linux/kernel/time/timekeeping.c
<<
>>
Prefs
   1/*
   2 *  linux/kernel/time/timekeeping.c
   3 *
   4 *  Kernel timekeeping code and accessor functions
   5 *
   6 *  This code was moved from linux/kernel/timer.c.
   7 *  Please see that file for copyright and history logs.
   8 *
   9 */
  10
  11#include <linux/timekeeper_internal.h>
  12#include <linux/module.h>
  13#include <linux/interrupt.h>
  14#include <linux/percpu.h>
  15#include <linux/init.h>
  16#include <linux/mm.h>
  17#include <linux/nmi.h>
  18#include <linux/sched.h>
  19#include <linux/sched/loadavg.h>
  20#include <linux/sched/clock.h>
  21#include <linux/syscore_ops.h>
  22#include <linux/clocksource.h>
  23#include <linux/jiffies.h>
  24#include <linux/time.h>
  25#include <linux/tick.h>
  26#include <linux/stop_machine.h>
  27#include <linux/pvclock_gtod.h>
  28#include <linux/compiler.h>
  29
  30#include "tick-internal.h"
  31#include "ntp_internal.h"
  32#include "timekeeping_internal.h"
  33
  34#define TK_CLEAR_NTP            (1 << 0)
  35#define TK_MIRROR               (1 << 1)
  36#define TK_CLOCK_WAS_SET        (1 << 2)
  37
  38enum timekeeping_adv_mode {
  39        /* Update timekeeper when a tick has passed */
  40        TK_ADV_TICK,
  41
  42        /* Update timekeeper on a direct frequency change */
  43        TK_ADV_FREQ
  44};
  45
  46/*
  47 * The most important data for readout fits into a single 64 byte
  48 * cache line.
  49 */
  50static struct {
  51        seqcount_t              seq;
  52        struct timekeeper       timekeeper;
  53} tk_core ____cacheline_aligned;
  54
  55static DEFINE_RAW_SPINLOCK(timekeeper_lock);
  56static struct timekeeper shadow_timekeeper;
  57
  58/**
  59 * struct tk_fast - NMI safe timekeeper
  60 * @seq:        Sequence counter for protecting updates. The lowest bit
  61 *              is the index for the tk_read_base array
  62 * @base:       tk_read_base array. Access is indexed by the lowest bit of
  63 *              @seq.
  64 *
  65 * See @update_fast_timekeeper() below.
  66 */
  67struct tk_fast {
  68        seqcount_t              seq;
  69        struct tk_read_base     base[2];
  70};
  71
  72/* Suspend-time cycles value for halted fast timekeeper. */
  73static u64 cycles_at_suspend;
  74
  75static u64 dummy_clock_read(struct clocksource *cs)
  76{
  77        return cycles_at_suspend;
  78}
  79
  80static struct clocksource dummy_clock = {
  81        .read = dummy_clock_read,
  82};
  83
  84static struct tk_fast tk_fast_mono ____cacheline_aligned = {
  85        .base[0] = { .clock = &dummy_clock, },
  86        .base[1] = { .clock = &dummy_clock, },
  87};
  88
  89static struct tk_fast tk_fast_raw  ____cacheline_aligned = {
  90        .base[0] = { .clock = &dummy_clock, },
  91        .base[1] = { .clock = &dummy_clock, },
  92};
  93
  94/* flag for if timekeeping is suspended */
  95int __read_mostly timekeeping_suspended;
  96
  97static inline void tk_normalize_xtime(struct timekeeper *tk)
  98{
  99        while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
 100                tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
 101                tk->xtime_sec++;
 102        }
 103        while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) {
 104                tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
 105                tk->raw_sec++;
 106        }
 107}
 108
 109static inline struct timespec64 tk_xtime(const struct timekeeper *tk)
 110{
 111        struct timespec64 ts;
 112
 113        ts.tv_sec = tk->xtime_sec;
 114        ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 115        return ts;
 116}
 117
 118static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
 119{
 120        tk->xtime_sec = ts->tv_sec;
 121        tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
 122}
 123
 124static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
 125{
 126        tk->xtime_sec += ts->tv_sec;
 127        tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
 128        tk_normalize_xtime(tk);
 129}
 130
 131static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
 132{
 133        struct timespec64 tmp;
 134
 135        /*
 136         * Verify consistency of: offset_real = -wall_to_monotonic
 137         * before modifying anything
 138         */
 139        set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
 140                                        -tk->wall_to_monotonic.tv_nsec);
 141        WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp));
 142        tk->wall_to_monotonic = wtm;
 143        set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
 144        tk->offs_real = timespec64_to_ktime(tmp);
 145        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
 146}
 147
 148static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
 149{
 150        tk->offs_boot = ktime_add(tk->offs_boot, delta);
 151}
 152
 153/*
 154 * tk_clock_read - atomic clocksource read() helper
 155 *
 156 * This helper is necessary to use in the read paths because, while the
 157 * seqlock ensures we don't return a bad value while structures are updated,
 158 * it doesn't protect from potential crashes. There is the possibility that
 159 * the tkr's clocksource may change between the read reference, and the
 160 * clock reference passed to the read function.  This can cause crashes if
 161 * the wrong clocksource is passed to the wrong read function.
 162 * This isn't necessary to use when holding the timekeeper_lock or doing
 163 * a read of the fast-timekeeper tkrs (which is protected by its own locking
 164 * and update logic).
 165 */
 166static inline u64 tk_clock_read(const struct tk_read_base *tkr)
 167{
 168        struct clocksource *clock = READ_ONCE(tkr->clock);
 169
 170        return clock->read(clock);
 171}
 172
 173#ifdef CONFIG_DEBUG_TIMEKEEPING
 174#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
 175
 176static void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 177{
 178
 179        u64 max_cycles = tk->tkr_mono.clock->max_cycles;
 180        const char *name = tk->tkr_mono.clock->name;
 181
 182        if (offset > max_cycles) {
 183                printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
 184                                offset, name, max_cycles);
 185                printk_deferred("         timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
 186        } else {
 187                if (offset > (max_cycles >> 1)) {
 188                        printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
 189                                        offset, name, max_cycles >> 1);
 190                        printk_deferred("      timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
 191                }
 192        }
 193
 194        if (tk->underflow_seen) {
 195                if (jiffies - tk->last_warning > WARNING_FREQ) {
 196                        printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
 197                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 198                        printk_deferred("         Your kernel is probably still fine.\n");
 199                        tk->last_warning = jiffies;
 200                }
 201                tk->underflow_seen = 0;
 202        }
 203
 204        if (tk->overflow_seen) {
 205                if (jiffies - tk->last_warning > WARNING_FREQ) {
 206                        printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
 207                        printk_deferred("         Please report this, consider using a different clocksource, if possible.\n");
 208                        printk_deferred("         Your kernel is probably still fine.\n");
 209                        tk->last_warning = jiffies;
 210                }
 211                tk->overflow_seen = 0;
 212        }
 213}
 214
 215static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 216{
 217        struct timekeeper *tk = &tk_core.timekeeper;
 218        u64 now, last, mask, max, delta;
 219        unsigned int seq;
 220
 221        /*
 222         * Since we're called holding a seqlock, the data may shift
 223         * under us while we're doing the calculation. This can cause
 224         * false positives, since we'd note a problem but throw the
 225         * results away. So nest another seqlock here to atomically
 226         * grab the points we are checking with.
 227         */
 228        do {
 229                seq = read_seqcount_begin(&tk_core.seq);
 230                now = tk_clock_read(tkr);
 231                last = tkr->cycle_last;
 232                mask = tkr->mask;
 233                max = tkr->clock->max_cycles;
 234        } while (read_seqcount_retry(&tk_core.seq, seq));
 235
 236        delta = clocksource_delta(now, last, mask);
 237
 238        /*
 239         * Try to catch underflows by checking if we are seeing small
 240         * mask-relative negative values.
 241         */
 242        if (unlikely((~delta & mask) < (mask >> 3))) {
 243                tk->underflow_seen = 1;
 244                delta = 0;
 245        }
 246
 247        /* Cap delta value to the max_cycles values to avoid mult overflows */
 248        if (unlikely(delta > max)) {
 249                tk->overflow_seen = 1;
 250                delta = tkr->clock->max_cycles;
 251        }
 252
 253        return delta;
 254}
 255#else
 256static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset)
 257{
 258}
 259static inline u64 timekeeping_get_delta(const struct tk_read_base *tkr)
 260{
 261        u64 cycle_now, delta;
 262
 263        /* read clocksource */
 264        cycle_now = tk_clock_read(tkr);
 265
 266        /* calculate the delta since the last update_wall_time */
 267        delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
 268
 269        return delta;
 270}
 271#endif
 272
 273/**
 274 * tk_setup_internals - Set up internals to use clocksource clock.
 275 *
 276 * @tk:         The target timekeeper to setup.
 277 * @clock:              Pointer to clocksource.
 278 *
 279 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
 280 * pair and interval request.
 281 *
 282 * Unless you're the timekeeping code, you should not be using this!
 283 */
 284static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
 285{
 286        u64 interval;
 287        u64 tmp, ntpinterval;
 288        struct clocksource *old_clock;
 289
 290        ++tk->cs_was_changed_seq;
 291        old_clock = tk->tkr_mono.clock;
 292        tk->tkr_mono.clock = clock;
 293        tk->tkr_mono.mask = clock->mask;
 294        tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono);
 295
 296        tk->tkr_raw.clock = clock;
 297        tk->tkr_raw.mask = clock->mask;
 298        tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
 299
 300        /* Do the ns -> cycle conversion first, using original mult */
 301        tmp = NTP_INTERVAL_LENGTH;
 302        tmp <<= clock->shift;
 303        ntpinterval = tmp;
 304        tmp += clock->mult/2;
 305        do_div(tmp, clock->mult);
 306        if (tmp == 0)
 307                tmp = 1;
 308
 309        interval = (u64) tmp;
 310        tk->cycle_interval = interval;
 311
 312        /* Go back from cycles -> shifted ns */
 313        tk->xtime_interval = interval * clock->mult;
 314        tk->xtime_remainder = ntpinterval - tk->xtime_interval;
 315        tk->raw_interval = interval * clock->mult;
 316
 317         /* if changing clocks, convert xtime_nsec shift units */
 318        if (old_clock) {
 319                int shift_change = clock->shift - old_clock->shift;
 320                if (shift_change < 0) {
 321                        tk->tkr_mono.xtime_nsec >>= -shift_change;
 322                        tk->tkr_raw.xtime_nsec >>= -shift_change;
 323                } else {
 324                        tk->tkr_mono.xtime_nsec <<= shift_change;
 325                        tk->tkr_raw.xtime_nsec <<= shift_change;
 326                }
 327        }
 328
 329        tk->tkr_mono.shift = clock->shift;
 330        tk->tkr_raw.shift = clock->shift;
 331
 332        tk->ntp_error = 0;
 333        tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
 334        tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
 335
 336        /*
 337         * The timekeeper keeps its own mult values for the currently
 338         * active clocksource. These value will be adjusted via NTP
 339         * to counteract clock drifting.
