linux/mm/gup.c
<<
>>
Prefs
   1#include <linux/kernel.h>
   2#include <linux/errno.h>
   3#include <linux/err.h>
   4#include <linux/spinlock.h>
   5
   6#include <linux/mm.h>
   7#include <linux/memremap.h>
   8#include <linux/pagemap.h>
   9#include <linux/rmap.h>
  10#include <linux/swap.h>
  11#include <linux/swapops.h>
  12
  13#include <linux/sched/signal.h>
  14#include <linux/rwsem.h>
  15#include <linux/hugetlb.h>
  16
  17#include <asm/mmu_context.h>
  18#include <asm/pgtable.h>
  19#include <asm/tlbflush.h>
  20
  21#include "internal.h"
  22
  23static struct page *no_page_table(struct vm_area_struct *vma,
  24                unsigned int flags)
  25{
  26        /*
  27         * When core dumping an enormous anonymous area that nobody
  28         * has touched so far, we don't want to allocate unnecessary pages or
  29         * page tables.  Return error instead of NULL to skip handle_mm_fault,
  30         * then get_dump_page() will return NULL to leave a hole in the dump.
  31         * But we can only make this optimization where a hole would surely
  32         * be zero-filled if handle_mm_fault() actually did handle it.
  33         */
  34        if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
  35                return ERR_PTR(-EFAULT);
  36        return NULL;
  37}
  38
  39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
  40                pte_t *pte, unsigned int flags)
  41{
  42        /* No page to get reference */
  43        if (flags & FOLL_GET)
  44                return -EFAULT;
  45
  46        if (flags & FOLL_TOUCH) {
  47                pte_t entry = *pte;
  48
  49                if (flags & FOLL_WRITE)
  50                        entry = pte_mkdirty(entry);
  51                entry = pte_mkyoung(entry);
  52
  53                if (!pte_same(*pte, entry)) {
  54                        set_pte_at(vma->vm_mm, address, pte, entry);
  55                        update_mmu_cache(vma, address, pte);
  56                }
  57        }
  58
  59        /* Proper page table entry exists, but no corresponding struct page */
  60        return -EEXIST;
  61}
  62
  63/*
  64 * FOLL_FORCE can write to even unwritable pte's, but only
  65 * after we've gone through a COW cycle and they are dirty.
  66 */
  67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
  68{
  69        return pte_write(pte) ||
  70                ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
  71}
  72
  73static struct page *follow_page_pte(struct vm_area_struct *vma,
  74                unsigned long address, pmd_t *pmd, unsigned int flags)
  75{
  76        struct mm_struct *mm = vma->vm_mm;
  77        struct dev_pagemap *pgmap = NULL;
  78        struct page *page;
  79        spinlock_t *ptl;
  80        pte_t *ptep, pte;
  81
  82retry:
  83        if (unlikely(pmd_bad(*pmd)))
  84                return no_page_table(vma, flags);
  85
  86        ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
  87        pte = *ptep;
  88        if (!pte_present(pte)) {
  89                swp_entry_t entry;
  90                /*
  91                 * KSM's break_ksm() relies upon recognizing a ksm page
  92                 * even while it is being migrated, so for that case we
  93                 * need migration_entry_wait().
  94                 */
  95                if (likely(!(flags & FOLL_MIGRATION)))
  96                        goto no_page;
  97                if (pte_none(pte))
  98                        goto no_page;
  99                entry = pte_to_swp_entry(pte);
 100                if (!is_migration_entry(entry))
 101                        goto no_page;
 102                pte_unmap_unlock(ptep, ptl);
 103                migration_entry_wait(mm, pmd, address);
 104                goto retry;
 105        }
 106        if ((flags & FOLL_NUMA) && pte_protnone(pte))
 107                goto no_page;
 108        if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
 109                pte_unmap_unlock(ptep, ptl);
 110                return NULL;
 111        }
 112
 113        page = vm_normal_page(vma, address, pte);
 114        if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
 115                /*
 116                 * Only return device mapping pages in the FOLL_GET case since
 117                 * they are only valid while holding the pgmap reference.
 118                 */
 119                pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
 120                if (pgmap)
 121                        page = pte_page(pte);
 122                else
 123                        goto no_page;
 124        } else if (unlikely(!page)) {
 125                if (flags & FOLL_DUMP) {
 126                        /* Avoid special (like zero) pages in core dumps */
 127                        page = ERR_PTR(-EFAULT);
 128                        goto out;
 129                }
 130
 131                if (is_zero_pfn(pte_pfn(pte))) {
 132                        page = pte_page(pte);
 133                } else {
 134                        int ret;
 135
 136                        ret = follow_pfn_pte(vma, address, ptep, flags);
 137                        page = ERR_PTR(ret);
 138                        goto out;
 139                }
 140        }
 141
 142        if (flags & FOLL_SPLIT && PageTransCompound(page)) {
 143                int ret;
 144                get_page(page);
 145                pte_unmap_unlock(ptep, ptl);
 146                lock_page(page);
 147                ret = split_huge_page(page);
 148                unlock_page(page);
 149                put_page(page);
 150                if (ret)
 151                        return ERR_PTR(ret);
 152                goto retry;
 153        }
 154
 155        if (flags & FOLL_GET) {
 156                get_page(page);
 157
 158                /* drop the pgmap reference now that we hold the page */
 159                if (pgmap) {
 160                        put_dev_pagemap(pgmap);
 161                        pgmap = NULL;
 162                }
 163        }
 164        if (flags & FOLL_TOUCH) {
 165                if ((flags & FOLL_WRITE) &&
 166                    !pte_dirty(pte) && !PageDirty(page))
 167                        set_page_dirty(page);
 168                /*
 169                 * pte_mkyoung() would be more correct here, but atomic care
 170                 * is needed to avoid losing the dirty bit: it is easier to use
 171                 * mark_page_accessed().
 172                 */
 173                mark_page_accessed(page);
 174        }
 175        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
 176                /* Do not mlock pte-mapped THP */
 177                if (PageTransCompound(page))
 178                        goto out;
 179
 180                /*
 181                 * The preliminary mapping check is mainly to avoid the
 182                 * pointless overhead of lock_page on the ZERO_PAGE
 183                 * which might bounce very badly if there is contention.
 184                 *
 185                 * If the page is already locked, we don't need to
 186                 * handle it now - vmscan will handle it later if and
 187                 * when it attempts to reclaim the page.
 188                 */
 189                if (page->mapping && trylock_page(page)) {
 190                        lru_add_drain();  /* push cached pages to LRU */
 191                        /*
 192                         * Because we lock page here, and migration is
 193                         * blocked by the pte's page reference, and we
 194                         * know the page is still mapped, we don't even
 195                         * need to check for file-cache page truncation.
 196                         */
 197                        mlock_vma_page(page);
 198                        unlock_page(page);
 199                }
 200        }
 201out:
 202        pte_unmap_unlock(ptep, ptl);
 203        return page;
 204no_page:
 205        pte_unmap_unlock(ptep, ptl);
 206        if (!pte_none(pte))
 207                return NULL;
 208        return no_page_table(vma, flags);
 209}
 210
 211static struct page *follow_pmd_mask(struct vm_area_struct *vma,
 212                                    unsigned long address, pud_t *pudp,
 213                                    unsigned int flags, unsigned int *page_mask)
 214{
 215        pmd_t *pmd, pmdval;
 216        spinlock_t *ptl;
 217        struct page *page;
 218        struct mm_struct *mm = vma->vm_mm;
 219
 220        pmd = pmd_offset(pudp, address);
 221        /*
 222         * The READ_ONCE() will stabilize the pmdval in a register or
 223         * on the stack so that it will stop changing under the code.
