linux/mm/filemap.c
<<
>>
Prefs
   1/*
   2 *      linux/mm/filemap.c
   3 *
   4 * Copyright (C) 1994-1999  Linus Torvalds
   5 */
   6
   7/*
   8 * This file handles the generic file mmap semantics used by
   9 * most "normal" filesystems (but you don't /have/ to use this:
  10 * the NFS filesystem used to do this differently, for example)
  11 */
  12#include <linux/export.h>
  13#include <linux/compiler.h>
  14#include <linux/dax.h>
  15#include <linux/fs.h>
  16#include <linux/sched/signal.h>
  17#include <linux/uaccess.h>
  18#include <linux/capability.h>
  19#include <linux/kernel_stat.h>
  20#include <linux/gfp.h>
  21#include <linux/mm.h>
  22#include <linux/swap.h>
  23#include <linux/mman.h>
  24#include <linux/pagemap.h>
  25#include <linux/file.h>
  26#include <linux/uio.h>
  27#include <linux/hash.h>
  28#include <linux/writeback.h>
  29#include <linux/backing-dev.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/security.h>
  33#include <linux/cpuset.h>
  34#include <linux/hugetlb.h>
  35#include <linux/memcontrol.h>
  36#include <linux/cleancache.h>
  37#include <linux/shmem_fs.h>
  38#include <linux/rmap.h>
  39#include "internal.h"
  40
  41#define CREATE_TRACE_POINTS
  42#include <trace/events/filemap.h>
  43
  44/*
  45 * FIXME: remove all knowledge of the buffer layer from the core VM
  46 */
  47#include <linux/buffer_head.h> /* for try_to_free_buffers */
  48
  49#include <asm/mman.h>
  50
  51/*
  52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
  53 * though.
  54 *
  55 * Shared mappings now work. 15.8.1995  Bruno.
  56 *
  57 * finished 'unifying' the page and buffer cache and SMP-threaded the
  58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
  59 *
  60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
  61 */
  62
  63/*
  64 * Lock ordering:
  65 *
  66 *  ->i_mmap_rwsem              (truncate_pagecache)
  67 *    ->private_lock            (__free_pte->__set_page_dirty_buffers)
  68 *      ->swap_lock             (exclusive_swap_page, others)
  69 *        ->i_pages lock
  70 *
  71 *  ->i_mutex
  72 *    ->i_mmap_rwsem            (truncate->unmap_mapping_range)
  73 *
  74 *  ->mmap_sem
  75 *    ->i_mmap_rwsem
  76 *      ->page_table_lock or pte_lock   (various, mainly in memory.c)
  77 *        ->i_pages lock        (arch-dependent flush_dcache_mmap_lock)
  78 *
  79 *  ->mmap_sem
  80 *    ->lock_page               (access_process_vm)
  81 *
  82 *  ->i_mutex                   (generic_perform_write)
  83 *    ->mmap_sem                (fault_in_pages_readable->do_page_fault)
  84 *
  85 *  bdi->wb.list_lock
  86 *    sb_lock                   (fs/fs-writeback.c)
  87 *    ->i_pages lock            (__sync_single_inode)
  88 *
  89 *  ->i_mmap_rwsem
  90 *    ->anon_vma.lock           (vma_adjust)
  91 *
  92 *  ->anon_vma.lock
  93 *    ->page_table_lock or pte_lock     (anon_vma_prepare and various)
  94 *
  95 *  ->page_table_lock or pte_lock
  96 *    ->swap_lock               (try_to_unmap_one)
  97 *    ->private_lock            (try_to_unmap_one)
  98 *    ->i_pages lock            (try_to_unmap_one)
  99 *    ->zone_lru_lock(zone)     (follow_page->mark_page_accessed)
 100 *    ->zone_lru_lock(zone)     (check_pte_range->isolate_lru_page)
 101 *    ->private_lock            (page_remove_rmap->set_page_dirty)
 102 *    ->i_pages lock            (page_remove_rmap->set_page_dirty)
 103 *    bdi.wb->list_lock         (page_remove_rmap->set_page_dirty)
 104 *    ->inode->i_lock           (page_remove_rmap->set_page_dirty)
 105 *    ->memcg->move_lock        (page_remove_rmap->lock_page_memcg)
 106 *    bdi.wb->list_lock         (zap_pte_range->set_page_dirty)
 107 *    ->inode->i_lock           (zap_pte_range->set_page_dirty)
 108 *    ->private_lock            (zap_pte_range->__set_page_dirty_buffers)
 109 *
 110 * ->i_mmap_rwsem
 111 *   ->tasklist_lock            (memory_failure, collect_procs_ao)
 112 */
 113
 114static int page_cache_tree_insert(struct address_space *mapping,
 115                                  struct page *page, void **shadowp)
 116{
 117        struct radix_tree_node *node;
 118        void **slot;
 119        int error;
 120
 121        error = __radix_tree_create(&mapping->i_pages, page->index, 0,
 122                                    &node, &slot);
 123        if (error)
 124                return error;
 125        if (*slot) {
 126                void *p;
 127
 128                p = radix_tree_deref_slot_protected(slot,
 129                                                    &mapping->i_pages.xa_lock);
 130                if (!radix_tree_exceptional_entry(p))
 131                        return -EEXIST;
 132
 133                mapping->nrexceptional--;
 134                if (shadowp)
 135                        *shadowp = p;
 136        }
 137        __radix_tree_replace(&mapping->i_pages, node, slot, page,
 138                             workingset_lookup_update(mapping));
 139        mapping->nrpages++;
 140        return 0;
 141}
 142
 143static void page_cache_tree_delete(struct address_space *mapping,
 144                                   struct page *page, void *shadow)
 145{
 146        int i, nr;
 147
 148        /* hugetlb pages are represented by one entry in the radix tree */
 149        nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
 150
 151        VM_BUG_ON_PAGE(!PageLocked(page), page);
 152        VM_BUG_ON_PAGE(PageTail(page), page);
 153        VM_BUG_ON_PAGE(nr != 1 && shadow, page);
 154
 155        for (i = 0; i < nr; i++) {
 156                struct radix_tree_node *node;
 157                void **slot;
 158
 159                __radix_tree_lookup(&mapping->i_pages, page->index + i,
 160                                    &node, &slot);
 161
 162                VM_BUG_ON_PAGE(!node && nr != 1, page);
 163
 164                radix_tree_clear_tags(&mapping->i_pages, node, slot);
 165                __radix_tree_replace(&mapping->i_pages, node, slot, shadow,
 166                                workingset_lookup_update(mapping));
 167        }
 168
 169        page->mapping = NULL;
 170        /* Leave page->index set: truncation lookup relies upon it */
 171
 172        if (shadow) {
 173                mapping->nrexceptional += nr;
 174                /*
 175                 * Make sure the nrexceptional update is committed before
 176                 * the nrpages update so that final truncate racing
 177                 * with reclaim does not see both counters 0 at the
 178                 * same time and miss a shadow entry.
 179                 */
 180                smp_wmb();
 181        }
 182        mapping->nrpages -= nr;
 183}
 184
 185static void unaccount_page_cache_page(struct address_space *mapping,
 186                                      struct page *page)
 187{
 188        int nr;
 189
 190        /*
 191         * if we're uptodate, flush out into the cleancache, otherwise
 192         * invalidate any existing cleancache entries.  We can't leave
 193         * stale data around in the cleancache once our page is gone
 194         */
 195        if (PageUptodate(page) && PageMappedToDisk(page))
 196                cleancache_put_page(page);
 197        else
 198                cleancache_invalidate_page(mapping, page);
 199
 200        VM_BUG_ON_PAGE(PageTail(page), page);
 201        VM_BUG_ON_PAGE(page_mapped(page), page);
 202        if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
 203                int mapcount;
 204
 205                pr_alert("BUG: Bad page cache in process %s  pfn:%05lx\n",
 206                         current->comm, page_to_pfn(page));
 207                dump_page(page, "still mapped when deleted");
 208                dump_stack();
 209                add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 210
 211                mapcount = page_mapcount(page);
 212                if (mapping_exiting(mapping) &&
 213                    page_count(page) >= mapcount + 2) {
 214                        /*
 215                         * All vmas have already been torn down, so it's
 216                         * a good bet that actually the page is unmapped,
 217                         * and we'd prefer not to leak it: if we're wrong,
 218                         * some other bad page check should catch it later.
 219                         */
 220                        page_mapcount_reset(page);
 221                        page_ref_sub(page, mapcount);
 222                }
 223        }
 224
 225        /* hugetlb pages do not participate in page cache accounting. */
 226        if (PageHuge(page))
 227                return;
 228
 229        nr = hpage_nr_pages(page);
 230
 231        __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
 232        if (PageSwapBacked(page)) {
 233                __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
 234                if (PageTransHuge(page))
 235                        __dec_node_page_state(page, NR_SHMEM_THPS);
 236        } else {
 237                VM_BUG_ON_PAGE(PageTransHuge(page), page);
 238        }
 239
 240        /*
 241         * At this point page must be either written or cleaned by
 242         * truncate.  Dirty page here signals a bug and loss of
 243         * unwritten data.
 244         *
 245         * This fixes dirty accounting after removing the page entirely
 246         * but leaves PageDirty set: it has no effect for truncated
 247         * page and anyway will be cleared before returning page into
 248         * buddy allocator.
 249         */
 250        if (WARN_ON_ONCE(PageDirty(page)))
 251                account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
 252}
 253
 254/*
 255 * Delete a page from the page cache and free it. Caller has to make
 256 * sure the page is locked and that nobody else uses it - or that usage
 257 * is safe.  The caller must hold the i_pages lock.
 258 */
 259void __delete_from_page_cache(struct page *page, void *shadow)
 260{
 261        struct address_space *mapping = page->mapping;
 262
 263        trace_mm_filemap_delete_from_page_cache(page);
 264
 265        unaccount_page_cache_page(mapping, page);
 266        page_cache_tree_delete(mapping, page, shadow);
 267}
 268
 269static void page_cache_free_page(struct address_space *mapping,
 270                                struct page *page)
 271{
 272        void (*freepage)(struct page *);
 273
 274        freepage = mapping->a_ops->freepage;
 275        if (freepage)
 276                freepage(page);
 277
 278        if (PageTransHuge(page) && !PageHuge(page)) {
 279                page_ref_sub(page, HPAGE_PMD_NR);
 280                VM_BUG_ON_PAGE(page_count(page) <= 0, page);
 281        } else {
 282                put_page(page);
 283        }
 284}
 285
 286/**
 287 * delete_from_page_cache - delete page from page cache
 288 * @page: the page which the kernel is trying to remove from page cache
 289 *
 290 * This must be called only on pages that have been verified to be in the page
 291 * cache and locked.  It will never put the page into the free list, the caller
 292 * has a reference on the page.
 293 */
 294void delete_from_page_cache(struct page *page)
 295{
 296        struct address_space *mapping = page_mapping(page);
 297        unsigned long flags;
 298
 299        BUG_ON(!PageLocked(page));
 300        xa_lock_irqsave(&mapping->i_pages, flags);
 301        __delete_from_page_cache(page, NULL);
 302        xa_unlock_irqrestore(&mapping->i_pages, flags);
 303
 304        page_cache_free_page(mapping, page);
 305}
 306EXPORT_SYMBOL(delete_from_page_cache);
 307
 308/*
 309 * page_cache_tree_delete_batch - delete several pages from page cache
 310 * @mapping: the mapping to which pages belong
 311 * @pvec: pagevec with pages to delete
 312 *
 313 * The function walks over mapping->i_pages and removes pages passed in @pvec
 314 * from the mapping. The function expects @pvec to be sorted by page index.
 315 * It tolerates holes in @pvec (mapping entries at those indices are not
 316 * modified). The function expects only THP head pages to be present in the
 317 * @pvec and takes care to delete all corresponding tail pages from the
 318 * mapping as well.
 319 *
 320 * The function expects the i_pages lock to be held.
 321 */
 322static void
 323page_cache_tree_delete_batch(struct address_space *mapping,
 324                             struct pagevec *pvec)
 325{
 326        struct radix_tree_iter iter;
 327        void **slot;
 328        int total_pages = 0;
 329        int i = 0, tail_pages = 0;
 330        struct page *page;
 331        pgoff_t start;
 332
 333        start = pvec->pages[0]->index;
 334        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 335                if (i >= pagevec_count(pvec) && !tail_pages)
 336                        break;
 337                page = radix_tree_deref_slot_protected(slot,
 338                                                       &mapping->i_pages.xa_lock);
 339                if (radix_tree_exceptional_entry(page))
 340                        continue;
 341                if (!tail_pages) {
 342                        /*
 343                         * Some page got inserted in our range? Skip it. We
 344                         * have our pages locked so they are protected from
 345                         * being removed.
