linux/kernel/sched/fair.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
   4 *
   5 *  Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
   6 *
   7 *  Interactivity improvements by Mike Galbraith
   8 *  (C) 2007 Mike Galbraith <efault@gmx.de>
   9 *
  10 *  Various enhancements by Dmitry Adamushko.
  11 *  (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
  12 *
  13 *  Group scheduling enhancements by Srivatsa Vaddagiri
  14 *  Copyright IBM Corporation, 2007
  15 *  Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
  16 *
  17 *  Scaled math optimizations by Thomas Gleixner
  18 *  Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
  19 *
  20 *  Adaptive scheduling granularity, math enhancements by Peter Zijlstra
  21 *  Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
  22 */
  23#include "sched.h"
  24
  25#include <trace/events/sched.h>
  26
  27/*
  28 * Targeted preemption latency for CPU-bound tasks:
  29 *
  30 * NOTE: this latency value is not the same as the concept of
  31 * 'timeslice length' - timeslices in CFS are of variable length
  32 * and have no persistent notion like in traditional, time-slice
  33 * based scheduling concepts.
  34 *
  35 * (to see the precise effective timeslice length of your workload,
  36 *  run vmstat and monitor the context-switches (cs) field)
  37 *
  38 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
  39 */
  40unsigned int sysctl_sched_latency                       = 6000000ULL;
  41unsigned int normalized_sysctl_sched_latency            = 6000000ULL;
  42
  43/*
  44 * The initial- and re-scaling of tunables is configurable
  45 *
  46 * Options are:
  47 *
  48 *   SCHED_TUNABLESCALING_NONE - unscaled, always *1
  49 *   SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
  50 *   SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
  51 *
  52 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
  53 */
  54enum sched_tunable_scaling sysctl_sched_tunable_scaling = SCHED_TUNABLESCALING_LOG;
  55
  56/*
  57 * Minimal preemption granularity for CPU-bound tasks:
  58 *
  59 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
  60 */
  61unsigned int sysctl_sched_min_granularity               = 750000ULL;
  62unsigned int normalized_sysctl_sched_min_granularity    = 750000ULL;
  63
  64/*
  65 * This value is kept at sysctl_sched_latency/sysctl_sched_min_granularity
  66 */
  67static unsigned int sched_nr_latency = 8;
  68
  69/*
  70 * After fork, child runs first. If set to 0 (default) then
  71 * parent will (try to) run first.
  72 */
  73unsigned int sysctl_sched_child_runs_first __read_mostly;
  74
  75/*
  76 * SCHED_OTHER wake-up granularity.
  77 *
  78 * This option delays the preemption effects of decoupled workloads
  79 * and reduces their over-scheduling. Synchronous workloads will still
  80 * have immediate wakeup/sleep latencies.
  81 *
  82 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
  83 */
  84unsigned int sysctl_sched_wakeup_granularity            = 1000000UL;
  85unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
  86
  87const_debug unsigned int sysctl_sched_migration_cost    = 500000UL;
  88
  89#ifdef CONFIG_SMP
  90/*
  91 * For asym packing, by default the lower numbered CPU has higher priority.
  92 */
  93int __weak arch_asym_cpu_priority(int cpu)
  94{
  95        return -cpu;
  96}
  97#endif
  98
  99#ifdef CONFIG_CFS_BANDWIDTH
 100/*
 101 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
 102 * each time a cfs_rq requests quota.
 103 *
 104 * Note: in the case that the slice exceeds the runtime remaining (either due
 105 * to consumption or the quota being specified to be smaller than the slice)
 106 * we will always only issue the remaining available time.
 107 *
 108 * (default: 5 msec, units: microseconds)
 109 */
 110unsigned int sysctl_sched_cfs_bandwidth_slice           = 5000UL;
 111#endif
 112
 113/*
 114 * The margin used when comparing utilization with CPU capacity:
 115 * util * margin < capacity * 1024
 116 *
 117 * (default: ~20%)
 118 */
 119unsigned int capacity_margin                            = 1280;
 120
 121static inline void update_load_add(struct load_weight *lw, unsigned long inc)
 122{
 123        lw->weight += inc;
 124        lw->inv_weight = 0;
 125}
 126
 127static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
 128{
 129        lw->weight -= dec;
 130        lw->inv_weight = 0;
 131}
 132
 133static inline void update_load_set(struct load_weight *lw, unsigned long w)
 134{
 135        lw->weight = w;
 136        lw->inv_weight = 0;
 137}
 138
 139/*
 140 * Increase the granularity value when there are more CPUs,
 141 * because with more CPUs the 'effective latency' as visible
 142 * to users decreases. But the relationship is not linear,
 143 * so pick a second-best guess by going with the log2 of the
 144 * number of CPUs.
 145 *
 146 * This idea comes from the SD scheduler of Con Kolivas:
 147 */
 148static unsigned int get_update_sysctl_factor(void)
 149{
 150        unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
 151        unsigned int factor;
 152
 153        switch (sysctl_sched_tunable_scaling) {
 154        case SCHED_TUNABLESCALING_NONE:
 155                factor = 1;
 156                break;
 157        case SCHED_TUNABLESCALING_LINEAR:
 158                factor = cpus;
 159                break;
 160        case SCHED_TUNABLESCALING_LOG:
 161        default:
 162                factor = 1 + ilog2(cpus);
 163                break;
 164        }
 165
 166        return factor;
 167}
 168
 169static void update_sysctl(void)
 170{
 171        unsigned int factor = get_update_sysctl_factor();
 172
 173#define SET_SYSCTL(name) \
 174        (sysctl_##name = (factor) * normalized_sysctl_##name)
 175        SET_SYSCTL(sched_min_granularity);
 176        SET_SYSCTL(sched_latency);
 177        SET_SYSCTL(sched_wakeup_granularity);
 178#undef SET_SYSCTL
 179}
 180
 181void sched_init_granularity(void)
 182{
 183        update_sysctl();
 184}
 185
 186#define WMULT_CONST     (~0U)
 187#define WMULT_SHIFT     32
 188
 189static void __update_inv_weight(struct load_weight *lw)
 190{
 191        unsigned long w;
 192
 193        if (likely(lw->inv_weight))
 194                return;
 195
 196        w = scale_load_down(lw->weight);
 197
 198        if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
 199                lw->inv_weight = 1;
 200        else if (unlikely(!w))
 201                lw->inv_weight = WMULT_CONST;
 202        else
 203                lw->inv_weight = WMULT_CONST / w;
 204}
 205
 206/*
 207 * delta_exec * weight / lw.weight
 208 *   OR
 209 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
 210 *
 211 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
 212 * we're guaranteed shift stays positive because inv_weight is guaranteed to
 213 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
 214 *
 215 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
 216 * weight/lw.weight <= 1, and therefore our shift will also be positive.
 217 */
 218static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
 219{
 220        u64 fact = scale_load_down(weight);
 221        int shift = WMULT_SHIFT;
 222
 223        __update_inv_weight(lw);
 224
 225        if (unlikely(fact >> 32)) {
 226                while (fact >> 32) {
 227                        fact >>= 1;
 228                        shift--;
 229                }
 230        }
 231
 232        /* hint to use a 32x32->64 mul */
 233        fact = (u64)(u32)fact * lw->inv_weight;
 234
 235        while (fact >> 32) {
 236                fact >>= 1;
 237                shift--;
 238        }
 239
 240        return mul_u64_u32_shr(delta_exec, fact, shift);
 241}
 242
 243
 244const struct sched_class fair_sched_class;
 245
 246/**************************************************************
 247 * CFS operations on generic schedulable entities:
 248 */
 249
 250#ifdef CONFIG_FAIR_GROUP_SCHED
 251
 252/* cpu runqueue to which this cfs_rq is attached */
 253static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 254{
 255        return cfs_rq->rq;
 256}
 257
 258static inline struct task_struct *task_of(struct sched_entity *se)
 259{
 260        SCHED_WARN_ON(!entity_is_task(se));
 261        return container_of(se, struct task_struct, se);
 262}
 263
 264/* Walk up scheduling entities hierarchy */
 265#define for_each_sched_entity(se) \
 266                for (; se; se = se->parent)
 267
 268static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 269{
 270        return p->se.cfs_rq;
 271}
 272
 273/* runqueue on which this entity is (to be) queued */
 274static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 275{
 276        return se->cfs_rq;
 277}
 278
 279/* runqueue "owned" by this group */
 280static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 281{
 282        return grp->my_q;
 283}
 284
 285static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 286{
 287        if (!cfs_rq->on_list) {
 288                struct rq *rq = rq_of(cfs_rq);
 289                int cpu = cpu_of(rq);
 290                /*
 291                 * Ensure we either appear before our parent (if already
 292                 * enqueued) or force our parent to appear after us when it is
 293                 * enqueued. The fact that we always enqueue bottom-up
 294                 * reduces this to two cases and a special case for the root
 295                 * cfs_rq. Furthermore, it also means that we will always reset
 296                 * tmp_alone_branch either when the branch is connected
 297                 * to a tree or when we reach the beg of the tree
 298                 */
 299                if (cfs_rq->tg->parent &&
 300                    cfs_rq->tg->parent->cfs_rq[cpu]->on_list) {
 301                        /*
 302                         * If parent is already on the list, we add the child
 303                         * just before. Thanks to circular linked property of
 304                         * the list, this means to put the child at the tail
 305                         * of the list that starts by parent.
 306                         */
 307                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 308                                &(cfs_rq->tg->parent->cfs_rq[cpu]->leaf_cfs_rq_list));
 309                        /*
 310                         * The branch is now connected to its tree so we can
 311                         * reset tmp_alone_branch to the beginning of the
 312                         * list.
 313                         */
 314                        rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 315                } else if (!cfs_rq->tg->parent) {
 316                        /*
 317                         * cfs rq without parent should be put
 318                         * at the tail of the list.
 319                         */
 320                        list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
 321                                &rq->leaf_cfs_rq_list);
 322                        /*
 323                         * We have reach the beg of a tree so we can reset
 324                         * tmp_alone_branch to the beginning of the list.
 325                         */
 326                        rq->tmp_alone_branch = &rq->leaf_cfs_rq_list;
 327                } else {
 328                        /*
 329                         * The parent has not already been added so we want to
 330                         * make sure that it will be put after us.
 331                         * tmp_alone_branch points to the beg of the branch
 332                         * where we will add parent.
 333                         */
 334                        list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
 335                                rq->tmp_alone_branch);
 336                        /*
 337                         * update tmp_alone_branch to points to the new beg
 338                         * of the branch
 339                         */
 340                        rq->tmp_alone_branch = &cfs_rq->leaf_cfs_rq_list;
 341                }
 342
 343                cfs_rq->on_list = 1;
 344        }
 345}
 346
 347static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 348{
 349        if (cfs_rq->on_list) {
 350                list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
 351                cfs_rq->on_list = 0;
 352        }
 353}
 354
 355/* Iterate thr' all leaf cfs_rq's on a runqueue */
 356#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)                      \
 357        list_for_each_entry_safe(cfs_rq, pos, &rq->leaf_cfs_rq_list,    \
 358                                 leaf_cfs_rq_list)
 359
 360/* Do the two (enqueued) entities belong to the same group ? */
 361static inline struct cfs_rq *
 362is_same_group(struct sched_entity *se, struct sched_entity *pse)
 363{
 364        if (se->cfs_rq == pse->cfs_rq)
 365                return se->cfs_rq;
 366
 367        return NULL;
 368}
 369
 370static inline struct sched_entity *parent_entity(struct sched_entity *se)
 371{
 372        return se->parent;
 373}
 374
 375static void
 376find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 377{
 378        int se_depth, pse_depth;
 379
 380        /*
 381         * preemption test can be made between sibling entities who are in the
 382         * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
 383         * both tasks until we find their ancestors who are siblings of common
 384         * parent.
 385         */
 386
 387        /* First walk up until both entities are at same depth */
 388        se_depth = (*se)->depth;
 389        pse_depth = (*pse)->depth;
 390
 391        while (se_depth > pse_depth) {
 392                se_depth--;
 393                *se = parent_entity(*se);
 394        }
 395
 396        while (pse_depth > se_depth) {
 397                pse_depth--;
 398                *pse = parent_entity(*pse);
 399        }
 400
 401        while (!is_same_group(*se, *pse)) {
 402                *se = parent_entity(*se);
 403                *pse = parent_entity(*pse);
 404        }
 405}
 406
 407#else   /* !CONFIG_FAIR_GROUP_SCHED */
 408
 409static inline struct task_struct *task_of(struct sched_entity *se)
 410{
 411        return container_of(se, struct task_struct, se);
 412}
 413
 414static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
 415{
 416        return container_of(cfs_rq, struct rq, cfs);
 417}
 418
 419
 420#define for_each_sched_entity(se) \
 421                for (; se; se = NULL)
 422
 423static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
 424{
 425        return &task_rq(p)->cfs;
 426}
 427
 428static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
 429{
 430        struct task_struct *p = task_of(se);
 431        struct rq *rq = task_rq(p);
 432
 433        return &rq->cfs;
 434}
 435
 436/* runqueue "owned" by this group */
 437static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
 438{
 439        return NULL;
 440}
 441
 442static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 443{
 444}
 445
 446static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
 447{
 448}
 449
 450#define for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos)      \
 451                for (cfs_rq = &rq->cfs, pos = NULL; cfs_rq; cfs_rq = pos)
 452
 453static inline struct sched_entity *parent_entity(struct sched_entity *se)
 454{
 455        return NULL;
 456}
 457
 458static inline void
 459find_matching_se(struct sched_entity **se, struct sched_entity **pse)
 460{
 461}
 462
 463#endif  /* CONFIG_FAIR_GROUP_SCHED */
 464
 465static __always_inline
 466void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
 467
 468/**************************************************************
 469 * Scheduling class tree data structure manipulation methods:
 470 */
 471
 472static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
 473{
 474        s64 delta = (s64)(vruntime - max_vruntime);
 475        if (delta > 0)
 476                max_vruntime = vruntime;
 477
 478        return max_vruntime;
 479}
 480
 481static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
 482{
 483        s64 delta = (s64)(vruntime - min_vruntime);
 484        if (delta < 0)
 485                min_vruntime = vruntime;
 486
 487        return min_vruntime;
 488}
 489
 490static inline int entity_before(struct sched_entity *a,
 491                                struct sched_entity *b)
 492{
 493        return (s64)(a->vruntime - b->vruntime) < 0;
 494}
 495
 496static void update_min_vruntime(struct cfs_rq *cfs_rq)
 497{
 498        struct sched_entity *curr = cfs_rq->curr;
 499        struct rb_node *leftmost = rb_first_cached(&cfs_rq->tasks_timeline);
 500
 501        u64 vruntime = cfs_rq->min_vruntime;
 502
 503        if (curr) {
 504                if (curr->on_rq)
 505                        vruntime = curr->vruntime;
 506                else
 507                        curr = NULL;
 508        }
 509
 510        if (leftmost) { /* non-empty tree */
 511                struct sched_entity *se;
 512                se = rb_entry(leftmost, struct sched_entity, run_node);
 513
 514                if (!curr)
 515                        vruntime = se->vruntime;
 516                else
 517                        vruntime = min_vruntime(vruntime, se->vruntime);
 518        }
 519
 520        /* ensure we never gain time by being placed backwards. */
 521        cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
 522#ifndef CONFIG_64BIT
 523        smp_wmb();
 524        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
 525#endif
 526}
 527
 528/*
 529 * Enqueue an entity into the rb-tree:
 530 */
 531static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 532{
 533        struct rb_node **link = &cfs_rq->tasks_timeline.rb_root.rb_node;
 534        struct rb_node *parent = NULL;
 535        struct sched_entity *entry;
 536        bool leftmost = true;
 537
 538        /*
 539         * Find the right place in the rbtree:
 540         */
 541        while (*link) {
 542                parent = *link;
 543                entry = rb_entry(parent, struct sched_entity, run_node);
 544                /*
 545                 * We dont care about collisions. Nodes with
 546                 * the same key stay together.
 547                 */
 548                if (entity_before(se, entry)) {
 549                        link = &parent->rb_left;
 550                } else {
 551                        link = &parent->rb_right;
 552                        leftmost = false;
 553                }
 554        }
 555
 556        rb_link_node(&se->run_node, parent, link);
 557        rb_insert_color_cached(&se->run_node,
 558                               &cfs_rq->tasks_timeline, leftmost);
 559}
 560
 561static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
 562{
 563        rb_erase_cached(&se->run_node, &cfs_rq->tasks_timeline);
 564}
 565
 566struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
 567{
 568        struct rb_node *left = rb_first_cached(&cfs_rq->tasks_timeline);
 569
 570        if (!left)
 571                return NULL;
 572
 573        return rb_entry(left, struct sched_entity, run_node);
 574}
 575
 576static struct sched_entity *__pick_next_entity(struct sched_entity *se)
 577{
 578        struct rb_node *next = rb_next(&se->run_node);
 579
 580        if (!next)
 581                return NULL;
 582
 583        return rb_entry(next, struct sched_entity, run_node);
 584}
 585
 586#ifdef CONFIG_SCHED_DEBUG
 587struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
 588{
 589        struct rb_node *last = rb_last(&cfs_rq->tasks_timeline.rb_root);
 590
 591        if (!last)
 592                return NULL;
 593
 594        return rb_entry(last, struct sched_entity, run_node);
 595}
 596
 597/**************************************************************
 598 * Scheduling class statistics methods:
 599 */
 600
 601int sched_proc_update_handler(struct ctl_table *table, int write,
 602                void __user *buffer, size_t *lenp,
 603                loff_t *ppos)
 604{
 605        int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
 606        unsigned int factor = get_update_sysctl_factor();
 607
 608        if (ret || !write)
 609                return ret;
 610
 611        sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
 612                                        sysctl_sched_min_granularity);
 613
 614#define WRT_SYSCTL(name) \
 615        (normalized_sysctl_##name = sysctl_##name / (factor))
 616        WRT_SYSCTL(sched_min_granularity);
 617        WRT_SYSCTL(sched_latency);
 618        WRT_SYSCTL(sched_wakeup_granularity);
 619#undef WRT_SYSCTL
 620
 621        return 0;
 622}
 623#endif
 624
 625/*
 626 * delta /= w
 627 */
 628static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
 629{
 630        if (unlikely(se->load.weight != NICE_0_LOAD))
 631                delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
 632
 633        return delta;
 634}
 635
 636/*
 637 * The idea is to set a period in which each task runs once.
 638 *
 639 * When there are too many tasks (sched_nr_latency) we have to stretch
 640 * this period because otherwise the slices get too small.
 641 *
 642 * p = (nr <= nl) ? l : l*nr/nl
 643 */
 644static u64 __sched_period(unsigned long nr_running)
 645{
 646        if (unlikely(nr_running > sched_nr_latency))
 647                return nr_running * sysctl_sched_min_granularity;
 648        else
 649                return sysctl_sched_latency;
 650}
 651
 652/*
 653 * We calculate the wall-time slice from the period by taking a part
 654 * proportional to the weight.
 655 *
 656 * s = p*P[w/rw]
 657 */
 658static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 659{
 660        u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
 661
 662        for_each_sched_entity(se) {
 663                struct load_weight *load;
 664                struct load_weight lw;
 665
 666                cfs_rq = cfs_rq_of(se);
 667                load = &cfs_rq->load;
 668
 669                if (unlikely(!se->on_rq)) {
 670                        lw = cfs_rq->load;
 671
 672                        update_load_add(&lw, se->load.weight);
 673                        load = &lw;
 674                }
 675                slice = __calc_delta(slice, se->load.weight, load);
 676        }
 677        return slice;
 678}
 679
 680/*
 681 * We calculate the vruntime slice of a to-be-inserted task.
 682 *
 683 * vs = s/w
 684 */
 685static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
 686{
 687        return calc_delta_fair(sched_slice(cfs_rq, se), se);
 688}
 689
 690#ifdef CONFIG_SMP
 691#include "pelt.h"
 692#include "sched-pelt.h"
 693
 694static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
 695static unsigned long task_h_load(struct task_struct *p);
 696
 697/* Give new sched_entity start runnable values to heavy its load in infant time */
 698void init_entity_runnable_average(struct sched_entity *se)
 699{
 700        struct sched_avg *sa = &se->avg;
 701
 702        memset(sa, 0, sizeof(*sa));
 703
 704        /*
 705         * Tasks are intialized with full load to be seen as heavy tasks until
 706         * they get a chance to stabilize to their real load level.
 707         * Group entities are intialized with zero load to reflect the fact that
 708         * nothing has been attached to the task group yet.
 709         */
 710        if (entity_is_task(se))
 711                sa->runnable_load_avg = sa->load_avg = scale_load_down(se->load.weight);
 712
 713        se->runnable_weight = se->load.weight;
 714
 715        /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
 716}
 717
 718static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
 719static void attach_entity_cfs_rq(struct sched_entity *se);
 720
 721/*
 722 * With new tasks being created, their initial util_avgs are extrapolated
 723 * based on the cfs_rq's current util_avg:
 724 *
 725 *   util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
 726 *
 727 * However, in many cases, the above util_avg does not give a desired
 728 * value. Moreover, the sum of the util_avgs may be divergent, such
 729 * as when the series is a harmonic series.
 730 *
 731 * To solve this problem, we also cap the util_avg of successive tasks to
 732 * only 1/2 of the left utilization budget:
 733 *
 734 *   util_avg_cap = (cpu_scale - cfs_rq->avg.util_avg) / 2^n
 735 *
 736 * where n denotes the nth task and cpu_scale the CPU capacity.
 737 *
 738 * For example, for a CPU with 1024 of capacity, a simplest series from
 739 * the beginning would be like:
 740 *
 741 *  task  util_avg: 512, 256, 128,  64,  32,   16,    8, ...
 742 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
 743 *
 744 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
 745 * if util_avg > util_avg_cap.
 746 */
 747void post_init_entity_util_avg(struct sched_entity *se)
 748{
 749        struct cfs_rq *cfs_rq = cfs_rq_of(se);
 750        struct sched_avg *sa = &se->avg;
 751        long cpu_scale = arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
 752        long cap = (long)(cpu_scale - cfs_rq->avg.util_avg) / 2;
 753
 754        if (cap > 0) {
 755                if (cfs_rq->avg.util_avg != 0) {
 756                        sa->util_avg  = cfs_rq->avg.util_avg * se->load.weight;
 757                        sa->util_avg /= (cfs_rq->avg.load_avg + 1);
 758
 759                        if (sa->util_avg > cap)
 760                                sa->util_avg = cap;
 761                } else {
 762                        sa->util_avg = cap;
 763                }
 764        }
 765
 766        if (entity_is_task(se)) {
 767                struct task_struct *p = task_of(se);
 768                if (p->sched_class != &fair_sched_class) {
 769                        /*
 770                         * For !fair tasks do:
 771                         *
 772                        update_cfs_rq_load_avg(now, cfs_rq);
 773                        attach_entity_load_avg(cfs_rq, se, 0);
 774                        switched_from_fair(rq, p);
 775                         *
 776                         * such that the next switched_to_fair() has the
 777                         * expected state.
 778                         */
 779                        se->avg.last_update_time = cfs_rq_clock_task(cfs_rq);
 780                        return;
 781                }
 782        }
 783
 784        attach_entity_cfs_rq(se);
 785}
 786
 787#else /* !CONFIG_SMP */
 788void init_entity_runnable_average(struct sched_entity *se)
 789{
 790}
 791void post_init_entity_util_avg(struct sched_entity *se)
 792{
 793}
 794static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
 795{
 796}
 797#endif /* CONFIG_SMP */
 798
 799/*
 800 * Update the current task's runtime statistics.
 801 */
 802static void update_curr(struct cfs_rq *cfs_rq)
 803{
 804        struct sched_entity *curr = cfs_rq->curr;
 805        u64 now = rq_clock_task(rq_of(cfs_rq));
 806        u64 delta_exec;
 807
 808        if (unlikely(!curr))
 809                return;
 810
 811        delta_exec = now - curr->exec_start;
 812        if (unlikely((s64)delta_exec <= 0))
 813                return;
 814
 815        curr->exec_start = now;
 816
 817        schedstat_set(curr->statistics.exec_max,
 818                      max(delta_exec, curr->statistics.exec_max));
 819
 820        curr->sum_exec_runtime += delta_exec;
 821        schedstat_add(cfs_rq->exec_clock, delta_exec);
 822
 823        curr->vruntime += calc_delta_fair(delta_exec, curr);
 824        update_min_vruntime(cfs_rq);
 825
 826        if (entity_is_task(curr)) {
 827                struct task_struct *curtask = task_of(curr);
 828
 829                trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
 830                cgroup_account_cputime(curtask, delta_exec);
 831                account_group_exec_runtime(curtask, delta_exec);
 832        }
 833
 834        account_cfs_rq_runtime(cfs_rq, delta_exec);
 835}
 836
 837static void update_curr_fair(struct rq *rq)
 838{
 839        update_curr(cfs_rq_of(&rq->curr->se));
 840}
 841
 842static inline void
 843update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
 844{
 845        u64 wait_start, prev_wait_start;
 846
 847        if (!schedstat_enabled())
 848                return;
 849
 850        wait_start = rq_clock(rq_of(cfs_rq));
 851        prev_wait_start = schedstat_val(se->statistics.wait_start);
 852
 853        if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
 854            likely(wait_start > prev_wait_start))
 855                wait_start -= prev_wait_start;
 856
 857        __schedstat_set(se->statistics.wait_start, wait_start);
 858}
 859
 860static inline void
 861update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
 862{
 863        struct task_struct *p;
 864        u64 delta;
 865
 866        if (!schedstat_enabled())
 867                return;
 868
 869        delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
 870
 871        if (entity_is_task(se)) {
 872                p = task_of(se);
 873                if (task_on_rq_migrating(p)) {
 874                        /*
 875                         * Preserve migrating task's wait time so wait_start
 876                         * time stamp can be adjusted to accumulate wait time
 877                         * prior to migration.
 878                         */
 879                        __schedstat_set(se->statistics.wait_start, delta);
 880                        return;
 881                }
 882                trace_sched_stat_wait(p, delta);
 883        }
 884
 885        __schedstat_set(se->statistics.wait_max,
 886                      max(schedstat_val(se->statistics.wait_max), delta));
 887        __schedstat_inc(se->statistics.wait_count);
 888        __schedstat_add(se->statistics.wait_sum, delta);
 889        __schedstat_set(se->statistics.wait_start, 0);
 890}
 891
 892static inline void
 893update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
 894{
 895        struct task_struct *tsk = NULL;
 896        u64 sleep_start, block_start;
 897
 898        if (!schedstat_enabled())
 899                return;
 900
 901        sleep_start = schedstat_val(se->statistics.sleep_start);
 902        block_start = schedstat_val(se->statistics.block_start);
 903
 904        if (entity_is_task(se))
 905                tsk = task_of(se);
 906
 907        if (sleep_start) {
 908                u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
 909
 910                if ((s64)delta < 0)
 911                        delta = 0;
 912
 913                if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
 914                        __schedstat_set(se->statistics.sleep_max, delta);
 915
 916                __schedstat_set(se->statistics.sleep_start, 0);
 917                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 918
 919                if (tsk) {
 920                        account_scheduler_latency(tsk, delta >> 10, 1);
 921                        trace_sched_stat_sleep(tsk, delta);
 922                }
 923        }
 924        if (block_start) {
 925                u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
 926
 927                if ((s64)delta < 0)
 928                        delta = 0;
 929
 930                if (unlikely(delta > schedstat_val(se->statistics.block_max)))
 931                        __schedstat_set(se->statistics.block_max, delta);
 932
 933                __schedstat_set(se->statistics.block_start, 0);
 934                __schedstat_add(se->statistics.sum_sleep_runtime, delta);
 935
 936                if (tsk) {
 937                        if (tsk->in_iowait) {
 938                                __schedstat_add(se->statistics.iowait_sum, delta);
 939                                __schedstat_inc(se->statistics.iowait_count);
 940                                trace_sched_stat_iowait(tsk, delta);
 941                        }
 942
 943                        trace_sched_stat_blocked(tsk, delta);
 944
 945                        /*
 946                         * Blocking time is in units of nanosecs, so shift by
 947                         * 20 to get a milliseconds-range estimation of the
 948                         * amount of time that the task spent sleeping:
 949                         */
 950                        if (unlikely(prof_on == SLEEP_PROFILING)) {
 951                                profile_hits(SLEEP_PROFILING,
 952                                                (void *)get_wchan(tsk),
 953                                                delta >> 20);
 954                        }
 955                        account_scheduler_latency(tsk, delta >> 10, 0);
 956                }
 957        }
 958}
 959
 960/*
 961 * Task is being enqueued - update stats:
 962 */
 963static inline void
 964update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 965{
 966        if (!schedstat_enabled())
 967                return;
 968
 969        /*
 970         * Are we enqueueing a waiting task? (for current tasks
 971         * a dequeue/enqueue event is a NOP)
 972         */
 973        if (se != cfs_rq->curr)
 974                update_stats_wait_start(cfs_rq, se);
 975
 976        if (flags & ENQUEUE_WAKEUP)
 977                update_stats_enqueue_sleeper(cfs_rq, se);
 978}
 979
 980static inline void
 981update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
 982{
 983
 984        if (!schedstat_enabled())
 985                return;
 986
 987        /*
 988         * Mark the end of the wait period if dequeueing a
 989         * waiting task:
 990         */
 991        if (se != cfs_rq->curr)
 992                update_stats_wait_end(cfs_rq, se);
 993
 994        if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
 995                struct task_struct *tsk = task_of(se);
 996
 997                if (tsk->state & TASK_INTERRUPTIBLE)
 998                        __schedstat_set(se->statistics.sleep_start,
 999                                      rq_clock(rq_of(cfs_rq)));
1000                if (tsk->state & TASK_UNINTERRUPTIBLE)
1001                        __schedstat_set(se->statistics.block_start,
1002                                      rq_clock(rq_of(cfs_rq)));
1003        }
1004}
1005
1006/*
1007 * We are picking a new current task - update its stats:
1008 */
1009static inline void
1010update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
1011{
1012        /*
1013         * We are starting a new run period:
1014         */
1015        se->exec_start = rq_clock_task(rq_of(cfs_rq));
1016}
1017
1018/**************************************************
1019 * Scheduling class queueing methods:
1020 */
1021
1022#ifdef CONFIG_NUMA_BALANCING
1023/*
1024 * Approximate time to scan a full NUMA task in ms. The task scan period is
1025 * calculated based on the tasks virtual memory size and
1026 * numa_balancing_scan_size.
1027 */
1028unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1029unsigned int sysctl_numa_balancing_scan_period_max = 60000;
1030
1031/* Portion of address space to scan in MB */
1032unsigned int sysctl_numa_balancing_scan_size = 256;
1033
1034/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1035unsigned int sysctl_numa_balancing_scan_delay = 1000;
1036
1037struct numa_group {
1038        atomic_t refcount;
1039
1040        spinlock_t lock; /* nr_tasks, tasks */
1041        int nr_tasks;
1042        pid_t gid;
1043        int active_nodes;
1044
1045        struct rcu_head rcu;
1046        unsigned long total_faults;
1047        unsigned long max_faults_cpu;
1048        /*
1049         * Faults_cpu is used to decide whether memory should move
1050         * towards the CPU. As a consequence, these stats are weighted
1051         * more by CPU use than by memory faults.
1052         */
1053        unsigned long *faults_cpu;
1054        unsigned long faults[0];
1055};
1056
1057static inline unsigned long group_faults_priv(struct numa_group *ng);
1058static inline unsigned long group_faults_shared(struct numa_group *ng);
1059
1060static unsigned int task_nr_scan_windows(struct task_struct *p)
1061{
1062        unsigned long rss = 0;
1063        unsigned long nr_scan_pages;
1064
1065        /*
1066         * Calculations based on RSS as non-present and empty pages are skipped
1067         * by the PTE scanner and NUMA hinting faults should be trapped based
1068         * on resident pages
1069         */
1070        nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1071        rss = get_mm_rss(p->mm);
1072        if (!rss)
1073                rss = nr_scan_pages;
1074
1075        rss = round_up(rss, nr_scan_pages);
1076        return rss / nr_scan_pages;
1077}
1078
1079/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1080#define MAX_SCAN_WINDOW 2560
1081
1082static unsigned int task_scan_min(struct task_struct *p)
1083{
1084        unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
1085        unsigned int scan, floor;
1086        unsigned int windows = 1;
1087
1088        if (scan_size < MAX_SCAN_WINDOW)
1089                windows = MAX_SCAN_WINDOW / scan_size;
1090        floor = 1000 / windows;
1091
1092        scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1093        return max_t(unsigned int, floor, scan);
1094}
1095
1096static unsigned int task_scan_start(struct task_struct *p)
1097{
1098        unsigned long smin = task_scan_min(p);
1099        unsigned long period = smin;
1100
1101        /* Scale the maximum scan period with the amount of shared memory. */
1102        if (p->numa_group) {
1103                struct numa_group *ng = p->numa_group;
1104                unsigned long shared = group_faults_shared(ng);
1105                unsigned long private = group_faults_priv(ng);
1106
1107                period *= atomic_read(&ng->refcount);
1108                period *= shared + 1;
1109                period /= private + shared + 1;
1110        }
1111
1112        return max(smin, period);
1113}
1114
1115static unsigned int task_scan_max(struct task_struct *p)
1116{
1117        unsigned long smin = task_scan_min(p);
1118        unsigned long smax;
1119
1120        /* Watch for min being lower than max due to floor calculations */
1121        smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1122
1123        /* Scale the maximum scan period with the amount of shared memory. */
1124        if (p->numa_group) {
1125                struct numa_group *ng = p->numa_group;
1126                unsigned long shared = group_faults_shared(ng);
1127                unsigned long private = group_faults_priv(ng);
1128                unsigned long period = smax;
1129
1130                period *= atomic_read(&ng->refcount);
1131                period *= shared + 1;
1132                period /= private + shared + 1;
1133
1134                smax = max(smax, period);
1135        }
1136
1137        return max(smin, smax);
1138}
1139
1140void init_numa_balancing(unsigned long clone_flags, struct task_struct *p)
1141{
1142        int mm_users = 0;
1143        struct mm_struct *mm = p->mm;
1144
1145        if (mm) {
1146                mm_users = atomic_read(&mm->mm_users);
1147                if (mm_users == 1) {
1148                        mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
1149                        mm->numa_scan_seq = 0;
1150                }
1151        }
1152        p->node_stamp                   = 0;
1153        p->numa_scan_seq                = mm ? mm->numa_scan_seq : 0;
1154        p->numa_scan_period             = sysctl_numa_balancing_scan_delay;
1155        p->numa_work.next               = &p->numa_work;
1156        p->numa_faults                  = NULL;
1157        p->numa_group                   = NULL;
1158        p->last_task_numa_placement     = 0;
1159        p->last_sum_exec_runtime        = 0;
1160
1161        /* New address space, reset the preferred nid */
1162        if (!(clone_flags & CLONE_VM)) {
1163                p->numa_preferred_nid = -1;
1164                return;
1165        }
1166
1167        /*
1168         * New thread, keep existing numa_preferred_nid which should be copied
1169         * already by arch_dup_task_struct but stagger when scans start.
1170         */
1171        if (mm) {
1172                unsigned int delay;
1173
1174                delay = min_t(unsigned int, task_scan_max(current),
1175                        current->numa_scan_period * mm_users * NSEC_PER_MSEC);
1176                delay += 2 * TICK_NSEC;
1177                p->node_stamp = delay;
1178        }
1179}
1180
1181static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1182{
1183        rq->nr_numa_running += (p->numa_preferred_nid != -1);
1184        rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1185}
1186
1187static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1188{
1189        rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1190        rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1191}
1192
1193/* Shared or private faults. */
1194#define NR_NUMA_HINT_FAULT_TYPES 2
1195
1196/* Memory and CPU locality */
1197#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1198
1199/* Averaged statistics, and temporary buffers. */
1200#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1201
1202pid_t task_numa_group_id(struct task_struct *p)
1203{
1204        return p->numa_group ? p->numa_group->gid : 0;
1205}
1206
1207/*
1208 * The averaged statistics, shared & private, memory & CPU,
1209 * occupy the first half of the array. The second half of the
1210 * array is for current counters, which are averaged into the
1211 * first set by task_numa_placement.
1212 */
1213static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
1214{
1215        return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
1216}
1217
1218static inline unsigned long task_faults(struct task_struct *p, int nid)
1219{
1220        if (!p->numa_faults)
1221                return 0;
1222
1223        return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1224                p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
1225}
1226
1227static inline unsigned long group_faults(struct task_struct *p, int nid)
1228{
1229        if (!p->numa_group)
1230                return 0;
1231
1232        return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1233                p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
1234}
1235
1236static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1237{
1238        return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1239                group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
1240}
1241
1242static inline unsigned long group_faults_priv(struct numa_group *ng)
1243{
1244        unsigned long faults = 0;
1245        int node;
1246
1247        for_each_online_node(node) {
1248                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 1)];
1249        }
1250
1251        return faults;
1252}
1253
1254static inline unsigned long group_faults_shared(struct numa_group *ng)
1255{
1256        unsigned long faults = 0;
1257        int node;
1258
1259        for_each_online_node(node) {
1260                faults += ng->faults[task_faults_idx(NUMA_MEM, node, 0)];
1261        }
1262
1263        return faults;
1264}
1265
1266/*
1267 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1268 * considered part of a numa group's pseudo-interleaving set. Migrations
1269 * between these nodes are slowed down, to allow things to settle down.
1270 */
1271#define ACTIVE_NODE_FRACTION 3
1272
1273static bool numa_is_active_node(int nid, struct numa_group *ng)
1274{
1275        return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1276}
1277
1278/* Handle placement on systems where not all nodes are directly connected. */
1279static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1280                                        int maxdist, bool task)
1281{
1282        unsigned long score = 0;
1283        int node;
1284
1285        /*
1286         * All nodes are directly connected, and the same distance
1287         * from each other. No need for fancy placement algorithms.
1288         */
1289        if (sched_numa_topology_type == NUMA_DIRECT)
1290                return 0;
1291
1292        /*
1293         * This code is called for each node, introducing N^2 complexity,
1294         * which should be ok given the number of nodes rarely exceeds 8.
1295         */
1296        for_each_online_node(node) {
1297                unsigned long faults;
1298                int dist = node_distance(nid, node);
1299
1300                /*
1301                 * The furthest away nodes in the system are not interesting
1302                 * for placement; nid was already counted.
1303                 */
1304                if (dist == sched_max_numa_distance || node == nid)
1305                        continue;
1306
1307                /*
1308                 * On systems with a backplane NUMA topology, compare groups
1309                 * of nodes, and move tasks towards the group with the most
1310                 * memory accesses. When comparing two nodes at distance
1311                 * "hoplimit", only nodes closer by than "hoplimit" are part
1312                 * of each group. Skip other nodes.
1313                 */
1314                if (sched_numa_topology_type == NUMA_BACKPLANE &&
1315                                        dist >= maxdist)
1316                        continue;
1317
1318                /* Add up the faults from nearby nodes. */
1319                if (task)
1320                        faults = task_faults(p, node);
1321                else
1322                        faults = group_faults(p, node);
1323
1324                /*
1325                 * On systems with a glueless mesh NUMA topology, there are
1326                 * no fixed "groups of nodes". Instead, nodes that are not
1327                 * directly connected bounce traffic through intermediate
1328                 * nodes; a numa_group can occupy any set of nodes.
1329                 * The further away a node is, the less the faults count.
1330                 * This seems to result in good task placement.
1331                 */
1332                if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1333                        faults *= (sched_max_numa_distance - dist);
1334                        faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1335                }
1336
1337                score += faults;
1338        }
1339
1340        return score;
1341}
1342
1343/*
1344 * These return the fraction of accesses done by a particular task, or
1345 * task group, on a particular numa node.  The group weight is given a
1346 * larger multiplier, in order to group tasks together that are almost
1347 * evenly spread out between numa nodes.
1348 */
1349static inline unsigned long task_weight(struct task_struct *p, int nid,
1350                                        int dist)
1351{
1352        unsigned long faults, total_faults;
1353
1354        if (!p->numa_faults)
1355                return 0;
1356
1357        total_faults = p->total_numa_faults;
1358
1359        if (!total_faults)
1360                return 0;
1361
1362        faults = task_faults(p, nid);
1363        faults += score_nearby_nodes(p, nid, dist, true);
1364
1365        return 1000 * faults / total_faults;
1366}
1367
1368static inline unsigned long group_weight(struct task_struct *p, int nid,
1369                                         int dist)
1370{
1371        unsigned long faults, total_faults;
1372
1373        if (!p->numa_group)
1374                return 0;
1375
1376        total_faults = p->numa_group->total_faults;
1377
1378        if (!total_faults)
1379                return 0;
1380
1381        faults = group_faults(p, nid);
1382        faults += score_nearby_nodes(p, nid, dist, false);
1383
1384        return 1000 * faults / total_faults;
1385}
1386
1387bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1388                                int src_nid, int dst_cpu)
1389{
1390        struct numa_group *ng = p->numa_group;
1391        int dst_nid = cpu_to_node(dst_cpu);
1392        int last_cpupid, this_cpupid;
1393
1394        this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1395        last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1396
1397        /*
1398         * Allow first faults or private faults to migrate immediately early in
1399         * the lifetime of a task. The magic number 4 is based on waiting for
1400         * two full passes of the "multi-stage node selection" test that is
1401         * executed below.