 224         */
 225        pmdval = READ_ONCE(*pmd);
 226        if (pmd_none(pmdval))
 227                return no_page_table(vma, flags);
 228        if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
 229                page = follow_huge_pmd(mm, address, pmd, flags);
 230                if (page)
 231                        return page;
 232                return no_page_table(vma, flags);
 233        }
 234        if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
 235                page = follow_huge_pd(vma, address,
 236                                      __hugepd(pmd_val(pmdval)), flags,
 237                                      PMD_SHIFT);
 238                if (page)
 239                        return page;
 240                return no_page_table(vma, flags);
 241        }
 242retry:
 243        if (!pmd_present(pmdval)) {
 244                if (likely(!(flags & FOLL_MIGRATION)))
 245                        return no_page_table(vma, flags);
 246                VM_BUG_ON(thp_migration_supported() &&
 247                                  !is_pmd_migration_entry(pmdval));
 248                if (is_pmd_migration_entry(pmdval))
 249                        pmd_migration_entry_wait(mm, pmd);
 250                pmdval = READ_ONCE(*pmd);
 251                /*
 252                 * MADV_DONTNEED may convert the pmd to null because
 253                 * mmap_sem is held in read mode
 254                 */
 255                if (pmd_none(pmdval))
 256                        return no_page_table(vma, flags);
 257                goto retry;
 258        }
 259        if (pmd_devmap(pmdval)) {
 260                ptl = pmd_lock(mm, pmd);
 261                page = follow_devmap_pmd(vma, address, pmd, flags);
 262                spin_unlock(ptl);
 263                if (page)
 264                        return page;
 265        }
 266        if (likely(!pmd_trans_huge(pmdval)))
 267                return follow_page_pte(vma, address, pmd, flags);
 268
 269        if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
 270                return no_page_table(vma, flags);
 271
 272retry_locked:
 273        ptl = pmd_lock(mm, pmd);
 274        if (unlikely(pmd_none(*pmd))) {
 275                spin_unlock(ptl);
 276                return no_page_table(vma, flags);
 277        }
 278        if (unlikely(!pmd_present(*pmd))) {
 279                spin_unlock(ptl);
 280                if (likely(!(flags & FOLL_MIGRATION)))
 281                        return no_page_table(vma, flags);
 282                pmd_migration_entry_wait(mm, pmd);
 283                goto retry_locked;
 284        }
 285        if (unlikely(!pmd_trans_huge(*pmd))) {
 286                spin_unlock(ptl);
 287                return follow_page_pte(vma, address, pmd, flags);
 288        }
 289        if (flags & FOLL_SPLIT) {
 290                int ret;
 291                page = pmd_page(*pmd);
 292                if (is_huge_zero_page(page)) {
 293                        spin_unlock(ptl);
 294                        ret = 0;
 295                        split_huge_pmd(vma, pmd, address);
 296                        if (pmd_trans_unstable(pmd))
 297                                ret = -EBUSY;
 298                } else {
 299                        get_page(page);
 300                        spin_unlock(ptl);
 301                        lock_page(page);
 302                        ret = split_huge_page(page);
 303                        unlock_page(page);
 304                        put_page(page);
 305                        if (pmd_none(*pmd))
 306                                return no_page_table(vma, flags);
 307                }
 308
 309                return ret ? ERR_PTR(ret) :
 310                        follow_page_pte(vma, address, pmd, flags);
 311        }
 312        page = follow_trans_huge_pmd(vma, address, pmd, flags);
 313        spin_unlock(ptl);
 314        *page_mask = HPAGE_PMD_NR - 1;
 315        return page;
 316}
 317
 318
 319static struct page *follow_pud_mask(struct vm_area_struct *vma,
 320                                    unsigned long address, p4d_t *p4dp,
 321                                    unsigned int flags, unsigned int *page_mask)
 322{
 323        pud_t *pud;
 324        spinlock_t *ptl;
 325        struct page *page;
 326        struct mm_struct *mm = vma->vm_mm;
 327
 328        pud = pud_offset(p4dp, address);
 329        if (pud_none(*pud))
 330                return no_page_table(vma, flags);
 331        if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
 332                page = follow_huge_pud(mm, address, pud, flags);
 333                if (page)
 334                        return page;
 335                return no_page_table(vma, flags);
 336        }
 337        if (is_hugepd(__hugepd(pud_val(*pud)))) {
 338                page = follow_huge_pd(vma, address,
 339                                      __hugepd(pud_val(*pud)), flags,
 340                                      PUD_SHIFT);
 341                if (page)
 342                        return page;
 343                return no_page_table(vma, flags);
 344        }
 345        if (pud_devmap(*pud)) {
 346                ptl = pud_lock(mm, pud);
 347                page = follow_devmap_pud(vma, address, pud, flags);
 348                spin_unlock(ptl);
 349                if (page)
 350                        return page;
 351        }
 352        if (unlikely(pud_bad(*pud)))
 353                return no_page_table(vma, flags);
 354
 355        return follow_pmd_mask(vma, address, pud, flags, page_mask);
 356}
 357
 358
 359static struct page *follow_p4d_mask(struct vm_area_struct *vma,
 360                                    unsigned long address, pgd_t *pgdp,
 361                                    unsigned int flags, unsigned int *page_mask)
 362{
 363        p4d_t *p4d;
 364        struct page *page;
 365
 366        p4d = p4d_offset(pgdp, address);
 367        if (p4d_none(*p4d))
 368                return no_page_table(vma, flags);
 369        BUILD_BUG_ON(p4d_huge(*p4d));
 370        if (unlikely(p4d_bad(*p4d)))
 371                return no_page_table(vma, flags);
 372
 373        if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
 374                page = follow_huge_pd(vma, address,
 375                                      __hugepd(p4d_val(*p4d)), flags,
 376                                      P4D_SHIFT);
 377                if (page)
 378                        return page;
 379                return no_page_table(vma, flags);
 380        }
 381        return follow_pud_mask(vma, address, p4d, flags, page_mask);
 382}
 383
 384/**
 385 * follow_page_mask - look up a page descriptor from a user-virtual address
 386 * @vma: vm_area_struct mapping @address
 387 * @address: virtual address to look up
 388 * @flags: flags modifying lookup behaviour
 389 * @page_mask: on output, *page_mask is set according to the size of the page
 390 *
 391 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
 392 *
 393 * Returns the mapped (struct page *), %NULL if no mapping exists, or
 394 * an error pointer if there is a mapping to something not represented
 395 * by a page descriptor (see also vm_normal_page()).
 396 */
 397struct page *follow_page_mask(struct vm_area_struct *vma,
 398                              unsigned long address, unsigned int flags,
 399                              unsigned int *page_mask)
 400{
 401        pgd_t *pgd;
 402        struct page *page;
 403        struct mm_struct *mm = vma->vm_mm;
 404
 405        *page_mask = 0;
 406
 407        /* make this handle hugepd */
 408        page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
 409        if (!IS_ERR(page)) {
 410                BUG_ON(flags & FOLL_GET);
 411                return page;
 412        }
 413
 414        pgd = pgd_offset(mm, address);
 415
 416        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
 417                return no_page_table(vma, flags);
 418
 419        if (pgd_huge(*pgd)) {
 420                page = follow_huge_pgd(mm, address, pgd, flags);
 421                if (page)
 422                        return page;
 423                return no_page_table(vma, flags);
 424        }
 425        if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
 426                page = follow_huge_pd(vma, address,
 427                                      __hugepd(pgd_val(*pgd)), flags,
 428                                      PGDIR_SHIFT);
 429                if (page)
 430                        return page;
 431                return no_page_table(vma, flags);
 432        }
 433
 434        return follow_p4d_mask(vma, address, pgd, flags, page_mask);
 435}
 436
 437static int get_gate_page(struct mm_struct *mm, unsigned long address,
 438                unsigned int gup_flags, struct vm_area_struct **vma,
 439                struct page **page)
 440{
 441        pgd_t *pgd;
 442        p4d_t *p4d;
 443        pud_t *pud;
 444        pmd_t *pmd;
 445        pte_t *pte;
 446        int ret = -EFAULT;
 447
 448        /* user gate pages are read-only */
 449        if (gup_flags & FOLL_WRITE)
 450                return -EFAULT;
 451        if (address > TASK_SIZE)
 452                pgd = pgd_offset_k(address);
 453        else
 454                pgd = pgd_offset_gate(mm, address);
 455        BUG_ON(pgd_none(*pgd));
 456        p4d = p4d_offset(pgd, address);
 457        BUG_ON(p4d_none(*p4d));
 458        pud = pud_offset(p4d, address);
 459        BUG_ON(pud_none(*pud));
 460        pmd = pmd_offset(pud, address);
 461        if (!pmd_present(*pmd))
 462                return -EFAULT;
 463        VM_BUG_ON(pmd_trans_huge(*pmd));
 464        pte = pte_offset_map(pmd, address);
 465        if (pte_none(*pte))
 466                goto unmap;
 467        *vma = get_gate_vma(mm);
 468        if (!page)
 469                goto out;
 470        *page = vm_normal_page(*vma, address, *pte);
 471        if (!*page) {
 472                if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
 473                        goto unmap;
 474                *page = pte_page(*pte);
 475
 476                /*
 477                 * This should never happen (a device public page in the gate
 478                 * area).
