linux/mm/compaction.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * linux/mm/compaction.c
   4 *
   5 * Memory compaction for the reduction of external fragmentation. Note that
   6 * this heavily depends upon page migration to do all the real heavy
   7 * lifting
   8 *
   9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
  10 */
  11#include <linux/cpu.h>
  12#include <linux/swap.h>
  13#include <linux/migrate.h>
  14#include <linux/compaction.h>
  15#include <linux/mm_inline.h>
  16#include <linux/sched/signal.h>
  17#include <linux/backing-dev.h>
  18#include <linux/sysctl.h>
  19#include <linux/sysfs.h>
  20#include <linux/page-isolation.h>
  21#include <linux/kasan.h>
  22#include <linux/kthread.h>
  23#include <linux/freezer.h>
  24#include <linux/page_owner.h>
  25#include "internal.h"
  26
  27#ifdef CONFIG_COMPACTION
  28static inline void count_compact_event(enum vm_event_item item)
  29{
  30        count_vm_event(item);
  31}
  32
  33static inline void count_compact_events(enum vm_event_item item, long delta)
  34{
  35        count_vm_events(item, delta);
  36}
  37#else
  38#define count_compact_event(item) do { } while (0)
  39#define count_compact_events(item, delta) do { } while (0)
  40#endif
  41
  42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
  43
  44#define CREATE_TRACE_POINTS
  45#include <trace/events/compaction.h>
  46
  47#define block_start_pfn(pfn, order)     round_down(pfn, 1UL << (order))
  48#define block_end_pfn(pfn, order)       ALIGN((pfn) + 1, 1UL << (order))
  49#define pageblock_start_pfn(pfn)        block_start_pfn(pfn, pageblock_order)
  50#define pageblock_end_pfn(pfn)          block_end_pfn(pfn, pageblock_order)
  51
  52static unsigned long release_freepages(struct list_head *freelist)
  53{
  54        struct page *page, *next;
  55        unsigned long high_pfn = 0;
  56
  57        list_for_each_entry_safe(page, next, freelist, lru) {
  58                unsigned long pfn = page_to_pfn(page);
  59                list_del(&page->lru);
  60                __free_page(page);
  61                if (pfn > high_pfn)
  62                        high_pfn = pfn;
  63        }
  64
  65        return high_pfn;
  66}
  67
  68static void map_pages(struct list_head *list)
  69{
  70        unsigned int i, order, nr_pages;
  71        struct page *page, *next;
  72        LIST_HEAD(tmp_list);
  73
  74        list_for_each_entry_safe(page, next, list, lru) {
  75                list_del(&page->lru);
  76
  77                order = page_private(page);
  78                nr_pages = 1 << order;
  79
  80                post_alloc_hook(page, order, __GFP_MOVABLE);
  81                if (order)
  82                        split_page(page, order);
  83
  84                for (i = 0; i < nr_pages; i++) {
  85                        list_add(&page->lru, &tmp_list);
  86                        page++;
  87                }
  88        }
  89
  90        list_splice(&tmp_list, list);
  91}
  92
  93#ifdef CONFIG_COMPACTION
  94
  95int PageMovable(struct page *page)
  96{
  97        struct address_space *mapping;
  98
  99        VM_BUG_ON_PAGE(!PageLocked(page), page);
 100        if (!__PageMovable(page))
 101                return 0;
 102
 103        mapping = page_mapping(page);
 104        if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
 105                return 1;
 106
 107        return 0;
 108}
 109EXPORT_SYMBOL(PageMovable);
 110
 111void __SetPageMovable(struct page *page, struct address_space *mapping)
 112{
 113        VM_BUG_ON_PAGE(!PageLocked(page), page);
 114        VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
 115        page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
 116}
 117EXPORT_SYMBOL(__SetPageMovable);
 118
 119void __ClearPageMovable(struct page *page)
 120{
 121        VM_BUG_ON_PAGE(!PageLocked(page), page);
 122        VM_BUG_ON_PAGE(!PageMovable(page), page);
 123        /*
 124         * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
 125         * flag so that VM can catch up released page by driver after isolation.
 126         * With it, VM migration doesn't try to put it back.
 127         */
 128        page->mapping = (void *)((unsigned long)page->mapping &
 129                                PAGE_MAPPING_MOVABLE);
 130}
 131EXPORT_SYMBOL(__ClearPageMovable);
 132
 133/* Do not skip compaction more than 64 times */
 134#define COMPACT_MAX_DEFER_SHIFT 6
 135
 136/*
 137 * Compaction is deferred when compaction fails to result in a page
 138 * allocation success. 1 << compact_defer_limit compactions are skipped up
 139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
 140 */
 141void defer_compaction(struct zone *zone, int order)
 142{
 143        zone->compact_considered = 0;
 144        zone->compact_defer_shift++;
 145
 146        if (order < zone->compact_order_failed)
 147                zone->compact_order_failed = order;
 148
 149        if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
 150                zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
 151
 152        trace_mm_compaction_defer_compaction(zone, order);
 153}
 154
 155/* Returns true if compaction should be skipped this time */
 156bool compaction_deferred(struct zone *zone, int order)
 157{
 158        unsigned long defer_limit = 1UL << zone->compact_defer_shift;
 159
 160        if (order < zone->compact_order_failed)
 161                return false;
 162
 163        /* Avoid possible overflow */
 164        if (++zone->compact_considered > defer_limit)
 165                zone->compact_considered = defer_limit;
 166
 167        if (zone->compact_considered >= defer_limit)
 168                return false;
 169
 170        trace_mm_compaction_deferred(zone, order);
 171
 172        return true;
 173}
 174
 175/*
 176 * Update defer tracking counters after successful compaction of given order,
 177 * which means an allocation either succeeded (alloc_success == true) or is
 178 * expected to succeed.
 179 */
 180void compaction_defer_reset(struct zone *zone, int order,
 181                bool alloc_success)
 182{
 183        if (alloc_success) {
 184                zone->compact_considered = 0;
 185                zone->compact_defer_shift = 0;
 186        }
 187        if (order >= zone->compact_order_failed)
 188                zone->compact_order_failed = order + 1;
 189
 190        trace_mm_compaction_defer_reset(zone, order);
 191}
 192
 193/* Returns true if restarting compaction after many failures */
 194bool compaction_restarting(struct zone *zone, int order)
 195{
 196        if (order < zone->compact_order_failed)
 197                return false;
 198
 199        return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
 200                zone->compact_considered >= 1UL << zone->compact_defer_shift;
 201}
 202
 203/* Returns true if the pageblock should be scanned for pages to isolate. */
 204static inline bool isolation_suitable(struct compact_control *cc,
 205                                        struct page *page)
 206{
 207        if (cc->ignore_skip_hint)
 208                return true;
 209
 210        return !get_pageblock_skip(page);
 211}
 212
 213static void reset_cached_positions(struct zone *zone)
 214{
 215        zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
 216        zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
 217        zone->compact_cached_free_pfn =
 218                                pageblock_start_pfn(zone_end_pfn(zone) - 1);
 219}
 220
 221/*
 222 * Compound pages of >= pageblock_order should consistenly be skipped until
 223 * released. It is always pointless to compact pages of such order (if they are
 224 * migratable), and the pageblocks they occupy cannot contain any free pages.
 225 */
 226static bool pageblock_skip_persistent(struct page *page)
 227{
 228        if (!PageCompound(page))
 229                return false;
 230
 231        page = compound_head(page);
 232
 233        if (compound_order(page) >= pageblock_order)
 234                return true;
 235
 236        return false;
 237}
 238
 239/*
 240 * This function is called to clear all cached information on pageblocks that
 241 * should be skipped for page isolation when the migrate and free page scanner
 242 * meet.
 243 */
 244static void __reset_isolation_suitable(struct zone *zone)
 245{
 246        unsigned long start_pfn = zone->zone_start_pfn;
 247        unsigned long end_pfn = zone_end_pfn(zone);
 248        unsigned long pfn;
 249
 250        zone->compact_blockskip_flush = false;
 251
 252        /* Walk the zone and mark every pageblock as suitable for isolation */
 253        for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
 254                struct page *page;
 255
 256                cond_resched();
 257
 258                page = pfn_to_online_page(pfn);
 259                if (!page)
 260                        continue;
 261                if (zone != page_zone(page))
 262                        continue;
 263                if (pageblock_skip_persistent(page))
 264                        continue;
 265
 266                clear_pageblock_skip(page);
 267        }
 268
 269        reset_cached_positions(zone);
 270}
 271
 272void reset_isolation_suitable(pg_data_t *pgdat)
 273{
 274        int zoneid;
 275
 276        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
 277                struct zone *zone = &pgdat->node_zones[zoneid];
 278                if (!populated_zone(zone))
 279                        continue;
 280
 281                /* Only flush if a full compaction finished recently */
 282                if (zone->compact_blockskip_flush)
 283                        __reset_isolation_suitable(zone);
 284        }
 285}
 286
 287/*
 288 * If no pages were isolated then mark this pageblock to be skipped in the
 289 * future. The information is later cleared by __reset_isolation_suitable().