1402         */
1403        if ((p->numa_preferred_nid == -1 || p->numa_scan_seq <= 4) &&
1404            (cpupid_pid_unset(last_cpupid) || cpupid_match_pid(p, last_cpupid)))
1405                return true;
1406
1407        /*
1408         * Multi-stage node selection is used in conjunction with a periodic
1409         * migration fault to build a temporal task<->page relation. By using
1410         * a two-stage filter we remove short/unlikely relations.
1411         *
1412         * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1413         * a task's usage of a particular page (n_p) per total usage of this
1414         * page (n_t) (in a given time-span) to a probability.
1415         *
1416         * Our periodic faults will sample this probability and getting the
1417         * same result twice in a row, given these samples are fully
1418         * independent, is then given by P(n)^2, provided our sample period
1419         * is sufficiently short compared to the usage pattern.
1420         *
1421         * This quadric squishes small probabilities, making it less likely we
1422         * act on an unlikely task<->page relation.
1423         */
1424        if (!cpupid_pid_unset(last_cpupid) &&
1425                                cpupid_to_nid(last_cpupid) != dst_nid)
1426                return false;
1427
1428        /* Always allow migrate on private faults */
1429        if (cpupid_match_pid(p, last_cpupid))
1430                return true;
1431
1432        /* A shared fault, but p->numa_group has not been set up yet. */
1433        if (!ng)
1434                return true;
1435
1436        /*
1437         * Destination node is much more heavily used than the source
1438         * node? Allow migration.
1439         */
1440        if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1441                                        ACTIVE_NODE_FRACTION)
1442                return true;
1443
1444        /*
1445         * Distribute memory according to CPU & memory use on each node,
1446         * with 3/4 hysteresis to avoid unnecessary memory migrations:
1447         *
1448         * faults_cpu(dst)   3   faults_cpu(src)
1449         * --------------- * - > ---------------
1450         * faults_mem(dst)   4   faults_mem(src)
1451         */
1452        return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1453               group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
1454}
1455
1456static unsigned long weighted_cpuload(struct rq *rq);
1457static unsigned long source_load(int cpu, int type);
1458static unsigned long target_load(int cpu, int type);
1459static unsigned long capacity_of(int cpu);
1460
1461/* Cached statistics for all CPUs within a node */
1462struct numa_stats {
1463        unsigned long load;
1464
1465        /* Total compute capacity of CPUs on a node */
1466        unsigned long compute_capacity;
1467
1468        unsigned int nr_running;
1469};
1470
1471/*
1472 * XXX borrowed from update_sg_lb_stats
1473 */
1474static void update_numa_stats(struct numa_stats *ns, int nid)
1475{
1476        int smt, cpu, cpus = 0;
1477        unsigned long capacity;
1478
1479        memset(ns, 0, sizeof(*ns));
1480        for_each_cpu(cpu, cpumask_of_node(nid)) {
1481                struct rq *rq = cpu_rq(cpu);
1482
1483                ns->nr_running += rq->nr_running;
1484                ns->load += weighted_cpuload(rq);
1485                ns->compute_capacity += capacity_of(cpu);
1486
1487                cpus++;
1488        }
1489
1490        /*
1491         * If we raced with hotplug and there are no CPUs left in our mask
1492         * the @ns structure is NULL'ed and task_numa_compare() will
1493         * not find this node attractive.
1494         *
1495         * We'll detect a huge imbalance and bail there.
1496         */
1497        if (!cpus)
1498                return;
1499
1500        /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1501        smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1502        capacity = cpus / smt; /* cores */
1503
1504        capacity = min_t(unsigned, capacity,
1505                DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1506}
1507
1508struct task_numa_env {
1509        struct task_struct *p;
1510
1511        int src_cpu, src_nid;
1512        int dst_cpu, dst_nid;
1513
1514        struct numa_stats src_stats, dst_stats;
1515
1516        int imbalance_pct;
1517        int dist;
1518
1519        struct task_struct *best_task;
1520        long best_imp;
1521        int best_cpu;
1522};
1523
1524static void task_numa_assign(struct task_numa_env *env,
1525                             struct task_struct *p, long imp)
1526{
1527        struct rq *rq = cpu_rq(env->dst_cpu);
1528
1529        /* Bail out if run-queue part of active NUMA balance. */
1530        if (xchg(&rq->numa_migrate_on, 1))
1531                return;
1532
1533        /*
1534         * Clear previous best_cpu/rq numa-migrate flag, since task now
1535         * found a better CPU to move/swap.
1536         */
1537        if (env->best_cpu != -1) {
1538                rq = cpu_rq(env->best_cpu);
1539                WRITE_ONCE(rq->numa_migrate_on, 0);
1540        }
1541
1542        if (env->best_task)
1543                put_task_struct(env->best_task);
1544        if (p)
1545                get_task_struct(p);
1546
1547        env->best_task = p;
1548        env->best_imp = imp;
1549        env->best_cpu = env->dst_cpu;
1550}
1551
1552static bool load_too_imbalanced(long src_load, long dst_load,
1553                                struct task_numa_env *env)
1554{
1555        long imb, old_imb;
1556        long orig_src_load, orig_dst_load;
1557        long src_capacity, dst_capacity;
1558
1559        /*
1560         * The load is corrected for the CPU capacity available on each node.
1561         *
1562         * src_load        dst_load
1563         * ------------ vs ---------
1564         * src_capacity    dst_capacity
1565         */
1566        src_capacity = env->src_stats.compute_capacity;
1567        dst_capacity = env->dst_stats.compute_capacity;
1568
1569        imb = abs(dst_load * src_capacity - src_load * dst_capacity);
1570
1571        orig_src_load = env->src_stats.load;
1572        orig_dst_load = env->dst_stats.load;
1573
1574        old_imb = abs(orig_dst_load * src_capacity - orig_src_load * dst_capacity);
1575
1576        /* Would this change make things worse? */
1577        return (imb > old_imb);
1578}
1579
1580/*
1581 * Maximum NUMA importance can be 1998 (2*999);
1582 * SMALLIMP @ 30 would be close to 1998/64.
1583 * Used to deter task migration.
1584 */
1585#define SMALLIMP        30
1586
1587/*
1588 * This checks if the overall compute and NUMA accesses of the system would
1589 * be improved if the source tasks was migrated to the target dst_cpu taking
1590 * into account that it might be best if task running on the dst_cpu should
1591 * be exchanged with the source task
1592 */
1593static void task_numa_compare(struct task_numa_env *env,
1594                              long taskimp, long groupimp, bool maymove)
1595{
1596        struct rq *dst_rq = cpu_rq(env->dst_cpu);
1597        struct task_struct *cur;
1598        long src_load, dst_load;
1599        long load;
1600        long imp = env->p->numa_group ? groupimp : taskimp;
1601        long moveimp = imp;
1602        int dist = env->dist;
1603
1604        if (READ_ONCE(dst_rq->numa_migrate_on))
1605                return;
1606
1607        rcu_read_lock();
1608        cur = task_rcu_dereference(&dst_rq->curr);
1609        if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
1610                cur = NULL;
1611
1612        /*
1613         * Because we have preemption enabled we can get migrated around and
1614         * end try selecting ourselves (current == env->p) as a swap candidate.
1615         */
1616        if (cur == env->p)
1617                goto unlock;
1618
1619        if (!cur) {
1620                if (maymove && moveimp >= env->best_imp)
1621                        goto assign;
1622                else
1623                        goto unlock;
1624        }
1625
1626        /*
1627         * "imp" is the fault differential for the source task between the
1628         * source and destination node. Calculate the total differential for
1629         * the source task and potential destination task. The more negative
1630         * the value is, the more remote accesses that would be expected to
1631         * be incurred if the tasks were swapped.
1632         */
1633        /* Skip this swap candidate if cannot move to the source cpu */
1634        if (!cpumask_test_cpu(env->src_cpu, &cur->cpus_allowed))
1635                goto unlock;
1636
1637        /*
1638         * If dst and source tasks are in the same NUMA group, or not
1639         * in any group then look only at task weights.
1640         */
1641        if (cur->numa_group == env->p->numa_group) {
1642                imp = taskimp + task_weight(cur, env->src_nid, dist) -
1643                      task_weight(cur, env->dst_nid, dist);
1644                /*
1645                 * Add some hysteresis to prevent swapping the
1646                 * tasks within a group over tiny differences.
1647                 */
1648                if (cur->numa_group)
1649                        imp -= imp / 16;
1650        } else {
1651                /*
1652                 * Compare the group weights. If a task is all by itself
1653                 * (not part of a group), use the task weight instead.
1654                 */
1655                if (cur->numa_group && env->p->numa_group)
1656                        imp += group_weight(cur, env->src_nid, dist) -
1657                               group_weight(cur, env->dst_nid, dist);
1658                else
1659                        imp += task_weight(cur, env->src_nid, dist) -
1660                               task_weight(cur, env->dst_nid, dist);
1661        }
1662
1663        if (maymove && moveimp > imp && moveimp > env->best_imp) {
1664                imp = moveimp;
1665                cur = NULL;
1666                goto assign;
1667        }
1668
1669        /*
1670         * If the NUMA importance is less than SMALLIMP,
1671         * task migration might only result in ping pong
1672         * of tasks and also hurt performance due to cache
1673         * misses.
1674         */
1675        if (imp < SMALLIMP || imp <= env->best_imp + SMALLIMP / 2)
1676                goto unlock;
1677
1678        /*
1679         * In the overloaded case, try and keep the load balanced.
1680         */
1681        load = task_h_load(env->p) - task_h_load(cur);
1682        if (!load)
1683                goto assign;
1684
1685        dst_load = env->dst_stats.load + load;
1686        src_load = env->src_stats.load - load;
1687
1688        if (load_too_imbalanced(src_load, dst_load, env))
1689                goto unlock;
1690
1691assign:
1692        /*
1693         * One idle CPU per node is evaluated for a task numa move.
1694         * Call select_idle_sibling to maybe find a better one.
1695         */
1696        if (!cur) {
1697                /*
1698                 * select_idle_siblings() uses an per-CPU cpumask that
1699                 * can be used from IRQ context.
1700                 */
1701                local_irq_disable();
1702                env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1703                                                   env->dst_cpu);
1704                local_irq_enable();
1705        }
1706
1707        task_numa_assign(env, cur, imp);
1708unlock:
1709        rcu_read_unlock();
1710}
1711
1712static void task_numa_find_cpu(struct task_numa_env *env,
1713                                long taskimp, long groupimp)
1714{
1715        long src_load, dst_load, load;
1716        bool maymove = false;
1717        int cpu;
1718
1719        load = task_h_load(env->p);
1720        dst_load = env->dst_stats.load + load;
1721        src_load = env->src_stats.load - load;
1722
1723        /*
1724         * If the improvement from just moving env->p direction is better
1725         * than swapping tasks around, check if a move is possible.
1726         */
1727        maymove = !load_too_imbalanced(src_load, dst_load, env);
1728
1729        for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1730                /* Skip this CPU if the source task cannot migrate */
1731                if (!cpumask_test_cpu(cpu, &env->p->cpus_allowed))
1732                        continue;
1733
1734                env->dst_cpu = cpu;
1735                task_numa_compare(env, taskimp, groupimp, maymove);
1736        }
1737}
1738
1739static int task_numa_migrate(struct task_struct *p)
1740{
1741        struct task_numa_env env = {
1742                .p = p,
1743
1744                .src_cpu = task_cpu(p),
1745                .src_nid = task_node(p),
1746
1747                .imbalance_pct = 112,
1748
1749                .best_task = NULL,
1750                .best_imp = 0,
1751                .best_cpu = -1,
1752        };
1753        struct sched_domain *sd;
1754        struct rq *best_rq;
1755        unsigned long taskweight, groupweight;
1756        int nid, ret, dist;
1757        long taskimp, groupimp;
1758
1759        /*
1760         * Pick the lowest SD_NUMA domain, as that would have the smallest
1761         * imbalance and would be the first to start moving tasks about.
1762         *
1763         * And we want to avoid any moving of tasks about, as that would create
1764         * random movement of tasks -- counter the numa conditions we're trying
1765         * to satisfy here.
1766         */
1767        rcu_read_lock();
1768        sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
1769        if (sd)
1770                env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
1771        rcu_read_unlock();
1772
1773        /*
1774         * Cpusets can break the scheduler domain tree into smaller
1775         * balance domains, some of which do not cross NUMA boundaries.
1776         * Tasks that are "trapped" in such domains cannot be migrated
1777         * elsewhere, so there is no point in (re)trying.
1778         */
1779        if (unlikely(!sd)) {
1780                sched_setnuma(p, task_node(p));
1781                return -EINVAL;
1782        }
1783
1784        env.dst_nid = p->numa_preferred_nid;
1785        dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1786        taskweight = task_weight(p, env.src_nid, dist);
1787        groupweight = group_weight(p, env.src_nid, dist);
1788        update_numa_stats(&env.src_stats, env.src_nid);
1789        taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1790        groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
1791        update_numa_stats(&env.dst_stats, env.dst_nid);
1792
1793        /* Try to find a spot on the preferred nid. */
1794        task_numa_find_cpu(&env, taskimp, groupimp);
1795
1796        /*
1797         * Look at other nodes in these cases:
1798         * - there is no space available on the preferred_nid
1799         * - the task is part of a numa_group that is interleaved across
1800         *   multiple NUMA nodes; in order to better consolidate the group,
1801         *   we need to check other locations.
1802         */
1803        if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
1804                for_each_online_node(nid) {
1805                        if (nid == env.src_nid || nid == p->numa_preferred_nid)
1806                                continue;
1807
1808                        dist = node_distance(env.src_nid, env.dst_nid);
1809                        if (sched_numa_topology_type == NUMA_BACKPLANE &&
1810                                                dist != env.dist) {
1811                                taskweight = task_weight(p, env.src_nid, dist);
1812                                groupweight = group_weight(p, env.src_nid, dist);
1813                        }
1814
1815                        /* Only consider nodes where both task and groups benefit */
1816                        taskimp = task_weight(p, nid, dist) - taskweight;
1817                        groupimp = group_weight(p, nid, dist) - groupweight;
1818                        if (taskimp < 0 && groupimp < 0)
1819                                continue;
1820
1821                        env.dist = dist;
1822                        env.dst_nid = nid;
1823                        update_numa_stats(&env.dst_stats, env.dst_nid);
1824                        task_numa_find_cpu(&env, taskimp, groupimp);
1825                }
1826        }
1827
1828        /*
1829         * If the task is part of a workload that spans multiple NUMA nodes,
1830         * and is migrating into one of the workload's active nodes, remember
1831         * this node as the task's preferred numa node, so the workload can
1832         * settle down.
1833         * A task that migrated to a second choice node will be better off
1834         * trying for a better one later. Do not set the preferred node here.
1835         */
1836        if (p->numa_group) {
1837                if (env.best_cpu == -1)
1838                        nid = env.src_nid;
1839                else
1840                        nid = cpu_to_node(env.best_cpu);
1841
1842                if (nid != p->numa_preferred_nid)
1843                        sched_setnuma(p, nid);
1844        }
1845
1846        /* No better CPU than the current one was found. */
1847        if (env.best_cpu == -1)
1848                return -EAGAIN;
1849
1850        best_rq = cpu_rq(env.best_cpu);
1851        if (env.best_task == NULL) {
1852                ret = migrate_task_to(p, env.best_cpu);
1853                WRITE_ONCE(best_rq->numa_migrate_on, 0);
1854                if (ret != 0)
1855                        trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
1856                return ret;
1857        }
1858
1859        ret = migrate_swap(p, env.best_task, env.best_cpu, env.src_cpu);
1860        WRITE_ONCE(best_rq->numa_migrate_on, 0);
1861
1862        if (ret != 0)
1863                trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
1864        put_task_struct(env.best_task);
1865        return ret;
1866}
1867
1868/* Attempt to migrate a task to a CPU on the preferred node. */
1869static void numa_migrate_preferred(struct task_struct *p)
1870{
1871        unsigned long interval = HZ;
1872
1873        /* This task has no NUMA fault statistics yet */
1874        if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
1875                return;
1876
1877        /* Periodically retry migrating the task to the preferred node */
1878        interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1879        p->numa_migrate_retry = jiffies + interval;
1880
1881        /* Success if task is already running on preferred CPU */
1882        if (task_node(p) == p->numa_preferred_nid)
1883                return;
1884
1885        /* Otherwise, try migrate to a CPU on the preferred node */
1886        task_numa_migrate(p);
1887}
1888
1889/*
1890 * Find out how many nodes on the workload is actively running on. Do this by
1891 * tracking the nodes from which NUMA hinting faults are triggered. This can
1892 * be different from the set of nodes where the workload's memory is currently
1893 * located.
1894 */
1895static void numa_group_count_active_nodes(struct numa_group *numa_group)
1896{
1897        unsigned long faults, max_faults = 0;
1898        int nid, active_nodes = 0;
1899
1900        for_each_online_node(nid) {
1901                faults = group_faults_cpu(numa_group, nid);
1902                if (faults > max_faults)
1903                        max_faults = faults;
1904        }
1905
1906        for_each_online_node(nid) {
1907                faults = group_faults_cpu(numa_group, nid);
1908                if (faults * ACTIVE_NODE_FRACTION > max_faults)
1909                        active_nodes++;
1910        }
1911
1912        numa_group->max_faults_cpu = max_faults;
1913        numa_group->active_nodes = active_nodes;
1914}
1915
1916/*
1917 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1918 * increments. The more local the fault statistics are, the higher the scan
1919 * period will be for the next scan window. If local/(local+remote) ratio is
1920 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1921 * the scan period will decrease. Aim for 70% local accesses.
1922 */
1923#define NUMA_PERIOD_SLOTS 10
1924#define NUMA_PERIOD_THRESHOLD 7
1925
1926/*
1927 * Increase the scan period (slow down scanning) if the majority of
1928 * our memory is already on our local node, or if the majority of
1929 * the page accesses are shared with other processes.
1930 * Otherwise, decrease the scan period.
1931 */
1932static void update_task_scan_period(struct task_struct *p,
1933                        unsigned long shared, unsigned long private)
1934{
1935        unsigned int period_slot;
1936        int lr_ratio, ps_ratio;
1937        int diff;
1938
1939        unsigned long remote = p->numa_faults_locality[0];
1940        unsigned long local = p->numa_faults_locality[1];
1941
1942        /*
1943         * If there were no record hinting faults then either the task is
1944         * completely idle or all activity is areas that are not of interest
1945         * to automatic numa balancing. Related to that, if there were failed
1946         * migration then it implies we are migrating too quickly or the local
1947         * node is overloaded. In either case, scan slower
1948         */
1949        if (local + shared == 0 || p->numa_faults_locality[2]) {
1950                p->numa_scan_period = min(p->numa_scan_period_max,
1951                        p->numa_scan_period << 1);
1952
1953                p->mm->numa_next_scan = jiffies +
1954                        msecs_to_jiffies(p->numa_scan_period);
1955
1956                return;
1957        }
1958
1959        /*
1960         * Prepare to scale scan period relative to the current period.
1961         *       == NUMA_PERIOD_THRESHOLD scan period stays the same
1962         *       <  NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1963         *       >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1964         */
1965        period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1966        lr_ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1967        ps_ratio = (private * NUMA_PERIOD_SLOTS) / (private + shared);
1968
1969        if (ps_ratio >= NUMA_PERIOD_THRESHOLD) {
1970                /*
1971                 * Most memory accesses are local. There is no need to
1972                 * do fast NUMA scanning, since memory is already local.
1973                 */
1974                int slot = ps_ratio - NUMA_PERIOD_THRESHOLD;
1975                if (!slot)
1976                        slot = 1;
1977                diff = slot * period_slot;
1978        } else if (lr_ratio >= NUMA_PERIOD_THRESHOLD) {
1979                /*
1980                 * Most memory accesses are shared with other tasks.
1981                 * There is no point in continuing fast NUMA scanning,
1982                 * since other tasks may just move the memory elsewhere.
1983                 */
1984                int slot = lr_ratio - NUMA_PERIOD_THRESHOLD;
1985                if (!slot)
1986                        slot = 1;
1987                diff = slot * period_slot;
1988        } else {
1989                /*
1990                 * Private memory faults exceed (SLOTS-THRESHOLD)/SLOTS,
1991                 * yet they are not on the local NUMA node. Speed up
1992                 * NUMA scanning to get the memory moved over.
1993                 */
1994                int ratio = max(lr_ratio, ps_ratio);
1995                diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1996        }
1997
1998        p->numa_scan_period = clamp(p->numa_scan_period + diff,
1999                        task_scan_min(p), task_scan_max(p));
2000        memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2001}
2002
2003/*
2004 * Get the fraction of time the task has been running since the last
2005 * NUMA placement cycle. The scheduler keeps similar statistics, but
2006 * decays those on a 32ms period, which is orders of magnitude off
2007 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
2008 * stats only if the task is so new there are no NUMA statistics yet.
2009 */
2010static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
2011{
2012        u64 runtime, delta, now;
2013        /* Use the start of this time slice to avoid calculations. */
2014        now = p->se.exec_start;
2015        runtime = p->se.sum_exec_runtime;
2016
2017        if (p->last_task_numa_placement) {
2018                delta = runtime - p->last_sum_exec_runtime;
2019                *period = now - p->last_task_numa_placement;
2020        } else {
2021                delta = p->se.avg.load_sum;
2022                *period = LOAD_AVG_MAX;
2023        }
2024
2025        p->last_sum_exec_runtime = runtime;
2026        p->last_task_numa_placement = now;
2027
2028        return delta;
2029}
2030
2031/*
2032 * Determine the preferred nid for a task in a numa_group. This needs to
2033 * be done in a way that produces consistent results with group_weight,
2034 * otherwise workloads might not converge.
2035 */
2036static int preferred_group_nid(struct task_struct *p, int nid)
2037{
2038        nodemask_t nodes;
2039        int dist;
2040
2041        /* Direct connections between all NUMA nodes. */
2042        if (sched_numa_topology_type == NUMA_DIRECT)
2043                return nid;
2044
2045        /*
2046         * On a system with glueless mesh NUMA topology, group_weight
2047         * scores nodes according to the number of NUMA hinting faults on
2048         * both the node itself, and on nearby nodes.
2049         */
2050        if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
2051                unsigned long score, max_score = 0;
2052                int node, max_node = nid;
2053
2054                dist = sched_max_numa_distance;
2055
2056                for_each_online_node(node) {
2057                        score = group_weight(p, node, dist);
2058                        if (score > max_score) {
2059                                max_score = score;
2060                                max_node = node;
2061                        }
2062                }
2063                return max_node;
2064        }
2065
2066        /*
2067         * Finding the preferred nid in a system with NUMA backplane
2068         * interconnect topology is more involved. The goal is to locate
2069         * tasks from numa_groups near each other in the system, and
2070         * untangle workloads from different sides of the system. This requires
2071         * searching down the hierarchy of node groups, recursively searching
2072         * inside the highest scoring group of nodes. The nodemask tricks
2073         * keep the complexity of the search down.
2074         */
2075        nodes = node_online_map;
2076        for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
2077                unsigned long max_faults = 0;
2078                nodemask_t max_group = NODE_MASK_NONE;
2079                int a, b;
2080
2081                /* Are there nodes at this distance from each other? */
2082                if (!find_numa_distance(dist))
2083                        continue;
2084
2085                for_each_node_mask(a, nodes) {
2086                        unsigned long faults = 0;
2087                        nodemask_t this_group;
2088                        nodes_clear(this_group);
2089
2090                        /* Sum group's NUMA faults; includes a==b case. */
2091                        for_each_node_mask(b, nodes) {
2092                                if (node_distance(a, b) < dist) {
2093                                        faults += group_faults(p, b);
2094                                        node_set(b, this_group);
2095                                        node_clear(b, nodes);
2096                                }
2097                        }
2098
2099                        /* Remember the top group. */
2100                        if (faults > max_faults) {
2101                                max_faults = faults;
2102                                max_group = this_group;
2103                                /*
2104                                 * subtle: at the smallest distance there is
2105                                 * just one node left in each "group", the
2106                                 * winner is the preferred nid.
2107                                 */
2108                                nid = a;
2109                        }
2110                }
2111                /* Next round, evaluate the nodes within max_group. */
2112                if (!max_faults)
2113                        break;
2114                nodes = max_group;
2115        }
2116        return nid;
2117}
2118
2119static void task_numa_placement(struct task_struct *p)
2120{
2121        int seq, nid, max_nid = -1;
2122        unsigned long max_faults = 0;
2123        unsigned long fault_types[2] = { 0, 0 };
2124        unsigned long total_faults;
2125        u64 runtime, period;
2126        spinlock_t *group_lock = NULL;
2127
2128        /*
2129         * The p->mm->numa_scan_seq field gets updated without
2130         * exclusive access. Use READ_ONCE() here to ensure
2131         * that the field is read in a single access:
2132         */
2133        seq = READ_ONCE(p->mm->numa_scan_seq);
2134        if (p->numa_scan_seq == seq)
2135                return;
2136        p->numa_scan_seq = seq;
2137        p->numa_scan_period_max = task_scan_max(p);
2138
2139        total_faults = p->numa_faults_locality[0] +
2140                       p->numa_faults_locality[1];
2141        runtime = numa_get_avg_runtime(p, &period);
2142
2143        /* If the task is part of a group prevent parallel updates to group stats */
2144        if (p->numa_group) {
2145                group_lock = &p->numa_group->lock;
2146                spin_lock_irq(group_lock);
2147        }
2148
2149        /* Find the node with the highest number of faults */
2150        for_each_online_node(nid) {
2151                /* Keep track of the offsets in numa_faults array */
2152                int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
2153                unsigned long faults = 0, group_faults = 0;
2154                int priv;
2155
2156                for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
2157                        long diff, f_diff, f_weight;
2158
2159                        mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2160                        membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2161                        cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2162                        cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
2163
2164                        /* Decay existing window, copy faults since last scan */
2165                        diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2166                        fault_types[priv] += p->numa_faults[membuf_idx];
2167                        p->numa_faults[membuf_idx] = 0;
2168
2169                        /*
2170                         * Normalize the faults_from, so all tasks in a group
2171                         * count according to CPU use, instead of by the raw
2172                         * number of faults. Tasks with little runtime have
2173                         * little over-all impact on throughput, and thus their
2174                         * faults are less important.
2175                         */
2176                        f_weight = div64_u64(runtime << 16, period + 1);
2177                        f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
2178                                   (total_faults + 1);
2179                        f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2180                        p->numa_faults[cpubuf_idx] = 0;
2181
2182                        p->numa_faults[mem_idx] += diff;
2183                        p->numa_faults[cpu_idx] += f_diff;
2184                        faults += p->numa_faults[mem_idx];
2185                        p->total_numa_faults += diff;
2186                        if (p->numa_group) {
2187                                /*
2188                                 * safe because we can only change our own group
2189                                 *
2190                                 * mem_idx represents the offset for a given
2191                                 * nid and priv in a specific region because it
2192                                 * is at the beginning of the numa_faults array.
2193                                 */
2194                                p->numa_group->faults[mem_idx] += diff;
2195                                p->numa_group->faults_cpu[mem_idx] += f_diff;
2196                                p->numa_group->total_faults += diff;
2197                                group_faults += p->numa_group->faults[mem_idx];
2198                        }
2199                }
2200
2201                if (!p->numa_group) {
2202                        if (faults > max_faults) {
2203                                max_faults = faults;
2204                                max_nid = nid;
2205                        }
2206                } else if (group_faults > max_faults) {
2207                        max_faults = group_faults;
2208                        max_nid = nid;
2209                }
2210        }
2211
2212        if (p->numa_group) {
2213                numa_group_count_active_nodes(p->numa_group);
2214                spin_unlock_irq(group_lock);
2215                max_nid = preferred_group_nid(p, max_nid);
2216        }
2217
2218        if (max_faults) {
2219                /* Set the new preferred node */
2220                if (max_nid != p->numa_preferred_nid)
2221                        sched_setnuma(p, max_nid);
2222        }
2223
2224        update_task_scan_period(p, fault_types[0], fault_types[1]);
2225}
2226
2227static inline int get_numa_group(struct numa_group *grp)
2228{
2229        return atomic_inc_not_zero(&grp->refcount);
2230}
2231
2232static inline void put_numa_group(struct numa_group *grp)
2233{
2234        if (atomic_dec_and_test(&grp->refcount))
2235                kfree_rcu(grp, rcu);
2236}
2237
2238static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2239                        int *priv)
2240{
2241        struct numa_group *grp, *my_grp;
2242        struct task_struct *tsk;
2243        bool join = false;
2244        int cpu = cpupid_to_cpu(cpupid);
2245        int i;
2246
2247        if (unlikely(!p->numa_group)) {
2248                unsigned int size = sizeof(struct numa_group) +
2249                                    4*nr_node_ids*sizeof(unsigned long);
2250
2251                grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2252                if (!grp)
2253                        return;
2254
2255                atomic_set(&grp->refcount, 1);
2256                grp->active_nodes = 1;
2257                grp->max_faults_cpu = 0;
2258                spin_lock_init(&grp->lock);
2259                grp->gid = p->pid;
2260                /* Second half of the array tracks nids where faults happen */
2261                grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2262                                                nr_node_ids;
2263
2264                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2265                        grp->faults[i] = p->numa_faults[i];
2266
2267                grp->total_faults = p->total_numa_faults;
2268
2269                grp->nr_tasks++;
2270                rcu_assign_pointer(p->numa_group, grp);
2271        }
2272
2273        rcu_read_lock();
2274        tsk = READ_ONCE(cpu_rq(cpu)->curr);
2275
2276        if (!cpupid_match_pid(tsk, cpupid))
2277                goto no_join;
2278
2279        grp = rcu_dereference(tsk->numa_group);
2280        if (!grp)
2281                goto no_join;
2282
2283        my_grp = p->numa_group;
2284        if (grp == my_grp)
2285                goto no_join;
2286
2287        /*
2288         * Only join the other group if its bigger; if we're the bigger group,
2289         * the other task will join us.
2290         */
2291        if (my_grp->nr_tasks > grp->nr_tasks)
2292                goto no_join;
2293
2294        /*
2295         * Tie-break on the grp address.
2296         */
2297        if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
2298                goto no_join;
2299
2300        /* Always join threads in the same process. */
2301        if (tsk->mm == current->mm)
2302                join = true;
2303
2304        /* Simple filter to avoid false positives due to PID collisions */
2305        if (flags & TNF_SHARED)
2306                join = true;
2307
2308        /* Update priv based on whether false sharing was detected */
2309        *priv = !join;
2310
2311        if (join && !get_numa_group(grp))
2312                goto no_join;
2313
2314        rcu_read_unlock();
2315
2316        if (!join)
2317                return;
2318
2319        BUG_ON(irqs_disabled());
2320        double_lock_irq(&my_grp->lock, &grp->lock);
2321
2322        for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
2323                my_grp->faults[i] -= p->numa_faults[i];
2324                grp->faults[i] += p->numa_faults[i];
2325        }
2326        my_grp->total_faults -= p->total_numa_faults;
2327        grp->total_faults += p->total_numa_faults;
2328
2329        my_grp->nr_tasks--;
2330        grp->nr_tasks++;
2331
2332        spin_unlock(&my_grp->lock);
2333        spin_unlock_irq(&grp->lock);
2334
2335        rcu_assign_pointer(p->numa_group, grp);
2336
2337        put_numa_group(my_grp);
2338        return;
2339
2340no_join:
2341        rcu_read_unlock();
2342        return;
2343}
2344
2345void task_numa_free(struct task_struct *p)
2346{
2347        struct numa_group *grp = p->numa_group;
2348        void *numa_faults = p->numa_faults;
2349        unsigned long flags;
2350        int i;
2351
2352        if (grp) {
2353                spin_lock_irqsave(&grp->lock, flags);
2354                for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
2355                        grp->faults[i] -= p->numa_faults[i];
2356                grp->total_faults -= p->total_numa_faults;
2357
2358                grp->nr_tasks--;
2359                spin_unlock_irqrestore(&grp->lock, flags);
2360                RCU_INIT_POINTER(p->numa_group, NULL);
2361                put_numa_group(grp);
2362        }
2363
2364        p->numa_faults = NULL;
2365        kfree(numa_faults);
2366}
2367
2368/*
2369 * Got a PROT_NONE fault for a page on @node.
2370 */
2371void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
2372{
2373        struct task_struct *p = current;
2374        bool migrated = flags & TNF_MIGRATED;
2375        int cpu_node = task_node(current);
2376        int local = !!(flags & TNF_FAULT_LOCAL);
2377        struct numa_group *ng;
2378        int priv;
2379
2380        if (!static_branch_likely(&sched_numa_balancing))
2381                return;
2382
2383        /* for example, ksmd faulting in a user's mm */
2384        if (!p->mm)
2385                return;
2386
2387        /* Allocate buffer to track faults on a per-node basis */
2388        if (unlikely(!p->numa_faults)) {
2389                int size = sizeof(*p->numa_faults) *
2390                           NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
2391
2392                p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2393                if (!p->numa_faults)
2394                        return;
2395
2396                p->total_numa_faults = 0;
2397                memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
2398        }
2399
2400        /*
2401         * First accesses are treated as private, otherwise consider accesses
2402         * to be private if the accessing pid has not changed
2403         */
2404        if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2405                priv = 1;
2406        } else {
2407                priv = cpupid_match_pid(p, last_cpupid);
2408                if (!priv && !(flags & TNF_NO_GROUP))
2409                        task_numa_group(p, last_cpupid, flags, &priv);
2410        }
2411
2412        /*
2413         * If a workload spans multiple NUMA nodes, a shared fault that
2414         * occurs wholly within the set of nodes that the workload is
2415         * actively using should be counted as local. This allows the
2416         * scan rate to slow down when a workload has settled down.
2417         */
2418        ng = p->numa_group;
2419        if (!priv && !local && ng && ng->active_nodes > 1 &&
2420                                numa_is_active_node(cpu_node, ng) &&
2421                                numa_is_active_node(mem_node, ng))
2422                local = 1;
2423
2424        /*
2425         * Retry task to preferred node migration periodically, in case it
2426         * case it previously failed, or the scheduler moved us.
2427         */
2428        if (time_after(jiffies, p->numa_migrate_retry)) {
2429                task_numa_placement(p);
2430                numa_migrate_preferred(p);
2431        }
2432
2433        if (migrated)
2434                p->numa_pages_migrated += pages;
2435        if (flags & TNF_MIGRATE_FAIL)
2436                p->numa_faults_locality[2] += pages;
2437
2438        p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2439        p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
2440        p->numa_faults_locality[local] += pages;
2441}
2442
2443static void reset_ptenuma_scan(struct task_struct *p)
2444{
2445        /*
2446         * We only did a read acquisition of the mmap sem, so
2447         * p->mm->numa_scan_seq is written to without exclusive access
2448         * and the update is not guaranteed to be atomic. That's not
2449         * much of an issue though, since this is just used for
2450         * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2451         * expensive, to avoid any form of compiler optimizations:
2452         */
2453        WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
2454        p->mm->numa_scan_offset = 0;
2455}
2456
2457/*
2458 * The expensive part of numa migration is done from task_work context.
2459 * Triggered from task_tick_numa().
2460 */
2461void task_numa_work(struct callback_head *work)
2462{
2463        unsigned long migrate, next_scan, now = jiffies;
2464        struct task_struct *p = current;
2465        struct mm_struct *mm = p->mm;
2466        u64 runtime = p->se.sum_exec_runtime;
2467        struct vm_area_struct *vma;
2468        unsigned long start, end;
2469        unsigned long nr_pte_updates = 0;
2470        long pages, virtpages;
2471
2472        SCHED_WARN_ON(p != container_of(work, struct task_struct, numa_work));
2473
2474        work->next = work; /* protect against double add */
2475        /*
2476         * Who cares about NUMA placement when they're dying.
2477         *
2478         * NOTE: make sure not to dereference p->mm before this check,
2479         * exit_task_work() happens _after_ exit_mm() so we could be called
2480         * without p->mm even though we still had it when we enqueued this
2481         * work.
2482         */
2483        if (p->flags & PF_EXITING)
2484                return;
2485
2486        if (!mm->numa_next_scan) {
2487                mm->numa_next_scan = now +
2488                        msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
2489        }
2490
2491        /*
2492         * Enforce maximal scan/migration frequency..
2493         */
2494        migrate = mm->numa_next_scan;
2495        if (time_before(now, migrate))
2496                return;
2497
2498        if (p->numa_scan_period == 0) {
2499                p->numa_scan_period_max = task_scan_max(p);
2500                p->numa_scan_period = task_scan_start(p);
2501        }
2502
2503        next_scan = now + msecs_to_jiffies(p->numa_scan_period);
2504        if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2505                return;
2506
2507        /*
2508         * Delay this task enough that another task of this mm will likely win
2509         * the next time around.
2510         */
2511        p->node_stamp += 2 * TICK_NSEC;
2512
2513        start = mm->numa_scan_offset;
2514        pages = sysctl_numa_balancing_scan_size;
2515        pages <<= 20 - PAGE_SHIFT; /* MB in pages */
2516        virtpages = pages * 8;     /* Scan up to this much virtual space */
2517        if (!pages)
2518                return;
2519
2520
2521        if (!down_read_trylock(&mm->mmap_sem))
2522                return;
2523        vma = find_vma(mm, start);
2524        if (!vma) {
2525                reset_ptenuma_scan(p);
2526                start = 0;
2527                vma = mm->mmap;
2528        }
2529        for (; vma; vma = vma->vm_next) {
2530                if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
2531                        is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
2532                        continue;
2533                }
2534
2535                /*
2536                 * Shared library pages mapped by multiple processes are not
2537                 * migrated as it is expected they are cache replicated. Avoid
2538                 * hinting faults in read-only file-backed mappings or the vdso
2539                 * as migrating the pages will be of marginal benefit.
2540                 */
2541                if (!vma->vm_mm ||
2542                    (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2543                        continue;
2544
2545                /*
2546                 * Skip inaccessible VMAs to avoid any confusion between
2547                 * PROT_NONE and NUMA hinting ptes
2548                 */
2549                if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2550                        continue;
2551
2552                do {
2553                        start = max(start, vma->vm_start);
2554                        end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2555                        end = min(end, vma->vm_end);
2556                        nr_pte_updates = change_prot_numa(vma, start, end);
2557
2558                        /*
2559                         * Try to scan sysctl_numa_balancing_size worth of
2560                         * hpages that have at least one present PTE that
2561                         * is not already pte-numa. If the VMA contains
2562                         * areas that are unused or already full of prot_numa
2563                         * PTEs, scan up to virtpages, to skip through those
2564                         * areas faster.
2565                         */
2566                        if (nr_pte_updates)
2567                                pages -= (end - start) >> PAGE_SHIFT;
2568                        virtpages -= (end - start) >> PAGE_SHIFT;
2569
2570                        start = end;
2571                        if (pages <= 0 || virtpages <= 0)
2572                                goto out;
2573
2574                        cond_resched();
2575                } while (end != vma->vm_end);
2576        }
2577
2578out:
2579        /*
2580         * It is possible to reach the end of the VMA list but the last few
2581         * VMAs are not guaranteed to the vma_migratable. If they are not, we
2582         * would find the !migratable VMA on the next scan but not reset the
2583         * scanner to the start so check it now.
2584         */
2585        if (vma)
2586                mm->numa_scan_offset = start;
2587        else
2588                reset_ptenuma_scan(p);
2589        up_read(&mm->mmap_sem);
2590
2591        /*
2592         * Make sure tasks use at least 32x as much time to run other code
2593         * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2594         * Usually update_task_scan_period slows down scanning enough; on an
2595         * overloaded system we need to limit overhead on a per task basis.
2596         */
2597        if (unlikely(p->se.sum_exec_runtime != runtime)) {
2598                u64 diff = p->se.sum_exec_runtime - runtime;
2599                p->node_stamp += 32 * diff;
2600        }
2601}
2602
2603/*
2604 * Drive the periodic memory faults..
2605 */
2606void task_tick_numa(struct rq *rq, struct task_struct *curr)
2607{
2608        struct callback_head *work = &curr->numa_work;
2609        u64 period, now;
2610
2611        /*
2612         * We don't care about NUMA placement if we don't have memory.
2613         */
2614        if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2615                return;
2616
2617        /*
2618         * Using runtime rather than walltime has the dual advantage that
2619         * we (mostly) drive the selection from busy threads and that the
2620         * task needs to have done some actual work before we bother with
2621         * NUMA placement.
2622         */
2623        now = curr->se.sum_exec_runtime;
2624        period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2625
2626        if (now > curr->node_stamp + period) {
2627                if (!curr->node_stamp)
2628                        curr->numa_scan_period = task_scan_start(curr);
2629                curr->node_stamp += period;
2630
2631                if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2632                        init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2633                        task_work_add(curr, work, true);
2634                }
2635        }
2636}
2637
2638static void update_scan_period(struct task_struct *p, int new_cpu)
2639{
2640        int src_nid = cpu_to_node(task_cpu(p));
2641        int dst_nid = cpu_to_node(new_cpu);
2642
2643        if (!static_branch_likely(&sched_numa_balancing))
2644                return;
2645
2646        if (!p->mm || !p->numa_faults || (p->flags & PF_EXITING))
2647                return;
2648
2649        if (src_nid == dst_nid)
2650                return;
2651
2652        /*
2653         * Allow resets if faults have been trapped before one scan
2654         * has completed. This is most likely due to a new task that
2655         * is pulled cross-node due to wakeups or load balancing.