 479                 */
 480                if (is_device_public_page(*page))
 481                        goto unmap;
 482        }
 483        get_page(*page);
 484out:
 485        ret = 0;
 486unmap:
 487        pte_unmap(pte);
 488        return ret;
 489}
 490
 491/*
 492 * mmap_sem must be held on entry.  If @nonblocking != NULL and
 493 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
 494 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
 495 */
 496static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
 497                unsigned long address, unsigned int *flags, int *nonblocking)
 498{
 499        unsigned int fault_flags = 0;
 500        vm_fault_t ret;
 501
 502        /* mlock all present pages, but do not fault in new pages */
 503        if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
 504                return -ENOENT;
 505        if (*flags & FOLL_WRITE)
 506                fault_flags |= FAULT_FLAG_WRITE;
 507        if (*flags & FOLL_REMOTE)
 508                fault_flags |= FAULT_FLAG_REMOTE;
 509        if (nonblocking)
 510                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 511        if (*flags & FOLL_NOWAIT)
 512                fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
 513        if (*flags & FOLL_TRIED) {
 514                VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
 515                fault_flags |= FAULT_FLAG_TRIED;
 516        }
 517
 518        ret = handle_mm_fault(vma, address, fault_flags);
 519        if (ret & VM_FAULT_ERROR) {
 520                int err = vm_fault_to_errno(ret, *flags);
 521
 522                if (err)
 523                        return err;
 524                BUG();
 525        }
 526
 527        if (tsk) {
 528                if (ret & VM_FAULT_MAJOR)
 529                        tsk->maj_flt++;
 530                else
 531                        tsk->min_flt++;
 532        }
 533
 534        if (ret & VM_FAULT_RETRY) {
 535                if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
 536                        *nonblocking = 0;
 537                return -EBUSY;
 538        }
 539
 540        /*
 541         * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
 542         * necessary, even if maybe_mkwrite decided not to set pte_write. We
 543         * can thus safely do subsequent page lookups as if they were reads.
 544         * But only do so when looping for pte_write is futile: in some cases
 545         * userspace may also be wanting to write to the gotten user page,
 546         * which a read fault here might prevent (a readonly page might get
 547         * reCOWed by userspace write).
 548         */
 549        if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
 550                *flags |= FOLL_COW;
 551        return 0;
 552}
 553
 554static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
 555{
 556        vm_flags_t vm_flags = vma->vm_flags;
 557        int write = (gup_flags & FOLL_WRITE);
 558        int foreign = (gup_flags & FOLL_REMOTE);
 559
 560        if (vm_flags & (VM_IO | VM_PFNMAP))
 561                return -EFAULT;
 562
 563        if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
 564                return -EFAULT;
 565
 566        if (write) {
 567                if (!(vm_flags & VM_WRITE)) {
 568                        if (!(gup_flags & FOLL_FORCE))
 569                                return -EFAULT;
 570                        /*
 571                         * We used to let the write,force case do COW in a
 572                         * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
 573                         * set a breakpoint in a read-only mapping of an
 574                         * executable, without corrupting the file (yet only
 575                         * when that file had been opened for writing!).
 576                         * Anon pages in shared mappings are surprising: now
 577                         * just reject it.
 578                         */
 579                        if (!is_cow_mapping(vm_flags))
 580                                return -EFAULT;
 581                }
 582        } else if (!(vm_flags & VM_READ)) {
 583                if (!(gup_flags & FOLL_FORCE))
 584                        return -EFAULT;
 585                /*
 586                 * Is there actually any vma we can reach here which does not
 587                 * have VM_MAYREAD set?
 588                 */
 589                if (!(vm_flags & VM_MAYREAD))
 590                        return -EFAULT;
 591        }
 592        /*
 593         * gups are always data accesses, not instruction
 594         * fetches, so execute=false here
 595         */
 596        if (!arch_vma_access_permitted(vma, write, false, foreign))
 597                return -EFAULT;
 598        return 0;
 599}
 600
 601/**
 602 * __get_user_pages() - pin user pages in memory
 603 * @tsk:        task_struct of target task
 604 * @mm:         mm_struct of target mm
 605 * @start:      starting user address
 606 * @nr_pages:   number of pages from start to pin
 607 * @gup_flags:  flags modifying pin behaviour
 608 * @pages:      array that receives pointers to the pages pinned.
 609 *              Should be at least nr_pages long. Or NULL, if caller
 610 *              only intends to ensure the pages are faulted in.
 611 * @vmas:       array of pointers to vmas corresponding to each page.
 612 *              Or NULL if the caller does not require them.
 613 * @nonblocking: whether waiting for disk IO or mmap_sem contention
 614 *
 615 * Returns number of pages pinned. This may be fewer than the number
 616 * requested. If nr_pages is 0 or negative, returns 0. If no pages
 617 * were pinned, returns -errno. Each page returned must be released
 618 * with a put_page() call when it is finished with. vmas will only
 619 * remain valid while mmap_sem is held.
 620 *
 621 * Must be called with mmap_sem held.  It may be released.  See below.
 622 *
 623 * __get_user_pages walks a process's page tables and takes a reference to
 624 * each struct page that each user address corresponds to at a given
 625 * instant. That is, it takes the page that would be accessed if a user
 626 * thread accesses the given user virtual address at that instant.
 627 *
 628 * This does not guarantee that the page exists in the user mappings when
 629 * __get_user_pages returns, and there may even be a completely different
 630 * page there in some cases (eg. if mmapped pagecache has been invalidated
 631 * and subsequently re faulted). However it does guarantee that the page
 632 * won't be freed completely. And mostly callers simply care that the page
 633 * contains data that was valid *at some point in time*. Typically, an IO
 634 * or similar operation cannot guarantee anything stronger anyway because
 635 * locks can't be held over the syscall boundary.
 636 *
 637 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
 638 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
 639 * appropriate) must be called after the page is finished with, and
 640 * before put_page is called.
 641 *
 642 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
 643 * or mmap_sem contention, and if waiting is needed to pin all pages,
 644 * *@nonblocking will be set to 0.  Further, if @gup_flags does not
 645 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
 646 * this case.
 647 *
 648 * A caller using such a combination of @nonblocking and @gup_flags
 649 * must therefore hold the mmap_sem for reading only, and recognize
 650 * when it's been released.  Otherwise, it must be held for either
 651 * reading or writing and will not be released.
