linux/lib/bitmap.c
<<
>>
Prefs
   1/*
   2 * lib/bitmap.c
   3 * Helper functions for bitmap.h.
   4 *
   5 * This source code is licensed under the GNU General Public License,
   6 * Version 2.  See the file COPYING for more details.
   7 */
   8#include <linux/export.h>
   9#include <linux/thread_info.h>
  10#include <linux/ctype.h>
  11#include <linux/errno.h>
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/kernel.h>
  16#include <linux/slab.h>
  17#include <linux/string.h>
  18#include <linux/uaccess.h>
  19
  20#include <asm/page.h>
  21
  22/**
  23 * DOC: bitmap introduction
  24 *
  25 * bitmaps provide an array of bits, implemented using an an
  26 * array of unsigned longs.  The number of valid bits in a
  27 * given bitmap does _not_ need to be an exact multiple of
  28 * BITS_PER_LONG.
  29 *
  30 * The possible unused bits in the last, partially used word
  31 * of a bitmap are 'don't care'.  The implementation makes
  32 * no particular effort to keep them zero.  It ensures that
  33 * their value will not affect the results of any operation.
  34 * The bitmap operations that return Boolean (bitmap_empty,
  35 * for example) or scalar (bitmap_weight, for example) results
  36 * carefully filter out these unused bits from impacting their
  37 * results.
  38 *
  39 * These operations actually hold to a slightly stronger rule:
  40 * if you don't input any bitmaps to these ops that have some
  41 * unused bits set, then they won't output any set unused bits
  42 * in output bitmaps.
  43 *
  44 * The byte ordering of bitmaps is more natural on little
  45 * endian architectures.  See the big-endian headers
  46 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
  47 * for the best explanations of this ordering.
  48 */
  49
  50int __bitmap_equal(const unsigned long *bitmap1,
  51                const unsigned long *bitmap2, unsigned int bits)
  52{
  53        unsigned int k, lim = bits/BITS_PER_LONG;
  54        for (k = 0; k < lim; ++k)
  55                if (bitmap1[k] != bitmap2[k])
  56                        return 0;
  57
  58        if (bits % BITS_PER_LONG)
  59                if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
  60                        return 0;
  61
  62        return 1;
  63}
  64EXPORT_SYMBOL(__bitmap_equal);
  65
  66void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
  67{
  68        unsigned int k, lim = BITS_TO_LONGS(bits);
  69        for (k = 0; k < lim; ++k)
  70                dst[k] = ~src[k];
  71}
  72EXPORT_SYMBOL(__bitmap_complement);
  73
  74/**
  75 * __bitmap_shift_right - logical right shift of the bits in a bitmap
  76 *   @dst : destination bitmap
  77 *   @src : source bitmap
  78 *   @shift : shift by this many bits
  79 *   @nbits : bitmap size, in bits
  80 *
  81 * Shifting right (dividing) means moving bits in the MS -> LS bit
  82 * direction.  Zeros are fed into the vacated MS positions and the
  83 * LS bits shifted off the bottom are lost.
  84 */
  85void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
  86                        unsigned shift, unsigned nbits)
  87{
  88        unsigned k, lim = BITS_TO_LONGS(nbits);
  89        unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
  90        unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
  91        for (k = 0; off + k < lim; ++k) {
  92                unsigned long upper, lower;
  93
  94                /*
  95                 * If shift is not word aligned, take lower rem bits of
  96                 * word above and make them the top rem bits of result.
  97                 */
  98                if (!rem || off + k + 1 >= lim)
  99                        upper = 0;
 100                else {
 101                        upper = src[off + k + 1];
 102                        if (off + k + 1 == lim - 1)
 103                                upper &= mask;
 104                        upper <<= (BITS_PER_LONG - rem);
 105                }
 106                lower = src[off + k];
 107                if (off + k == lim - 1)
 108                        lower &= mask;
 109                lower >>= rem;
 110                dst[k] = lower | upper;
 111        }
 112        if (off)
 113                memset(&dst[lim - off], 0, off*sizeof(unsigned long));
 114}
 115EXPORT_SYMBOL(__bitmap_shift_right);
 116
 117
 118/**
 119 * __bitmap_shift_left - logical left shift of the bits in a bitmap
 120 *   @dst : destination bitmap
 121 *   @src : source bitmap
 122 *   @shift : shift by this many bits
 123 *   @nbits : bitmap size, in bits
 124 *
 125 * Shifting left (multiplying) means moving bits in the LS -> MS
 126 * direction.  Zeros are fed into the vacated LS bit positions
 127 * and those MS bits shifted off the top are lost.
 128 */
 129
 130void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
 131                        unsigned int shift, unsigned int nbits)
 132{
 133        int k;
 134        unsigned int lim = BITS_TO_LONGS(nbits);
 135        unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
 136        for (k = lim - off - 1; k >= 0; --k) {
 137                unsigned long upper, lower;
 138
 139                /*
 140                 * If shift is not word aligned, take upper rem bits of
 141                 * word below and make them the bottom rem bits of result.