2656         */
2657        if (p->numa_scan_seq) {
2658                /*
2659                 * Avoid scan adjustments if moving to the preferred
2660                 * node or if the task was not previously running on
2661                 * the preferred node.
2662                 */
2663                if (dst_nid == p->numa_preferred_nid ||
2664                    (p->numa_preferred_nid != -1 && src_nid != p->numa_preferred_nid))
2665                        return;
2666        }
2667
2668        p->numa_scan_period = task_scan_start(p);
2669}
2670
2671#else
2672static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2673{
2674}
2675
2676static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2677{
2678}
2679
2680static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2681{
2682}
2683
2684static inline void update_scan_period(struct task_struct *p, int new_cpu)
2685{
2686}
2687
2688#endif /* CONFIG_NUMA_BALANCING */
2689
2690static void
2691account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2692{
2693        update_load_add(&cfs_rq->load, se->load.weight);
2694        if (!parent_entity(se))
2695                update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
2696#ifdef CONFIG_SMP
2697        if (entity_is_task(se)) {
2698                struct rq *rq = rq_of(cfs_rq);
2699
2700                account_numa_enqueue(rq, task_of(se));
2701                list_add(&se->group_node, &rq->cfs_tasks);
2702        }
2703#endif
2704        cfs_rq->nr_running++;
2705}
2706
2707static void
2708account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2709{
2710        update_load_sub(&cfs_rq->load, se->load.weight);
2711        if (!parent_entity(se))
2712                update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
2713#ifdef CONFIG_SMP
2714        if (entity_is_task(se)) {
2715                account_numa_dequeue(rq_of(cfs_rq), task_of(se));
2716                list_del_init(&se->group_node);
2717        }
2718#endif
2719        cfs_rq->nr_running--;
2720}
2721
2722/*
2723 * Signed add and clamp on underflow.
2724 *
2725 * Explicitly do a load-store to ensure the intermediate value never hits
2726 * memory. This allows lockless observations without ever seeing the negative
2727 * values.
2728 */
2729#define add_positive(_ptr, _val) do {                           \
2730        typeof(_ptr) ptr = (_ptr);                              \
2731        typeof(_val) val = (_val);                              \
2732        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2733                                                                \
2734        res = var + val;                                        \
2735                                                                \
2736        if (val < 0 && res > var)                               \
2737                res = 0;                                        \
2738                                                                \
2739        WRITE_ONCE(*ptr, res);                                  \
2740} while (0)
2741
2742/*
2743 * Unsigned subtract and clamp on underflow.
2744 *
2745 * Explicitly do a load-store to ensure the intermediate value never hits
2746 * memory. This allows lockless observations without ever seeing the negative
2747 * values.
2748 */
2749#define sub_positive(_ptr, _val) do {                           \
2750        typeof(_ptr) ptr = (_ptr);                              \
2751        typeof(*ptr) val = (_val);                              \
2752        typeof(*ptr) res, var = READ_ONCE(*ptr);                \
2753        res = var - val;                                        \
2754        if (res > var)                                          \
2755                res = 0;                                        \
2756        WRITE_ONCE(*ptr, res);                                  \
2757} while (0)
2758
2759#ifdef CONFIG_SMP
2760static inline void
2761enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2762{
2763        cfs_rq->runnable_weight += se->runnable_weight;
2764
2765        cfs_rq->avg.runnable_load_avg += se->avg.runnable_load_avg;
2766        cfs_rq->avg.runnable_load_sum += se_runnable(se) * se->avg.runnable_load_sum;
2767}
2768
2769static inline void
2770dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2771{
2772        cfs_rq->runnable_weight -= se->runnable_weight;
2773
2774        sub_positive(&cfs_rq->avg.runnable_load_avg, se->avg.runnable_load_avg);
2775        sub_positive(&cfs_rq->avg.runnable_load_sum,
2776                     se_runnable(se) * se->avg.runnable_load_sum);
2777}
2778
2779static inline void
2780enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2781{
2782        cfs_rq->avg.load_avg += se->avg.load_avg;
2783        cfs_rq->avg.load_sum += se_weight(se) * se->avg.load_sum;
2784}
2785
2786static inline void
2787dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
2788{
2789        sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
2790        sub_positive(&cfs_rq->avg.load_sum, se_weight(se) * se->avg.load_sum);
2791}
2792#else
2793static inline void
2794enqueue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2795static inline void
2796dequeue_runnable_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2797static inline void
2798enqueue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2799static inline void
2800dequeue_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) { }
2801#endif
2802
2803static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2804                            unsigned long weight, unsigned long runnable)
2805{
2806        if (se->on_rq) {
2807                /* commit outstanding execution time */
2808                if (cfs_rq->curr == se)
2809                        update_curr(cfs_rq);
2810                account_entity_dequeue(cfs_rq, se);
2811                dequeue_runnable_load_avg(cfs_rq, se);
2812        }
2813        dequeue_load_avg(cfs_rq, se);
2814
2815        se->runnable_weight = runnable;
2816        update_load_set(&se->load, weight);
2817
2818#ifdef CONFIG_SMP
2819        do {
2820                u32 divider = LOAD_AVG_MAX - 1024 + se->avg.period_contrib;
2821
2822                se->avg.load_avg = div_u64(se_weight(se) * se->avg.load_sum, divider);
2823                se->avg.runnable_load_avg =
2824                        div_u64(se_runnable(se) * se->avg.runnable_load_sum, divider);
2825        } while (0);
2826#endif
2827
2828        enqueue_load_avg(cfs_rq, se);
2829        if (se->on_rq) {
2830                account_entity_enqueue(cfs_rq, se);
2831                enqueue_runnable_load_avg(cfs_rq, se);
2832        }
2833}
2834
2835void reweight_task(struct task_struct *p, int prio)
2836{
2837        struct sched_entity *se = &p->se;
2838        struct cfs_rq *cfs_rq = cfs_rq_of(se);
2839        struct load_weight *load = &se->load;
2840        unsigned long weight = scale_load(sched_prio_to_weight[prio]);
2841
2842        reweight_entity(cfs_rq, se, weight, weight);
2843        load->inv_weight = sched_prio_to_wmult[prio];
2844}
2845
2846#ifdef CONFIG_FAIR_GROUP_SCHED
2847#ifdef CONFIG_SMP
2848/*
2849 * All this does is approximate the hierarchical proportion which includes that
2850 * global sum we all love to hate.
2851 *
2852 * That is, the weight of a group entity, is the proportional share of the
2853 * group weight based on the group runqueue weights. That is:
2854 *
2855 *                     tg->weight * grq->load.weight
2856 *   ge->load.weight = -----------------------------               (1)
2857 *                        \Sum grq->load.weight
2858 *
2859 * Now, because computing that sum is prohibitively expensive to compute (been
2860 * there, done that) we approximate it with this average stuff. The average
2861 * moves slower and therefore the approximation is cheaper and more stable.
2862 *
2863 * So instead of the above, we substitute:
2864 *
2865 *   grq->load.weight -> grq->avg.load_avg                         (2)
2866 *
2867 * which yields the following:
2868 *
2869 *                     tg->weight * grq->avg.load_avg
2870 *   ge->load.weight = ------------------------------              (3)
2871 *                              tg->load_avg
2872 *
2873 * Where: tg->load_avg ~= \Sum grq->avg.load_avg
2874 *
2875 * That is shares_avg, and it is right (given the approximation (2)).
2876 *
2877 * The problem with it is that because the average is slow -- it was designed
2878 * to be exactly that of course -- this leads to transients in boundary
2879 * conditions. In specific, the case where the group was idle and we start the
2880 * one task. It takes time for our CPU's grq->avg.load_avg to build up,
2881 * yielding bad latency etc..
2882 *
2883 * Now, in that special case (1) reduces to:
2884 *
2885 *                     tg->weight * grq->load.weight
2886 *   ge->load.weight = ----------------------------- = tg->weight   (4)
2887 *                          grp->load.weight
2888 *
2889 * That is, the sum collapses because all other CPUs are idle; the UP scenario.
2890 *
2891 * So what we do is modify our approximation (3) to approach (4) in the (near)
2892 * UP case, like:
2893 *
2894 *   ge->load.weight =
2895 *
2896 *              tg->weight * grq->load.weight
2897 *     ---------------------------------------------------         (5)
2898 *     tg->load_avg - grq->avg.load_avg + grq->load.weight
2899 *
2900 * But because grq->load.weight can drop to 0, resulting in a divide by zero,
2901 * we need to use grq->avg.load_avg as its lower bound, which then gives:
2902 *
2903 *
2904 *                     tg->weight * grq->load.weight
2905 *   ge->load.weight = -----------------------------               (6)
2906 *                              tg_load_avg'
2907 *
2908 * Where:
2909 *
2910 *   tg_load_avg' = tg->load_avg - grq->avg.load_avg +
2911 *                  max(grq->load.weight, grq->avg.load_avg)
2912 *
2913 * And that is shares_weight and is icky. In the (near) UP case it approaches
2914 * (4) while in the normal case it approaches (3). It consistently
2915 * overestimates the ge->load.weight and therefore:
2916 *
2917 *   \Sum ge->load.weight >= tg->weight
2918 *
2919 * hence icky!
2920 */
2921static long calc_group_shares(struct cfs_rq *cfs_rq)
2922{
2923        long tg_weight, tg_shares, load, shares;
2924        struct task_group *tg = cfs_rq->tg;
2925
2926        tg_shares = READ_ONCE(tg->shares);
2927
2928        load = max(scale_load_down(cfs_rq->load.weight), cfs_rq->avg.load_avg);
2929
2930        tg_weight = atomic_long_read(&tg->load_avg);
2931
2932        /* Ensure tg_weight >= load */
2933        tg_weight -= cfs_rq->tg_load_avg_contrib;
2934        tg_weight += load;
2935
2936        shares = (tg_shares * load);
2937        if (tg_weight)
2938                shares /= tg_weight;
2939
2940        /*
2941         * MIN_SHARES has to be unscaled here to support per-CPU partitioning
2942         * of a group with small tg->shares value. It is a floor value which is
2943         * assigned as a minimum load.weight to the sched_entity representing
2944         * the group on a CPU.
2945         *
2946         * E.g. on 64-bit for a group with tg->shares of scale_load(15)=15*1024
2947         * on an 8-core system with 8 tasks each runnable on one CPU shares has
2948         * to be 15*1024*1/8=1920 instead of scale_load(MIN_SHARES)=2*1024. In
2949         * case no task is runnable on a CPU MIN_SHARES=2 should be returned
2950         * instead of 0.
2951         */
2952        return clamp_t(long, shares, MIN_SHARES, tg_shares);
2953}
2954
2955/*
2956 * This calculates the effective runnable weight for a group entity based on
2957 * the group entity weight calculated above.
2958 *
2959 * Because of the above approximation (2), our group entity weight is
2960 * an load_avg based ratio (3). This means that it includes blocked load and
2961 * does not represent the runnable weight.
2962 *
2963 * Approximate the group entity's runnable weight per ratio from the group
2964 * runqueue:
2965 *
2966 *                                           grq->avg.runnable_load_avg
2967 *   ge->runnable_weight = ge->load.weight * -------------------------- (7)
2968 *                                               grq->avg.load_avg
2969 *
2970 * However, analogous to above, since the avg numbers are slow, this leads to
2971 * transients in the from-idle case. Instead we use:
2972 *
2973 *   ge->runnable_weight = ge->load.weight *
2974 *
2975 *              max(grq->avg.runnable_load_avg, grq->runnable_weight)
2976 *              -----------------------------------------------------   (8)
2977 *                    max(grq->avg.load_avg, grq->load.weight)
2978 *
2979 * Where these max() serve both to use the 'instant' values to fix the slow
2980 * from-idle and avoid the /0 on to-idle, similar to (6).
2981 */
2982static long calc_group_runnable(struct cfs_rq *cfs_rq, long shares)
2983{
2984        long runnable, load_avg;
2985
2986        load_avg = max(cfs_rq->avg.load_avg,
2987                       scale_load_down(cfs_rq->load.weight));
2988
2989        runnable = max(cfs_rq->avg.runnable_load_avg,
2990                       scale_load_down(cfs_rq->runnable_weight));
2991
2992        runnable *= shares;
2993        if (load_avg)
2994                runnable /= load_avg;
2995
2996        return clamp_t(long, runnable, MIN_SHARES, shares);
2997}
2998#endif /* CONFIG_SMP */
2999
3000static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
3001
3002/*
3003 * Recomputes the group entity based on the current state of its group
3004 * runqueue.
3005 */
3006static void update_cfs_group(struct sched_entity *se)
3007{
3008        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3009        long shares, runnable;
3010
3011        if (!gcfs_rq)
3012                return;
3013
3014        if (throttled_hierarchy(gcfs_rq))
3015                return;
3016
3017#ifndef CONFIG_SMP
3018        runnable = shares = READ_ONCE(gcfs_rq->tg->shares);
3019
3020        if (likely(se->load.weight == shares))
3021                return;
3022#else
3023        shares   = calc_group_shares(gcfs_rq);
3024        runnable = calc_group_runnable(gcfs_rq, shares);
3025#endif
3026
3027        reweight_entity(cfs_rq_of(se), se, shares, runnable);
3028}
3029
3030#else /* CONFIG_FAIR_GROUP_SCHED */
3031static inline void update_cfs_group(struct sched_entity *se)
3032{
3033}
3034#endif /* CONFIG_FAIR_GROUP_SCHED */
3035
3036static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq, int flags)
3037{
3038        struct rq *rq = rq_of(cfs_rq);
3039
3040        if (&rq->cfs == cfs_rq || (flags & SCHED_CPUFREQ_MIGRATION)) {
3041                /*
3042                 * There are a few boundary cases this might miss but it should
3043                 * get called often enough that that should (hopefully) not be
3044                 * a real problem.
3045                 *
3046                 * It will not get called when we go idle, because the idle
3047                 * thread is a different class (!fair), nor will the utilization
3048                 * number include things like RT tasks.
3049                 *
3050                 * As is, the util number is not freq-invariant (we'd have to
3051                 * implement arch_scale_freq_capacity() for that).
3052                 *
3053                 * See cpu_util().
3054                 */
3055                cpufreq_update_util(rq, flags);
3056        }
3057}
3058
3059#ifdef CONFIG_SMP
3060#ifdef CONFIG_FAIR_GROUP_SCHED
3061/**
3062 * update_tg_load_avg - update the tg's load avg
3063 * @cfs_rq: the cfs_rq whose avg changed
3064 * @force: update regardless of how small the difference
3065 *
3066 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
3067 * However, because tg->load_avg is a global value there are performance
3068 * considerations.
3069 *
3070 * In order to avoid having to look at the other cfs_rq's, we use a
3071 * differential update where we store the last value we propagated. This in
3072 * turn allows skipping updates if the differential is 'small'.
3073 *
3074 * Updating tg's load_avg is necessary before update_cfs_share().
3075 */
3076static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
3077{
3078        long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
3079
3080        /*
3081         * No need to update load_avg for root_task_group as it is not used.
3082         */
3083        if (cfs_rq->tg == &root_task_group)
3084                return;
3085
3086        if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
3087                atomic_long_add(delta, &cfs_rq->tg->load_avg);
3088                cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
3089        }
3090}
3091
3092/*
3093 * Called within set_task_rq() right before setting a task's CPU. The
3094 * caller only guarantees p->pi_lock is held; no other assumptions,
3095 * including the state of rq->lock, should be made.
3096 */
3097void set_task_rq_fair(struct sched_entity *se,
3098                      struct cfs_rq *prev, struct cfs_rq *next)
3099{
3100        u64 p_last_update_time;
3101        u64 n_last_update_time;
3102
3103        if (!sched_feat(ATTACH_AGE_LOAD))
3104                return;
3105
3106        /*
3107         * We are supposed to update the task to "current" time, then its up to
3108         * date and ready to go to new CPU/cfs_rq. But we have difficulty in
3109         * getting what current time is, so simply throw away the out-of-date
3110         * time. This will result in the wakee task is less decayed, but giving
3111         * the wakee more load sounds not bad.
3112         */
3113        if (!(se->avg.last_update_time && prev))
3114                return;
3115
3116#ifndef CONFIG_64BIT
3117        {
3118                u64 p_last_update_time_copy;
3119                u64 n_last_update_time_copy;
3120
3121                do {
3122                        p_last_update_time_copy = prev->load_last_update_time_copy;
3123                        n_last_update_time_copy = next->load_last_update_time_copy;
3124
3125                        smp_rmb();
3126
3127                        p_last_update_time = prev->avg.last_update_time;
3128                        n_last_update_time = next->avg.last_update_time;
3129
3130                } while (p_last_update_time != p_last_update_time_copy ||
3131                         n_last_update_time != n_last_update_time_copy);
3132        }
3133#else
3134        p_last_update_time = prev->avg.last_update_time;
3135        n_last_update_time = next->avg.last_update_time;
3136#endif
3137        __update_load_avg_blocked_se(p_last_update_time, cpu_of(rq_of(prev)), se);
3138        se->avg.last_update_time = n_last_update_time;
3139}
3140
3141
3142/*
3143 * When on migration a sched_entity joins/leaves the PELT hierarchy, we need to
3144 * propagate its contribution. The key to this propagation is the invariant
3145 * that for each group:
3146 *
3147 *   ge->avg == grq->avg                                                (1)
3148 *
3149 * _IFF_ we look at the pure running and runnable sums. Because they
3150 * represent the very same entity, just at different points in the hierarchy.
3151 *
3152 * Per the above update_tg_cfs_util() is trivial and simply copies the running
3153 * sum over (but still wrong, because the group entity and group rq do not have
3154 * their PELT windows aligned).
3155 *
3156 * However, update_tg_cfs_runnable() is more complex. So we have:
3157 *
3158 *   ge->avg.load_avg = ge->load.weight * ge->avg.runnable_avg          (2)
3159 *
3160 * And since, like util, the runnable part should be directly transferable,
3161 * the following would _appear_ to be the straight forward approach:
3162 *
3163 *   grq->avg.load_avg = grq->load.weight * grq->avg.runnable_avg       (3)
3164 *
3165 * And per (1) we have:
3166 *
3167 *   ge->avg.runnable_avg == grq->avg.runnable_avg
3168 *
3169 * Which gives:
3170 *
3171 *                      ge->load.weight * grq->avg.load_avg
3172 *   ge->avg.load_avg = -----------------------------------             (4)
3173 *                               grq->load.weight
3174 *
3175 * Except that is wrong!
3176 *
3177 * Because while for entities historical weight is not important and we
3178 * really only care about our future and therefore can consider a pure
3179 * runnable sum, runqueues can NOT do this.
3180 *
3181 * We specifically want runqueues to have a load_avg that includes
3182 * historical weights. Those represent the blocked load, the load we expect
3183 * to (shortly) return to us. This only works by keeping the weights as
3184 * integral part of the sum. We therefore cannot decompose as per (3).
3185 *
3186 * Another reason this doesn't work is that runnable isn't a 0-sum entity.
3187 * Imagine a rq with 2 tasks that each are runnable 2/3 of the time. Then the
3188 * rq itself is runnable anywhere between 2/3 and 1 depending on how the
3189 * runnable section of these tasks overlap (or not). If they were to perfectly
3190 * align the rq as a whole would be runnable 2/3 of the time. If however we
3191 * always have at least 1 runnable task, the rq as a whole is always runnable.
3192 *
3193 * So we'll have to approximate.. :/
3194 *
3195 * Given the constraint:
3196 *
3197 *   ge->avg.running_sum <= ge->avg.runnable_sum <= LOAD_AVG_MAX
3198 *
3199 * We can construct a rule that adds runnable to a rq by assuming minimal
3200 * overlap.
3201 *
3202 * On removal, we'll assume each task is equally runnable; which yields:
3203 *
3204 *   grq->avg.runnable_sum = grq->avg.load_sum / grq->load.weight
3205 *
3206 * XXX: only do this for the part of runnable > running ?
3207 *
3208 */
3209
3210static inline void
3211update_tg_cfs_util(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3212{
3213        long delta = gcfs_rq->avg.util_avg - se->avg.util_avg;
3214
3215        /* Nothing to update */
3216        if (!delta)
3217                return;
3218
3219        /*
3220         * The relation between sum and avg is:
3221         *
3222         *   LOAD_AVG_MAX - 1024 + sa->period_contrib
3223         *
3224         * however, the PELT windows are not aligned between grq and gse.
3225         */
3226
3227        /* Set new sched_entity's utilization */
3228        se->avg.util_avg = gcfs_rq->avg.util_avg;
3229        se->avg.util_sum = se->avg.util_avg * LOAD_AVG_MAX;
3230
3231        /* Update parent cfs_rq utilization */
3232        add_positive(&cfs_rq->avg.util_avg, delta);
3233        cfs_rq->avg.util_sum = cfs_rq->avg.util_avg * LOAD_AVG_MAX;
3234}
3235
3236static inline void
3237update_tg_cfs_runnable(struct cfs_rq *cfs_rq, struct sched_entity *se, struct cfs_rq *gcfs_rq)
3238{
3239        long delta_avg, running_sum, runnable_sum = gcfs_rq->prop_runnable_sum;
3240        unsigned long runnable_load_avg, load_avg;
3241        u64 runnable_load_sum, load_sum = 0;
3242        s64 delta_sum;
3243
3244        if (!runnable_sum)
3245                return;
3246
3247        gcfs_rq->prop_runnable_sum = 0;
3248
3249        if (runnable_sum >= 0) {
3250                /*
3251                 * Add runnable; clip at LOAD_AVG_MAX. Reflects that until
3252                 * the CPU is saturated running == runnable.
3253                 */
3254                runnable_sum += se->avg.load_sum;
3255                runnable_sum = min(runnable_sum, (long)LOAD_AVG_MAX);
3256        } else {
3257                /*
3258                 * Estimate the new unweighted runnable_sum of the gcfs_rq by
3259                 * assuming all tasks are equally runnable.
3260                 */
3261                if (scale_load_down(gcfs_rq->load.weight)) {
3262                        load_sum = div_s64(gcfs_rq->avg.load_sum,
3263                                scale_load_down(gcfs_rq->load.weight));
3264                }
3265
3266                /* But make sure to not inflate se's runnable */
3267                runnable_sum = min(se->avg.load_sum, load_sum);
3268        }
3269
3270        /*
3271         * runnable_sum can't be lower than running_sum
3272         * As running sum is scale with CPU capacity wehreas the runnable sum
3273         * is not we rescale running_sum 1st
3274         */
3275        running_sum = se->avg.util_sum /
3276                arch_scale_cpu_capacity(NULL, cpu_of(rq_of(cfs_rq)));
3277        runnable_sum = max(runnable_sum, running_sum);
3278
3279        load_sum = (s64)se_weight(se) * runnable_sum;
3280        load_avg = div_s64(load_sum, LOAD_AVG_MAX);
3281
3282        delta_sum = load_sum - (s64)se_weight(se) * se->avg.load_sum;
3283        delta_avg = load_avg - se->avg.load_avg;
3284
3285        se->avg.load_sum = runnable_sum;
3286        se->avg.load_avg = load_avg;
3287        add_positive(&cfs_rq->avg.load_avg, delta_avg);
3288        add_positive(&cfs_rq->avg.load_sum, delta_sum);
3289
3290        runnable_load_sum = (s64)se_runnable(se) * runnable_sum;
3291        runnable_load_avg = div_s64(runnable_load_sum, LOAD_AVG_MAX);
3292        delta_sum = runnable_load_sum - se_weight(se) * se->avg.runnable_load_sum;
3293        delta_avg = runnable_load_avg - se->avg.runnable_load_avg;
3294
3295        se->avg.runnable_load_sum = runnable_sum;
3296        se->avg.runnable_load_avg = runnable_load_avg;
3297
3298        if (se->on_rq) {
3299                add_positive(&cfs_rq->avg.runnable_load_avg, delta_avg);
3300                add_positive(&cfs_rq->avg.runnable_load_sum, delta_sum);
3301        }
3302}
3303
3304static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum)
3305{
3306        cfs_rq->propagate = 1;
3307        cfs_rq->prop_runnable_sum += runnable_sum;
3308}
3309
3310/* Update task and its cfs_rq load average */
3311static inline int propagate_entity_load_avg(struct sched_entity *se)
3312{
3313        struct cfs_rq *cfs_rq, *gcfs_rq;
3314
3315        if (entity_is_task(se))
3316                return 0;
3317
3318        gcfs_rq = group_cfs_rq(se);
3319        if (!gcfs_rq->propagate)
3320                return 0;
3321
3322        gcfs_rq->propagate = 0;
3323
3324        cfs_rq = cfs_rq_of(se);
3325
3326        add_tg_cfs_propagate(cfs_rq, gcfs_rq->prop_runnable_sum);
3327
3328        update_tg_cfs_util(cfs_rq, se, gcfs_rq);
3329        update_tg_cfs_runnable(cfs_rq, se, gcfs_rq);
3330
3331        return 1;
3332}
3333
3334/*
3335 * Check if we need to update the load and the utilization of a blocked
3336 * group_entity:
3337 */
3338static inline bool skip_blocked_update(struct sched_entity *se)
3339{
3340        struct cfs_rq *gcfs_rq = group_cfs_rq(se);
3341
3342        /*
3343         * If sched_entity still have not zero load or utilization, we have to
3344         * decay it:
3345         */
3346        if (se->avg.load_avg || se->avg.util_avg)
3347                return false;
3348
3349        /*
3350         * If there is a pending propagation, we have to update the load and
3351         * the utilization of the sched_entity:
3352         */
3353        if (gcfs_rq->propagate)
3354                return false;
3355
3356        /*
3357         * Otherwise, the load and the utilization of the sched_entity is
3358         * already zero and there is no pending propagation, so it will be a
3359         * waste of time to try to decay it:
3360         */
3361        return true;
3362}
3363
3364#else /* CONFIG_FAIR_GROUP_SCHED */
3365
3366static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
3367
3368static inline int propagate_entity_load_avg(struct sched_entity *se)
3369{
3370        return 0;
3371}
3372
3373static inline void add_tg_cfs_propagate(struct cfs_rq *cfs_rq, long runnable_sum) {}
3374
3375#endif /* CONFIG_FAIR_GROUP_SCHED */
3376
3377/**
3378 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3379 * @now: current time, as per cfs_rq_clock_task()
3380 * @cfs_rq: cfs_rq to update
3381 *
3382 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3383 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3384 * post_init_entity_util_avg().
3385 *
3386 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3387 *
3388 * Returns true if the load decayed or we removed load.
3389 *
3390 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3391 * call update_tg_load_avg() when this function returns true.
3392 */
3393static inline int
3394update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq)
3395{
3396        unsigned long removed_load = 0, removed_util = 0, removed_runnable_sum = 0;
3397        struct sched_avg *sa = &cfs_rq->avg;
3398        int decayed = 0;
3399
3400        if (cfs_rq->removed.nr) {
3401                unsigned long r;
3402                u32 divider = LOAD_AVG_MAX - 1024 + sa->period_contrib;
3403
3404                raw_spin_lock(&cfs_rq->removed.lock);
3405                swap(cfs_rq->removed.util_avg, removed_util);
3406                swap(cfs_rq->removed.load_avg, removed_load);
3407                swap(cfs_rq->removed.runnable_sum, removed_runnable_sum);
3408                cfs_rq->removed.nr = 0;
3409                raw_spin_unlock(&cfs_rq->removed.lock);
3410
3411                r = removed_load;
3412                sub_positive(&sa->load_avg, r);
3413                sub_positive(&sa->load_sum, r * divider);
3414
3415                r = removed_util;
3416                sub_positive(&sa->util_avg, r);
3417                sub_positive(&sa->util_sum, r * divider);
3418
3419                add_tg_cfs_propagate(cfs_rq, -(long)removed_runnable_sum);
3420
3421                decayed = 1;
3422        }
3423
3424        decayed |= __update_load_avg_cfs_rq(now, cpu_of(rq_of(cfs_rq)), cfs_rq);
3425
3426#ifndef CONFIG_64BIT
3427        smp_wmb();
3428        cfs_rq->load_last_update_time_copy = sa->last_update_time;
3429#endif
3430
3431        if (decayed)
3432                cfs_rq_util_change(cfs_rq, 0);
3433
3434        return decayed;
3435}
3436
3437/**
3438 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3439 * @cfs_rq: cfs_rq to attach to
3440 * @se: sched_entity to attach
3441 * @flags: migration hints
3442 *
3443 * Must call update_cfs_rq_load_avg() before this, since we rely on
3444 * cfs_rq->avg.last_update_time being current.
3445 */
3446static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3447{
3448        u32 divider = LOAD_AVG_MAX - 1024 + cfs_rq->avg.period_contrib;
3449
3450        /*
3451         * When we attach the @se to the @cfs_rq, we must align the decay
3452         * window because without that, really weird and wonderful things can
3453         * happen.
3454         *
3455         * XXX illustrate
3456         */
3457        se->avg.last_update_time = cfs_rq->avg.last_update_time;
3458        se->avg.period_contrib = cfs_rq->avg.period_contrib;
3459
3460        /*
3461         * Hell(o) Nasty stuff.. we need to recompute _sum based on the new
3462         * period_contrib. This isn't strictly correct, but since we're
3463         * entirely outside of the PELT hierarchy, nobody cares if we truncate
3464         * _sum a little.
3465         */
3466        se->avg.util_sum = se->avg.util_avg * divider;
3467
3468        se->avg.load_sum = divider;
3469        if (se_weight(se)) {
3470                se->avg.load_sum =
3471                        div_u64(se->avg.load_avg * se->avg.load_sum, se_weight(se));
3472        }
3473
3474        se->avg.runnable_load_sum = se->avg.load_sum;
3475
3476        enqueue_load_avg(cfs_rq, se);
3477        cfs_rq->avg.util_avg += se->avg.util_avg;
3478        cfs_rq->avg.util_sum += se->avg.util_sum;
3479
3480        add_tg_cfs_propagate(cfs_rq, se->avg.load_sum);
3481
3482        cfs_rq_util_change(cfs_rq, flags);
3483}
3484
3485/**
3486 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3487 * @cfs_rq: cfs_rq to detach from
3488 * @se: sched_entity to detach
3489 *
3490 * Must call update_cfs_rq_load_avg() before this, since we rely on
3491 * cfs_rq->avg.last_update_time being current.
3492 */
3493static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3494{
3495        dequeue_load_avg(cfs_rq, se);
3496        sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3497        sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
3498
3499        add_tg_cfs_propagate(cfs_rq, -se->avg.load_sum);
3500
3501        cfs_rq_util_change(cfs_rq, 0);
3502}
3503
3504/*
3505 * Optional action to be done while updating the load average
3506 */
3507#define UPDATE_TG       0x1
3508#define SKIP_AGE_LOAD   0x2
3509#define DO_ATTACH       0x4
3510
3511/* Update task and its cfs_rq load average */
3512static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3513{
3514        u64 now = cfs_rq_clock_task(cfs_rq);
3515        struct rq *rq = rq_of(cfs_rq);
3516        int cpu = cpu_of(rq);
3517        int decayed;
3518
3519        /*
3520         * Track task load average for carrying it to new CPU after migrated, and
3521         * track group sched_entity load average for task_h_load calc in migration
3522         */
3523        if (se->avg.last_update_time && !(flags & SKIP_AGE_LOAD))
3524                __update_load_avg_se(now, cpu, cfs_rq, se);
3525
3526        decayed  = update_cfs_rq_load_avg(now, cfs_rq);
3527        decayed |= propagate_entity_load_avg(se);
3528
3529        if (!se->avg.last_update_time && (flags & DO_ATTACH)) {
3530
3531                /*
3532                 * DO_ATTACH means we're here from enqueue_entity().
3533                 * !last_update_time means we've passed through
3534                 * migrate_task_rq_fair() indicating we migrated.
3535                 *
3536                 * IOW we're enqueueing a task on a new CPU.
3537                 */
3538                attach_entity_load_avg(cfs_rq, se, SCHED_CPUFREQ_MIGRATION);
3539                update_tg_load_avg(cfs_rq, 0);
3540
3541        } else if (decayed && (flags & UPDATE_TG))
3542                update_tg_load_avg(cfs_rq, 0);
3543}
3544
3545#ifndef CONFIG_64BIT
3546static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3547{
3548        u64 last_update_time_copy;
3549        u64 last_update_time;
3550
3551        do {
3552                last_update_time_copy = cfs_rq->load_last_update_time_copy;
3553                smp_rmb();
3554                last_update_time = cfs_rq->avg.last_update_time;
3555        } while (last_update_time != last_update_time_copy);
3556
3557        return last_update_time;
3558}
3559#else
3560static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3561{
3562        return cfs_rq->avg.last_update_time;
3563}
3564#endif
3565
3566/*
3567 * Synchronize entity load avg of dequeued entity without locking
3568 * the previous rq.
3569 */
3570void sync_entity_load_avg(struct sched_entity *se)
3571{
3572        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3573        u64 last_update_time;
3574
3575        last_update_time = cfs_rq_last_update_time(cfs_rq);
3576        __update_load_avg_blocked_se(last_update_time, cpu_of(rq_of(cfs_rq)), se);
3577}
3578
3579/*
3580 * Task first catches up with cfs_rq, and then subtract
3581 * itself from the cfs_rq (task must be off the queue now).
3582 */
3583void remove_entity_load_avg(struct sched_entity *se)
3584{
3585        struct cfs_rq *cfs_rq = cfs_rq_of(se);
3586        unsigned long flags;
3587
3588        /*
3589         * tasks cannot exit without having gone through wake_up_new_task() ->
3590         * post_init_entity_util_avg() which will have added things to the
3591         * cfs_rq, so we can remove unconditionally.
3592         *
3593         * Similarly for groups, they will have passed through
3594         * post_init_entity_util_avg() before unregister_sched_fair_group()
3595         * calls this.
3596         */
3597
3598        sync_entity_load_avg(se);
3599
3600        raw_spin_lock_irqsave(&cfs_rq->removed.lock, flags);
3601        ++cfs_rq->removed.nr;
3602        cfs_rq->removed.util_avg        += se->avg.util_avg;
3603        cfs_rq->removed.load_avg        += se->avg.load_avg;
3604        cfs_rq->removed.runnable_sum    += se->avg.load_sum; /* == runnable_sum */
3605        raw_spin_unlock_irqrestore(&cfs_rq->removed.lock, flags);
3606}
3607
3608static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3609{
3610        return cfs_rq->avg.runnable_load_avg;
3611}
3612
3613static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3614{
3615        return cfs_rq->avg.load_avg;
3616}
3617
3618static int idle_balance(struct rq *this_rq, struct rq_flags *rf);
3619
3620static inline unsigned long task_util(struct task_struct *p)
3621{
3622        return READ_ONCE(p->se.avg.util_avg);
3623}
3624
3625static inline unsigned long _task_util_est(struct task_struct *p)
3626{
3627        struct util_est ue = READ_ONCE(p->se.avg.util_est);
3628
3629        return max(ue.ewma, ue.enqueued);
3630}
3631
3632static inline unsigned long task_util_est(struct task_struct *p)
3633{
3634        return max(task_util(p), _task_util_est(p));
3635}
3636
3637static inline void util_est_enqueue(struct cfs_rq *cfs_rq,
3638                                    struct task_struct *p)
3639{
3640        unsigned int enqueued;
3641
3642        if (!sched_feat(UTIL_EST))
3643                return;
3644
3645        /* Update root cfs_rq's estimated utilization */
3646        enqueued  = cfs_rq->avg.util_est.enqueued;
3647        enqueued += (_task_util_est(p) | UTIL_AVG_UNCHANGED);
3648        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, enqueued);
3649}
3650
3651/*
3652 * Check if a (signed) value is within a specified (unsigned) margin,
3653 * based on the observation that:
3654 *
3655 *     abs(x) < y := (unsigned)(x + y - 1) < (2 * y - 1)
3656 *
3657 * NOTE: this only works when value + maring < INT_MAX.
3658 */
3659static inline bool within_margin(int value, int margin)
3660{
3661        return ((unsigned int)(value + margin - 1) < (2 * margin - 1));
3662}
3663
3664static void
3665util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p, bool task_sleep)
3666{
3667        long last_ewma_diff;
3668        struct util_est ue;
3669
3670        if (!sched_feat(UTIL_EST))
3671                return;
3672
3673        /* Update root cfs_rq's estimated utilization */
3674        ue.enqueued  = cfs_rq->avg.util_est.enqueued;
3675        ue.enqueued -= min_t(unsigned int, ue.enqueued,
3676                             (_task_util_est(p) | UTIL_AVG_UNCHANGED));
3677        WRITE_ONCE(cfs_rq->avg.util_est.enqueued, ue.enqueued);
3678
3679        /*
3680         * Skip update of task's estimated utilization when the task has not
3681         * yet completed an activation, e.g. being migrated.
3682         */
3683        if (!task_sleep)
3684                return;
3685
3686        /*
3687         * If the PELT values haven't changed since enqueue time,
3688         * skip the util_est update.
3689         */
3690        ue = p->se.avg.util_est;
3691        if (ue.enqueued & UTIL_AVG_UNCHANGED)
3692                return;
3693
3694        /*
3695         * Skip update of task's estimated utilization when its EWMA is
3696         * already ~1% close to its last activation value.
3697         */
3698        ue.enqueued = (task_util(p) | UTIL_AVG_UNCHANGED);
3699        last_ewma_diff = ue.enqueued - ue.ewma;
3700        if (within_margin(last_ewma_diff, (SCHED_CAPACITY_SCALE / 100)))
3701                return;
3702
3703        /*
3704         * Update Task's estimated utilization
3705         *
3706         * When *p completes an activation we can consolidate another sample
3707         * of the task size. This is done by storing the current PELT value
3708         * as ue.enqueued and by using this value to update the Exponential
3709         * Weighted Moving Average (EWMA):
3710         *
3711         *  ewma(t) = w *  task_util(p) + (1-w) * ewma(t-1)
3712         *          = w *  task_util(p) +         ewma(t-1)  - w * ewma(t-1)
3713         *          = w * (task_util(p) -         ewma(t-1)) +     ewma(t-1)
3714         *          = w * (      last_ewma_diff            ) +     ewma(t-1)
3715         *          = w * (last_ewma_diff  +  ewma(t-1) / w)
3716         *
3717         * Where 'w' is the weight of new samples, which is configured to be
3718         * 0.25, thus making w=1/4 ( >>= UTIL_EST_WEIGHT_SHIFT)
3719         */
3720        ue.ewma <<= UTIL_EST_WEIGHT_SHIFT;
3721        ue.ewma  += last_ewma_diff;
3722        ue.ewma >>= UTIL_EST_WEIGHT_SHIFT;
3723        WRITE_ONCE(p->se.avg.util_est, ue);
3724}
3725
3726#else /* CONFIG_SMP */
3727
3728#define UPDATE_TG       0x0
3729#define SKIP_AGE_LOAD   0x0
3730#define DO_ATTACH       0x0
3731
3732static inline void update_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int not_used1)
3733{
3734        cfs_rq_util_change(cfs_rq, 0);
3735}
3736
3737static inline void remove_entity_load_avg(struct sched_entity *se) {}
3738
3739static inline void
3740attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags) {}
3741static inline void
3742detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3743
3744static inline int idle_balance(struct rq *rq, struct rq_flags *rf)
3745{
3746        return 0;
3747}
3748
3749static inline void
3750util_est_enqueue(struct cfs_rq *cfs_rq, struct task_struct *p) {}
3751
3752static inline void
3753util_est_dequeue(struct cfs_rq *cfs_rq, struct task_struct *p,
3754                 bool task_sleep) {}
3755
3756#endif /* CONFIG_SMP */
3757
3758static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3759{
3760#ifdef CONFIG_SCHED_DEBUG
3761        s64 d = se->vruntime - cfs_rq->min_vruntime;
3762
3763        if (d < 0)
3764                d = -d;
3765
3766        if (d > 3*sysctl_sched_latency)
3767                schedstat_inc(cfs_rq->nr_spread_over);
3768#endif
3769}
3770
3771static void
3772place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3773{
3774        u64 vruntime = cfs_rq->min_vruntime;
3775
3776        /*
3777         * The 'current' period is already promised to the current tasks,
3778         * however the extra weight of the new task will slow them down a
3779         * little, place the new task so that it fits in the slot that
3780         * stays open at the end.
3781         */
3782        if (initial && sched_feat(START_DEBIT))
3783                vruntime += sched_vslice(cfs_rq, se);
3784
3785        /* sleeps up to a single latency don't count. */
3786        if (!initial) {
3787                unsigned long thresh = sysctl_sched_latency;
3788
3789                /*
3790                 * Halve their sleep time's effect, to allow
3791                 * for a gentler effect of sleepers:
3792                 */
3793                if (sched_feat(GENTLE_FAIR_SLEEPERS))
3794                        thresh >>= 1;
3795
3796                vruntime -= thresh;
3797        }
3798
3799        /* ensure we never gain time by being placed backwards. */
3800        se->vruntime = max_vruntime(se->vruntime, vruntime);
3801}
3802
3803static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3804
3805static inline void check_schedstat_required(void)
3806{
3807#ifdef CONFIG_SCHEDSTATS
3808        if (schedstat_enabled())
3809                return;
3810
3811        /* Force schedstat enabled if a dependent tracepoint is active */
3812        if (trace_sched_stat_wait_enabled()    ||
3813                        trace_sched_stat_sleep_enabled()   ||
3814                        trace_sched_stat_iowait_enabled()  ||
3815                        trace_sched_stat_blocked_enabled() ||
3816                        trace_sched_stat_runtime_enabled())  {
3817                printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
3818                             "stat_blocked and stat_runtime require the "
3819                             "kernel parameter schedstats=enable or "
3820                             "kernel.sched_schedstats=1\n");
3821        }
3822#endif
3823}
3824
3825
3826/*
3827 * MIGRATION
3828 *
3829 *      dequeue
3830 *        update_curr()
3831 *          update_min_vruntime()
3832 *        vruntime -= min_vruntime
3833 *
3834 *      enqueue
3835 *        update_curr()
3836 *          update_min_vruntime()
3837 *        vruntime += min_vruntime
3838 *
3839 * this way the vruntime transition between RQs is done when both
3840 * min_vruntime are up-to-date.