 290 */
 291static void update_pageblock_skip(struct compact_control *cc,
 292                        struct page *page, unsigned long nr_isolated,
 293                        bool migrate_scanner)
 294{
 295        struct zone *zone = cc->zone;
 296        unsigned long pfn;
 297
 298        if (cc->no_set_skip_hint)
 299                return;
 300
 301        if (!page)
 302                return;
 303
 304        if (nr_isolated)
 305                return;
 306
 307        set_pageblock_skip(page);
 308
 309        pfn = page_to_pfn(page);
 310
 311        /* Update where async and sync compaction should restart */
 312        if (migrate_scanner) {
 313                if (pfn > zone->compact_cached_migrate_pfn[0])
 314                        zone->compact_cached_migrate_pfn[0] = pfn;
 315                if (cc->mode != MIGRATE_ASYNC &&
 316                    pfn > zone->compact_cached_migrate_pfn[1])
 317                        zone->compact_cached_migrate_pfn[1] = pfn;
 318        } else {
 319                if (pfn < zone->compact_cached_free_pfn)
 320                        zone->compact_cached_free_pfn = pfn;
 321        }
 322}
 323#else
 324static inline bool isolation_suitable(struct compact_control *cc,
 325                                        struct page *page)
 326{
 327        return true;
 328}
 329
 330static inline bool pageblock_skip_persistent(struct page *page)
 331{
 332        return false;
 333}
 334
 335static inline void update_pageblock_skip(struct compact_control *cc,
 336                        struct page *page, unsigned long nr_isolated,
 337                        bool migrate_scanner)
 338{
 339}
 340#endif /* CONFIG_COMPACTION */
 341
 342/*
 343 * Compaction requires the taking of some coarse locks that are potentially
 344 * very heavily contended. For async compaction, back out if the lock cannot
 345 * be taken immediately. For sync compaction, spin on the lock if needed.
 346 *
 347 * Returns true if the lock is held
 348 * Returns false if the lock is not held and compaction should abort
 349 */
 350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
 351                                                struct compact_control *cc)
 352{
 353        if (cc->mode == MIGRATE_ASYNC) {
 354                if (!spin_trylock_irqsave(lock, *flags)) {
 355                        cc->contended = true;
 356                        return false;
 357                }
 358        } else {
 359                spin_lock_irqsave(lock, *flags);
 360        }
 361
 362        return true;
 363}
 364
 365/*
 366 * Compaction requires the taking of some coarse locks that are potentially
 367 * very heavily contended. The lock should be periodically unlocked to avoid
 368 * having disabled IRQs for a long time, even when there is nobody waiting on
 369 * the lock. It might also be that allowing the IRQs will result in
 370 * need_resched() becoming true. If scheduling is needed, async compaction
 371 * aborts. Sync compaction schedules.
 372 * Either compaction type will also abort if a fatal signal is pending.
 373 * In either case if the lock was locked, it is dropped and not regained.
 374 *
 375 * Returns true if compaction should abort due to fatal signal pending, or
 376 *              async compaction due to need_resched()
 377 * Returns false when compaction can continue (sync compaction might have
 378 *              scheduled)
 379 */
 380static bool compact_unlock_should_abort(spinlock_t *lock,
 381                unsigned long flags, bool *locked, struct compact_control *cc)
 382{
 383        if (*locked) {
 384                spin_unlock_irqrestore(lock, flags);
 385                *locked = false;
 386        }
 387
 388        if (fatal_signal_pending(current)) {
 389                cc->contended = true;
 390                return true;
 391        }
 392
 393        if (need_resched()) {
 394                if (cc->mode == MIGRATE_ASYNC) {
 395                        cc->contended = true;
 396                        return true;
 397                }
 398                cond_resched();
 399        }
 400
 401        return false;
 402}
 403
 404/*
 405 * Aside from avoiding lock contention, compaction also periodically checks
 406 * need_resched() and either schedules in sync compaction or aborts async
 407 * compaction. This is similar to what compact_unlock_should_abort() does, but
 408 * is used where no lock is concerned.
 409 *
 410 * Returns false when no scheduling was needed, or sync compaction scheduled.
 411 * Returns true when async compaction should abort.
 412 */
 413static inline bool compact_should_abort(struct compact_control *cc)
 414{
 415        /* async compaction aborts if contended */
 416        if (need_resched()) {
 417                if (cc->mode == MIGRATE_ASYNC) {
 418                        cc->contended = true;
 419                        return true;
 420                }
 421
 422                cond_resched();
 423        }
 424
 425        return false;
 426}
 427
 428/*
 429 * Isolate free pages onto a private freelist. If @strict is true, will abort
 430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
 431 * (even though it may still end up isolating some pages).
 432 */
 433static unsigned long isolate_freepages_block(struct compact_control *cc,
 434                                unsigned long *start_pfn,
 435                                unsigned long end_pfn,
 436                                struct list_head *freelist,
 437                                bool strict)
 438{
 439        int nr_scanned = 0, total_isolated = 0;
 440        struct page *cursor, *valid_page = NULL;
 441        unsigned long flags = 0;
 442        bool locked = false;
 443        unsigned long blockpfn = *start_pfn;
 444        unsigned int order;
 445
 446        cursor = pfn_to_page(blockpfn);
 447
 448        /* Isolate free pages. */
 449        for (; blockpfn < end_pfn; blockpfn++, cursor++) {
 450                int isolated;
 451                struct page *page = cursor;
 452
 453                /*
 454                 * Periodically drop the lock (if held) regardless of its
 455                 * contention, to give chance to IRQs. Abort if fatal signal
 456                 * pending or async compaction detects need_resched()
 457                 */
 458                if (!(blockpfn % SWAP_CLUSTER_MAX)
 459                    && compact_unlock_should_abort(&cc->zone->lock, flags,
 460                                                                &locked, cc))
 461                        break;
 462
 463                nr_scanned++;
 464                if (!pfn_valid_within(blockpfn))
 465                        goto isolate_fail;
 466
 467                if (!valid_page)
 468                        valid_page = page;
 469
 470                /*
 471                 * For compound pages such as THP and hugetlbfs, we can save
 472                 * potentially a lot of iterations if we skip them at once.
 473                 * The check is racy, but we can consider only valid values
 474                 * and the only danger is skipping too much.
 475                 */
 476                if (PageCompound(page)) {
 477                        const unsigned int order = compound_order(page);
 478
 479                        if (likely(order < MAX_ORDER)) {
 480                                blockpfn += (1UL << order) - 1;
 481                                cursor += (1UL << order) - 1;
 482                        }
 483                        goto isolate_fail;
 484                }
 485
 486                if (!PageBuddy(page))
 487                        goto isolate_fail;
 488
 489                /*
 490                 * If we already hold the lock, we can skip some rechecking.
 491                 * Note that if we hold the lock now, checked_pageblock was
 492                 * already set in some previous iteration (or strict is true),
 493                 * so it is correct to skip the suitable migration target
 494                 * recheck as well.
 495                 */
 496                if (!locked) {
 497                        /*
 498                         * The zone lock must be held to isolate freepages.
 499                         * Unfortunately this is a very coarse lock and can be
 500                         * heavily contended if there are parallel allocations
 501                         * or parallel compactions. For async compaction do not
 502                         * spin on the lock and we acquire the lock as late as
 503                         * possible.
 504                         */
 505                        locked = compact_trylock_irqsave(&cc->zone->lock,
 506                                                                &flags, cc);
 507                        if (!locked)
 508                                break;
 509
 510                        /* Recheck this is a buddy page under lock */
 511                        if (!PageBuddy(page))
 512                                goto isolate_fail;
 513                }
 514
 515                /* Found a free page, will break it into order-0 pages */
 516                order = page_order(page);
 517                isolated = __isolate_free_page(page, order);
 518                if (!isolated)
 519                        break;
 520                set_page_private(page, order);
 521
 522                total_isolated += isolated;
 523                cc->nr_freepages += isolated;
 524                list_add_tail(&page->lru, freelist);
 525
 526                if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
 527                        blockpfn += isolated;
 528                        break;
 529                }
 530                /* Advance to the end of split page */
 531                blockpfn += isolated - 1;
 532                cursor += isolated - 1;
 533                continue;
 534
 535isolate_fail:
 536                if (strict)
 537                        break;
 538                else
 539                        continue;
 540
 541        }
 542
 543        if (locked)
 544                spin_unlock_irqrestore(&cc->zone->lock, flags);
 545
 546        /*
 547         * There is a tiny chance that we have read bogus compound_order(),
 548         * so be careful to not go outside of the pageblock.