 142                 */
 143                if (rem && k > 0)
 144                        lower = src[k - 1] >> (BITS_PER_LONG - rem);
 145                else
 146                        lower = 0;
 147                upper = src[k] << rem;
 148                dst[k + off] = lower | upper;
 149        }
 150        if (off)
 151                memset(dst, 0, off*sizeof(unsigned long));
 152}
 153EXPORT_SYMBOL(__bitmap_shift_left);
 154
 155int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
 156                                const unsigned long *bitmap2, unsigned int bits)
 157{
 158        unsigned int k;
 159        unsigned int lim = bits/BITS_PER_LONG;
 160        unsigned long result = 0;
 161
 162        for (k = 0; k < lim; k++)
 163                result |= (dst[k] = bitmap1[k] & bitmap2[k]);
 164        if (bits % BITS_PER_LONG)
 165                result |= (dst[k] = bitmap1[k] & bitmap2[k] &
 166                           BITMAP_LAST_WORD_MASK(bits));
 167        return result != 0;
 168}
 169EXPORT_SYMBOL(__bitmap_and);
 170
 171void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
 172                                const unsigned long *bitmap2, unsigned int bits)
 173{
 174        unsigned int k;
 175        unsigned int nr = BITS_TO_LONGS(bits);
 176
 177        for (k = 0; k < nr; k++)
 178                dst[k] = bitmap1[k] | bitmap2[k];
 179}
 180EXPORT_SYMBOL(__bitmap_or);
 181
 182void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
 183                                const unsigned long *bitmap2, unsigned int bits)
 184{
 185        unsigned int k;
 186        unsigned int nr = BITS_TO_LONGS(bits);
 187
 188        for (k = 0; k < nr; k++)
 189                dst[k] = bitmap1[k] ^ bitmap2[k];
 190}
 191EXPORT_SYMBOL(__bitmap_xor);
 192
 193int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
 194                                const unsigned long *bitmap2, unsigned int bits)
 195{
 196        unsigned int k;
 197        unsigned int lim = bits/BITS_PER_LONG;
 198        unsigned long result = 0;
 199
 200        for (k = 0; k < lim; k++)
 201                result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
 202        if (bits % BITS_PER_LONG)
 203                result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
 204                           BITMAP_LAST_WORD_MASK(bits));
 205        return result != 0;
 206}
 207EXPORT_SYMBOL(__bitmap_andnot);
 208
 209int __bitmap_intersects(const unsigned long *bitmap1,
 210                        const unsigned long *bitmap2, unsigned int bits)
 211{
 212        unsigned int k, lim = bits/BITS_PER_LONG;
 213        for (k = 0; k < lim; ++k)
 214                if (bitmap1[k] & bitmap2[k])
 215                        return 1;
 216
 217        if (bits % BITS_PER_LONG)
 218                if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 219                        return 1;
 220        return 0;
 221}
 222EXPORT_SYMBOL(__bitmap_intersects);
 223
 224int __bitmap_subset(const unsigned long *bitmap1,
 225                    const unsigned long *bitmap2, unsigned int bits)
 226{
 227        unsigned int k, lim = bits/BITS_PER_LONG;
 228        for (k = 0; k < lim; ++k)
 229                if (bitmap1[k] & ~bitmap2[k])
 230                        return 0;
 231
 232        if (bits % BITS_PER_LONG)
 233                if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
 234                        return 0;
 235        return 1;
 236}
 237EXPORT_SYMBOL(__bitmap_subset);
 238
 239int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
 240{
 241        unsigned int k, lim = bits/BITS_PER_LONG;
 242        int w = 0;
 243
 244        for (k = 0; k < lim; k++)
 245                w += hweight_long(bitmap[k]);
 246
 247        if (bits % BITS_PER_LONG)
 248                w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
 249
 250        return w;
 251}
 252EXPORT_SYMBOL(__bitmap_weight);
 253
 254void __bitmap_set(unsigned long *map, unsigned int start, int len)
 255{
 256        unsigned long *p = map + BIT_WORD(start);
 257        const unsigned int size = start + len;
 258        int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 259        unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 260
 261        while (len - bits_to_set >= 0) {
 262                *p |= mask_to_set;
 263                len -= bits_to_set;
 264                bits_to_set = BITS_PER_LONG;
 265                mask_to_set = ~0UL;
 266                p++;
 267        }
 268        if (len) {
 269                mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 270                *p |= mask_to_set;
 271        }
 272}
 273EXPORT_SYMBOL(__bitmap_set);
 274
 275void __bitmap_clear(unsigned long *map, unsigned int start, int len)
 276{
 277        unsigned long *p = map + BIT_WORD(start);
 278        const unsigned int size = start + len;
 279        int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
 280        unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
 281
 282        while (len - bits_to_clear >= 0) {
 283                *p &= ~mask_to_clear;
 284                len -= bits_to_clear;
 285                bits_to_clear = BITS_PER_LONG;
 286                mask_to_clear = ~0UL;
 287                p++;
 288        }
 289        if (len) {
 290                mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
 291                *p &= ~mask_to_clear;
 292        }
 293}
 294EXPORT_SYMBOL(__bitmap_clear);
 295
 296/**
 297 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
 298 * @map: The address to base the search on
 299 * @size: The bitmap size in bits
 300 * @start: The bitnumber to start searching at
 301 * @nr: The number of zeroed bits we're looking for
 302 * @align_mask: Alignment mask for zero area
 303 * @align_offset: Alignment offset for zero area.
 304 *
 305 * The @align_mask should be one less than a power of 2; the effect is that
 306 * the bit offset of all zero areas this function finds plus @align_offset
 307 * is multiple of that power of 2.