3841 *
3842 * WAKEUP (remote)
3843 *
3844 *      ->migrate_task_rq_fair() (p->state == TASK_WAKING)
3845 *        vruntime -= min_vruntime
3846 *
3847 *      enqueue
3848 *        update_curr()
3849 *          update_min_vruntime()
3850 *        vruntime += min_vruntime
3851 *
3852 * this way we don't have the most up-to-date min_vruntime on the originating
3853 * CPU and an up-to-date min_vruntime on the destination CPU.
3854 */
3855
3856static void
3857enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3858{
3859        bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3860        bool curr = cfs_rq->curr == se;
3861
3862        /*
3863         * If we're the current task, we must renormalise before calling
3864         * update_curr().
3865         */
3866        if (renorm && curr)
3867                se->vruntime += cfs_rq->min_vruntime;
3868
3869        update_curr(cfs_rq);
3870
3871        /*
3872         * Otherwise, renormalise after, such that we're placed at the current
3873         * moment in time, instead of some random moment in the past. Being
3874         * placed in the past could significantly boost this task to the
3875         * fairness detriment of existing tasks.
3876         */
3877        if (renorm && !curr)
3878                se->vruntime += cfs_rq->min_vruntime;
3879
3880        /*
3881         * When enqueuing a sched_entity, we must:
3882         *   - Update loads to have both entity and cfs_rq synced with now.
3883         *   - Add its load to cfs_rq->runnable_avg
3884         *   - For group_entity, update its weight to reflect the new share of
3885         *     its group cfs_rq
3886         *   - Add its new weight to cfs_rq->load.weight
3887         */
3888        update_load_avg(cfs_rq, se, UPDATE_TG | DO_ATTACH);
3889        update_cfs_group(se);
3890        enqueue_runnable_load_avg(cfs_rq, se);
3891        account_entity_enqueue(cfs_rq, se);
3892
3893        if (flags & ENQUEUE_WAKEUP)
3894                place_entity(cfs_rq, se, 0);
3895
3896        check_schedstat_required();
3897        update_stats_enqueue(cfs_rq, se, flags);
3898        check_spread(cfs_rq, se);
3899        if (!curr)
3900                __enqueue_entity(cfs_rq, se);
3901        se->on_rq = 1;
3902
3903        if (cfs_rq->nr_running == 1) {
3904                list_add_leaf_cfs_rq(cfs_rq);
3905                check_enqueue_throttle(cfs_rq);
3906        }
3907}
3908
3909static void __clear_buddies_last(struct sched_entity *se)
3910{
3911        for_each_sched_entity(se) {
3912                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3913                if (cfs_rq->last != se)
3914                        break;
3915
3916                cfs_rq->last = NULL;
3917        }
3918}
3919
3920static void __clear_buddies_next(struct sched_entity *se)
3921{
3922        for_each_sched_entity(se) {
3923                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3924                if (cfs_rq->next != se)
3925                        break;
3926
3927                cfs_rq->next = NULL;
3928        }
3929}
3930
3931static void __clear_buddies_skip(struct sched_entity *se)
3932{
3933        for_each_sched_entity(se) {
3934                struct cfs_rq *cfs_rq = cfs_rq_of(se);
3935                if (cfs_rq->skip != se)
3936                        break;
3937
3938                cfs_rq->skip = NULL;
3939        }
3940}
3941
3942static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3943{
3944        if (cfs_rq->last == se)
3945                __clear_buddies_last(se);
3946
3947        if (cfs_rq->next == se)
3948                __clear_buddies_next(se);
3949
3950        if (cfs_rq->skip == se)
3951                __clear_buddies_skip(se);
3952}
3953
3954static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
3955
3956static void
3957dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
3958{
3959        /*
3960         * Update run-time statistics of the 'current'.
3961         */
3962        update_curr(cfs_rq);
3963
3964        /*
3965         * When dequeuing a sched_entity, we must:
3966         *   - Update loads to have both entity and cfs_rq synced with now.
3967         *   - Substract its load from the cfs_rq->runnable_avg.
3968         *   - Substract its previous weight from cfs_rq->load.weight.
3969         *   - For group entity, update its weight to reflect the new share
3970         *     of its group cfs_rq.
3971         */
3972        update_load_avg(cfs_rq, se, UPDATE_TG);
3973        dequeue_runnable_load_avg(cfs_rq, se);
3974
3975        update_stats_dequeue(cfs_rq, se, flags);
3976
3977        clear_buddies(cfs_rq, se);
3978
3979        if (se != cfs_rq->curr)
3980                __dequeue_entity(cfs_rq, se);
3981        se->on_rq = 0;
3982        account_entity_dequeue(cfs_rq, se);
3983
3984        /*
3985         * Normalize after update_curr(); which will also have moved
3986         * min_vruntime if @se is the one holding it back. But before doing
3987         * update_min_vruntime() again, which will discount @se's position and
3988         * can move min_vruntime forward still more.
3989         */
3990        if (!(flags & DEQUEUE_SLEEP))
3991                se->vruntime -= cfs_rq->min_vruntime;
3992
3993        /* return excess runtime on last dequeue */
3994        return_cfs_rq_runtime(cfs_rq);
3995
3996        update_cfs_group(se);
3997
3998        /*
3999         * Now advance min_vruntime if @se was the entity holding it back,
4000         * except when: DEQUEUE_SAVE && !DEQUEUE_MOVE, in this case we'll be
4001         * put back on, and if we advance min_vruntime, we'll be placed back
4002         * further than we started -- ie. we'll be penalized.
4003         */
4004        if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
4005                update_min_vruntime(cfs_rq);
4006}
4007
4008/*
4009 * Preempt the current task with a newly woken task if needed:
4010 */
4011static void
4012check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4013{
4014        unsigned long ideal_runtime, delta_exec;
4015        struct sched_entity *se;
4016        s64 delta;
4017
4018        ideal_runtime = sched_slice(cfs_rq, curr);
4019        delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
4020        if (delta_exec > ideal_runtime) {
4021                resched_curr(rq_of(cfs_rq));
4022                /*
4023                 * The current task ran long enough, ensure it doesn't get
4024                 * re-elected due to buddy favours.
4025                 */
4026                clear_buddies(cfs_rq, curr);
4027                return;
4028        }
4029
4030        /*
4031         * Ensure that a task that missed wakeup preemption by a
4032         * narrow margin doesn't have to wait for a full slice.
4033         * This also mitigates buddy induced latencies under load.
4034         */
4035        if (delta_exec < sysctl_sched_min_granularity)
4036                return;
4037
4038        se = __pick_first_entity(cfs_rq);
4039        delta = curr->vruntime - se->vruntime;
4040
4041        if (delta < 0)
4042                return;
4043
4044        if (delta > ideal_runtime)
4045                resched_curr(rq_of(cfs_rq));
4046}
4047
4048static void
4049set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
4050{
4051        /* 'current' is not kept within the tree. */
4052        if (se->on_rq) {
4053                /*
4054                 * Any task has to be enqueued before it get to execute on
4055                 * a CPU. So account for the time it spent waiting on the
4056                 * runqueue.
4057                 */
4058                update_stats_wait_end(cfs_rq, se);
4059                __dequeue_entity(cfs_rq, se);
4060                update_load_avg(cfs_rq, se, UPDATE_TG);
4061        }
4062
4063        update_stats_curr_start(cfs_rq, se);
4064        cfs_rq->curr = se;
4065
4066        /*
4067         * Track our maximum slice length, if the CPU's load is at
4068         * least twice that of our own weight (i.e. dont track it
4069         * when there are only lesser-weight tasks around):
4070         */
4071        if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4072                schedstat_set(se->statistics.slice_max,
4073                        max((u64)schedstat_val(se->statistics.slice_max),
4074                            se->sum_exec_runtime - se->prev_sum_exec_runtime));
4075        }
4076
4077        se->prev_sum_exec_runtime = se->sum_exec_runtime;
4078}
4079
4080static int
4081wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
4082
4083/*
4084 * Pick the next process, keeping these things in mind, in this order:
4085 * 1) keep things fair between processes/task groups
4086 * 2) pick the "next" process, since someone really wants that to run
4087 * 3) pick the "last" process, for cache locality
4088 * 4) do not run the "skip" process, if something else is available
4089 */
4090static struct sched_entity *
4091pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
4092{
4093        struct sched_entity *left = __pick_first_entity(cfs_rq);
4094        struct sched_entity *se;
4095
4096        /*
4097         * If curr is set we have to see if its left of the leftmost entity
4098         * still in the tree, provided there was anything in the tree at all.
4099         */
4100        if (!left || (curr && entity_before(curr, left)))
4101                left = curr;
4102
4103        se = left; /* ideally we run the leftmost entity */
4104
4105        /*
4106         * Avoid running the skip buddy, if running something else can
4107         * be done without getting too unfair.
4108         */
4109        if (cfs_rq->skip == se) {
4110                struct sched_entity *second;
4111
4112                if (se == curr) {
4113                        second = __pick_first_entity(cfs_rq);
4114                } else {
4115                        second = __pick_next_entity(se);
4116                        if (!second || (curr && entity_before(curr, second)))
4117                                second = curr;
4118                }
4119
4120                if (second && wakeup_preempt_entity(second, left) < 1)
4121                        se = second;
4122        }
4123
4124        /*
4125         * Prefer last buddy, try to return the CPU to a preempted task.
4126         */
4127        if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
4128                se = cfs_rq->last;
4129
4130        /*
4131         * Someone really wants this to run. If it's not unfair, run it.
4132         */
4133        if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
4134                se = cfs_rq->next;
4135
4136        clear_buddies(cfs_rq, se);
4137
4138        return se;
4139}
4140
4141static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
4142
4143static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
4144{
4145        /*
4146         * If still on the runqueue then deactivate_task()
4147         * was not called and update_curr() has to be done:
4148         */
4149        if (prev->on_rq)
4150                update_curr(cfs_rq);
4151
4152        /* throttle cfs_rqs exceeding runtime */
4153        check_cfs_rq_runtime(cfs_rq);
4154
4155        check_spread(cfs_rq, prev);
4156
4157        if (prev->on_rq) {
4158                update_stats_wait_start(cfs_rq, prev);
4159                /* Put 'current' back into the tree. */
4160                __enqueue_entity(cfs_rq, prev);
4161                /* in !on_rq case, update occurred at dequeue */
4162                update_load_avg(cfs_rq, prev, 0);
4163        }
4164        cfs_rq->curr = NULL;
4165}
4166
4167static void
4168entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
4169{
4170        /*
4171         * Update run-time statistics of the 'current'.
4172         */
4173        update_curr(cfs_rq);
4174
4175        /*
4176         * Ensure that runnable average is periodically updated.
4177         */
4178        update_load_avg(cfs_rq, curr, UPDATE_TG);
4179        update_cfs_group(curr);
4180
4181#ifdef CONFIG_SCHED_HRTICK
4182        /*
4183         * queued ticks are scheduled to match the slice, so don't bother
4184         * validating it and just reschedule.
4185         */
4186        if (queued) {
4187                resched_curr(rq_of(cfs_rq));
4188                return;
4189        }
4190        /*
4191         * don't let the period tick interfere with the hrtick preemption
4192         */
4193        if (!sched_feat(DOUBLE_TICK) &&
4194                        hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
4195                return;
4196#endif
4197
4198        if (cfs_rq->nr_running > 1)
4199                check_preempt_tick(cfs_rq, curr);
4200}
4201
4202
4203/**************************************************
4204 * CFS bandwidth control machinery
4205 */
4206
4207#ifdef CONFIG_CFS_BANDWIDTH
4208
4209#ifdef HAVE_JUMP_LABEL
4210static struct static_key __cfs_bandwidth_used;
4211
4212static inline bool cfs_bandwidth_used(void)
4213{
4214        return static_key_false(&__cfs_bandwidth_used);
4215}
4216
4217void cfs_bandwidth_usage_inc(void)
4218{
4219        static_key_slow_inc_cpuslocked(&__cfs_bandwidth_used);
4220}
4221
4222void cfs_bandwidth_usage_dec(void)
4223{
4224        static_key_slow_dec_cpuslocked(&__cfs_bandwidth_used);
4225}
4226#else /* HAVE_JUMP_LABEL */
4227static bool cfs_bandwidth_used(void)
4228{
4229        return true;
4230}
4231
4232void cfs_bandwidth_usage_inc(void) {}
4233void cfs_bandwidth_usage_dec(void) {}
4234#endif /* HAVE_JUMP_LABEL */
4235
4236/*
4237 * default period for cfs group bandwidth.
4238 * default: 0.1s, units: nanoseconds
4239 */
4240static inline u64 default_cfs_period(void)
4241{
4242        return 100000000ULL;
4243}
4244
4245static inline u64 sched_cfs_bandwidth_slice(void)
4246{
4247        return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
4248}
4249
4250/*
4251 * Replenish runtime according to assigned quota and update expiration time.
4252 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
4253 * additional synchronization around rq->lock.
4254 *
4255 * requires cfs_b->lock
4256 */
4257void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
4258{
4259        u64 now;
4260
4261        if (cfs_b->quota == RUNTIME_INF)
4262                return;
4263
4264        now = sched_clock_cpu(smp_processor_id());
4265        cfs_b->runtime = cfs_b->quota;
4266        cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
4267        cfs_b->expires_seq++;
4268}
4269
4270static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4271{
4272        return &tg->cfs_bandwidth;
4273}
4274
4275/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
4276static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4277{
4278        if (unlikely(cfs_rq->throttle_count))
4279                return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
4280
4281        return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
4282}
4283
4284/* returns 0 on failure to allocate runtime */
4285static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4286{
4287        struct task_group *tg = cfs_rq->tg;
4288        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
4289        u64 amount = 0, min_amount, expires;
4290        int expires_seq;
4291
4292        /* note: this is a positive sum as runtime_remaining <= 0 */
4293        min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
4294
4295        raw_spin_lock(&cfs_b->lock);
4296        if (cfs_b->quota == RUNTIME_INF)
4297                amount = min_amount;
4298        else {
4299                start_cfs_bandwidth(cfs_b);
4300
4301                if (cfs_b->runtime > 0) {
4302                        amount = min(cfs_b->runtime, min_amount);
4303                        cfs_b->runtime -= amount;
4304                        cfs_b->idle = 0;
4305                }
4306        }
4307        expires_seq = cfs_b->expires_seq;
4308        expires = cfs_b->runtime_expires;
4309        raw_spin_unlock(&cfs_b->lock);
4310
4311        cfs_rq->runtime_remaining += amount;
4312        /*
4313         * we may have advanced our local expiration to account for allowed
4314         * spread between our sched_clock and the one on which runtime was
4315         * issued.
4316         */
4317        if (cfs_rq->expires_seq != expires_seq) {
4318                cfs_rq->expires_seq = expires_seq;
4319                cfs_rq->runtime_expires = expires;
4320        }
4321
4322        return cfs_rq->runtime_remaining > 0;
4323}
4324
4325/*
4326 * Note: This depends on the synchronization provided by sched_clock and the
4327 * fact that rq->clock snapshots this value.
4328 */
4329static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4330{
4331        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4332
4333        /* if the deadline is ahead of our clock, nothing to do */
4334        if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
4335                return;
4336
4337        if (cfs_rq->runtime_remaining < 0)
4338                return;
4339
4340        /*
4341         * If the local deadline has passed we have to consider the
4342         * possibility that our sched_clock is 'fast' and the global deadline
4343         * has not truly expired.
4344         *
4345         * Fortunately we can check determine whether this the case by checking
4346         * whether the global deadline(cfs_b->expires_seq) has advanced.
4347         */
4348        if (cfs_rq->expires_seq == cfs_b->expires_seq) {
4349                /* extend local deadline, drift is bounded above by 2 ticks */
4350                cfs_rq->runtime_expires += TICK_NSEC;
4351        } else {
4352                /* global deadline is ahead, expiration has passed */
4353                cfs_rq->runtime_remaining = 0;
4354        }
4355}
4356
4357static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4358{
4359        /* dock delta_exec before expiring quota (as it could span periods) */
4360        cfs_rq->runtime_remaining -= delta_exec;
4361        expire_cfs_rq_runtime(cfs_rq);
4362
4363        if (likely(cfs_rq->runtime_remaining > 0))
4364                return;
4365
4366        /*
4367         * if we're unable to extend our runtime we resched so that the active
4368         * hierarchy can be throttled
4369         */
4370        if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
4371                resched_curr(rq_of(cfs_rq));
4372}
4373
4374static __always_inline
4375void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
4376{
4377        if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
4378                return;
4379
4380        __account_cfs_rq_runtime(cfs_rq, delta_exec);
4381}
4382
4383static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4384{
4385        return cfs_bandwidth_used() && cfs_rq->throttled;
4386}
4387
4388/* check whether cfs_rq, or any parent, is throttled */
4389static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4390{
4391        return cfs_bandwidth_used() && cfs_rq->throttle_count;
4392}
4393
4394/*
4395 * Ensure that neither of the group entities corresponding to src_cpu or
4396 * dest_cpu are members of a throttled hierarchy when performing group
4397 * load-balance operations.
4398 */
4399static inline int throttled_lb_pair(struct task_group *tg,
4400                                    int src_cpu, int dest_cpu)
4401{
4402        struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
4403
4404        src_cfs_rq = tg->cfs_rq[src_cpu];
4405        dest_cfs_rq = tg->cfs_rq[dest_cpu];
4406
4407        return throttled_hierarchy(src_cfs_rq) ||
4408               throttled_hierarchy(dest_cfs_rq);
4409}
4410
4411static int tg_unthrottle_up(struct task_group *tg, void *data)
4412{
4413        struct rq *rq = data;
4414        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4415
4416        cfs_rq->throttle_count--;
4417        if (!cfs_rq->throttle_count) {
4418                /* adjust cfs_rq_clock_task() */
4419                cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
4420                                             cfs_rq->throttled_clock_task;
4421        }
4422
4423        return 0;
4424}
4425
4426static int tg_throttle_down(struct task_group *tg, void *data)
4427{
4428        struct rq *rq = data;
4429        struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4430
4431        /* group is entering throttled state, stop time */
4432        if (!cfs_rq->throttle_count)
4433                cfs_rq->throttled_clock_task = rq_clock_task(rq);
4434        cfs_rq->throttle_count++;
4435
4436        return 0;
4437}
4438
4439static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
4440{
4441        struct rq *rq = rq_of(cfs_rq);
4442        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4443        struct sched_entity *se;
4444        long task_delta, dequeue = 1;
4445        bool empty;
4446
4447        se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
4448
4449        /* freeze hierarchy runnable averages while throttled */
4450        rcu_read_lock();
4451        walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
4452        rcu_read_unlock();
4453
4454        task_delta = cfs_rq->h_nr_running;
4455        for_each_sched_entity(se) {
4456                struct cfs_rq *qcfs_rq = cfs_rq_of(se);
4457                /* throttled entity or throttle-on-deactivate */
4458                if (!se->on_rq)
4459                        break;
4460
4461                if (dequeue)
4462                        dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
4463                qcfs_rq->h_nr_running -= task_delta;
4464
4465                if (qcfs_rq->load.weight)
4466                        dequeue = 0;
4467        }
4468
4469        if (!se)
4470                sub_nr_running(rq, task_delta);
4471
4472        cfs_rq->throttled = 1;
4473        cfs_rq->throttled_clock = rq_clock(rq);
4474        raw_spin_lock(&cfs_b->lock);
4475        empty = list_empty(&cfs_b->throttled_cfs_rq);
4476
4477        /*
4478         * Add to the _head_ of the list, so that an already-started
4479         * distribute_cfs_runtime will not see us. If disribute_cfs_runtime is
4480         * not running add to the tail so that later runqueues don't get starved.
4481         */
4482        if (cfs_b->distribute_running)
4483                list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4484        else
4485                list_add_tail_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
4486
4487        /*
4488         * If we're the first throttled task, make sure the bandwidth
4489         * timer is running.
4490         */
4491        if (empty)
4492                start_cfs_bandwidth(cfs_b);
4493
4494        raw_spin_unlock(&cfs_b->lock);
4495}
4496
4497void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
4498{
4499        struct rq *rq = rq_of(cfs_rq);
4500        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4501        struct sched_entity *se;
4502        int enqueue = 1;
4503        long task_delta;
4504
4505        se = cfs_rq->tg->se[cpu_of(rq)];
4506
4507        cfs_rq->throttled = 0;
4508
4509        update_rq_clock(rq);
4510
4511        raw_spin_lock(&cfs_b->lock);
4512        cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
4513        list_del_rcu(&cfs_rq->throttled_list);
4514        raw_spin_unlock(&cfs_b->lock);
4515
4516        /* update hierarchical throttle state */
4517        walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
4518
4519        if (!cfs_rq->load.weight)
4520                return;
4521
4522        task_delta = cfs_rq->h_nr_running;
4523        for_each_sched_entity(se) {
4524                if (se->on_rq)
4525                        enqueue = 0;
4526
4527                cfs_rq = cfs_rq_of(se);
4528                if (enqueue)
4529                        enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
4530                cfs_rq->h_nr_running += task_delta;
4531
4532                if (cfs_rq_throttled(cfs_rq))
4533                        break;
4534        }
4535
4536        if (!se)
4537                add_nr_running(rq, task_delta);
4538
4539        /* Determine whether we need to wake up potentially idle CPU: */
4540        if (rq->curr == rq->idle && rq->cfs.nr_running)
4541                resched_curr(rq);
4542}
4543
4544static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4545                u64 remaining, u64 expires)
4546{
4547        struct cfs_rq *cfs_rq;
4548        u64 runtime;
4549        u64 starting_runtime = remaining;
4550
4551        rcu_read_lock();
4552        list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4553                                throttled_list) {
4554                struct rq *rq = rq_of(cfs_rq);
4555                struct rq_flags rf;
4556
4557                rq_lock(rq, &rf);
4558                if (!cfs_rq_throttled(cfs_rq))
4559                        goto next;
4560
4561                runtime = -cfs_rq->runtime_remaining + 1;
4562                if (runtime > remaining)
4563                        runtime = remaining;
4564                remaining -= runtime;
4565
4566                cfs_rq->runtime_remaining += runtime;
4567                cfs_rq->runtime_expires = expires;
4568
4569                /* we check whether we're throttled above */
4570                if (cfs_rq->runtime_remaining > 0)
4571                        unthrottle_cfs_rq(cfs_rq);
4572
4573next:
4574                rq_unlock(rq, &rf);
4575
4576                if (!remaining)
4577                        break;
4578        }
4579        rcu_read_unlock();
4580
4581        return starting_runtime - remaining;
4582}
4583
4584/*
4585 * Responsible for refilling a task_group's bandwidth and unthrottling its
4586 * cfs_rqs as appropriate. If there has been no activity within the last
4587 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4588 * used to track this state.
4589 */
4590static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4591{
4592        u64 runtime, runtime_expires;
4593        int throttled;
4594
4595        /* no need to continue the timer with no bandwidth constraint */
4596        if (cfs_b->quota == RUNTIME_INF)
4597                goto out_deactivate;
4598
4599        throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4600        cfs_b->nr_periods += overrun;
4601
4602        /*
4603         * idle depends on !throttled (for the case of a large deficit), and if
4604         * we're going inactive then everything else can be deferred
4605         */
4606        if (cfs_b->idle && !throttled)
4607                goto out_deactivate;
4608
4609        __refill_cfs_bandwidth_runtime(cfs_b);
4610
4611        if (!throttled) {
4612                /* mark as potentially idle for the upcoming period */
4613                cfs_b->idle = 1;
4614                return 0;
4615        }
4616
4617        /* account preceding periods in which throttling occurred */
4618        cfs_b->nr_throttled += overrun;
4619
4620        runtime_expires = cfs_b->runtime_expires;
4621
4622        /*
4623         * This check is repeated as we are holding onto the new bandwidth while
4624         * we unthrottle. This can potentially race with an unthrottled group
4625         * trying to acquire new bandwidth from the global pool. This can result
4626         * in us over-using our runtime if it is all used during this loop, but
4627         * only by limited amounts in that extreme case.
4628         */
4629        while (throttled && cfs_b->runtime > 0 && !cfs_b->distribute_running) {
4630                runtime = cfs_b->runtime;
4631                cfs_b->distribute_running = 1;
4632                raw_spin_unlock(&cfs_b->lock);
4633                /* we can't nest cfs_b->lock while distributing bandwidth */
4634                runtime = distribute_cfs_runtime(cfs_b, runtime,
4635                                                 runtime_expires);
4636                raw_spin_lock(&cfs_b->lock);
4637
4638                cfs_b->distribute_running = 0;
4639                throttled = !list_empty(&cfs_b->throttled_cfs_rq);
4640
4641                cfs_b->runtime -= min(runtime, cfs_b->runtime);
4642        }
4643
4644        /*
4645         * While we are ensured activity in the period following an
4646         * unthrottle, this also covers the case in which the new bandwidth is
4647         * insufficient to cover the existing bandwidth deficit.  (Forcing the
4648         * timer to remain active while there are any throttled entities.)
4649         */
4650        cfs_b->idle = 0;
4651
4652        return 0;
4653
4654out_deactivate:
4655        return 1;
4656}
4657
4658/* a cfs_rq won't donate quota below this amount */
4659static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4660/* minimum remaining period time to redistribute slack quota */
4661static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4662/* how long we wait to gather additional slack before distributing */
4663static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4664
4665/*
4666 * Are we near the end of the current quota period?
4667 *
4668 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4669 * hrtimer base being cleared by hrtimer_start. In the case of
4670 * migrate_hrtimers, base is never cleared, so we are fine.
4671 */
4672static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4673{
4674        struct hrtimer *refresh_timer = &cfs_b->period_timer;
4675        u64 remaining;
4676
4677        /* if the call-back is running a quota refresh is already occurring */
4678        if (hrtimer_callback_running(refresh_timer))
4679                return 1;
4680
4681        /* is a quota refresh about to occur? */
4682        remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4683        if (remaining < min_expire)
4684                return 1;
4685
4686        return 0;
4687}
4688
4689static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4690{
4691        u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4692
4693        /* if there's a quota refresh soon don't bother with slack */
4694        if (runtime_refresh_within(cfs_b, min_left))
4695                return;
4696
4697        hrtimer_start(&cfs_b->slack_timer,
4698                        ns_to_ktime(cfs_bandwidth_slack_period),
4699                        HRTIMER_MODE_REL);
4700}
4701
4702/* we know any runtime found here is valid as update_curr() precedes return */
4703static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4704{
4705        struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4706        s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4707
4708        if (slack_runtime <= 0)
4709                return;
4710
4711        raw_spin_lock(&cfs_b->lock);
4712        if (cfs_b->quota != RUNTIME_INF &&
4713            cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4714                cfs_b->runtime += slack_runtime;
4715
4716                /* we are under rq->lock, defer unthrottling using a timer */
4717                if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4718                    !list_empty(&cfs_b->throttled_cfs_rq))
4719                        start_cfs_slack_bandwidth(cfs_b);
4720        }
4721        raw_spin_unlock(&cfs_b->lock);
4722
4723        /* even if it's not valid for return we don't want to try again */
4724        cfs_rq->runtime_remaining -= slack_runtime;
4725}
4726
4727static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4728{
4729        if (!cfs_bandwidth_used())
4730                return;
4731
4732        if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
4733                return;
4734
4735        __return_cfs_rq_runtime(cfs_rq);
4736}
4737
4738/*
4739 * This is done with a timer (instead of inline with bandwidth return) since
4740 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4741 */
4742static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4743{
4744        u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4745        u64 expires;
4746
4747        /* confirm we're still not at a refresh boundary */
4748        raw_spin_lock(&cfs_b->lock);
4749        if (cfs_b->distribute_running) {
4750                raw_spin_unlock(&cfs_b->lock);
4751                return;
4752        }
4753
4754        if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4755                raw_spin_unlock(&cfs_b->lock);
4756                return;
4757        }
4758
4759        if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
4760                runtime = cfs_b->runtime;
4761
4762        expires = cfs_b->runtime_expires;
4763        if (runtime)
4764                cfs_b->distribute_running = 1;
4765
4766        raw_spin_unlock(&cfs_b->lock);
4767
4768        if (!runtime)
4769                return;
4770
4771        runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4772
4773        raw_spin_lock(&cfs_b->lock);
4774        if (expires == cfs_b->runtime_expires)
4775                cfs_b->runtime -= min(runtime, cfs_b->runtime);
4776        cfs_b->distribute_running = 0;
4777        raw_spin_unlock(&cfs_b->lock);
4778}
4779
4780/*
4781 * When a group wakes up we want to make sure that its quota is not already
4782 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4783 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4784 */
4785static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4786{
4787        if (!cfs_bandwidth_used())
4788                return;
4789
4790        /* an active group must be handled by the update_curr()->put() path */
4791        if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4792                return;
4793
4794        /* ensure the group is not already throttled */
4795        if (cfs_rq_throttled(cfs_rq))
4796                return;
4797
4798        /* update runtime allocation */
4799        account_cfs_rq_runtime(cfs_rq, 0);
4800        if (cfs_rq->runtime_remaining <= 0)
4801                throttle_cfs_rq(cfs_rq);
4802}
4803
4804static void sync_throttle(struct task_group *tg, int cpu)
4805{
4806        struct cfs_rq *pcfs_rq, *cfs_rq;
4807
4808        if (!cfs_bandwidth_used())
4809                return;
4810
4811        if (!tg->parent)
4812                return;
4813
4814        cfs_rq = tg->cfs_rq[cpu];
4815        pcfs_rq = tg->parent->cfs_rq[cpu];
4816
4817        cfs_rq->throttle_count = pcfs_rq->throttle_count;
4818        cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
4819}
4820
4821/* conditionally throttle active cfs_rq's from put_prev_entity() */
4822static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4823{
4824        if (!cfs_bandwidth_used())
4825                return false;
4826
4827        if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
4828                return false;
4829
4830        /*
4831         * it's possible for a throttled entity to be forced into a running
4832         * state (e.g. set_curr_task), in this case we're finished.
4833         */
4834        if (cfs_rq_throttled(cfs_rq))
4835                return true;
4836
4837        throttle_cfs_rq(cfs_rq);
4838        return true;
4839}
4840
4841static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4842{
4843        struct cfs_bandwidth *cfs_b =
4844                container_of(timer, struct cfs_bandwidth, slack_timer);
4845
4846        do_sched_cfs_slack_timer(cfs_b);
4847
4848        return HRTIMER_NORESTART;
4849}
4850
4851static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4852{
4853        struct cfs_bandwidth *cfs_b =
4854                container_of(timer, struct cfs_bandwidth, period_timer);
4855        int overrun;
4856        int idle = 0;
4857
4858        raw_spin_lock(&cfs_b->lock);
4859        for (;;) {
4860                overrun = hrtimer_forward_now(timer, cfs_b->period);
4861                if (!overrun)
4862                        break;
4863
4864                idle = do_sched_cfs_period_timer(cfs_b, overrun);
4865        }
4866        if (idle)
4867                cfs_b->period_active = 0;
4868        raw_spin_unlock(&cfs_b->lock);
4869
4870        return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4871}
4872
4873void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4874{
4875        raw_spin_lock_init(&cfs_b->lock);
4876        cfs_b->runtime = 0;
4877        cfs_b->quota = RUNTIME_INF;
4878        cfs_b->period = ns_to_ktime(default_cfs_period());
4879
4880        INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4881        hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
4882        cfs_b->period_timer.function = sched_cfs_period_timer;
4883        hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4884        cfs_b->slack_timer.function = sched_cfs_slack_timer;
4885        cfs_b->distribute_running = 0;
4886}
4887
4888static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4889{
4890        cfs_rq->runtime_enabled = 0;
4891        INIT_LIST_HEAD(&cfs_rq->throttled_list);
4892}
4893
4894void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4895{
4896        u64 overrun;
4897
4898        lockdep_assert_held(&cfs_b->lock);
4899
4900        if (cfs_b->period_active)
4901                return;
4902
4903        cfs_b->period_active = 1;
4904        overrun = hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4905        cfs_b->runtime_expires += (overrun + 1) * ktime_to_ns(cfs_b->period);
4906        cfs_b->expires_seq++;
4907        hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4908}
4909
4910static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4911{
4912        /* init_cfs_bandwidth() was not called */
4913        if (!cfs_b->throttled_cfs_rq.next)
4914                return;
4915
4916        hrtimer_cancel(&cfs_b->period_timer);
4917        hrtimer_cancel(&cfs_b->slack_timer);
4918}
4919
4920/*
4921 * Both these CPU hotplug callbacks race against unregister_fair_sched_group()
4922 *
4923 * The race is harmless, since modifying bandwidth settings of unhooked group
4924 * bits doesn't do much.
4925 */
4926
4927/* cpu online calback */
4928static void __maybe_unused update_runtime_enabled(struct rq *rq)
4929{
4930        struct task_group *tg;
4931
4932        lockdep_assert_held(&rq->lock);
4933
4934        rcu_read_lock();
4935        list_for_each_entry_rcu(tg, &task_groups, list) {
4936                struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
4937                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4938
4939                raw_spin_lock(&cfs_b->lock);
4940                cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4941                raw_spin_unlock(&cfs_b->lock);
4942        }
4943        rcu_read_unlock();
4944}
4945
4946/* cpu offline callback */
4947static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
4948{
4949        struct task_group *tg;
4950
4951        lockdep_assert_held(&rq->lock);
4952
4953        rcu_read_lock();
4954        list_for_each_entry_rcu(tg, &task_groups, list) {
4955                struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
4956
4957                if (!cfs_rq->runtime_enabled)
4958                        continue;
4959
4960                /*
4961                 * clock_task is not advancing so we just need to make sure
4962                 * there's some valid quota amount
4963                 */
4964                cfs_rq->runtime_remaining = 1;
4965                /*
4966                 * Offline rq is schedulable till CPU is completely disabled
4967                 * in take_cpu_down(), so we prevent new cfs throttling here.
4968                 */
4969                cfs_rq->runtime_enabled = 0;
4970
4971                if (cfs_rq_throttled(cfs_rq))
4972                        unthrottle_cfs_rq(cfs_rq);
4973        }
4974        rcu_read_unlock();
4975}
4976
4977#else /* CONFIG_CFS_BANDWIDTH */
4978static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4979{
4980        return rq_clock_task(rq_of(cfs_rq));
4981}
4982
4983static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
4984static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
4985static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
4986static inline void sync_throttle(struct task_group *tg, int cpu) {}
4987static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
4988
4989static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4990{
4991        return 0;
4992}
4993
4994static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4995{
4996        return 0;
4997}
4998
4999static inline int throttled_lb_pair(struct task_group *tg,
5000                                    int src_cpu, int dest_cpu)
5001{
5002        return 0;
5003}
5004
5005void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5006
5007#ifdef CONFIG_FAIR_GROUP_SCHED
5008static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
5009#endif
5010
5011static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
5012{
5013        return NULL;
5014}
5015static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
5016static inline void update_runtime_enabled(struct rq *rq) {}
5017static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
5018
5019#endif /* CONFIG_CFS_BANDWIDTH */
5020
5021/**************************************************
5022 * CFS operations on tasks:
5023 */
5024
5025#ifdef CONFIG_SCHED_HRTICK
5026static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
5027{
5028        struct sched_entity *se = &p->se;
5029        struct cfs_rq *cfs_rq = cfs_rq_of(se);
5030
5031        SCHED_WARN_ON(task_rq(p) != rq);
5032
5033        if (rq->cfs.h_nr_running > 1) {
5034                u64 slice = sched_slice(cfs_rq, se);
5035                u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
5036                s64 delta = slice - ran;
5037
5038                if (delta < 0) {
5039                        if (rq->curr == p)
5040                                resched_curr(rq);
5041                        return;
5042                }
5043                hrtick_start(rq, delta);
5044        }
5045}
5046
5047/*
5048 * called from enqueue/dequeue and updates the hrtick when the
5049 * current task is from our class and nr_running is low enough
5050 * to matter.
5051 */
5052static void hrtick_update(struct rq *rq)
5053{
5054        struct task_struct *curr = rq->curr;
5055
5056        if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
5057                return;
5058
5059        if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
5060                hrtick_start_fair(rq, curr);
5061}
5062#else /* !CONFIG_SCHED_HRTICK */
5063static inline void
5064hrtick_start_fair(struct rq *rq, struct task_struct *p)
5065{
5066}
5067
5068static inline void hrtick_update(struct rq *rq)
5069{
5070}
5071#endif
5072
5073/*
5074 * The enqueue_task method is called before nr_running is
5075 * increased. Here we update the fair scheduling stats and
5076 * then put the task into the rbtree:
5077 */
5078static void
5079enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5080{
5081        struct cfs_rq *cfs_rq;
5082        struct sched_entity *se = &p->se;
5083
5084        /*
5085         * The code below (indirectly) updates schedutil which looks at
5086         * the cfs_rq utilization to select a frequency.
5087         * Let's add the task's estimated utilization to the cfs_rq's
5088         * estimated utilization, before we update schedutil.
5089         */
5090        util_est_enqueue(&rq->cfs, p);
5091
5092        /*
5093         * If in_iowait is set, the code below may not trigger any cpufreq
5094         * utilization updates, so do it here explicitly with the IOWAIT flag
5095         * passed.
5096         */
5097        if (p->in_iowait)
5098                cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
5099
5100        for_each_sched_entity(se) {
5101                if (se->on_rq)
5102                        break;
5103                cfs_rq = cfs_rq_of(se);
5104                enqueue_entity(cfs_rq, se, flags);
5105
5106                /*
5107                 * end evaluation on encountering a throttled cfs_rq
5108                 *
5109                 * note: in the case of encountering a throttled cfs_rq we will
5110                 * post the final h_nr_running increment below.
5111                 */
5112                if (cfs_rq_throttled(cfs_rq))
5113                        break;
5114                cfs_rq->h_nr_running++;
5115
5116                flags = ENQUEUE_WAKEUP;
5117        }
5118
5119        for_each_sched_entity(se) {
5120                cfs_rq = cfs_rq_of(se);
5121                cfs_rq->h_nr_running++;
5122
5123                if (cfs_rq_throttled(cfs_rq))
5124                        break;
5125
5126                update_load_avg(cfs_rq, se, UPDATE_TG);
5127                update_cfs_group(se);
5128        }
5129
5130        if (!se)
5131                add_nr_running(rq, 1);
5132
5133        hrtick_update(rq);
5134}
5135
5136static void set_next_buddy(struct sched_entity *se);
5137
5138/*
5139 * The dequeue_task method is called before nr_running is
5140 * decreased. We remove the task from the rbtree and
5141 * update the fair scheduling stats:
5142 */
5143static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
5144{
5145        struct cfs_rq *cfs_rq;
5146        struct sched_entity *se = &p->se;
5147        int task_sleep = flags & DEQUEUE_SLEEP;
5148
5149        for_each_sched_entity(se) {
5150                cfs_rq = cfs_rq_of(se);
5151                dequeue_entity(cfs_rq, se, flags);
5152
5153                /*
5154                 * end evaluation on encountering a throttled cfs_rq
5155                 *
5156                 * note: in the case of encountering a throttled cfs_rq we will
5157                 * post the final h_nr_running decrement below.
5158                */
5159                if (cfs_rq_throttled(cfs_rq))
5160                        break;
5161                cfs_rq->h_nr_running--;
5162
5163                /* Don't dequeue parent if it has other entities besides us */
5164                if (cfs_rq->load.weight) {
5165                        /* Avoid re-evaluating load for this entity: */
5166                        se = parent_entity(se);
5167                        /*
5168                         * Bias pick_next to pick a task from this cfs_rq, as
5169                         * p is sleeping when it is within its sched_slice.
5170                         */
5171                        if (task_sleep && se && !throttled_hierarchy(cfs_rq))
5172                                set_next_buddy(se);
5173                        break;
5174                }
5175                flags |= DEQUEUE_SLEEP;
5176        }
5177
5178        for_each_sched_entity(se) {
5179                cfs_rq = cfs_rq_of(se);
5180                cfs_rq->h_nr_running--;
5181
5182                if (cfs_rq_throttled(cfs_rq))
5183                        break;
5184
5185                update_load_avg(cfs_rq, se, UPDATE_TG);
5186                update_cfs_group(se);
5187        }
5188
5189        if (!se)
5190                sub_nr_running(rq, 1);
5191
5192        util_est_dequeue(&rq->cfs, p, task_sleep);
5193        hrtick_update(rq);
5194}
5195
5196#ifdef CONFIG_SMP
5197
5198/* Working cpumask for: load_balance, load_balance_newidle. */
5199DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
5200DEFINE_PER_CPU(cpumask_var_t, select_idle_mask);
5201
5202#ifdef CONFIG_NO_HZ_COMMON
5203/*
5204 * per rq 'load' arrray crap; XXX kill this.