 549         */
 550        if (unlikely(blockpfn > end_pfn))
 551                blockpfn = end_pfn;
 552
 553        trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
 554                                        nr_scanned, total_isolated);
 555
 556        /* Record how far we have got within the block */
 557        *start_pfn = blockpfn;
 558
 559        /*
 560         * If strict isolation is requested by CMA then check that all the
 561         * pages requested were isolated. If there were any failures, 0 is
 562         * returned and CMA will fail.
 563         */
 564        if (strict && blockpfn < end_pfn)
 565                total_isolated = 0;
 566
 567        /* Update the pageblock-skip if the whole pageblock was scanned */
 568        if (blockpfn == end_pfn)
 569                update_pageblock_skip(cc, valid_page, total_isolated, false);
 570
 571        cc->total_free_scanned += nr_scanned;
 572        if (total_isolated)
 573                count_compact_events(COMPACTISOLATED, total_isolated);
 574        return total_isolated;
 575}
 576
 577/**
 578 * isolate_freepages_range() - isolate free pages.
 579 * @cc:        Compaction control structure.
 580 * @start_pfn: The first PFN to start isolating.
 581 * @end_pfn:   The one-past-last PFN.
 582 *
 583 * Non-free pages, invalid PFNs, or zone boundaries within the
 584 * [start_pfn, end_pfn) range are considered errors, cause function to
 585 * undo its actions and return zero.
 586 *
 587 * Otherwise, function returns one-past-the-last PFN of isolated page
 588 * (which may be greater then end_pfn if end fell in a middle of
 589 * a free page).
 590 */
 591unsigned long
 592isolate_freepages_range(struct compact_control *cc,
 593                        unsigned long start_pfn, unsigned long end_pfn)
 594{
 595        unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
 596        LIST_HEAD(freelist);
 597
 598        pfn = start_pfn;
 599        block_start_pfn = pageblock_start_pfn(pfn);
 600        if (block_start_pfn < cc->zone->zone_start_pfn)
 601                block_start_pfn = cc->zone->zone_start_pfn;
 602        block_end_pfn = pageblock_end_pfn(pfn);
 603
 604        for (; pfn < end_pfn; pfn += isolated,
 605                                block_start_pfn = block_end_pfn,
 606                                block_end_pfn += pageblock_nr_pages) {
 607                /* Protect pfn from changing by isolate_freepages_block */
 608                unsigned long isolate_start_pfn = pfn;
 609
 610                block_end_pfn = min(block_end_pfn, end_pfn);
 611
 612                /*
 613                 * pfn could pass the block_end_pfn if isolated freepage
 614                 * is more than pageblock order. In this case, we adjust
 615                 * scanning range to right one.
 616                 */
 617                if (pfn >= block_end_pfn) {
 618                        block_start_pfn = pageblock_start_pfn(pfn);
 619                        block_end_pfn = pageblock_end_pfn(pfn);
 620                        block_end_pfn = min(block_end_pfn, end_pfn);
 621                }
 622
 623                if (!pageblock_pfn_to_page(block_start_pfn,
 624                                        block_end_pfn, cc->zone))
 625                        break;
 626
 627                isolated = isolate_freepages_block(cc, &isolate_start_pfn,
 628                                                block_end_pfn, &freelist, true);
 629
 630                /*
 631                 * In strict mode, isolate_freepages_block() returns 0 if
 632                 * there are any holes in the block (ie. invalid PFNs or
 633                 * non-free pages).
 634                 */
 635                if (!isolated)
 636                        break;
 637
 638                /*
 639                 * If we managed to isolate pages, it is always (1 << n) *
 640                 * pageblock_nr_pages for some non-negative n.  (Max order
 641                 * page may span two pageblocks).
 642                 */
 643        }
 644
 645        /* __isolate_free_page() does not map the pages */
 646        map_pages(&freelist);
 647
 648        if (pfn < end_pfn) {
 649                /* Loop terminated early, cleanup. */
 650                release_freepages(&freelist);
 651                return 0;
 652        }
 653
 654        /* We don't use freelists for anything. */
 655        return pfn;
 656}
 657
 658/* Similar to reclaim, but different enough that they don't share logic */
 659static bool too_many_isolated(struct zone *zone)
 660{
 661        unsigned long active, inactive, isolated;
 662
 663        inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
 664                        node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
 665        active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
 666                        node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
 667        isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
 668                        node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
 669
 670        return isolated > (inactive + active) / 2;
 671}
 672
 673/**
 674 * isolate_migratepages_block() - isolate all migrate-able pages within
 675 *                                a single pageblock
 676 * @cc:         Compaction control structure.
 677 * @low_pfn:    The first PFN to isolate
 678 * @end_pfn:    The one-past-the-last PFN to isolate, within same pageblock
 679 * @isolate_mode: Isolation mode to be used.
 680 *
 681 * Isolate all pages that can be migrated from the range specified by
 682 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
 683 * Returns zero if there is a fatal signal pending, otherwise PFN of the
 684 * first page that was not scanned (which may be both less, equal to or more
 685 * than end_pfn).
 686 *
 687 * The pages are isolated on cc->migratepages list (not required to be empty),
 688 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
 689 * is neither read nor updated.
 690 */
 691static unsigned long
 692isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
 693                        unsigned long end_pfn, isolate_mode_t isolate_mode)
 694{
 695        struct zone *zone = cc->zone;
 696        unsigned long nr_scanned = 0, nr_isolated = 0;
 697        struct lruvec *lruvec;
 698        unsigned long flags = 0;
 699        bool locked = false;
 700        struct page *page = NULL, *valid_page = NULL;
 701        unsigned long start_pfn = low_pfn;
 702        bool skip_on_failure = false;
 703        unsigned long next_skip_pfn = 0;
 704
 705        /*
 706         * Ensure that there are not too many pages isolated from the LRU
 707         * list by either parallel reclaimers or compaction. If there are,
 708         * delay for some time until fewer pages are isolated
 709         */
 710        while (unlikely(too_many_isolated(zone))) {
 711                /* async migration should just abort */
 712                if (cc->mode == MIGRATE_ASYNC)
 713                        return 0;
 714
 715                congestion_wait(BLK_RW_ASYNC, HZ/10);
 716
 717                if (fatal_signal_pending(current))
 718                        return 0;
 719        }
 720
 721        if (compact_should_abort(cc))
 722                return 0;
 723
 724        if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
 725                skip_on_failure = true;
 726                next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 727        }
 728
 729        /* Time to isolate some pages for migration */
 730        for (; low_pfn < end_pfn; low_pfn++) {
 731
 732                if (skip_on_failure && low_pfn >= next_skip_pfn) {
 733                        /*
 734                         * We have isolated all migration candidates in the
 735                         * previous order-aligned block, and did not skip it due
 736                         * to failure. We should migrate the pages now and
 737                         * hopefully succeed compaction.
 738                         */
 739                        if (nr_isolated)
 740                                break;
 741
 742                        /*
 743                         * We failed to isolate in the previous order-aligned
 744                         * block. Set the new boundary to the end of the
 745                         * current block. Note we can't simply increase
 746                         * next_skip_pfn by 1 << order, as low_pfn might have
 747                         * been incremented by a higher number due to skipping
 748                         * a compound or a high-order buddy page in the
 749                         * previous loop iteration.
 750                         */
 751                        next_skip_pfn = block_end_pfn(low_pfn, cc->order);
 752                }
 753
 754                /*
 755                 * Periodically drop the lock (if held) regardless of its
 756                 * contention, to give chance to IRQs. Abort async compaction
 757                 * if contended.
 758                 */
 759                if (!(low_pfn % SWAP_CLUSTER_MAX)
 760                    && compact_unlock_should_abort(zone_lru_lock(zone), flags,
 761                                                                &locked, cc))
 762                        break;
 763
 764                if (!pfn_valid_within(low_pfn))
 765                        goto isolate_fail;
 766                nr_scanned++;
 767
 768                page = pfn_to_page(low_pfn);
 769
 770                if (!valid_page)
 771                        valid_page = page;
 772
 773                /*
 774                 * Skip if free. We read page order here without zone lock
 775                 * which is generally unsafe, but the race window is small and
 776                 * the worst thing that can happen is that we skip some
 777                 * potential isolation targets.