 340         */
 341        tk->tkr_mono.mult = clock->mult;
 342        tk->tkr_raw.mult = clock->mult;
 343        tk->ntp_err_mult = 0;
 344        tk->skip_second_overflow = 0;
 345}
 346
 347/* Timekeeper helper functions. */
 348
 349#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
 350static u32 default_arch_gettimeoffset(void) { return 0; }
 351u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
 352#else
 353static inline u32 arch_gettimeoffset(void) { return 0; }
 354#endif
 355
 356static inline u64 timekeeping_delta_to_ns(const struct tk_read_base *tkr, u64 delta)
 357{
 358        u64 nsec;
 359
 360        nsec = delta * tkr->mult + tkr->xtime_nsec;
 361        nsec >>= tkr->shift;
 362
 363        /* If arch requires, add in get_arch_timeoffset() */
 364        return nsec + arch_gettimeoffset();
 365}
 366
 367static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr)
 368{
 369        u64 delta;
 370
 371        delta = timekeeping_get_delta(tkr);
 372        return timekeeping_delta_to_ns(tkr, delta);
 373}
 374
 375static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles)
 376{
 377        u64 delta;
 378
 379        /* calculate the delta since the last update_wall_time */
 380        delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
 381        return timekeeping_delta_to_ns(tkr, delta);
 382}
 383
 384/**
 385 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
 386 * @tkr: Timekeeping readout base from which we take the update
 387 *
 388 * We want to use this from any context including NMI and tracing /
 389 * instrumenting the timekeeping code itself.
 390 *
 391 * Employ the latch technique; see @raw_write_seqcount_latch.
 392 *
 393 * So if a NMI hits the update of base[0] then it will use base[1]
 394 * which is still consistent. In the worst case this can result is a
 395 * slightly wrong timestamp (a few nanoseconds). See
 396 * @ktime_get_mono_fast_ns.
 397 */
 398static void update_fast_timekeeper(const struct tk_read_base *tkr,
 399                                   struct tk_fast *tkf)
 400{
 401        struct tk_read_base *base = tkf->base;
 402
 403        /* Force readers off to base[1] */
 404        raw_write_seqcount_latch(&tkf->seq);
 405
 406        /* Update base[0] */
 407        memcpy(base, tkr, sizeof(*base));
 408
 409        /* Force readers back to base[0] */
 410        raw_write_seqcount_latch(&tkf->seq);
 411
 412        /* Update base[1] */
 413        memcpy(base + 1, base, sizeof(*base));
 414}
 415
 416/**
 417 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
 418 *
 419 * This timestamp is not guaranteed to be monotonic across an update.
 420 * The timestamp is calculated by:
 421 *
 422 *      now = base_mono + clock_delta * slope
 423 *
 424 * So if the update lowers the slope, readers who are forced to the
 425 * not yet updated second array are still using the old steeper slope.
 426 *
 427 * tmono
 428 * ^
 429 * |    o  n
 430 * |   o n
 431 * |  u
 432 * | o
 433 * |o
 434 * |12345678---> reader order
 435 *
 436 * o = old slope
 437 * u = update
 438 * n = new slope
 439 *
 440 * So reader 6 will observe time going backwards versus reader 5.
 441 *
 442 * While other CPUs are likely to be able observe that, the only way
 443 * for a CPU local observation is when an NMI hits in the middle of
 444 * the update. Timestamps taken from that NMI context might be ahead
 445 * of the following timestamps. Callers need to be aware of that and
 446 * deal with it.
 447 */
 448static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
 449{
 450        struct tk_read_base *tkr;
 451        unsigned int seq;
 452        u64 now;
 453
 454        do {
 455                seq = raw_read_seqcount_latch(&tkf->seq);
 456                tkr = tkf->base + (seq & 0x01);
 457                now = ktime_to_ns(tkr->base);
 458
 459                now += timekeeping_delta_to_ns(tkr,
 460                                clocksource_delta(
 461                                        tk_clock_read(tkr),
 462                                        tkr->cycle_last,
 463                                        tkr->mask));
 464        } while (read_seqcount_retry(&tkf->seq, seq));
 465
 466        return now;
 467}
 468
 469u64 ktime_get_mono_fast_ns(void)
 470{
 471        return __ktime_get_fast_ns(&tk_fast_mono);
 472}
 473EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
 474
 475u64 ktime_get_raw_fast_ns(void)
 476{
 477        return __ktime_get_fast_ns(&tk_fast_raw);
 478}
 479EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
 480
 481/**
 482 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock.
 483 *
 484 * To keep it NMI safe since we're accessing from tracing, we're not using a
 485 * separate timekeeper with updates to monotonic clock and boot offset
 486 * protected with seqlocks. This has the following minor side effects:
 487 *
 488 * (1) Its possible that a timestamp be taken after the boot offset is updated
 489 * but before the timekeeper is updated. If this happens, the new boot offset
 490 * is added to the old timekeeping making the clock appear to update slightly
 491 * earlier:
 492 *    CPU 0                                        CPU 1
 493 *    timekeeping_inject_sleeptime64()
 494 *    __timekeeping_inject_sleeptime(tk, delta);
 495 *                                                 timestamp();
 496 *    timekeeping_update(tk, TK_CLEAR_NTP...);
 497 *
 498 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be
 499 * partially updated.  Since the tk->offs_boot update is a rare event, this
 500 * should be a rare occurrence which postprocessing should be able to handle.
 501 */
 502u64 notrace ktime_get_boot_fast_ns(void)
 503{
 504        struct timekeeper *tk = &tk_core.timekeeper;
 505
 506        return (ktime_get_mono_fast_ns() + ktime_to_ns(tk->offs_boot));
 507}
 508EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns);
 509
 510
 511/*
 512 * See comment for __ktime_get_fast_ns() vs. timestamp ordering
 513 */
 514static __always_inline u64 __ktime_get_real_fast_ns(struct tk_fast *tkf)
 515{
 516        struct tk_read_base *tkr;
 517        unsigned int seq;
 518        u64 now;
 519
 520        do {
 521                seq = raw_read_seqcount_latch(&tkf->seq);
 522                tkr = tkf->base + (seq & 0x01);
 523                now = ktime_to_ns(tkr->base_real);
 524
 525                now += timekeeping_delta_to_ns(tkr,
 526                                clocksource_delta(
 527                                        tk_clock_read(tkr),
 528                                        tkr->cycle_last,
 529                                        tkr->mask));
 530        } while (read_seqcount_retry(&tkf->seq, seq));
 531
 532        return now;
 533}
 534
 535/**
 536 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime.
 537 */
 538u64 ktime_get_real_fast_ns(void)
 539{
 540        return __ktime_get_real_fast_ns(&tk_fast_mono);
 541}
 542EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns);
 543
 544/**
 545 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
 546 * @tk: Timekeeper to snapshot.
 547 *
 548 * It generally is unsafe to access the clocksource after timekeeping has been
 549 * suspended, so take a snapshot of the readout base of @tk and use it as the
 550 * fast timekeeper's readout base while suspended.  It will return the same
 551 * number of cycles every time until timekeeping is resumed at which time the
 552 * proper readout base for the fast timekeeper will be restored automatically.
 553 */
 554static void halt_fast_timekeeper(const struct timekeeper *tk)
 555{
 556        static struct tk_read_base tkr_dummy;
 557        const struct tk_read_base *tkr = &tk->tkr_mono;
 558
 559        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 560        cycles_at_suspend = tk_clock_read(tkr);
 561        tkr_dummy.clock = &dummy_clock;
 562        tkr_dummy.base_real = tkr->base + tk->offs_real;
 563        update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
 564
 565        tkr = &tk->tkr_raw;
 566        memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
 567        tkr_dummy.clock = &dummy_clock;
 568        update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
 569}
 570
 571static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
 572
 573static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
 574{
 575        raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
 576}
 577
 578/**
 579 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
 580 */
 581int pvclock_gtod_register_notifier(struct notifier_block *nb)
 582{
 583        struct timekeeper *tk = &tk_core.timekeeper;
 584        unsigned long flags;
 585        int ret;
 586
 587        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 588        ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
 589        update_pvclock_gtod(tk, true);
 590        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 591
 592        return ret;
 593}
 594EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
 595
 596/**
 597 * pvclock_gtod_unregister_notifier - unregister a pvclock
 598 * timedata update listener
 599 */
 600int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
 601{
 602        unsigned long flags;
 603        int ret;
 604
 605        raw_spin_lock_irqsave(&timekeeper_lock, flags);
 606        ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
 607        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
 608
 609        return ret;
 610}
 611EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
 612
 613/*
 614 * tk_update_leap_state - helper to update the next_leap_ktime
 615 */
 616static inline void tk_update_leap_state(struct timekeeper *tk)
 617{
 618        tk->next_leap_ktime = ntp_get_next_leap();
 619        if (tk->next_leap_ktime != KTIME_MAX)
 620                /* Convert to monotonic time */
 621                tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
 622}
 623
 624/*
 625 * Update the ktime_t based scalar nsec members of the timekeeper
 626 */
 627static inline void tk_update_ktime_data(struct timekeeper *tk)
 628{
 629        u64 seconds;
 630        u32 nsec;
 631
 632        /*
 633         * The xtime based monotonic readout is:
 634         *      nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
 635         * The ktime based monotonic readout is:
 636         *      nsec = base_mono + now();
 637         * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
 638         */
 639        seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
 640        nsec = (u32) tk->wall_to_monotonic.tv_nsec;
 641        tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
 642
 643        /*
 644         * The sum of the nanoseconds portions of xtime and
 645         * wall_to_monotonic can be greater/equal one second. Take
 646         * this into account before updating tk->ktime_sec.