5205 */
5206
5207/*
5208 * The exact cpuload calculated at every tick would be:
5209 *
5210 *   load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
5211 *
5212 * If a CPU misses updates for n ticks (as it was idle) and update gets
5213 * called on the n+1-th tick when CPU may be busy, then we have:
5214 *
5215 *   load_n   = (1 - 1/2^i)^n * load_0
5216 *   load_n+1 = (1 - 1/2^i)   * load_n + (1/2^i) * cur_load
5217 *
5218 * decay_load_missed() below does efficient calculation of
5219 *
5220 *   load' = (1 - 1/2^i)^n * load
5221 *
5222 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
5223 * This allows us to precompute the above in said factors, thereby allowing the
5224 * reduction of an arbitrary n in O(log_2 n) steps. (See also
5225 * fixed_power_int())
5226 *
5227 * The calculation is approximated on a 128 point scale.
5228 */
5229#define DEGRADE_SHIFT           7
5230
5231static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
5232static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
5233        {   0,   0,  0,  0,  0,  0, 0, 0 },
5234        {  64,  32,  8,  0,  0,  0, 0, 0 },
5235        {  96,  72, 40, 12,  1,  0, 0, 0 },
5236        { 112,  98, 75, 43, 15,  1, 0, 0 },
5237        { 120, 112, 98, 76, 45, 16, 2, 0 }
5238};
5239
5240/*
5241 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
5242 * would be when CPU is idle and so we just decay the old load without
5243 * adding any new load.
5244 */
5245static unsigned long
5246decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
5247{
5248        int j = 0;
5249
5250        if (!missed_updates)
5251                return load;
5252
5253        if (missed_updates >= degrade_zero_ticks[idx])
5254                return 0;
5255
5256        if (idx == 1)
5257                return load >> missed_updates;
5258
5259        while (missed_updates) {
5260                if (missed_updates % 2)
5261                        load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
5262
5263                missed_updates >>= 1;
5264                j++;
5265        }
5266        return load;
5267}
5268
5269static struct {
5270        cpumask_var_t idle_cpus_mask;
5271        atomic_t nr_cpus;
5272        int has_blocked;                /* Idle CPUS has blocked load */
5273        unsigned long next_balance;     /* in jiffy units */
5274        unsigned long next_blocked;     /* Next update of blocked load in jiffies */
5275} nohz ____cacheline_aligned;
5276
5277#endif /* CONFIG_NO_HZ_COMMON */
5278
5279/**
5280 * __cpu_load_update - update the rq->cpu_load[] statistics
5281 * @this_rq: The rq to update statistics for
5282 * @this_load: The current load
5283 * @pending_updates: The number of missed updates
5284 *
5285 * Update rq->cpu_load[] statistics. This function is usually called every
5286 * scheduler tick (TICK_NSEC).
5287 *
5288 * This function computes a decaying average:
5289 *
5290 *   load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
5291 *
5292 * Because of NOHZ it might not get called on every tick which gives need for
5293 * the @pending_updates argument.
5294 *
5295 *   load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
5296 *             = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
5297 *             = A * (A * load[i]_n-2 + B) + B
5298 *             = A * (A * (A * load[i]_n-3 + B) + B) + B
5299 *             = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
5300 *             = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
5301 *             = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
5302 *             = (1 - 1/2^i)^n * (load[i]_0 - load) + load
5303 *
5304 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
5305 * any change in load would have resulted in the tick being turned back on.
5306 *
5307 * For regular NOHZ, this reduces to:
5308 *
5309 *   load[i]_n = (1 - 1/2^i)^n * load[i]_0
5310 *
5311 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
5312 * term.
5313 */
5314static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
5315                            unsigned long pending_updates)
5316{
5317        unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
5318        int i, scale;
5319
5320        this_rq->nr_load_updates++;
5321
5322        /* Update our load: */
5323        this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
5324        for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
5325                unsigned long old_load, new_load;
5326
5327                /* scale is effectively 1 << i now, and >> i divides by scale */
5328
5329                old_load = this_rq->cpu_load[i];
5330#ifdef CONFIG_NO_HZ_COMMON
5331                old_load = decay_load_missed(old_load, pending_updates - 1, i);
5332                if (tickless_load) {
5333                        old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
5334                        /*
5335                         * old_load can never be a negative value because a
5336                         * decayed tickless_load cannot be greater than the
5337                         * original tickless_load.
5338                         */
5339                        old_load += tickless_load;
5340                }
5341#endif
5342                new_load = this_load;
5343                /*
5344                 * Round up the averaging division if load is increasing. This
5345                 * prevents us from getting stuck on 9 if the load is 10, for
5346                 * example.
5347                 */
5348                if (new_load > old_load)
5349                        new_load += scale - 1;
5350
5351                this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
5352        }
5353}
5354
5355/* Used instead of source_load when we know the type == 0 */
5356static unsigned long weighted_cpuload(struct rq *rq)
5357{
5358        return cfs_rq_runnable_load_avg(&rq->cfs);
5359}
5360
5361#ifdef CONFIG_NO_HZ_COMMON
5362/*
5363 * There is no sane way to deal with nohz on smp when using jiffies because the
5364 * CPU doing the jiffies update might drift wrt the CPU doing the jiffy reading
5365 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
5366 *
5367 * Therefore we need to avoid the delta approach from the regular tick when
5368 * possible since that would seriously skew the load calculation. This is why we
5369 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
5370 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
5371 * loop exit, nohz_idle_balance, nohz full exit...)
5372 *
5373 * This means we might still be one tick off for nohz periods.
5374 */
5375
5376static void cpu_load_update_nohz(struct rq *this_rq,
5377                                 unsigned long curr_jiffies,
5378                                 unsigned long load)
5379{
5380        unsigned long pending_updates;
5381
5382        pending_updates = curr_jiffies - this_rq->last_load_update_tick;
5383        if (pending_updates) {
5384                this_rq->last_load_update_tick = curr_jiffies;
5385                /*
5386                 * In the regular NOHZ case, we were idle, this means load 0.
5387                 * In the NOHZ_FULL case, we were non-idle, we should consider
5388                 * its weighted load.
5389                 */
5390                cpu_load_update(this_rq, load, pending_updates);
5391        }
5392}
5393
5394/*
5395 * Called from nohz_idle_balance() to update the load ratings before doing the
5396 * idle balance.
5397 */
5398static void cpu_load_update_idle(struct rq *this_rq)
5399{
5400        /*
5401         * bail if there's load or we're actually up-to-date.
5402         */
5403        if (weighted_cpuload(this_rq))
5404                return;
5405
5406        cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
5407}
5408
5409/*
5410 * Record CPU load on nohz entry so we know the tickless load to account
5411 * on nohz exit. cpu_load[0] happens then to be updated more frequently
5412 * than other cpu_load[idx] but it should be fine as cpu_load readers
5413 * shouldn't rely into synchronized cpu_load[*] updates.
5414 */
5415void cpu_load_update_nohz_start(void)
5416{
5417        struct rq *this_rq = this_rq();
5418
5419        /*
5420         * This is all lockless but should be fine. If weighted_cpuload changes
5421         * concurrently we'll exit nohz. And cpu_load write can race with
5422         * cpu_load_update_idle() but both updater would be writing the same.
5423         */
5424        this_rq->cpu_load[0] = weighted_cpuload(this_rq);
5425}
5426
5427/*
5428 * Account the tickless load in the end of a nohz frame.
5429 */
5430void cpu_load_update_nohz_stop(void)
5431{
5432        unsigned long curr_jiffies = READ_ONCE(jiffies);
5433        struct rq *this_rq = this_rq();
5434        unsigned long load;
5435        struct rq_flags rf;
5436
5437        if (curr_jiffies == this_rq->last_load_update_tick)
5438                return;
5439
5440        load = weighted_cpuload(this_rq);
5441        rq_lock(this_rq, &rf);
5442        update_rq_clock(this_rq);
5443        cpu_load_update_nohz(this_rq, curr_jiffies, load);
5444        rq_unlock(this_rq, &rf);
5445}
5446#else /* !CONFIG_NO_HZ_COMMON */
5447static inline void cpu_load_update_nohz(struct rq *this_rq,
5448                                        unsigned long curr_jiffies,
5449                                        unsigned long load) { }
5450#endif /* CONFIG_NO_HZ_COMMON */
5451
5452static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
5453{
5454#ifdef CONFIG_NO_HZ_COMMON
5455        /* See the mess around cpu_load_update_nohz(). */
5456        this_rq->last_load_update_tick = READ_ONCE(jiffies);
5457#endif
5458        cpu_load_update(this_rq, load, 1);
5459}
5460
5461/*
5462 * Called from scheduler_tick()
5463 */
5464void cpu_load_update_active(struct rq *this_rq)
5465{
5466        unsigned long load = weighted_cpuload(this_rq);
5467
5468        if (tick_nohz_tick_stopped())
5469                cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
5470        else
5471                cpu_load_update_periodic(this_rq, load);
5472}
5473
5474/*
5475 * Return a low guess at the load of a migration-source CPU weighted
5476 * according to the scheduling class and "nice" value.
5477 *
5478 * We want to under-estimate the load of migration sources, to
5479 * balance conservatively.
5480 */
5481static unsigned long source_load(int cpu, int type)
5482{
5483        struct rq *rq = cpu_rq(cpu);
5484        unsigned long total = weighted_cpuload(rq);
5485
5486        if (type == 0 || !sched_feat(LB_BIAS))
5487                return total;
5488
5489        return min(rq->cpu_load[type-1], total);
5490}
5491
5492/*
5493 * Return a high guess at the load of a migration-target CPU weighted
5494 * according to the scheduling class and "nice" value.
5495 */
5496static unsigned long target_load(int cpu, int type)
5497{
5498        struct rq *rq = cpu_rq(cpu);
5499        unsigned long total = weighted_cpuload(rq);
5500
5501        if (type == 0 || !sched_feat(LB_BIAS))
5502                return total;
5503
5504        return max(rq->cpu_load[type-1], total);
5505}
5506
5507static unsigned long capacity_of(int cpu)
5508{
5509        return cpu_rq(cpu)->cpu_capacity;
5510}
5511
5512static unsigned long capacity_orig_of(int cpu)
5513{
5514        return cpu_rq(cpu)->cpu_capacity_orig;
5515}
5516
5517static unsigned long cpu_avg_load_per_task(int cpu)
5518{
5519        struct rq *rq = cpu_rq(cpu);
5520        unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
5521        unsigned long load_avg = weighted_cpuload(rq);
5522
5523        if (nr_running)
5524                return load_avg / nr_running;
5525
5526        return 0;
5527}
5528
5529static void record_wakee(struct task_struct *p)
5530{
5531        /*
5532         * Only decay a single time; tasks that have less then 1 wakeup per
5533         * jiffy will not have built up many flips.
5534         */
5535        if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5536                current->wakee_flips >>= 1;
5537                current->wakee_flip_decay_ts = jiffies;
5538        }
5539
5540        if (current->last_wakee != p) {
5541                current->last_wakee = p;
5542                current->wakee_flips++;
5543        }
5544}
5545
5546/*
5547 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
5548 *
5549 * A waker of many should wake a different task than the one last awakened
5550 * at a frequency roughly N times higher than one of its wakees.
5551 *
5552 * In order to determine whether we should let the load spread vs consolidating
5553 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5554 * partner, and a factor of lls_size higher frequency in the other.
5555 *
5556 * With both conditions met, we can be relatively sure that the relationship is
5557 * non-monogamous, with partner count exceeding socket size.
5558 *
5559 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5560 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5561 * socket size.
5562 */
5563static int wake_wide(struct task_struct *p)
5564{
5565        unsigned int master = current->wakee_flips;
5566        unsigned int slave = p->wakee_flips;
5567        int factor = this_cpu_read(sd_llc_size);
5568
5569        if (master < slave)
5570                swap(master, slave);
5571        if (slave < factor || master < slave * factor)
5572                return 0;
5573        return 1;
5574}
5575
5576/*
5577 * The purpose of wake_affine() is to quickly determine on which CPU we can run
5578 * soonest. For the purpose of speed we only consider the waking and previous
5579 * CPU.
5580 *
5581 * wake_affine_idle() - only considers 'now', it check if the waking CPU is
5582 *                      cache-affine and is (or will be) idle.
5583 *
5584 * wake_affine_weight() - considers the weight to reflect the average
5585 *                        scheduling latency of the CPUs. This seems to work
5586 *                        for the overloaded case.
5587 */
5588static int
5589wake_affine_idle(int this_cpu, int prev_cpu, int sync)
5590{
5591        /*
5592         * If this_cpu is idle, it implies the wakeup is from interrupt
5593         * context. Only allow the move if cache is shared. Otherwise an
5594         * interrupt intensive workload could force all tasks onto one
5595         * node depending on the IO topology or IRQ affinity settings.
5596         *
5597         * If the prev_cpu is idle and cache affine then avoid a migration.
5598         * There is no guarantee that the cache hot data from an interrupt
5599         * is more important than cache hot data on the prev_cpu and from
5600         * a cpufreq perspective, it's better to have higher utilisation
5601         * on one CPU.
5602         */
5603        if (available_idle_cpu(this_cpu) && cpus_share_cache(this_cpu, prev_cpu))
5604                return available_idle_cpu(prev_cpu) ? prev_cpu : this_cpu;
5605
5606        if (sync && cpu_rq(this_cpu)->nr_running == 1)
5607                return this_cpu;
5608
5609        return nr_cpumask_bits;
5610}
5611
5612static int
5613wake_affine_weight(struct sched_domain *sd, struct task_struct *p,
5614                   int this_cpu, int prev_cpu, int sync)
5615{
5616        s64 this_eff_load, prev_eff_load;
5617        unsigned long task_load;
5618
5619        this_eff_load = target_load(this_cpu, sd->wake_idx);
5620
5621        if (sync) {
5622                unsigned long current_load = task_h_load(current);
5623
5624                if (current_load > this_eff_load)
5625                        return this_cpu;
5626
5627                this_eff_load -= current_load;
5628        }
5629
5630        task_load = task_h_load(p);
5631
5632        this_eff_load += task_load;
5633        if (sched_feat(WA_BIAS))
5634                this_eff_load *= 100;
5635        this_eff_load *= capacity_of(prev_cpu);
5636
5637        prev_eff_load = source_load(prev_cpu, sd->wake_idx);
5638        prev_eff_load -= task_load;
5639        if (sched_feat(WA_BIAS))
5640                prev_eff_load *= 100 + (sd->imbalance_pct - 100) / 2;
5641        prev_eff_load *= capacity_of(this_cpu);
5642
5643        /*
5644         * If sync, adjust the weight of prev_eff_load such that if
5645         * prev_eff == this_eff that select_idle_sibling() will consider
5646         * stacking the wakee on top of the waker if no other CPU is
5647         * idle.
5648         */
5649        if (sync)
5650                prev_eff_load += 1;
5651
5652        return this_eff_load < prev_eff_load ? this_cpu : nr_cpumask_bits;
5653}
5654
5655static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5656                       int this_cpu, int prev_cpu, int sync)
5657{
5658        int target = nr_cpumask_bits;
5659
5660        if (sched_feat(WA_IDLE))
5661                target = wake_affine_idle(this_cpu, prev_cpu, sync);
5662
5663        if (sched_feat(WA_WEIGHT) && target == nr_cpumask_bits)
5664                target = wake_affine_weight(sd, p, this_cpu, prev_cpu, sync);
5665
5666        schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
5667        if (target == nr_cpumask_bits)
5668                return prev_cpu;
5669
5670        schedstat_inc(sd->ttwu_move_affine);
5671        schedstat_inc(p->se.statistics.nr_wakeups_affine);
5672        return target;
5673}
5674
5675static unsigned long cpu_util_wake(int cpu, struct task_struct *p);
5676
5677static unsigned long capacity_spare_wake(int cpu, struct task_struct *p)
5678{
5679        return max_t(long, capacity_of(cpu) - cpu_util_wake(cpu, p), 0);
5680}
5681
5682/*
5683 * find_idlest_group finds and returns the least busy CPU group within the
5684 * domain.
5685 *
5686 * Assumes p is allowed on at least one CPU in sd.
5687 */
5688static struct sched_group *
5689find_idlest_group(struct sched_domain *sd, struct task_struct *p,
5690                  int this_cpu, int sd_flag)
5691{
5692        struct sched_group *idlest = NULL, *group = sd->groups;
5693        struct sched_group *most_spare_sg = NULL;
5694        unsigned long min_runnable_load = ULONG_MAX;
5695        unsigned long this_runnable_load = ULONG_MAX;
5696        unsigned long min_avg_load = ULONG_MAX, this_avg_load = ULONG_MAX;
5697        unsigned long most_spare = 0, this_spare = 0;
5698        int load_idx = sd->forkexec_idx;
5699        int imbalance_scale = 100 + (sd->imbalance_pct-100)/2;
5700        unsigned long imbalance = scale_load_down(NICE_0_LOAD) *
5701                                (sd->imbalance_pct-100) / 100;
5702
5703        if (sd_flag & SD_BALANCE_WAKE)
5704                load_idx = sd->wake_idx;
5705
5706        do {
5707                unsigned long load, avg_load, runnable_load;
5708                unsigned long spare_cap, max_spare_cap;
5709                int local_group;
5710                int i;
5711
5712                /* Skip over this group if it has no CPUs allowed */
5713                if (!cpumask_intersects(sched_group_span(group),
5714                                        &p->cpus_allowed))
5715                        continue;
5716
5717                local_group = cpumask_test_cpu(this_cpu,
5718                                               sched_group_span(group));
5719
5720                /*
5721                 * Tally up the load of all CPUs in the group and find
5722                 * the group containing the CPU with most spare capacity.
5723                 */
5724                avg_load = 0;
5725                runnable_load = 0;
5726                max_spare_cap = 0;
5727
5728                for_each_cpu(i, sched_group_span(group)) {
5729                        /* Bias balancing toward CPUs of our domain */
5730                        if (local_group)
5731                                load = source_load(i, load_idx);
5732                        else
5733                                load = target_load(i, load_idx);
5734
5735                        runnable_load += load;
5736
5737                        avg_load += cfs_rq_load_avg(&cpu_rq(i)->cfs);
5738
5739                        spare_cap = capacity_spare_wake(i, p);
5740
5741                        if (spare_cap > max_spare_cap)
5742                                max_spare_cap = spare_cap;
5743                }
5744
5745                /* Adjust by relative CPU capacity of the group */
5746                avg_load = (avg_load * SCHED_CAPACITY_SCALE) /
5747                                        group->sgc->capacity;
5748                runnable_load = (runnable_load * SCHED_CAPACITY_SCALE) /
5749                                        group->sgc->capacity;
5750
5751                if (local_group) {
5752                        this_runnable_load = runnable_load;
5753                        this_avg_load = avg_load;
5754                        this_spare = max_spare_cap;
5755                } else {
5756                        if (min_runnable_load > (runnable_load + imbalance)) {
5757                                /*
5758                                 * The runnable load is significantly smaller
5759                                 * so we can pick this new CPU:
5760                                 */
5761                                min_runnable_load = runnable_load;
5762                                min_avg_load = avg_load;
5763                                idlest = group;
5764                        } else if ((runnable_load < (min_runnable_load + imbalance)) &&
5765                                   (100*min_avg_load > imbalance_scale*avg_load)) {
5766                                /*
5767                                 * The runnable loads are close so take the
5768                                 * blocked load into account through avg_load:
5769                                 */
5770                                min_avg_load = avg_load;
5771                                idlest = group;
5772                        }
5773
5774                        if (most_spare < max_spare_cap) {
5775                                most_spare = max_spare_cap;
5776                                most_spare_sg = group;
5777                        }
5778                }
5779        } while (group = group->next, group != sd->groups);
5780
5781        /*
5782         * The cross-over point between using spare capacity or least load
5783         * is too conservative for high utilization tasks on partially
5784         * utilized systems if we require spare_capacity > task_util(p),
5785         * so we allow for some task stuffing by using
5786         * spare_capacity > task_util(p)/2.
5787         *
5788         * Spare capacity can't be used for fork because the utilization has
5789         * not been set yet, we must first select a rq to compute the initial
5790         * utilization.
5791         */
5792        if (sd_flag & SD_BALANCE_FORK)
5793                goto skip_spare;
5794
5795        if (this_spare > task_util(p) / 2 &&
5796            imbalance_scale*this_spare > 100*most_spare)
5797                return NULL;
5798
5799        if (most_spare > task_util(p) / 2)
5800                return most_spare_sg;
5801
5802skip_spare:
5803        if (!idlest)
5804                return NULL;
5805
5806        /*
5807         * When comparing groups across NUMA domains, it's possible for the
5808         * local domain to be very lightly loaded relative to the remote
5809         * domains but "imbalance" skews the comparison making remote CPUs
5810         * look much more favourable. When considering cross-domain, add
5811         * imbalance to the runnable load on the remote node and consider
5812         * staying local.
5813         */
5814        if ((sd->flags & SD_NUMA) &&
5815            min_runnable_load + imbalance >= this_runnable_load)
5816                return NULL;
5817
5818        if (min_runnable_load > (this_runnable_load + imbalance))
5819                return NULL;
5820
5821        if ((this_runnable_load < (min_runnable_load + imbalance)) &&
5822             (100*this_avg_load < imbalance_scale*min_avg_load))
5823                return NULL;
5824
5825        return idlest;
5826}
5827
5828/*
5829 * find_idlest_group_cpu - find the idlest CPU among the CPUs in the group.
5830 */
5831static int
5832find_idlest_group_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5833{
5834        unsigned long load, min_load = ULONG_MAX;
5835        unsigned int min_exit_latency = UINT_MAX;
5836        u64 latest_idle_timestamp = 0;
5837        int least_loaded_cpu = this_cpu;
5838        int shallowest_idle_cpu = -1;
5839        int i;
5840
5841        /* Check if we have any choice: */
5842        if (group->group_weight == 1)
5843                return cpumask_first(sched_group_span(group));
5844
5845        /* Traverse only the allowed CPUs */
5846        for_each_cpu_and(i, sched_group_span(group), &p->cpus_allowed) {
5847                if (available_idle_cpu(i)) {
5848                        struct rq *rq = cpu_rq(i);
5849                        struct cpuidle_state *idle = idle_get_state(rq);
5850                        if (idle && idle->exit_latency < min_exit_latency) {
5851                                /*
5852                                 * We give priority to a CPU whose idle state
5853                                 * has the smallest exit latency irrespective
5854                                 * of any idle timestamp.
5855                                 */
5856                                min_exit_latency = idle->exit_latency;
5857                                latest_idle_timestamp = rq->idle_stamp;
5858                                shallowest_idle_cpu = i;
5859                        } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5860                                   rq->idle_stamp > latest_idle_timestamp) {
5861                                /*
5862                                 * If equal or no active idle state, then
5863                                 * the most recently idled CPU might have
5864                                 * a warmer cache.
5865                                 */
5866                                latest_idle_timestamp = rq->idle_stamp;
5867                                shallowest_idle_cpu = i;
5868                        }
5869                } else if (shallowest_idle_cpu == -1) {
5870                        load = weighted_cpuload(cpu_rq(i));
5871                        if (load < min_load) {
5872                                min_load = load;
5873                                least_loaded_cpu = i;
5874                        }
5875                }
5876        }
5877
5878        return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
5879}
5880
5881static inline int find_idlest_cpu(struct sched_domain *sd, struct task_struct *p,
5882                                  int cpu, int prev_cpu, int sd_flag)
5883{
5884        int new_cpu = cpu;
5885
5886        if (!cpumask_intersects(sched_domain_span(sd), &p->cpus_allowed))
5887                return prev_cpu;
5888
5889        /*
5890         * We need task's util for capacity_spare_wake, sync it up to prev_cpu's
5891         * last_update_time.
5892         */
5893        if (!(sd_flag & SD_BALANCE_FORK))
5894                sync_entity_load_avg(&p->se);
5895
5896        while (sd) {
5897                struct sched_group *group;
5898                struct sched_domain *tmp;
5899                int weight;
5900
5901                if (!(sd->flags & sd_flag)) {
5902                        sd = sd->child;
5903                        continue;
5904                }
5905
5906                group = find_idlest_group(sd, p, cpu, sd_flag);
5907                if (!group) {
5908                        sd = sd->child;
5909                        continue;
5910                }
5911
5912                new_cpu = find_idlest_group_cpu(group, p, cpu);
5913                if (new_cpu == cpu) {
5914                        /* Now try balancing at a lower domain level of 'cpu': */
5915                        sd = sd->child;
5916                        continue;
5917                }
5918
5919                /* Now try balancing at a lower domain level of 'new_cpu': */
5920                cpu = new_cpu;
5921                weight = sd->span_weight;
5922                sd = NULL;
5923                for_each_domain(cpu, tmp) {
5924                        if (weight <= tmp->span_weight)
5925                                break;
5926                        if (tmp->flags & sd_flag)
5927                                sd = tmp;
5928                }
5929        }
5930
5931        return new_cpu;
5932}
5933
5934#ifdef CONFIG_SCHED_SMT
5935DEFINE_STATIC_KEY_FALSE(sched_smt_present);
5936
5937static inline void set_idle_cores(int cpu, int val)
5938{
5939        struct sched_domain_shared *sds;
5940
5941        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5942        if (sds)
5943                WRITE_ONCE(sds->has_idle_cores, val);
5944}
5945
5946static inline bool test_idle_cores(int cpu, bool def)
5947{
5948        struct sched_domain_shared *sds;
5949
5950        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
5951        if (sds)
5952                return READ_ONCE(sds->has_idle_cores);
5953
5954        return def;
5955}
5956
5957/*
5958 * Scans the local SMT mask to see if the entire core is idle, and records this
5959 * information in sd_llc_shared->has_idle_cores.
5960 *
5961 * Since SMT siblings share all cache levels, inspecting this limited remote
5962 * state should be fairly cheap.
5963 */
5964void __update_idle_core(struct rq *rq)
5965{
5966        int core = cpu_of(rq);
5967        int cpu;
5968
5969        rcu_read_lock();
5970        if (test_idle_cores(core, true))
5971                goto unlock;
5972
5973        for_each_cpu(cpu, cpu_smt_mask(core)) {
5974                if (cpu == core)
5975                        continue;
5976
5977                if (!available_idle_cpu(cpu))
5978                        goto unlock;
5979        }
5980
5981        set_idle_cores(core, 1);
5982unlock:
5983        rcu_read_unlock();
5984}
5985
5986/*
5987 * Scan the entire LLC domain for idle cores; this dynamically switches off if
5988 * there are no idle cores left in the system; tracked through
5989 * sd_llc->shared->has_idle_cores and enabled through update_idle_core() above.
5990 */
5991static int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
5992{
5993        struct cpumask *cpus = this_cpu_cpumask_var_ptr(select_idle_mask);
5994        int core, cpu;
5995
5996        if (!static_branch_likely(&sched_smt_present))
5997                return -1;
5998
5999        if (!test_idle_cores(target, false))
6000                return -1;
6001
6002        cpumask_and(cpus, sched_domain_span(sd), &p->cpus_allowed);
6003
6004        for_each_cpu_wrap(core, cpus, target) {
6005                bool idle = true;
6006
6007                for_each_cpu(cpu, cpu_smt_mask(core)) {
6008                        cpumask_clear_cpu(cpu, cpus);
6009                        if (!available_idle_cpu(cpu))
6010                                idle = false;
6011                }
6012
6013                if (idle)
6014                        return core;
6015        }
6016
6017        /*
6018         * Failed to find an idle core; stop looking for one.
6019         */
6020        set_idle_cores(target, 0);
6021
6022        return -1;
6023}
6024
6025/*
6026 * Scan the local SMT mask for idle CPUs.
6027 */
6028static int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6029{
6030        int cpu;
6031
6032        if (!static_branch_likely(&sched_smt_present))
6033                return -1;
6034
6035        for_each_cpu(cpu, cpu_smt_mask(target)) {
6036                if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6037                        continue;
6038                if (available_idle_cpu(cpu))
6039                        return cpu;
6040        }
6041
6042        return -1;
6043}
6044
6045#else /* CONFIG_SCHED_SMT */
6046
6047static inline int select_idle_core(struct task_struct *p, struct sched_domain *sd, int target)
6048{
6049        return -1;
6050}
6051
6052static inline int select_idle_smt(struct task_struct *p, struct sched_domain *sd, int target)
6053{
6054        return -1;
6055}
6056
6057#endif /* CONFIG_SCHED_SMT */
6058
6059/*
6060 * Scan the LLC domain for idle CPUs; this is dynamically regulated by
6061 * comparing the average scan cost (tracked in sd->avg_scan_cost) against the
6062 * average idle time for this rq (as found in rq->avg_idle).
6063 */
6064static int select_idle_cpu(struct task_struct *p, struct sched_domain *sd, int target)
6065{
6066        struct sched_domain *this_sd;
6067        u64 avg_cost, avg_idle;
6068        u64 time, cost;
6069        s64 delta;
6070        int cpu, nr = INT_MAX;
6071
6072        this_sd = rcu_dereference(*this_cpu_ptr(&sd_llc));
6073        if (!this_sd)
6074                return -1;
6075
6076        /*
6077         * Due to large variance we need a large fuzz factor; hackbench in
6078         * particularly is sensitive here.
6079         */
6080        avg_idle = this_rq()->avg_idle / 512;
6081        avg_cost = this_sd->avg_scan_cost + 1;
6082
6083        if (sched_feat(SIS_AVG_CPU) && avg_idle < avg_cost)
6084                return -1;
6085
6086        if (sched_feat(SIS_PROP)) {
6087                u64 span_avg = sd->span_weight * avg_idle;
6088                if (span_avg > 4*avg_cost)
6089                        nr = div_u64(span_avg, avg_cost);
6090                else
6091                        nr = 4;
6092        }
6093
6094        time = local_clock();
6095
6096        for_each_cpu_wrap(cpu, sched_domain_span(sd), target) {
6097                if (!--nr)
6098                        return -1;
6099                if (!cpumask_test_cpu(cpu, &p->cpus_allowed))
6100                        continue;
6101                if (available_idle_cpu(cpu))
6102                        break;
6103        }
6104
6105        time = local_clock() - time;
6106        cost = this_sd->avg_scan_cost;
6107        delta = (s64)(time - cost) / 8;
6108        this_sd->avg_scan_cost += delta;
6109
6110        return cpu;
6111}
6112
6113/*
6114 * Try and locate an idle core/thread in the LLC cache domain.
6115 */
6116static int select_idle_sibling(struct task_struct *p, int prev, int target)
6117{
6118        struct sched_domain *sd;
6119        int i, recent_used_cpu;
6120
6121        if (available_idle_cpu(target))
6122                return target;
6123
6124        /*
6125         * If the previous CPU is cache affine and idle, don't be stupid:
6126         */
6127        if (prev != target && cpus_share_cache(prev, target) && available_idle_cpu(prev))
6128                return prev;
6129
6130        /* Check a recently used CPU as a potential idle candidate: */
6131        recent_used_cpu = p->recent_used_cpu;
6132        if (recent_used_cpu != prev &&
6133            recent_used_cpu != target &&
6134            cpus_share_cache(recent_used_cpu, target) &&
6135            available_idle_cpu(recent_used_cpu) &&
6136            cpumask_test_cpu(p->recent_used_cpu, &p->cpus_allowed)) {
6137                /*
6138                 * Replace recent_used_cpu with prev as it is a potential
6139                 * candidate for the next wake:
6140                 */
6141                p->recent_used_cpu = prev;
6142                return recent_used_cpu;
6143        }
6144
6145        sd = rcu_dereference(per_cpu(sd_llc, target));
6146        if (!sd)
6147                return target;
6148
6149        i = select_idle_core(p, sd, target);
6150        if ((unsigned)i < nr_cpumask_bits)
6151                return i;
6152
6153        i = select_idle_cpu(p, sd, target);
6154        if ((unsigned)i < nr_cpumask_bits)
6155                return i;
6156
6157        i = select_idle_smt(p, sd, target);
6158        if ((unsigned)i < nr_cpumask_bits)
6159                return i;
6160
6161        return target;
6162}
6163
6164/**
6165 * Amount of capacity of a CPU that is (estimated to be) used by CFS tasks
6166 * @cpu: the CPU to get the utilization of
6167 *
6168 * The unit of the return value must be the one of capacity so we can compare
6169 * the utilization with the capacity of the CPU that is available for CFS task
6170 * (ie cpu_capacity).
6171 *
6172 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
6173 * recent utilization of currently non-runnable tasks on a CPU. It represents
6174 * the amount of utilization of a CPU in the range [0..capacity_orig] where
6175 * capacity_orig is the cpu_capacity available at the highest frequency
6176 * (arch_scale_freq_capacity()).
6177 * The utilization of a CPU converges towards a sum equal to or less than the
6178 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
6179 * the running time on this CPU scaled by capacity_curr.
6180 *
6181 * The estimated utilization of a CPU is defined to be the maximum between its
6182 * cfs_rq.avg.util_avg and the sum of the estimated utilization of the tasks
6183 * currently RUNNABLE on that CPU.
6184 * This allows to properly represent the expected utilization of a CPU which
6185 * has just got a big task running since a long sleep period. At the same time
6186 * however it preserves the benefits of the "blocked utilization" in
6187 * describing the potential for other tasks waking up on the same CPU.
6188 *
6189 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
6190 * higher than capacity_orig because of unfortunate rounding in
6191 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
6192 * the average stabilizes with the new running time. We need to check that the
6193 * utilization stays within the range of [0..capacity_orig] and cap it if
6194 * necessary. Without utilization capping, a group could be seen as overloaded
6195 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
6196 * available capacity. We allow utilization to overshoot capacity_curr (but not
6197 * capacity_orig) as it useful for predicting the capacity required after task
6198 * migrations (scheduler-driven DVFS).
6199 *
6200 * Return: the (estimated) utilization for the specified CPU
6201 */
6202static inline unsigned long cpu_util(int cpu)
6203{
6204        struct cfs_rq *cfs_rq;
6205        unsigned int util;
6206
6207        cfs_rq = &cpu_rq(cpu)->cfs;
6208        util = READ_ONCE(cfs_rq->avg.util_avg);
6209
6210        if (sched_feat(UTIL_EST))
6211                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6212
6213        return min_t(unsigned long, util, capacity_orig_of(cpu));
6214}
6215
6216/*
6217 * cpu_util_wake: Compute CPU utilization with any contributions from
6218 * the waking task p removed.
6219 */
6220static unsigned long cpu_util_wake(int cpu, struct task_struct *p)
6221{
6222        struct cfs_rq *cfs_rq;
6223        unsigned int util;
6224
6225        /* Task has no contribution or is new */
6226        if (cpu != task_cpu(p) || !READ_ONCE(p->se.avg.last_update_time))
6227                return cpu_util(cpu);
6228
6229        cfs_rq = &cpu_rq(cpu)->cfs;
6230        util = READ_ONCE(cfs_rq->avg.util_avg);
6231
6232        /* Discount task's blocked util from CPU's util */
6233        util -= min_t(unsigned int, util, task_util(p));
6234
6235        /*
6236         * Covered cases:
6237         *
6238         * a) if *p is the only task sleeping on this CPU, then:
6239         *      cpu_util (== task_util) > util_est (== 0)
6240         *    and thus we return:
6241         *      cpu_util_wake = (cpu_util - task_util) = 0
6242         *
6243         * b) if other tasks are SLEEPING on this CPU, which is now exiting
6244         *    IDLE, then:
6245         *      cpu_util >= task_util
6246         *      cpu_util > util_est (== 0)
6247         *    and thus we discount *p's blocked utilization to return:
6248         *      cpu_util_wake = (cpu_util - task_util) >= 0
6249         *
6250         * c) if other tasks are RUNNABLE on that CPU and
6251         *      util_est > cpu_util
6252         *    then we use util_est since it returns a more restrictive
6253         *    estimation of the spare capacity on that CPU, by just
6254         *    considering the expected utilization of tasks already
6255         *    runnable on that CPU.
6256         *
6257         * Cases a) and b) are covered by the above code, while case c) is
6258         * covered by the following code when estimated utilization is
6259         * enabled.
6260         */
6261        if (sched_feat(UTIL_EST))
6262                util = max(util, READ_ONCE(cfs_rq->avg.util_est.enqueued));
6263
6264        /*
6265         * Utilization (estimated) can exceed the CPU capacity, thus let's
6266         * clamp to the maximum CPU capacity to ensure consistency with
6267         * the cpu_util call.
6268         */
6269        return min_t(unsigned long, util, capacity_orig_of(cpu));
6270}
6271
6272/*
6273 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
6274 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
6275 *
6276 * In that case WAKE_AFFINE doesn't make sense and we'll let
6277 * BALANCE_WAKE sort things out.
6278 */
6279static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
6280{
6281        long min_cap, max_cap;
6282
6283        min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
6284        max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
6285
6286        /* Minimum capacity is close to max, no need to abort wake_affine */
6287        if (max_cap - min_cap < max_cap >> 3)
6288                return 0;
6289
6290        /* Bring task utilization in sync with prev_cpu */
6291        sync_entity_load_avg(&p->se);
6292
6293        return min_cap * 1024 < task_util(p) * capacity_margin;
6294}
6295
6296/*
6297 * select_task_rq_fair: Select target runqueue for the waking task in domains
6298 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
6299 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
6300 *
6301 * Balances load by selecting the idlest CPU in the idlest group, or under
6302 * certain conditions an idle sibling CPU if the domain has SD_WAKE_AFFINE set.
6303 *
6304 * Returns the target CPU number.
6305 *
6306 * preempt must be disabled.
6307 */
6308static int
6309select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
6310{
6311        struct sched_domain *tmp, *sd = NULL;
6312        int cpu = smp_processor_id();
6313        int new_cpu = prev_cpu;
6314        int want_affine = 0;
6315        int sync = (wake_flags & WF_SYNC) && !(current->flags & PF_EXITING);
6316
6317        if (sd_flag & SD_BALANCE_WAKE) {
6318                record_wakee(p);
6319                want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
6320                              && cpumask_test_cpu(cpu, &p->cpus_allowed);
6321        }
6322
6323        rcu_read_lock();
6324        for_each_domain(cpu, tmp) {
6325                if (!(tmp->flags & SD_LOAD_BALANCE))
6326                        break;
6327
6328                /*
6329                 * If both 'cpu' and 'prev_cpu' are part of this domain,
6330                 * cpu is a valid SD_WAKE_AFFINE target.
6331                 */
6332                if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
6333                    cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
6334                        if (cpu != prev_cpu)
6335                                new_cpu = wake_affine(tmp, p, cpu, prev_cpu, sync);
6336
6337                        sd = NULL; /* Prefer wake_affine over balance flags */
6338                        break;
6339                }
6340
6341                if (tmp->flags & sd_flag)
6342                        sd = tmp;
6343                else if (!want_affine)
6344                        break;
6345        }
6346
6347        if (unlikely(sd)) {
6348                /* Slow path */
6349                new_cpu = find_idlest_cpu(sd, p, cpu, prev_cpu, sd_flag);
6350        } else if (sd_flag & SD_BALANCE_WAKE) { /* XXX always ? */
6351                /* Fast path */
6352
6353                new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
6354
6355                if (want_affine)
6356                        current->recent_used_cpu = cpu;
6357        }
6358        rcu_read_unlock();
6359
6360        return new_cpu;
6361}
6362
6363static void detach_entity_cfs_rq(struct sched_entity *se);
6364
6365/*
6366 * Called immediately before a task is migrated to a new CPU; task_cpu(p) and
6367 * cfs_rq_of(p) references at time of call are still valid and identify the
6368 * previous CPU. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
6369 */
6370static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
6371{
6372        /*
6373         * As blocked tasks retain absolute vruntime the migration needs to
6374         * deal with this by subtracting the old and adding the new
6375         * min_vruntime -- the latter is done by enqueue_entity() when placing
6376         * the task on the new runqueue.
6377         */
6378        if (p->state == TASK_WAKING) {
6379                struct sched_entity *se = &p->se;
6380                struct cfs_rq *cfs_rq = cfs_rq_of(se);
6381                u64 min_vruntime;
6382
6383#ifndef CONFIG_64BIT
6384                u64 min_vruntime_copy;
6385
6386                do {
6387                        min_vruntime_copy = cfs_rq->min_vruntime_copy;
6388                        smp_rmb();
6389                        min_vruntime = cfs_rq->min_vruntime;
6390                } while (min_vruntime != min_vruntime_copy);
6391#else
6392                min_vruntime = cfs_rq->min_vruntime;
6393#endif
6394
6395                se->vruntime -= min_vruntime;
6396        }
6397
6398        if (p->on_rq == TASK_ON_RQ_MIGRATING) {
6399                /*
6400                 * In case of TASK_ON_RQ_MIGRATING we in fact hold the 'old'
6401                 * rq->lock and can modify state directly.
6402                 */
6403                lockdep_assert_held(&task_rq(p)->lock);
6404                detach_entity_cfs_rq(&p->se);
6405
6406        } else {
6407                /*
6408                 * We are supposed to update the task to "current" time, then
6409                 * its up to date and ready to go to new CPU/cfs_rq. But we
6410                 * have difficulty in getting what current time is, so simply
6411                 * throw away the out-of-date time. This will result in the
6412                 * wakee task is less decayed, but giving the wakee more load
6413                 * sounds not bad.