 346                         */
 347                        if (page != pvec->pages[i])
 348                                continue;
 349                        WARN_ON_ONCE(!PageLocked(page));
 350                        if (PageTransHuge(page) && !PageHuge(page))
 351                                tail_pages = HPAGE_PMD_NR - 1;
 352                        page->mapping = NULL;
 353                        /*
 354                         * Leave page->index set: truncation lookup relies
 355                         * upon it
 356                         */
 357                        i++;
 358                } else {
 359                        tail_pages--;
 360                }
 361                radix_tree_clear_tags(&mapping->i_pages, iter.node, slot);
 362                __radix_tree_replace(&mapping->i_pages, iter.node, slot, NULL,
 363                                workingset_lookup_update(mapping));
 364                total_pages++;
 365        }
 366        mapping->nrpages -= total_pages;
 367}
 368
 369void delete_from_page_cache_batch(struct address_space *mapping,
 370                                  struct pagevec *pvec)
 371{
 372        int i;
 373        unsigned long flags;
 374
 375        if (!pagevec_count(pvec))
 376                return;
 377
 378        xa_lock_irqsave(&mapping->i_pages, flags);
 379        for (i = 0; i < pagevec_count(pvec); i++) {
 380                trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
 381
 382                unaccount_page_cache_page(mapping, pvec->pages[i]);
 383        }
 384        page_cache_tree_delete_batch(mapping, pvec);
 385        xa_unlock_irqrestore(&mapping->i_pages, flags);
 386
 387        for (i = 0; i < pagevec_count(pvec); i++)
 388                page_cache_free_page(mapping, pvec->pages[i]);
 389}
 390
 391int filemap_check_errors(struct address_space *mapping)
 392{
 393        int ret = 0;
 394        /* Check for outstanding write errors */
 395        if (test_bit(AS_ENOSPC, &mapping->flags) &&
 396            test_and_clear_bit(AS_ENOSPC, &mapping->flags))
 397                ret = -ENOSPC;
 398        if (test_bit(AS_EIO, &mapping->flags) &&
 399            test_and_clear_bit(AS_EIO, &mapping->flags))
 400                ret = -EIO;
 401        return ret;
 402}
 403EXPORT_SYMBOL(filemap_check_errors);
 404
 405static int filemap_check_and_keep_errors(struct address_space *mapping)
 406{
 407        /* Check for outstanding write errors */
 408        if (test_bit(AS_EIO, &mapping->flags))
 409                return -EIO;
 410        if (test_bit(AS_ENOSPC, &mapping->flags))
 411                return -ENOSPC;
 412        return 0;
 413}
 414
 415/**
 416 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
 417 * @mapping:    address space structure to write
 418 * @start:      offset in bytes where the range starts
 419 * @end:        offset in bytes where the range ends (inclusive)
 420 * @sync_mode:  enable synchronous operation
 421 *
 422 * Start writeback against all of a mapping's dirty pages that lie
 423 * within the byte offsets <start, end> inclusive.
 424 *
 425 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
 426 * opposed to a regular memory cleansing writeback.  The difference between
 427 * these two operations is that if a dirty page/buffer is encountered, it must
 428 * be waited upon, and not just skipped over.
 429 */
 430int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 431                                loff_t end, int sync_mode)
 432{
 433        int ret;
 434        struct writeback_control wbc = {
 435                .sync_mode = sync_mode,
 436                .nr_to_write = LONG_MAX,
 437                .range_start = start,
 438                .range_end = end,
 439        };
 440
 441        if (!mapping_cap_writeback_dirty(mapping))
 442                return 0;
 443
 444        wbc_attach_fdatawrite_inode(&wbc, mapping->host);
 445        ret = do_writepages(mapping, &wbc);
 446        wbc_detach_inode(&wbc);
 447        return ret;
 448}
 449
 450static inline int __filemap_fdatawrite(struct address_space *mapping,
 451        int sync_mode)
 452{
 453        return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
 454}
 455
 456int filemap_fdatawrite(struct address_space *mapping)
 457{
 458        return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
 459}
 460EXPORT_SYMBOL(filemap_fdatawrite);
 461
 462int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
 463                                loff_t end)
 464{
 465        return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
 466}
 467EXPORT_SYMBOL(filemap_fdatawrite_range);
 468
 469/**
 470 * filemap_flush - mostly a non-blocking flush
 471 * @mapping:    target address_space
 472 *
 473 * This is a mostly non-blocking flush.  Not suitable for data-integrity
 474 * purposes - I/O may not be started against all dirty pages.
 475 */
 476int filemap_flush(struct address_space *mapping)
 477{
 478        return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
 479}
 480EXPORT_SYMBOL(filemap_flush);
 481
 482/**
 483 * filemap_range_has_page - check if a page exists in range.
 484 * @mapping:           address space within which to check
 485 * @start_byte:        offset in bytes where the range starts
 486 * @end_byte:          offset in bytes where the range ends (inclusive)
 487 *
 488 * Find at least one page in the range supplied, usually used to check if
 489 * direct writing in this range will trigger a writeback.
 490 */
 491bool filemap_range_has_page(struct address_space *mapping,
 492                           loff_t start_byte, loff_t end_byte)
 493{
 494        pgoff_t index = start_byte >> PAGE_SHIFT;
 495        pgoff_t end = end_byte >> PAGE_SHIFT;
 496        struct page *page;
 497
 498        if (end_byte < start_byte)
 499                return false;
 500
 501        if (mapping->nrpages == 0)
 502                return false;
 503
 504        if (!find_get_pages_range(mapping, &index, end, 1, &page))
 505                return false;
 506        put_page(page);
 507        return true;
 508}
 509EXPORT_SYMBOL(filemap_range_has_page);
 510
 511static void __filemap_fdatawait_range(struct address_space *mapping,
 512                                     loff_t start_byte, loff_t end_byte)
 513{
 514        pgoff_t index = start_byte >> PAGE_SHIFT;
 515        pgoff_t end = end_byte >> PAGE_SHIFT;
 516        struct pagevec pvec;
 517        int nr_pages;
 518
 519        if (end_byte < start_byte)
 520                return;
 521
 522        pagevec_init(&pvec);
 523        while (index <= end) {
 524                unsigned i;
 525
 526                nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
 527                                end, PAGECACHE_TAG_WRITEBACK);
 528                if (!nr_pages)
 529                        break;
 530
 531                for (i = 0; i < nr_pages; i++) {
 532                        struct page *page = pvec.pages[i];
 533
 534                        wait_on_page_writeback(page);
 535                        ClearPageError(page);
 536                }
 537                pagevec_release(&pvec);
 538                cond_resched();
 539        }
 540}
 541
 542/**
 543 * filemap_fdatawait_range - wait for writeback to complete
 544 * @mapping:            address space structure to wait for
 545 * @start_byte:         offset in bytes where the range starts
 546 * @end_byte:           offset in bytes where the range ends (inclusive)
 547 *
 548 * Walk the list of under-writeback pages of the given address space
 549 * in the given range and wait for all of them.  Check error status of
 550 * the address space and return it.
 551 *
 552 * Since the error status of the address space is cleared by this function,
 553 * callers are responsible for checking the return value and handling and/or
 554 * reporting the error.
 555 */
 556int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
 557                            loff_t end_byte)
 558{
 559        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 560        return filemap_check_errors(mapping);
 561}
 562EXPORT_SYMBOL(filemap_fdatawait_range);
 563
 564/**
 565 * file_fdatawait_range - wait for writeback to complete
 566 * @file:               file pointing to address space structure to wait for
 567 * @start_byte:         offset in bytes where the range starts
 568 * @end_byte:           offset in bytes where the range ends (inclusive)
 569 *
 570 * Walk the list of under-writeback pages of the address space that file
 571 * refers to, in the given range and wait for all of them.  Check error
 572 * status of the address space vs. the file->f_wb_err cursor and return it.
 573 *
 574 * Since the error status of the file is advanced by this function,
 575 * callers are responsible for checking the return value and handling and/or
 576 * reporting the error.
 577 */
 578int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
 579{
 580        struct address_space *mapping = file->f_mapping;
 581
 582        __filemap_fdatawait_range(mapping, start_byte, end_byte);
 583        return file_check_and_advance_wb_err(file);
 584}
 585EXPORT_SYMBOL(file_fdatawait_range);
 586
 587/**
 588 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
 589 * @mapping: address space structure to wait for
 590 *
 591 * Walk the list of under-writeback pages of the given address space
 592 * and wait for all of them.  Unlike filemap_fdatawait(), this function
 593 * does not clear error status of the address space.
 594 *
 595 * Use this function if callers don't handle errors themselves.  Expected
 596 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
 597 * fsfreeze(8)
 598 */
 599int filemap_fdatawait_keep_errors(struct address_space *mapping)
 600{
 601        __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
 602        return filemap_check_and_keep_errors(mapping);
 603}
 604EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
 605
 606static bool mapping_needs_writeback(struct address_space *mapping)
 607{
 608        return (!dax_mapping(mapping) && mapping->nrpages) ||
 609            (dax_mapping(mapping) && mapping->nrexceptional);
 610}
 611
 612int filemap_write_and_wait(struct address_space *mapping)
 613{
 614        int err = 0;
 615
 616        if (mapping_needs_writeback(mapping)) {
 617                err = filemap_fdatawrite(mapping);
 618                /*
 619                 * Even if the above returned error, the pages may be
 620                 * written partially (e.g. -ENOSPC), so we wait for it.
 621                 * But the -EIO is special case, it may indicate the worst
 622                 * thing (e.g. bug) happened, so we avoid waiting for it.
 623                 */
 624                if (err != -EIO) {
 625                        int err2 = filemap_fdatawait(mapping);
 626                        if (!err)
 627                                err = err2;
 628                } else {
 629                        /* Clear any previously stored errors */
 630                        filemap_check_errors(mapping);
 631                }
 632        } else {
 633                err = filemap_check_errors(mapping);
 634        }
 635        return err;
 636}
 637EXPORT_SYMBOL(filemap_write_and_wait);
 638
 639/**
 640 * filemap_write_and_wait_range - write out & wait on a file range
 641 * @mapping:    the address_space for the pages
 642 * @lstart:     offset in bytes where the range starts
 643 * @lend:       offset in bytes where the range ends (inclusive)
 644 *
 645 * Write out and wait upon file offsets lstart->lend, inclusive.
 646 *
 647 * Note that @lend is inclusive (describes the last byte to be written) so
 648 * that this function can be used to write to the very end-of-file (end = -1).
 649 */
 650int filemap_write_and_wait_range(struct address_space *mapping,
 651                                 loff_t lstart, loff_t lend)
 652{
 653        int err = 0;
 654
 655        if (mapping_needs_writeback(mapping)) {
 656                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 657                                                 WB_SYNC_ALL);
 658                /* See comment of filemap_write_and_wait() */
 659                if (err != -EIO) {
 660                        int err2 = filemap_fdatawait_range(mapping,
 661                                                lstart, lend);
 662                        if (!err)
 663                                err = err2;
 664                } else {
 665                        /* Clear any previously stored errors */
 666                        filemap_check_errors(mapping);
 667                }
 668        } else {
 669                err = filemap_check_errors(mapping);
 670        }
 671        return err;
 672}
 673EXPORT_SYMBOL(filemap_write_and_wait_range);
 674
 675void __filemap_set_wb_err(struct address_space *mapping, int err)
 676{
 677        errseq_t eseq = errseq_set(&mapping->wb_err, err);
 678
 679        trace_filemap_set_wb_err(mapping, eseq);
 680}
 681EXPORT_SYMBOL(__filemap_set_wb_err);
 682
 683/**
 684 * file_check_and_advance_wb_err - report wb error (if any) that was previously
 685 *                                 and advance wb_err to current one
 686 * @file: struct file on which the error is being reported
 687 *
 688 * When userland calls fsync (or something like nfsd does the equivalent), we
 689 * want to report any writeback errors that occurred since the last fsync (or
 690 * since the file was opened if there haven't been any).
 691 *
 692 * Grab the wb_err from the mapping. If it matches what we have in the file,
 693 * then just quickly return 0. The file is all caught up.
 694 *
 695 * If it doesn't match, then take the mapping value, set the "seen" flag in
 696 * it and try to swap it into place. If it works, or another task beat us
 697 * to it with the new value, then update the f_wb_err and return the error
 698 * portion. The error at this point must be reported via proper channels
 699 * (a'la fsync, or NFS COMMIT operation, etc.).
 700 *
 701 * While we handle mapping->wb_err with atomic operations, the f_wb_err
 702 * value is protected by the f_lock since we must ensure that it reflects
 703 * the latest value swapped in for this file descriptor.
 704 */
 705int file_check_and_advance_wb_err(struct file *file)
 706{
 707        int err = 0;
 708        errseq_t old = READ_ONCE(file->f_wb_err);
 709        struct address_space *mapping = file->f_mapping;
 710
 711        /* Locklessly handle the common case where nothing has changed */
 712        if (errseq_check(&mapping->wb_err, old)) {
 713                /* Something changed, must use slow path */
 714                spin_lock(&file->f_lock);
 715                old = file->f_wb_err;
 716                err = errseq_check_and_advance(&mapping->wb_err,
 717                                                &file->f_wb_err);
 718                trace_file_check_and_advance_wb_err(file, old);
 719                spin_unlock(&file->f_lock);
 720        }
 721
 722        /*
 723         * We're mostly using this function as a drop in replacement for
 724         * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
 725         * that the legacy code would have had on these flags.
 726         */
 727        clear_bit(AS_EIO, &mapping->flags);
 728        clear_bit(AS_ENOSPC, &mapping->flags);
 729        return err;
 730}
 731EXPORT_SYMBOL(file_check_and_advance_wb_err);
 732
 733/**
 734 * file_write_and_wait_range - write out & wait on a file range
 735 * @file:       file pointing to address_space with pages
 736 * @lstart:     offset in bytes where the range starts
 737 * @lend:       offset in bytes where the range ends (inclusive)
 738 *
 739 * Write out and wait upon file offsets lstart->lend, inclusive.
 740 *
 741 * Note that @lend is inclusive (describes the last byte to be written) so
 742 * that this function can be used to write to the very end-of-file (end = -1).
 743 *
 744 * After writing out and waiting on the data, we check and advance the
 745 * f_wb_err cursor to the latest value, and return any errors detected there.
 746 */
 747int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
 748{
 749        int err = 0, err2;
 750        struct address_space *mapping = file->f_mapping;
 751
 752        if (mapping_needs_writeback(mapping)) {
 753                err = __filemap_fdatawrite_range(mapping, lstart, lend,
 754                                                 WB_SYNC_ALL);
 755                /* See comment of filemap_write_and_wait() */
 756                if (err != -EIO)
 757                        __filemap_fdatawait_range(mapping, lstart, lend);
 758        }
 759        err2 = file_check_and_advance_wb_err(file);
 760        if (!err)
 761                err = err2;
 762        return err;
 763}
 764EXPORT_SYMBOL(file_write_and_wait_range);
 765
 766/**
 767 * replace_page_cache_page - replace a pagecache page with a new one
 768 * @old:        page to be replaced
 769 * @new:        page to replace with
 770 * @gfp_mask:   allocation mode
 771 *
 772 * This function replaces a page in the pagecache with a new one.  On
 773 * success it acquires the pagecache reference for the new page and
 774 * drops it for the old page.  Both the old and new pages must be
 775 * locked.  This function does not add the new page to the LRU, the
 776 * caller must do that.