 647         */
 648        nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
 649        if (nsec >= NSEC_PER_SEC)
 650                seconds++;
 651        tk->ktime_sec = seconds;
 652
 653        /* Update the monotonic raw base */
 654        tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC);
 655}
 656
 657/* must hold timekeeper_lock */
 658static void timekeeping_update(struct timekeeper *tk, unsigned int action)
 659{
 660        if (action & TK_CLEAR_NTP) {
 661                tk->ntp_error = 0;
 662                ntp_clear();
 663        }
 664
 665        tk_update_leap_state(tk);
 666        tk_update_ktime_data(tk);
 667
 668        update_vsyscall(tk);
 669        update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
 670
 671        tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real;
 672        update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
 673        update_fast_timekeeper(&tk->tkr_raw,  &tk_fast_raw);
 674
 675        if (action & TK_CLOCK_WAS_SET)
 676                tk->clock_was_set_seq++;
 677        /*
 678         * The mirroring of the data to the shadow-timekeeper needs
 679         * to happen last here to ensure we don't over-write the
 680         * timekeeper structure on the next update with stale data
 681         */
 682        if (action & TK_MIRROR)
 683                memcpy(&shadow_timekeeper, &tk_core.timekeeper,
 684                       sizeof(tk_core.timekeeper));
 685}
 686
 687/**
 688 * timekeeping_forward_now - update clock to the current time
 689 *
 690 * Forward the current clock to update its state since the last call to
 691 * update_wall_time(). This is useful before significant clock changes,
 692 * as it avoids having to deal with this time offset explicitly.
 693 */
 694static void timekeeping_forward_now(struct timekeeper *tk)
 695{
 696        u64 cycle_now, delta;
 697
 698        cycle_now = tk_clock_read(&tk->tkr_mono);
 699        delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
 700        tk->tkr_mono.cycle_last = cycle_now;
 701        tk->tkr_raw.cycle_last  = cycle_now;
 702
 703        tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
 704
 705        /* If arch requires, add in get_arch_timeoffset() */
 706        tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
 707
 708
 709        tk->tkr_raw.xtime_nsec += delta * tk->tkr_raw.mult;
 710
 711        /* If arch requires, add in get_arch_timeoffset() */
 712        tk->tkr_raw.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_raw.shift;
 713
 714        tk_normalize_xtime(tk);
 715}
 716
 717/**
 718 * ktime_get_real_ts64 - Returns the time of day in a timespec64.
 719 * @ts:         pointer to the timespec to be set
 720 *
 721 * Returns the time of day in a timespec64 (WARN if suspended).
 722 */
 723void ktime_get_real_ts64(struct timespec64 *ts)
 724{
 725        struct timekeeper *tk = &tk_core.timekeeper;
 726        unsigned long seq;
 727        u64 nsecs;
 728
 729        WARN_ON(timekeeping_suspended);
 730
 731        do {
 732                seq = read_seqcount_begin(&tk_core.seq);
 733
 734                ts->tv_sec = tk->xtime_sec;
 735                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 736
 737        } while (read_seqcount_retry(&tk_core.seq, seq));
 738
 739        ts->tv_nsec = 0;
 740        timespec64_add_ns(ts, nsecs);
 741}
 742EXPORT_SYMBOL(ktime_get_real_ts64);
 743
 744ktime_t ktime_get(void)
 745{
 746        struct timekeeper *tk = &tk_core.timekeeper;
 747        unsigned int seq;
 748        ktime_t base;
 749        u64 nsecs;
 750
 751        WARN_ON(timekeeping_suspended);
 752
 753        do {
 754                seq = read_seqcount_begin(&tk_core.seq);
 755                base = tk->tkr_mono.base;
 756                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 757
 758        } while (read_seqcount_retry(&tk_core.seq, seq));
 759
 760        return ktime_add_ns(base, nsecs);
 761}
 762EXPORT_SYMBOL_GPL(ktime_get);
 763
 764u32 ktime_get_resolution_ns(void)
 765{
 766        struct timekeeper *tk = &tk_core.timekeeper;
 767        unsigned int seq;
 768        u32 nsecs;
 769
 770        WARN_ON(timekeeping_suspended);
 771
 772        do {
 773                seq = read_seqcount_begin(&tk_core.seq);
 774                nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
 775        } while (read_seqcount_retry(&tk_core.seq, seq));
 776
 777        return nsecs;
 778}
 779EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
 780
 781static ktime_t *offsets[TK_OFFS_MAX] = {
 782        [TK_OFFS_REAL]  = &tk_core.timekeeper.offs_real,
 783        [TK_OFFS_BOOT]  = &tk_core.timekeeper.offs_boot,
 784        [TK_OFFS_TAI]   = &tk_core.timekeeper.offs_tai,
 785};
 786
 787ktime_t ktime_get_with_offset(enum tk_offsets offs)
 788{
 789        struct timekeeper *tk = &tk_core.timekeeper;
 790        unsigned int seq;
 791        ktime_t base, *offset = offsets[offs];
 792        u64 nsecs;
 793
 794        WARN_ON(timekeeping_suspended);
 795
 796        do {
 797                seq = read_seqcount_begin(&tk_core.seq);
 798                base = ktime_add(tk->tkr_mono.base, *offset);
 799                nsecs = timekeeping_get_ns(&tk->tkr_mono);
 800
 801        } while (read_seqcount_retry(&tk_core.seq, seq));
 802
 803        return ktime_add_ns(base, nsecs);
 804
 805}
 806EXPORT_SYMBOL_GPL(ktime_get_with_offset);
 807
 808ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs)
 809{
 810        struct timekeeper *tk = &tk_core.timekeeper;
 811        unsigned int seq;
 812        ktime_t base, *offset = offsets[offs];
 813
 814        WARN_ON(timekeeping_suspended);
 815
 816        do {
 817                seq = read_seqcount_begin(&tk_core.seq);
 818                base = ktime_add(tk->tkr_mono.base, *offset);
 819
 820        } while (read_seqcount_retry(&tk_core.seq, seq));
 821
 822        return base;
 823
 824}
 825EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset);
 826
 827/**
 828 * ktime_mono_to_any() - convert mononotic time to any other time
 829 * @tmono:      time to convert.
 830 * @offs:       which offset to use
 831 */
 832ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
 833{
 834        ktime_t *offset = offsets[offs];
 835        unsigned long seq;
 836        ktime_t tconv;
 837
 838        do {
 839                seq = read_seqcount_begin(&tk_core.seq);
 840                tconv = ktime_add(tmono, *offset);
 841        } while (read_seqcount_retry(&tk_core.seq, seq));
 842
 843        return tconv;
 844}
 845EXPORT_SYMBOL_GPL(ktime_mono_to_any);
 846
 847/**
 848 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
 849 */
 850ktime_t ktime_get_raw(void)
 851{
 852        struct timekeeper *tk = &tk_core.timekeeper;
 853        unsigned int seq;
 854        ktime_t base;
 855        u64 nsecs;
 856
 857        do {
 858                seq = read_seqcount_begin(&tk_core.seq);
 859                base = tk->tkr_raw.base;
 860                nsecs = timekeeping_get_ns(&tk->tkr_raw);
 861
 862        } while (read_seqcount_retry(&tk_core.seq, seq));
 863
 864        return ktime_add_ns(base, nsecs);
 865}
 866EXPORT_SYMBOL_GPL(ktime_get_raw);
 867
 868/**
 869 * ktime_get_ts64 - get the monotonic clock in timespec64 format
 870 * @ts:         pointer to timespec variable
 871 *
 872 * The function calculates the monotonic clock from the realtime
 873 * clock and the wall_to_monotonic offset and stores the result
 874 * in normalized timespec64 format in the variable pointed to by @ts.
 875 */
 876void ktime_get_ts64(struct timespec64 *ts)
 877{
 878        struct timekeeper *tk = &tk_core.timekeeper;
 879        struct timespec64 tomono;
 880        unsigned int seq;
 881        u64 nsec;
 882
 883        WARN_ON(timekeeping_suspended);
 884
 885        do {
 886                seq = read_seqcount_begin(&tk_core.seq);
 887                ts->tv_sec = tk->xtime_sec;
 888                nsec = timekeeping_get_ns(&tk->tkr_mono);
 889                tomono = tk->wall_to_monotonic;
 890
 891        } while (read_seqcount_retry(&tk_core.seq, seq));
 892
 893        ts->tv_sec += tomono.tv_sec;
 894        ts->tv_nsec = 0;
 895        timespec64_add_ns(ts, nsec + tomono.tv_nsec);
 896}
 897EXPORT_SYMBOL_GPL(ktime_get_ts64);
 898
 899/**
 900 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
 901 *
 902 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
 903 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
 904 * works on both 32 and 64 bit systems. On 32 bit systems the readout
 905 * covers ~136 years of uptime which should be enough to prevent
 906 * premature wrap arounds.
 907 */
 908time64_t ktime_get_seconds(void)
 909{
 910        struct timekeeper *tk = &tk_core.timekeeper;
 911
 912        WARN_ON(timekeeping_suspended);
 913        return tk->ktime_sec;
 914}
 915EXPORT_SYMBOL_GPL(ktime_get_seconds);
 916
 917/**
 918 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
 919 *
 920 * Returns the wall clock seconds since 1970. This replaces the
 921 * get_seconds() interface which is not y2038 safe on 32bit systems.
 922 *
 923 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
 924 * 32bit systems the access must be protected with the sequence
 925 * counter to provide "atomic" access to the 64bit tk->xtime_sec
 926 * value.