 778                 */
 779                if (PageBuddy(page)) {
 780                        unsigned long freepage_order = page_order_unsafe(page);
 781
 782                        /*
 783                         * Without lock, we cannot be sure that what we got is
 784                         * a valid page order. Consider only values in the
 785                         * valid order range to prevent low_pfn overflow.
 786                         */
 787                        if (freepage_order > 0 && freepage_order < MAX_ORDER)
 788                                low_pfn += (1UL << freepage_order) - 1;
 789                        continue;
 790                }
 791
 792                /*
 793                 * Regardless of being on LRU, compound pages such as THP and
 794                 * hugetlbfs are not to be compacted. We can potentially save
 795                 * a lot of iterations if we skip them at once. The check is
 796                 * racy, but we can consider only valid values and the only
 797                 * danger is skipping too much.
 798                 */
 799                if (PageCompound(page)) {
 800                        const unsigned int order = compound_order(page);
 801
 802                        if (likely(order < MAX_ORDER))
 803                                low_pfn += (1UL << order) - 1;
 804                        goto isolate_fail;
 805                }
 806
 807                /*
 808                 * Check may be lockless but that's ok as we recheck later.
 809                 * It's possible to migrate LRU and non-lru movable pages.
 810                 * Skip any other type of page
 811                 */
 812                if (!PageLRU(page)) {
 813                        /*
 814                         * __PageMovable can return false positive so we need
 815                         * to verify it under page_lock.
 816                         */
 817                        if (unlikely(__PageMovable(page)) &&
 818                                        !PageIsolated(page)) {
 819                                if (locked) {
 820                                        spin_unlock_irqrestore(zone_lru_lock(zone),
 821                                                                        flags);
 822                                        locked = false;
 823                                }
 824
 825                                if (!isolate_movable_page(page, isolate_mode))
 826                                        goto isolate_success;
 827                        }
 828
 829                        goto isolate_fail;
 830                }
 831
 832                /*
 833                 * Migration will fail if an anonymous page is pinned in memory,
 834                 * so avoid taking lru_lock and isolating it unnecessarily in an
 835                 * admittedly racy check.
 836                 */
 837                if (!page_mapping(page) &&
 838                    page_count(page) > page_mapcount(page))
 839                        goto isolate_fail;
 840
 841                /*
 842                 * Only allow to migrate anonymous pages in GFP_NOFS context
 843                 * because those do not depend on fs locks.
 844                 */
 845                if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
 846                        goto isolate_fail;
 847
 848                /* If we already hold the lock, we can skip some rechecking */
 849                if (!locked) {
 850                        locked = compact_trylock_irqsave(zone_lru_lock(zone),
 851                                                                &flags, cc);
 852                        if (!locked)
 853                                break;
 854
 855                        /* Recheck PageLRU and PageCompound under lock */
 856                        if (!PageLRU(page))
 857                                goto isolate_fail;
 858
 859                        /*
 860                         * Page become compound since the non-locked check,
 861                         * and it's on LRU. It can only be a THP so the order
 862                         * is safe to read and it's 0 for tail pages.
 863                         */
 864                        if (unlikely(PageCompound(page))) {
 865                                low_pfn += (1UL << compound_order(page)) - 1;
 866                                goto isolate_fail;
 867                        }
 868                }
 869
 870                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
 871
 872                /* Try isolate the page */
 873                if (__isolate_lru_page(page, isolate_mode) != 0)
 874                        goto isolate_fail;
 875
 876                VM_BUG_ON_PAGE(PageCompound(page), page);
 877
 878                /* Successfully isolated */
 879                del_page_from_lru_list(page, lruvec, page_lru(page));
 880                inc_node_page_state(page,
 881                                NR_ISOLATED_ANON + page_is_file_cache(page));
 882
 883isolate_success:
 884                list_add(&page->lru, &cc->migratepages);
 885                cc->nr_migratepages++;
 886                nr_isolated++;
 887
 888                /*
 889                 * Record where we could have freed pages by migration and not
 890                 * yet flushed them to buddy allocator.
 891                 * - this is the lowest page that was isolated and likely be
 892                 * then freed by migration.
 893                 */
 894                if (!cc->last_migrated_pfn)
 895                        cc->last_migrated_pfn = low_pfn;
 896
 897                /* Avoid isolating too much */
 898                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
 899                        ++low_pfn;
 900                        break;
 901                }
 902
 903                continue;
 904isolate_fail:
 905                if (!skip_on_failure)
 906                        continue;
 907
 908                /*
 909                 * We have isolated some pages, but then failed. Release them
 910                 * instead of migrating, as we cannot form the cc->order buddy
 911                 * page anyway.
 912                 */
 913                if (nr_isolated) {
 914                        if (locked) {
 915                                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 916                                locked = false;
 917                        }
 918                        putback_movable_pages(&cc->migratepages);
 919                        cc->nr_migratepages = 0;
 920                        cc->last_migrated_pfn = 0;
 921                        nr_isolated = 0;
 922                }
 923
 924                if (low_pfn < next_skip_pfn) {
 925                        low_pfn = next_skip_pfn - 1;
 926                        /*
 927                         * The check near the loop beginning would have updated
 928                         * next_skip_pfn too, but this is a bit simpler.
 929                         */
 930                        next_skip_pfn += 1UL << cc->order;
 931                }
 932        }
 933
 934        /*
 935         * The PageBuddy() check could have potentially brought us outside
 936         * the range to be scanned.
 937         */
 938        if (unlikely(low_pfn > end_pfn))
 939                low_pfn = end_pfn;
 940
 941        if (locked)
 942                spin_unlock_irqrestore(zone_lru_lock(zone), flags);
 943
 944        /*
 945         * Update the pageblock-skip information and cached scanner pfn,
 946         * if the whole pageblock was scanned without isolating any page.
 947         */
 948        if (low_pfn == end_pfn)
 949                update_pageblock_skip(cc, valid_page, nr_isolated, true);
 950
 951        trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
 952                                                nr_scanned, nr_isolated);
 953
 954        cc->total_migrate_scanned += nr_scanned;
 955        if (nr_isolated)
 956                count_compact_events(COMPACTISOLATED, nr_isolated);
 957
 958        return low_pfn;
 959}
 960
 961/**
 962 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
 963 * @cc:        Compaction control structure.
 964 * @start_pfn: The first PFN to start isolating.
 965 * @end_pfn:   The one-past-last PFN.
 966 *
 967 * Returns zero if isolation fails fatally due to e.g. pending signal.
 968 * Otherwise, function returns one-past-the-last PFN of isolated page
 969 * (which may be greater than end_pfn if end fell in a middle of a THP page).
 970 */
 971unsigned long
 972isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
 973                                                        unsigned long end_pfn)
 974{
 975        unsigned long pfn, block_start_pfn, block_end_pfn;
 976
 977        /* Scan block by block. First and last block may be incomplete */
 978        pfn = start_pfn;
 979        block_start_pfn = pageblock_start_pfn(pfn);
 980        if (block_start_pfn < cc->zone->zone_start_pfn)
 981                block_start_pfn = cc->zone->zone_start_pfn;
 982        block_end_pfn = pageblock_end_pfn(pfn);
 983
 984        for (; pfn < end_pfn; pfn = block_end_pfn,
 985                                block_start_pfn = block_end_pfn,
 986                                block_end_pfn += pageblock_nr_pages) {
 987
 988                block_end_pfn = min(block_end_pfn, end_pfn);
 989
 990                if (!pageblock_pfn_to_page(block_start_pfn,
 991                                        block_end_pfn, cc->zone))
 992                        continue;
 993
 994                pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
 995                                                        ISOLATE_UNEVICTABLE);
 996
 997                if (!pfn)
 998                        break;
 999
1000                if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1001                        break;
1002        }
1003
1004        return pfn;
1005}
1006
1007#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1008#ifdef CONFIG_COMPACTION
1009
1010static bool suitable_migration_source(struct compact_control *cc,
1011                                                        struct page *page)
1012{
1013        int block_mt;
1014
1015        if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
1016                return true;
1017
1018        block_mt = get_pageblock_migratetype(page);
1019
1020        if (cc->migratetype == MIGRATE_MOVABLE)
1021                return is_migrate_movable(block_mt);
1022        else
1023                return block_mt == cc->migratetype;
1024}
1025
1026/* Returns true if the page is within a block suitable for migration to */
1027static bool suitable_migration_target(struct compact_control *cc,
1028                                                        struct page *page)
1029{
1030        /* If the page is a large free page, then disallow migration */
1031        if (PageBuddy(page)) {
1032                /*
1033                 * We are checking page_order without zone->lock taken. But
1034                 * the only small danger is that we skip a potentially suitable
1035                 * pageblock, so it's not worth to check order for valid range.
