        __dl_sub(dl_b, p->dl.dl_bw, cpus);
2542                __dl_add(dl_b, new_bw, cpus);
2543                err = 0;
2544        } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2545                   !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2546                /*
2547                 * XXX this is slightly incorrect: when the task
2548                 * utilization decreases, we should delay the total
2549                 * utilization change until the task's 0-lag point.
2550                 * But this would require to set the task's "inactive
2551                 * timer" when the task is not inactive.
2552                 */
2553                __dl_sub(dl_b, p->dl.dl_bw, cpus);
2554                __dl_add(dl_b, new_bw, cpus);
2555                dl_change_utilization(p, new_bw);
2556                err = 0;
2557        } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2558                /*
2559                 * Do not decrease the total deadline utilization here,
2560                 * switched_from_dl() will take care to do it at the correct
2561                 * (0-lag) time.
2562                 */
2563                err = 0;
2564        }
2565        raw_spin_unlock(&dl_b->lock);
2566
2567        return err;
2568}
2569
2570/*
2571 * This function initializes the sched_dl_entity of a newly becoming
2572 * SCHED_DEADLINE task.
2573 *
2574 * Only the static values are considered here, the actual runtime and the
2575 * absolute deadline will be properly calculated when the task is enqueued
2576 * for the first time with its new policy.
2577 */
2578void __setparam_dl(struct task_struct *p, const struct sched_attr *attr)
2579{
2580        struct sched_dl_entity *dl_se = &p->dl;
2581
2582        dl_se->dl_runtime = attr->sched_runtime;
2583        dl_se->dl_deadline = attr->sched_deadline;
2584        dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
2585        dl_se->flags = attr->sched_flags;
2586        dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
2587        dl_se->dl_density = to_ratio(dl_se->dl_deadline, dl_se->dl_runtime);
2588}
2589
2590void __getparam_dl(struct task_struct *p, struct sched_attr *attr)
2591{
2592        struct sched_dl_entity *dl_se = &p->dl;
2593
2594        attr->sched_priority = p->rt_priority;
2595        attr->sched_runtime = dl_se->dl_runtime;
2596        attr->sched_deadline = dl_se->dl_deadline;
2597        attr->sched_period = dl_se->dl_period;
2598        attr->sched_flags = dl_se->flags;
2599}
2600
2601/*
2602 * This function validates the new parameters of a -deadline task.
2603 * We ask for the deadline not being zero, and greater or equal
2604 * than the runtime, as well as the period of being zero or
2605 * greater than deadline. Furthermore, we have to be sure that
2606 * user parameters are above the internal resolution of 1us (we
2607 * check sched_runtime only since it is always the smaller one) and
2608 * below 2^63 ns (we have to check both sched_deadline and
2609 * sched_period, as the latter can be zero).
2610 */
2611bool __checkparam_dl(const struct sched_attr *attr)
2612{
2613        /* special dl tasks don't actually use any parameter */
2614        if (attr->sched_flags & SCHED_FLAG_SUGOV)
2615                return true;
2616
2617        /* deadline != 0 */
2618        if (attr->sched_deadline == 0)
2619                return false;
2620
2621        /*
2622         * Since we truncate DL_SCALE bits, make sure we're at least
2623         * that big.
2624         */
2625        if (attr->sched_runtime < (1ULL << DL_SCALE))
2626                return false;
2627
2628        /*
2629         * Since we use the MSB for wrap-around and sign issues, make
2630         * sure it's not set (mind that period can be equal to zero).
2631         */
2632        if (attr->sched_deadline & (1ULL << 63) ||
2633            attr->sched_period & (1ULL << 63))
2634                return false;
2635
2636        /* runtime <= deadline <= period (if period != 0) */
2637        if ((attr->sched_period != 0 &&
2638             attr->sched_period < attr->sched_deadline) ||
2639            attr->sched_deadline < attr->sched_runtime)
2640                return false;
2641
2642        return true;
2643}
2644
2645/*
2646 * This function clears the sched_dl_entity static params.