 927 */
 928time64_t ktime_get_real_seconds(void)
 929{
 930        struct timekeeper *tk = &tk_core.timekeeper;
 931        time64_t seconds;
 932        unsigned int seq;
 933
 934        if (IS_ENABLED(CONFIG_64BIT))
 935                return tk->xtime_sec;
 936
 937        do {
 938                seq = read_seqcount_begin(&tk_core.seq);
 939                seconds = tk->xtime_sec;
 940
 941        } while (read_seqcount_retry(&tk_core.seq, seq));
 942
 943        return seconds;
 944}
 945EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
 946
 947/**
 948 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
 949 * but without the sequence counter protect. This internal function
 950 * is called just when timekeeping lock is already held.
 951 */
 952time64_t __ktime_get_real_seconds(void)
 953{
 954        struct timekeeper *tk = &tk_core.timekeeper;
 955
 956        return tk->xtime_sec;
 957}
 958
 959/**
 960 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
 961 * @systime_snapshot:   pointer to struct receiving the system time snapshot
 962 */
 963void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
 964{
 965        struct timekeeper *tk = &tk_core.timekeeper;
 966        unsigned long seq;
 967        ktime_t base_raw;
 968        ktime_t base_real;
 969        u64 nsec_raw;
 970        u64 nsec_real;
 971        u64 now;
 972
 973        WARN_ON_ONCE(timekeeping_suspended);
 974
 975        do {
 976                seq = read_seqcount_begin(&tk_core.seq);
 977                now = tk_clock_read(&tk->tkr_mono);
 978                systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
 979                systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
 980                base_real = ktime_add(tk->tkr_mono.base,
 981                                      tk_core.timekeeper.offs_real);
 982                base_raw = tk->tkr_raw.base;
 983                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
 984                nsec_raw  = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
 985        } while (read_seqcount_retry(&tk_core.seq, seq));
 986
 987        systime_snapshot->cycles = now;
 988        systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
 989        systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
 990}
 991EXPORT_SYMBOL_GPL(ktime_get_snapshot);
 992
 993/* Scale base by mult/div checking for overflow */
 994static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
 995{
 996        u64 tmp, rem;
 997
 998        tmp = div64_u64_rem(*base, div, &rem);
 999
1000        if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
1001            ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
1002                return -EOVERFLOW;
1003        tmp *= mult;
1004        rem *= mult;
1005
1006        do_div(rem, div);
1007        *base = tmp + rem;
1008        return 0;
1009}
1010
1011/**
1012 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
1013 * @history:                    Snapshot representing start of history
1014 * @partial_history_cycles:     Cycle offset into history (fractional part)
1015 * @total_history_cycles:       Total history length in cycles
1016 * @discontinuity:              True indicates clock was set on history period
1017 * @ts:                         Cross timestamp that should be adjusted using
1018 *      partial/total ratio
1019 *
1020 * Helper function used by get_device_system_crosststamp() to correct the
1021 * crosstimestamp corresponding to the start of the current interval to the
1022 * system counter value (timestamp point) provided by the driver. The
1023 * total_history_* quantities are the total history starting at the provided
1024 * reference point and ending at the start of the current interval. The cycle
1025 * count between the driver timestamp point and the start of the current
1026 * interval is partial_history_cycles.
1027 */
1028static int adjust_historical_crosststamp(struct system_time_snapshot *history,
1029                                         u64 partial_history_cycles,
1030                                         u64 total_history_cycles,
1031                                         bool discontinuity,
1032                                         struct system_device_crosststamp *ts)
1033{
1034        struct timekeeper *tk = &tk_core.timekeeper;
1035        u64 corr_raw, corr_real;
1036        bool interp_forward;
1037        int ret;
1038
1039        if (total_history_cycles == 0 || partial_history_cycles == 0)
1040                return 0;
1041
1042        /* Interpolate shortest distance from beginning or end of history */
1043        interp_forward = partial_history_cycles > total_history_cycles / 2;
1044        partial_history_cycles = interp_forward ?
1045                total_history_cycles - partial_history_cycles :
1046                partial_history_cycles;
1047
1048        /*
1049         * Scale the monotonic raw time delta by:
1050         *      partial_history_cycles / total_history_cycles
1051         */
1052        corr_raw = (u64)ktime_to_ns(
1053                ktime_sub(ts->sys_monoraw, history->raw));
1054        ret = scale64_check_overflow(partial_history_cycles,
1055                                     total_history_cycles, &corr_raw);
1056        if (ret)
1057                return ret;
1058
1059        /*
1060         * If there is a discontinuity in the history, scale monotonic raw
1061         *      correction by:
1062         *      mult(real)/mult(raw) yielding the realtime correction
1063         * Otherwise, calculate the realtime correction similar to monotonic
1064         *      raw calculation
1065         */
1066        if (discontinuity) {
1067                corr_real = mul_u64_u32_div
1068                        (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
1069        } else {
1070                corr_real = (u64)ktime_to_ns(
1071                        ktime_sub(ts->sys_realtime, history->real));
1072                ret = scale64_check_overflow(partial_history_cycles,
1073                                             total_history_cycles, &corr_real);
1074                if (ret)
1075                        return ret;
1076        }
1077
1078        /* Fixup monotonic raw and real time time values */
1079        if (interp_forward) {
1080                ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1081                ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1082        } else {
1083                ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1084                ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1085        }
1086
1087        return 0;
1088}
1089
1090/*
1091 * cycle_between - true if test occurs chronologically between before and after
1092 */
1093static bool cycle_between(u64 before, u64 test, u64 after)
1094{
1095        if (test > before && test < after)
1096                return true;
1097        if (test < before && before > after)
1098                return true;
1099        return false;
1100}
1101
1102/**
1103 * get_device_system_crosststamp - Synchronously capture system/device timestamp
1104 * @get_time_fn:        Callback to get simultaneous device time and
1105 *      system counter from the device driver
1106 * @ctx:                Context passed to get_time_fn()
1107 * @history_begin:      Historical reference point used to interpolate system
1108 *      time when counter provided by the driver is before the current interval
1109 * @xtstamp:            Receives simultaneously captured system and device time
1110 *
1111 * Reads a timestamp from a device and correlates it to system time
1112 */
1113int get_device_system_crosststamp(int (*get_time_fn)
1114                                  (ktime_t *device_time,
1115                                   struct system_counterval_t *sys_counterval,
1116                                   void *ctx),
1117                                  void *ctx,
1118                                  struct system_time_snapshot *history_begin,
1119                                  struct system_device_crosststamp *xtstamp)
1120{
1121        struct system_counterval_t system_counterval;
1122        struct timekeeper *tk = &tk_core.timekeeper;
1123        u64 cycles, now, interval_start;
1124        unsigned int clock_was_set_seq = 0;
1125        ktime_t base_real, base_raw;
1126        u64 nsec_real, nsec_raw;
1127        u8 cs_was_changed_seq;
1128        unsigned long seq;
1129        bool do_interp;
1130        int ret;
1131
1132        do {
1133                seq = read_seqcount_begin(&tk_core.seq);
1134                /*
1135                 * Try to synchronously capture device time and a system
1136                 * counter value calling back into the device driver
1137                 */
1138                ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1139                if (ret)
1140                        return ret;
1141
1142                /*
1143                 * Verify that the clocksource associated with the captured
1144                 * system counter value is the same as the currently installed
1145                 * timekeeper clocksource
1146                 */
1147                if (tk->tkr_mono.clock != system_counterval.cs)
1148                        return -ENODEV;
1149                cycles = system_counterval.cycles;
1150
1151                /*
1152                 * Check whether the system counter value provided by the
1153                 * device driver is on the current timekeeping interval.
1154                 */
1155                now = tk_clock_read(&tk->tkr_mono);
1156                interval_start = tk->tkr_mono.cycle_last;
1157                if (!cycle_between(interval_start, cycles, now)) {
1158                        clock_was_set_seq = tk->clock_was_set_seq;
1159                        cs_was_changed_seq = tk->cs_was_changed_seq;
1160                        cycles = interval_start;
1161                        do_interp = true;
1162                } else {
1163                        do_interp = false;
1164                }
1165
1166                base_real = ktime_add(tk->tkr_mono.base,
1167                                      tk_core.timekeeper.offs_real);
1168                base_raw = tk->tkr_raw.base;
1169
1170                nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1171                                                     system_counterval.cycles);
1172                nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1173                                                    system_counterval.cycles);
1174        } while (read_seqcount_retry(&tk_core.seq, seq));
1175
1176        xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1177        xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
1178
1179        /*
1180         * Interpolate if necessary, adjusting back from the start of the
1181         * current interval
1182         */
1183        if (do_interp) {
1184                u64 partial_history_cycles, total_history_cycles;
1185                bool discontinuity;
1186
1187                /*
1188                 * Check that the counter value occurs after the provided
1189                 * history reference and that the history doesn't cross a
1190                 * clocksource change
1191                 */
1192                if (!history_begin ||
1193                    !cycle_between(history_begin->cycles,
1194                                   system_counterval.cycles, cycles) ||
1195                    history_begin->cs_was_changed_seq != cs_was_changed_seq)
1196                        return -EINVAL;
1197                partial_history_cycles = cycles - system_counterval.cycles;
1198                total_history_cycles = cycles - history_begin->cycles;
1199                discontinuity =
1200                        history_begin->clock_was_set_seq != clock_was_set_seq;
1201
1202                ret = adjust_historical_crosststamp(history_begin,
1203                                                    partial_history_cycles,
1204                                                    total_history_cycles,
1205                                                    discontinuity, xtstamp);
1206                if (ret)
1207                        return ret;
1208        }
1209
1210        return 0;
1211}
1212EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1213
1214/**
1215 * do_gettimeofday - Returns the time of day in a timeval
1216 * @tv:         pointer to the timeval to be set
1217 *
1218 * NOTE: Users should be converted to using getnstimeofday()
1219 */
1220void do_gettimeofday(struct timeval *tv)
1221{
1222        struct timespec64 now;
1223
1224        getnstimeofday64(&now);
1225        tv->tv_sec = now.tv_sec;
1226        tv->tv_usec = now.tv_nsec/1000;
1227}
1228EXPORT_SYMBOL(do_gettimeofday);
1229
1230/**
1231 * do_settimeofday64 - Sets the time of day.