 777 *
 778 * The remove + add is atomic.  The only way this function can fail is
 779 * memory allocation failure.
 780 */
 781int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
 782{
 783        int error;
 784
 785        VM_BUG_ON_PAGE(!PageLocked(old), old);
 786        VM_BUG_ON_PAGE(!PageLocked(new), new);
 787        VM_BUG_ON_PAGE(new->mapping, new);
 788
 789        error = radix_tree_preload(gfp_mask & GFP_RECLAIM_MASK);
 790        if (!error) {
 791                struct address_space *mapping = old->mapping;
 792                void (*freepage)(struct page *);
 793                unsigned long flags;
 794
 795                pgoff_t offset = old->index;
 796                freepage = mapping->a_ops->freepage;
 797
 798                get_page(new);
 799                new->mapping = mapping;
 800                new->index = offset;
 801
 802                xa_lock_irqsave(&mapping->i_pages, flags);
 803                __delete_from_page_cache(old, NULL);
 804                error = page_cache_tree_insert(mapping, new, NULL);
 805                BUG_ON(error);
 806
 807                /*
 808                 * hugetlb pages do not participate in page cache accounting.
 809                 */
 810                if (!PageHuge(new))
 811                        __inc_node_page_state(new, NR_FILE_PAGES);
 812                if (PageSwapBacked(new))
 813                        __inc_node_page_state(new, NR_SHMEM);
 814                xa_unlock_irqrestore(&mapping->i_pages, flags);
 815                mem_cgroup_migrate(old, new);
 816                radix_tree_preload_end();
 817                if (freepage)
 818                        freepage(old);
 819                put_page(old);
 820        }
 821
 822        return error;
 823}
 824EXPORT_SYMBOL_GPL(replace_page_cache_page);
 825
 826static int __add_to_page_cache_locked(struct page *page,
 827                                      struct address_space *mapping,
 828                                      pgoff_t offset, gfp_t gfp_mask,
 829                                      void **shadowp)
 830{
 831        int huge = PageHuge(page);
 832        struct mem_cgroup *memcg;
 833        int error;
 834
 835        VM_BUG_ON_PAGE(!PageLocked(page), page);
 836        VM_BUG_ON_PAGE(PageSwapBacked(page), page);
 837
 838        if (!huge) {
 839                error = mem_cgroup_try_charge(page, current->mm,
 840                                              gfp_mask, &memcg, false);
 841                if (error)
 842                        return error;
 843        }
 844
 845        error = radix_tree_maybe_preload(gfp_mask & GFP_RECLAIM_MASK);
 846        if (error) {
 847                if (!huge)
 848                        mem_cgroup_cancel_charge(page, memcg, false);
 849                return error;
 850        }
 851
 852        get_page(page);
 853        page->mapping = mapping;
 854        page->index = offset;
 855
 856        xa_lock_irq(&mapping->i_pages);
 857        error = page_cache_tree_insert(mapping, page, shadowp);
 858        radix_tree_preload_end();
 859        if (unlikely(error))
 860                goto err_insert;
 861
 862        /* hugetlb pages do not participate in page cache accounting. */
 863        if (!huge)
 864                __inc_node_page_state(page, NR_FILE_PAGES);
 865        xa_unlock_irq(&mapping->i_pages);
 866        if (!huge)
 867                mem_cgroup_commit_charge(page, memcg, false, false);
 868        trace_mm_filemap_add_to_page_cache(page);
 869        return 0;
 870err_insert:
 871        page->mapping = NULL;
 872        /* Leave page->index set: truncation relies upon it */
 873        xa_unlock_irq(&mapping->i_pages);
 874        if (!huge)
 875                mem_cgroup_cancel_charge(page, memcg, false);
 876        put_page(page);
 877        return error;
 878}
 879
 880/**
 881 * add_to_page_cache_locked - add a locked page to the pagecache
 882 * @page:       page to add
 883 * @mapping:    the page's address_space
 884 * @offset:     page index
 885 * @gfp_mask:   page allocation mode
 886 *
 887 * This function is used to add a page to the pagecache. It must be locked.
 888 * This function does not add the page to the LRU.  The caller must do that.
 889 */
 890int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
 891                pgoff_t offset, gfp_t gfp_mask)
 892{
 893        return __add_to_page_cache_locked(page, mapping, offset,
 894                                          gfp_mask, NULL);
 895}
 896EXPORT_SYMBOL(add_to_page_cache_locked);
 897
 898int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
 899                                pgoff_t offset, gfp_t gfp_mask)
 900{
 901        void *shadow = NULL;
 902        int ret;
 903
 904        __SetPageLocked(page);
 905        ret = __add_to_page_cache_locked(page, mapping, offset,
 906                                         gfp_mask, &shadow);
 907        if (unlikely(ret))
 908                __ClearPageLocked(page);
 909        else {
 910                /*
 911                 * The page might have been evicted from cache only
 912                 * recently, in which case it should be activated like
 913                 * any other repeatedly accessed page.
 914                 * The exception is pages getting rewritten; evicting other
 915                 * data from the working set, only to cache data that will
 916                 * get overwritten with something else, is a waste of memory.
 917                 */
 918                if (!(gfp_mask & __GFP_WRITE) &&
 919                    shadow && workingset_refault(shadow)) {
 920                        SetPageActive(page);
 921                        workingset_activation(page);
 922                } else
 923                        ClearPageActive(page);
 924                lru_cache_add(page);
 925        }
 926        return ret;
 927}
 928EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
 929
 930#ifdef CONFIG_NUMA
 931struct page *__page_cache_alloc(gfp_t gfp)
 932{
 933        int n;
 934        struct page *page;
 935
 936        if (cpuset_do_page_mem_spread()) {
 937                unsigned int cpuset_mems_cookie;
 938                do {
 939                        cpuset_mems_cookie = read_mems_allowed_begin();
 940                        n = cpuset_mem_spread_node();
 941                        page = __alloc_pages_node(n, gfp, 0);
 942                } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
 943
 944                return page;
 945        }
 946        return alloc_pages(gfp, 0);
 947}
 948EXPORT_SYMBOL(__page_cache_alloc);
 949#endif
 950
 951/*
 952 * In order to wait for pages to become available there must be
 953 * waitqueues associated with pages. By using a hash table of
 954 * waitqueues where the bucket discipline is to maintain all
 955 * waiters on the same queue and wake all when any of the pages
 956 * become available, and for the woken contexts to check to be
 957 * sure the appropriate page became available, this saves space
 958 * at a cost of "thundering herd" phenomena during rare hash
 959 * collisions.
 960 */
 961#define PAGE_WAIT_TABLE_BITS 8
 962#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
 963static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
 964
 965static wait_queue_head_t *page_waitqueue(struct page *page)
 966{
 967        return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
 968}
 969
 970void __init pagecache_init(void)
 971{
 972        int i;
 973
 974        for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
 975                init_waitqueue_head(&page_wait_table[i]);
 976
 977        page_writeback_init();
 978}
 979
 980/* This has the same layout as wait_bit_key - see fs/cachefiles/rdwr.c */
 981struct wait_page_key {
 982        struct page *page;
 983        int bit_nr;
 984        int page_match;
 985};
 986
 987struct wait_page_queue {
 988        struct page *page;
 989        int bit_nr;
 990        wait_queue_entry_t wait;
 991};
 992
 993static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
 994{
 995        struct wait_page_key *key = arg;
 996        struct wait_page_queue *wait_page
 997                = container_of(wait, struct wait_page_queue, wait);
 998
 999        if (wait_page->page != key->page)
1000               return 0;
1001        key->page_match = 1;
1002
1003        if (wait_page->bit_nr != key->bit_nr)
1004                return 0;
1005
1006        /* Stop walking if it's locked */
1007        if (test_bit(key->bit_nr, &key->page->flags))
1008                return -1;
1009
1010        return autoremove_wake_function(wait, mode, sync, key);
1011}
1012
1013static void wake_up_page_bit(struct page *page, int bit_nr)
1014{
1015        wait_queue_head_t *q = page_waitqueue(page);
1016        struct wait_page_key key;
1017        unsigned long flags;
1018        wait_queue_entry_t bookmark;
1019
1020        key.page = page;
1021        key.bit_nr = bit_nr;
1022        key.page_match = 0;
1023
1024        bookmark.flags = 0;
1025        bookmark.private = NULL;
1026        bookmark.func = NULL;
1027        INIT_LIST_HEAD(&bookmark.entry);
1028
1029        spin_lock_irqsave(&q->lock, flags);
1030        __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1031
1032        while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1033                /*
1034                 * Take a breather from holding the lock,
1035                 * allow pages that finish wake up asynchronously
1036                 * to acquire the lock and remove themselves
1037                 * from wait queue
1038                 */
1039                spin_unlock_irqrestore(&q->lock, flags);
1040                cpu_relax();
1041                spin_lock_irqsave(&q->lock, flags);
1042                __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1043        }
1044
1045        /*
1046         * It is possible for other pages to have collided on the waitqueue
1047         * hash, so in that case check for a page match. That prevents a long-
1048         * term waiter
1049         *
1050         * It is still possible to miss a case here, when we woke page waiters
1051         * and removed them from the waitqueue, but there are still other
1052         * page waiters.
1053         */
1054        if (!waitqueue_active(q) || !key.page_match) {
1055                ClearPageWaiters(page);
1056                /*
1057                 * It's possible to miss clearing Waiters here, when we woke
1058                 * our page waiters, but the hashed waitqueue has waiters for
1059                 * other pages on it.
1060                 *
1061                 * That's okay, it's a rare case. The next waker will clear it.
1062                 */
1063        }
1064        spin_unlock_irqrestore(&q->lock, flags);
1065}
1066
1067static void wake_up_page(struct page *page, int bit)
1068{
1069        if (!PageWaiters(page))
1070                return;
1071        wake_up_page_bit(page, bit);
1072}
1073
1074static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1075                struct page *page, int bit_nr, int state, bool lock)
1076{
1077        struct wait_page_queue wait_page;
1078        wait_queue_entry_t *wait = &wait_page.wait;
1079        int ret = 0;
1080
1081        init_wait(wait);
1082        wait->flags = lock ? WQ_FLAG_EXCLUSIVE : 0;
1083        wait->func = wake_page_function;
1084        wait_page.page = page;
1085        wait_page.bit_nr = bit_nr;
1086
1087        for (;;) {
1088                spin_lock_irq(&q->lock);
1089
1090                if (likely(list_empty(&wait->entry))) {
1091                        __add_wait_queue_entry_tail(q, wait);
1092                        SetPageWaiters(page);
1093                }
1094
1095                set_current_state(state);
1096
1097                spin_unlock_irq(&q->lock);
1098
1099                if (likely(test_bit(bit_nr, &page->flags))) {
1100                        io_schedule();
1101                }
1102
1103                if (lock) {
1104                        if (!test_and_set_bit_lock(bit_nr, &page->flags))
1105                                break;
1106                } else {
1107                        if (!test_bit(bit_nr, &page->flags))
1108                                break;
1109                }
1110
1111                if (unlikely(signal_pending_state(state, current))) {
1112                        ret = -EINTR;
1113                        break;
1114                }
1115        }
1116
1117        finish_wait(q, wait);
1118
1119        /*
1120         * A signal could leave PageWaiters set. Clearing it here if
1121         * !waitqueue_active would be possible (by open-coding finish_wait),
1122         * but still fail to catch it in the case of wait hash collision. We
1123         * already can fail to clear wait hash collision cases, so don't
1124         * bother with signals either.
1125         */
1126
1127        return ret;
1128}
1129
1130void wait_on_page_bit(struct page *page, int bit_nr)
1131{
1132        wait_queue_head_t *q = page_waitqueue(page);
1133        wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
1134}
1135EXPORT_SYMBOL(wait_on_page_bit);
1136
1137int wait_on_page_bit_killable(struct page *page, int bit_nr)
1138{
1139        wait_queue_head_t *q = page_waitqueue(page);
1140        return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
1141}
1142EXPORT_SYMBOL(wait_on_page_bit_killable);
1143
1144/**
1145 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1146 * @page: Page defining the wait queue of interest
1147 * @waiter: Waiter to add to the queue
1148 *
1149 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1150 */
1151void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1152{
1153        wait_queue_head_t *q = page_waitqueue(page);
1154        unsigned long flags;
1155
1156        spin_lock_irqsave(&q->lock, flags);
1157        __add_wait_queue_entry_tail(q, waiter);
1158        SetPageWaiters(page);
1159        spin_unlock_irqrestore(&q->lock, flags);
1160}
1161EXPORT_SYMBOL_GPL(add_page_wait_queue);
1162
1163#ifndef clear_bit_unlock_is_negative_byte
1164
1165/*
1166 * PG_waiters is the high bit in the same byte as PG_lock.
1167 *
1168 * On x86 (and on many other architectures), we can clear PG_lock and
1169 * test the sign bit at the same time. But if the architecture does
1170 * not support that special operation, we just do this all by hand
1171 * instead.
1172 *
1173 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1174 * being cleared, but a memory barrier should be unneccssary since it is
1175 * in the same byte as PG_locked.
1176 */
1177static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1178{
1179        clear_bit_unlock(nr, mem);
1180        /* smp_mb__after_atomic(); */
1181        return test_bit(PG_waiters, mem);
1182}
1183
1184#endif
1185
1186/**
1187 * unlock_page - unlock a locked page
1188 * @page: the page
1189 *
1190 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1191 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1192 * mechanism between PageLocked pages and PageWriteback pages is shared.