 652 *
 653 * In most cases, get_user_pages or get_user_pages_fast should be used
 654 * instead of __get_user_pages. __get_user_pages should be used only if
 655 * you need some special @gup_flags.
 656 */
 657static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
 658                unsigned long start, unsigned long nr_pages,
 659                unsigned int gup_flags, struct page **pages,
 660                struct vm_area_struct **vmas, int *nonblocking)
 661{
 662        long i = 0;
 663        unsigned int page_mask;
 664        struct vm_area_struct *vma = NULL;
 665
 666        if (!nr_pages)
 667                return 0;
 668
 669        VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
 670
 671        /*
 672         * If FOLL_FORCE is set then do not force a full fault as the hinting
 673         * fault information is unrelated to the reference behaviour of a task
 674         * using the address space
 675         */
 676        if (!(gup_flags & FOLL_FORCE))
 677                gup_flags |= FOLL_NUMA;
 678
 679        do {
 680                struct page *page;
 681                unsigned int foll_flags = gup_flags;
 682                unsigned int page_increm;
 683
 684                /* first iteration or cross vma bound */
 685                if (!vma || start >= vma->vm_end) {
 686                        vma = find_extend_vma(mm, start);
 687                        if (!vma && in_gate_area(mm, start)) {
 688                                int ret;
 689                                ret = get_gate_page(mm, start & PAGE_MASK,
 690                                                gup_flags, &vma,
 691                                                pages ? &pages[i] : NULL);
 692                                if (ret)
 693                                        return i ? : ret;
 694                                page_mask = 0;
 695                                goto next_page;
 696                        }
 697
 698                        if (!vma || check_vma_flags(vma, gup_flags))
 699                                return i ? : -EFAULT;
 700                        if (is_vm_hugetlb_page(vma)) {
 701                                i = follow_hugetlb_page(mm, vma, pages, vmas,
 702                                                &start, &nr_pages, i,
 703                                                gup_flags, nonblocking);
 704                                continue;
 705                        }
 706                }
 707retry:
 708                /*
 709                 * If we have a pending SIGKILL, don't keep faulting pages and
 710                 * potentially allocating memory.
 711                 */
 712                if (unlikely(fatal_signal_pending(current)))
 713                        return i ? i : -ERESTARTSYS;
 714                cond_resched();
 715                page = follow_page_mask(vma, start, foll_flags, &page_mask);
 716                if (!page) {
 717                        int ret;
 718                        ret = faultin_page(tsk, vma, start, &foll_flags,
 719                                        nonblocking);
 720                        switch (ret) {
 721                        case 0:
 722                                goto retry;
 723                        case -EFAULT:
 724                        case -ENOMEM:
 725                        case -EHWPOISON:
 726                                return i ? i : ret;
 727                        case -EBUSY:
 728                                return i;
 729                        case -ENOENT:
 730                                goto next_page;
 731                        }
 732                        BUG();
 733                } else if (PTR_ERR(page) == -EEXIST) {
 734                        /*
 735                         * Proper page table entry exists, but no corresponding
 736                         * struct page.
 737                         */
 738                        goto next_page;
 739                } else if (IS_ERR(page)) {
 740                        return i ? i : PTR_ERR(page);
 741                }
 742                if (pages) {
 743                        pages[i] = page;
 744                        flush_anon_page(vma, page, start);
 745                        flush_dcache_page(page);
 746                        page_mask = 0;
 747                }
 748next_page:
 749                if (vmas) {
 750                        vmas[i] = vma;
 751                        page_mask = 0;
 752                }
 753                page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
 754                if (page_increm > nr_pages)
 755                        page_increm = nr_pages;
 756                i += page_increm;
 757                start += page_increm * PAGE_SIZE;
 758                nr_pages -= page_increm;
 759        } while (nr_pages);
 760        return i;
 761}
 762
 763static bool vma_permits_fault(struct vm_area_struct *vma,
 764                              unsigned int fault_flags)
 765{
 766        bool write   = !!(fault_flags & FAULT_FLAG_WRITE);
 767        bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
 768        vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
 769
 770        if (!(vm_flags & vma->vm_flags))
 771                return false;
 772
 773        /*
 774         * The architecture might have a hardware protection
 775         * mechanism other than read/write that can deny access.
 776         *
 777         * gup always represents data access, not instruction
 778         * fetches, so execute=false here:
 779         */
 780        if (!arch_vma_access_permitted(vma, write, false, foreign))
 781                return false;
 782
 783        return true;
 784}
 785
 786/*
 787 * fixup_user_fault() - manually resolve a user page fault
 788 * @tsk:        the task_struct to use for page fault accounting, or
 789 *              NULL if faults are not to be recorded.
 790 * @mm:         mm_struct of target mm
 791 * @address:    user address
 792 * @fault_flags:flags to pass down to handle_mm_fault()
 793 * @unlocked:   did we unlock the mmap_sem while retrying, maybe NULL if caller
 794 *              does not allow retry
 795 *
 796 * This is meant to be called in the specific scenario where for locking reasons
 797 * we try to access user memory in atomic context (within a pagefault_disable()
 798 * section), this returns -EFAULT, and we want to resolve the user fault before
 799 * trying again.
 800 *
 801 * Typically this is meant to be used by the futex code.
 802 *
 803 * The main difference with get_user_pages() is that this function will
 804 * unconditionally call handle_mm_fault() which will in turn perform all the
 805 * necessary SW fixup of the dirty and young bits in the PTE, while
 806 * get_user_pages() only guarantees to update these in the struct page.
 807 *
 808 * This is important for some architectures where those bits also gate the
 809 * access permission to the page because they are maintained in software.  On
 810 * such architectures, gup() will not be enough to make a subsequent access
 811 * succeed.
 812 *
 813 * This function will not return with an unlocked mmap_sem. So it has not the
 814 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
 815 */
 816int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
 817                     unsigned long address, unsigned int fault_flags,
 818                     bool *unlocked)
 819{
 820        struct vm_area_struct *vma;
 821        vm_fault_t ret, major = 0;
 822
 823        if (unlocked)
 824                fault_flags |= FAULT_FLAG_ALLOW_RETRY;
 825
 826retry:
 827        vma = find_extend_vma(mm, address);
 828        if (!vma || address < vma->vm_start)
 829                return -EFAULT;
 830
 831        if (!vma_permits_fault(vma, fault_flags))
 832                return -EFAULT;
 833
 834        ret = handle_mm_fault(vma, address, fault_flags);
 835        major |= ret & VM_FAULT_MAJOR;
 836        if (ret & VM_FAULT_ERROR) {
 837                int err = vm_fault_to_errno(ret, 0);
 838
 839                if (err)
 840                        return err;
 841                BUG();
 842        }
 843
 844        if (ret & VM_FAULT_RETRY) {
 845                down_read(&mm->mmap_sem);
 846                if (!(fault_flags & FAULT_FLAG_TRIED)) {
 847                        *unlocked = true;
 848                        fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
 849                        fault_flags |= FAULT_FLAG_TRIED;
 850                        goto retry;
 851                }
 852        }
 853
 854        if (tsk) {
 855                if (major)
 856                        tsk->maj_flt++;
 857                else
 858                        tsk->min_flt++;
 859        }
 860        return 0;
 861}
 862EXPORT_SYMBOL_GPL(fixup_user_fault);
 863
 864static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
 865                                                struct mm_struct *mm,
 866                                                unsigned long start,
 867                                                unsigned long nr_pages,
 868                                                struct page **pages,
 869                                                struct vm_area_struct **vmas,
 870                                                int *locked,
 871                                                unsigned int flags)
 872{
 873        long ret, pages_done;
 874        bool lock_dropped;
 875
 876        if (locked) {
 877                /* if VM_FAULT_RETRY can be returned, vmas become invalid */
 878                BUG_ON(vmas);
 879                /* check caller initialized locked */
 880                BUG_ON(*locked != 1);
 881        }
 882
 883        if (pages)
 884                flags |= FOLL_GET;
 885
 886        pages_done = 0;
 887        lock_dropped = false;
 888        for (;;) {
 889                ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
 890                                       vmas, locked);
 891                if (!locked)
 892                        /* VM_FAULT_RETRY couldn't trigger, bypass */
 893                        return ret;
 894
 895                /* VM_FAULT_RETRY cannot return errors */
 896                if (!*locked) {
 897                        BUG_ON(ret < 0);
 898                        BUG_ON(ret >= nr_pages);
 899                }
 900
 901                if (!pages)
 902                        /* If it's a prefault don't insist harder */
 903                        return ret;
 904
 905                if (ret > 0) {
 906                        nr_pages -= ret;
 907                        pages_done += ret;
 908                        if (!nr_pages)
 909                                break;
 910                }
 911                if (*locked) {
 912                        /*
 913                         * VM_FAULT_RETRY didn't trigger or it was a
 914                         * FOLL_NOWAIT.