1232 * @ts:     pointer to the timespec64 variable containing the new time
1233 *
1234 * Sets the time of day to the new time and update NTP and notify hrtimers
1235 */
1236int do_settimeofday64(const struct timespec64 *ts)
1237{
1238        struct timekeeper *tk = &tk_core.timekeeper;
1239        struct timespec64 ts_delta, xt;
1240        unsigned long flags;
1241        int ret = 0;
1242
1243        if (!timespec64_valid_strict(ts))
1244                return -EINVAL;
1245
1246        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1247        write_seqcount_begin(&tk_core.seq);
1248
1249        timekeeping_forward_now(tk);
1250
1251        xt = tk_xtime(tk);
1252        ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1253        ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1254
1255        if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1256                ret = -EINVAL;
1257                goto out;
1258        }
1259
1260        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
1261
1262        tk_set_xtime(tk, ts);
1263out:
1264        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1265
1266        write_seqcount_end(&tk_core.seq);
1267        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1268
1269        /* signal hrtimers about time change */
1270        clock_was_set();
1271
1272        return ret;
1273}
1274EXPORT_SYMBOL(do_settimeofday64);
1275
1276/**
1277 * timekeeping_inject_offset - Adds or subtracts from the current time.
1278 * @tv:         pointer to the timespec variable containing the offset
1279 *
1280 * Adds or subtracts an offset value from the current time.
1281 */
1282static int timekeeping_inject_offset(const struct timespec64 *ts)
1283{
1284        struct timekeeper *tk = &tk_core.timekeeper;
1285        unsigned long flags;
1286        struct timespec64 tmp;
1287        int ret = 0;
1288
1289        if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC)
1290                return -EINVAL;
1291
1292        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1293        write_seqcount_begin(&tk_core.seq);
1294
1295        timekeeping_forward_now(tk);
1296
1297        /* Make sure the proposed value is valid */
1298        tmp = timespec64_add(tk_xtime(tk), *ts);
1299        if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 ||
1300            !timespec64_valid_strict(&tmp)) {
1301                ret = -EINVAL;
1302                goto error;
1303        }
1304
1305        tk_xtime_add(tk, ts);
1306        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts));
1307
1308error: /* even if we error out, we forwarded the time, so call update */
1309        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1310
1311        write_seqcount_end(&tk_core.seq);
1312        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1313
1314        /* signal hrtimers about time change */
1315        clock_was_set();
1316
1317        return ret;
1318}
1319
1320/*
1321 * Indicates if there is an offset between the system clock and the hardware
1322 * clock/persistent clock/rtc.
1323 */
1324int persistent_clock_is_local;
1325
1326/*
1327 * Adjust the time obtained from the CMOS to be UTC time instead of
1328 * local time.
1329 *
1330 * This is ugly, but preferable to the alternatives.  Otherwise we
1331 * would either need to write a program to do it in /etc/rc (and risk
1332 * confusion if the program gets run more than once; it would also be
1333 * hard to make the program warp the clock precisely n hours)  or
1334 * compile in the timezone information into the kernel.  Bad, bad....
1335 *
1336 *                                              - TYT, 1992-01-01
1337 *
1338 * The best thing to do is to keep the CMOS clock in universal time (UTC)
1339 * as real UNIX machines always do it. This avoids all headaches about
1340 * daylight saving times and warping kernel clocks.
1341 */
1342void timekeeping_warp_clock(void)
1343{
1344        if (sys_tz.tz_minuteswest != 0) {
1345                struct timespec64 adjust;
1346
1347                persistent_clock_is_local = 1;
1348                adjust.tv_sec = sys_tz.tz_minuteswest * 60;
1349                adjust.tv_nsec = 0;
1350                timekeeping_inject_offset(&adjust);
1351        }
1352}
1353
1354/**
1355 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic
1356 *
1357 */
1358static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
1359{
1360        tk->tai_offset = tai_offset;
1361        tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
1362}
1363
1364/**
1365 * change_clocksource - Swaps clocksources if a new one is available
1366 *
1367 * Accumulates current time interval and initializes new clocksource
1368 */
1369static int change_clocksource(void *data)
1370{
1371        struct timekeeper *tk = &tk_core.timekeeper;
1372        struct clocksource *new, *old;
1373        unsigned long flags;
1374
1375        new = (struct clocksource *) data;
1376
1377        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1378        write_seqcount_begin(&tk_core.seq);
1379
1380        timekeeping_forward_now(tk);
1381        /*
1382         * If the cs is in module, get a module reference. Succeeds
1383         * for built-in code (owner == NULL) as well.
1384         */
1385        if (try_module_get(new->owner)) {
1386                if (!new->enable || new->enable(new) == 0) {
1387                        old = tk->tkr_mono.clock;
1388                        tk_setup_internals(tk, new);
1389                        if (old->disable)
1390                                old->disable(old);
1391                        module_put(old->owner);
1392                } else {
1393                        module_put(new->owner);
1394                }
1395        }
1396        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1397
1398        write_seqcount_end(&tk_core.seq);
1399        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1400
1401        return 0;
1402}
1403
1404/**
1405 * timekeeping_notify - Install a new clock source
1406 * @clock:              pointer to the clock source
1407 *
1408 * This function is called from clocksource.c after a new, better clock
1409 * source has been registered. The caller holds the clocksource_mutex.
1410 */
1411int timekeeping_notify(struct clocksource *clock)
1412{
1413        struct timekeeper *tk = &tk_core.timekeeper;
1414
1415        if (tk->tkr_mono.clock == clock)
1416                return 0;
1417        stop_machine(change_clocksource, clock, NULL);
1418        tick_clock_notify();
1419        return tk->tkr_mono.clock == clock ? 0 : -1;
1420}
1421
1422/**
1423 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec
1424 * @ts:         pointer to the timespec64 to be set
1425 *
1426 * Returns the raw monotonic time (completely un-modified by ntp)
1427 */
1428void ktime_get_raw_ts64(struct timespec64 *ts)
1429{
1430        struct timekeeper *tk = &tk_core.timekeeper;
1431        unsigned long seq;
1432        u64 nsecs;
1433
1434        do {
1435                seq = read_seqcount_begin(&tk_core.seq);
1436                ts->tv_sec = tk->raw_sec;
1437                nsecs = timekeeping_get_ns(&tk->tkr_raw);
1438
1439        } while (read_seqcount_retry(&tk_core.seq, seq));
1440
1441        ts->tv_nsec = 0;
1442        timespec64_add_ns(ts, nsecs);
1443}
1444EXPORT_SYMBOL(ktime_get_raw_ts64);
1445
1446
1447/**
1448 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
1449 */
1450int timekeeping_valid_for_hres(void)
1451{
1452        struct timekeeper *tk = &tk_core.timekeeper;
1453        unsigned long seq;
1454        int ret;
1455
1456        do {
1457                seq = read_seqcount_begin(&tk_core.seq);
1458
1459                ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
1460
1461        } while (read_seqcount_retry(&tk_core.seq, seq));
1462
1463        return ret;
1464}
1465
1466/**
1467 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
1468 */
1469u64 timekeeping_max_deferment(void)
1470{
1471        struct timekeeper *tk = &tk_core.timekeeper;
1472        unsigned long seq;
1473        u64 ret;
1474
1475        do {
1476                seq = read_seqcount_begin(&tk_core.seq);
1477
1478                ret = tk->tkr_mono.clock->max_idle_ns;
1479
1480        } while (read_seqcount_retry(&tk_core.seq, seq));
1481
1482        return ret;
1483}
1484
1485/**
1486 * read_persistent_clock -  Return time from the persistent clock.
1487 *
1488 * Weak dummy function for arches that do not yet support it.
1489 * Reads the time from the battery backed persistent clock.
1490 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
1491 *
1492 *  XXX - Do be sure to remove it once all arches implement it.
1493 */
1494void __weak read_persistent_clock(struct timespec *ts)
1495{
1496        ts->tv_sec = 0;
1497        ts->tv_nsec = 0;
1498}
1499
1500void __weak read_persistent_clock64(struct timespec64 *ts64)
1501{
1502        struct timespec ts;
1503
1504        read_persistent_clock(&ts);
1505        *ts64 = timespec_to_timespec64(ts);
1506}
1507
1508/**
1509 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset
1510 *                                        from the boot.
1511 *
1512 * Weak dummy function for arches that do not yet support it.
1513 * wall_time    - current time as returned by persistent clock
1514 * boot_offset  - offset that is defined as wall_time - boot_time
1515 * The default function calculates offset based on the current value of
1516 * local_clock(). This way architectures that support sched_clock() but don't
1517 * support dedicated boot time clock will provide the best estimate of the
1518 * boot time.
1519 */
1520void __weak __init
1521read_persistent_wall_and_boot_offset(struct timespec64 *wall_time,
1522                                     struct timespec64 *boot_offset)
1523{
1524        read_persistent_clock64(wall_time);
1525        *boot_offset = ns_to_timespec64(local_clock());
1526}
1527
1528/*
1529 * Flag reflecting whether timekeeping_resume() has injected sleeptime.
1530 *
1531 * The flag starts of false and is only set when a suspend reaches
1532 * timekeeping_suspend(), timekeeping_resume() sets it to false when the
1533 * timekeeper clocksource is not stopping across suspend and has been
1534 * used to update sleep time. If the timekeeper clocksource has stopped
1535 * then the flag stays true and is used by the RTC resume code to decide
1536 * whether sleeptime must be injected and if so the flag gets false then.
1537 *
1538 * If a suspend fails before reaching timekeeping_resume() then the flag
1539 * stays false and prevents erroneous sleeptime injection.