1036                 */
1037                if (page_order_unsafe(page) >= pageblock_order)
1038                        return false;
1039        }
1040
1041        if (cc->ignore_block_suitable)
1042                return true;
1043
1044        /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1045        if (is_migrate_movable(get_pageblock_migratetype(page)))
1046                return true;
1047
1048        /* Otherwise skip the block */
1049        return false;
1050}
1051
1052/*
1053 * Test whether the free scanner has reached the same or lower pageblock than
1054 * the migration scanner, and compaction should thus terminate.
1055 */
1056static inline bool compact_scanners_met(struct compact_control *cc)
1057{
1058        return (cc->free_pfn >> pageblock_order)
1059                <= (cc->migrate_pfn >> pageblock_order);
1060}
1061
1062/*
1063 * Based on information in the current compact_control, find blocks
1064 * suitable for isolating free pages from and then isolate them.
1065 */
1066static void isolate_freepages(struct compact_control *cc)
1067{
1068        struct zone *zone = cc->zone;
1069        struct page *page;
1070        unsigned long block_start_pfn;  /* start of current pageblock */
1071        unsigned long isolate_start_pfn; /* exact pfn we start at */
1072        unsigned long block_end_pfn;    /* end of current pageblock */
1073        unsigned long low_pfn;       /* lowest pfn scanner is able to scan */
1074        struct list_head *freelist = &cc->freepages;
1075
1076        /*
1077         * Initialise the free scanner. The starting point is where we last
1078         * successfully isolated from, zone-cached value, or the end of the
1079         * zone when isolating for the first time. For looping we also need
1080         * this pfn aligned down to the pageblock boundary, because we do
1081         * block_start_pfn -= pageblock_nr_pages in the for loop.
1082         * For ending point, take care when isolating in last pageblock of a
1083         * a zone which ends in the middle of a pageblock.
1084         * The low boundary is the end of the pageblock the migration scanner
1085         * is using.
1086         */
1087        isolate_start_pfn = cc->free_pfn;
1088        block_start_pfn = pageblock_start_pfn(cc->free_pfn);
1089        block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1090                                                zone_end_pfn(zone));
1091        low_pfn = pageblock_end_pfn(cc->migrate_pfn);
1092
1093        /*
1094         * Isolate free pages until enough are available to migrate the
1095         * pages on cc->migratepages. We stop searching if the migrate
1096         * and free page scanners meet or enough free pages are isolated.
1097         */
1098        for (; block_start_pfn >= low_pfn;
1099                                block_end_pfn = block_start_pfn,
1100                                block_start_pfn -= pageblock_nr_pages,
1101                                isolate_start_pfn = block_start_pfn) {
1102                /*
1103                 * This can iterate a massively long zone without finding any
1104                 * suitable migration targets, so periodically check if we need
1105                 * to schedule, or even abort async compaction.
1106                 */
1107                if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1108                                                && compact_should_abort(cc))
1109                        break;
1110
1111                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1112                                                                        zone);
1113                if (!page)
1114                        continue;
1115
1116                /* Check the block is suitable for migration */
1117                if (!suitable_migration_target(cc, page))
1118                        continue;
1119
1120                /* If isolation recently failed, do not retry */
1121                if (!isolation_suitable(cc, page))
1122                        continue;
1123
1124                /* Found a block suitable for isolating free pages from. */
1125                isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1126                                        freelist, false);
1127
1128                /*
1129                 * If we isolated enough freepages, or aborted due to lock
1130                 * contention, terminate.
1131                 */
1132                if ((cc->nr_freepages >= cc->nr_migratepages)
1133                                                        || cc->contended) {
1134                        if (isolate_start_pfn >= block_end_pfn) {
1135                                /*
1136                                 * Restart at previous pageblock if more
1137                                 * freepages can be isolated next time.
1138                                 */
1139                                isolate_start_pfn =
1140                                        block_start_pfn - pageblock_nr_pages;
1141                        }
1142                        break;
1143                } else if (isolate_start_pfn < block_end_pfn) {
1144                        /*
1145                         * If isolation failed early, do not continue
1146                         * needlessly.
1147                         */
1148                        break;
1149                }
1150        }
1151
1152        /* __isolate_free_page() does not map the pages */
1153        map_pages(freelist);
1154
1155        /*
1156         * Record where the free scanner will restart next time. Either we
1157         * broke from the loop and set isolate_start_pfn based on the last
1158         * call to isolate_freepages_block(), or we met the migration scanner
1159         * and the loop terminated due to isolate_start_pfn < low_pfn
1160         */
1161        cc->free_pfn = isolate_start_pfn;
1162}
1163
1164/*
1165 * This is a migrate-callback that "allocates" freepages by taking pages
1166 * from the isolated freelists in the block we are migrating to.
1167 */
1168static struct page *compaction_alloc(struct page *migratepage,
1169                                        unsigned long data)
1170{
1171        struct compact_control *cc = (struct compact_control *)data;
1172        struct page *freepage;
1173
1174        /*
1175         * Isolate free pages if necessary, and if we are not aborting due to
1176         * contention.
1177         */
1178        if (list_empty(&cc->freepages)) {
1179                if (!cc->contended)
1180                        isolate_freepages(cc);
1181
1182                if (list_empty(&cc->freepages))
1183                        return NULL;
1184        }
1185
1186        freepage = list_entry(cc->freepages.next, struct page, lru);
1187        list_del(&freepage->lru);
1188        cc->nr_freepages--;
1189
1190        return freepage;
1191}
1192
1193/*
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist.  All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200        struct compact_control *cc = (struct compact_control *)data;
1201
1202        list_add(&page->lru, &cc->freepages);
1203        cc->nr_freepages++;
1204}
1205
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208        ISOLATE_ABORT,          /* Abort compaction now */
1209        ISOLATE_NONE,           /* No pages isolated, continue scanning */
1210        ISOLATE_SUCCESS,        /* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
1218
1219/*
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225                                        struct compact_control *cc)
1226{
1227        unsigned long block_start_pfn;
1228        unsigned long block_end_pfn;
1229        unsigned long low_pfn;
1230        struct page *page;
1231        const isolate_mode_t isolate_mode =
1232                (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1233                (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1234
1235        /*
1236         * Start at where we last stopped, or beginning of the zone as
1237         * initialized by compact_zone()
1238         */
1239        low_pfn = cc->migrate_pfn;
1240        block_start_pfn = pageblock_start_pfn(low_pfn);
1241        if (block_start_pfn < zone->zone_start_pfn)
1242                block_start_pfn = zone->zone_start_pfn;
1243
1244        /* Only scan within a pageblock boundary */
1245        block_end_pfn = pageblock_end_pfn(low_pfn);
1246
1247        /*
1248         * Iterate over whole pageblocks until we find the first suitable.
1249         * Do not cross the free scanner.
1250         */
1251        for (; block_end_pfn <= cc->free_pfn;
1252                        low_pfn = block_end_pfn,
1253                        block_start_pfn = block_end_pfn,
1254                        block_end_pfn += pageblock_nr_pages) {
1255
1256                /*
1257                 * This can potentially iterate a massively long zone with
1258                 * many pageblocks unsuitable, so periodically check if we
1259                 * need to schedule, or even abort async compaction.
1260                 */
1261                if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262                                                && compact_should_abort(cc))
1263                        break;
1264
1265                page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266                                                                        zone);
1267                if (!page)
1268                        continue;
1269
1270                /* If isolation recently failed, do not retry */
1271                if (!isolation_suitable(cc, page))
1272                        continue;
1273
1274                /*
1275                 * For async compaction, also only scan in MOVABLE blocks.
1276                 * Async compaction is optimistic to see if the minimum amount
1277                 * of work satisfies the allocation.
1278                 */
1279                if (!suitable_migration_source(cc, page))
1280                        continue;
1281
1282                /* Perform the isolation */
1283                low_pfn = isolate_migratepages_block(cc, low_pfn,
1284                                                block_end_pfn, isolate_mode);
1285
1286                if (!low_pfn || cc->contended)
1287                        return ISOLATE_ABORT;
1288
1289                /*
1290                 * Either we isolated something and proceed with migration. Or
1291                 * we failed and compact_zone should decide if we should
1292                 * continue or not.