1193 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1194 *
1195 * Note that this depends on PG_waiters being the sign bit in the byte
1196 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1197 * clear the PG_locked bit and test PG_waiters at the same time fairly
1198 * portably (architectures that do LL/SC can test any bit, while x86 can
1199 * test the sign bit).
1200 */
1201void unlock_page(struct page *page)
1202{
1203        BUILD_BUG_ON(PG_waiters != 7);
1204        page = compound_head(page);
1205        VM_BUG_ON_PAGE(!PageLocked(page), page);
1206        if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1207                wake_up_page_bit(page, PG_locked);
1208}
1209EXPORT_SYMBOL(unlock_page);
1210
1211/**
1212 * end_page_writeback - end writeback against a page
1213 * @page: the page
1214 */
1215void end_page_writeback(struct page *page)
1216{
1217        /*
1218         * TestClearPageReclaim could be used here but it is an atomic
1219         * operation and overkill in this particular case. Failing to
1220         * shuffle a page marked for immediate reclaim is too mild to
1221         * justify taking an atomic operation penalty at the end of
1222         * ever page writeback.
1223         */
1224        if (PageReclaim(page)) {
1225                ClearPageReclaim(page);
1226                rotate_reclaimable_page(page);
1227        }
1228
1229        if (!test_clear_page_writeback(page))
1230                BUG();
1231
1232        smp_mb__after_atomic();
1233        wake_up_page(page, PG_writeback);
1234}
1235EXPORT_SYMBOL(end_page_writeback);
1236
1237/*
1238 * After completing I/O on a page, call this routine to update the page
1239 * flags appropriately
1240 */
1241void page_endio(struct page *page, bool is_write, int err)
1242{
1243        if (!is_write) {
1244                if (!err) {
1245                        SetPageUptodate(page);
1246                } else {
1247                        ClearPageUptodate(page);
1248                        SetPageError(page);
1249                }
1250                unlock_page(page);
1251        } else {
1252                if (err) {
1253                        struct address_space *mapping;
1254
1255                        SetPageError(page);
1256                        mapping = page_mapping(page);
1257                        if (mapping)
1258                                mapping_set_error(mapping, err);
1259                }
1260                end_page_writeback(page);
1261        }
1262}
1263EXPORT_SYMBOL_GPL(page_endio);
1264
1265/**
1266 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1267 * @__page: the page to lock
1268 */
1269void __lock_page(struct page *__page)
1270{
1271        struct page *page = compound_head(__page);
1272        wait_queue_head_t *q = page_waitqueue(page);
1273        wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1274}
1275EXPORT_SYMBOL(__lock_page);
1276
1277int __lock_page_killable(struct page *__page)
1278{
1279        struct page *page = compound_head(__page);
1280        wait_queue_head_t *q = page_waitqueue(page);
1281        return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
1282}
1283EXPORT_SYMBOL_GPL(__lock_page_killable);
1284
1285/*
1286 * Return values:
1287 * 1 - page is locked; mmap_sem is still held.
1288 * 0 - page is not locked.
1289 *     mmap_sem has been released (up_read()), unless flags had both
1290 *     FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1291 *     which case mmap_sem is still held.
1292 *
1293 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1294 * with the page locked and the mmap_sem unperturbed.
1295 */
1296int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1297                         unsigned int flags)
1298{
1299        if (flags & FAULT_FLAG_ALLOW_RETRY) {
1300                /*
1301                 * CAUTION! In this case, mmap_sem is not released
1302                 * even though return 0.
1303                 */
1304                if (flags & FAULT_FLAG_RETRY_NOWAIT)
1305                        return 0;
1306
1307                up_read(&mm->mmap_sem);
1308                if (flags & FAULT_FLAG_KILLABLE)
1309                        wait_on_page_locked_killable(page);
1310                else
1311                        wait_on_page_locked(page);
1312                return 0;
1313        } else {
1314                if (flags & FAULT_FLAG_KILLABLE) {
1315                        int ret;
1316
1317                        ret = __lock_page_killable(page);
1318                        if (ret) {
1319                                up_read(&mm->mmap_sem);
1320                                return 0;
1321                        }
1322                } else
1323                        __lock_page(page);
1324                return 1;
1325        }
1326}
1327
1328/**
1329 * page_cache_next_hole - find the next hole (not-present entry)
1330 * @mapping: mapping
1331 * @index: index
1332 * @max_scan: maximum range to search
1333 *
1334 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1335 * lowest indexed hole.
1336 *
1337 * Returns: the index of the hole if found, otherwise returns an index
1338 * outside of the set specified (in which case 'return - index >=
1339 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1340 * be returned.
1341 *
1342 * page_cache_next_hole may be called under rcu_read_lock. However,
1343 * like radix_tree_gang_lookup, this will not atomically search a
1344 * snapshot of the tree at a single point in time. For example, if a
1345 * hole is created at index 5, then subsequently a hole is created at
1346 * index 10, page_cache_next_hole covering both indexes may return 10
1347 * if called under rcu_read_lock.
1348 */
1349pgoff_t page_cache_next_hole(struct address_space *mapping,
1350                             pgoff_t index, unsigned long max_scan)
1351{
1352        unsigned long i;
1353
1354        for (i = 0; i < max_scan; i++) {
1355                struct page *page;
1356
1357                page = radix_tree_lookup(&mapping->i_pages, index);
1358                if (!page || radix_tree_exceptional_entry(page))
1359                        break;
1360                index++;
1361                if (index == 0)
1362                        break;
1363        }
1364
1365        return index;
1366}
1367EXPORT_SYMBOL(page_cache_next_hole);
1368
1369/**
1370 * page_cache_prev_hole - find the prev hole (not-present entry)
1371 * @mapping: mapping
1372 * @index: index
1373 * @max_scan: maximum range to search
1374 *
1375 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1376 * the first hole.
1377 *
1378 * Returns: the index of the hole if found, otherwise returns an index
1379 * outside of the set specified (in which case 'index - return >=
1380 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1381 * will be returned.
1382 *
1383 * page_cache_prev_hole may be called under rcu_read_lock. However,
1384 * like radix_tree_gang_lookup, this will not atomically search a
1385 * snapshot of the tree at a single point in time. For example, if a
1386 * hole is created at index 10, then subsequently a hole is created at
1387 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1388 * called under rcu_read_lock.
1389 */
1390pgoff_t page_cache_prev_hole(struct address_space *mapping,
1391                             pgoff_t index, unsigned long max_scan)
1392{
1393        unsigned long i;
1394
1395        for (i = 0; i < max_scan; i++) {
1396                struct page *page;
1397
1398                page = radix_tree_lookup(&mapping->i_pages, index);
1399                if (!page || radix_tree_exceptional_entry(page))
1400                        break;
1401                index--;
1402                if (index == ULONG_MAX)
1403                        break;
1404        }
1405
1406        return index;
1407}
1408EXPORT_SYMBOL(page_cache_prev_hole);
1409
1410/**
1411 * find_get_entry - find and get a page cache entry
1412 * @mapping: the address_space to search
1413 * @offset: the page cache index
1414 *
1415 * Looks up the page cache slot at @mapping & @offset.  If there is a
1416 * page cache page, it is returned with an increased refcount.
1417 *
1418 * If the slot holds a shadow entry of a previously evicted page, or a
1419 * swap entry from shmem/tmpfs, it is returned.
1420 *
1421 * Otherwise, %NULL is returned.
1422 */
1423struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1424{
1425        void **pagep;
1426        struct page *head, *page;
1427
1428        rcu_read_lock();
1429repeat:
1430        page = NULL;
1431        pagep = radix_tree_lookup_slot(&mapping->i_pages, offset);
1432        if (pagep) {
1433                page = radix_tree_deref_slot(pagep);
1434                if (unlikely(!page))
1435                        goto out;
1436                if (radix_tree_exception(page)) {
1437                        if (radix_tree_deref_retry(page))
1438                                goto repeat;
1439                        /*
1440                         * A shadow entry of a recently evicted page,
1441                         * or a swap entry from shmem/tmpfs.  Return
1442                         * it without attempting to raise page count.
1443                         */
1444                        goto out;
1445                }
1446
1447                head = compound_head(page);
1448                if (!page_cache_get_speculative(head))
1449                        goto repeat;
1450
1451                /* The page was split under us? */
1452                if (compound_head(page) != head) {
1453                        put_page(head);
1454                        goto repeat;
1455                }
1456
1457                /*
1458                 * Has the page moved?
1459                 * This is part of the lockless pagecache protocol. See
1460                 * include/linux/pagemap.h for details.
1461                 */
1462                if (unlikely(page != *pagep)) {
1463                        put_page(head);
1464                        goto repeat;
1465                }
1466        }
1467out:
1468        rcu_read_unlock();
1469
1470        return page;
1471}
1472EXPORT_SYMBOL(find_get_entry);
1473
1474/**
1475 * find_lock_entry - locate, pin and lock a page cache entry
1476 * @mapping: the address_space to search
1477 * @offset: the page cache index
1478 *
1479 * Looks up the page cache slot at @mapping & @offset.  If there is a
1480 * page cache page, it is returned locked and with an increased
1481 * refcount.
1482 *
1483 * If the slot holds a shadow entry of a previously evicted page, or a
1484 * swap entry from shmem/tmpfs, it is returned.
1485 *
1486 * Otherwise, %NULL is returned.
1487 *
1488 * find_lock_entry() may sleep.
1489 */
1490struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1491{
1492        struct page *page;
1493
1494repeat:
1495        page = find_get_entry(mapping, offset);
1496        if (page && !radix_tree_exception(page)) {
1497                lock_page(page);
1498                /* Has the page been truncated? */
1499                if (unlikely(page_mapping(page) != mapping)) {
1500                        unlock_page(page);
1501                        put_page(page);
1502                        goto repeat;
1503                }
1504                VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1505        }
1506        return page;
1507}
1508EXPORT_SYMBOL(find_lock_entry);
1509
1510/**
1511 * pagecache_get_page - find and get a page reference
1512 * @mapping: the address_space to search
1513 * @offset: the page index
1514 * @fgp_flags: PCG flags
1515 * @gfp_mask: gfp mask to use for the page cache data page allocation
1516 *
1517 * Looks up the page cache slot at @mapping & @offset.
1518 *
1519 * PCG flags modify how the page is returned.
1520 *
1521 * @fgp_flags can be:
1522 *
1523 * - FGP_ACCESSED: the page will be marked accessed
1524 * - FGP_LOCK: Page is return locked
1525 * - FGP_CREAT: If page is not present then a new page is allocated using
1526 *   @gfp_mask and added to the page cache and the VM's LRU
1527 *   list. The page is returned locked and with an increased
1528 *   refcount. Otherwise, NULL is returned.
1529 *
1530 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1531 * if the GFP flags specified for FGP_CREAT are atomic.
1532 *
1533 * If there is a page cache page, it is returned with an increased refcount.
1534 */
1535struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1536        int fgp_flags, gfp_t gfp_mask)
1537{
1538        struct page *page;
1539
1540repeat:
1541        page = find_get_entry(mapping, offset);
1542        if (radix_tree_exceptional_entry(page))
1543                page = NULL;
1544        if (!page)
1545                goto no_page;
1546
1547        if (fgp_flags & FGP_LOCK) {
1548                if (fgp_flags & FGP_NOWAIT) {
1549                        if (!trylock_page(page)) {
1550                                put_page(page);
1551                                return NULL;
1552                        }
1553                } else {
1554                        lock_page(page);
1555                }
1556
1557                /* Has the page been truncated? */
1558                if (unlikely(page->mapping != mapping)) {
1559                        unlock_page(page);
1560                        put_page(page);
1561                        goto repeat;
1562                }
1563                VM_BUG_ON_PAGE(page->index != offset, page);
1564        }
1565
1566        if (page && (fgp_flags & FGP_ACCESSED))
1567                mark_page_accessed(page);
1568
1569no_page:
1570        if (!page && (fgp_flags & FGP_CREAT)) {
1571                int err;
1572                if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1573                        gfp_mask |= __GFP_WRITE;
1574                if (fgp_flags & FGP_NOFS)
1575                        gfp_mask &= ~__GFP_FS;
1576
1577                page = __page_cache_alloc(gfp_mask);
1578                if (!page)
1579                        return NULL;
1580
1581                if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1582                        fgp_flags |= FGP_LOCK;
1583
1584                /* Init accessed so avoid atomic mark_page_accessed later */
1585                if (fgp_flags & FGP_ACCESSED)
1586                        __SetPageReferenced(page);
1587
1588                err = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
1589                if (unlikely(err)) {
1590                        put_page(page);
1591                        page = NULL;
1592                        if (err == -EEXIST)
1593                                goto repeat;
1594                }
1595        }
1596
1597        return page;
1598}
1599EXPORT_SYMBOL(pagecache_get_page);
1600
1601/**
1602 * find_get_entries - gang pagecache lookup
1603 * @mapping:    The address_space to search
1604 * @start:      The starting page cache index
1605 * @nr_entries: The maximum number of entries
1606 * @entries:    Where the resulting entries are placed
1607 * @indices:    The cache indices corresponding to the entries in @entries
1608 *
1609 * find_get_entries() will search for and return a group of up to
1610 * @nr_entries entries in the mapping.  The entries are placed at
1611 * @entries.  find_get_entries() takes a reference against any actual
1612 * pages it returns.
1613 *
1614 * The search returns a group of mapping-contiguous page cache entries
1615 * with ascending indexes.  There may be holes in the indices due to
1616 * not-present pages.
1617 *
1618 * Any shadow entries of evicted pages, or swap entries from
1619 * shmem/tmpfs, are included in the returned array.
1620 *
1621 * find_get_entries() returns the number of pages and shadow entries
1622 * which were found.