6414                 */
6415                remove_entity_load_avg(&p->se);
6416        }
6417
6418        /* Tell new CPU we are migrated */
6419        p->se.avg.last_update_time = 0;
6420
6421        /* We have migrated, no longer consider this task hot */
6422        p->se.exec_start = 0;
6423
6424        update_scan_period(p, new_cpu);
6425}
6426
6427static void task_dead_fair(struct task_struct *p)
6428{
6429        remove_entity_load_avg(&p->se);
6430}
6431#endif /* CONFIG_SMP */
6432
6433static unsigned long wakeup_gran(struct sched_entity *se)
6434{
6435        unsigned long gran = sysctl_sched_wakeup_granularity;
6436
6437        /*
6438         * Since its curr running now, convert the gran from real-time
6439         * to virtual-time in his units.
6440         *
6441         * By using 'se' instead of 'curr' we penalize light tasks, so
6442         * they get preempted easier. That is, if 'se' < 'curr' then
6443         * the resulting gran will be larger, therefore penalizing the
6444         * lighter, if otoh 'se' > 'curr' then the resulting gran will
6445         * be smaller, again penalizing the lighter task.
6446         *
6447         * This is especially important for buddies when the leftmost
6448         * task is higher priority than the buddy.
6449         */
6450        return calc_delta_fair(gran, se);
6451}
6452
6453/*
6454 * Should 'se' preempt 'curr'.
6455 *
6456 *             |s1
6457 *        |s2
6458 *   |s3
6459 *         g
6460 *      |<--->|c
6461 *
6462 *  w(c, s1) = -1
6463 *  w(c, s2) =  0
6464 *  w(c, s3) =  1
6465 *
6466 */
6467static int
6468wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
6469{
6470        s64 gran, vdiff = curr->vruntime - se->vruntime;
6471
6472        if (vdiff <= 0)
6473                return -1;
6474
6475        gran = wakeup_gran(se);
6476        if (vdiff > gran)
6477                return 1;
6478
6479        return 0;
6480}
6481
6482static void set_last_buddy(struct sched_entity *se)
6483{
6484        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6485                return;
6486
6487        for_each_sched_entity(se) {
6488                if (SCHED_WARN_ON(!se->on_rq))
6489                        return;
6490                cfs_rq_of(se)->last = se;
6491        }
6492}
6493
6494static void set_next_buddy(struct sched_entity *se)
6495{
6496        if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
6497                return;
6498
6499        for_each_sched_entity(se) {
6500                if (SCHED_WARN_ON(!se->on_rq))
6501                        return;
6502                cfs_rq_of(se)->next = se;
6503        }
6504}
6505
6506static void set_skip_buddy(struct sched_entity *se)
6507{
6508        for_each_sched_entity(se)
6509                cfs_rq_of(se)->skip = se;
6510}
6511
6512/*
6513 * Preempt the current task with a newly woken task if needed:
6514 */
6515static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
6516{
6517        struct task_struct *curr = rq->curr;
6518        struct sched_entity *se = &curr->se, *pse = &p->se;
6519        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6520        int scale = cfs_rq->nr_running >= sched_nr_latency;
6521        int next_buddy_marked = 0;
6522
6523        if (unlikely(se == pse))
6524                return;
6525
6526        /*
6527         * This is possible from callers such as attach_tasks(), in which we
6528         * unconditionally check_prempt_curr() after an enqueue (which may have
6529         * lead to a throttle).  This both saves work and prevents false
6530         * next-buddy nomination below.
6531         */
6532        if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
6533                return;
6534
6535        if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
6536                set_next_buddy(pse);
6537                next_buddy_marked = 1;
6538        }
6539
6540        /*
6541         * We can come here with TIF_NEED_RESCHED already set from new task
6542         * wake up path.
6543         *
6544         * Note: this also catches the edge-case of curr being in a throttled
6545         * group (e.g. via set_curr_task), since update_curr() (in the
6546         * enqueue of curr) will have resulted in resched being set.  This
6547         * prevents us from potentially nominating it as a false LAST_BUDDY
6548         * below.
6549         */
6550        if (test_tsk_need_resched(curr))
6551                return;
6552
6553        /* Idle tasks are by definition preempted by non-idle tasks. */
6554        if (unlikely(curr->policy == SCHED_IDLE) &&
6555            likely(p->policy != SCHED_IDLE))
6556                goto preempt;
6557
6558        /*
6559         * Batch and idle tasks do not preempt non-idle tasks (their preemption
6560         * is driven by the tick):
6561         */
6562        if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
6563                return;
6564
6565        find_matching_se(&se, &pse);
6566        update_curr(cfs_rq_of(se));
6567        BUG_ON(!pse);
6568        if (wakeup_preempt_entity(se, pse) == 1) {
6569                /*
6570                 * Bias pick_next to pick the sched entity that is
6571                 * triggering this preemption.
6572                 */
6573                if (!next_buddy_marked)
6574                        set_next_buddy(pse);
6575                goto preempt;
6576        }
6577
6578        return;
6579
6580preempt:
6581        resched_curr(rq);
6582        /*
6583         * Only set the backward buddy when the current task is still
6584         * on the rq. This can happen when a wakeup gets interleaved
6585         * with schedule on the ->pre_schedule() or idle_balance()
6586         * point, either of which can * drop the rq lock.
6587         *
6588         * Also, during early boot the idle thread is in the fair class,
6589         * for obvious reasons its a bad idea to schedule back to it.
6590         */
6591        if (unlikely(!se->on_rq || curr == rq->idle))
6592                return;
6593
6594        if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
6595                set_last_buddy(se);
6596}
6597
6598static struct task_struct *
6599pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
6600{
6601        struct cfs_rq *cfs_rq = &rq->cfs;
6602        struct sched_entity *se;
6603        struct task_struct *p;
6604        int new_tasks;
6605
6606again:
6607        if (!cfs_rq->nr_running)
6608                goto idle;
6609
6610#ifdef CONFIG_FAIR_GROUP_SCHED
6611        if (prev->sched_class != &fair_sched_class)
6612                goto simple;
6613
6614        /*
6615         * Because of the set_next_buddy() in dequeue_task_fair() it is rather
6616         * likely that a next task is from the same cgroup as the current.
6617         *
6618         * Therefore attempt to avoid putting and setting the entire cgroup
6619         * hierarchy, only change the part that actually changes.
6620         */
6621
6622        do {
6623                struct sched_entity *curr = cfs_rq->curr;
6624
6625                /*
6626                 * Since we got here without doing put_prev_entity() we also
6627                 * have to consider cfs_rq->curr. If it is still a runnable
6628                 * entity, update_curr() will update its vruntime, otherwise
6629                 * forget we've ever seen it.
6630                 */
6631                if (curr) {
6632                        if (curr->on_rq)
6633                                update_curr(cfs_rq);
6634                        else
6635                                curr = NULL;
6636
6637                        /*
6638                         * This call to check_cfs_rq_runtime() will do the
6639                         * throttle and dequeue its entity in the parent(s).
6640                         * Therefore the nr_running test will indeed
6641                         * be correct.
6642                         */
6643                        if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
6644                                cfs_rq = &rq->cfs;
6645
6646                                if (!cfs_rq->nr_running)
6647                                        goto idle;
6648
6649                                goto simple;
6650                        }
6651                }
6652
6653                se = pick_next_entity(cfs_rq, curr);
6654                cfs_rq = group_cfs_rq(se);
6655        } while (cfs_rq);
6656
6657        p = task_of(se);
6658
6659        /*
6660         * Since we haven't yet done put_prev_entity and if the selected task
6661         * is a different task than we started out with, try and touch the
6662         * least amount of cfs_rqs.
6663         */
6664        if (prev != p) {
6665                struct sched_entity *pse = &prev->se;
6666
6667                while (!(cfs_rq = is_same_group(se, pse))) {
6668                        int se_depth = se->depth;
6669                        int pse_depth = pse->depth;
6670
6671                        if (se_depth <= pse_depth) {
6672                                put_prev_entity(cfs_rq_of(pse), pse);
6673                                pse = parent_entity(pse);
6674                        }
6675                        if (se_depth >= pse_depth) {
6676                                set_next_entity(cfs_rq_of(se), se);
6677                                se = parent_entity(se);
6678                        }
6679                }
6680
6681                put_prev_entity(cfs_rq, pse);
6682                set_next_entity(cfs_rq, se);
6683        }
6684
6685        goto done;
6686simple:
6687#endif
6688
6689        put_prev_task(rq, prev);
6690
6691        do {
6692                se = pick_next_entity(cfs_rq, NULL);
6693                set_next_entity(cfs_rq, se);
6694                cfs_rq = group_cfs_rq(se);
6695        } while (cfs_rq);
6696
6697        p = task_of(se);
6698
6699done: __maybe_unused;
6700#ifdef CONFIG_SMP
6701        /*
6702         * Move the next running task to the front of
6703         * the list, so our cfs_tasks list becomes MRU
6704         * one.
6705         */
6706        list_move(&p->se.group_node, &rq->cfs_tasks);
6707#endif
6708
6709        if (hrtick_enabled(rq))
6710                hrtick_start_fair(rq, p);
6711
6712        return p;
6713
6714idle:
6715        new_tasks = idle_balance(rq, rf);
6716
6717        /*
6718         * Because idle_balance() releases (and re-acquires) rq->lock, it is
6719         * possible for any higher priority task to appear. In that case we
6720         * must re-start the pick_next_entity() loop.
6721         */
6722        if (new_tasks < 0)
6723                return RETRY_TASK;
6724
6725        if (new_tasks > 0)
6726                goto again;
6727
6728        return NULL;
6729}
6730
6731/*
6732 * Account for a descheduled task:
6733 */
6734static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
6735{
6736        struct sched_entity *se = &prev->se;
6737        struct cfs_rq *cfs_rq;
6738
6739        for_each_sched_entity(se) {
6740                cfs_rq = cfs_rq_of(se);
6741                put_prev_entity(cfs_rq, se);
6742        }
6743}
6744
6745/*
6746 * sched_yield() is very simple
6747 *
6748 * The magic of dealing with the ->skip buddy is in pick_next_entity.
6749 */
6750static void yield_task_fair(struct rq *rq)
6751{
6752        struct task_struct *curr = rq->curr;
6753        struct cfs_rq *cfs_rq = task_cfs_rq(curr);
6754        struct sched_entity *se = &curr->se;
6755
6756        /*
6757         * Are we the only task in the tree?
6758         */
6759        if (unlikely(rq->nr_running == 1))
6760                return;
6761
6762        clear_buddies(cfs_rq, se);
6763
6764        if (curr->policy != SCHED_BATCH) {
6765                update_rq_clock(rq);
6766                /*
6767                 * Update run-time statistics of the 'current'.
6768                 */
6769                update_curr(cfs_rq);
6770                /*
6771                 * Tell update_rq_clock() that we've just updated,
6772                 * so we don't do microscopic update in schedule()
6773                 * and double the fastpath cost.
6774                 */
6775                rq_clock_skip_update(rq);
6776        }
6777
6778        set_skip_buddy(se);
6779}
6780
6781static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
6782{
6783        struct sched_entity *se = &p->se;
6784
6785        /* throttled hierarchies are not runnable */
6786        if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
6787                return false;
6788
6789        /* Tell the scheduler that we'd really like pse to run next. */
6790        set_next_buddy(se);
6791
6792        yield_task_fair(rq);
6793
6794        return true;
6795}
6796
6797#ifdef CONFIG_SMP
6798/**************************************************
6799 * Fair scheduling class load-balancing methods.
6800 *
6801 * BASICS
6802 *
6803 * The purpose of load-balancing is to achieve the same basic fairness the
6804 * per-CPU scheduler provides, namely provide a proportional amount of compute
6805 * time to each task. This is expressed in the following equation:
6806 *
6807 *   W_i,n/P_i == W_j,n/P_j for all i,j                               (1)
6808 *
6809 * Where W_i,n is the n-th weight average for CPU i. The instantaneous weight
6810 * W_i,0 is defined as:
6811 *
6812 *   W_i,0 = \Sum_j w_i,j                                             (2)
6813 *
6814 * Where w_i,j is the weight of the j-th runnable task on CPU i. This weight
6815 * is derived from the nice value as per sched_prio_to_weight[].
6816 *
6817 * The weight average is an exponential decay average of the instantaneous
6818 * weight:
6819 *
6820 *   W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0               (3)
6821 *
6822 * C_i is the compute capacity of CPU i, typically it is the
6823 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
6824 * can also include other factors [XXX].
6825 *
6826 * To achieve this balance we define a measure of imbalance which follows
6827 * directly from (1):
6828 *
6829 *   imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j }    (4)
6830 *
6831 * We them move tasks around to minimize the imbalance. In the continuous
6832 * function space it is obvious this converges, in the discrete case we get
6833 * a few fun cases generally called infeasible weight scenarios.
6834 *
6835 * [XXX expand on:
6836 *     - infeasible weights;
6837 *     - local vs global optima in the discrete case. ]
6838 *
6839 *
6840 * SCHED DOMAINS
6841 *
6842 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
6843 * for all i,j solution, we create a tree of CPUs that follows the hardware
6844 * topology where each level pairs two lower groups (or better). This results
6845 * in O(log n) layers. Furthermore we reduce the number of CPUs going up the
6846 * tree to only the first of the previous level and we decrease the frequency
6847 * of load-balance at each level inv. proportional to the number of CPUs in
6848 * the groups.
6849 *
6850 * This yields:
6851 *
6852 *     log_2 n     1     n
6853 *   \Sum       { --- * --- * 2^i } = O(n)                            (5)
6854 *     i = 0      2^i   2^i
6855 *                               `- size of each group
6856 *         |         |     `- number of CPUs doing load-balance
6857 *         |         `- freq
6858 *         `- sum over all levels
6859 *
6860 * Coupled with a limit on how many tasks we can migrate every balance pass,
6861 * this makes (5) the runtime complexity of the balancer.
6862 *
6863 * An important property here is that each CPU is still (indirectly) connected
6864 * to every other CPU in at most O(log n) steps:
6865 *
6866 * The adjacency matrix of the resulting graph is given by:
6867 *
6868 *             log_2 n
6869 *   A_i,j = \Union     (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1)  (6)
6870 *             k = 0
6871 *
6872 * And you'll find that:
6873 *
6874 *   A^(log_2 n)_i,j != 0  for all i,j                                (7)
6875 *
6876 * Showing there's indeed a path between every CPU in at most O(log n) steps.
6877 * The task movement gives a factor of O(m), giving a convergence complexity
6878 * of:
6879 *
6880 *   O(nm log n),  n := nr_cpus, m := nr_tasks                        (8)
6881 *
6882 *
6883 * WORK CONSERVING
6884 *
6885 * In order to avoid CPUs going idle while there's still work to do, new idle
6886 * balancing is more aggressive and has the newly idle CPU iterate up the domain
6887 * tree itself instead of relying on other CPUs to bring it work.
6888 *
6889 * This adds some complexity to both (5) and (8) but it reduces the total idle
6890 * time.
6891 *
6892 * [XXX more?]
6893 *
6894 *
6895 * CGROUPS
6896 *
6897 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6898 *
6899 *                                s_k,i
6900 *   W_i,0 = \Sum_j \Prod_k w_k * -----                               (9)
6901 *                                 S_k
6902 *
6903 * Where
6904 *
6905 *   s_k,i = \Sum_j w_i,j,k  and  S_k = \Sum_i s_k,i                 (10)
6906 *
6907 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on CPU i.
6908 *
6909 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6910 * property.
6911 *
6912 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6913 *      rewrite all of this once again.]
6914 */
6915
6916static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6917
6918enum fbq_type { regular, remote, all };
6919
6920#define LBF_ALL_PINNED  0x01
6921#define LBF_NEED_BREAK  0x02
6922#define LBF_DST_PINNED  0x04
6923#define LBF_SOME_PINNED 0x08
6924#define LBF_NOHZ_STATS  0x10
6925#define LBF_NOHZ_AGAIN  0x20
6926
6927struct lb_env {
6928        struct sched_domain     *sd;
6929
6930        struct rq               *src_rq;
6931        int                     src_cpu;
6932
6933        int                     dst_cpu;
6934        struct rq               *dst_rq;
6935
6936        struct cpumask          *dst_grpmask;
6937        int                     new_dst_cpu;
6938        enum cpu_idle_type      idle;
6939        long                    imbalance;
6940        /* The set of CPUs under consideration for load-balancing */
6941        struct cpumask          *cpus;
6942
6943        unsigned int            flags;
6944
6945        unsigned int            loop;
6946        unsigned int            loop_break;
6947        unsigned int            loop_max;
6948
6949        enum fbq_type           fbq_type;
6950        struct list_head        tasks;
6951};
6952
6953/*
6954 * Is this task likely cache-hot:
6955 */
6956static int task_hot(struct task_struct *p, struct lb_env *env)
6957{
6958        s64 delta;
6959
6960        lockdep_assert_held(&env->src_rq->lock);
6961
6962        if (p->sched_class != &fair_sched_class)
6963                return 0;
6964
6965        if (unlikely(p->policy == SCHED_IDLE))
6966                return 0;
6967
6968        /*
6969         * Buddy candidates are cache hot:
6970         */
6971        if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
6972                        (&p->se == cfs_rq_of(&p->se)->next ||
6973                         &p->se == cfs_rq_of(&p->se)->last))
6974                return 1;
6975
6976        if (sysctl_sched_migration_cost == -1)
6977                return 1;
6978        if (sysctl_sched_migration_cost == 0)
6979                return 0;
6980
6981        delta = rq_clock_task(env->src_rq) - p->se.exec_start;
6982
6983        return delta < (s64)sysctl_sched_migration_cost;
6984}
6985
6986#ifdef CONFIG_NUMA_BALANCING
6987/*
6988 * Returns 1, if task migration degrades locality
6989 * Returns 0, if task migration improves locality i.e migration preferred.
6990 * Returns -1, if task migration is not affected by locality.
6991 */
6992static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
6993{
6994        struct numa_group *numa_group = rcu_dereference(p->numa_group);
6995        unsigned long src_weight, dst_weight;
6996        int src_nid, dst_nid, dist;
6997
6998        if (!static_branch_likely(&sched_numa_balancing))
6999                return -1;
7000
7001        if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
7002                return -1;
7003
7004        src_nid = cpu_to_node(env->src_cpu);
7005        dst_nid = cpu_to_node(env->dst_cpu);
7006
7007        if (src_nid == dst_nid)
7008                return -1;
7009
7010        /* Migrating away from the preferred node is always bad. */
7011        if (src_nid == p->numa_preferred_nid) {
7012                if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
7013                        return 1;
7014                else
7015                        return -1;
7016        }
7017
7018        /* Encourage migration to the preferred node. */
7019        if (dst_nid == p->numa_preferred_nid)
7020                return 0;
7021
7022        /* Leaving a core idle is often worse than degrading locality. */
7023        if (env->idle == CPU_IDLE)
7024                return -1;
7025
7026        dist = node_distance(src_nid, dst_nid);
7027        if (numa_group) {
7028                src_weight = group_weight(p, src_nid, dist);
7029                dst_weight = group_weight(p, dst_nid, dist);
7030        } else {
7031                src_weight = task_weight(p, src_nid, dist);
7032                dst_weight = task_weight(p, dst_nid, dist);
7033        }
7034
7035        return dst_weight < src_weight;
7036}
7037
7038#else
7039static inline int migrate_degrades_locality(struct task_struct *p,
7040                                             struct lb_env *env)
7041{
7042        return -1;
7043}
7044#endif
7045
7046/*
7047 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
7048 */
7049static
7050int can_migrate_task(struct task_struct *p, struct lb_env *env)
7051{
7052        int tsk_cache_hot;
7053
7054        lockdep_assert_held(&env->src_rq->lock);
7055
7056        /*
7057         * We do not migrate tasks that are:
7058         * 1) throttled_lb_pair, or
7059         * 2) cannot be migrated to this CPU due to cpus_allowed, or
7060         * 3) running (obviously), or
7061         * 4) are cache-hot on their current CPU.
7062         */
7063        if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
7064                return 0;
7065
7066        if (!cpumask_test_cpu(env->dst_cpu, &p->cpus_allowed)) {
7067                int cpu;
7068
7069                schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
7070
7071                env->flags |= LBF_SOME_PINNED;
7072
7073                /*
7074                 * Remember if this task can be migrated to any other CPU in
7075                 * our sched_group. We may want to revisit it if we couldn't
7076                 * meet load balance goals by pulling other tasks on src_cpu.
7077                 *
7078                 * Avoid computing new_dst_cpu for NEWLY_IDLE or if we have
7079                 * already computed one in current iteration.
7080                 */
7081                if (env->idle == CPU_NEWLY_IDLE || (env->flags & LBF_DST_PINNED))
7082                        return 0;
7083
7084                /* Prevent to re-select dst_cpu via env's CPUs: */
7085                for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
7086                        if (cpumask_test_cpu(cpu, &p->cpus_allowed)) {
7087                                env->flags |= LBF_DST_PINNED;
7088                                env->new_dst_cpu = cpu;
7089                                break;
7090                        }
7091                }
7092
7093                return 0;
7094        }
7095
7096        /* Record that we found atleast one task that could run on dst_cpu */
7097        env->flags &= ~LBF_ALL_PINNED;
7098
7099        if (task_running(env->src_rq, p)) {
7100                schedstat_inc(p->se.statistics.nr_failed_migrations_running);
7101                return 0;
7102        }
7103
7104        /*
7105         * Aggressive migration if:
7106         * 1) destination numa is preferred
7107         * 2) task is cache cold, or
7108         * 3) too many balance attempts have failed.
7109         */
7110        tsk_cache_hot = migrate_degrades_locality(p, env);
7111        if (tsk_cache_hot == -1)
7112                tsk_cache_hot = task_hot(p, env);
7113
7114        if (tsk_cache_hot <= 0 ||
7115            env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
7116                if (tsk_cache_hot == 1) {
7117                        schedstat_inc(env->sd->lb_hot_gained[env->idle]);
7118                        schedstat_inc(p->se.statistics.nr_forced_migrations);
7119                }
7120                return 1;
7121        }
7122
7123        schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
7124        return 0;
7125}
7126
7127/*
7128 * detach_task() -- detach the task for the migration specified in env
7129 */
7130static void detach_task(struct task_struct *p, struct lb_env *env)
7131{
7132        lockdep_assert_held(&env->src_rq->lock);
7133
7134        p->on_rq = TASK_ON_RQ_MIGRATING;
7135        deactivate_task(env->src_rq, p, DEQUEUE_NOCLOCK);
7136        set_task_cpu(p, env->dst_cpu);
7137}
7138
7139/*
7140 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
7141 * part of active balancing operations within "domain".
7142 *
7143 * Returns a task if successful and NULL otherwise.
7144 */
7145static struct task_struct *detach_one_task(struct lb_env *env)
7146{
7147        struct task_struct *p;
7148
7149        lockdep_assert_held(&env->src_rq->lock);
7150
7151        list_for_each_entry_reverse(p,
7152                        &env->src_rq->cfs_tasks, se.group_node) {
7153                if (!can_migrate_task(p, env))
7154                        continue;
7155
7156                detach_task(p, env);
7157
7158                /*
7159                 * Right now, this is only the second place where
7160                 * lb_gained[env->idle] is updated (other is detach_tasks)
7161                 * so we can safely collect stats here rather than
7162                 * inside detach_tasks().
7163                 */
7164                schedstat_inc(env->sd->lb_gained[env->idle]);
7165                return p;
7166        }
7167        return NULL;
7168}
7169
7170static const unsigned int sched_nr_migrate_break = 32;
7171
7172/*
7173 * detach_tasks() -- tries to detach up to imbalance weighted load from
7174 * busiest_rq, as part of a balancing operation within domain "sd".
7175 *
7176 * Returns number of detached tasks if successful and 0 otherwise.
7177 */
7178static int detach_tasks(struct lb_env *env)
7179{
7180        struct list_head *tasks = &env->src_rq->cfs_tasks;
7181        struct task_struct *p;
7182        unsigned long load;
7183        int detached = 0;
7184
7185        lockdep_assert_held(&env->src_rq->lock);
7186
7187        if (env->imbalance <= 0)
7188                return 0;
7189
7190        while (!list_empty(tasks)) {
7191                /*
7192                 * We don't want to steal all, otherwise we may be treated likewise,
7193                 * which could at worst lead to a livelock crash.
7194                 */
7195                if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
7196                        break;
7197
7198                p = list_last_entry(tasks, struct task_struct, se.group_node);
7199
7200                env->loop++;
7201                /* We've more or less seen every task there is, call it quits */
7202                if (env->loop > env->loop_max)
7203                        break;
7204
7205                /* take a breather every nr_migrate tasks */
7206                if (env->loop > env->loop_break) {
7207                        env->loop_break += sched_nr_migrate_break;
7208                        env->flags |= LBF_NEED_BREAK;
7209                        break;
7210                }
7211
7212                if (!can_migrate_task(p, env))
7213                        goto next;
7214
7215                load = task_h_load(p);
7216
7217                if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
7218                        goto next;
7219
7220                if ((load / 2) > env->imbalance)
7221                        goto next;
7222
7223                detach_task(p, env);
7224                list_add(&p->se.group_node, &env->tasks);
7225
7226                detached++;
7227                env->imbalance -= load;
7228
7229#ifdef CONFIG_PREEMPT
7230                /*
7231                 * NEWIDLE balancing is a source of latency, so preemptible
7232                 * kernels will stop after the first task is detached to minimize
7233                 * the critical section.
7234                 */
7235                if (env->idle == CPU_NEWLY_IDLE)
7236                        break;
7237#endif
7238
7239                /*
7240                 * We only want to steal up to the prescribed amount of
7241                 * weighted load.
7242                 */
7243                if (env->imbalance <= 0)
7244                        break;
7245
7246                continue;
7247next:
7248                list_move(&p->se.group_node, tasks);
7249        }
7250
7251        /*
7252         * Right now, this is one of only two places we collect this stat
7253         * so we can safely collect detach_one_task() stats here rather
7254         * than inside detach_one_task().
7255         */
7256        schedstat_add(env->sd->lb_gained[env->idle], detached);
7257
7258        return detached;
7259}
7260
7261/*
7262 * attach_task() -- attach the task detached by detach_task() to its new rq.
7263 */
7264static void attach_task(struct rq *rq, struct task_struct *p)
7265{
7266        lockdep_assert_held(&rq->lock);
7267
7268        BUG_ON(task_rq(p) != rq);
7269        activate_task(rq, p, ENQUEUE_NOCLOCK);
7270        p->on_rq = TASK_ON_RQ_QUEUED;
7271        check_preempt_curr(rq, p, 0);
7272}
7273
7274/*
7275 * attach_one_task() -- attaches the task returned from detach_one_task() to
7276 * its new rq.
7277 */
7278static void attach_one_task(struct rq *rq, struct task_struct *p)
7279{
7280        struct rq_flags rf;
7281
7282        rq_lock(rq, &rf);
7283        update_rq_clock(rq);
7284        attach_task(rq, p);
7285        rq_unlock(rq, &rf);
7286}
7287
7288/*
7289 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
7290 * new rq.
7291 */
7292static void attach_tasks(struct lb_env *env)
7293{
7294        struct list_head *tasks = &env->tasks;
7295        struct task_struct *p;
7296        struct rq_flags rf;
7297
7298        rq_lock(env->dst_rq, &rf);
7299        update_rq_clock(env->dst_rq);
7300
7301        while (!list_empty(tasks)) {
7302                p = list_first_entry(tasks, struct task_struct, se.group_node);
7303                list_del_init(&p->se.group_node);
7304
7305                attach_task(env->dst_rq, p);
7306        }
7307
7308        rq_unlock(env->dst_rq, &rf);
7309}
7310
7311static inline bool cfs_rq_has_blocked(struct cfs_rq *cfs_rq)
7312{
7313        if (cfs_rq->avg.load_avg)
7314                return true;
7315
7316        if (cfs_rq->avg.util_avg)
7317                return true;
7318
7319        return false;
7320}
7321
7322static inline bool others_have_blocked(struct rq *rq)
7323{
7324        if (READ_ONCE(rq->avg_rt.util_avg))
7325                return true;
7326
7327        if (READ_ONCE(rq->avg_dl.util_avg))
7328                return true;
7329
7330#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
7331        if (READ_ONCE(rq->avg_irq.util_avg))
7332                return true;
7333#endif
7334
7335        return false;
7336}
7337
7338#ifdef CONFIG_FAIR_GROUP_SCHED
7339
7340static inline bool cfs_rq_is_decayed(struct cfs_rq *cfs_rq)
7341{
7342        if (cfs_rq->load.weight)
7343                return false;
7344
7345        if (cfs_rq->avg.load_sum)
7346                return false;
7347
7348        if (cfs_rq->avg.util_sum)
7349                return false;
7350
7351        if (cfs_rq->avg.runnable_load_sum)
7352                return false;
7353
7354        return true;
7355}
7356
7357static void update_blocked_averages(int cpu)
7358{
7359        struct rq *rq = cpu_rq(cpu);
7360        struct cfs_rq *cfs_rq, *pos;
7361        const struct sched_class *curr_class;
7362        struct rq_flags rf;
7363        bool done = true;
7364
7365        rq_lock_irqsave(rq, &rf);
7366        update_rq_clock(rq);
7367
7368        /*
7369         * Iterates the task_group tree in a bottom up fashion, see
7370         * list_add_leaf_cfs_rq() for details.
7371         */
7372        for_each_leaf_cfs_rq_safe(rq, cfs_rq, pos) {
7373                struct sched_entity *se;
7374
7375                /* throttled entities do not contribute to load */
7376                if (throttled_hierarchy(cfs_rq))
7377                        continue;
7378
7379                if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq))
7380                        update_tg_load_avg(cfs_rq, 0);
7381
7382                /* Propagate pending load changes to the parent, if any: */
7383                se = cfs_rq->tg->se[cpu];
7384                if (se && !skip_blocked_update(se))
7385                        update_load_avg(cfs_rq_of(se), se, 0);
7386
7387                /*
7388                 * There can be a lot of idle CPU cgroups.  Don't let fully
7389                 * decayed cfs_rqs linger on the list.
7390                 */
7391                if (cfs_rq_is_decayed(cfs_rq))
7392                        list_del_leaf_cfs_rq(cfs_rq);
7393
7394                /* Don't need periodic decay once load/util_avg are null */
7395                if (cfs_rq_has_blocked(cfs_rq))
7396                        done = false;
7397        }
7398
7399        curr_class = rq->curr->sched_class;
7400        update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7401        update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7402        update_irq_load_avg(rq, 0);
7403        /* Don't need periodic decay once load/util_avg are null */
7404        if (others_have_blocked(rq))
7405                done = false;
7406
7407#ifdef CONFIG_NO_HZ_COMMON
7408        rq->last_blocked_load_update_tick = jiffies;
7409        if (done)
7410                rq->has_blocked_load = 0;
7411#endif
7412        rq_unlock_irqrestore(rq, &rf);
7413}
7414
7415/*
7416 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
7417 * This needs to be done in a top-down fashion because the load of a child
7418 * group is a fraction of its parents load.
7419 */
7420static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
7421{
7422        struct rq *rq = rq_of(cfs_rq);
7423        struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
7424        unsigned long now = jiffies;
7425        unsigned long load;
7426
7427        if (cfs_rq->last_h_load_update == now)
7428                return;
7429
7430        cfs_rq->h_load_next = NULL;
7431        for_each_sched_entity(se) {
7432                cfs_rq = cfs_rq_of(se);
7433                cfs_rq->h_load_next = se;
7434                if (cfs_rq->last_h_load_update == now)
7435                        break;
7436        }
7437
7438        if (!se) {
7439                cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
7440                cfs_rq->last_h_load_update = now;
7441        }
7442
7443        while ((se = cfs_rq->h_load_next) != NULL) {
7444                load = cfs_rq->h_load;
7445                load = div64_ul(load * se->avg.load_avg,
7446                        cfs_rq_load_avg(cfs_rq) + 1);
7447                cfs_rq = group_cfs_rq(se);
7448                cfs_rq->h_load = load;
7449                cfs_rq->last_h_load_update = now;
7450        }
7451}
7452
7453static unsigned long task_h_load(struct task_struct *p)
7454{
7455        struct cfs_rq *cfs_rq = task_cfs_rq(p);
7456
7457        update_cfs_rq_h_load(cfs_rq);
7458        return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7459                        cfs_rq_load_avg(cfs_rq) + 1);
7460}
7461#else
7462static inline void update_blocked_averages(int cpu)
7463{
7464        struct rq *rq = cpu_rq(cpu);
7465        struct cfs_rq *cfs_rq = &rq->cfs;
7466        const struct sched_class *curr_class;
7467        struct rq_flags rf;
7468
7469        rq_lock_irqsave(rq, &rf);
7470        update_rq_clock(rq);
7471        update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq);
7472
7473        curr_class = rq->curr->sched_class;
7474        update_rt_rq_load_avg(rq_clock_task(rq), rq, curr_class == &rt_sched_class);
7475        update_dl_rq_load_avg(rq_clock_task(rq), rq, curr_class == &dl_sched_class);
7476        update_irq_load_avg(rq, 0);
7477#ifdef CONFIG_NO_HZ_COMMON
7478        rq->last_blocked_load_update_tick = jiffies;
7479        if (!cfs_rq_has_blocked(cfs_rq) && !others_have_blocked(rq))
7480                rq->has_blocked_load = 0;
7481#endif
7482        rq_unlock_irqrestore(rq, &rf);
7483}
7484
7485static unsigned long task_h_load(struct task_struct *p)
7486{
7487        return p->se.avg.load_avg;
7488}
7489#endif
7490
7491/********** Helpers for find_busiest_group ************************/
7492
7493enum group_type {
7494        group_other = 0,
7495        group_imbalanced,
7496        group_overloaded,
7497};
7498
7499/*
7500 * sg_lb_stats - stats of a sched_group required for load_balancing
7501 */
7502struct sg_lb_stats {
7503        unsigned long avg_load; /*Avg load across the CPUs of the group */
7504        unsigned long group_load; /* Total load over the CPUs of the group */
7505        unsigned long sum_weighted_load; /* Weighted load of group's tasks */
7506        unsigned long load_per_task;
7507        unsigned long group_capacity;
7508        unsigned long group_util; /* Total utilization of the group */
7509        unsigned int sum_nr_running; /* Nr tasks running in the group */
7510        unsigned int idle_cpus;
7511        unsigned int group_weight;
7512        enum group_type group_type;
7513        int group_no_capacity;
7514#ifdef CONFIG_NUMA_BALANCING
7515        unsigned int nr_numa_running;
7516        unsigned int nr_preferred_running;
7517#endif
7518};
7519
7520/*
7521 * sd_lb_stats - Structure to store the statistics of a sched_domain
7522 *               during load balancing.
7523 */
7524struct sd_lb_stats {
7525        struct sched_group *busiest;    /* Busiest group in this sd */
7526        struct sched_group *local;      /* Local group in this sd */
7527        unsigned long total_running;
7528        unsigned long total_load;       /* Total load of all groups in sd */
7529        unsigned long total_capacity;   /* Total capacity of all groups in sd */
7530        unsigned long avg_load; /* Average load across all groups in sd */
7531
7532        struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
7533        struct sg_lb_stats local_stat;  /* Statistics of the local group */
7534};
7535
7536static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
7537{
7538        /*
7539         * Skimp on the clearing to avoid duplicate work. We can avoid clearing
7540         * local_stat because update_sg_lb_stats() does a full clear/assignment.
7541         * We must however clear busiest_stat::avg_load because
7542         * update_sd_pick_busiest() reads this before assignment.
7543         */
7544        *sds = (struct sd_lb_stats){
7545                .busiest = NULL,
7546                .local = NULL,
7547                .total_running = 0UL,
7548                .total_load = 0UL,
7549                .total_capacity = 0UL,
7550                .busiest_stat = {
7551                        .avg_load = 0UL,
7552                        .sum_nr_running = 0,
7553                        .group_type = group_other,
7554                },
7555        };
7556}
7557
7558/**
7559 * get_sd_load_idx - Obtain the load index for a given sched domain.
7560 * @sd: The sched_domain whose load_idx is to be obtained.
7561 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
7562 *
7563 * Return: The load index.
7564 */
7565static inline int get_sd_load_idx(struct sched_domain *sd,
7566                                        enum cpu_idle_type idle)
7567{
7568        int load_idx;
7569
7570        switch (idle) {
7571        case CPU_NOT_IDLE:
7572                load_idx = sd->busy_idx;
7573                break;
7574
7575        case CPU_NEWLY_IDLE:
7576                load_idx = sd->newidle_idx;
7577                break;
7578        default:
7579                load_idx = sd->idle_idx;
7580                break;
7581        }
7582
7583        return load_idx;
7584}
7585
7586static unsigned long scale_rt_capacity(struct sched_domain *sd, int cpu)
7587{
7588        struct rq *rq = cpu_rq(cpu);
7589        unsigned long max = arch_scale_cpu_capacity(sd, cpu);
7590        unsigned long used, free;
7591        unsigned long irq;
7592
7593        irq = cpu_util_irq(rq);
7594
7595        if (unlikely(irq >= max))
7596                return 1;
7597
7598        used = READ_ONCE(rq->avg_rt.util_avg);
7599        used += READ_ONCE(rq->avg_dl.util_avg);
7600
7601        if (unlikely(used >= max))
7602                return 1;
7603
7604        free = max - used;
7605
7606        return scale_irq_capacity(free, irq, max);
7607}
7608
7609static void update_cpu_capacity(struct sched_domain *sd, int cpu)
7610{
7611        unsigned long capacity = scale_rt_capacity(sd, cpu);
7612        struct sched_group *sdg = sd->groups;
7613
7614        cpu_rq(cpu)->cpu_capacity_orig = arch_scale_cpu_capacity(sd, cpu);
7615
7616        if (!capacity)
7617                capacity = 1;
7618
7619        cpu_rq(cpu)->cpu_capacity = capacity;
7620        sdg->sgc->capacity = capacity;
7621        sdg->sgc->min_capacity = capacity;
7622}
7623
7624void update_group_capacity(struct sched_domain *sd, int cpu)
7625{
7626        struct sched_domain *child = sd->child;
7627        struct sched_group *group, *sdg = sd->groups;
7628        unsigned long capacity, min_capacity;
7629        unsigned long interval;
7630
7631        interval = msecs_to_jiffies(sd->balance_interval);
7632        interval = clamp(interval, 1UL, max_load_balance_interval);
7633        sdg->sgc->next_update = jiffies + interval;
7634
7635        if (!child) {
7636                update_cpu_capacity(sd, cpu);
7637                return;
7638        }
7639
7640        capacity = 0;
7641        min_capacity = ULONG_MAX;
7642
7643        if (child->flags & SD_OVERLAP) {
7644                /*
7645                 * SD_OVERLAP domains cannot assume that child groups
7646                 * span the current group.
7647                 */
7648
7649                for_each_cpu(cpu, sched_group_span(sdg)) {
7650                        struct sched_group_capacity *sgc;
7651                        struct rq *rq = cpu_rq(cpu);
7652
7653                        /*
7654                         * build_sched_domains() -> init_sched_groups_capacity()
7655                         * gets here before we've attached the domains to the
7656                         * runqueues.
7657                         *
7658                         * Use capacity_of(), which is set irrespective of domains
7659                         * in update_cpu_capacity().
7660                         *
7661                         * This avoids capacity from being 0 and
7662                         * causing divide-by-zero issues on boot.
7663                         */
7664                        if (unlikely(!rq->sd)) {
7665                                capacity += capacity_of(cpu);
7666                        } else {
7667                                sgc = rq->sd->groups->sgc;
7668                                capacity += sgc->capacity;
7669                        }
7670
7671                        min_capacity = min(capacity, min_capacity);
7672                }
7673        } else  {
7674                /*
7675                 * !SD_OVERLAP domains can assume that child groups
7676                 * span the current group.
7677                 */
7678
7679                group = child->groups;
7680                do {
7681                        struct sched_group_capacity *sgc = group->sgc;
7682
7683                        capacity += sgc->capacity;
7684                        min_capacity = min(sgc->min_capacity, min_capacity);
7685                        group = group->next;
7686                } while (group != child->groups);
7687        }
7688
7689        sdg->sgc->capacity = capacity;
7690        sdg->sgc->min_capacity = min_capacity;
7691}
7692
7693/*
7694 * Check whether the capacity of the rq has been noticeably reduced by side
7695 * activity. The imbalance_pct is used for the threshold.
7696 * Return true is the capacity is reduced
7697 */
7698static inline int
7699check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
7700{
7701        return ((rq->cpu_capacity * sd->imbalance_pct) <
7702                                (rq->cpu_capacity_orig * 100));
7703}
7704
7705/*
7706 * Group imbalance indicates (and tries to solve) the problem where balancing
7707 * groups is inadequate due to ->cpus_allowed constraints.
7708 *
7709 * Imagine a situation of two groups of 4 CPUs each and 4 tasks each with a
7710 * cpumask covering 1 CPU of the first group and 3 CPUs of the second group.
7711 * Something like:
7712 *
7713 *      { 0 1 2 3 } { 4 5 6 7 }
7714 *              *     * * *
7715 *
7716 * If we were to balance group-wise we'd place two tasks in the first group and
7717 * two tasks in the second group. Clearly this is undesired as it will overload
7718 * cpu 3 and leave one of the CPUs in the second group unused.
7719 *
7720 * The current solution to this issue is detecting the skew in the first group
7721 * by noticing the lower domain failed to reach balance and had difficulty
7722 * moving tasks due to affinity constraints.
7723 *
7724 * When this is so detected; this group becomes a candidate for busiest; see
7725 * update_sd_pick_busiest(). And calculate_imbalance() and
7726 * find_busiest_group() avoid some of the usual balance conditions to allow it
7727 * to create an effective group imbalance.