1293                 */
1294                break;
1295        }
1296
1297        /* Record where migration scanner will be restarted. */
1298        cc->migrate_pfn = low_pfn;
1299
1300        return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1301}
1302
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309        return order == -1;
1310}
1311
1312static enum compact_result __compact_finished(struct zone *zone,
1313                                                struct compact_control *cc)
1314{
1315        unsigned int order;
1316        const int migratetype = cc->migratetype;
1317
1318        if (cc->contended || fatal_signal_pending(current))
1319                return COMPACT_CONTENDED;
1320
1321        /* Compaction run completes if the migrate and free scanner meet */
1322        if (compact_scanners_met(cc)) {
1323                /* Let the next compaction start anew. */
1324                reset_cached_positions(zone);
1325
1326                /*
1327                 * Mark that the PG_migrate_skip information should be cleared
1328                 * by kswapd when it goes to sleep. kcompactd does not set the
1329                 * flag itself as the decision to be clear should be directly
1330                 * based on an allocation request.
1331                 */
1332                if (cc->direct_compaction)
1333                        zone->compact_blockskip_flush = true;
1334
1335                if (cc->whole_zone)
1336                        return COMPACT_COMPLETE;
1337                else
1338                        return COMPACT_PARTIAL_SKIPPED;
1339        }
1340
1341        if (is_via_compact_memory(cc->order))
1342                return COMPACT_CONTINUE;
1343
1344        if (cc->finishing_block) {
1345                /*
1346                 * We have finished the pageblock, but better check again that
1347                 * we really succeeded.
1348                 */
1349                if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350                        cc->finishing_block = false;
1351                else
1352                        return COMPACT_CONTINUE;
1353        }
1354
1355        /* Direct compactor: Is a suitable page free? */
1356        for (order = cc->order; order < MAX_ORDER; order++) {
1357                struct free_area *area = &zone->free_area[order];
1358                bool can_steal;
1359
1360                /* Job done if page is free of the right migratetype */
1361                if (!list_empty(&area->free_list[migratetype]))
1362                        return COMPACT_SUCCESS;
1363
1364#ifdef CONFIG_CMA
1365                /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366                if (migratetype == MIGRATE_MOVABLE &&
1367                        !list_empty(&area->free_list[MIGRATE_CMA]))
1368                        return COMPACT_SUCCESS;
1369#endif
1370                /*
1371                 * Job done if allocation would steal freepages from
1372                 * other migratetype buddy lists.
1373                 */
1374                if (find_suitable_fallback(area, order, migratetype,
1375                                                true, &can_steal) != -1) {
1376
1377                        /* movable pages are OK in any pageblock */
1378                        if (migratetype == MIGRATE_MOVABLE)
1379                                return COMPACT_SUCCESS;
1380
1381                        /*
1382                         * We are stealing for a non-movable allocation. Make
1383                         * sure we finish compacting the current pageblock
1384                         * first so it is as free as possible and we won't
1385                         * have to steal another one soon. This only applies
1386                         * to sync compaction, as async compaction operates
1387                         * on pageblocks of the same migratetype.
1388                         */
1389                        if (cc->mode == MIGRATE_ASYNC ||
1390                                        IS_ALIGNED(cc->migrate_pfn,
1391                                                        pageblock_nr_pages)) {
1392                                return COMPACT_SUCCESS;
1393                        }
1394
1395                        cc->finishing_block = true;
1396                        return COMPACT_CONTINUE;
1397                }
1398        }
1399
1400        return COMPACT_NO_SUITABLE_PAGE;
1401}
1402
1403static enum compact_result compact_finished(struct zone *zone,
1404                        struct compact_control *cc)
1405{
1406        int ret;
1407
1408        ret = __compact_finished(zone, cc);
1409        trace_mm_compaction_finished(zone, cc->order, ret);
1410        if (ret == COMPACT_NO_SUITABLE_PAGE)
1411                ret = COMPACT_CONTINUE;
1412
1413        return ret;
1414}
1415
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 *   COMPACT_SKIPPED  - If there are too few free pages for compaction
1420 *   COMPACT_SUCCESS  - If the allocation would succeed without compaction
1421 *   COMPACT_CONTINUE - If compaction should run now
1422 */
1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
1424                                        unsigned int alloc_flags,
1425                                        int classzone_idx,
1426                                        unsigned long wmark_target)
1427{
1428        unsigned long watermark;
1429
1430        if (is_via_compact_memory(order))
1431                return COMPACT_CONTINUE;
1432
1433        watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1434        /*
1435         * If watermarks for high-order allocation are already met, there
1436         * should be no need for compaction at all.
1437         */
1438        if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439                                                                alloc_flags))
1440                return COMPACT_SUCCESS;
1441
1442        /*
1443         * Watermarks for order-0 must be met for compaction to be able to
1444         * isolate free pages for migration targets. This means that the
1445         * watermark and alloc_flags have to match, or be more pessimistic than
1446         * the check in __isolate_free_page(). We don't use the direct
1447         * compactor's alloc_flags, as they are not relevant for freepage
1448         * isolation. We however do use the direct compactor's classzone_idx to
1449         * skip over zones where lowmem reserves would prevent allocation even
1450         * if compaction succeeds.
1451         * For costly orders, we require low watermark instead of min for
1452         * compaction to proceed to increase its chances.
1453         * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454         * suitable migration targets
1455         */
1456        watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457                                low_wmark_pages(zone) : min_wmark_pages(zone);
1458        watermark += compact_gap(order);
1459        if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
1460                                                ALLOC_CMA, wmark_target))
1461                return COMPACT_SKIPPED;
1462
1463        return COMPACT_CONTINUE;
1464}
1465
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467                                        unsigned int alloc_flags,
1468                                        int classzone_idx)
1469{
1470        enum compact_result ret;
1471        int fragindex;
1472
1473        ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474                                    zone_page_state(zone, NR_FREE_PAGES));
1475        /*
1476         * fragmentation index determines if allocation failures are due to
1477         * low memory or external fragmentation
1478         *
1479         * index of -1000 would imply allocations might succeed depending on
1480         * watermarks, but we already failed the high-order watermark check
1481         * index towards 0 implies failure is due to lack of memory
1482         * index towards 1000 implies failure is due to fragmentation
1483         *
1484         * Only compact if a failure would be due to fragmentation. Also
1485         * ignore fragindex for non-costly orders where the alternative to
1486         * a successful reclaim/compaction is OOM. Fragindex and the
1487         * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488         * excessive compaction for costly orders, but it should not be at the
1489         * expense of system stability.
1490         */
1491        if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
1492                fragindex = fragmentation_index(zone, order);
1493                if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494                        ret = COMPACT_NOT_SUITABLE_ZONE;
1495        }
1496
1497        trace_mm_compaction_suitable(zone, order, ret);
1498        if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499                ret = COMPACT_SKIPPED;
1500
1501        return ret;
1502}
1503
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505                int alloc_flags)
1506{
1507        struct zone *zone;
1508        struct zoneref *z;
1509
1510        /*
1511         * Make sure at least one zone would pass __compaction_suitable if we continue
1512         * retrying the reclaim.
1513         */
1514        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515                                        ac->nodemask) {
1516                unsigned long available;
1517                enum compact_result compact_result;
1518
1519                /*
1520                 * Do not consider all the reclaimable memory because we do not
1521                 * want to trash just for a single high order allocation which
1522                 * is even not guaranteed to appear even if __compaction_suitable
1523                 * is happy about the watermark check.
1524                 */
1525                available = zone_reclaimable_pages(zone) / order;
1526                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527                compact_result = __compaction_suitable(zone, order, alloc_flags,
1528                                ac_classzone_idx(ac), available);
1529                if (compact_result != COMPACT_SKIPPED)
1530                        return true;
1531        }
1532
1533        return false;
1534}
1535
1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
1537{
1538        enum compact_result ret;
1539        unsigned long start_pfn = zone->zone_start_pfn;
1540        unsigned long end_pfn = zone_end_pfn(zone);
1541        const bool sync = cc->mode != MIGRATE_ASYNC;
1542
1543        cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1544        ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545                                                        cc->classzone_idx);
1546        /* Compaction is likely to fail */
1547        if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
1548                return ret;
1549
1550        /* huh, compaction_suitable is returning something unexpected */
1551        VM_BUG_ON(ret != COMPACT_CONTINUE);
1552
1553        /*
1554         * Clear pageblock skip if there were failures recently and compaction
1555         * is about to be retried after being deferred.
1556         */
1557        if (compaction_restarting(zone, cc->order))
1558                __reset_isolation_suitable(zone);
1559
1560        /*
1561         * Setup to move all movable pages to the end of the zone. Used cached
1562         * information on where the scanners should start (unless we explicitly
1563         * want to compact the whole zone), but check that it is initialised
1564         * by ensuring the values are within zone boundaries.