1623 */
1624unsigned find_get_entries(struct address_space *mapping,
1625                          pgoff_t start, unsigned int nr_entries,
1626                          struct page **entries, pgoff_t *indices)
1627{
1628        void **slot;
1629        unsigned int ret = 0;
1630        struct radix_tree_iter iter;
1631
1632        if (!nr_entries)
1633                return 0;
1634
1635        rcu_read_lock();
1636        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
1637                struct page *head, *page;
1638repeat:
1639                page = radix_tree_deref_slot(slot);
1640                if (unlikely(!page))
1641                        continue;
1642                if (radix_tree_exception(page)) {
1643                        if (radix_tree_deref_retry(page)) {
1644                                slot = radix_tree_iter_retry(&iter);
1645                                continue;
1646                        }
1647                        /*
1648                         * A shadow entry of a recently evicted page, a swap
1649                         * entry from shmem/tmpfs or a DAX entry.  Return it
1650                         * without attempting to raise page count.
1651                         */
1652                        goto export;
1653                }
1654
1655                head = compound_head(page);
1656                if (!page_cache_get_speculative(head))
1657                        goto repeat;
1658
1659                /* The page was split under us? */
1660                if (compound_head(page) != head) {
1661                        put_page(head);
1662                        goto repeat;
1663                }
1664
1665                /* Has the page moved? */
1666                if (unlikely(page != *slot)) {
1667                        put_page(head);
1668                        goto repeat;
1669                }
1670export:
1671                indices[ret] = iter.index;
1672                entries[ret] = page;
1673                if (++ret == nr_entries)
1674                        break;
1675        }
1676        rcu_read_unlock();
1677        return ret;
1678}
1679
1680/**
1681 * find_get_pages_range - gang pagecache lookup
1682 * @mapping:    The address_space to search
1683 * @start:      The starting page index
1684 * @end:        The final page index (inclusive)
1685 * @nr_pages:   The maximum number of pages
1686 * @pages:      Where the resulting pages are placed
1687 *
1688 * find_get_pages_range() will search for and return a group of up to @nr_pages
1689 * pages in the mapping starting at index @start and up to index @end
1690 * (inclusive).  The pages are placed at @pages.  find_get_pages_range() takes
1691 * a reference against the returned pages.
1692 *
1693 * The search returns a group of mapping-contiguous pages with ascending
1694 * indexes.  There may be holes in the indices due to not-present pages.
1695 * We also update @start to index the next page for the traversal.
1696 *
1697 * find_get_pages_range() returns the number of pages which were found. If this
1698 * number is smaller than @nr_pages, the end of specified range has been
1699 * reached.
1700 */
1701unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1702                              pgoff_t end, unsigned int nr_pages,
1703                              struct page **pages)
1704{
1705        struct radix_tree_iter iter;
1706        void **slot;
1707        unsigned ret = 0;
1708
1709        if (unlikely(!nr_pages))
1710                return 0;
1711
1712        rcu_read_lock();
1713        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, *start) {
1714                struct page *head, *page;
1715
1716                if (iter.index > end)
1717                        break;
1718repeat:
1719                page = radix_tree_deref_slot(slot);
1720                if (unlikely(!page))
1721                        continue;
1722
1723                if (radix_tree_exception(page)) {
1724                        if (radix_tree_deref_retry(page)) {
1725                                slot = radix_tree_iter_retry(&iter);
1726                                continue;
1727                        }
1728                        /*
1729                         * A shadow entry of a recently evicted page,
1730                         * or a swap entry from shmem/tmpfs.  Skip
1731                         * over it.
1732                         */
1733                        continue;
1734                }
1735
1736                head = compound_head(page);
1737                if (!page_cache_get_speculative(head))
1738                        goto repeat;
1739
1740                /* The page was split under us? */
1741                if (compound_head(page) != head) {
1742                        put_page(head);
1743                        goto repeat;
1744                }
1745
1746                /* Has the page moved? */
1747                if (unlikely(page != *slot)) {
1748                        put_page(head);
1749                        goto repeat;
1750                }
1751
1752                pages[ret] = page;
1753                if (++ret == nr_pages) {
1754                        *start = pages[ret - 1]->index + 1;
1755                        goto out;
1756                }
1757        }
1758
1759        /*
1760         * We come here when there is no page beyond @end. We take care to not
1761         * overflow the index @start as it confuses some of the callers. This
1762         * breaks the iteration when there is page at index -1 but that is
1763         * already broken anyway.
1764         */
1765        if (end == (pgoff_t)-1)
1766                *start = (pgoff_t)-1;
1767        else
1768                *start = end + 1;
1769out:
1770        rcu_read_unlock();
1771
1772        return ret;
1773}
1774
1775/**
1776 * find_get_pages_contig - gang contiguous pagecache lookup
1777 * @mapping:    The address_space to search
1778 * @index:      The starting page index
1779 * @nr_pages:   The maximum number of pages
1780 * @pages:      Where the resulting pages are placed
1781 *
1782 * find_get_pages_contig() works exactly like find_get_pages(), except
1783 * that the returned number of pages are guaranteed to be contiguous.
1784 *
1785 * find_get_pages_contig() returns the number of pages which were found.
1786 */
1787unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1788                               unsigned int nr_pages, struct page **pages)
1789{
1790        struct radix_tree_iter iter;
1791        void **slot;
1792        unsigned int ret = 0;
1793
1794        if (unlikely(!nr_pages))
1795                return 0;
1796
1797        rcu_read_lock();
1798        radix_tree_for_each_contig(slot, &mapping->i_pages, &iter, index) {
1799                struct page *head, *page;
1800repeat:
1801                page = radix_tree_deref_slot(slot);
1802                /* The hole, there no reason to continue */
1803                if (unlikely(!page))
1804                        break;
1805
1806                if (radix_tree_exception(page)) {
1807                        if (radix_tree_deref_retry(page)) {
1808                                slot = radix_tree_iter_retry(&iter);
1809                                continue;
1810                        }
1811                        /*
1812                         * A shadow entry of a recently evicted page,
1813                         * or a swap entry from shmem/tmpfs.  Stop
1814                         * looking for contiguous pages.
1815                         */
1816                        break;
1817                }
1818
1819                head = compound_head(page);
1820                if (!page_cache_get_speculative(head))
1821                        goto repeat;
1822
1823                /* The page was split under us? */
1824                if (compound_head(page) != head) {
1825                        put_page(head);
1826                        goto repeat;
1827                }
1828
1829                /* Has the page moved? */
1830                if (unlikely(page != *slot)) {
1831                        put_page(head);
1832                        goto repeat;
1833                }
1834
1835                /*
1836                 * must check mapping and index after taking the ref.
1837                 * otherwise we can get both false positives and false
1838                 * negatives, which is just confusing to the caller.
1839                 */
1840                if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
1841                        put_page(page);
1842                        break;
1843                }
1844
1845                pages[ret] = page;
1846                if (++ret == nr_pages)
1847                        break;
1848        }
1849        rcu_read_unlock();
1850        return ret;
1851}
1852EXPORT_SYMBOL(find_get_pages_contig);
1853
1854/**
1855 * find_get_pages_range_tag - find and return pages in given range matching @tag
1856 * @mapping:    the address_space to search
1857 * @index:      the starting page index
1858 * @end:        The final page index (inclusive)
1859 * @tag:        the tag index
1860 * @nr_pages:   the maximum number of pages
1861 * @pages:      where the resulting pages are placed
1862 *
1863 * Like find_get_pages, except we only return pages which are tagged with
1864 * @tag.   We update @index to index the next page for the traversal.
1865 */
1866unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1867                        pgoff_t end, int tag, unsigned int nr_pages,
1868                        struct page **pages)
1869{
1870        struct radix_tree_iter iter;
1871        void **slot;
1872        unsigned ret = 0;
1873
1874        if (unlikely(!nr_pages))
1875                return 0;
1876
1877        rcu_read_lock();
1878        radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, *index, tag) {
1879                struct page *head, *page;
1880
1881                if (iter.index > end)
1882                        break;
1883repeat:
1884                page = radix_tree_deref_slot(slot);
1885                if (unlikely(!page))
1886                        continue;
1887
1888                if (radix_tree_exception(page)) {
1889                        if (radix_tree_deref_retry(page)) {
1890                                slot = radix_tree_iter_retry(&iter);
1891                                continue;
1892                        }
1893                        /*
1894                         * A shadow entry of a recently evicted page.
1895                         *
1896                         * Those entries should never be tagged, but
1897                         * this tree walk is lockless and the tags are
1898                         * looked up in bulk, one radix tree node at a
1899                         * time, so there is a sizable window for page
1900                         * reclaim to evict a page we saw tagged.
1901                         *
1902                         * Skip over it.
1903                         */
1904                        continue;
1905                }
1906
1907                head = compound_head(page);
1908                if (!page_cache_get_speculative(head))
1909                        goto repeat;
1910
1911                /* The page was split under us? */
1912                if (compound_head(page) != head) {
1913                        put_page(head);
1914                        goto repeat;
1915                }
1916
1917                /* Has the page moved? */
1918                if (unlikely(page != *slot)) {
1919                        put_page(head);
1920                        goto repeat;
1921                }
1922
1923                pages[ret] = page;
1924                if (++ret == nr_pages) {
1925                        *index = pages[ret - 1]->index + 1;
1926                        goto out;
1927                }
1928        }
1929
1930        /*
1931         * We come here when we got at @end. We take care to not overflow the
1932         * index @index as it confuses some of the callers. This breaks the
1933         * iteration when there is page at index -1 but that is already broken
1934         * anyway.
1935         */
1936        if (end == (pgoff_t)-1)
1937                *index = (pgoff_t)-1;
1938        else
1939                *index = end + 1;
1940out:
1941        rcu_read_unlock();
1942
1943        return ret;
1944}
1945EXPORT_SYMBOL(find_get_pages_range_tag);
1946
1947/**
1948 * find_get_entries_tag - find and return entries that match @tag
1949 * @mapping:    the address_space to search
1950 * @start:      the starting page cache index
1951 * @tag:        the tag index
1952 * @nr_entries: the maximum number of entries
1953 * @entries:    where the resulting entries are placed
1954 * @indices:    the cache indices corresponding to the entries in @entries
1955 *
1956 * Like find_get_entries, except we only return entries which are tagged with
1957 * @tag.
1958 */
1959unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1960                        int tag, unsigned int nr_entries,
1961                        struct page **entries, pgoff_t *indices)
1962{
1963        void **slot;
1964        unsigned int ret = 0;
1965        struct radix_tree_iter iter;
1966
1967        if (!nr_entries)
1968                return 0;
1969
1970        rcu_read_lock();
1971        radix_tree_for_each_tagged(slot, &mapping->i_pages, &iter, start, tag) {
1972                struct page *head, *page;
1973repeat:
1974                page = radix_tree_deref_slot(slot);
1975                if (unlikely(!page))
1976                        continue;
1977                if (radix_tree_exception(page)) {
1978                        if (radix_tree_deref_retry(page)) {
1979                                slot = radix_tree_iter_retry(&iter);
1980                                continue;
1981                        }
1982
1983                        /*
1984                         * A shadow entry of a recently evicted page, a swap
1985                         * entry from shmem/tmpfs or a DAX entry.  Return it
1986                         * without attempting to raise page count.
1987                         */
1988                        goto export;
1989                }
1990
1991                head = compound_head(page);
1992                if (!page_cache_get_speculative(head))
1993                        goto repeat;
1994
1995                /* The page was split under us? */
1996                if (compound_head(page) != head) {
1997                        put_page(head);
1998                        goto repeat;
1999                }
2000
2001                /* Has the page moved? */
2002                if (unlikely(page != *slot)) {
2003                        put_page(head);
2004                        goto repeat;
2005                }
2006export:
2007                indices[ret] = iter.index;
2008                entries[ret] = page;
2009                if (++ret == nr_entries)
2010                        break;
2011        }
2012        rcu_read_unlock();
2013        return ret;
2014}
2015EXPORT_SYMBOL(find_get_entries_tag);
2016
2017/*
2018 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2019 * a _large_ part of the i/o request. Imagine the worst scenario:
2020 *
2021 *      ---R__________________________________________B__________
2022 *         ^ reading here                             ^ bad block(assume 4k)
2023 *
2024 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2025 * => failing the whole request => read(R) => read(R+1) =>
2026 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2027 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2028 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2029 *
2030 * It is going insane. Fix it by quickly scaling down the readahead size.
2031 */
2032static void shrink_readahead_size_eio(struct file *filp,
2033                                        struct file_ra_state *ra)
2034{
2035        ra->ra_pages /= 4;
2036}
2037
2038/**
2039 * generic_file_buffered_read - generic file read routine
2040 * @iocb:       the iocb to read
2041 * @iter:       data destination
2042 * @written:    already copied
2043 *
2044 * This is a generic file read routine, and uses the
2045 * mapping->a_ops->readpage() function for the actual low-level stuff.
2046 *
2047 * This is really ugly. But the goto's actually try to clarify some
2048 * of the logic when it comes to error handling etc.