 308 */
 309unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
 310                                             unsigned long size,
 311                                             unsigned long start,
 312                                             unsigned int nr,
 313                                             unsigned long align_mask,
 314                                             unsigned long align_offset)
 315{
 316        unsigned long index, end, i;
 317again:
 318        index = find_next_zero_bit(map, size, start);
 319
 320        /* Align allocation */
 321        index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
 322
 323        end = index + nr;
 324        if (end > size)
 325                return end;
 326        i = find_next_bit(map, end, index);
 327        if (i < end) {
 328                start = i + 1;
 329                goto again;
 330        }
 331        return index;
 332}
 333EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
 334
 335/*
 336 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
 337 * second version by Paul Jackson, third by Joe Korty.
 338 */
 339
 340#define CHUNKSZ                         32
 341#define nbits_to_hold_value(val)        fls(val)
 342#define BASEDEC 10              /* fancier cpuset lists input in decimal */
 343
 344/**
 345 * __bitmap_parse - convert an ASCII hex string into a bitmap.
 346 * @buf: pointer to buffer containing string.
 347 * @buflen: buffer size in bytes.  If string is smaller than this
 348 *    then it must be terminated with a \0.
 349 * @is_user: location of buffer, 0 indicates kernel space
 350 * @maskp: pointer to bitmap array that will contain result.
 351 * @nmaskbits: size of bitmap, in bits.
 352 *
 353 * Commas group hex digits into chunks.  Each chunk defines exactly 32
 354 * bits of the resultant bitmask.  No chunk may specify a value larger
 355 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
 356 * then leading 0-bits are prepended.  %-EINVAL is returned for illegal
 357 * characters and for grouping errors such as "1,,5", ",44", "," and "".
 358 * Leading and trailing whitespace accepted, but not embedded whitespace.
 359 */
 360int __bitmap_parse(const char *buf, unsigned int buflen,
 361                int is_user, unsigned long *maskp,
 362                int nmaskbits)
 363{
 364        int c, old_c, totaldigits, ndigits, nchunks, nbits;
 365        u32 chunk;
 366        const char __user __force *ubuf = (const char __user __force *)buf;
 367
 368        bitmap_zero(maskp, nmaskbits);
 369
 370        nchunks = nbits = totaldigits = c = 0;
 371        do {
 372                chunk = 0;
 373                ndigits = totaldigits;
 374
 375                /* Get the next chunk of the bitmap */
 376                while (buflen) {
 377                        old_c = c;
 378                        if (is_user) {
 379                                if (__get_user(c, ubuf++))
 380                                        return -EFAULT;
 381                        }
 382                        else
 383                                c = *buf++;
 384                        buflen--;
 385                        if (isspace(c))
 386                                continue;
 387
 388                        /*
 389                         * If the last character was a space and the current
 390                         * character isn't '\0', we've got embedded whitespace.
 391                         * This is a no-no, so throw an error.
 392                         */
 393                        if (totaldigits && c && isspace(old_c))
 394                                return -EINVAL;
 395
 396                        /* A '\0' or a ',' signal the end of the chunk */
 397                        if (c == '\0' || c == ',')
 398                                break;
 399
 400                        if (!isxdigit(c))
 401                                return -EINVAL;
 402
 403                        /*
 404                         * Make sure there are at least 4 free bits in 'chunk'.
 405                         * If not, this hexdigit will overflow 'chunk', so
 406                         * throw an error.
 407                         */
 408                        if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
 409                                return -EOVERFLOW;
 410
 411                        chunk = (chunk << 4) | hex_to_bin(c);
 412                        totaldigits++;
 413                }
 414                if (ndigits == totaldigits)
 415                        return -EINVAL;
 416                if (nchunks == 0 && chunk == 0)
 417                        continue;
 418
 419                __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
 420                *maskp |= chunk;
 421                nchunks++;
 422                nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
 423                if (nbits > nmaskbits)
 424                        return -EOVERFLOW;
 425        } while (buflen && c == ',');
 426
 427        return 0;
 428}
 429EXPORT_SYMBOL(__bitmap_parse);
 430
 431/**
 432 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
 433 *
 434 * @ubuf: pointer to user buffer containing string.
 435 * @ulen: buffer size in bytes.  If string is smaller than this
 436 *    then it must be terminated with a \0.
 437 * @maskp: pointer to bitmap array that will contain result.
 438 * @nmaskbits: size of bitmap, in bits.
 439 *
 440 * Wrapper for __bitmap_parse(), providing it with user buffer.
 441 *
 442 * We cannot have this as an inline function in bitmap.h because it needs
 443 * linux/uaccess.h to get the access_ok() declaration and this causes
 444 * cyclic dependencies.
 445 */
 446int bitmap_parse_user(const char __user *ubuf,
 447                        unsigned int ulen, unsigned long *maskp,
 448                        int nmaskbits)
 449{
 450        if (!access_ok(VERIFY_READ, ubuf, ulen))
 451                return -EFAULT;
 452        return __bitmap_parse((const char __force *)ubuf,
 453                                ulen, 1, maskp, nmaskbits);
 454
 455}
 456EXPORT_SYMBOL(bitmap_parse_user);
 457
 458/**
 459 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
 460 * @list: indicates whether the bitmap must be list
 461 * @buf: page aligned buffer into which string is placed
 462 * @maskp: pointer to bitmap to convert
 463 * @nmaskbits: size of bitmap, in bits
 464 *
 465 * Output format is a comma-separated list of decimal numbers and
 466 * ranges if list is specified or hex digits grouped into comma-separated
 467 * sets of 8 digits/set. Returns the number of characters written to buf.
 468 *
 469 * It is assumed that @buf is a pointer into a PAGE_SIZE area and that
 470 * sufficient storage remains at @buf to accommodate the
 471 * bitmap_print_to_pagebuf() output.