1565         */
1566        if (cc->whole_zone) {
1567                cc->migrate_pfn = start_pfn;
1568                cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569        } else {
1570                cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571                cc->free_pfn = zone->compact_cached_free_pfn;
1572                if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573                        cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574                        zone->compact_cached_free_pfn = cc->free_pfn;
1575                }
1576                if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577                        cc->migrate_pfn = start_pfn;
1578                        zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579                        zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580                }
1581
1582                if (cc->migrate_pfn == start_pfn)
1583                        cc->whole_zone = true;
1584        }
1585
1586        cc->last_migrated_pfn = 0;
1587
1588        trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589                                cc->free_pfn, end_pfn, sync);
1590
1591        migrate_prep_local();
1592
1593        while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1594                int err;
1595
1596                switch (isolate_migratepages(zone, cc)) {
1597                case ISOLATE_ABORT:
1598                        ret = COMPACT_CONTENDED;
1599                        putback_movable_pages(&cc->migratepages);
1600                        cc->nr_migratepages = 0;
1601                        goto out;
1602                case ISOLATE_NONE:
1603                        /*
1604                         * We haven't isolated and migrated anything, but
1605                         * there might still be unflushed migrations from
1606                         * previous cc->order aligned block.
1607                         */
1608                        goto check_drain;
1609                case ISOLATE_SUCCESS:
1610                        ;
1611                }
1612
1613                err = migrate_pages(&cc->migratepages, compaction_alloc,
1614                                compaction_free, (unsigned long)cc, cc->mode,
1615                                MR_COMPACTION);
1616
1617                trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618                                                        &cc->migratepages);
1619
1620                /* All pages were either migrated or will be released */
1621                cc->nr_migratepages = 0;
1622                if (err) {
1623                        putback_movable_pages(&cc->migratepages);
1624                        /*
1625                         * migrate_pages() may return -ENOMEM when scanners meet
1626                         * and we want compact_finished() to detect it
1627                         */
1628                        if (err == -ENOMEM && !compact_scanners_met(cc)) {
1629                                ret = COMPACT_CONTENDED;
1630                                goto out;
1631                        }
1632                        /*
1633                         * We failed to migrate at least one page in the current
1634                         * order-aligned block, so skip the rest of it.
1635                         */
1636                        if (cc->direct_compaction &&
1637                                                (cc->mode == MIGRATE_ASYNC)) {
1638                                cc->migrate_pfn = block_end_pfn(
1639                                                cc->migrate_pfn - 1, cc->order);
1640                                /* Draining pcplists is useless in this case */
1641                                cc->last_migrated_pfn = 0;
1642
1643                        }
1644                }
1645
1646check_drain:
1647                /*
1648                 * Has the migration scanner moved away from the previous
1649                 * cc->order aligned block where we migrated from? If yes,
1650                 * flush the pages that were freed, so that they can merge and
1651                 * compact_finished() can detect immediately if allocation
1652                 * would succeed.
1653                 */
1654                if (cc->order > 0 && cc->last_migrated_pfn) {
1655                        int cpu;
1656                        unsigned long current_block_start =
1657                                block_start_pfn(cc->migrate_pfn, cc->order);
1658
1659                        if (cc->last_migrated_pfn < current_block_start) {
1660                                cpu = get_cpu();
1661                                lru_add_drain_cpu(cpu);
1662                                drain_local_pages(zone);
1663                                put_cpu();
1664                                /* No more flushing until we migrate again */
1665                                cc->last_migrated_pfn = 0;
1666                        }
1667                }
1668
1669        }
1670
1671out:
1672        /*
1673         * Release free pages and update where the free scanner should restart,
1674         * so we don't leave any returned pages behind in the next attempt.
1675         */
1676        if (cc->nr_freepages > 0) {
1677                unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679                cc->nr_freepages = 0;
1680                VM_BUG_ON(free_pfn == 0);
1681                /* The cached pfn is always the first in a pageblock */
1682                free_pfn = pageblock_start_pfn(free_pfn);
1683                /*
1684                 * Only go back, not forward. The cached pfn might have been
1685                 * already reset to zone end in compact_finished()
1686                 */
1687                if (free_pfn > zone->compact_cached_free_pfn)
1688                        zone->compact_cached_free_pfn = free_pfn;
1689        }
1690
1691        count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692        count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
1694        trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695                                cc->free_pfn, end_pfn, sync, ret);
1696
1697        return ret;
1698}
1699
1700static enum compact_result compact_zone_order(struct zone *zone, int order,
1701                gfp_t gfp_mask, enum compact_priority prio,
1702                unsigned int alloc_flags, int classzone_idx)
1703{
1704        enum compact_result ret;
1705        struct compact_control cc = {
1706                .nr_freepages = 0,
1707                .nr_migratepages = 0,
1708                .total_migrate_scanned = 0,
1709                .total_free_scanned = 0,
1710                .order = order,
1711                .gfp_mask = gfp_mask,
1712                .zone = zone,
1713                .mode = (prio == COMPACT_PRIO_ASYNC) ?
1714                                        MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
1715                .alloc_flags = alloc_flags,
1716                .classzone_idx = classzone_idx,
1717                .direct_compaction = true,
1718                .whole_zone = (prio == MIN_COMPACT_PRIORITY),
1719                .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720                .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
1721        };
1722        INIT_LIST_HEAD(&cc.freepages);
1723        INIT_LIST_HEAD(&cc.migratepages);
1724
1725        ret = compact_zone(zone, &cc);
1726
1727        VM_BUG_ON(!list_empty(&cc.freepages));
1728        VM_BUG_ON(!list_empty(&cc.migratepages));
1729
1730        return ret;
1731}
1732
1733int sysctl_extfrag_threshold = 500;
1734
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1737 * @gfp_mask: The GFP mask of the current allocation
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
1741 * @prio: Determines how hard direct compaction should try to succeed
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1746                unsigned int alloc_flags, const struct alloc_context *ac,
1747                enum compact_priority prio)
1748{
1749        int may_perform_io = gfp_mask & __GFP_IO;
1750        struct zoneref *z;
1751        struct zone *zone;
1752        enum compact_result rc = COMPACT_SKIPPED;
1753
1754        /*
1755         * Check if the GFP flags allow compaction - GFP_NOIO is really
1756         * tricky context because the migration might require IO
1757         */
1758        if (!may_perform_io)
1759                return COMPACT_SKIPPED;
1760
1761        trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
1762
1763        /* Compact each zone in the list */
1764        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765                                                                ac->nodemask) {
1766                enum compact_result status;
1767
1768                if (prio > MIN_COMPACT_PRIORITY
1769                                        && compaction_deferred(zone, order)) {
1770                        rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
1771                        continue;
1772                }
1773
1774                status = compact_zone_order(zone, order, gfp_mask, prio,
1775                                        alloc_flags, ac_classzone_idx(ac));
1776                rc = max(status, rc);
1777
1778                /* The allocation should succeed, stop compacting */
1779                if (status == COMPACT_SUCCESS) {
1780                        /*
1781                         * We think the allocation will succeed in this zone,
1782                         * but it is not certain, hence the false. The caller
1783                         * will repeat this with true if allocation indeed
1784                         * succeeds in this zone.
1785                         */
1786                        compaction_defer_reset(zone, order, false);
1787
1788                        break;
1789                }
1790
1791                if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
1792                                        status == COMPACT_PARTIAL_SKIPPED))
1793                        /*
1794                         * We think that allocation won't succeed in this zone
1795                         * so we defer compaction there. If it ends up
1796                         * succeeding after all, it will be reset.