 915                         */
 916                        if (!pages_done)
 917                                pages_done = ret;
 918                        break;
 919                }
 920                /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
 921                pages += ret;
 922                start += ret << PAGE_SHIFT;
 923
 924                /*
 925                 * Repeat on the address that fired VM_FAULT_RETRY
 926                 * without FAULT_FLAG_ALLOW_RETRY but with
 927                 * FAULT_FLAG_TRIED.
 928                 */
 929                *locked = 1;
 930                lock_dropped = true;
 931                down_read(&mm->mmap_sem);
 932                ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
 933                                       pages, NULL, NULL);
 934                if (ret != 1) {
 935                        BUG_ON(ret > 1);
 936                        if (!pages_done)
 937                                pages_done = ret;
 938                        break;
 939                }
 940                nr_pages--;
 941                pages_done++;
 942                if (!nr_pages)
 943                        break;
 944                pages++;
 945                start += PAGE_SIZE;
 946        }
 947        if (lock_dropped && *locked) {
 948                /*
 949                 * We must let the caller know we temporarily dropped the lock
 950                 * and so the critical section protected by it was lost.
 951                 */
 952                up_read(&mm->mmap_sem);
 953                *locked = 0;
 954        }
 955        return pages_done;
 956}
 957
 958/*
 959 * We can leverage the VM_FAULT_RETRY functionality in the page fault
 960 * paths better by using either get_user_pages_locked() or
 961 * get_user_pages_unlocked().
 962 *
 963 * get_user_pages_locked() is suitable to replace the form:
 964 *
 965 *      down_read(&mm->mmap_sem);
 966 *      do_something()
 967 *      get_user_pages(tsk, mm, ..., pages, NULL);
 968 *      up_read(&mm->mmap_sem);
 969 *
 970 *  to:
 971 *
 972 *      int locked = 1;
 973 *      down_read(&mm->mmap_sem);
 974 *      do_something()
 975 *      get_user_pages_locked(tsk, mm, ..., pages, &locked);
 976 *      if (locked)
 977 *          up_read(&mm->mmap_sem);
 978 */
 979long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
 980                           unsigned int gup_flags, struct page **pages,
 981                           int *locked)
 982{
 983        return __get_user_pages_locked(current, current->mm, start, nr_pages,
 984                                       pages, NULL, locked,
 985                                       gup_flags | FOLL_TOUCH);
 986}
 987EXPORT_SYMBOL(get_user_pages_locked);
 988
 989/*
 990 * get_user_pages_unlocked() is suitable to replace the form:
 991 *
 992 *      down_read(&mm->mmap_sem);
 993 *      get_user_pages(tsk, mm, ..., pages, NULL);
 994 *      up_read(&mm->mmap_sem);
 995 *
 996 *  with:
 997 *
 998 *      get_user_pages_unlocked(tsk, mm, ..., pages);
 999 *
1000 * It is functionally equivalent to get_user_pages_fast so
1001 * get_user_pages_fast should be used instead if specific gup_flags
1002 * (e.g. FOLL_FORCE) are not required.
1003 */
1004long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1005                             struct page **pages, unsigned int gup_flags)
1006{
1007        struct mm_struct *mm = current->mm;
1008        int locked = 1;
1009        long ret;
1010
1011        down_read(&mm->mmap_sem);
1012        ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1013                                      &locked, gup_flags | FOLL_TOUCH);
1014        if (locked)
1015                up_read(&mm->mmap_sem);
1016        return ret;
1017}
1018EXPORT_SYMBOL(get_user_pages_unlocked);
1019
1020/*
1021 * get_user_pages_remote() - pin user pages in memory
1022 * @tsk:        the task_struct to use for page fault accounting, or
1023 *              NULL if faults are not to be recorded.
1024 * @mm:         mm_struct of target mm
1025 * @start:      starting user address
1026 * @nr_pages:   number of pages from start to pin
1027 * @gup_flags:  flags modifying lookup behaviour
1028 * @pages:      array that receives pointers to the pages pinned.
1029 *              Should be at least nr_pages long. Or NULL, if caller
1030 *              only intends to ensure the pages are faulted in.
1031 * @vmas:       array of pointers to vmas corresponding to each page.
1032 *              Or NULL if the caller does not require them.
1033 * @locked:     pointer to lock flag indicating whether lock is held and
1034 *              subsequently whether VM_FAULT_RETRY functionality can be
1035 *              utilised. Lock must initially be held.
1036 *
1037 * Returns number of pages pinned. This may be fewer than the number
1038 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1039 * were pinned, returns -errno. Each page returned must be released
1040 * with a put_page() call when it is finished with. vmas will only
1041 * remain valid while mmap_sem is held.
1042 *
1043 * Must be called with mmap_sem held for read or write.
1044 *
1045 * get_user_pages walks a process's page tables and takes a reference to
1046 * each struct page that each user address corresponds to at a given
1047 * instant. That is, it takes the page that would be accessed if a user
1048 * thread accesses the given user virtual address at that instant.
1049 *
1050 * This does not guarantee that the page exists in the user mappings when
1051 * get_user_pages returns, and there may even be a completely different
1052 * page there in some cases (eg. if mmapped pagecache has been invalidated
1053 * and subsequently re faulted). However it does guarantee that the page
1054 * won't be freed completely. And mostly callers simply care that the page
1055 * contains data that was valid *at some point in time*. Typically, an IO
1056 * or similar operation cannot guarantee anything stronger anyway because
1057 * locks can't be held over the syscall boundary.
1058 *
1059 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1060 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1061 * be called after the page is finished with, and before put_page is called.
1062 *
1063 * get_user_pages is typically used for fewer-copy IO operations, to get a
1064 * handle on the memory by some means other than accesses via the user virtual
1065 * addresses. The pages may be submitted for DMA to devices or accessed via
1066 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1067 * use the correct cache flushing APIs.
1068 *
1069 * See also get_user_pages_fast, for performance critical applications.
1070 *
1071 * get_user_pages should be phased out in favor of
1072 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1073 * should use get_user_pages because it cannot pass
1074 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1075 */
1076long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1077                unsigned long start, unsigned long nr_pages,
1078                unsigned int gup_flags, struct page **pages,
1079                struct vm_area_struct **vmas, int *locked)
1080{
1081        return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1082                                       locked,
1083                                       gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1084}
1085EXPORT_SYMBOL(get_user_pages_remote);
1086
1087/*
1088 * This is the same as get_user_pages_remote(), just with a
1089 * less-flexible calling convention where we assume that the task
1090 * and mm being operated on are the current task's and don't allow
1091 * passing of a locked parameter.  We also obviously don't pass
1092 * FOLL_REMOTE in here.