 472 */
 473int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
 474                            int nmaskbits)
 475{
 476        ptrdiff_t len = PTR_ALIGN(buf + PAGE_SIZE - 1, PAGE_SIZE) - buf;
 477        int n = 0;
 478
 479        if (len > 1)
 480                n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
 481                           scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
 482        return n;
 483}
 484EXPORT_SYMBOL(bitmap_print_to_pagebuf);
 485
 486/**
 487 * __bitmap_parselist - convert list format ASCII string to bitmap
 488 * @buf: read nul-terminated user string from this buffer
 489 * @buflen: buffer size in bytes.  If string is smaller than this
 490 *    then it must be terminated with a \0.
 491 * @is_user: location of buffer, 0 indicates kernel space
 492 * @maskp: write resulting mask here
 493 * @nmaskbits: number of bits in mask to be written
 494 *
 495 * Input format is a comma-separated list of decimal numbers and
 496 * ranges.  Consecutively set bits are shown as two hyphen-separated
 497 * decimal numbers, the smallest and largest bit numbers set in
 498 * the range.
 499 * Optionally each range can be postfixed to denote that only parts of it
 500 * should be set. The range will divided to groups of specific size.
 501 * From each group will be used only defined amount of bits.
 502 * Syntax: range:used_size/group_size
 503 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
 504 *
 505 * Returns: 0 on success, -errno on invalid input strings. Error values:
 506 *
 507 *   - ``-EINVAL``: second number in range smaller than first
 508 *   - ``-EINVAL``: invalid character in string
 509 *   - ``-ERANGE``: bit number specified too large for mask
 510 */
 511static int __bitmap_parselist(const char *buf, unsigned int buflen,
 512                int is_user, unsigned long *maskp,
 513                int nmaskbits)
 514{
 515        unsigned int a, b, old_a, old_b;
 516        unsigned int group_size, used_size, off;
 517        int c, old_c, totaldigits, ndigits;
 518        const char __user __force *ubuf = (const char __user __force *)buf;
 519        int at_start, in_range, in_partial_range;
 520
 521        totaldigits = c = 0;
 522        old_a = old_b = 0;
 523        group_size = used_size = 0;
 524        bitmap_zero(maskp, nmaskbits);
 525        do {
 526                at_start = 1;
 527                in_range = 0;
 528                in_partial_range = 0;
 529                a = b = 0;
 530                ndigits = totaldigits;
 531
 532                /* Get the next cpu# or a range of cpu#'s */
 533                while (buflen) {
 534                        old_c = c;
 535                        if (is_user) {
 536                                if (__get_user(c, ubuf++))
 537                                        return -EFAULT;
 538                        } else
 539                                c = *buf++;
 540                        buflen--;
 541                        if (isspace(c))
 542                                continue;
 543
 544                        /* A '\0' or a ',' signal the end of a cpu# or range */
 545                        if (c == '\0' || c == ',')
 546                                break;
 547                        /*
 548                        * whitespaces between digits are not allowed,
 549                        * but it's ok if whitespaces are on head or tail.
 550                        * when old_c is whilespace,
 551                        * if totaldigits == ndigits, whitespace is on head.
 552                        * if whitespace is on tail, it should not run here.
 553                        * as c was ',' or '\0',
 554                        * the last code line has broken the current loop.
 555                        */
 556                        if ((totaldigits != ndigits) && isspace(old_c))
 557                                return -EINVAL;
 558
 559                        if (c == '/') {
 560                                used_size = a;
 561                                at_start = 1;
 562                                in_range = 0;
 563                                a = b = 0;
 564                                continue;
 565                        }
 566
 567                        if (c == ':') {
 568                                old_a = a;
 569                                old_b = b;
 570                                at_start = 1;
 571                                in_range = 0;
 572                                in_partial_range = 1;
 573                                a = b = 0;
 574                                continue;
 575                        }
 576
 577                        if (c == '-') {
 578                                if (at_start || in_range)
 579                                        return -EINVAL;
 580                                b = 0;
 581                                in_range = 1;
 582                                at_start = 1;
 583                                continue;
 584                        }
 585
 586                        if (!isdigit(c))
 587                                return -EINVAL;
 588
 589                        b = b * 10 + (c - '0');
 590                        if (!in_range)
 591                                a = b;
 592                        at_start = 0;
 593                        totaldigits++;
 594                }
 595                if (ndigits == totaldigits)
 596                        continue;
 597                if (in_partial_range) {
 598                        group_size = a;
 599                        a = old_a;
 600                        b = old_b;
 601                        old_a = old_b = 0;
 602                } else {
 603                        used_size = group_size = b - a + 1;
 604                }
 605                /* if no digit is after '-', it's wrong*/
 606                if (at_start && in_range)
 607                        return -EINVAL;
 608                if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
 609                        return -EINVAL;
 610                if (b >= nmaskbits)
 611                        return -ERANGE;
 612                while (a <= b) {
 613                        off = min(b - a + 1, used_size);
 614                        bitmap_set(maskp, a, off);
 615                        a += group_size;
 616                }
 617        } while (buflen && c == ',');
 618        return 0;
 619}
 620
 621int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
 622{
 623        char *nl  = strchrnul(bp, '\n');
 624        int len = nl - bp;
 625
 626        return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
 627}
 628EXPORT_SYMBOL(bitmap_parselist);
 629
 630
 631/**
 632 * bitmap_parselist_user()
 633 *
 634 * @ubuf: pointer to user buffer containing string.
 635 * @ulen: buffer size in bytes.  If string is smaller than this
 636 *    then it must be terminated with a \0.