1797                         */
1798                        defer_compaction(zone, order);
1799
1800                /*
1801                 * We might have stopped compacting due to need_resched() in
1802                 * async compaction, or due to a fatal signal detected. In that
1803                 * case do not try further zones
1804                 */
1805                if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806                                        || fatal_signal_pending(current))
1807                        break;
1808        }
1809
1810        return rc;
1811}
1812
1813
1814/* Compact all zones within a node */
1815static void compact_node(int nid)
1816{
1817        pg_data_t *pgdat = NODE_DATA(nid);
1818        int zoneid;
1819        struct zone *zone;
1820        struct compact_control cc = {
1821                .order = -1,
1822                .total_migrate_scanned = 0,
1823                .total_free_scanned = 0,
1824                .mode = MIGRATE_SYNC,
1825                .ignore_skip_hint = true,
1826                .whole_zone = true,
1827                .gfp_mask = GFP_KERNEL,
1828        };
1829
1830
1831        for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1832
1833                zone = &pgdat->node_zones[zoneid];
1834                if (!populated_zone(zone))
1835                        continue;
1836
1837                cc.nr_freepages = 0;
1838                cc.nr_migratepages = 0;
1839                cc.zone = zone;
1840                INIT_LIST_HEAD(&cc.freepages);
1841                INIT_LIST_HEAD(&cc.migratepages);
1842
1843                compact_zone(zone, &cc);
1844
1845                VM_BUG_ON(!list_empty(&cc.freepages));
1846                VM_BUG_ON(!list_empty(&cc.migratepages));
1847        }
1848}
1849
1850/* Compact all nodes in the system */
1851static void compact_nodes(void)
1852{
1853        int nid;
1854
1855        /* Flush pending updates to the LRU lists */
1856        lru_add_drain_all();
1857
1858        for_each_online_node(nid)
1859                compact_node(nid);
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
1864
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870                        void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872        if (write)
1873                compact_nodes();
1874
1875        return 0;
1876}
1877
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879                        void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881        proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883        return 0;
1884}
1885
1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1887static ssize_t sysfs_compact_node(struct device *dev,
1888                        struct device_attribute *attr,
1889                        const char *buf, size_t count)
1890{
1891        int nid = dev->id;
1892
1893        if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894                /* Flush pending updates to the LRU lists */
1895                lru_add_drain_all();
1896
1897                compact_node(nid);
1898        }
1899
1900        return count;
1901}
1902static DEVICE_ATTR(compact, 0200, NULL, sysfs_compact_node);
1903
1904int compaction_register_node(struct node *node)
1905{
1906        return device_create_file(&node->dev, &dev_attr_compact);
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
1911        return device_remove_file(&node->dev, &dev_attr_compact);
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
1914
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
1917        return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922        int zoneid;
1923        struct zone *zone;
1924        enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
1926        for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
1927                zone = &pgdat->node_zones[zoneid];
1928
1929                if (!populated_zone(zone))
1930                        continue;
1931
1932                if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933                                        classzone_idx) == COMPACT_CONTINUE)
1934                        return true;
1935        }
1936
1937        return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942        /*
1943         * With no special task, compact all zones so that a page of requested
1944         * order is allocatable.
1945         */
1946        int zoneid;
1947        struct zone *zone;
1948        struct compact_control cc = {
1949                .order = pgdat->kcompactd_max_order,
1950                .total_migrate_scanned = 0,
1951                .total_free_scanned = 0,
1952                .classzone_idx = pgdat->kcompactd_classzone_idx,
1953                .mode = MIGRATE_SYNC_LIGHT,
1954                .ignore_skip_hint = false,
1955                .gfp_mask = GFP_KERNEL,
1956        };
1957        trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958                                                        cc.classzone_idx);
1959        count_compact_event(KCOMPACTD_WAKE);
1960
1961        for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
1962                int status;
1963
1964                zone = &pgdat->node_zones[zoneid];
1965                if (!populated_zone(zone))
1966                        continue;
1967
1968                if (compaction_deferred(zone, cc.order))
1969                        continue;
1970
1971                if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972                                                        COMPACT_CONTINUE)
1973                        continue;
1974
1975                cc.nr_freepages = 0;
1976                cc.nr_migratepages = 0;
1977                cc.total_migrate_scanned = 0;
1978                cc.total_free_scanned = 0;
1979                cc.zone = zone;
1980                INIT_LIST_HEAD(&cc.freepages);
1981                INIT_LIST_HEAD(&cc.migratepages);
1982
1983                if (kthread_should_stop())
1984                        return;
1985                status = compact_zone(zone, &cc);
1986
1987                if (status == COMPACT_SUCCESS) {
1988                        compaction_defer_reset(zone, cc.order, false);
1989                } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
1990                        /*
1991                         * Buddy pages may become stranded on pcps that could
1992                         * otherwise coalesce on the zone's free area for
1993                         * order >= cc.order.  This is ratelimited by the
1994                         * upcoming deferral.
1995                         */
1996                        drain_all_pages(zone);
1997
1998                        /*
1999                         * We use sync migration mode here, so we defer like
2000                         * sync direct compaction does.
2001                         */
2002                        defer_compaction(zone, cc.order);
2003                }
2004
2005                count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
2006                                     cc.total_migrate_scanned);
2007                count_compact_events(KCOMPACTD_FREE_SCANNED,
2008                                     cc.total_free_scanned);
2009
2010                VM_BUG_ON(!list_empty(&cc.freepages));
2011                VM_BUG_ON(!list_empty(&cc.migratepages));
2012        }
2013
2014        /*
2015         * Regardless of success, we are done until woken up next. But remember
2016         * the requested order/classzone_idx in case it was higher/tighter than
2017         * our current ones
2018         */
2019        if (pgdat->kcompactd_max_order <= cc.order)
2020                pgdat->kcompactd_max_order = 0;
2021        if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2022                pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2023}
2024
2025void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2026{
2027        if (!order)
2028                return;
2029
2030        if (pgdat->kcompactd_max_order < order)
2031                pgdat->kcompactd_max_order = order;
2032
2033        if (pgdat->kcompactd_classzone_idx > classzone_idx)
2034                pgdat->kcompactd_classzone_idx = classzone_idx;
2035
2036        /*
2037         * Pairs with implicit barrier in wait_event_freezable()
2038         * such that wakeups are not missed.
2039         */
2040        if (!wq_has_sleeper(&pgdat->kcompactd_wait))
2041                return;
2042
2043        if (!kcompactd_node_suitable(pgdat))
2044                return;
2045
2046        trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2047                                                        classzone_idx);
2048        wake_up_interruptible(&pgdat->kcompactd_wait);
2049}
2050
2051/*
2052 * The background compaction daemon, started as a kernel thread
2053 * from the init process.
2054 */
2055static int kcompactd(void *p)
2056{
2057        pg_data_t *pgdat = (pg_data_t*)p;
2058        struct task_struct *tsk = current;
2059
2060        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2061
2062        if (!cpumask_empty(cpumask))
2063                set_cpus_allowed_ptr(tsk, cpumask);
2064
2065        set_freezable();
2066
2067        pgdat->kcompactd_max_order = 0;
2068        pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2069
2070        while (!kthread_should_stop()) {
2071                trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2072                wait_event_freezable(pgdat->kcompactd_wait,
2073                                kcompactd_work_requested(pgdat));
2074
2075                kcompactd_do_work(pgdat);
2076        }
2077
2078        return 0;
2079}
2080
2081/*
2082 * This kcompactd start function will be called by init and node-hot-add.
2083 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2084 */
2085int kcompactd_run(int nid)
2086{
2087        pg_data_t *pgdat = NODE_DATA(nid);
2088        int ret = 0;
2089
2090        if (pgdat->kcompactd)
2091                return 0;
2092
2093        pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2094        if (IS_ERR(pgdat->kcompactd)) {
2095                pr_err("Failed to start kcompactd on node %d\n", nid);
2096                ret = PTR_ERR(pgdat->kcompactd);
2097                pgdat->kcompactd = NULL;
2098        }
2099        return ret;
2100}
2101
2102/*
2103 * Called by memory hotplug when all memory in a node is offlined. Caller must
2104 * hold mem_hotplug_begin/end().
2105 */
2106void kcompactd_stop(int nid)
2107{
2108        struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2109
2110        if (kcompactd) {
2111                kthread_stop(kcompactd);
2112                NODE_DATA(nid)->kcompactd = NULL;
2113        }
2114}
2115
2116/*
2117 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2118 * not required for correctness. So if the last cpu in a node goes
2119 * away, we get changed to run anywhere: as the first one comes back,
2120 * restore their cpu bindings.
2121 */
2122static int kcompactd_cpu_online(unsigned int cpu)
2123{
2124        int nid;
2125
2126        for_each_node_state(nid, N_MEMORY) {
2127                pg_data_t *pgdat = NODE_DATA(nid);
2128                const struct cpumask *mask;
2129
2130                mask = cpumask_of_node(pgdat->node_id);
2131
2132                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2133                        /* One of our CPUs online: restore mask */
2134                        set_cpus_allowed_ptr(pgdat->kcompactd, mask);
2135        }
2136        return 0;
2137}
2138
2139static int __init kcompactd_init(void)
2140{
2141        int nid;
2142        int ret;
2143
2144        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2145                                        "mm/compaction:online",
2146                                        kcompactd_cpu_online, NULL);
2147        if (ret < 0) {
2148                pr_err("kcompactd: failed to register hotplug callbacks.\n");
2149                return ret;
2150        }
2151
2152        for_each_node_state(nid, N_MEMORY)
2153                kcompactd_run(nid);
2154        return 0;
2155}
2156subsys_initcall(kcompactd_init)
2157
2158#endif /* CONFIG_COMPACTION */
2159