2049 */
2050static ssize_t generic_file_buffered_read(struct kiocb *iocb,
2051                struct iov_iter *iter, ssize_t written)
2052{
2053        struct file *filp = iocb->ki_filp;
2054        struct address_space *mapping = filp->f_mapping;
2055        struct inode *inode = mapping->host;
2056        struct file_ra_state *ra = &filp->f_ra;
2057        loff_t *ppos = &iocb->ki_pos;
2058        pgoff_t index;
2059        pgoff_t last_index;
2060        pgoff_t prev_index;
2061        unsigned long offset;      /* offset into pagecache page */
2062        unsigned int prev_offset;
2063        int error = 0;
2064
2065        if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2066                return 0;
2067        iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2068
2069        index = *ppos >> PAGE_SHIFT;
2070        prev_index = ra->prev_pos >> PAGE_SHIFT;
2071        prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2072        last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2073        offset = *ppos & ~PAGE_MASK;
2074
2075        for (;;) {
2076                struct page *page;
2077                pgoff_t end_index;
2078                loff_t isize;
2079                unsigned long nr, ret;
2080
2081                cond_resched();
2082find_page:
2083                if (fatal_signal_pending(current)) {
2084                        error = -EINTR;
2085                        goto out;
2086                }
2087
2088                page = find_get_page(mapping, index);
2089                if (!page) {
2090                        if (iocb->ki_flags & IOCB_NOWAIT)
2091                                goto would_block;
2092                        page_cache_sync_readahead(mapping,
2093                                        ra, filp,
2094                                        index, last_index - index);
2095                        page = find_get_page(mapping, index);
2096                        if (unlikely(page == NULL))
2097                                goto no_cached_page;
2098                }
2099                if (PageReadahead(page)) {
2100                        page_cache_async_readahead(mapping,
2101                                        ra, filp, page,
2102                                        index, last_index - index);
2103                }
2104                if (!PageUptodate(page)) {
2105                        if (iocb->ki_flags & IOCB_NOWAIT) {
2106                                put_page(page);
2107                                goto would_block;
2108                        }
2109
2110                        /*
2111                         * See comment in do_read_cache_page on why
2112                         * wait_on_page_locked is used to avoid unnecessarily
2113                         * serialisations and why it's safe.
2114                         */
2115                        error = wait_on_page_locked_killable(page);
2116                        if (unlikely(error))
2117                                goto readpage_error;
2118                        if (PageUptodate(page))
2119                                goto page_ok;
2120
2121                        if (inode->i_blkbits == PAGE_SHIFT ||
2122                                        !mapping->a_ops->is_partially_uptodate)
2123                                goto page_not_up_to_date;
2124                        /* pipes can't handle partially uptodate pages */
2125                        if (unlikely(iter->type & ITER_PIPE))
2126                                goto page_not_up_to_date;
2127                        if (!trylock_page(page))
2128                                goto page_not_up_to_date;
2129                        /* Did it get truncated before we got the lock? */
2130                        if (!page->mapping)
2131                                goto page_not_up_to_date_locked;
2132                        if (!mapping->a_ops->is_partially_uptodate(page,
2133                                                        offset, iter->count))
2134                                goto page_not_up_to_date_locked;
2135                        unlock_page(page);
2136                }
2137page_ok:
2138                /*
2139                 * i_size must be checked after we know the page is Uptodate.
2140                 *
2141                 * Checking i_size after the check allows us to calculate
2142                 * the correct value for "nr", which means the zero-filled
2143                 * part of the page is not copied back to userspace (unless
2144                 * another truncate extends the file - this is desired though).
2145                 */
2146
2147                isize = i_size_read(inode);
2148                end_index = (isize - 1) >> PAGE_SHIFT;
2149                if (unlikely(!isize || index > end_index)) {
2150                        put_page(page);
2151                        goto out;
2152                }
2153
2154                /* nr is the maximum number of bytes to copy from this page */
2155                nr = PAGE_SIZE;
2156                if (index == end_index) {
2157                        nr = ((isize - 1) & ~PAGE_MASK) + 1;
2158                        if (nr <= offset) {
2159                                put_page(page);
2160                                goto out;
2161                        }
2162                }
2163                nr = nr - offset;
2164
2165                /* If users can be writing to this page using arbitrary
2166                 * virtual addresses, take care about potential aliasing
2167                 * before reading the page on the kernel side.
2168                 */
2169                if (mapping_writably_mapped(mapping))
2170                        flush_dcache_page(page);
2171
2172                /*
2173                 * When a sequential read accesses a page several times,
2174                 * only mark it as accessed the first time.
2175                 */
2176                if (prev_index != index || offset != prev_offset)
2177                        mark_page_accessed(page);
2178                prev_index = index;
2179
2180                /*
2181                 * Ok, we have the page, and it's up-to-date, so
2182                 * now we can copy it to user space...
2183                 */
2184
2185                ret = copy_page_to_iter(page, offset, nr, iter);
2186                offset += ret;
2187                index += offset >> PAGE_SHIFT;
2188                offset &= ~PAGE_MASK;
2189                prev_offset = offset;
2190
2191                put_page(page);
2192                written += ret;
2193                if (!iov_iter_count(iter))
2194                        goto out;
2195                if (ret < nr) {
2196                        error = -EFAULT;
2197                        goto out;
2198                }
2199                continue;
2200
2201page_not_up_to_date:
2202                /* Get exclusive access to the page ... */
2203                error = lock_page_killable(page);
2204                if (unlikely(error))
2205                        goto readpage_error;
2206
2207page_not_up_to_date_locked:
2208                /* Did it get truncated before we got the lock? */
2209                if (!page->mapping) {
2210                        unlock_page(page);
2211                        put_page(page);
2212                        continue;
2213                }
2214
2215                /* Did somebody else fill it already? */
2216                if (PageUptodate(page)) {
2217                        unlock_page(page);
2218                        goto page_ok;
2219                }
2220
2221readpage:
2222                /*
2223                 * A previous I/O error may have been due to temporary
2224                 * failures, eg. multipath errors.
2225                 * PG_error will be set again if readpage fails.
2226                 */
2227                ClearPageError(page);
2228                /* Start the actual read. The read will unlock the page. */
2229                error = mapping->a_ops->readpage(filp, page);
2230
2231                if (unlikely(error)) {
2232                        if (error == AOP_TRUNCATED_PAGE) {
2233                                put_page(page);
2234                                error = 0;
2235                                goto find_page;
2236                        }
2237                        goto readpage_error;
2238                }
2239
2240                if (!PageUptodate(page)) {
2241                        error = lock_page_killable(page);
2242                        if (unlikely(error))
2243                                goto readpage_error;
2244                        if (!PageUptodate(page)) {
2245                                if (page->mapping == NULL) {
2246                                        /*
2247                                         * invalidate_mapping_pages got it
2248                                         */
2249                                        unlock_page(page);
2250                                        put_page(page);
2251                                        goto find_page;
2252                                }
2253                                unlock_page(page);
2254                                shrink_readahead_size_eio(filp, ra);
2255                                error = -EIO;
2256                                goto readpage_error;
2257                        }
2258                        unlock_page(page);
2259                }
2260
2261                goto page_ok;
2262
2263readpage_error:
2264                /* UHHUH! A synchronous read error occurred. Report it */
2265                put_page(page);
2266                goto out;
2267
2268no_cached_page:
2269                /*
2270                 * Ok, it wasn't cached, so we need to create a new
2271                 * page..
2272                 */
2273                page = page_cache_alloc(mapping);
2274                if (!page) {
2275                        error = -ENOMEM;
2276                        goto out;
2277                }
2278                error = add_to_page_cache_lru(page, mapping, index,
2279                                mapping_gfp_constraint(mapping, GFP_KERNEL));
2280                if (error) {
2281                        put_page(page);
2282                        if (error == -EEXIST) {
2283                                error = 0;
2284                                goto find_page;
2285                        }
2286                        goto out;
2287                }
2288                goto readpage;
2289        }
2290
2291would_block:
2292        error = -EAGAIN;
2293out:
2294        ra->prev_pos = prev_index;
2295        ra->prev_pos <<= PAGE_SHIFT;
2296        ra->prev_pos |= prev_offset;
2297
2298        *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2299        file_accessed(filp);
2300        return written ? written : error;
2301}
2302
2303/**
2304 * generic_file_read_iter - generic filesystem read routine
2305 * @iocb:       kernel I/O control block
2306 * @iter:       destination for the data read
2307 *
2308 * This is the "read_iter()" routine for all filesystems
2309 * that can use the page cache directly.
2310 */
2311ssize_t
2312generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2313{
2314        size_t count = iov_iter_count(iter);
2315        ssize_t retval = 0;
2316
2317        if (!count)
2318                goto out; /* skip atime */
2319
2320        if (iocb->ki_flags & IOCB_DIRECT) {
2321                struct file *file = iocb->ki_filp;
2322                struct address_space *mapping = file->f_mapping;
2323                struct inode *inode = mapping->host;
2324                loff_t size;
2325
2326                size = i_size_read(inode);
2327                if (iocb->ki_flags & IOCB_NOWAIT) {
2328                        if (filemap_range_has_page(mapping, iocb->ki_pos,
2329                                                   iocb->ki_pos + count - 1))
2330                                return -EAGAIN;
2331                } else {
2332                        retval = filemap_write_and_wait_range(mapping,
2333                                                iocb->ki_pos,
2334                                                iocb->ki_pos + count - 1);
2335                        if (retval < 0)
2336                                goto out;
2337                }
2338
2339                file_accessed(file);
2340
2341                retval = mapping->a_ops->direct_IO(iocb, iter);
2342                if (retval >= 0) {
2343                        iocb->ki_pos += retval;
2344                        count -= retval;
2345                }
2346                iov_iter_revert(iter, count - iov_iter_count(iter));
2347
2348                /*
2349                 * Btrfs can have a short DIO read if we encounter
2350                 * compressed extents, so if there was an error, or if
2351                 * we've already read everything we wanted to, or if
2352                 * there was a short read because we hit EOF, go ahead
2353                 * and return.  Otherwise fallthrough to buffered io for
2354                 * the rest of the read.  Buffered reads will not work for
2355                 * DAX files, so don't bother trying.
2356                 */
2357                if (retval < 0 || !count || iocb->ki_pos >= size ||
2358                    IS_DAX(inode))
2359                        goto out;
2360        }
2361
2362        retval = generic_file_buffered_read(iocb, iter, retval);
2363out:
2364        return retval;
2365}
2366EXPORT_SYMBOL(generic_file_read_iter);
2367
2368#ifdef CONFIG_MMU
2369/**
2370 * page_cache_read - adds requested page to the page cache if not already there
2371 * @file:       file to read
2372 * @offset:     page index
2373 * @gfp_mask:   memory allocation flags
2374 *
2375 * This adds the requested page to the page cache if it isn't already there,
2376 * and schedules an I/O to read in its contents from disk.
2377 */
2378static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
2379{
2380        struct address_space *mapping = file->f_mapping;
2381        struct page *page;
2382        int ret;
2383
2384        do {
2385                page = __page_cache_alloc(gfp_mask);
2386                if (!page)
2387                        return -ENOMEM;
2388
2389                ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask);
2390                if (ret == 0)
2391                        ret = mapping->a_ops->readpage(file, page);
2392                else if (ret == -EEXIST)
2393                        ret = 0; /* losing race to add is OK */
2394
2395                put_page(page);
2396
2397        } while (ret == AOP_TRUNCATED_PAGE);
2398
2399        return ret;
2400}
2401
2402#define MMAP_LOTSAMISS  (100)
2403
2404/*
2405 * Synchronous readahead happens when we don't even find
2406 * a page in the page cache at all.
2407 */
2408static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2409                                   struct file_ra_state *ra,
2410                                   struct file *file,
2411                                   pgoff_t offset)
2412{
2413        struct address_space *mapping = file->f_mapping;
2414
2415        /* If we don't want any read-ahead, don't bother */
2416        if (vma->vm_flags & VM_RAND_READ)
2417                return;
2418        if (!ra->ra_pages)
2419                return;
2420
2421        if (vma->vm_flags & VM_SEQ_READ) {
2422                page_cache_sync_readahead(mapping, ra, file, offset,
2423                                          ra->ra_pages);
2424                return;
2425        }
2426
2427        /* Avoid banging the cache line if not needed */
2428        if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
2429                ra->mmap_miss++;
2430
2431        /*
2432         * Do we miss much more than hit in this file? If so,
2433         * stop bothering with read-ahead. It will only hurt.
2434         */
2435        if (ra->mmap_miss > MMAP_LOTSAMISS)
2436                return;
2437
2438        /*
2439         * mmap read-around
2440         */
2441        ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2442        ra->size = ra->ra_pages;
2443        ra->async_size = ra->ra_pages / 4;
2444        ra_submit(ra, mapping, file);
2445}
2446
2447/*
2448 * Asynchronous readahead happens when we find the page and PG_readahead,
2449 * so we want to possibly extend the readahead further..
2450 */
2451static void do_async_mmap_readahead(struct vm_area_struct *vma,
2452                                    struct file_ra_state *ra,
2453                                    struct file *file,
2454                                    struct page *page,
2455                                    pgoff_t offset)
2456{
2457        struct address_space *mapping = file->f_mapping;
2458
2459        /* If we don't want any read-ahead, don't bother */
2460        if (vma->vm_flags & VM_RAND_READ)
2461                return;
2462        if (ra->mmap_miss > 0)
2463                ra->mmap_miss--;
2464        if (PageReadahead(page))
2465                page_cache_async_readahead(mapping, ra, file,
2466                                           page, offset, ra->ra_pages);
2467}
2468
2469/**
2470 * filemap_fault - read in file data for page fault handling
2471 * @vmf:        struct vm_fault containing details of the fault
2472 *
2473 * filemap_fault() is invoked via the vma operations vector for a
2474 * mapped memory region to read in file data during a page fault.
2475 *
2476 * The goto's are kind of ugly, but this streamlines the normal case of having
2477 * it in the page cache, and handles the special cases reasonably without
2478 * having a lot of duplicated code.
2479 *
2480 * vma->vm_mm->mmap_sem must be held on entry.
2481 *
2482 * If our return value has VM_FAULT_RETRY set, it's because
2483 * lock_page_or_retry() returned 0.
2484 * The mmap_sem has usually been released in this case.
2485 * See __lock_page_or_retry() for the exception.
2486 *
2487 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2488 * has not been released.