 637 * @maskp: pointer to bitmap array that will contain result.
 638 * @nmaskbits: size of bitmap, in bits.
 639 *
 640 * Wrapper for bitmap_parselist(), providing it with user buffer.
 641 *
 642 * We cannot have this as an inline function in bitmap.h because it needs
 643 * linux/uaccess.h to get the access_ok() declaration and this causes
 644 * cyclic dependencies.
 645 */
 646int bitmap_parselist_user(const char __user *ubuf,
 647                        unsigned int ulen, unsigned long *maskp,
 648                        int nmaskbits)
 649{
 650        if (!access_ok(VERIFY_READ, ubuf, ulen))
 651                return -EFAULT;
 652        return __bitmap_parselist((const char __force *)ubuf,
 653                                        ulen, 1, maskp, nmaskbits);
 654}
 655EXPORT_SYMBOL(bitmap_parselist_user);
 656
 657
 658/**
 659 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
 660 *      @buf: pointer to a bitmap
 661 *      @pos: a bit position in @buf (0 <= @pos < @nbits)
 662 *      @nbits: number of valid bit positions in @buf
 663 *
 664 * Map the bit at position @pos in @buf (of length @nbits) to the
 665 * ordinal of which set bit it is.  If it is not set or if @pos
 666 * is not a valid bit position, map to -1.
 667 *
 668 * If for example, just bits 4 through 7 are set in @buf, then @pos
 669 * values 4 through 7 will get mapped to 0 through 3, respectively,
 670 * and other @pos values will get mapped to -1.  When @pos value 7
 671 * gets mapped to (returns) @ord value 3 in this example, that means
 672 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
 673 *
 674 * The bit positions 0 through @bits are valid positions in @buf.
 675 */
 676static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
 677{
 678        if (pos >= nbits || !test_bit(pos, buf))
 679                return -1;
 680
 681        return __bitmap_weight(buf, pos);
 682}
 683
 684/**
 685 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
 686 *      @buf: pointer to bitmap
 687 *      @ord: ordinal bit position (n-th set bit, n >= 0)
 688 *      @nbits: number of valid bit positions in @buf
 689 *
 690 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
 691 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
 692 * >= weight(buf), returns @nbits.
 693 *
 694 * If for example, just bits 4 through 7 are set in @buf, then @ord
 695 * values 0 through 3 will get mapped to 4 through 7, respectively,
 696 * and all other @ord values returns @nbits.  When @ord value 3
 697 * gets mapped to (returns) @pos value 7 in this example, that means
 698 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
 699 *
 700 * The bit positions 0 through @nbits-1 are valid positions in @buf.
 701 */
 702unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
 703{
 704        unsigned int pos;
 705
 706        for (pos = find_first_bit(buf, nbits);
 707             pos < nbits && ord;
 708             pos = find_next_bit(buf, nbits, pos + 1))
 709                ord--;
 710
 711        return pos;
 712}
 713
 714/**
 715 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
 716 *      @dst: remapped result
 717 *      @src: subset to be remapped
 718 *      @old: defines domain of map
 719 *      @new: defines range of map
 720 *      @nbits: number of bits in each of these bitmaps
 721 *
 722 * Let @old and @new define a mapping of bit positions, such that
 723 * whatever position is held by the n-th set bit in @old is mapped
 724 * to the n-th set bit in @new.  In the more general case, allowing
 725 * for the possibility that the weight 'w' of @new is less than the
 726 * weight of @old, map the position of the n-th set bit in @old to
 727 * the position of the m-th set bit in @new, where m == n % w.
 728 *
 729 * If either of the @old and @new bitmaps are empty, or if @src and
 730 * @dst point to the same location, then this routine copies @src
 731 * to @dst.
 732 *
 733 * The positions of unset bits in @old are mapped to themselves
 734 * (the identify map).
 735 *
 736 * Apply the above specified mapping to @src, placing the result in
 737 * @dst, clearing any bits previously set in @dst.
 738 *
 739 * For example, lets say that @old has bits 4 through 7 set, and
 740 * @new has bits 12 through 15 set.  This defines the mapping of bit
 741 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 742 * bit positions unchanged.  So if say @src comes into this routine
 743 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
 744 * 13 and 15 set.
 745 */
 746void bitmap_remap(unsigned long *dst, const unsigned long *src,
 747                const unsigned long *old, const unsigned long *new,
 748                unsigned int nbits)
 749{
 750        unsigned int oldbit, w;
 751
 752        if (dst == src)         /* following doesn't handle inplace remaps */
 753                return;
 754        bitmap_zero(dst, nbits);
 755
 756        w = bitmap_weight(new, nbits);
 757        for_each_set_bit(oldbit, src, nbits) {
 758                int n = bitmap_pos_to_ord(old, oldbit, nbits);
 759
 760                if (n < 0 || w == 0)
 761                        set_bit(oldbit, dst);   /* identity map */
 762                else
 763                        set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
 764        }
 765}
 766EXPORT_SYMBOL(bitmap_remap);
 767
 768/**
 769 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
 770 *      @oldbit: bit position to be mapped
 771 *      @old: defines domain of map
 772 *      @new: defines range of map
 773 *      @bits: number of bits in each of these bitmaps
 774 *
 775 * Let @old and @new define a mapping of bit positions, such that
 776 * whatever position is held by the n-th set bit in @old is mapped
 777 * to the n-th set bit in @new.  In the more general case, allowing
 778 * for the possibility that the weight 'w' of @new is less than the
 779 * weight of @old, map the position of the n-th set bit in @old to
 780 * the position of the m-th set bit in @new, where m == n % w.