7728 *
7729 * This is a somewhat tricky proposition since the next run might not find the
7730 * group imbalance and decide the groups need to be balanced again. A most
7731 * subtle and fragile situation.
7732 */
7733
7734static inline int sg_imbalanced(struct sched_group *group)
7735{
7736        return group->sgc->imbalance;
7737}
7738
7739/*
7740 * group_has_capacity returns true if the group has spare capacity that could
7741 * be used by some tasks.
7742 * We consider that a group has spare capacity if the  * number of task is
7743 * smaller than the number of CPUs or if the utilization is lower than the
7744 * available capacity for CFS tasks.
7745 * For the latter, we use a threshold to stabilize the state, to take into
7746 * account the variance of the tasks' load and to return true if the available
7747 * capacity in meaningful for the load balancer.
7748 * As an example, an available capacity of 1% can appear but it doesn't make
7749 * any benefit for the load balance.
7750 */
7751static inline bool
7752group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
7753{
7754        if (sgs->sum_nr_running < sgs->group_weight)
7755                return true;
7756
7757        if ((sgs->group_capacity * 100) >
7758                        (sgs->group_util * env->sd->imbalance_pct))
7759                return true;
7760
7761        return false;
7762}
7763
7764/*
7765 *  group_is_overloaded returns true if the group has more tasks than it can
7766 *  handle.
7767 *  group_is_overloaded is not equals to !group_has_capacity because a group
7768 *  with the exact right number of tasks, has no more spare capacity but is not
7769 *  overloaded so both group_has_capacity and group_is_overloaded return
7770 *  false.
7771 */
7772static inline bool
7773group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
7774{
7775        if (sgs->sum_nr_running <= sgs->group_weight)
7776                return false;
7777
7778        if ((sgs->group_capacity * 100) <
7779                        (sgs->group_util * env->sd->imbalance_pct))
7780                return true;
7781
7782        return false;
7783}
7784
7785/*
7786 * group_smaller_cpu_capacity: Returns true if sched_group sg has smaller
7787 * per-CPU capacity than sched_group ref.
7788 */
7789static inline bool
7790group_smaller_cpu_capacity(struct sched_group *sg, struct sched_group *ref)
7791{
7792        return sg->sgc->min_capacity * capacity_margin <
7793                                                ref->sgc->min_capacity * 1024;
7794}
7795
7796static inline enum
7797group_type group_classify(struct sched_group *group,
7798                          struct sg_lb_stats *sgs)
7799{
7800        if (sgs->group_no_capacity)
7801                return group_overloaded;
7802
7803        if (sg_imbalanced(group))
7804                return group_imbalanced;
7805
7806        return group_other;
7807}
7808
7809static bool update_nohz_stats(struct rq *rq, bool force)
7810{
7811#ifdef CONFIG_NO_HZ_COMMON
7812        unsigned int cpu = rq->cpu;
7813
7814        if (!rq->has_blocked_load)
7815                return false;
7816
7817        if (!cpumask_test_cpu(cpu, nohz.idle_cpus_mask))
7818                return false;
7819
7820        if (!force && !time_after(jiffies, rq->last_blocked_load_update_tick))
7821                return true;
7822
7823        update_blocked_averages(cpu);
7824
7825        return rq->has_blocked_load;
7826#else
7827        return false;
7828#endif
7829}
7830
7831/**
7832 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
7833 * @env: The load balancing environment.
7834 * @group: sched_group whose statistics are to be updated.
7835 * @load_idx: Load index of sched_domain of this_cpu for load calc.
7836 * @local_group: Does group contain this_cpu.
7837 * @sgs: variable to hold the statistics for this group.
7838 * @overload: Indicate more than one runnable task for any CPU.
7839 */
7840static inline void update_sg_lb_stats(struct lb_env *env,
7841                        struct sched_group *group, int load_idx,
7842                        int local_group, struct sg_lb_stats *sgs,
7843                        bool *overload)
7844{
7845        unsigned long load;
7846        int i, nr_running;
7847
7848        memset(sgs, 0, sizeof(*sgs));
7849
7850        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
7851                struct rq *rq = cpu_rq(i);
7852
7853                if ((env->flags & LBF_NOHZ_STATS) && update_nohz_stats(rq, false))
7854                        env->flags |= LBF_NOHZ_AGAIN;
7855
7856                /* Bias balancing toward CPUs of our domain: */
7857                if (local_group)
7858                        load = target_load(i, load_idx);
7859                else
7860                        load = source_load(i, load_idx);
7861
7862                sgs->group_load += load;
7863                sgs->group_util += cpu_util(i);
7864                sgs->sum_nr_running += rq->cfs.h_nr_running;
7865
7866                nr_running = rq->nr_running;
7867                if (nr_running > 1)
7868                        *overload = true;
7869
7870#ifdef CONFIG_NUMA_BALANCING
7871                sgs->nr_numa_running += rq->nr_numa_running;
7872                sgs->nr_preferred_running += rq->nr_preferred_running;
7873#endif
7874                sgs->sum_weighted_load += weighted_cpuload(rq);
7875                /*
7876                 * No need to call idle_cpu() if nr_running is not 0
7877                 */
7878                if (!nr_running && idle_cpu(i))
7879                        sgs->idle_cpus++;
7880        }
7881
7882        /* Adjust by relative CPU capacity of the group */
7883        sgs->group_capacity = group->sgc->capacity;
7884        sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
7885
7886        if (sgs->sum_nr_running)
7887                sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
7888
7889        sgs->group_weight = group->group_weight;
7890
7891        sgs->group_no_capacity = group_is_overloaded(env, sgs);
7892        sgs->group_type = group_classify(group, sgs);
7893}
7894
7895/**
7896 * update_sd_pick_busiest - return 1 on busiest group
7897 * @env: The load balancing environment.
7898 * @sds: sched_domain statistics
7899 * @sg: sched_group candidate to be checked for being the busiest
7900 * @sgs: sched_group statistics
7901 *
7902 * Determine if @sg is a busier group than the previously selected
7903 * busiest group.
7904 *
7905 * Return: %true if @sg is a busier group than the previously selected
7906 * busiest group. %false otherwise.
7907 */
7908static bool update_sd_pick_busiest(struct lb_env *env,
7909                                   struct sd_lb_stats *sds,
7910                                   struct sched_group *sg,
7911                                   struct sg_lb_stats *sgs)
7912{
7913        struct sg_lb_stats *busiest = &sds->busiest_stat;
7914
7915        if (sgs->group_type > busiest->group_type)
7916                return true;
7917
7918        if (sgs->group_type < busiest->group_type)
7919                return false;
7920
7921        if (sgs->avg_load <= busiest->avg_load)
7922                return false;
7923
7924        if (!(env->sd->flags & SD_ASYM_CPUCAPACITY))
7925                goto asym_packing;
7926
7927        /*
7928         * Candidate sg has no more than one task per CPU and
7929         * has higher per-CPU capacity. Migrating tasks to less
7930         * capable CPUs may harm throughput. Maximize throughput,
7931         * power/energy consequences are not considered.
7932         */
7933        if (sgs->sum_nr_running <= sgs->group_weight &&
7934            group_smaller_cpu_capacity(sds->local, sg))
7935                return false;
7936
7937asym_packing:
7938        /* This is the busiest node in its class. */
7939        if (!(env->sd->flags & SD_ASYM_PACKING))
7940                return true;
7941
7942        /* No ASYM_PACKING if target CPU is already busy */
7943        if (env->idle == CPU_NOT_IDLE)
7944                return true;
7945        /*
7946         * ASYM_PACKING needs to move all the work to the highest
7947         * prority CPUs in the group, therefore mark all groups
7948         * of lower priority than ourself as busy.
7949         */
7950        if (sgs->sum_nr_running &&
7951            sched_asym_prefer(env->dst_cpu, sg->asym_prefer_cpu)) {
7952                if (!sds->busiest)
7953                        return true;
7954
7955                /* Prefer to move from lowest priority CPU's work */
7956                if (sched_asym_prefer(sds->busiest->asym_prefer_cpu,
7957                                      sg->asym_prefer_cpu))
7958                        return true;
7959        }
7960
7961        return false;
7962}
7963
7964#ifdef CONFIG_NUMA_BALANCING
7965static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7966{
7967        if (sgs->sum_nr_running > sgs->nr_numa_running)
7968                return regular;
7969        if (sgs->sum_nr_running > sgs->nr_preferred_running)
7970                return remote;
7971        return all;
7972}
7973
7974static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7975{
7976        if (rq->nr_running > rq->nr_numa_running)
7977                return regular;
7978        if (rq->nr_running > rq->nr_preferred_running)
7979                return remote;
7980        return all;
7981}
7982#else
7983static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
7984{
7985        return all;
7986}
7987
7988static inline enum fbq_type fbq_classify_rq(struct rq *rq)
7989{
7990        return regular;
7991}
7992#endif /* CONFIG_NUMA_BALANCING */
7993
7994/**
7995 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
7996 * @env: The load balancing environment.
7997 * @sds: variable to hold the statistics for this sched_domain.
7998 */
7999static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
8000{
8001        struct sched_domain *child = env->sd->child;
8002        struct sched_group *sg = env->sd->groups;
8003        struct sg_lb_stats *local = &sds->local_stat;
8004        struct sg_lb_stats tmp_sgs;
8005        int load_idx, prefer_sibling = 0;
8006        bool overload = false;
8007
8008        if (child && child->flags & SD_PREFER_SIBLING)
8009                prefer_sibling = 1;
8010
8011#ifdef CONFIG_NO_HZ_COMMON
8012        if (env->idle == CPU_NEWLY_IDLE && READ_ONCE(nohz.has_blocked))
8013                env->flags |= LBF_NOHZ_STATS;
8014#endif
8015
8016        load_idx = get_sd_load_idx(env->sd, env->idle);
8017
8018        do {
8019                struct sg_lb_stats *sgs = &tmp_sgs;
8020                int local_group;
8021
8022                local_group = cpumask_test_cpu(env->dst_cpu, sched_group_span(sg));
8023                if (local_group) {
8024                        sds->local = sg;
8025                        sgs = local;
8026
8027                        if (env->idle != CPU_NEWLY_IDLE ||
8028                            time_after_eq(jiffies, sg->sgc->next_update))
8029                                update_group_capacity(env->sd, env->dst_cpu);
8030                }
8031
8032                update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
8033                                                &overload);
8034
8035                if (local_group)
8036                        goto next_group;
8037
8038                /*
8039                 * In case the child domain prefers tasks go to siblings
8040                 * first, lower the sg capacity so that we'll try
8041                 * and move all the excess tasks away. We lower the capacity
8042                 * of a group only if the local group has the capacity to fit
8043                 * these excess tasks. The extra check prevents the case where
8044                 * you always pull from the heaviest group when it is already
8045                 * under-utilized (possible with a large weight task outweighs
8046                 * the tasks on the system).
8047                 */
8048                if (prefer_sibling && sds->local &&
8049                    group_has_capacity(env, local) &&
8050                    (sgs->sum_nr_running > local->sum_nr_running + 1)) {
8051                        sgs->group_no_capacity = 1;
8052                        sgs->group_type = group_classify(sg, sgs);
8053                }
8054
8055                if (update_sd_pick_busiest(env, sds, sg, sgs)) {
8056                        sds->busiest = sg;
8057                        sds->busiest_stat = *sgs;
8058                }
8059
8060next_group:
8061                /* Now, start updating sd_lb_stats */
8062                sds->total_running += sgs->sum_nr_running;
8063                sds->total_load += sgs->group_load;
8064                sds->total_capacity += sgs->group_capacity;
8065
8066                sg = sg->next;
8067        } while (sg != env->sd->groups);
8068
8069#ifdef CONFIG_NO_HZ_COMMON
8070        if ((env->flags & LBF_NOHZ_AGAIN) &&
8071            cpumask_subset(nohz.idle_cpus_mask, sched_domain_span(env->sd))) {
8072
8073                WRITE_ONCE(nohz.next_blocked,
8074                           jiffies + msecs_to_jiffies(LOAD_AVG_PERIOD));
8075        }
8076#endif
8077
8078        if (env->sd->flags & SD_NUMA)
8079                env->fbq_type = fbq_classify_group(&sds->busiest_stat);
8080
8081        if (!env->sd->parent) {
8082                /* update overload indicator if we are at root domain */
8083                if (env->dst_rq->rd->overload != overload)
8084                        env->dst_rq->rd->overload = overload;
8085        }
8086}
8087
8088/**
8089 * check_asym_packing - Check to see if the group is packed into the
8090 *                      sched domain.
8091 *
8092 * This is primarily intended to used at the sibling level.  Some
8093 * cores like POWER7 prefer to use lower numbered SMT threads.  In the
8094 * case of POWER7, it can move to lower SMT modes only when higher
8095 * threads are idle.  When in lower SMT modes, the threads will
8096 * perform better since they share less core resources.  Hence when we
8097 * have idle threads, we want them to be the higher ones.
8098 *
8099 * This packing function is run on idle threads.  It checks to see if
8100 * the busiest CPU in this domain (core in the P7 case) has a higher
8101 * CPU number than the packing function is being run on.  Here we are
8102 * assuming lower CPU number will be equivalent to lower a SMT thread
8103 * number.
8104 *
8105 * Return: 1 when packing is required and a task should be moved to
8106 * this CPU.  The amount of the imbalance is returned in env->imbalance.
8107 *
8108 * @env: The load balancing environment.
8109 * @sds: Statistics of the sched_domain which is to be packed
8110 */
8111static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
8112{
8113        int busiest_cpu;
8114
8115        if (!(env->sd->flags & SD_ASYM_PACKING))
8116                return 0;
8117
8118        if (env->idle == CPU_NOT_IDLE)
8119                return 0;
8120
8121        if (!sds->busiest)
8122                return 0;
8123
8124        busiest_cpu = sds->busiest->asym_prefer_cpu;
8125        if (sched_asym_prefer(busiest_cpu, env->dst_cpu))
8126                return 0;
8127
8128        env->imbalance = DIV_ROUND_CLOSEST(
8129                sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
8130                SCHED_CAPACITY_SCALE);
8131
8132        return 1;
8133}
8134
8135/**
8136 * fix_small_imbalance - Calculate the minor imbalance that exists
8137 *                      amongst the groups of a sched_domain, during
8138 *                      load balancing.
8139 * @env: The load balancing environment.
8140 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
8141 */
8142static inline
8143void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8144{
8145        unsigned long tmp, capa_now = 0, capa_move = 0;
8146        unsigned int imbn = 2;
8147        unsigned long scaled_busy_load_per_task;
8148        struct sg_lb_stats *local, *busiest;
8149
8150        local = &sds->local_stat;
8151        busiest = &sds->busiest_stat;
8152
8153        if (!local->sum_nr_running)
8154                local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
8155        else if (busiest->load_per_task > local->load_per_task)
8156                imbn = 1;
8157
8158        scaled_busy_load_per_task =
8159                (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8160                busiest->group_capacity;
8161
8162        if (busiest->avg_load + scaled_busy_load_per_task >=
8163            local->avg_load + (scaled_busy_load_per_task * imbn)) {
8164                env->imbalance = busiest->load_per_task;
8165                return;
8166        }
8167
8168        /*
8169         * OK, we don't have enough imbalance to justify moving tasks,
8170         * however we may be able to increase total CPU capacity used by
8171         * moving them.
8172         */
8173
8174        capa_now += busiest->group_capacity *
8175                        min(busiest->load_per_task, busiest->avg_load);
8176        capa_now += local->group_capacity *
8177                        min(local->load_per_task, local->avg_load);
8178        capa_now /= SCHED_CAPACITY_SCALE;
8179
8180        /* Amount of load we'd subtract */
8181        if (busiest->avg_load > scaled_busy_load_per_task) {
8182                capa_move += busiest->group_capacity *
8183                            min(busiest->load_per_task,
8184                                busiest->avg_load - scaled_busy_load_per_task);
8185        }
8186
8187        /* Amount of load we'd add */
8188        if (busiest->avg_load * busiest->group_capacity <
8189            busiest->load_per_task * SCHED_CAPACITY_SCALE) {
8190                tmp = (busiest->avg_load * busiest->group_capacity) /
8191                      local->group_capacity;
8192        } else {
8193                tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
8194                      local->group_capacity;
8195        }
8196        capa_move += local->group_capacity *
8197                    min(local->load_per_task, local->avg_load + tmp);
8198        capa_move /= SCHED_CAPACITY_SCALE;
8199
8200        /* Move if we gain throughput */
8201        if (capa_move > capa_now)
8202                env->imbalance = busiest->load_per_task;
8203}
8204
8205/**
8206 * calculate_imbalance - Calculate the amount of imbalance present within the
8207 *                       groups of a given sched_domain during load balance.
8208 * @env: load balance environment
8209 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
8210 */
8211static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
8212{
8213        unsigned long max_pull, load_above_capacity = ~0UL;
8214        struct sg_lb_stats *local, *busiest;
8215
8216        local = &sds->local_stat;
8217        busiest = &sds->busiest_stat;
8218
8219        if (busiest->group_type == group_imbalanced) {
8220                /*
8221                 * In the group_imb case we cannot rely on group-wide averages
8222                 * to ensure CPU-load equilibrium, look at wider averages. XXX
8223                 */
8224                busiest->load_per_task =
8225                        min(busiest->load_per_task, sds->avg_load);
8226        }
8227
8228        /*
8229         * Avg load of busiest sg can be less and avg load of local sg can
8230         * be greater than avg load across all sgs of sd because avg load
8231         * factors in sg capacity and sgs with smaller group_type are
8232         * skipped when updating the busiest sg:
8233         */
8234        if (busiest->avg_load <= sds->avg_load ||
8235            local->avg_load >= sds->avg_load) {
8236                env->imbalance = 0;
8237                return fix_small_imbalance(env, sds);
8238        }
8239
8240        /*
8241         * If there aren't any idle CPUs, avoid creating some.
8242         */
8243        if (busiest->group_type == group_overloaded &&
8244            local->group_type   == group_overloaded) {
8245                load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
8246                if (load_above_capacity > busiest->group_capacity) {
8247                        load_above_capacity -= busiest->group_capacity;
8248                        load_above_capacity *= scale_load_down(NICE_0_LOAD);
8249                        load_above_capacity /= busiest->group_capacity;
8250                } else
8251                        load_above_capacity = ~0UL;
8252        }
8253
8254        /*
8255         * We're trying to get all the CPUs to the average_load, so we don't
8256         * want to push ourselves above the average load, nor do we wish to
8257         * reduce the max loaded CPU below the average load. At the same time,
8258         * we also don't want to reduce the group load below the group
8259         * capacity. Thus we look for the minimum possible imbalance.
8260         */
8261        max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
8262
8263        /* How much load to actually move to equalise the imbalance */
8264        env->imbalance = min(
8265                max_pull * busiest->group_capacity,
8266                (sds->avg_load - local->avg_load) * local->group_capacity
8267        ) / SCHED_CAPACITY_SCALE;
8268
8269        /*
8270         * if *imbalance is less than the average load per runnable task
8271         * there is no guarantee that any tasks will be moved so we'll have
8272         * a think about bumping its value to force at least one task to be
8273         * moved
8274         */
8275        if (env->imbalance < busiest->load_per_task)
8276                return fix_small_imbalance(env, sds);
8277}
8278
8279/******* find_busiest_group() helpers end here *********************/
8280
8281/**
8282 * find_busiest_group - Returns the busiest group within the sched_domain
8283 * if there is an imbalance.
8284 *
8285 * Also calculates the amount of weighted load which should be moved
8286 * to restore balance.
8287 *
8288 * @env: The load balancing environment.
8289 *
8290 * Return:      - The busiest group if imbalance exists.
8291 */
8292static struct sched_group *find_busiest_group(struct lb_env *env)
8293{
8294        struct sg_lb_stats *local, *busiest;
8295        struct sd_lb_stats sds;
8296
8297        init_sd_lb_stats(&sds);
8298
8299        /*
8300         * Compute the various statistics relavent for load balancing at
8301         * this level.
8302         */
8303        update_sd_lb_stats(env, &sds);
8304        local = &sds.local_stat;
8305        busiest = &sds.busiest_stat;
8306
8307        /* ASYM feature bypasses nice load balance check */
8308        if (check_asym_packing(env, &sds))
8309                return sds.busiest;
8310
8311        /* There is no busy sibling group to pull tasks from */
8312        if (!sds.busiest || busiest->sum_nr_running == 0)
8313                goto out_balanced;
8314
8315        /* XXX broken for overlapping NUMA groups */
8316        sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
8317                                                / sds.total_capacity;
8318
8319        /*
8320         * If the busiest group is imbalanced the below checks don't
8321         * work because they assume all things are equal, which typically
8322         * isn't true due to cpus_allowed constraints and the like.
8323         */
8324        if (busiest->group_type == group_imbalanced)
8325                goto force_balance;
8326
8327        /*
8328         * When dst_cpu is idle, prevent SMP nice and/or asymmetric group
8329         * capacities from resulting in underutilization due to avg_load.
8330         */
8331        if (env->idle != CPU_NOT_IDLE && group_has_capacity(env, local) &&
8332            busiest->group_no_capacity)
8333                goto force_balance;
8334
8335        /*
8336         * If the local group is busier than the selected busiest group
8337         * don't try and pull any tasks.
8338         */
8339        if (local->avg_load >= busiest->avg_load)
8340                goto out_balanced;
8341
8342        /*
8343         * Don't pull any tasks if this group is already above the domain
8344         * average load.
8345         */
8346        if (local->avg_load >= sds.avg_load)
8347                goto out_balanced;
8348
8349        if (env->idle == CPU_IDLE) {
8350                /*
8351                 * This CPU is idle. If the busiest group is not overloaded
8352                 * and there is no imbalance between this and busiest group
8353                 * wrt idle CPUs, it is balanced. The imbalance becomes
8354                 * significant if the diff is greater than 1 otherwise we
8355                 * might end up to just move the imbalance on another group
8356                 */
8357                if ((busiest->group_type != group_overloaded) &&
8358                                (local->idle_cpus <= (busiest->idle_cpus + 1)))
8359                        goto out_balanced;
8360        } else {
8361                /*
8362                 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
8363                 * imbalance_pct to be conservative.
8364                 */
8365                if (100 * busiest->avg_load <=
8366                                env->sd->imbalance_pct * local->avg_load)
8367                        goto out_balanced;
8368        }
8369
8370force_balance:
8371        /* Looks like there is an imbalance. Compute it */
8372        calculate_imbalance(env, &sds);
8373        return env->imbalance ? sds.busiest : NULL;
8374
8375out_balanced:
8376        env->imbalance = 0;
8377        return NULL;
8378}
8379
8380/*
8381 * find_busiest_queue - find the busiest runqueue among the CPUs in the group.
8382 */
8383static struct rq *find_busiest_queue(struct lb_env *env,
8384                                     struct sched_group *group)
8385{
8386        struct rq *busiest = NULL, *rq;
8387        unsigned long busiest_load = 0, busiest_capacity = 1;
8388        int i;
8389
8390        for_each_cpu_and(i, sched_group_span(group), env->cpus) {
8391                unsigned long capacity, wl;
8392                enum fbq_type rt;
8393
8394                rq = cpu_rq(i);
8395                rt = fbq_classify_rq(rq);
8396
8397                /*
8398                 * We classify groups/runqueues into three groups:
8399                 *  - regular: there are !numa tasks
8400                 *  - remote:  there are numa tasks that run on the 'wrong' node
8401                 *  - all:     there is no distinction
8402                 *
8403                 * In order to avoid migrating ideally placed numa tasks,
8404                 * ignore those when there's better options.
8405                 *
8406                 * If we ignore the actual busiest queue to migrate another
8407                 * task, the next balance pass can still reduce the busiest
8408                 * queue by moving tasks around inside the node.
8409                 *
8410                 * If we cannot move enough load due to this classification
8411                 * the next pass will adjust the group classification and
8412                 * allow migration of more tasks.
8413                 *
8414                 * Both cases only affect the total convergence complexity.
8415                 */
8416                if (rt > env->fbq_type)
8417                        continue;
8418
8419                capacity = capacity_of(i);
8420
8421                wl = weighted_cpuload(rq);
8422
8423                /*
8424                 * When comparing with imbalance, use weighted_cpuload()
8425                 * which is not scaled with the CPU capacity.
8426                 */
8427
8428                if (rq->nr_running == 1 && wl > env->imbalance &&
8429                    !check_cpu_capacity(rq, env->sd))
8430                        continue;
8431
8432                /*
8433                 * For the load comparisons with the other CPU's, consider
8434                 * the weighted_cpuload() scaled with the CPU capacity, so
8435                 * that the load can be moved away from the CPU that is
8436                 * potentially running at a lower capacity.
8437                 *
8438                 * Thus we're looking for max(wl_i / capacity_i), crosswise
8439                 * multiplication to rid ourselves of the division works out
8440                 * to: wl_i * capacity_j > wl_j * capacity_i;  where j is
8441                 * our previous maximum.
8442                 */
8443                if (wl * busiest_capacity > busiest_load * capacity) {
8444                        busiest_load = wl;
8445                        busiest_capacity = capacity;
8446                        busiest = rq;
8447                }
8448        }
8449
8450        return busiest;
8451}
8452
8453/*
8454 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
8455 * so long as it is large enough.
8456 */
8457#define MAX_PINNED_INTERVAL     512
8458
8459static int need_active_balance(struct lb_env *env)
8460{
8461        struct sched_domain *sd = env->sd;
8462
8463        if (env->idle == CPU_NEWLY_IDLE) {
8464
8465                /*
8466                 * ASYM_PACKING needs to force migrate tasks from busy but
8467                 * lower priority CPUs in order to pack all tasks in the
8468                 * highest priority CPUs.
8469                 */
8470                if ((sd->flags & SD_ASYM_PACKING) &&
8471                    sched_asym_prefer(env->dst_cpu, env->src_cpu))
8472                        return 1;
8473        }
8474
8475        /*
8476         * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
8477         * It's worth migrating the task if the src_cpu's capacity is reduced
8478         * because of other sched_class or IRQs if more capacity stays
8479         * available on dst_cpu.
8480         */
8481        if ((env->idle != CPU_NOT_IDLE) &&
8482            (env->src_rq->cfs.h_nr_running == 1)) {
8483                if ((check_cpu_capacity(env->src_rq, sd)) &&
8484                    (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
8485                        return 1;
8486        }
8487
8488        return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
8489}
8490
8491static int active_load_balance_cpu_stop(void *data);
8492
8493static int should_we_balance(struct lb_env *env)
8494{
8495        struct sched_group *sg = env->sd->groups;
8496        int cpu, balance_cpu = -1;
8497
8498        /*
8499         * Ensure the balancing environment is consistent; can happen
8500         * when the softirq triggers 'during' hotplug.
8501         */
8502        if (!cpumask_test_cpu(env->dst_cpu, env->cpus))
8503                return 0;
8504
8505        /*
8506         * In the newly idle case, we will allow all the CPUs
8507         * to do the newly idle load balance.
8508         */
8509        if (env->idle == CPU_NEWLY_IDLE)
8510                return 1;
8511
8512        /* Try to find first idle CPU */
8513        for_each_cpu_and(cpu, group_balance_mask(sg), env->cpus) {
8514                if (!idle_cpu(cpu))
8515                        continue;
8516
8517                balance_cpu = cpu;
8518                break;
8519        }
8520
8521        if (balance_cpu == -1)
8522                balance_cpu = group_balance_cpu(sg);
8523
8524        /*
8525         * First idle CPU or the first CPU(busiest) in this sched group
8526         * is eligible for doing load balancing at this and above domains.
8527         */
8528        return balance_cpu == env->dst_cpu;
8529}
8530
8531/*
8532 * Check this_cpu to ensure it is balanced within domain. Attempt to move
8533 * tasks if there is an imbalance.
8534 */
8535static int load_balance(int this_cpu, struct rq *this_rq,
8536                        struct sched_domain *sd, enum cpu_idle_type idle,
8537                        int *continue_balancing)
8538{
8539        int ld_moved, cur_ld_moved, active_balance = 0;
8540        struct sched_domain *sd_parent = sd->parent;
8541        struct sched_group *group;
8542        struct rq *busiest;
8543        struct rq_flags rf;
8544        struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
8545
8546        struct lb_env env = {
8547                .sd             = sd,
8548                .dst_cpu        = this_cpu,
8549                .dst_rq         = this_rq,
8550                .dst_grpmask    = sched_group_span(sd->groups),
8551                .idle           = idle,
8552                .loop_break     = sched_nr_migrate_break,
8553                .cpus           = cpus,
8554                .fbq_type       = all,
8555                .tasks          = LIST_HEAD_INIT(env.tasks),
8556        };
8557
8558        cpumask_and(cpus, sched_domain_span(sd), cpu_active_mask);
8559
8560        schedstat_inc(sd->lb_count[idle]);
8561
8562redo:
8563        if (!should_we_balance(&env)) {
8564                *continue_balancing = 0;
8565                goto out_balanced;
8566        }
8567
8568        group = find_busiest_group(&env);
8569        if (!group) {
8570                schedstat_inc(sd->lb_nobusyg[idle]);
8571                goto out_balanced;
8572        }
8573
8574        busiest = find_busiest_queue(&env, group);
8575        if (!busiest) {
8576                schedstat_inc(sd->lb_nobusyq[idle]);
8577                goto out_balanced;
8578        }
8579
8580        BUG_ON(busiest == env.dst_rq);
8581
8582        schedstat_add(sd->lb_imbalance[idle], env.imbalance);
8583
8584        env.src_cpu = busiest->cpu;
8585        env.src_rq = busiest;
8586
8587        ld_moved = 0;
8588        if (busiest->nr_running > 1) {
8589                /*
8590                 * Attempt to move tasks. If find_busiest_group has found
8591                 * an imbalance but busiest->nr_running <= 1, the group is
8592                 * still unbalanced. ld_moved simply stays zero, so it is
8593                 * correctly treated as an imbalance.
8594                 */
8595                env.flags |= LBF_ALL_PINNED;
8596                env.loop_max  = min(sysctl_sched_nr_migrate, busiest->nr_running);
8597
8598more_balance:
8599                rq_lock_irqsave(busiest, &rf);
8600                update_rq_clock(busiest);
8601
8602                /*
8603                 * cur_ld_moved - load moved in current iteration
8604                 * ld_moved     - cumulative load moved across iterations
8605                 */
8606                cur_ld_moved = detach_tasks(&env);
8607
8608                /*
8609                 * We've detached some tasks from busiest_rq. Every
8610                 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
8611                 * unlock busiest->lock, and we are able to be sure
8612                 * that nobody can manipulate the tasks in parallel.
8613                 * See task_rq_lock() family for the details.
8614                 */
8615
8616                rq_unlock(busiest, &rf);
8617
8618                if (cur_ld_moved) {
8619                        attach_tasks(&env);
8620                        ld_moved += cur_ld_moved;
8621                }
8622
8623                local_irq_restore(rf.flags);
8624
8625                if (env.flags & LBF_NEED_BREAK) {
8626                        env.flags &= ~LBF_NEED_BREAK;
8627                        goto more_balance;
8628                }
8629
8630                /*
8631                 * Revisit (affine) tasks on src_cpu that couldn't be moved to
8632                 * us and move them to an alternate dst_cpu in our sched_group
8633                 * where they can run. The upper limit on how many times we
8634                 * iterate on same src_cpu is dependent on number of CPUs in our
8635                 * sched_group.
8636                 *
8637                 * This changes load balance semantics a bit on who can move
8638                 * load to a given_cpu. In addition to the given_cpu itself
8639                 * (or a ilb_cpu acting on its behalf where given_cpu is
8640                 * nohz-idle), we now have balance_cpu in a position to move
8641                 * load to given_cpu. In rare situations, this may cause
8642                 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
8643                 * _independently_ and at _same_ time to move some load to
8644                 * given_cpu) causing exceess load to be moved to given_cpu.
8645                 * This however should not happen so much in practice and
8646                 * moreover subsequent load balance cycles should correct the
8647                 * excess load moved.
8648                 */
8649                if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
8650
8651                        /* Prevent to re-select dst_cpu via env's CPUs */
8652                        cpumask_clear_cpu(env.dst_cpu, env.cpus);
8653
8654                        env.dst_rq       = cpu_rq(env.new_dst_cpu);
8655                        env.dst_cpu      = env.new_dst_cpu;
8656                        env.flags       &= ~LBF_DST_PINNED;
8657                        env.loop         = 0;
8658                        env.loop_break   = sched_nr_migrate_break;
8659
8660                        /*
8661                         * Go back to "more_balance" rather than "redo" since we
8662                         * need to continue with same src_cpu.
8663                         */
8664                        goto more_balance;
8665                }
8666
8667                /*
8668                 * We failed to reach balance because of affinity.
8669                 */
8670                if (sd_parent) {
8671                        int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8672
8673                        if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
8674                                *group_imbalance = 1;
8675                }
8676
8677                /* All tasks on this runqueue were pinned by CPU affinity */
8678                if (unlikely(env.flags & LBF_ALL_PINNED)) {
8679                        cpumask_clear_cpu(cpu_of(busiest), cpus);
8680                        /*
8681                         * Attempting to continue load balancing at the current
8682                         * sched_domain level only makes sense if there are
8683                         * active CPUs remaining as possible busiest CPUs to
8684                         * pull load from which are not contained within the
8685                         * destination group that is receiving any migrated
8686                         * load.
8687                         */
8688                        if (!cpumask_subset(cpus, env.dst_grpmask)) {
8689                                env.loop = 0;
8690                                env.loop_break = sched_nr_migrate_break;
8691                                goto redo;
8692                        }
8693                        goto out_all_pinned;
8694                }
8695        }
8696
8697        if (!ld_moved) {
8698                schedstat_inc(sd->lb_failed[idle]);
8699                /*
8700                 * Increment the failure counter only on periodic balance.
8701                 * We do not want newidle balance, which can be very
8702                 * frequent, pollute the failure counter causing
8703                 * excessive cache_hot migrations and active balances.
8704                 */
8705                if (idle != CPU_NEWLY_IDLE)
8706                        sd->nr_balance_failed++;
8707
8708                if (need_active_balance(&env)) {
8709                        unsigned long flags;
8710
8711                        raw_spin_lock_irqsave(&busiest->lock, flags);
8712
8713                        /*
8714                         * Don't kick the active_load_balance_cpu_stop,
8715                         * if the curr task on busiest CPU can't be
8716                         * moved to this_cpu:
8717                         */
8718                        if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
8719                                raw_spin_unlock_irqrestore(&busiest->lock,
8720                                                            flags);
8721                                env.flags |= LBF_ALL_PINNED;
8722                                goto out_one_pinned;
8723                        }
8724
8725                        /*
8726                         * ->active_balance synchronizes accesses to
8727                         * ->active_balance_work.  Once set, it's cleared
8728                         * only after active load balance is finished.
8729                         */
8730                        if (!busiest->active_balance) {
8731                                busiest->active_balance = 1;
8732                                busiest->push_cpu = this_cpu;
8733                                active_balance = 1;
8734                        }
8735                        raw_spin_unlock_irqrestore(&busiest->lock, flags);
8736
8737                        if (active_balance) {
8738                                stop_one_cpu_nowait(cpu_of(busiest),
8739                                        active_load_balance_cpu_stop, busiest,
8740                                        &busiest->active_balance_work);
8741                        }
8742
8743                        /* We've kicked active balancing, force task migration. */
8744                        sd->nr_balance_failed = sd->cache_nice_tries+1;
8745                }
8746        } else
8747                sd->nr_balance_failed = 0;
8748
8749        if (likely(!active_balance)) {
8750                /* We were unbalanced, so reset the balancing interval */
8751                sd->balance_interval = sd->min_interval;
8752        } else {
8753                /*
8754                 * If we've begun active balancing, start to back off. This
8755                 * case may not be covered by the all_pinned logic if there
8756                 * is only 1 task on the busy runqueue (because we don't call
8757                 * detach_tasks).
8758                 */
8759                if (sd->balance_interval < sd->max_interval)
8760                        sd->balance_interval *= 2;
8761        }
8762
8763        goto out;
8764
8765out_balanced:
8766        /*
8767         * We reach balance although we may have faced some affinity
8768         * constraints. Clear the imbalance flag if it was set.
8769         */
8770        if (sd_parent) {
8771                int *group_imbalance = &sd_parent->groups->sgc->imbalance;
8772
8773                if (*group_imbalance)
8774                        *group_imbalance = 0;
8775        }
8776
8777out_all_pinned:
8778        /*
8779         * We reach balance because all tasks are pinned at this level so
8780         * we can't migrate them. Let the imbalance flag set so parent level
8781         * can try to migrate them.
8782         */
8783        schedstat_inc(sd->lb_balanced[idle]);
8784
8785        sd->nr_balance_failed = 0;
8786
8787out_one_pinned:
8788        /* tune up the balancing interval */
8789        if (((env.flags & LBF_ALL_PINNED) &&
8790                        sd->balance_interval < MAX_PINNED_INTERVAL) ||
8791                        (sd->balance_interval < sd->max_interval))
8792                sd->balance_interval *= 2;
8793
8794        ld_moved = 0;
8795out:
8796        return ld_moved;
8797}
8798
8799static inline unsigned long
8800get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
8801{
8802        unsigned long interval = sd->balance_interval;
8803
8804        if (cpu_busy)
8805                interval *= sd->busy_factor;
8806
8807        /* scale ms to jiffies */
8808        interval = msecs_to_jiffies(interval);
8809        interval = clamp(interval, 1UL, max_load_balance_interval);
8810
8811        return interval;
8812}
8813
8814static inline void
8815update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
8816{
8817        unsigned long interval, next;
8818
8819        /* used by idle balance, so cpu_busy = 0 */
8820        interval = get_sd_balance_interval(sd, 0);
8821        next = sd->last_balance + interval;
8822
8823        if (time_after(*next_balance, next))
8824                *next_balance = next;
8825}
8826
8827/*
8828 * active_load_balance_cpu_stop is run by the CPU stopper. It pushes
8829 * running tasks off the busiest CPU onto idle CPUs. It requires at
8830 * least 1 task to be running on each physical CPU where possible, and
8831 * avoids physical / logical imbalances.
8832 */
8833static int active_load_balance_cpu_stop(void *data)
8834{
8835        struct rq *busiest_rq = data;
8836        int busiest_cpu = cpu_of(busiest_rq);
8837        int target_cpu = busiest_rq->push_cpu;
8838        struct rq *target_rq = cpu_rq(target_cpu);
8839        struct sched_domain *sd;
8840        struct task_struct *p = NULL;
8841        struct rq_flags rf;
8842
8843        rq_lock_irq(busiest_rq, &rf);
8844        /*
8845         * Between queueing the stop-work and running it is a hole in which
8846         * CPUs can become inactive. We should not move tasks from or to
8847         * inactive CPUs.
8848         */
8849        if (!cpu_active(busiest_cpu) || !cpu_active(target_cpu))
8850                goto out_unlock;
8851
8852        /* Make sure the requested CPU hasn't gone down in the meantime: */
8853        if (unlikely(busiest_cpu != smp_processor_id() ||
8854                     !busiest_rq->active_balance))
8855                goto out_unlock;
8856
8857        /* Is there any task to move? */
8858        if (busiest_rq->nr_running <= 1)
8859                goto out_unlock;
8860
8861        /*
8862         * This condition is "impossible", if it occurs
8863         * we need to fix it. Originally reported by
8864         * Bjorn Helgaas on a 128-CPU setup.
8865         */
8866        BUG_ON(busiest_rq == target_rq);
8867
8868        /* Search for an sd spanning us and the target CPU. */
8869        rcu_read_lock();
8870        for_each_domain(target_cpu, sd) {
8871                if ((sd->flags & SD_LOAD_BALANCE) &&
8872                    cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
8873                                break;
8874        }
8875
8876        if (likely(sd)) {
8877                struct lb_env env = {
8878                        .sd             = sd,
8879                        .dst_cpu        = target_cpu,
8880                        .dst_rq         = target_rq,
8881                        .src_cpu        = busiest_rq->cpu,
8882                        .src_rq         = busiest_rq,
8883                        .idle           = CPU_IDLE,
8884                        /*
8885                         * can_migrate_task() doesn't need to compute new_dst_cpu
8886                         * for active balancing. Since we have CPU_IDLE, but no
8887                         * @dst_grpmask we need to make that test go away with lying
8888                         * about DST_PINNED.
8889                         */
8890                        .flags          = LBF_DST_PINNED,
8891                };
8892
8893                schedstat_inc(sd->alb_count);
8894                update_rq_clock(busiest_rq);
8895
8896                p = detach_one_task(&env);
8897                if (p) {
8898                        schedstat_inc(sd->alb_pushed);
8899                        /* Active balancing done, reset the failure counter. */
8900                        sd->nr_balance_failed = 0;
8901                } else {
8902                        schedstat_inc(sd->alb_failed);
8903                }
8904        }
8905        rcu_read_unlock();
8906out_unlock:
8907        busiest_rq->active_balance = 0;
8908        rq_unlock(busiest_rq, &rf);
8909
8910        if (p)
8911                attach_one_task(target_rq, p);
8912
8913        local_irq_enable();
8914
8915        return 0;
8916}
8917
8918static DEFINE_SPINLOCK(balancing);
8919
8920/*
8921 * Scale the max load_balance interval with the number of CPUs in the system.
8922 * This trades load-balance latency on larger machines for less cross talk.