1540 */
1541static bool suspend_timing_needed;
1542
1543/* Flag for if there is a persistent clock on this platform */
1544static bool persistent_clock_exists;
1545
1546/*
1547 * timekeeping_init - Initializes the clocksource and common timekeeping values
1548 */
1549void __init timekeeping_init(void)
1550{
1551        struct timespec64 wall_time, boot_offset, wall_to_mono;
1552        struct timekeeper *tk = &tk_core.timekeeper;
1553        struct clocksource *clock;
1554        unsigned long flags;
1555
1556        read_persistent_wall_and_boot_offset(&wall_time, &boot_offset);
1557        if (timespec64_valid_strict(&wall_time) &&
1558            timespec64_to_ns(&wall_time) > 0) {
1559                persistent_clock_exists = true;
1560        } else if (timespec64_to_ns(&wall_time) != 0) {
1561                pr_warn("Persistent clock returned invalid value");
1562                wall_time = (struct timespec64){0};
1563        }
1564
1565        if (timespec64_compare(&wall_time, &boot_offset) < 0)
1566                boot_offset = (struct timespec64){0};
1567
1568        /*
1569         * We want set wall_to_mono, so the following is true:
1570         * wall time + wall_to_mono = boot time
1571         */
1572        wall_to_mono = timespec64_sub(boot_offset, wall_time);
1573
1574        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1575        write_seqcount_begin(&tk_core.seq);
1576        ntp_init();
1577
1578        clock = clocksource_default_clock();
1579        if (clock->enable)
1580                clock->enable(clock);
1581        tk_setup_internals(tk, clock);
1582
1583        tk_set_xtime(tk, &wall_time);
1584        tk->raw_sec = 0;
1585
1586        tk_set_wall_to_mono(tk, wall_to_mono);
1587
1588        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1589
1590        write_seqcount_end(&tk_core.seq);
1591        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1592}
1593
1594/* time in seconds when suspend began for persistent clock */
1595static struct timespec64 timekeeping_suspend_time;
1596
1597/**
1598 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1599 * @delta: pointer to a timespec delta value
1600 *
1601 * Takes a timespec offset measuring a suspend interval and properly
1602 * adds the sleep offset to the timekeeping variables.
1603 */
1604static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
1605                                           const struct timespec64 *delta)
1606{
1607        if (!timespec64_valid_strict(delta)) {
1608                printk_deferred(KERN_WARNING
1609                                "__timekeeping_inject_sleeptime: Invalid "
1610                                "sleep delta value!\n");
1611                return;
1612        }
1613        tk_xtime_add(tk, delta);
1614        tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
1615        tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
1616        tk_debug_account_sleep_time(delta);
1617}
1618
1619#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
1620/**
1621 * We have three kinds of time sources to use for sleep time
1622 * injection, the preference order is:
1623 * 1) non-stop clocksource
1624 * 2) persistent clock (ie: RTC accessible when irqs are off)
1625 * 3) RTC
1626 *
1627 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1628 * If system has neither 1) nor 2), 3) will be used finally.
1629 *
1630 *
1631 * If timekeeping has injected sleeptime via either 1) or 2),
1632 * 3) becomes needless, so in this case we don't need to call
1633 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1634 * means.
1635 */
1636bool timekeeping_rtc_skipresume(void)
1637{
1638        return !suspend_timing_needed;
1639}
1640
1641/**
1642 * 1) can be determined whether to use or not only when doing
1643 * timekeeping_resume() which is invoked after rtc_suspend(),
1644 * so we can't skip rtc_suspend() surely if system has 1).
1645 *
1646 * But if system has 2), 2) will definitely be used, so in this
1647 * case we don't need to call rtc_suspend(), and this is what
1648 * timekeeping_rtc_skipsuspend() means.
1649 */
1650bool timekeeping_rtc_skipsuspend(void)
1651{
1652        return persistent_clock_exists;
1653}
1654
1655/**
1656 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1657 * @delta: pointer to a timespec64 delta value
1658 *
1659 * This hook is for architectures that cannot support read_persistent_clock64
1660 * because their RTC/persistent clock is only accessible when irqs are enabled.
1661 * and also don't have an effective nonstop clocksource.
1662 *
1663 * This function should only be called by rtc_resume(), and allows
1664 * a suspend offset to be injected into the timekeeping values.
1665 */
1666void timekeeping_inject_sleeptime64(const struct timespec64 *delta)
1667{
1668        struct timekeeper *tk = &tk_core.timekeeper;
1669        unsigned long flags;
1670
1671        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1672        write_seqcount_begin(&tk_core.seq);
1673
1674        suspend_timing_needed = false;
1675
1676        timekeeping_forward_now(tk);
1677
1678        __timekeeping_inject_sleeptime(tk, delta);
1679
1680        timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
1681
1682        write_seqcount_end(&tk_core.seq);
1683        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1684
1685        /* signal hrtimers about time change */
1686        clock_was_set();
1687}
1688#endif
1689
1690/**
1691 * timekeeping_resume - Resumes the generic timekeeping subsystem.
1692 */
1693void timekeeping_resume(void)
1694{
1695        struct timekeeper *tk = &tk_core.timekeeper;
1696        struct clocksource *clock = tk->tkr_mono.clock;
1697        unsigned long flags;
1698        struct timespec64 ts_new, ts_delta;
1699        u64 cycle_now, nsec;
1700        bool inject_sleeptime = false;
1701
1702        read_persistent_clock64(&ts_new);
1703
1704        clockevents_resume();
1705        clocksource_resume();
1706
1707        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1708        write_seqcount_begin(&tk_core.seq);
1709
1710        /*
1711         * After system resumes, we need to calculate the suspended time and
1712         * compensate it for the OS time. There are 3 sources that could be
1713         * used: Nonstop clocksource during suspend, persistent clock and rtc
1714         * device.
1715         *
1716         * One specific platform may have 1 or 2 or all of them, and the
1717         * preference will be:
1718         *      suspend-nonstop clocksource -> persistent clock -> rtc
1719         * The less preferred source will only be tried if there is no better
1720         * usable source. The rtc part is handled separately in rtc core code.
1721         */
1722        cycle_now = tk_clock_read(&tk->tkr_mono);
1723        nsec = clocksource_stop_suspend_timing(clock, cycle_now);
1724        if (nsec > 0) {
1725                ts_delta = ns_to_timespec64(nsec);
1726                inject_sleeptime = true;
1727        } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1728                ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
1729                inject_sleeptime = true;
1730        }
1731
1732        if (inject_sleeptime) {
1733                suspend_timing_needed = false;
1734                __timekeeping_inject_sleeptime(tk, &ts_delta);
1735        }
1736
1737        /* Re-base the last cycle value */
1738        tk->tkr_mono.cycle_last = cycle_now;
1739        tk->tkr_raw.cycle_last  = cycle_now;
1740
1741        tk->ntp_error = 0;
1742        timekeeping_suspended = 0;
1743        timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
1744        write_seqcount_end(&tk_core.seq);
1745        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1746
1747        touch_softlockup_watchdog();
1748
1749        tick_resume();
1750        hrtimers_resume();
1751}
1752
1753int timekeeping_suspend(void)
1754{
1755        struct timekeeper *tk = &tk_core.timekeeper;
1756        unsigned long flags;
1757        struct timespec64               delta, delta_delta;
1758        static struct timespec64        old_delta;
1759        struct clocksource *curr_clock;
1760        u64 cycle_now;
1761
1762        read_persistent_clock64(&timekeeping_suspend_time);
1763
1764        /*
1765         * On some systems the persistent_clock can not be detected at
1766         * timekeeping_init by its return value, so if we see a valid
1767         * value returned, update the persistent_clock_exists flag.
1768         */
1769        if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
1770                persistent_clock_exists = true;
1771
1772        suspend_timing_needed = true;
1773
1774        raw_spin_lock_irqsave(&timekeeper_lock, flags);
1775        write_seqcount_begin(&tk_core.seq);
1776        timekeeping_forward_now(tk);
1777        timekeeping_suspended = 1;
1778
1779        /*
1780         * Since we've called forward_now, cycle_last stores the value
1781         * just read from the current clocksource. Save this to potentially
1782         * use in suspend timing.
1783         */
1784        curr_clock = tk->tkr_mono.clock;
1785        cycle_now = tk->tkr_mono.cycle_last;
1786        clocksource_start_suspend_timing(curr_clock, cycle_now);
1787
1788        if (persistent_clock_exists) {
1789                /*
1790                 * To avoid drift caused by repeated suspend/resumes,
1791                 * which each can add ~1 second drift error,
1792                 * try to compensate so the difference in system time
1793                 * and persistent_clock time stays close to constant.
1794                 */
1795                delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1796                delta_delta = timespec64_sub(delta, old_delta);
1797                if (abs(delta_delta.tv_sec) >= 2) {
1798                        /*
1799                         * if delta_delta is too large, assume time correction
1800                         * has occurred and set old_delta to the current delta.
1801                         */
1802                        old_delta = delta;
1803                } else {
1804                        /* Otherwise try to adjust old_system to compensate */
1805                        timekeeping_suspend_time =
1806                                timespec64_add(timekeeping_suspend_time, delta_delta);
1807                }
1808        }
1809
1810        timekeeping_update(tk, TK_MIRROR);
1811        halt_fast_timekeeper(tk);
1812        write_seqcount_end(&tk_core.seq);
1813        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
1814
1815        tick_suspend();
1816        clocksource_suspend();
1817        clockevents_suspend();
1818
1819        return 0;
1820}
1821
1822/* sysfs resume/suspend bits for timekeeping */
1823static struct syscore_ops timekeeping_syscore_ops = {
1824        .resume         = timekeeping_resume,
1825        .suspend        = timekeeping_suspend,
1826};
1827
1828static int __init timekeeping_init_ops(void)
1829{
1830        register_syscore_ops(&timekeeping_syscore_ops);
1831        return 0;
1832}
1833device_initcall(timekeeping_init_ops);
1834
1835/*
1836 * Apply a multiplier adjustment to the timekeeper
1837 */
1838static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1839                                                         s64 offset,
1840                                                         s32 mult_adj)
1841{
1842        s64 interval = tk->cycle_interval;
1843
1844        if (mult_adj == 0) {
1845                return;
1846        } else if (mult_adj == -1) {
1847                interval = -interval;
1848                offset = -offset;
1849        } else if (mult_adj != 1) {
1850                interval *= mult_adj;
1851                offset *= mult_adj;
1852        }
1853
1854        /*
1855         * So the following can be confusing.