 781 *
 782 * The positions of unset bits in @old are mapped to themselves
 783 * (the identify map).
 784 *
 785 * Apply the above specified mapping to bit position @oldbit, returning
 786 * the new bit position.
 787 *
 788 * For example, lets say that @old has bits 4 through 7 set, and
 789 * @new has bits 12 through 15 set.  This defines the mapping of bit
 790 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
 791 * bit positions unchanged.  So if say @oldbit is 5, then this routine
 792 * returns 13.
 793 */
 794int bitmap_bitremap(int oldbit, const unsigned long *old,
 795                                const unsigned long *new, int bits)
 796{
 797        int w = bitmap_weight(new, bits);
 798        int n = bitmap_pos_to_ord(old, oldbit, bits);
 799        if (n < 0 || w == 0)
 800                return oldbit;
 801        else
 802                return bitmap_ord_to_pos(new, n % w, bits);
 803}
 804EXPORT_SYMBOL(bitmap_bitremap);
 805
 806/**
 807 * bitmap_onto - translate one bitmap relative to another
 808 *      @dst: resulting translated bitmap
 809 *      @orig: original untranslated bitmap
 810 *      @relmap: bitmap relative to which translated
 811 *      @bits: number of bits in each of these bitmaps
 812 *
 813 * Set the n-th bit of @dst iff there exists some m such that the
 814 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
 815 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
 816 * (If you understood the previous sentence the first time your
 817 * read it, you're overqualified for your current job.)
 818 *
 819 * In other words, @orig is mapped onto (surjectively) @dst,
 820 * using the map { <n, m> | the n-th bit of @relmap is the
 821 * m-th set bit of @relmap }.
 822 *
 823 * Any set bits in @orig above bit number W, where W is the
 824 * weight of (number of set bits in) @relmap are mapped nowhere.
 825 * In particular, if for all bits m set in @orig, m >= W, then
 826 * @dst will end up empty.  In situations where the possibility
 827 * of such an empty result is not desired, one way to avoid it is
 828 * to use the bitmap_fold() operator, below, to first fold the
 829 * @orig bitmap over itself so that all its set bits x are in the
 830 * range 0 <= x < W.  The bitmap_fold() operator does this by
 831 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
 832 *
 833 * Example [1] for bitmap_onto():
 834 *  Let's say @relmap has bits 30-39 set, and @orig has bits
 835 *  1, 3, 5, 7, 9 and 11 set.  Then on return from this routine,
 836 *  @dst will have bits 31, 33, 35, 37 and 39 set.
 837 *
 838 *  When bit 0 is set in @orig, it means turn on the bit in
 839 *  @dst corresponding to whatever is the first bit (if any)
 840 *  that is turned on in @relmap.  Since bit 0 was off in the
 841 *  above example, we leave off that bit (bit 30) in @dst.
 842 *
 843 *  When bit 1 is set in @orig (as in the above example), it
 844 *  means turn on the bit in @dst corresponding to whatever
 845 *  is the second bit that is turned on in @relmap.  The second
 846 *  bit in @relmap that was turned on in the above example was
 847 *  bit 31, so we turned on bit 31 in @dst.
 848 *
 849 *  Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
 850 *  because they were the 4th, 6th, 8th and 10th set bits
 851 *  set in @relmap, and the 4th, 6th, 8th and 10th bits of
 852 *  @orig (i.e. bits 3, 5, 7 and 9) were also set.
 853 *
 854 *  When bit 11 is set in @orig, it means turn on the bit in
 855 *  @dst corresponding to whatever is the twelfth bit that is
 856 *  turned on in @relmap.  In the above example, there were
 857 *  only ten bits turned on in @relmap (30..39), so that bit
 858 *  11 was set in @orig had no affect on @dst.
 859 *
 860 * Example [2] for bitmap_fold() + bitmap_onto():
 861 *  Let's say @relmap has these ten bits set::
 862 *
 863 *              40 41 42 43 45 48 53 61 74 95
 864 *
 865 *  (for the curious, that's 40 plus the first ten terms of the
 866 *  Fibonacci sequence.)
 867 *
 868 *  Further lets say we use the following code, invoking
 869 *  bitmap_fold() then bitmap_onto, as suggested above to
 870 *  avoid the possibility of an empty @dst result::
 871 *
 872 *      unsigned long *tmp;     // a temporary bitmap's bits
 873 *
 874 *      bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
 875 *      bitmap_onto(dst, tmp, relmap, bits);
 876 *
 877 *  Then this table shows what various values of @dst would be, for
 878 *  various @orig's.  I list the zero-based positions of each set bit.
 879 *  The tmp column shows the intermediate result, as computed by
 880 *  using bitmap_fold() to fold the @orig bitmap modulo ten
 881 *  (the weight of @relmap):
 882 *
 883 *      =============== ============== =================
 884 *      @orig           tmp            @dst
 885 *      0                0             40
 886 *      1                1             41
 887 *      9                9             95
 888 *      10               0             40 [#f1]_
 889 *      1 3 5 7          1 3 5 7       41 43 48 61
 890 *      0 1 2 3 4        0 1 2 3 4     40 41 42 43 45
 891 *      0 9 18 27        0 9 8 7       40 61 74 95
 892 *      0 10 20 30       0             40
 893 *      0 11 22 33       0 1 2 3       40 41 42 43
 894 *      0 12 24 36       0 2 4 6       40 42 45 53
 895 *      78 102 211       1 2 8         41 42 74 [#f1]_
 896 *      =============== ============== =================
 897 *
 898 * .. [#f1]
 899 *
 900 *     For these marked lines, if we hadn't first done bitmap_fold()
 901 *     into tmp, then the @dst result would have been empty.