1093 */
1094long get_user_pages(unsigned long start, unsigned long nr_pages,
1095                unsigned int gup_flags, struct page **pages,
1096                struct vm_area_struct **vmas)
1097{
1098        return __get_user_pages_locked(current, current->mm, start, nr_pages,
1099                                       pages, vmas, NULL,
1100                                       gup_flags | FOLL_TOUCH);
1101}
1102EXPORT_SYMBOL(get_user_pages);
1103
1104#ifdef CONFIG_FS_DAX
1105/*
1106 * This is the same as get_user_pages() in that it assumes we are
1107 * operating on the current task's mm, but it goes further to validate
1108 * that the vmas associated with the address range are suitable for
1109 * longterm elevated page reference counts. For example, filesystem-dax
1110 * mappings are subject to the lifetime enforced by the filesystem and
1111 * we need guarantees that longterm users like RDMA and V4L2 only
1112 * establish mappings that have a kernel enforced revocation mechanism.
1113 *
1114 * "longterm" == userspace controlled elevated page count lifetime.
1115 * Contrast this to iov_iter_get_pages() usages which are transient.
1116 */
1117long get_user_pages_longterm(unsigned long start, unsigned long nr_pages,
1118                unsigned int gup_flags, struct page **pages,
1119                struct vm_area_struct **vmas_arg)
1120{
1121        struct vm_area_struct **vmas = vmas_arg;
1122        struct vm_area_struct *vma_prev = NULL;
1123        long rc, i;
1124
1125        if (!pages)
1126                return -EINVAL;
1127
1128        if (!vmas) {
1129                vmas = kcalloc(nr_pages, sizeof(struct vm_area_struct *),
1130                               GFP_KERNEL);
1131                if (!vmas)
1132                        return -ENOMEM;
1133        }
1134
1135        rc = get_user_pages(start, nr_pages, gup_flags, pages, vmas);
1136
1137        for (i = 0; i < rc; i++) {
1138                struct vm_area_struct *vma = vmas[i];
1139
1140                if (vma == vma_prev)
1141                        continue;
1142
1143                vma_prev = vma;
1144
1145                if (vma_is_fsdax(vma))
1146                        break;
1147        }
1148
1149        /*
1150         * Either get_user_pages() failed, or the vma validation
1151         * succeeded, in either case we don't need to put_page() before
1152         * returning.
1153         */
1154        if (i >= rc)
1155                goto out;
1156
1157        for (i = 0; i < rc; i++)
1158                put_page(pages[i]);
1159        rc = -EOPNOTSUPP;
1160out:
1161        if (vmas != vmas_arg)
1162                kfree(vmas);
1163        return rc;
1164}
1165EXPORT_SYMBOL(get_user_pages_longterm);
1166#endif /* CONFIG_FS_DAX */
1167
1168/**
1169 * populate_vma_page_range() -  populate a range of pages in the vma.
1170 * @vma:   target vma
1171 * @start: start address
1172 * @end:   end address
1173 * @nonblocking:
1174 *
1175 * This takes care of mlocking the pages too if VM_LOCKED is set.
1176 *
1177 * return 0 on success, negative error code on error.
1178 *
1179 * vma->vm_mm->mmap_sem must be held.
1180 *
1181 * If @nonblocking is NULL, it may be held for read or write and will
1182 * be unperturbed.
1183 *
1184 * If @nonblocking is non-NULL, it must held for read only and may be
1185 * released.  If it's released, *@nonblocking will be set to 0.
1186 */
1187long populate_vma_page_range(struct vm_area_struct *vma,
1188                unsigned long start, unsigned long end, int *nonblocking)
1189{
1190        struct mm_struct *mm = vma->vm_mm;
1191        unsigned long nr_pages = (end - start) / PAGE_SIZE;
1192        int gup_flags;
1193
1194        VM_BUG_ON(start & ~PAGE_MASK);
1195        VM_BUG_ON(end   & ~PAGE_MASK);
1196        VM_BUG_ON_VMA(start < vma->vm_start, vma);
1197        VM_BUG_ON_VMA(end   > vma->vm_end, vma);
1198        VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1199
1200        gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1201        if (vma->vm_flags & VM_LOCKONFAULT)
1202                gup_flags &= ~FOLL_POPULATE;
1203        /*
1204         * We want to touch writable mappings with a write fault in order
1205         * to break COW, except for shared mappings because these don't COW
1206         * and we would not want to dirty them for nothing.
1207         */
1208        if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1209                gup_flags |= FOLL_WRITE;
1210
1211        /*
1212         * We want mlock to succeed for regions that have any permissions
1213         * other than PROT_NONE.
1214         */
1215        if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1216                gup_flags |= FOLL_FORCE;
1217
1218        /*
1219         * We made sure addr is within a VMA, so the following will
1220         * not result in a stack expansion that recurses back here.
1221         */
1222        return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1223                                NULL, NULL, nonblocking);
1224}
1225
1226/*
1227 * __mm_populate - populate and/or mlock pages within a range of address space.
1228 *
1229 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1230 * flags. VMAs must be already marked with the desired vm_flags, and
1231 * mmap_sem must not be held.
1232 */
1233int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1234{
1235        struct mm_struct *mm = current->mm;
1236        unsigned long end, nstart, nend;
1237        struct vm_area_struct *vma = NULL;
1238        int locked = 0;
1239        long ret = 0;
1240
1241        end = start + len;
1242
1243        for (nstart = start; nstart < end; nstart = nend) {
1244                /*
1245                 * We want to fault in pages for [nstart; end) address range.
1246                 * Find first corresponding VMA.
1247                 */
1248                if (!locked) {
1249                        locked = 1;
1250                        down_read(&mm->mmap_sem);
1251                        vma = find_vma(mm, nstart);
1252                } else if (nstart >= vma->vm_end)
1253                        vma = vma->vm_next;
1254                if (!vma || vma->vm_start >= end)
1255                        break;
1256                /*
1257                 * Set [nstart; nend) to intersection of desired address
1258                 * range with the first VMA. Also, skip undesirable VMA types.
1259                 */
1260                nend = min(end, vma->vm_end);
1261                if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1262                        continue;
1263                if (nstart < vma->vm_start)
1264                        nstart = vma->vm_start;
1265                /*
1266                 * Now fault in a range of pages. populate_vma_page_range()
1267                 * double checks the vma flags, so that it won't mlock pages
1268                 * if the vma was already munlocked.
1269                 */
1270                ret = populate_vma_page_range(vma, nstart, nend, &locked);
1271                if (ret < 0) {
1272                        if (ignore_errors) {
1273                                ret = 0;
1274                                continue;       /* continue at next VMA */
1275                        }
1276                        break;
1277                }
1278                nend = nstart + ret * PAGE_SIZE;
1279                ret = 0;
1280        }
1281        if (locked)
1282                up_read(&mm->mmap_sem);
1283        return ret;     /* 0 or negative error code */
1284}
1285
1286/**
1287 * get_dump_page() - pin user page in memory while writing it to core dump
1288 * @addr: user address
1289 *
1290 * Returns struct page pointer of user page pinned for dump,
1291 * to be freed afterwards by put_page().
1292 *
1293 * Returns NULL on any kind of failure - a hole must then be inserted into
1294 * the corefile, to preserve alignment with its headers; and also returns
1295 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1296 * allowing a hole to be left in the corefile to save diskspace.
1297 *
1298 * Called without mmap_sem, but after all other threads have been killed.
1299 */
1300#ifdef CONFIG_ELF_CORE
1301struct page *get_dump_page(unsigned long addr)
1302{
1303        struct vm_area_struct *vma;
1304        struct page *page;
1305
1306        if (__get_user_pages(current, current->mm, addr, 1,
1307                             FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1308                             NULL) < 1)
1309                return NULL;
1310        flush_cache_page(vma, addr, page_to_pfn(page));
1311        return page;
1312}
1313#endif /* CONFIG_ELF_CORE */
1314
1315/*
1316 * Generic Fast GUP
1317 *
1318 * get_user_pages_fast attempts to pin user pages by walking the page
1319 * tables directly and avoids taking locks. Thus the walker needs to be
1320 * protected from page table pages being freed from under it, and should
1321 * block any THP splits.