1856         *
1857         * To keep things simple, lets assume mult_adj == 1 for now.
1858         *
1859         * When mult_adj != 1, remember that the interval and offset values
1860         * have been appropriately scaled so the math is the same.
1861         *
1862         * The basic idea here is that we're increasing the multiplier
1863         * by one, this causes the xtime_interval to be incremented by
1864         * one cycle_interval. This is because:
1865         *      xtime_interval = cycle_interval * mult
1866         * So if mult is being incremented by one:
1867         *      xtime_interval = cycle_interval * (mult + 1)
1868         * Its the same as:
1869         *      xtime_interval = (cycle_interval * mult) + cycle_interval
1870         * Which can be shortened to:
1871         *      xtime_interval += cycle_interval
1872         *
1873         * So offset stores the non-accumulated cycles. Thus the current
1874         * time (in shifted nanoseconds) is:
1875         *      now = (offset * adj) + xtime_nsec
1876         * Now, even though we're adjusting the clock frequency, we have
1877         * to keep time consistent. In other words, we can't jump back
1878         * in time, and we also want to avoid jumping forward in time.
1879         *
1880         * So given the same offset value, we need the time to be the same
1881         * both before and after the freq adjustment.
1882         *      now = (offset * adj_1) + xtime_nsec_1
1883         *      now = (offset * adj_2) + xtime_nsec_2
1884         * So:
1885         *      (offset * adj_1) + xtime_nsec_1 =
1886         *              (offset * adj_2) + xtime_nsec_2
1887         * And we know:
1888         *      adj_2 = adj_1 + 1
1889         * So:
1890         *      (offset * adj_1) + xtime_nsec_1 =
1891         *              (offset * (adj_1+1)) + xtime_nsec_2
1892         *      (offset * adj_1) + xtime_nsec_1 =
1893         *              (offset * adj_1) + offset + xtime_nsec_2
1894         * Canceling the sides:
1895         *      xtime_nsec_1 = offset + xtime_nsec_2
1896         * Which gives us:
1897         *      xtime_nsec_2 = xtime_nsec_1 - offset
1898         * Which simplfies to:
1899         *      xtime_nsec -= offset
1900         */
1901        if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
1902                /* NTP adjustment caused clocksource mult overflow */
1903                WARN_ON_ONCE(1);
1904                return;
1905        }
1906
1907        tk->tkr_mono.mult += mult_adj;
1908        tk->xtime_interval += interval;
1909        tk->tkr_mono.xtime_nsec -= offset;
1910}
1911
1912/*
1913 * Adjust the timekeeper's multiplier to the correct frequency
1914 * and also to reduce the accumulated error value.
1915 */
1916static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1917{
1918        u32 mult;
1919
1920        /*
1921         * Determine the multiplier from the current NTP tick length.
1922         * Avoid expensive division when the tick length doesn't change.
1923         */
1924        if (likely(tk->ntp_tick == ntp_tick_length())) {
1925                mult = tk->tkr_mono.mult - tk->ntp_err_mult;
1926        } else {
1927                tk->ntp_tick = ntp_tick_length();
1928                mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) -
1929                                 tk->xtime_remainder, tk->cycle_interval);
1930        }
1931
1932        /*
1933         * If the clock is behind the NTP time, increase the multiplier by 1
1934         * to catch up with it. If it's ahead and there was a remainder in the
1935         * tick division, the clock will slow down. Otherwise it will stay
1936         * ahead until the tick length changes to a non-divisible value.
1937         */
1938        tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0;
1939        mult += tk->ntp_err_mult;
1940
1941        timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult);
1942
1943        if (unlikely(tk->tkr_mono.clock->maxadj &&
1944                (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1945                        > tk->tkr_mono.clock->maxadj))) {
1946                printk_once(KERN_WARNING
1947                        "Adjusting %s more than 11%% (%ld vs %ld)\n",
1948                        tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1949                        (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
1950        }
1951
1952        /*
1953         * It may be possible that when we entered this function, xtime_nsec
1954         * was very small.  Further, if we're slightly speeding the clocksource
1955         * in the code above, its possible the required corrective factor to
1956         * xtime_nsec could cause it to underflow.
1957         *
1958         * Now, since we have already accumulated the second and the NTP
1959         * subsystem has been notified via second_overflow(), we need to skip
1960         * the next update.
1961         */
1962        if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1963                tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC <<
1964                                                        tk->tkr_mono.shift;
1965                tk->xtime_sec--;
1966                tk->skip_second_overflow = 1;
1967        }
1968}
1969
1970/**
1971 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1972 *
1973 * Helper function that accumulates the nsecs greater than a second
1974 * from the xtime_nsec field to the xtime_secs field.
1975 * It also calls into the NTP code to handle leapsecond processing.
1976 *
1977 */
1978static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1979{
1980        u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1981        unsigned int clock_set = 0;
1982
1983        while (tk->tkr_mono.xtime_nsec >= nsecps) {
1984                int leap;
1985
1986                tk->tkr_mono.xtime_nsec -= nsecps;
1987                tk->xtime_sec++;
1988
1989                /*
1990                 * Skip NTP update if this second was accumulated before,
1991                 * i.e. xtime_nsec underflowed in timekeeping_adjust()
1992                 */
1993                if (unlikely(tk->skip_second_overflow)) {
1994                        tk->skip_second_overflow = 0;
1995                        continue;
1996                }
1997
1998                /* Figure out if its a leap sec and apply if needed */
1999                leap = second_overflow(tk->xtime_sec);
2000                if (unlikely(leap)) {
2001                        struct timespec64 ts;
2002
2003                        tk->xtime_sec += leap;
2004
2005                        ts.tv_sec = leap;
2006                        ts.tv_nsec = 0;
2007                        tk_set_wall_to_mono(tk,
2008                                timespec64_sub(tk->wall_to_monotonic, ts));
2009
2010                        __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
2011
2012                        clock_set = TK_CLOCK_WAS_SET;
2013                }
2014        }
2015        return clock_set;
2016}
2017
2018/**
2019 * logarithmic_accumulation - shifted accumulation of cycles
2020 *
2021 * This functions accumulates a shifted interval of cycles into
2022 * into a shifted interval nanoseconds. Allows for O(log) accumulation
2023 * loop.
2024 *
2025 * Returns the unconsumed cycles.
2026 */
2027static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset,
2028                                    u32 shift, unsigned int *clock_set)
2029{
2030        u64 interval = tk->cycle_interval << shift;
2031        u64 snsec_per_sec;
2032
2033        /* If the offset is smaller than a shifted interval, do nothing */
2034        if (offset < interval)
2035                return offset;
2036
2037        /* Accumulate one shifted interval */
2038        offset -= interval;
2039        tk->tkr_mono.cycle_last += interval;
2040        tk->tkr_raw.cycle_last  += interval;
2041
2042        tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
2043        *clock_set |= accumulate_nsecs_to_secs(tk);
2044
2045        /* Accumulate raw time */
2046        tk->tkr_raw.xtime_nsec += tk->raw_interval << shift;
2047        snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift;
2048        while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) {
2049                tk->tkr_raw.xtime_nsec -= snsec_per_sec;
2050                tk->raw_sec++;
2051        }
2052
2053        /* Accumulate error between NTP and clock interval */
2054        tk->ntp_error += tk->ntp_tick << shift;
2055        tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2056                                                (tk->ntp_error_shift + shift);
2057
2058        return offset;
2059}
2060
2061/*
2062 * timekeeping_advance - Updates the timekeeper to the current time and
2063 * current NTP tick length
2064 */
2065static void timekeeping_advance(enum timekeeping_adv_mode mode)
2066{
2067        struct timekeeper *real_tk = &tk_core.timekeeper;
2068        struct timekeeper *tk = &shadow_timekeeper;
2069        u64 offset;
2070        int shift = 0, maxshift;
2071        unsigned int clock_set = 0;
2072        unsigned long flags;
2073
2074        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2075
2076        /* Make sure we're fully resumed: */
2077        if (unlikely(timekeeping_suspended))
2078                goto out;
2079
2080#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
2081        offset = real_tk->cycle_interval;
2082
2083        if (mode != TK_ADV_TICK)
2084                goto out;
2085#else
2086        offset = clocksource_delta(tk_clock_read(&tk->tkr_mono),
2087                                   tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
2088
2089        /* Check if there's really nothing to do */
2090        if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK)
2091                goto out;
2092#endif
2093
2094        /* Do some additional sanity checking */
2095        timekeeping_check_update(tk, offset);
2096
2097        /*
2098         * With NO_HZ we may have to accumulate many cycle_intervals
2099         * (think "ticks") worth of time at once. To do this efficiently,
2100         * we calculate the largest doubling multiple of cycle_intervals
2101         * that is smaller than the offset.  We then accumulate that
2102         * chunk in one go, and then try to consume the next smaller
2103         * doubled multiple.
2104         */
2105        shift = ilog2(offset) - ilog2(tk->cycle_interval);
2106        shift = max(0, shift);
2107        /* Bound shift to one less than what overflows tick_length */
2108        maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
2109        shift = min(shift, maxshift);
2110        while (offset >= tk->cycle_interval) {
2111                offset = logarithmic_accumulation(tk, offset, shift,
2112                                                        &clock_set);
2113                if (offset < tk->cycle_interval<<shift)
2114                        shift--;
2115        }
2116
2117        /* Adjust the multiplier to correct NTP error */
2118        timekeeping_adjust(tk, offset);
2119
2120        /*
2121         * Finally, make sure that after the rounding
2122         * xtime_nsec isn't larger than NSEC_PER_SEC
2123         */
2124        clock_set |= accumulate_nsecs_to_secs(tk);
2125
2126        write_seqcount_begin(&tk_core.seq);
2127        /*
2128         * Update the real timekeeper.