8923 */
8924void update_max_interval(void)
8925{
8926        max_load_balance_interval = HZ*num_online_cpus()/10;
8927}
8928
8929/*
8930 * It checks each scheduling domain to see if it is due to be balanced,
8931 * and initiates a balancing operation if so.
8932 *
8933 * Balancing parameters are set up in init_sched_domains.
8934 */
8935static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
8936{
8937        int continue_balancing = 1;
8938        int cpu = rq->cpu;
8939        unsigned long interval;
8940        struct sched_domain *sd;
8941        /* Earliest time when we have to do rebalance again */
8942        unsigned long next_balance = jiffies + 60*HZ;
8943        int update_next_balance = 0;
8944        int need_serialize, need_decay = 0;
8945        u64 max_cost = 0;
8946
8947        rcu_read_lock();
8948        for_each_domain(cpu, sd) {
8949                /*
8950                 * Decay the newidle max times here because this is a regular
8951                 * visit to all the domains. Decay ~1% per second.
8952                 */
8953                if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8954                        sd->max_newidle_lb_cost =
8955                                (sd->max_newidle_lb_cost * 253) / 256;
8956                        sd->next_decay_max_lb_cost = jiffies + HZ;
8957                        need_decay = 1;
8958                }
8959                max_cost += sd->max_newidle_lb_cost;
8960
8961                if (!(sd->flags & SD_LOAD_BALANCE))
8962                        continue;
8963
8964                /*
8965                 * Stop the load balance at this level. There is another
8966                 * CPU in our sched group which is doing load balancing more
8967                 * actively.
8968                 */
8969                if (!continue_balancing) {
8970                        if (need_decay)
8971                                continue;
8972                        break;
8973                }
8974
8975                interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8976
8977                need_serialize = sd->flags & SD_SERIALIZE;
8978                if (need_serialize) {
8979                        if (!spin_trylock(&balancing))
8980                                goto out;
8981                }
8982
8983                if (time_after_eq(jiffies, sd->last_balance + interval)) {
8984                        if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
8985                                /*
8986                                 * The LBF_DST_PINNED logic could have changed
8987                                 * env->dst_cpu, so we can't know our idle
8988                                 * state even if we migrated tasks. Update it.
8989                                 */
8990                                idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
8991                        }
8992                        sd->last_balance = jiffies;
8993                        interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
8994                }
8995                if (need_serialize)
8996                        spin_unlock(&balancing);
8997out:
8998                if (time_after(next_balance, sd->last_balance + interval)) {
8999                        next_balance = sd->last_balance + interval;
9000                        update_next_balance = 1;
9001                }
9002        }
9003        if (need_decay) {
9004                /*
9005                 * Ensure the rq-wide value also decays but keep it at a
9006                 * reasonable floor to avoid funnies with rq->avg_idle.
9007                 */
9008                rq->max_idle_balance_cost =
9009                        max((u64)sysctl_sched_migration_cost, max_cost);
9010        }
9011        rcu_read_unlock();
9012
9013        /*
9014         * next_balance will be updated only when there is a need.
9015         * When the cpu is attached to null domain for ex, it will not be
9016         * updated.
9017         */
9018        if (likely(update_next_balance)) {
9019                rq->next_balance = next_balance;
9020
9021#ifdef CONFIG_NO_HZ_COMMON
9022                /*
9023                 * If this CPU has been elected to perform the nohz idle
9024                 * balance. Other idle CPUs have already rebalanced with
9025                 * nohz_idle_balance() and nohz.next_balance has been
9026                 * updated accordingly. This CPU is now running the idle load
9027                 * balance for itself and we need to update the
9028                 * nohz.next_balance accordingly.
9029                 */
9030                if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
9031                        nohz.next_balance = rq->next_balance;
9032#endif
9033        }
9034}
9035
9036static inline int on_null_domain(struct rq *rq)
9037{
9038        return unlikely(!rcu_dereference_sched(rq->sd));
9039}
9040
9041#ifdef CONFIG_NO_HZ_COMMON
9042/*
9043 * idle load balancing details
9044 * - When one of the busy CPUs notice that there may be an idle rebalancing
9045 *   needed, they will kick the idle load balancer, which then does idle
9046 *   load balancing for all the idle CPUs.
9047 */
9048
9049static inline int find_new_ilb(void)
9050{
9051        int ilb = cpumask_first(nohz.idle_cpus_mask);
9052
9053        if (ilb < nr_cpu_ids && idle_cpu(ilb))
9054                return ilb;
9055
9056        return nr_cpu_ids;
9057}
9058
9059/*
9060 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
9061 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
9062 * CPU (if there is one).
9063 */
9064static void kick_ilb(unsigned int flags)
9065{
9066        int ilb_cpu;
9067
9068        nohz.next_balance++;
9069
9070        ilb_cpu = find_new_ilb();
9071
9072        if (ilb_cpu >= nr_cpu_ids)
9073                return;
9074
9075        flags = atomic_fetch_or(flags, nohz_flags(ilb_cpu));
9076        if (flags & NOHZ_KICK_MASK)
9077                return;
9078
9079        /*
9080         * Use smp_send_reschedule() instead of resched_cpu().
9081         * This way we generate a sched IPI on the target CPU which
9082         * is idle. And the softirq performing nohz idle load balance
9083         * will be run before returning from the IPI.
9084         */
9085        smp_send_reschedule(ilb_cpu);
9086}
9087
9088/*
9089 * Current heuristic for kicking the idle load balancer in the presence
9090 * of an idle cpu in the system.
9091 *   - This rq has more than one task.
9092 *   - This rq has at least one CFS task and the capacity of the CPU is
9093 *     significantly reduced because of RT tasks or IRQs.
9094 *   - At parent of LLC scheduler domain level, this cpu's scheduler group has
9095 *     multiple busy cpu.
9096 *   - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
9097 *     domain span are idle.
9098 */
9099static void nohz_balancer_kick(struct rq *rq)
9100{
9101        unsigned long now = jiffies;
9102        struct sched_domain_shared *sds;
9103        struct sched_domain *sd;
9104        int nr_busy, i, cpu = rq->cpu;
9105        unsigned int flags = 0;
9106
9107        if (unlikely(rq->idle_balance))
9108                return;
9109
9110        /*
9111         * We may be recently in ticked or tickless idle mode. At the first
9112         * busy tick after returning from idle, we will update the busy stats.
9113         */
9114        nohz_balance_exit_idle(rq);
9115
9116        /*
9117         * None are in tickless mode and hence no need for NOHZ idle load
9118         * balancing.
9119         */
9120        if (likely(!atomic_read(&nohz.nr_cpus)))
9121                return;
9122
9123        if (READ_ONCE(nohz.has_blocked) &&
9124            time_after(now, READ_ONCE(nohz.next_blocked)))
9125                flags = NOHZ_STATS_KICK;
9126
9127        if (time_before(now, nohz.next_balance))
9128                goto out;
9129
9130        if (rq->nr_running >= 2) {
9131                flags = NOHZ_KICK_MASK;
9132                goto out;
9133        }
9134
9135        rcu_read_lock();
9136        sds = rcu_dereference(per_cpu(sd_llc_shared, cpu));
9137        if (sds) {
9138                /*
9139                 * XXX: write a coherent comment on why we do this.
9140                 * See also: http://lkml.kernel.org/r/20111202010832.602203411@sbsiddha-desk.sc.intel.com
9141                 */
9142                nr_busy = atomic_read(&sds->nr_busy_cpus);
9143                if (nr_busy > 1) {
9144                        flags = NOHZ_KICK_MASK;
9145                        goto unlock;
9146                }
9147
9148        }
9149
9150        sd = rcu_dereference(rq->sd);
9151        if (sd) {
9152                if ((rq->cfs.h_nr_running >= 1) &&
9153                                check_cpu_capacity(rq, sd)) {
9154                        flags = NOHZ_KICK_MASK;
9155                        goto unlock;
9156                }
9157        }
9158
9159        sd = rcu_dereference(per_cpu(sd_asym, cpu));
9160        if (sd) {
9161                for_each_cpu(i, sched_domain_span(sd)) {
9162                        if (i == cpu ||
9163                            !cpumask_test_cpu(i, nohz.idle_cpus_mask))
9164                                continue;
9165
9166                        if (sched_asym_prefer(i, cpu)) {
9167                                flags = NOHZ_KICK_MASK;
9168                                goto unlock;
9169                        }
9170                }
9171        }
9172unlock:
9173        rcu_read_unlock();
9174out:
9175        if (flags)
9176                kick_ilb(flags);
9177}
9178
9179static void set_cpu_sd_state_busy(int cpu)
9180{
9181        struct sched_domain *sd;
9182
9183        rcu_read_lock();
9184        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9185
9186        if (!sd || !sd->nohz_idle)
9187                goto unlock;
9188        sd->nohz_idle = 0;
9189
9190        atomic_inc(&sd->shared->nr_busy_cpus);
9191unlock:
9192        rcu_read_unlock();
9193}
9194
9195void nohz_balance_exit_idle(struct rq *rq)
9196{
9197        SCHED_WARN_ON(rq != this_rq());
9198
9199        if (likely(!rq->nohz_tick_stopped))
9200                return;
9201
9202        rq->nohz_tick_stopped = 0;
9203        cpumask_clear_cpu(rq->cpu, nohz.idle_cpus_mask);
9204        atomic_dec(&nohz.nr_cpus);
9205
9206        set_cpu_sd_state_busy(rq->cpu);
9207}
9208
9209static void set_cpu_sd_state_idle(int cpu)
9210{
9211        struct sched_domain *sd;
9212
9213        rcu_read_lock();
9214        sd = rcu_dereference(per_cpu(sd_llc, cpu));
9215
9216        if (!sd || sd->nohz_idle)
9217                goto unlock;
9218        sd->nohz_idle = 1;
9219
9220        atomic_dec(&sd->shared->nr_busy_cpus);
9221unlock:
9222        rcu_read_unlock();
9223}
9224
9225/*
9226 * This routine will record that the CPU is going idle with tick stopped.
9227 * This info will be used in performing idle load balancing in the future.
9228 */
9229void nohz_balance_enter_idle(int cpu)
9230{
9231        struct rq *rq = cpu_rq(cpu);
9232
9233        SCHED_WARN_ON(cpu != smp_processor_id());
9234
9235        /* If this CPU is going down, then nothing needs to be done: */
9236        if (!cpu_active(cpu))
9237                return;
9238
9239        /* Spare idle load balancing on CPUs that don't want to be disturbed: */
9240        if (!housekeeping_cpu(cpu, HK_FLAG_SCHED))
9241                return;
9242
9243        /*
9244         * Can be set safely without rq->lock held
9245         * If a clear happens, it will have evaluated last additions because
9246         * rq->lock is held during the check and the clear
9247         */
9248        rq->has_blocked_load = 1;
9249
9250        /*
9251         * The tick is still stopped but load could have been added in the
9252         * meantime. We set the nohz.has_blocked flag to trig a check of the
9253         * *_avg. The CPU is already part of nohz.idle_cpus_mask so the clear
9254         * of nohz.has_blocked can only happen after checking the new load
9255         */
9256        if (rq->nohz_tick_stopped)
9257                goto out;
9258
9259        /* If we're a completely isolated CPU, we don't play: */
9260        if (on_null_domain(rq))
9261                return;
9262
9263        rq->nohz_tick_stopped = 1;
9264
9265        cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
9266        atomic_inc(&nohz.nr_cpus);
9267
9268        /*
9269         * Ensures that if nohz_idle_balance() fails to observe our
9270         * @idle_cpus_mask store, it must observe the @has_blocked
9271         * store.
9272         */
9273        smp_mb__after_atomic();
9274
9275        set_cpu_sd_state_idle(cpu);
9276
9277out:
9278        /*
9279         * Each time a cpu enter idle, we assume that it has blocked load and
9280         * enable the periodic update of the load of idle cpus
9281         */
9282        WRITE_ONCE(nohz.has_blocked, 1);
9283}
9284
9285/*
9286 * Internal function that runs load balance for all idle cpus. The load balance
9287 * can be a simple update of blocked load or a complete load balance with
9288 * tasks movement depending of flags.
9289 * The function returns false if the loop has stopped before running
9290 * through all idle CPUs.
9291 */
9292static bool _nohz_idle_balance(struct rq *this_rq, unsigned int flags,
9293                               enum cpu_idle_type idle)
9294{
9295        /* Earliest time when we have to do rebalance again */
9296        unsigned long now = jiffies;
9297        unsigned long next_balance = now + 60*HZ;
9298        bool has_blocked_load = false;
9299        int update_next_balance = 0;
9300        int this_cpu = this_rq->cpu;
9301        int balance_cpu;
9302        int ret = false;
9303        struct rq *rq;
9304
9305        SCHED_WARN_ON((flags & NOHZ_KICK_MASK) == NOHZ_BALANCE_KICK);
9306
9307        /*
9308         * We assume there will be no idle load after this update and clear
9309         * the has_blocked flag. If a cpu enters idle in the mean time, it will
9310         * set the has_blocked flag and trig another update of idle load.
9311         * Because a cpu that becomes idle, is added to idle_cpus_mask before
9312         * setting the flag, we are sure to not clear the state and not
9313         * check the load of an idle cpu.
9314         */
9315        WRITE_ONCE(nohz.has_blocked, 0);
9316
9317        /*
9318         * Ensures that if we miss the CPU, we must see the has_blocked
9319         * store from nohz_balance_enter_idle().
9320         */
9321        smp_mb();
9322
9323        for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
9324                if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
9325                        continue;
9326
9327                /*
9328                 * If this CPU gets work to do, stop the load balancing
9329                 * work being done for other CPUs. Next load
9330                 * balancing owner will pick it up.
9331                 */
9332                if (need_resched()) {
9333                        has_blocked_load = true;
9334                        goto abort;
9335                }
9336
9337                rq = cpu_rq(balance_cpu);
9338
9339                has_blocked_load |= update_nohz_stats(rq, true);
9340
9341                /*
9342                 * If time for next balance is due,
9343                 * do the balance.
9344                 */
9345                if (time_after_eq(jiffies, rq->next_balance)) {
9346                        struct rq_flags rf;
9347
9348                        rq_lock_irqsave(rq, &rf);
9349                        update_rq_clock(rq);
9350                        cpu_load_update_idle(rq);
9351                        rq_unlock_irqrestore(rq, &rf);
9352
9353                        if (flags & NOHZ_BALANCE_KICK)
9354                                rebalance_domains(rq, CPU_IDLE);
9355                }
9356
9357                if (time_after(next_balance, rq->next_balance)) {
9358                        next_balance = rq->next_balance;
9359                        update_next_balance = 1;
9360                }
9361        }
9362
9363        /* Newly idle CPU doesn't need an update */
9364        if (idle != CPU_NEWLY_IDLE) {
9365                update_blocked_averages(this_cpu);
9366                has_blocked_load |= this_rq->has_blocked_load;
9367        }
9368
9369        if (flags & NOHZ_BALANCE_KICK)
9370                rebalance_domains(this_rq, CPU_IDLE);
9371
9372        WRITE_ONCE(nohz.next_blocked,
9373                now + msecs_to_jiffies(LOAD_AVG_PERIOD));
9374
9375        /* The full idle balance loop has been done */
9376        ret = true;
9377
9378abort:
9379        /* There is still blocked load, enable periodic update */
9380        if (has_blocked_load)
9381                WRITE_ONCE(nohz.has_blocked, 1);
9382
9383        /*
9384         * next_balance will be updated only when there is a need.
9385         * When the CPU is attached to null domain for ex, it will not be
9386         * updated.
9387         */
9388        if (likely(update_next_balance))
9389                nohz.next_balance = next_balance;
9390
9391        return ret;
9392}
9393
9394/*
9395 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
9396 * rebalancing for all the cpus for whom scheduler ticks are stopped.
9397 */
9398static bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9399{
9400        int this_cpu = this_rq->cpu;
9401        unsigned int flags;
9402
9403        if (!(atomic_read(nohz_flags(this_cpu)) & NOHZ_KICK_MASK))
9404                return false;
9405
9406        if (idle != CPU_IDLE) {
9407                atomic_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9408                return false;
9409        }
9410
9411        /*
9412         * barrier, pairs with nohz_balance_enter_idle(), ensures ...
9413         */
9414        flags = atomic_fetch_andnot(NOHZ_KICK_MASK, nohz_flags(this_cpu));
9415        if (!(flags & NOHZ_KICK_MASK))
9416                return false;
9417
9418        _nohz_idle_balance(this_rq, flags, idle);
9419
9420        return true;
9421}
9422
9423static void nohz_newidle_balance(struct rq *this_rq)
9424{
9425        int this_cpu = this_rq->cpu;
9426
9427        /*
9428         * This CPU doesn't want to be disturbed by scheduler
9429         * housekeeping
9430         */
9431        if (!housekeeping_cpu(this_cpu, HK_FLAG_SCHED))
9432                return;
9433
9434        /* Will wake up very soon. No time for doing anything else*/
9435        if (this_rq->avg_idle < sysctl_sched_migration_cost)
9436                return;
9437
9438        /* Don't need to update blocked load of idle CPUs*/
9439        if (!READ_ONCE(nohz.has_blocked) ||
9440            time_before(jiffies, READ_ONCE(nohz.next_blocked)))
9441                return;
9442
9443        raw_spin_unlock(&this_rq->lock);
9444        /*
9445         * This CPU is going to be idle and blocked load of idle CPUs
9446         * need to be updated. Run the ilb locally as it is a good
9447         * candidate for ilb instead of waking up another idle CPU.
9448         * Kick an normal ilb if we failed to do the update.
9449         */
9450        if (!_nohz_idle_balance(this_rq, NOHZ_STATS_KICK, CPU_NEWLY_IDLE))
9451                kick_ilb(NOHZ_STATS_KICK);
9452        raw_spin_lock(&this_rq->lock);
9453}
9454
9455#else /* !CONFIG_NO_HZ_COMMON */
9456static inline void nohz_balancer_kick(struct rq *rq) { }
9457
9458static inline bool nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
9459{
9460        return false;
9461}
9462
9463static inline void nohz_newidle_balance(struct rq *this_rq) { }
9464#endif /* CONFIG_NO_HZ_COMMON */
9465
9466/*
9467 * idle_balance is called by schedule() if this_cpu is about to become
9468 * idle. Attempts to pull tasks from other CPUs.
9469 */
9470static int idle_balance(struct rq *this_rq, struct rq_flags *rf)
9471{
9472        unsigned long next_balance = jiffies + HZ;
9473        int this_cpu = this_rq->cpu;
9474        struct sched_domain *sd;
9475        int pulled_task = 0;
9476        u64 curr_cost = 0;
9477
9478        /*
9479         * We must set idle_stamp _before_ calling idle_balance(), such that we
9480         * measure the duration of idle_balance() as idle time.
9481         */
9482        this_rq->idle_stamp = rq_clock(this_rq);
9483
9484        /*
9485         * Do not pull tasks towards !active CPUs...
9486         */
9487        if (!cpu_active(this_cpu))
9488                return 0;
9489
9490        /*
9491         * This is OK, because current is on_cpu, which avoids it being picked
9492         * for load-balance and preemption/IRQs are still disabled avoiding
9493         * further scheduler activity on it and we're being very careful to
9494         * re-start the picking loop.
9495         */
9496        rq_unpin_lock(this_rq, rf);
9497
9498        if (this_rq->avg_idle < sysctl_sched_migration_cost ||
9499            !this_rq->rd->overload) {
9500
9501                rcu_read_lock();
9502                sd = rcu_dereference_check_sched_domain(this_rq->sd);
9503                if (sd)
9504                        update_next_balance(sd, &next_balance);
9505                rcu_read_unlock();
9506
9507                nohz_newidle_balance(this_rq);
9508
9509                goto out;
9510        }
9511
9512        raw_spin_unlock(&this_rq->lock);
9513
9514        update_blocked_averages(this_cpu);
9515        rcu_read_lock();
9516        for_each_domain(this_cpu, sd) {
9517                int continue_balancing = 1;
9518                u64 t0, domain_cost;
9519
9520                if (!(sd->flags & SD_LOAD_BALANCE))
9521                        continue;
9522
9523                if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
9524                        update_next_balance(sd, &next_balance);
9525                        break;
9526                }
9527
9528                if (sd->flags & SD_BALANCE_NEWIDLE) {
9529                        t0 = sched_clock_cpu(this_cpu);
9530
9531                        pulled_task = load_balance(this_cpu, this_rq,
9532                                                   sd, CPU_NEWLY_IDLE,
9533                                                   &continue_balancing);
9534
9535                        domain_cost = sched_clock_cpu(this_cpu) - t0;
9536                        if (domain_cost > sd->max_newidle_lb_cost)
9537                                sd->max_newidle_lb_cost = domain_cost;
9538
9539                        curr_cost += domain_cost;
9540                }
9541
9542                update_next_balance(sd, &next_balance);
9543
9544                /*
9545                 * Stop searching for tasks to pull if there are
9546                 * now runnable tasks on this rq.
9547                 */
9548                if (pulled_task || this_rq->nr_running > 0)
9549                        break;
9550        }
9551        rcu_read_unlock();
9552
9553        raw_spin_lock(&this_rq->lock);
9554
9555        if (curr_cost > this_rq->max_idle_balance_cost)
9556                this_rq->max_idle_balance_cost = curr_cost;
9557
9558out:
9559        /*
9560         * While browsing the domains, we released the rq lock, a task could
9561         * have been enqueued in the meantime. Since we're not going idle,
9562         * pretend we pulled a task.
9563         */
9564        if (this_rq->cfs.h_nr_running && !pulled_task)
9565                pulled_task = 1;
9566
9567        /* Move the next balance forward */
9568        if (time_after(this_rq->next_balance, next_balance))
9569                this_rq->next_balance = next_balance;
9570
9571        /* Is there a task of a high priority class? */
9572        if (this_rq->nr_running != this_rq->cfs.h_nr_running)
9573                pulled_task = -1;
9574
9575        if (pulled_task)
9576                this_rq->idle_stamp = 0;
9577
9578        rq_repin_lock(this_rq, rf);
9579
9580        return pulled_task;
9581}
9582
9583/*
9584 * run_rebalance_domains is triggered when needed from the scheduler tick.
9585 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
9586 */
9587static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
9588{
9589        struct rq *this_rq = this_rq();
9590        enum cpu_idle_type idle = this_rq->idle_balance ?
9591                                                CPU_IDLE : CPU_NOT_IDLE;
9592
9593        /*
9594         * If this CPU has a pending nohz_balance_kick, then do the
9595         * balancing on behalf of the other idle CPUs whose ticks are
9596         * stopped. Do nohz_idle_balance *before* rebalance_domains to
9597         * give the idle CPUs a chance to load balance. Else we may
9598         * load balance only within the local sched_domain hierarchy
9599         * and abort nohz_idle_balance altogether if we pull some load.
9600         */
9601        if (nohz_idle_balance(this_rq, idle))
9602                return;
9603
9604        /* normal load balance */
9605        update_blocked_averages(this_rq->cpu);
9606        rebalance_domains(this_rq, idle);
9607}
9608
9609/*
9610 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
9611 */
9612void trigger_load_balance(struct rq *rq)
9613{
9614        /* Don't need to rebalance while attached to NULL domain */
9615        if (unlikely(on_null_domain(rq)))
9616                return;
9617
9618        if (time_after_eq(jiffies, rq->next_balance))
9619                raise_softirq(SCHED_SOFTIRQ);
9620
9621        nohz_balancer_kick(rq);
9622}
9623
9624static void rq_online_fair(struct rq *rq)
9625{
9626        update_sysctl();
9627
9628        update_runtime_enabled(rq);
9629}
9630
9631static void rq_offline_fair(struct rq *rq)
9632{
9633        update_sysctl();
9634
9635        /* Ensure any throttled groups are reachable by pick_next_task */
9636        unthrottle_offline_cfs_rqs(rq);
9637}
9638
9639#endif /* CONFIG_SMP */
9640
9641/*
9642 * scheduler tick hitting a task of our scheduling class.
9643 *
9644 * NOTE: This function can be called remotely by the tick offload that
9645 * goes along full dynticks. Therefore no local assumption can be made
9646 * and everything must be accessed through the @rq and @curr passed in
9647 * parameters.
9648 */
9649static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
9650{
9651        struct cfs_rq *cfs_rq;
9652        struct sched_entity *se = &curr->se;
9653
9654        for_each_sched_entity(se) {
9655                cfs_rq = cfs_rq_of(se);
9656                entity_tick(cfs_rq, se, queued);
9657        }
9658
9659        if (static_branch_unlikely(&sched_numa_balancing))
9660                task_tick_numa(rq, curr);
9661}
9662
9663/*
9664 * called on fork with the child task as argument from the parent's context
9665 *  - child not yet on the tasklist
9666 *  - preemption disabled
9667 */
9668static void task_fork_fair(struct task_struct *p)
9669{
9670        struct cfs_rq *cfs_rq;
9671        struct sched_entity *se = &p->se, *curr;
9672        struct rq *rq = this_rq();
9673        struct rq_flags rf;
9674
9675        rq_lock(rq, &rf);
9676        update_rq_clock(rq);
9677
9678        cfs_rq = task_cfs_rq(current);
9679        curr = cfs_rq->curr;
9680        if (curr) {
9681                update_curr(cfs_rq);
9682                se->vruntime = curr->vruntime;
9683        }
9684        place_entity(cfs_rq, se, 1);
9685
9686        if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
9687                /*
9688                 * Upon rescheduling, sched_class::put_prev_task() will place
9689                 * 'current' within the tree based on its new key value.
9690                 */
9691                swap(curr->vruntime, se->vruntime);
9692                resched_curr(rq);
9693        }
9694
9695        se->vruntime -= cfs_rq->min_vruntime;
9696        rq_unlock(rq, &rf);
9697}
9698
9699/*
9700 * Priority of the task has changed. Check to see if we preempt
9701 * the current task.
9702 */
9703static void
9704prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
9705{
9706        if (!task_on_rq_queued(p))
9707                return;
9708
9709        /*
9710         * Reschedule if we are currently running on this runqueue and
9711         * our priority decreased, or if we are not currently running on
9712         * this runqueue and our priority is higher than the current's
9713         */
9714        if (rq->curr == p) {
9715                if (p->prio > oldprio)
9716                        resched_curr(rq);
9717        } else
9718                check_preempt_curr(rq, p, 0);
9719}
9720
9721static inline bool vruntime_normalized(struct task_struct *p)
9722{
9723        struct sched_entity *se = &p->se;
9724
9725        /*
9726         * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
9727         * the dequeue_entity(.flags=0) will already have normalized the
9728         * vruntime.
9729         */
9730        if (p->on_rq)
9731                return true;
9732
9733        /*
9734         * When !on_rq, vruntime of the task has usually NOT been normalized.
9735         * But there are some cases where it has already been normalized:
9736         *
9737         * - A forked child which is waiting for being woken up by
9738         *   wake_up_new_task().
9739         * - A task which has been woken up by try_to_wake_up() and
9740         *   waiting for actually being woken up by sched_ttwu_pending().
9741         */
9742        if (!se->sum_exec_runtime ||
9743            (p->state == TASK_WAKING && p->sched_remote_wakeup))
9744                return true;
9745
9746        return false;
9747}
9748
9749#ifdef CONFIG_FAIR_GROUP_SCHED
9750/*
9751 * Propagate the changes of the sched_entity across the tg tree to make it
9752 * visible to the root
9753 */
9754static void propagate_entity_cfs_rq(struct sched_entity *se)
9755{
9756        struct cfs_rq *cfs_rq;
9757
9758        /* Start to propagate at parent */
9759        se = se->parent;
9760
9761        for_each_sched_entity(se) {
9762                cfs_rq = cfs_rq_of(se);
9763
9764                if (cfs_rq_throttled(cfs_rq))
9765                        break;
9766
9767                update_load_avg(cfs_rq, se, UPDATE_TG);
9768        }
9769}
9770#else
9771static void propagate_entity_cfs_rq(struct sched_entity *se) { }
9772#endif
9773
9774static void detach_entity_cfs_rq(struct sched_entity *se)
9775{
9776        struct cfs_rq *cfs_rq = cfs_rq_of(se);
9777
9778        /* Catch up with the cfs_rq and remove our load when we leave */
9779        update_load_avg(cfs_rq, se, 0);
9780        detach_entity_load_avg(cfs_rq, se);
9781        update_tg_load_avg(cfs_rq, false);
9782        propagate_entity_cfs_rq(se);
9783}
9784
9785static void attach_entity_cfs_rq(struct sched_entity *se)
9786{
9787        struct cfs_rq *cfs_rq = cfs_rq_of(se);
9788
9789#ifdef CONFIG_FAIR_GROUP_SCHED
9790        /*
9791         * Since the real-depth could have been changed (only FAIR
9792         * class maintain depth value), reset depth properly.
9793         */
9794        se->depth = se->parent ? se->parent->depth + 1 : 0;
9795#endif
9796
9797        /* Synchronize entity with its cfs_rq */
9798        update_load_avg(cfs_rq, se, sched_feat(ATTACH_AGE_LOAD) ? 0 : SKIP_AGE_LOAD);
9799        attach_entity_load_avg(cfs_rq, se, 0);
9800        update_tg_load_avg(cfs_rq, false);
9801        propagate_entity_cfs_rq(se);
9802}
9803
9804static void detach_task_cfs_rq(struct task_struct *p)
9805{
9806        struct sched_entity *se = &p->se;
9807        struct cfs_rq *cfs_rq = cfs_rq_of(se);
9808
9809        if (!vruntime_normalized(p)) {
9810                /*
9811                 * Fix up our vruntime so that the current sleep doesn't
9812                 * cause 'unlimited' sleep bonus.
9813                 */
9814                place_entity(cfs_rq, se, 0);
9815                se->vruntime -= cfs_rq->min_vruntime;
9816        }
9817
9818        detach_entity_cfs_rq(se);
9819}
9820
9821static void attach_task_cfs_rq(struct task_struct *p)
9822{
9823        struct sched_entity *se = &p->se;
9824        struct cfs_rq *cfs_rq = cfs_rq_of(se);
9825
9826        attach_entity_cfs_rq(se);
9827
9828        if (!vruntime_normalized(p))
9829                se->vruntime += cfs_rq->min_vruntime;
9830}
9831
9832static void switched_from_fair(struct rq *rq, struct task_struct *p)
9833{
9834        detach_task_cfs_rq(p);
9835}
9836
9837static void switched_to_fair(struct rq *rq, struct task_struct *p)
9838{
9839        attach_task_cfs_rq(p);
9840
9841        if (task_on_rq_queued(p)) {
9842                /*
9843                 * We were most likely switched from sched_rt, so
9844                 * kick off the schedule if running, otherwise just see
9845                 * if we can still preempt the current task.
9846                 */
9847                if (rq->curr == p)
9848                        resched_curr(rq);
9849                else
9850                        check_preempt_curr(rq, p, 0);
9851        }
9852}
9853
9854/* Account for a task changing its policy or group.
9855 *
9856 * This routine is mostly called to set cfs_rq->curr field when a task
9857 * migrates between groups/classes.
9858 */
9859static void set_curr_task_fair(struct rq *rq)
9860{
9861        struct sched_entity *se = &rq->curr->se;
9862
9863        for_each_sched_entity(se) {
9864                struct cfs_rq *cfs_rq = cfs_rq_of(se);
9865
9866                set_next_entity(cfs_rq, se);
9867                /* ensure bandwidth has been allocated on our new cfs_rq */
9868                account_cfs_rq_runtime(cfs_rq, 0);
9869        }
9870}
9871
9872void init_cfs_rq(struct cfs_rq *cfs_rq)
9873{
9874        cfs_rq->tasks_timeline = RB_ROOT_CACHED;
9875        cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9876#ifndef CONFIG_64BIT
9877        cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
9878#endif
9879#ifdef CONFIG_SMP
9880        raw_spin_lock_init(&cfs_rq->removed.lock);
9881#endif
9882}
9883
9884#ifdef CONFIG_FAIR_GROUP_SCHED
9885static void task_set_group_fair(struct task_struct *p)
9886{
9887        struct sched_entity *se = &p->se;
9888
9889        set_task_rq(p, task_cpu(p));
9890        se->depth = se->parent ? se->parent->depth + 1 : 0;
9891}
9892
9893static void task_move_group_fair(struct task_struct *p)
9894{
9895        detach_task_cfs_rq(p);
9896        set_task_rq(p, task_cpu(p));
9897
9898#ifdef CONFIG_SMP
9899        /* Tell se's cfs_rq has been changed -- migrated */
9900        p->se.avg.last_update_time = 0;
9901#endif
9902        attach_task_cfs_rq(p);
9903}
9904
9905static void task_change_group_fair(struct task_struct *p, int type)
9906{
9907        switch (type) {
9908        case TASK_SET_GROUP:
9909                task_set_group_fair(p);
9910                break;
9911
9912        case TASK_MOVE_GROUP:
9913                task_move_group_fair(p);
9914                break;
9915        }
9916}
9917
9918void free_fair_sched_group(struct task_group *tg)
9919{
9920        int i;
9921
9922        destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
9923
9924        for_each_possible_cpu(i) {
9925                if (tg->cfs_rq)
9926                        kfree(tg->cfs_rq[i]);
9927                if (tg->se)
9928                        kfree(tg->se[i]);
9929        }
9930
9931        kfree(tg->cfs_rq);
9932        kfree(tg->se);
9933}
9934
9935int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9936{
9937        struct sched_entity *se;
9938        struct cfs_rq *cfs_rq;
9939        int i;
9940
9941        tg->cfs_rq = kcalloc(nr_cpu_ids, sizeof(cfs_rq), GFP_KERNEL);
9942        if (!tg->cfs_rq)
9943                goto err;
9944        tg->se = kcalloc(nr_cpu_ids, sizeof(se), GFP_KERNEL);
9945        if (!tg->se)
9946                goto err;
9947
9948        tg->shares = NICE_0_LOAD;
9949
9950        init_cfs_bandwidth(tg_cfs_bandwidth(tg));
9951
9952        for_each_possible_cpu(i) {
9953                cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9954                                      GFP_KERNEL, cpu_to_node(i));
9955                if (!cfs_rq)
9956                        goto err;
9957
9958                se = kzalloc_node(sizeof(struct sched_entity),
9959                                  GFP_KERNEL, cpu_to_node(i));
9960                if (!se)
9961                        goto err_free_rq;
9962
9963                init_cfs_rq(cfs_rq);
9964                init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
9965                init_entity_runnable_average(se);
9966        }
9967
9968        return 1;
9969
9970err_free_rq:
9971        kfree(cfs_rq);
9972err:
9973        return 0;
9974}
9975
9976void online_fair_sched_group(struct task_group *tg)
9977{
9978        struct sched_entity *se;
9979        struct rq *rq;
9980        int i;
9981
9982        for_each_possible_cpu(i) {
9983                rq = cpu_rq(i);
9984                se = tg->se[i];
9985
9986                raw_spin_lock_irq(&rq->lock);
9987                update_rq_clock(rq);
9988                attach_entity_cfs_rq(se);
9989                sync_throttle(tg, i);
9990                raw_spin_unlock_irq(&rq->lock);
9991        }
9992}
9993
9994void unregister_fair_sched_group(struct task_group *tg)
9995{
9996        unsigned long flags;
9997        struct rq *rq;
9998        int cpu;
9999
10000        for_each_possible_cpu(cpu) {
10001                if (tg->se[cpu])
10002                        remove_entity_load_avg(tg->se[cpu]);
10003
10004                /*
10005                 * Only empty task groups can be destroyed; so we can speculatively
10006                 * check on_list without danger of it being re-added.
10007                 */
10008                if (!tg->cfs_rq[cpu]->on_list)
10009                        continue;
10010
10011                rq = cpu_rq(cpu);
10012
10013                raw_spin_lock_irqsave(&rq->lock, flags);
10014                list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
10015                raw_spin_unlock_irqrestore(&rq->lock, flags);
10016        }
10017}
10018
10019void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
10020                        struct sched_entity *se, int cpu,
10021                        struct sched_entity *parent)
10022{
10023        struct rq *rq = cpu_rq(cpu);
10024
10025        cfs_rq->tg = tg;
10026        cfs_rq->rq = rq;
10027        init_cfs_rq_runtime(cfs_rq);
10028
10029        tg->cfs_rq[cpu] = cfs_rq;
10030        tg->se[cpu] = se;
10031
10032        /* se could be NULL for root_task_group */
10033        if (!se)
10034                return;
10035
10036        if (!parent) {
10037                se->cfs_rq = &rq->cfs;
10038                se->depth = 0;
10039        } else {
10040                se->cfs_rq = parent->my_q;
10041                se->depth = parent->depth + 1;
10042        }
10043
10044        se->my_q = cfs_rq;
10045        /* guarantee group entities always have weight */
10046        update_load_set(&se->load, NICE_0_LOAD);
10047        se->parent = parent;
10048}
10049
10050static DEFINE_MUTEX(shares_mutex);
10051
10052int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10053{
10054        int i;
10055
10056        /*
10057         * We can't change the weight of the root cgroup.
10058         */
10059        if (!tg->se[0])
10060                return -EINVAL;
10061
10062        shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
10063
10064        mutex_lock(&shares_mutex);
10065        if (tg->shares == shares)
10066                goto done;
10067
10068        tg->shares = shares;
10069        for_each_possible_cpu(i) {
10070                struct rq *rq = cpu_rq(i);
10071                struct sched_entity *se = tg->se[i];
10072                struct rq_flags rf;
10073
10074                /* Propagate contribution to hierarchy */
10075                rq_lock_irqsave(rq, &rf);
10076                update_rq_clock(rq);
10077                for_each_sched_entity(se) {
10078                        update_load_avg(cfs_rq_of(se), se, UPDATE_TG);
10079                        update_cfs_group(se);
10080                }
10081                rq_unlock_irqrestore(rq, &rf);
10082        }
10083
10084done:
10085        mutex_unlock(&shares_mutex);
10086        return 0;
10087}
10088#else /* CONFIG_FAIR_GROUP_SCHED */
10089
10090void free_fair_sched_group(struct task_group *tg) { }
10091
10092int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
10093{
10094        return 1;
10095}
10096
10097void online_fair_sched_group(struct task_group *tg) { }
10098
10099void unregister_fair_sched_group(struct task_group *tg) { }
10100
10101#endif /* CONFIG_FAIR_GROUP_SCHED */
10102
10103
10104static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
10105{
10106        struct sched_entity *se = &task->se;
10107        unsigned int rr_interval = 0;
10108
10109        /*
10110         * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
10111         * idle runqueue:
10112         */
10113        if (rq->cfs.load.weight)
10114                rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
10115
10116        return rr_interval;
10117}
10118
10119/*
10120 * All the scheduling class methods:
10121 */
10122const struct sched_class fair_sched_class = {
10123        .next                   = &idle_sched_class,
10124        .enqueue_task           = enqueue_task_fair,
10125        .dequeue_task           = dequeue_task_fair,
10126        .yield_task             = yield_task_fair,
10127        .yield_to_task          = yield_to_task_fair,
10128
10129        .check_preempt_curr     = check_preempt_wakeup,
10130
10131        .pick_next_task         = pick_next_task_fair,
10132        .put_prev_task          = put_prev_task_fair,
10133
10134#ifdef CONFIG_SMP
10135        .select_task_rq         = select_task_rq_fair,
10136        .migrate_task_rq        = migrate_task_rq_fair,
10137
10138        .rq_online              = rq_online_fair,
10139        .rq_offline             = rq_offline_fair,
10140
10141        .task_dead              = task_dead_fair,
10142        .set_cpus_allowed       = set_cpus_allowed_common,
10143#endif
10144
10145        .set_curr_task          = set_curr_task_fair,
10146        .task_tick              = task_tick_fair,
10147        .task_fork              = task_fork_fair,
10148
10149        .prio_changed           = prio_changed_fair,
10150        .switched_from          = switched_from_fair,
10151        .switched_to            = switched_to_fair,
10152
10153        .get_rr_interval        = get_rr_interval_fair,
10154
10155        .update_curr            = update_curr_fair,
10156
10157#ifdef CONFIG_FAIR_GROUP_SCHED
10158        .task_change_group      = task_change_group_fair,
10159#endif
10160};
10161
10162#ifdef CONFIG_SCHED_DEBUG
10163void print_cfs_stats(struct seq_file *m, int cpu)
10164{
10165        struct cfs_rq *cfs_rq, *pos;
10166
10167        rcu_read_lock();
10168        for_each_leaf_cfs_rq_safe(cpu_rq(cpu), cfs_rq, pos)
10169                print_cfs_rq(m, cpu, cfs_rq);
10170        rcu_read_unlock();
10171}
10172
10173#ifdef CONFIG_NUMA_BALANCING
10174void show_numa_stats(struct task_struct *p, struct seq_file *m)
10175{
10176        int node;
10177        unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
10178
10179        for_each_online_node(node) {
10180                if (p->numa_faults) {
10181                        tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
10182                        tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
10183                }
10184                if (p->numa_group) {
10185                        gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
10186                        gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
10187                }
10188                print_numa_stats(m, node, tsf, tpf, gsf, gpf);
10189        }
10190}
10191#endif /* CONFIG_NUMA_BALANCING */
10192#endif /* CONFIG_SCHED_DEBUG */
10193
10194__init void init_sched_fair_class(void)
10195{
10196#ifdef CONFIG_SMP
10197        open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
10198
10199#ifdef CONFIG_NO_HZ_COMMON
10200        nohz.next_balance = jiffies;
10201        nohz.next_blocked = jiffies;
10202        zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
10203#endif
10204#endif /* SMP */
10205
10206}
10207