1322 *
1323 * One way to achieve this is to have the walker disable interrupts, and
1324 * rely on IPIs from the TLB flushing code blocking before the page table
1325 * pages are freed. This is unsuitable for architectures that do not need
1326 * to broadcast an IPI when invalidating TLBs.
1327 *
1328 * Another way to achieve this is to batch up page table containing pages
1329 * belonging to more than one mm_user, then rcu_sched a callback to free those
1330 * pages. Disabling interrupts will allow the fast_gup walker to both block
1331 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1332 * (which is a relatively rare event). The code below adopts this strategy.
1333 *
1334 * Before activating this code, please be aware that the following assumptions
1335 * are currently made:
1336 *
1337 *  *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1338 *  free pages containing page tables or TLB flushing requires IPI broadcast.
1339 *
1340 *  *) ptes can be read atomically by the architecture.
1341 *
1342 *  *) access_ok is sufficient to validate userspace address ranges.
1343 *
1344 * The last two assumptions can be relaxed by the addition of helper functions.
1345 *
1346 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1347 */
1348#ifdef CONFIG_HAVE_GENERIC_GUP
1349
1350#ifndef gup_get_pte
1351/*
1352 * We assume that the PTE can be read atomically. If this is not the case for
1353 * your architecture, please provide the helper.
1354 */
1355static inline pte_t gup_get_pte(pte_t *ptep)
1356{
1357        return READ_ONCE(*ptep);
1358}
1359#endif
1360
1361static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1362{
1363        while ((*nr) - nr_start) {
1364                struct page *page = pages[--(*nr)];
1365
1366                ClearPageReferenced(page);
1367                put_page(page);
1368        }
1369}
1370
1371#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
1372static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1373                         int write, struct page **pages, int *nr)
1374{
1375        struct dev_pagemap *pgmap = NULL;
1376        int nr_start = *nr, ret = 0;
1377        pte_t *ptep, *ptem;
1378
1379        ptem = ptep = pte_offset_map(&pmd, addr);
1380        do {
1381                pte_t pte = gup_get_pte(ptep);
1382                struct page *head, *page;
1383
1384                /*
1385                 * Similar to the PMD case below, NUMA hinting must take slow
1386                 * path using the pte_protnone check.
1387                 */
1388                if (pte_protnone(pte))
1389                        goto pte_unmap;
1390
1391                if (!pte_access_permitted(pte, write))
1392                        goto pte_unmap;
1393
1394                if (pte_devmap(pte)) {
1395                        pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1396                        if (unlikely(!pgmap)) {
1397                                undo_dev_pagemap(nr, nr_start, pages);
1398                                goto pte_unmap;
1399                        }
1400                } else if (pte_special(pte))
1401                        goto pte_unmap;
1402
1403                VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1404                page = pte_page(pte);
1405                head = compound_head(page);
1406
1407                if (!page_cache_get_speculative(head))
1408                        goto pte_unmap;
1409
1410                if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1411                        put_page(head);
1412                        goto pte_unmap;
1413                }
1414
1415                VM_BUG_ON_PAGE(compound_head(page) != head, page);
1416
1417                SetPageReferenced(page);
1418                pages[*nr] = page;
1419                (*nr)++;
1420
1421        } while (ptep++, addr += PAGE_SIZE, addr != end);
1422
1423        ret = 1;
1424
1425pte_unmap:
1426        if (pgmap)
1427                put_dev_pagemap(pgmap);
1428        pte_unmap(ptem);
1429        return ret;
1430}
1431#else
1432
1433/*
1434 * If we can't determine whether or not a pte is special, then fail immediately
1435 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1436 * to be special.
1437 *
1438 * For a futex to be placed on a THP tail page, get_futex_key requires a
1439 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1440 * useful to have gup_huge_pmd even if we can't operate on ptes.
1441 */
1442static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1443                         int write, struct page **pages, int *nr)
1444{
1445        return 0;
1446}
1447#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
1448
1449#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1450static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1451                unsigned long end, struct page **pages, int *nr)
1452{
1453        int nr_start = *nr;
1454        struct dev_pagemap *pgmap = NULL;
1455
1456        do {
1457                struct page *page = pfn_to_page(pfn);
1458
1459                pgmap = get_dev_pagemap(pfn, pgmap);
1460                if (unlikely(!pgmap)) {
1461                        undo_dev_pagemap(nr, nr_start, pages);
1462                        return 0;
1463                }
1464                SetPageReferenced(page);
1465                pages[*nr] = page;
1466                get_page(page);
1467                (*nr)++;
1468                pfn++;
1469        } while (addr += PAGE_SIZE, addr != end);
1470
1471        if (pgmap)
1472                put_dev_pagemap(pgmap);
1473        return 1;
1474}
1475
1476static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1477                unsigned long end, struct page **pages, int *nr)
1478{
1479        unsigned long fault_pfn;
1480        int nr_start = *nr;
1481
1482        fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1483        if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1484                return 0;
1485
1486        if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1487                undo_dev_pagemap(nr, nr_start, pages);
1488                return 0;
1489        }
1490        return 1;
1491}
1492
1493static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1494                unsigned long end, struct page **pages, int *nr)
1495{
1496        unsigned long fault_pfn;
1497        int nr_start = *nr;
1498
1499        fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1500        if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1501                return 0;
1502
1503        if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1504                undo_dev_pagemap(nr, nr_start, pages);
1505                return 0;
1506        }
1507        return 1;
1508}
1509#else
1510static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1511                unsigned long end, struct page **pages, int *nr)
1512{
1513        BUILD_BUG();
1514        return 0;
1515}
1516
1517static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
1518                unsigned long end, struct page **pages, int *nr)
1519{
1520        BUILD_BUG();
1521        return 0;
1522}
1523#endif
1524
1525static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1526                unsigned long end, int write, struct page **pages, int *nr)
1527{
1528        struct page *head, *page;
1529        int refs;
1530
1531        if (!pmd_access_permitted(orig, write))
1532                return 0;
1533
1534        if (pmd_devmap(orig))
1535                return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
1536
1537        refs = 0;
1538        page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1539        do {
1540                pages[*nr] = page;
1541                (*nr)++;
1542                page++;
1543                refs++;
1544        } while (addr += PAGE_SIZE, addr != end);
1545
1546        head = compound_head(pmd_page(orig));
1547        if (!page_cache_add_speculative(head, refs)) {
1548                *nr -= refs;
1549                return 0;
1550        }
1551
1552        if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1553                *nr -= refs;
1554                while (refs--)
1555                        put_page(head);
1556                return 0;
1557        }
1558
1559        SetPageReferenced(head);
1560        return 1;
1561}
1562
1563static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1564                unsigned long end, int write, struct page **pages, int *nr)
1565{
1566        struct page *head, *page;
1567        int refs;
1568
1569        if (!pud_access_permitted(orig, write))
1570                return 0;
1571
1572        if (pud_devmap(orig))
1573                return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
1574
1575        refs = 0;
1576        page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1577        do {
1578                pages[*nr] = page;
1579                (*nr)++;
1580                page++;
1581                refs++;
1582        } while (addr += PAGE_SIZE, addr != end);
1583
1584        head = compound_head(pud_page(orig));
1585        if (!page_cache_add_speculative(head, refs)) {
1586                *nr -= refs;
1587                return 0;
1588        }
1589
1590        if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1591                *nr -= refs;
1592                while (refs--)
1593                        put_page(head);
1594                return 0;
1595        }
1596
1597        SetPageReferenced(head);
1598        return 1;
1599}
1600
1601static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1602                        unsigned long end, int write,
1603                        struct page **pages, int *nr)
1604{
1605        int refs;
1606        struct page *head, *page;
1607
1608        if (!pgd_access_permitted(orig, write))
1609                return 0;
1610
1611        BUILD_BUG_ON(pgd_devmap(orig));
1612        refs = 0;
1613        page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
1614        do {
1615                pages[*nr] = page;
1616                (*nr)++;
1617                page++;
1618                refs++;
1619        } while (addr += PAGE_SIZE, addr != end);
1620
1621        head = compound_head(pgd_page(orig));
1622        if (!page_cache_add_speculative(head, refs)) {
1623                *nr -= refs;
1624                return 0;
1625        }
1626
1627        if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1628                *nr -= refs;
1629                while (refs--)
1630                        put_page(head);
1631                return 0;
1632        }
1633
1634        SetPageReferenced(head);
1635        return 1;
1636}
1637
1638static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1639                int write, struct page **pages, int *nr)
1640{
1641        unsigned long next;
1642        pmd_t *pmdp;
1643
1644        pmdp = pmd_offset(&pud, addr);
1645        do {
1646                pmd_t pmd = READ_ONCE(*pmdp);
1647
1648                next = pmd_addr_end(addr, end);
1649                if (!pmd_present(pmd))
1650                        return 0;
1651
1652                if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1653                        /*
1654                         * NUMA hinting faults need to be handled in the GUP
1655                         * slowpath for accounting purposes and so that they
1656                         * can be serialised against THP migration.