 902 *
 903 * If either of @orig or @relmap is empty (no set bits), then @dst
 904 * will be returned empty.
 905 *
 906 * If (as explained above) the only set bits in @orig are in positions
 907 * m where m >= W, (where W is the weight of @relmap) then @dst will
 908 * once again be returned empty.
 909 *
 910 * All bits in @dst not set by the above rule are cleared.
 911 */
 912void bitmap_onto(unsigned long *dst, const unsigned long *orig,
 913                        const unsigned long *relmap, unsigned int bits)
 914{
 915        unsigned int n, m;      /* same meaning as in above comment */
 916
 917        if (dst == orig)        /* following doesn't handle inplace mappings */
 918                return;
 919        bitmap_zero(dst, bits);
 920
 921        /*
 922         * The following code is a more efficient, but less
 923         * obvious, equivalent to the loop:
 924         *      for (m = 0; m < bitmap_weight(relmap, bits); m++) {
 925         *              n = bitmap_ord_to_pos(orig, m, bits);
 926         *              if (test_bit(m, orig))
 927         *                      set_bit(n, dst);
 928         *      }
 929         */
 930
 931        m = 0;
 932        for_each_set_bit(n, relmap, bits) {
 933                /* m == bitmap_pos_to_ord(relmap, n, bits) */
 934                if (test_bit(m, orig))
 935                        set_bit(n, dst);
 936                m++;
 937        }
 938}
 939EXPORT_SYMBOL(bitmap_onto);
 940
 941/**
 942 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
 943 *      @dst: resulting smaller bitmap
 944 *      @orig: original larger bitmap
 945 *      @sz: specified size
 946 *      @nbits: number of bits in each of these bitmaps
 947 *
 948 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
 949 * Clear all other bits in @dst.  See further the comment and
 950 * Example [2] for bitmap_onto() for why and how to use this.
 951 */
 952void bitmap_fold(unsigned long *dst, const unsigned long *orig,
 953                        unsigned int sz, unsigned int nbits)
 954{
 955        unsigned int oldbit;
 956
 957        if (dst == orig)        /* following doesn't handle inplace mappings */
 958                return;
 959        bitmap_zero(dst, nbits);
 960
 961        for_each_set_bit(oldbit, orig, nbits)
 962                set_bit(oldbit % sz, dst);
 963}
 964EXPORT_SYMBOL(bitmap_fold);
 965
 966/*
 967 * Common code for bitmap_*_region() routines.
 968 *      bitmap: array of unsigned longs corresponding to the bitmap
 969 *      pos: the beginning of the region
 970 *      order: region size (log base 2 of number of bits)
 971 *      reg_op: operation(s) to perform on that region of bitmap
 972 *
 973 * Can set, verify and/or release a region of bits in a bitmap,
 974 * depending on which combination of REG_OP_* flag bits is set.
 975 *
 976 * A region of a bitmap is a sequence of bits in the bitmap, of
 977 * some size '1 << order' (a power of two), aligned to that same
 978 * '1 << order' power of two.
 979 *
 980 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
 981 * Returns 0 in all other cases and reg_ops.
 982 */
 983
 984enum {
 985        REG_OP_ISFREE,          /* true if region is all zero bits */
 986        REG_OP_ALLOC,           /* set all bits in region */
 987        REG_OP_RELEASE,         /* clear all bits in region */
 988};
 989
 990static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
 991{
 992        int nbits_reg;          /* number of bits in region */
 993        int index;              /* index first long of region in bitmap */
 994        int offset;             /* bit offset region in bitmap[index] */
 995        int nlongs_reg;         /* num longs spanned by region in bitmap */
 996        int nbitsinlong;        /* num bits of region in each spanned long */
 997        unsigned long mask;     /* bitmask for one long of region */
 998        int i;                  /* scans bitmap by longs */
 999        int ret = 0;            /* return value */
1000
1001        /*
1002         * Either nlongs_reg == 1 (for small orders that fit in one long)
1003         * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1004         */
1005        nbits_reg = 1 << order;
1006        index = pos / BITS_PER_LONG;
1007        offset = pos - (index * BITS_PER_LONG);
1008        nlongs_reg = BITS_TO_LONGS(nbits_reg);
1009        nbitsinlong = min(nbits_reg,  BITS_PER_LONG);
1010
1011        /*
1012         * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1013         * overflows if nbitsinlong == BITS_PER_LONG.
1014         */
1015        mask = (1UL << (nbitsinlong - 1));
1016        mask += mask - 1;
1017        mask <<= offset;
1018
1019        switch (reg_op) {
1020        case REG_OP_ISFREE:
1021                for (i = 0; i < nlongs_reg; i++) {
1022                        if (bitmap[index + i] & mask)
1023                                goto done;
1024                }
1025                ret = 1;        /* all bits in region free (zero) */
1026                break;
1027
1028        case REG_OP_ALLOC:
1029                for (i = 0; i < nlongs_reg; i++)
1030                        bitmap[index + i] |= mask;
1031                break;
1032
1033        case REG_OP_RELEASE:
1034                for (i = 0; i < nlongs_reg; i++)
1035                        bitmap[index + i] &= ~mask;
1036                break;
1037        }
1038done:
1039        return ret;
1040}
1041
1042/**
1043 * bitmap_find_free_region - find a contiguous aligned mem region
1044 *      @bitmap: array of unsigned longs corresponding to the bitmap
1045 *      @bits: number of bits in the bitmap
1046 *      @order: region size (log base 2 of number of bits) to find
1047 *
1048 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1049 * allocate them (set them to one).  Only consider regions of length
1050 * a power (@order) of two, aligned to that power of two, which
1051 * makes the search algorithm much faster.