2647 */
2648void __dl_clear_params(struct task_struct *p)
2649{
2650        struct sched_dl_entity *dl_se = &p->dl;
2651
2652        dl_se->dl_runtime               = 0;
2653        dl_se->dl_deadline              = 0;
2654        dl_se->dl_period                = 0;
2655        dl_se->flags                    = 0;
2656        dl_se->dl_bw                    = 0;
2657        dl_se->dl_density               = 0;
2658
2659        dl_se->dl_throttled             = 0;
2660        dl_se->dl_yielded               = 0;
2661        dl_se->dl_non_contending        = 0;
2662        dl_se->dl_overrun               = 0;
2663}
2664
2665bool dl_param_changed(struct task_struct *p, const struct sched_attr *attr)
2666{
2667        struct sched_dl_entity *dl_se = &p->dl;
2668
2669        if (dl_se->dl_runtime != attr->sched_runtime ||
2670            dl_se->dl_deadline != attr->sched_deadline ||
2671            dl_se->dl_period != attr->sched_period ||
2672            dl_se->flags != attr->sched_flags)
2673                return true;
2674
2675        return false;
2676}
2677
2678#ifdef CONFIG_SMP
2679int dl_task_can_attach(struct task_struct *p, const struct cpumask *cs_cpus_allowed)
2680{
2681        unsigned int dest_cpu;
2682        struct dl_bw *dl_b;
2683        bool overflow;
2684        int cpus, ret;
2685        unsigned long flags;
2686
2687        dest_cpu = cpumask_any_and(cpu_active_mask, cs_cpus_allowed);
2688
2689        rcu_read_lock_sched();
2690        dl_b = dl_bw_of(dest_cpu);
2691        raw_spin_lock_irqsave(&dl_b->lock, flags);
2692        cpus = dl_bw_cpus(dest_cpu);
2693        overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
2694        if (overflow) {
2695                ret = -EBUSY;
2696        } else {
2697                /*
2698                 * We reserve space for this task in the destination
2699                 * root_domain, as we can't fail after this point.
2700                 * We will free resources in the source root_domain
2701                 * later on (see set_cpus_allowed_dl()).
2702                 */
2703                __dl_add(dl_b, p->dl.dl_bw, cpus);
2704                ret = 0;
2705        }
2706        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2707        rcu_read_unlock_sched();
2708
2709        return ret;
2710}
2711
2712int dl_cpuset_cpumask_can_shrink(const struct cpumask *cur,
2713                                 const struct cpumask *trial)
2714{
2715        int ret = 1, trial_cpus;
2716        struct dl_bw *cur_dl_b;
2717        unsigned long flags;
2718
2719        rcu_read_lock_sched();
2720        cur_dl_b = dl_bw_of(cpumask_any(cur));
2721        trial_cpus = cpumask_weight(trial);
2722
2723        raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
2724        if (cur_dl_b->bw != -1 &&
2725            cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
2726                ret = 0;
2727        raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
2728        rcu_read_unlock_sched();
2729
2730        return ret;
2731}
2732
2733bool dl_cpu_busy(unsigned int cpu)
2734{
2735        unsigned long flags;
2736        struct dl_bw *dl_b;
2737        bool overflow;
2738        int cpus;
2739
2740        rcu_read_lock_sched();
2741        dl_b = dl_bw_of(cpu);
2742        raw_spin_lock_irqsave(&dl_b->lock, flags);
2743        cpus = dl_bw_cpus(cpu);
2744        overflow = __dl_overflow(dl_b, cpus, 0, 0);
2745        raw_spin_unlock_irqrestore(&dl_b->lock, flags);
2746        rcu_read_unlock_sched();
2747
2748        return overflow;
2749}
2750#endif
2751
2752#ifdef CONFIG_SCHED_DEBUG
2753void print_dl_stats(struct seq_file *m, int cpu)
2754{
2755        print_dl_rq(m, cpu, &cpu_rq(cpu)->dl);
2756}
2757#endif /* CONFIG_SCHED_DEBUG */
2758