2489 *
2490 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2491 */
2492vm_fault_t filemap_fault(struct vm_fault *vmf)
2493{
2494        int error;
2495        struct file *file = vmf->vma->vm_file;
2496        struct address_space *mapping = file->f_mapping;
2497        struct file_ra_state *ra = &file->f_ra;
2498        struct inode *inode = mapping->host;
2499        pgoff_t offset = vmf->pgoff;
2500        pgoff_t max_off;
2501        struct page *page;
2502        vm_fault_t ret = 0;
2503
2504        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2505        if (unlikely(offset >= max_off))
2506                return VM_FAULT_SIGBUS;
2507
2508        /*
2509         * Do we have something in the page cache already?
2510         */
2511        page = find_get_page(mapping, offset);
2512        if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2513                /*
2514                 * We found the page, so try async readahead before
2515                 * waiting for the lock.
2516                 */
2517                do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
2518        } else if (!page) {
2519                /* No page in the page cache at all */
2520                do_sync_mmap_readahead(vmf->vma, ra, file, offset);
2521                count_vm_event(PGMAJFAULT);
2522                count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2523                ret = VM_FAULT_MAJOR;
2524retry_find:
2525                page = find_get_page(mapping, offset);
2526                if (!page)
2527                        goto no_cached_page;
2528        }
2529
2530        if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
2531                put_page(page);
2532                return ret | VM_FAULT_RETRY;
2533        }
2534
2535        /* Did it get truncated? */
2536        if (unlikely(page->mapping != mapping)) {
2537                unlock_page(page);
2538                put_page(page);
2539                goto retry_find;
2540        }
2541        VM_BUG_ON_PAGE(page->index != offset, page);
2542
2543        /*
2544         * We have a locked page in the page cache, now we need to check
2545         * that it's up-to-date. If not, it is going to be due to an error.
2546         */
2547        if (unlikely(!PageUptodate(page)))
2548                goto page_not_uptodate;
2549
2550        /*
2551         * Found the page and have a reference on it.
2552         * We must recheck i_size under page lock.
2553         */
2554        max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2555        if (unlikely(offset >= max_off)) {
2556                unlock_page(page);
2557                put_page(page);
2558                return VM_FAULT_SIGBUS;
2559        }
2560
2561        vmf->page = page;
2562        return ret | VM_FAULT_LOCKED;
2563
2564no_cached_page:
2565        /*
2566         * We're only likely to ever get here if MADV_RANDOM is in
2567         * effect.
2568         */
2569        error = page_cache_read(file, offset, vmf->gfp_mask);
2570
2571        /*
2572         * The page we want has now been added to the page cache.
2573         * In the unlikely event that someone removed it in the
2574         * meantime, we'll just come back here and read it again.
2575         */
2576        if (error >= 0)
2577                goto retry_find;
2578
2579        /*
2580         * An error return from page_cache_read can result if the
2581         * system is low on memory, or a problem occurs while trying
2582         * to schedule I/O.
2583         */
2584        if (error == -ENOMEM)
2585                return VM_FAULT_OOM;
2586        return VM_FAULT_SIGBUS;
2587
2588page_not_uptodate:
2589        /*
2590         * Umm, take care of errors if the page isn't up-to-date.
2591         * Try to re-read it _once_. We do this synchronously,
2592         * because there really aren't any performance issues here
2593         * and we need to check for errors.
2594         */
2595        ClearPageError(page);
2596        error = mapping->a_ops->readpage(file, page);
2597        if (!error) {
2598                wait_on_page_locked(page);
2599                if (!PageUptodate(page))
2600                        error = -EIO;
2601        }
2602        put_page(page);
2603
2604        if (!error || error == AOP_TRUNCATED_PAGE)
2605                goto retry_find;
2606
2607        /* Things didn't work out. Return zero to tell the mm layer so. */
2608        shrink_readahead_size_eio(file, ra);
2609        return VM_FAULT_SIGBUS;
2610}
2611EXPORT_SYMBOL(filemap_fault);
2612
2613void filemap_map_pages(struct vm_fault *vmf,
2614                pgoff_t start_pgoff, pgoff_t end_pgoff)
2615{
2616        struct radix_tree_iter iter;
2617        void **slot;
2618        struct file *file = vmf->vma->vm_file;
2619        struct address_space *mapping = file->f_mapping;
2620        pgoff_t last_pgoff = start_pgoff;
2621        unsigned long max_idx;
2622        struct page *head, *page;
2623
2624        rcu_read_lock();
2625        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start_pgoff) {
2626                if (iter.index > end_pgoff)
2627                        break;
2628repeat:
2629                page = radix_tree_deref_slot(slot);
2630                if (unlikely(!page))
2631                        goto next;
2632                if (radix_tree_exception(page)) {
2633                        if (radix_tree_deref_retry(page)) {
2634                                slot = radix_tree_iter_retry(&iter);
2635                                continue;
2636                        }
2637                        goto next;
2638                }
2639
2640                head = compound_head(page);
2641                if (!page_cache_get_speculative(head))
2642                        goto repeat;
2643
2644                /* The page was split under us? */
2645                if (compound_head(page) != head) {
2646                        put_page(head);
2647                        goto repeat;
2648                }
2649
2650                /* Has the page moved? */
2651                if (unlikely(page != *slot)) {
2652                        put_page(head);
2653                        goto repeat;
2654                }
2655
2656                if (!PageUptodate(page) ||
2657                                PageReadahead(page) ||
2658                                PageHWPoison(page))
2659                        goto skip;
2660                if (!trylock_page(page))
2661                        goto skip;
2662
2663                if (page->mapping != mapping || !PageUptodate(page))
2664                        goto unlock;
2665
2666                max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2667                if (page->index >= max_idx)
2668                        goto unlock;
2669
2670                if (file->f_ra.mmap_miss > 0)
2671                        file->f_ra.mmap_miss--;
2672
2673                vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2674                if (vmf->pte)
2675                        vmf->pte += iter.index - last_pgoff;
2676                last_pgoff = iter.index;
2677                if (alloc_set_pte(vmf, NULL, page))
2678                        goto unlock;
2679                unlock_page(page);
2680                goto next;
2681unlock:
2682                unlock_page(page);
2683skip:
2684                put_page(page);
2685next:
2686                /* Huge page is mapped? No need to proceed. */
2687                if (pmd_trans_huge(*vmf->pmd))
2688                        break;
2689                if (iter.index == end_pgoff)
2690                        break;
2691        }
2692        rcu_read_unlock();
2693}
2694EXPORT_SYMBOL(filemap_map_pages);
2695
2696vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2697{
2698        struct page *page = vmf->page;
2699        struct inode *inode = file_inode(vmf->vma->vm_file);
2700        vm_fault_t ret = VM_FAULT_LOCKED;
2701
2702        sb_start_pagefault(inode->i_sb);
2703        file_update_time(vmf->vma->vm_file);
2704        lock_page(page);
2705        if (page->mapping != inode->i_mapping) {
2706                unlock_page(page);
2707                ret = VM_FAULT_NOPAGE;
2708                goto out;
2709        }
2710        /*
2711         * We mark the page dirty already here so that when freeze is in
2712         * progress, we are guaranteed that writeback during freezing will
2713         * see the dirty page and writeprotect it again.
2714         */
2715        set_page_dirty(page);
2716        wait_for_stable_page(page);
2717out:
2718        sb_end_pagefault(inode->i_sb);
2719        return ret;
2720}
2721
2722const struct vm_operations_struct generic_file_vm_ops = {
2723        .fault          = filemap_fault,
2724        .map_pages      = filemap_map_pages,
2725        .page_mkwrite   = filemap_page_mkwrite,
2726};
2727
2728/* This is used for a general mmap of a disk file */
2729
2730int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2731{
2732        struct address_space *mapping = file->f_mapping;
2733
2734        if (!mapping->a_ops->readpage)
2735                return -ENOEXEC;
2736        file_accessed(file);
2737        vma->vm_ops = &generic_file_vm_ops;
2738        return 0;
2739}
2740
2741/*
2742 * This is for filesystems which do not implement ->writepage.
2743 */
2744int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2745{
2746        if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2747                return -EINVAL;
2748        return generic_file_mmap(file, vma);
2749}
2750#else
2751int filemap_page_mkwrite(struct vm_fault *vmf)
2752{
2753        return -ENOSYS;
2754}
2755int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2756{
2757        return -ENOSYS;
2758}
2759int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2760{
2761        return -ENOSYS;
2762}
2763#endif /* CONFIG_MMU */
2764
2765EXPORT_SYMBOL(filemap_page_mkwrite);
2766EXPORT_SYMBOL(generic_file_mmap);
2767EXPORT_SYMBOL(generic_file_readonly_mmap);
2768
2769static struct page *wait_on_page_read(struct page *page)
2770{
2771        if (!IS_ERR(page)) {
2772                wait_on_page_locked(page);
2773                if (!PageUptodate(page)) {
2774                        put_page(page);
2775                        page = ERR_PTR(-EIO);
2776                }
2777        }
2778        return page;
2779}
2780
2781static struct page *do_read_cache_page(struct address_space *mapping,
2782                                pgoff_t index,
2783                                int (*filler)(void *, struct page *),
2784                                void *data,
2785                                gfp_t gfp)
2786{
2787        struct page *page;
2788        int err;
2789repeat:
2790        page = find_get_page(mapping, index);
2791        if (!page) {
2792                page = __page_cache_alloc(gfp);
2793                if (!page)
2794                        return ERR_PTR(-ENOMEM);
2795                err = add_to_page_cache_lru(page, mapping, index, gfp);
2796                if (unlikely(err)) {
2797                        put_page(page);
2798                        if (err == -EEXIST)
2799                                goto repeat;
2800                        /* Presumably ENOMEM for radix tree node */
2801                        return ERR_PTR(err);
2802                }
2803
2804filler:
2805                err = filler(data, page);
2806                if (err < 0) {
2807                        put_page(page);
2808                        return ERR_PTR(err);
2809                }
2810
2811                page = wait_on_page_read(page);
2812                if (IS_ERR(page))
2813                        return page;
2814                goto out;
2815        }
2816        if (PageUptodate(page))
2817                goto out;
2818
2819        /*
2820         * Page is not up to date and may be locked due one of the following
2821         * case a: Page is being filled and the page lock is held
2822         * case b: Read/write error clearing the page uptodate status
2823         * case c: Truncation in progress (page locked)
2824         * case d: Reclaim in progress
2825         *
2826         * Case a, the page will be up to date when the page is unlocked.
2827         *    There is no need to serialise on the page lock here as the page
2828         *    is pinned so the lock gives no additional protection. Even if the
2829         *    the page is truncated, the data is still valid if PageUptodate as
2830         *    it's a race vs truncate race.
2831         * Case b, the page will not be up to date
2832         * Case c, the page may be truncated but in itself, the data may still
2833         *    be valid after IO completes as it's a read vs truncate race. The
2834         *    operation must restart if the page is not uptodate on unlock but
2835         *    otherwise serialising on page lock to stabilise the mapping gives
2836         *    no additional guarantees to the caller as the page lock is
2837         *    released before return.
2838         * Case d, similar to truncation. If reclaim holds the page lock, it
2839         *    will be a race with remove_mapping that determines if the mapping
2840         *    is valid on unlock but otherwise the data is valid and there is
2841         *    no need to serialise with page lock.
2842         *
2843         * As the page lock gives no additional guarantee, we optimistically
2844         * wait on the page to be unlocked and check if it's up to date and
2845         * use the page if it is. Otherwise, the page lock is required to
2846         * distinguish between the different cases. The motivation is that we
2847         * avoid spurious serialisations and wakeups when multiple processes
2848         * wait on the same page for IO to complete.
2849         */
2850        wait_on_page_locked(page);
2851        if (PageUptodate(page))
2852                goto out;
2853
2854        /* Distinguish between all the cases under the safety of the lock */
2855        lock_page(page);
2856
2857        /* Case c or d, restart the operation */
2858        if (!page->mapping) {
2859                unlock_page(page);
2860                put_page(page);
2861                goto repeat;
2862        }
2863
2864        /* Someone else locked and filled the page in a very small window */
2865        if (PageUptodate(page)) {
2866                unlock_page(page);
2867                goto out;
2868        }
2869        goto filler;
2870
2871out:
2872        mark_page_accessed(page);
2873        return page;
2874}
2875
2876/**
2877 * read_cache_page - read into page cache, fill it if needed
2878 * @mapping:    the page's address_space
2879 * @index:      the page index
2880 * @filler:     function to perform the read
2881 * @data:       first arg to filler(data, page) function, often left as NULL
2882 *
2883 * Read into the page cache. If a page already exists, and PageUptodate() is
2884 * not set, try to fill the page and wait for it to become unlocked.
2885 *
2886 * If the page does not get brought uptodate, return -EIO.
2887 */
2888struct page *read_cache_page(struct address_space *mapping,
2889                                pgoff_t index,
2890                                int (*filler)(void *, struct page *),
2891                                void *data)
2892{
2893        return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2894}
2895EXPORT_SYMBOL(read_cache_page);
2896
2897/**
2898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2899 * @mapping:    the page's address_space
2900 * @index:      the page index
2901 * @gfp:        the page allocator flags to use if allocating
2902 *
2903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2904 * any new page allocations done using the specified allocation flags.
2905 *
2906 * If the page does not get brought uptodate, return -EIO.
2907 */
2908struct page *read_cache_page_gfp(struct address_space *mapping,
2909                                pgoff_t index,
2910                                gfp_t gfp)
2911{
2912        filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2913
2914        return do_read_cache_page(mapping, index, filler, NULL, gfp);
2915}
2916EXPORT_SYMBOL(read_cache_page_gfp);
2917
2918/*
2919 * Performs necessary checks before doing a write
2920 *
2921 * Can adjust writing position or amount of bytes to write.
2922 * Returns appropriate error code that caller should return or
2923 * zero in case that write should be allowed.