1657                         */
1658                        if (pmd_protnone(pmd))
1659                                return 0;
1660
1661                        if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1662                                pages, nr))
1663                                return 0;
1664
1665                } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1666                        /*
1667                         * architecture have different format for hugetlbfs
1668                         * pmd format and THP pmd format
1669                         */
1670                        if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1671                                         PMD_SHIFT, next, write, pages, nr))
1672                                return 0;
1673                } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1674                        return 0;
1675        } while (pmdp++, addr = next, addr != end);
1676
1677        return 1;
1678}
1679
1680static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
1681                         int write, struct page **pages, int *nr)
1682{
1683        unsigned long next;
1684        pud_t *pudp;
1685
1686        pudp = pud_offset(&p4d, addr);
1687        do {
1688                pud_t pud = READ_ONCE(*pudp);
1689
1690                next = pud_addr_end(addr, end);
1691                if (pud_none(pud))
1692                        return 0;
1693                if (unlikely(pud_huge(pud))) {
1694                        if (!gup_huge_pud(pud, pudp, addr, next, write,
1695                                          pages, nr))
1696                                return 0;
1697                } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1698                        if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1699                                         PUD_SHIFT, next, write, pages, nr))
1700                                return 0;
1701                } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1702                        return 0;
1703        } while (pudp++, addr = next, addr != end);
1704
1705        return 1;
1706}
1707
1708static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1709                         int write, struct page **pages, int *nr)
1710{
1711        unsigned long next;
1712        p4d_t *p4dp;
1713
1714        p4dp = p4d_offset(&pgd, addr);
1715        do {
1716                p4d_t p4d = READ_ONCE(*p4dp);
1717
1718                next = p4d_addr_end(addr, end);
1719                if (p4d_none(p4d))
1720                        return 0;
1721                BUILD_BUG_ON(p4d_huge(p4d));
1722                if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1723                        if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1724                                         P4D_SHIFT, next, write, pages, nr))
1725                                return 0;
1726                } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
1727                        return 0;
1728        } while (p4dp++, addr = next, addr != end);
1729
1730        return 1;
1731}
1732
1733static void gup_pgd_range(unsigned long addr, unsigned long end,
1734                int write, struct page **pages, int *nr)
1735{
1736        unsigned long next;
1737        pgd_t *pgdp;
1738
1739        pgdp = pgd_offset(current->mm, addr);
1740        do {
1741                pgd_t pgd = READ_ONCE(*pgdp);
1742
1743                next = pgd_addr_end(addr, end);
1744                if (pgd_none(pgd))
1745                        return;
1746                if (unlikely(pgd_huge(pgd))) {
1747                        if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1748                                          pages, nr))
1749                                return;
1750                } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1751                        if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1752                                         PGDIR_SHIFT, next, write, pages, nr))
1753                                return;
1754                } else if (!gup_p4d_range(pgd, addr, next, write, pages, nr))
1755                        return;
1756        } while (pgdp++, addr = next, addr != end);
1757}
1758
1759#ifndef gup_fast_permitted
1760/*
1761 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1762 * we need to fall back to the slow version:
1763 */
1764bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1765{
1766        unsigned long len, end;
1767
1768        len = (unsigned long) nr_pages << PAGE_SHIFT;
1769        end = start + len;
1770        return end >= start;
1771}
1772#endif
1773
1774/*
1775 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1776 * the regular GUP.
1777 * Note a difference with get_user_pages_fast: this always returns the
1778 * number of pages pinned, 0 if no pages were pinned.
1779 */
1780int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1781                          struct page **pages)
1782{
1783        unsigned long addr, len, end;
1784        unsigned long flags;
1785        int nr = 0;
1786
1787        start &= PAGE_MASK;
1788        addr = start;
1789        len = (unsigned long) nr_pages << PAGE_SHIFT;
1790        end = start + len;
1791
1792        if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1793                                        (void __user *)start, len)))
1794                return 0;
1795
1796        /*
1797         * Disable interrupts.  We use the nested form as we can already have
1798         * interrupts disabled by get_futex_key.
1799         *
1800         * With interrupts disabled, we block page table pages from being
1801         * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1802         * for more details.
1803         *
1804         * We do not adopt an rcu_read_lock(.) here as we also want to
1805         * block IPIs that come from THPs splitting.
1806         */
1807
1808        if (gup_fast_permitted(start, nr_pages, write)) {
1809                local_irq_save(flags);
1810                gup_pgd_range(addr, end, write, pages, &nr);
1811                local_irq_restore(flags);
1812        }
1813
1814        return nr;
1815}
1816
1817/**
1818 * get_user_pages_fast() - pin user pages in memory
1819 * @start:      starting user address
1820 * @nr_pages:   number of pages from start to pin
1821 * @write:      whether pages will be written to
1822 * @pages:      array that receives pointers to the pages pinned.
1823 *              Should be at least nr_pages long.
1824 *
1825 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1826 * If not successful, it will fall back to taking the lock and
1827 * calling get_user_pages().
1828 *
1829 * Returns number of pages pinned. This may be fewer than the number
1830 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1831 * were pinned, returns -errno.
1832 */
1833int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1834                        struct page **pages)
1835{
1836        unsigned long addr, len, end;
1837        int nr = 0, ret = 0;
1838
1839        start &= PAGE_MASK;
1840        addr = start;
1841        len = (unsigned long) nr_pages << PAGE_SHIFT;
1842        end = start + len;
1843
1844        if (nr_pages <= 0)
1845                return 0;
1846
1847        if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1848                                        (void __user *)start, len)))
1849                return -EFAULT;
1850
1851        if (gup_fast_permitted(start, nr_pages, write)) {
1852                local_irq_disable();
1853                gup_pgd_range(addr, end, write, pages, &nr);
1854                local_irq_enable();
1855                ret = nr;
1856        }
1857
1858        if (nr < nr_pages) {
1859                /* Try to get the remaining pages with get_user_pages */
1860                start += nr << PAGE_SHIFT;
1861                pages += nr;
1862
1863                ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1864                                write ? FOLL_WRITE : 0);
1865
1866                /* Have to be a bit careful with return values */
1867                if (nr > 0) {
1868                        if (ret < 0)
1869                                ret = nr;
1870                        else
1871                                ret += nr;
1872                }
1873        }
1874
1875        return ret;
1876}
1877
1878#endif /* CONFIG_HAVE_GENERIC_GUP */
1879