2129         *
2130         * We could avoid this memcpy by switching pointers, but that
2131         * requires changes to all other timekeeper usage sites as
2132         * well, i.e. move the timekeeper pointer getter into the
2133         * spinlocked/seqcount protected sections. And we trade this
2134         * memcpy under the tk_core.seq against one before we start
2135         * updating.
2136         */
2137        timekeeping_update(tk, clock_set);
2138        memcpy(real_tk, tk, sizeof(*tk));
2139        /* The memcpy must come last. Do not put anything here! */
2140        write_seqcount_end(&tk_core.seq);
2141out:
2142        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2143        if (clock_set)
2144                /* Have to call _delayed version, since in irq context*/
2145                clock_was_set_delayed();
2146}
2147
2148/**
2149 * update_wall_time - Uses the current clocksource to increment the wall time
2150 *
2151 */
2152void update_wall_time(void)
2153{
2154        timekeeping_advance(TK_ADV_TICK);
2155}
2156
2157/**
2158 * getboottime64 - Return the real time of system boot.
2159 * @ts:         pointer to the timespec64 to be set
2160 *
2161 * Returns the wall-time of boot in a timespec64.
2162 *
2163 * This is based on the wall_to_monotonic offset and the total suspend
2164 * time. Calls to settimeofday will affect the value returned (which
2165 * basically means that however wrong your real time clock is at boot time,
2166 * you get the right time here).
2167 */
2168void getboottime64(struct timespec64 *ts)
2169{
2170        struct timekeeper *tk = &tk_core.timekeeper;
2171        ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2172
2173        *ts = ktime_to_timespec64(t);
2174}
2175EXPORT_SYMBOL_GPL(getboottime64);
2176
2177unsigned long get_seconds(void)
2178{
2179        struct timekeeper *tk = &tk_core.timekeeper;
2180
2181        return tk->xtime_sec;
2182}
2183EXPORT_SYMBOL(get_seconds);
2184
2185void ktime_get_coarse_real_ts64(struct timespec64 *ts)
2186{
2187        struct timekeeper *tk = &tk_core.timekeeper;
2188        unsigned long seq;
2189
2190        do {
2191                seq = read_seqcount_begin(&tk_core.seq);
2192
2193                *ts = tk_xtime(tk);
2194        } while (read_seqcount_retry(&tk_core.seq, seq));
2195}
2196EXPORT_SYMBOL(ktime_get_coarse_real_ts64);
2197
2198void ktime_get_coarse_ts64(struct timespec64 *ts)
2199{
2200        struct timekeeper *tk = &tk_core.timekeeper;
2201        struct timespec64 now, mono;
2202        unsigned long seq;
2203
2204        do {
2205                seq = read_seqcount_begin(&tk_core.seq);
2206
2207                now = tk_xtime(tk);
2208                mono = tk->wall_to_monotonic;
2209        } while (read_seqcount_retry(&tk_core.seq, seq));
2210
2211        set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec,
2212                                now.tv_nsec + mono.tv_nsec);
2213}
2214EXPORT_SYMBOL(ktime_get_coarse_ts64);
2215
2216/*
2217 * Must hold jiffies_lock
2218 */
2219void do_timer(unsigned long ticks)
2220{
2221        jiffies_64 += ticks;
2222        calc_global_load(ticks);
2223}
2224
2225/**
2226 * ktime_get_update_offsets_now - hrtimer helper
2227 * @cwsseq:     pointer to check and store the clock was set sequence number
2228 * @offs_real:  pointer to storage for monotonic -> realtime offset
2229 * @offs_boot:  pointer to storage for monotonic -> boottime offset
2230 * @offs_tai:   pointer to storage for monotonic -> clock tai offset
2231 *
2232 * Returns current monotonic time and updates the offsets if the
2233 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2234 * different.
2235 *
2236 * Called from hrtimer_interrupt() or retrigger_next_event()
2237 */
2238ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2239                                     ktime_t *offs_boot, ktime_t *offs_tai)
2240{
2241        struct timekeeper *tk = &tk_core.timekeeper;
2242        unsigned int seq;
2243        ktime_t base;
2244        u64 nsecs;
2245
2246        do {
2247                seq = read_seqcount_begin(&tk_core.seq);
2248
2249                base = tk->tkr_mono.base;
2250                nsecs = timekeeping_get_ns(&tk->tkr_mono);
2251                base = ktime_add_ns(base, nsecs);
2252
2253                if (*cwsseq != tk->clock_was_set_seq) {
2254                        *cwsseq = tk->clock_was_set_seq;
2255                        *offs_real = tk->offs_real;
2256                        *offs_boot = tk->offs_boot;
2257                        *offs_tai = tk->offs_tai;
2258                }
2259
2260                /* Handle leapsecond insertion adjustments */
2261                if (unlikely(base >= tk->next_leap_ktime))
2262                        *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2263
2264        } while (read_seqcount_retry(&tk_core.seq, seq));
2265
2266        return base;
2267}
2268
2269/**
2270 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex
2271 */
2272static int timekeeping_validate_timex(const struct timex *txc)
2273{
2274        if (txc->modes & ADJ_ADJTIME) {
2275                /* singleshot must not be used with any other mode bits */
2276                if (!(txc->modes & ADJ_OFFSET_SINGLESHOT))
2277                        return -EINVAL;
2278                if (!(txc->modes & ADJ_OFFSET_READONLY) &&
2279                    !capable(CAP_SYS_TIME))
2280                        return -EPERM;
2281        } else {
2282                /* In order to modify anything, you gotta be super-user! */
2283                if (txc->modes && !capable(CAP_SYS_TIME))
2284                        return -EPERM;
2285                /*
2286                 * if the quartz is off by more than 10% then
2287                 * something is VERY wrong!
2288                 */
2289                if (txc->modes & ADJ_TICK &&
2290                    (txc->tick <  900000/USER_HZ ||
2291                     txc->tick > 1100000/USER_HZ))
2292                        return -EINVAL;
2293        }
2294
2295        if (txc->modes & ADJ_SETOFFSET) {
2296                /* In order to inject time, you gotta be super-user! */
2297                if (!capable(CAP_SYS_TIME))
2298                        return -EPERM;
2299
2300                /*
2301                 * Validate if a timespec/timeval used to inject a time
2302                 * offset is valid.  Offsets can be postive or negative, so
2303                 * we don't check tv_sec. The value of the timeval/timespec
2304                 * is the sum of its fields,but *NOTE*:
2305                 * The field tv_usec/tv_nsec must always be non-negative and
2306                 * we can't have more nanoseconds/microseconds than a second.
2307                 */
2308                if (txc->time.tv_usec < 0)
2309                        return -EINVAL;
2310
2311                if (txc->modes & ADJ_NANO) {
2312                        if (txc->time.tv_usec >= NSEC_PER_SEC)
2313                                return -EINVAL;
2314                } else {
2315                        if (txc->time.tv_usec >= USEC_PER_SEC)
2316                                return -EINVAL;
2317                }
2318        }
2319
2320        /*
2321         * Check for potential multiplication overflows that can
2322         * only happen on 64-bit systems:
2323         */
2324        if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) {
2325                if (LLONG_MIN / PPM_SCALE > txc->freq)
2326                        return -EINVAL;
2327                if (LLONG_MAX / PPM_SCALE < txc->freq)
2328                        return -EINVAL;
2329        }
2330
2331        return 0;
2332}
2333
2334
2335/**
2336 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2337 */
2338int do_adjtimex(struct timex *txc)
2339{
2340        struct timekeeper *tk = &tk_core.timekeeper;
2341        unsigned long flags;
2342        struct timespec64 ts;
2343        s32 orig_tai, tai;
2344        int ret;
2345
2346        /* Validate the data before disabling interrupts */
2347        ret = timekeeping_validate_timex(txc);
2348        if (ret)
2349                return ret;
2350
2351        if (txc->modes & ADJ_SETOFFSET) {
2352                struct timespec64 delta;
2353                delta.tv_sec  = txc->time.tv_sec;
2354                delta.tv_nsec = txc->time.tv_usec;
2355                if (!(txc->modes & ADJ_NANO))
2356                        delta.tv_nsec *= 1000;
2357                ret = timekeeping_inject_offset(&delta);
2358                if (ret)
2359                        return ret;
2360        }
2361
2362        ktime_get_real_ts64(&ts);
2363
2364        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2365        write_seqcount_begin(&tk_core.seq);
2366
2367        orig_tai = tai = tk->tai_offset;
2368        ret = __do_adjtimex(txc, &ts, &tai);
2369
2370        if (tai != orig_tai) {
2371                __timekeeping_set_tai_offset(tk, tai);
2372                timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
2373        }
2374        tk_update_leap_state(tk);
2375
2376        write_seqcount_end(&tk_core.seq);
2377        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2378
2379        /* Update the multiplier immediately if frequency was set directly */
2380        if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK))
2381                timekeeping_advance(TK_ADV_FREQ);
2382
2383        if (tai != orig_tai)
2384                clock_was_set();
2385
2386        ntp_notify_cmos_timer();
2387
2388        return ret;
2389}
2390
2391#ifdef CONFIG_NTP_PPS
2392/**
2393 * hardpps() - Accessor function to NTP __hardpps function
2394 */
2395void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
2396{
2397        unsigned long flags;
2398
2399        raw_spin_lock_irqsave(&timekeeper_lock, flags);
2400        write_seqcount_begin(&tk_core.seq);
2401
2402        __hardpps(phase_ts, raw_ts);
2403
2404        write_seqcount_end(&tk_core.seq);
2405        raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2406}
2407EXPORT_SYMBOL(hardpps);
2408#endif /* CONFIG_NTP_PPS */
2409
2410/**
2411 * xtime_update() - advances the timekeeping infrastructure
2412 * @ticks:      number of ticks, that have elapsed since the last call.
2413 *
2414 * Must be called with interrupts disabled.
2415 */
2416void xtime_update(unsigned long ticks)
2417{
2418        write_seqlock(&jiffies_lock);
2419        do_timer(ticks);
2420        write_sequnlock(&jiffies_lock);
2421        update_wall_time();
2422}
2423