1052 *
1053 * Return the bit offset in bitmap of the allocated region,
1054 * or -errno on failure.
1055 */
1056int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
1057{
1058        unsigned int pos, end;          /* scans bitmap by regions of size order */
1059
1060        for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
1061                if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1062                        continue;
1063                __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1064                return pos;
1065        }
1066        return -ENOMEM;
1067}
1068EXPORT_SYMBOL(bitmap_find_free_region);
1069
1070/**
1071 * bitmap_release_region - release allocated bitmap region
1072 *      @bitmap: array of unsigned longs corresponding to the bitmap
1073 *      @pos: beginning of bit region to release
1074 *      @order: region size (log base 2 of number of bits) to release
1075 *
1076 * This is the complement to __bitmap_find_free_region() and releases
1077 * the found region (by clearing it in the bitmap).
1078 *
1079 * No return value.
1080 */
1081void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1082{
1083        __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1084}
1085EXPORT_SYMBOL(bitmap_release_region);
1086
1087/**
1088 * bitmap_allocate_region - allocate bitmap region
1089 *      @bitmap: array of unsigned longs corresponding to the bitmap
1090 *      @pos: beginning of bit region to allocate
1091 *      @order: region size (log base 2 of number of bits) to allocate
1092 *
1093 * Allocate (set bits in) a specified region of a bitmap.
1094 *
1095 * Return 0 on success, or %-EBUSY if specified region wasn't
1096 * free (not all bits were zero).
1097 */
1098int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1099{
1100        if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1101                return -EBUSY;
1102        return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1103}
1104EXPORT_SYMBOL(bitmap_allocate_region);
1105
1106/**
1107 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1108 * @dst:   destination buffer
1109 * @src:   bitmap to copy
1110 * @nbits: number of bits in the bitmap
1111 *
1112 * Require nbits % BITS_PER_LONG == 0.
1113 */
1114#ifdef __BIG_ENDIAN
1115void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
1116{
1117        unsigned int i;
1118
1119        for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1120                if (BITS_PER_LONG == 64)
1121                        dst[i] = cpu_to_le64(src[i]);
1122                else
1123                        dst[i] = cpu_to_le32(src[i]);
1124        }
1125}
1126EXPORT_SYMBOL(bitmap_copy_le);
1127#endif
1128
1129unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1130{
1131        return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1132                             flags);
1133}
1134EXPORT_SYMBOL(bitmap_alloc);
1135
1136unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1137{
1138        return bitmap_alloc(nbits, flags | __GFP_ZERO);
1139}
1140EXPORT_SYMBOL(bitmap_zalloc);
1141
1142void bitmap_free(const unsigned long *bitmap)
1143{
1144        kfree(bitmap);
1145}
1146EXPORT_SYMBOL(bitmap_free);
1147
1148#if BITS_PER_LONG == 64
1149/**
1150 * bitmap_from_arr32 - copy the contents of u32 array of bits to bitmap
1151 *      @bitmap: array of unsigned longs, the destination bitmap
1152 *      @buf: array of u32 (in host byte order), the source bitmap
1153 *      @nbits: number of bits in @bitmap
1154 */
1155void bitmap_from_arr32(unsigned long *bitmap, const u32 *buf, unsigned int nbits)
1156{
1157        unsigned int i, halfwords;
1158
1159        halfwords = DIV_ROUND_UP(nbits, 32);
1160        for (i = 0; i < halfwords; i++) {
1161                bitmap[i/2] = (unsigned long) buf[i];
1162                if (++i < halfwords)
1163                        bitmap[i/2] |= ((unsigned long) buf[i]) << 32;
1164        }
1165
1166        /* Clear tail bits in last word beyond nbits. */
1167        if (nbits % BITS_PER_LONG)
1168                bitmap[(halfwords - 1) / 2] &= BITMAP_LAST_WORD_MASK(nbits);
1169}
1170EXPORT_SYMBOL(bitmap_from_arr32);
1171
1172/**
1173 * bitmap_to_arr32 - copy the contents of bitmap to a u32 array of bits
1174 *      @buf: array of u32 (in host byte order), the dest bitmap
1175 *      @bitmap: array of unsigned longs, the source bitmap
1176 *      @nbits: number of bits in @bitmap
1177 */
1178void bitmap_to_arr32(u32 *buf, const unsigned long *bitmap, unsigned int nbits)
1179{
1180        unsigned int i, halfwords;
1181
1182        halfwords = DIV_ROUND_UP(nbits, 32);
1183        for (i = 0; i < halfwords; i++) {
1184                buf[i] = (u32) (bitmap[i/2] & UINT_MAX);
1185                if (++i < halfwords)
1186                        buf[i] = (u32) (bitmap[i/2] >> 32);
1187        }
1188
1189        /* Clear tail bits in last element of array beyond nbits. */
1190        if (nbits % BITS_PER_LONG)
1191                buf[halfwords - 1] &= (u32) (UINT_MAX >> ((-nbits) & 31));
1192}
1193EXPORT_SYMBOL(bitmap_to_arr32);
1194
1195#endif
1196