2924 */
2925inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2926{
2927        struct file *file = iocb->ki_filp;
2928        struct inode *inode = file->f_mapping->host;
2929        unsigned long limit = rlimit(RLIMIT_FSIZE);
2930        loff_t pos;
2931
2932        if (!iov_iter_count(from))
2933                return 0;
2934
2935        /* FIXME: this is for backwards compatibility with 2.4 */
2936        if (iocb->ki_flags & IOCB_APPEND)
2937                iocb->ki_pos = i_size_read(inode);
2938
2939        pos = iocb->ki_pos;
2940
2941        if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
2942                return -EINVAL;
2943
2944        if (limit != RLIM_INFINITY) {
2945                if (iocb->ki_pos >= limit) {
2946                        send_sig(SIGXFSZ, current, 0);
2947                        return -EFBIG;
2948                }
2949                iov_iter_truncate(from, limit - (unsigned long)pos);
2950        }
2951
2952        /*
2953         * LFS rule
2954         */
2955        if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2956                                !(file->f_flags & O_LARGEFILE))) {
2957                if (pos >= MAX_NON_LFS)
2958                        return -EFBIG;
2959                iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2960        }
2961
2962        /*
2963         * Are we about to exceed the fs block limit ?
2964         *
2965         * If we have written data it becomes a short write.  If we have
2966         * exceeded without writing data we send a signal and return EFBIG.
2967         * Linus frestrict idea will clean these up nicely..
2968         */
2969        if (unlikely(pos >= inode->i_sb->s_maxbytes))
2970                return -EFBIG;
2971
2972        iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2973        return iov_iter_count(from);
2974}
2975EXPORT_SYMBOL(generic_write_checks);
2976
2977int pagecache_write_begin(struct file *file, struct address_space *mapping,
2978                                loff_t pos, unsigned len, unsigned flags,
2979                                struct page **pagep, void **fsdata)
2980{
2981        const struct address_space_operations *aops = mapping->a_ops;
2982
2983        return aops->write_begin(file, mapping, pos, len, flags,
2984                                                        pagep, fsdata);
2985}
2986EXPORT_SYMBOL(pagecache_write_begin);
2987
2988int pagecache_write_end(struct file *file, struct address_space *mapping,
2989                                loff_t pos, unsigned len, unsigned copied,
2990                                struct page *page, void *fsdata)
2991{
2992        const struct address_space_operations *aops = mapping->a_ops;
2993
2994        return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2995}
2996EXPORT_SYMBOL(pagecache_write_end);
2997
2998ssize_t
2999generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3000{
3001        struct file     *file = iocb->ki_filp;
3002        struct address_space *mapping = file->f_mapping;
3003        struct inode    *inode = mapping->host;
3004        loff_t          pos = iocb->ki_pos;
3005        ssize_t         written;
3006        size_t          write_len;
3007        pgoff_t         end;
3008
3009        write_len = iov_iter_count(from);
3010        end = (pos + write_len - 1) >> PAGE_SHIFT;
3011
3012        if (iocb->ki_flags & IOCB_NOWAIT) {
3013                /* If there are pages to writeback, return */
3014                if (filemap_range_has_page(inode->i_mapping, pos,
3015                                           pos + iov_iter_count(from)))
3016                        return -EAGAIN;
3017        } else {
3018                written = filemap_write_and_wait_range(mapping, pos,
3019                                                        pos + write_len - 1);
3020                if (written)
3021                        goto out;
3022        }
3023
3024        /*
3025         * After a write we want buffered reads to be sure to go to disk to get
3026         * the new data.  We invalidate clean cached page from the region we're
3027         * about to write.  We do this *before* the write so that we can return
3028         * without clobbering -EIOCBQUEUED from ->direct_IO().
3029         */
3030        written = invalidate_inode_pages2_range(mapping,
3031                                        pos >> PAGE_SHIFT, end);
3032        /*
3033         * If a page can not be invalidated, return 0 to fall back
3034         * to buffered write.
3035         */
3036        if (written) {
3037                if (written == -EBUSY)
3038                        return 0;
3039                goto out;
3040        }
3041
3042        written = mapping->a_ops->direct_IO(iocb, from);
3043
3044        /*
3045         * Finally, try again to invalidate clean pages which might have been
3046         * cached by non-direct readahead, or faulted in by get_user_pages()
3047         * if the source of the write was an mmap'ed region of the file
3048         * we're writing.  Either one is a pretty crazy thing to do,
3049         * so we don't support it 100%.  If this invalidation
3050         * fails, tough, the write still worked...
3051         *
3052         * Most of the time we do not need this since dio_complete() will do
3053         * the invalidation for us. However there are some file systems that
3054         * do not end up with dio_complete() being called, so let's not break
3055         * them by removing it completely
3056         */
3057        if (mapping->nrpages)
3058                invalidate_inode_pages2_range(mapping,
3059                                        pos >> PAGE_SHIFT, end);
3060
3061        if (written > 0) {
3062                pos += written;
3063                write_len -= written;
3064                if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3065                        i_size_write(inode, pos);
3066                        mark_inode_dirty(inode);
3067                }
3068                iocb->ki_pos = pos;
3069        }
3070        iov_iter_revert(from, write_len - iov_iter_count(from));
3071out:
3072        return written;
3073}
3074EXPORT_SYMBOL(generic_file_direct_write);
3075
3076/*
3077 * Find or create a page at the given pagecache position. Return the locked
3078 * page. This function is specifically for buffered writes.
3079 */
3080struct page *grab_cache_page_write_begin(struct address_space *mapping,
3081                                        pgoff_t index, unsigned flags)
3082{
3083        struct page *page;
3084        int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3085
3086        if (flags & AOP_FLAG_NOFS)
3087                fgp_flags |= FGP_NOFS;
3088
3089        page = pagecache_get_page(mapping, index, fgp_flags,
3090                        mapping_gfp_mask(mapping));
3091        if (page)
3092                wait_for_stable_page(page);
3093
3094        return page;
3095}
3096EXPORT_SYMBOL(grab_cache_page_write_begin);
3097
3098ssize_t generic_perform_write(struct file *file,
3099                                struct iov_iter *i, loff_t pos)
3100{
3101        struct address_space *mapping = file->f_mapping;
3102        const struct address_space_operations *a_ops = mapping->a_ops;
3103        long status = 0;
3104        ssize_t written = 0;
3105        unsigned int flags = 0;
3106
3107        do {
3108                struct page *page;
3109                unsigned long offset;   /* Offset into pagecache page */
3110                unsigned long bytes;    /* Bytes to write to page */
3111                size_t copied;          /* Bytes copied from user */
3112                void *fsdata;
3113
3114                offset = (pos & (PAGE_SIZE - 1));
3115                bytes = min_t(unsigned long, PAGE_SIZE - offset,
3116                                                iov_iter_count(i));
3117
3118again:
3119                /*
3120                 * Bring in the user page that we will copy from _first_.
3121                 * Otherwise there's a nasty deadlock on copying from the
3122                 * same page as we're writing to, without it being marked
3123                 * up-to-date.
3124                 *
3125                 * Not only is this an optimisation, but it is also required
3126                 * to check that the address is actually valid, when atomic
3127                 * usercopies are used, below.
3128                 */
3129                if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3130                        status = -EFAULT;
3131                        break;
3132                }
3133
3134                if (fatal_signal_pending(current)) {
3135                        status = -EINTR;
3136                        break;
3137                }
3138
3139                status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3140                                                &page, &fsdata);
3141                if (unlikely(status < 0))
3142                        break;
3143
3144                if (mapping_writably_mapped(mapping))
3145                        flush_dcache_page(page);
3146
3147                copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3148                flush_dcache_page(page);
3149
3150                status = a_ops->write_end(file, mapping, pos, bytes, copied,
3151                                                page, fsdata);
3152                if (unlikely(status < 0))
3153                        break;
3154                copied = status;
3155
3156                cond_resched();
3157
3158                iov_iter_advance(i, copied);
3159                if (unlikely(copied == 0)) {
3160                        /*
3161                         * If we were unable to copy any data at all, we must
3162                         * fall back to a single segment length write.
3163                         *
3164                         * If we didn't fallback here, we could livelock
3165                         * because not all segments in the iov can be copied at
3166                         * once without a pagefault.
3167                         */
3168                        bytes = min_t(unsigned long, PAGE_SIZE - offset,
3169                                                iov_iter_single_seg_count(i));
3170                        goto again;
3171                }
3172                pos += copied;
3173                written += copied;
3174
3175                balance_dirty_pages_ratelimited(mapping);
3176        } while (iov_iter_count(i));
3177
3178        return written ? written : status;
3179}
3180EXPORT_SYMBOL(generic_perform_write);
3181
3182/**
3183 * __generic_file_write_iter - write data to a file
3184 * @iocb:       IO state structure (file, offset, etc.)
3185 * @from:       iov_iter with data to write
3186 *
3187 * This function does all the work needed for actually writing data to a
3188 * file. It does all basic checks, removes SUID from the file, updates
3189 * modification times and calls proper subroutines depending on whether we
3190 * do direct IO or a standard buffered write.
3191 *
3192 * It expects i_mutex to be grabbed unless we work on a block device or similar
3193 * object which does not need locking at all.
3194 *
3195 * This function does *not* take care of syncing data in case of O_SYNC write.
3196 * A caller has to handle it. This is mainly due to the fact that we want to
3197 * avoid syncing under i_mutex.
3198 */
3199ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3200{
3201        struct file *file = iocb->ki_filp;
3202        struct address_space * mapping = file->f_mapping;
3203        struct inode    *inode = mapping->host;
3204        ssize_t         written = 0;
3205        ssize_t         err;
3206        ssize_t         status;
3207
3208        /* We can write back this queue in page reclaim */
3209        current->backing_dev_info = inode_to_bdi(inode);
3210        err = file_remove_privs(file);
3211        if (err)
3212                goto out;
3213
3214        err = file_update_time(file);
3215        if (err)
3216                goto out;
3217
3218        if (iocb->ki_flags & IOCB_DIRECT) {
3219                loff_t pos, endbyte;
3220
3221                written = generic_file_direct_write(iocb, from);
3222                /*
3223                 * If the write stopped short of completing, fall back to
3224                 * buffered writes.  Some filesystems do this for writes to
3225                 * holes, for example.  For DAX files, a buffered write will
3226                 * not succeed (even if it did, DAX does not handle dirty
3227                 * page-cache pages correctly).
3228                 */
3229                if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3230                        goto out;
3231
3232                status = generic_perform_write(file, from, pos = iocb->ki_pos);
3233                /*
3234                 * If generic_perform_write() returned a synchronous error
3235                 * then we want to return the number of bytes which were
3236                 * direct-written, or the error code if that was zero.  Note
3237                 * that this differs from normal direct-io semantics, which
3238                 * will return -EFOO even if some bytes were written.
3239                 */
3240                if (unlikely(status < 0)) {
3241                        err = status;
3242                        goto out;
3243                }
3244                /*
3245                 * We need to ensure that the page cache pages are written to
3246                 * disk and invalidated to preserve the expected O_DIRECT
3247                 * semantics.
3248                 */
3249                endbyte = pos + status - 1;
3250                err = filemap_write_and_wait_range(mapping, pos, endbyte);
3251                if (err == 0) {
3252                        iocb->ki_pos = endbyte + 1;
3253                        written += status;
3254                        invalidate_mapping_pages(mapping,
3255                                                 pos >> PAGE_SHIFT,
3256                                                 endbyte >> PAGE_SHIFT);
3257                } else {
3258                        /*
3259                         * We don't know how much we wrote, so just return
3260                         * the number of bytes which were direct-written
3261                         */
3262                }
3263        } else {
3264                written = generic_perform_write(file, from, iocb->ki_pos);
3265                if (likely(written > 0))
3266                        iocb->ki_pos += written;
3267        }
3268out:
3269        current->backing_dev_info = NULL;
3270        return written ? written : err;
3271}
3272EXPORT_SYMBOL(__generic_file_write_iter);
3273
3274/**
3275 * generic_file_write_iter - write data to a file
3276 * @iocb:       IO state structure
3277 * @from:       iov_iter with data to write
3278 *
3279 * This is a wrapper around __generic_file_write_iter() to be used by most
3280 * filesystems. It takes care of syncing the file in case of O_SYNC file
3281 * and acquires i_mutex as needed.
3282 */
3283ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3284{
3285        struct file *file = iocb->ki_filp;
3286        struct inode *inode = file->f_mapping->host;
3287        ssize_t ret;
3288
3289        inode_lock(inode);
3290        ret = generic_write_checks(iocb, from);
3291        if (ret > 0)
3292                ret = __generic_file_write_iter(iocb, from);
3293        inode_unlock(inode);
3294
3295        if (ret > 0)
3296                ret = generic_write_sync(iocb, ret);
3297        return ret;
3298}
3299EXPORT_SYMBOL(generic_file_write_iter);
3300
3301/**
3302 * try_to_release_page() - release old fs-specific metadata on a page
3303 *
3304 * @page: the page which the kernel is trying to free
3305 * @gfp_mask: memory allocation flags (and I/O mode)
3306 *
3307 * The address_space is to try to release any data against the page
3308 * (presumably at page->private).  If the release was successful, return '1'.
3309 * Otherwise return zero.
3310 *
3311 * This may also be called if PG_fscache is set on a page, indicating that the
3312 * page is known to the local caching routines.
3313 *
3314 * The @gfp_mask argument specifies whether I/O may be performed to release
3315 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3316 *
3317 */
3318int try_to_release_page(struct page *page, gfp_t gfp_mask)
3319{
3320        struct address_space * const mapping = page->mapping;
3321
3322        BUG_ON(!PageLocked(page));
3323        if (PageWriteback(page))
3324                return 0;
3325
3326        if (mapping && mapping->a_ops->releasepage)
3327                return mapping->a_ops->releasepage(page, gfp_mask);
3328        return try_to_free_buffers(page);
3329}
3330
3331EXPORT_SYMBOL(try_to_release_page);
3332