linux/mm/hmm.c
<<
>>
Prefs
   1/*
   2 * Copyright 2013 Red Hat Inc.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * Authors: Jérôme Glisse <jglisse@redhat.com>
  15 */
  16/*
  17 * Refer to include/linux/hmm.h for information about heterogeneous memory
  18 * management or HMM for short.
  19 */
  20#include <linux/mm.h>
  21#include <linux/hmm.h>
  22#include <linux/init.h>
  23#include <linux/rmap.h>
  24#include <linux/swap.h>
  25#include <linux/slab.h>
  26#include <linux/sched.h>
  27#include <linux/mmzone.h>
  28#include <linux/pagemap.h>
  29#include <linux/swapops.h>
  30#include <linux/hugetlb.h>
  31#include <linux/memremap.h>
  32#include <linux/jump_label.h>
  33#include <linux/mmu_notifier.h>
  34#include <linux/memory_hotplug.h>
  35
  36#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
  37
  38#if IS_ENABLED(CONFIG_HMM_MIRROR)
  39static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
  40
  41/*
  42 * struct hmm - HMM per mm struct
  43 *
  44 * @mm: mm struct this HMM struct is bound to
  45 * @lock: lock protecting ranges list
  46 * @sequence: we track updates to the CPU page table with a sequence number
  47 * @ranges: list of range being snapshotted
  48 * @mirrors: list of mirrors for this mm
  49 * @mmu_notifier: mmu notifier to track updates to CPU page table
  50 * @mirrors_sem: read/write semaphore protecting the mirrors list
  51 */
  52struct hmm {
  53        struct mm_struct        *mm;
  54        spinlock_t              lock;
  55        atomic_t                sequence;
  56        struct list_head        ranges;
  57        struct list_head        mirrors;
  58        struct mmu_notifier     mmu_notifier;
  59        struct rw_semaphore     mirrors_sem;
  60};
  61
  62/*
  63 * hmm_register - register HMM against an mm (HMM internal)
  64 *
  65 * @mm: mm struct to attach to
  66 *
  67 * This is not intended to be used directly by device drivers. It allocates an
  68 * HMM struct if mm does not have one, and initializes it.
  69 */
  70static struct hmm *hmm_register(struct mm_struct *mm)
  71{
  72        struct hmm *hmm = READ_ONCE(mm->hmm);
  73        bool cleanup = false;
  74
  75        /*
  76         * The hmm struct can only be freed once the mm_struct goes away,
  77         * hence we should always have pre-allocated an new hmm struct
  78         * above.
  79         */
  80        if (hmm)
  81                return hmm;
  82
  83        hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
  84        if (!hmm)
  85                return NULL;
  86        INIT_LIST_HEAD(&hmm->mirrors);
  87        init_rwsem(&hmm->mirrors_sem);
  88        atomic_set(&hmm->sequence, 0);
  89        hmm->mmu_notifier.ops = NULL;
  90        INIT_LIST_HEAD(&hmm->ranges);
  91        spin_lock_init(&hmm->lock);
  92        hmm->mm = mm;
  93
  94        /*
  95         * We should only get here if hold the mmap_sem in write mode ie on
  96         * registration of first mirror through hmm_mirror_register()
  97         */
  98        hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
  99        if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
 100                kfree(hmm);
 101                return NULL;
 102        }
 103
 104        spin_lock(&mm->page_table_lock);
 105        if (!mm->hmm)
 106                mm->hmm = hmm;
 107        else
 108                cleanup = true;
 109        spin_unlock(&mm->page_table_lock);
 110
 111        if (cleanup) {
 112                mmu_notifier_unregister(&hmm->mmu_notifier, mm);
 113                kfree(hmm);
 114        }
 115
 116        return mm->hmm;
 117}
 118
 119void hmm_mm_destroy(struct mm_struct *mm)
 120{
 121        kfree(mm->hmm);
 122}
 123
 124static void hmm_invalidate_range(struct hmm *hmm,
 125                                 enum hmm_update_type action,
 126                                 unsigned long start,
 127                                 unsigned long end)
 128{
 129        struct hmm_mirror *mirror;
 130        struct hmm_range *range;
 131
 132        spin_lock(&hmm->lock);
 133        list_for_each_entry(range, &hmm->ranges, list) {
 134                unsigned long addr, idx, npages;
 135
 136                if (end < range->start || start >= range->end)
 137                        continue;
 138
 139                range->valid = false;
 140                addr = max(start, range->start);
 141                idx = (addr - range->start) >> PAGE_SHIFT;
 142                npages = (min(range->end, end) - addr) >> PAGE_SHIFT;
 143                memset(&range->pfns[idx], 0, sizeof(*range->pfns) * npages);
 144        }
 145        spin_unlock(&hmm->lock);
 146
 147        down_read(&hmm->mirrors_sem);
 148        list_for_each_entry(mirror, &hmm->mirrors, list)
 149                mirror->ops->sync_cpu_device_pagetables(mirror, action,
 150                                                        start, end);
 151        up_read(&hmm->mirrors_sem);
 152}
 153
 154static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
 155{
 156        struct hmm_mirror *mirror;
 157        struct hmm *hmm = mm->hmm;
 158
 159        down_write(&hmm->mirrors_sem);
 160        mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
 161                                          list);
 162        while (mirror) {
 163                list_del_init(&mirror->list);
 164                if (mirror->ops->release) {
 165                        /*
 166                         * Drop mirrors_sem so callback can wait on any pending
 167                         * work that might itself trigger mmu_notifier callback
 168                         * and thus would deadlock with us.
 169                         */
 170                        up_write(&hmm->mirrors_sem);
 171                        mirror->ops->release(mirror);
 172                        down_write(&hmm->mirrors_sem);
 173                }
 174                mirror = list_first_entry_or_null(&hmm->mirrors,
 175                                                  struct hmm_mirror, list);
 176        }
 177        up_write(&hmm->mirrors_sem);
 178}
 179
 180static int hmm_invalidate_range_start(struct mmu_notifier *mn,
 181                                       struct mm_struct *mm,
 182                                       unsigned long start,
 183                                       unsigned long end,
 184                                       bool blockable)
 185{
 186        struct hmm *hmm = mm->hmm;
 187
 188        VM_BUG_ON(!hmm);
 189
 190        atomic_inc(&hmm->sequence);
 191
 192        return 0;
 193}
 194
 195static void hmm_invalidate_range_end(struct mmu_notifier *mn,
 196                                     struct mm_struct *mm,
 197                                     unsigned long start,
 198                                     unsigned long end)
 199{
 200        struct hmm *hmm = mm->hmm;
 201
 202        VM_BUG_ON(!hmm);
 203
 204        hmm_invalidate_range(mm->hmm, HMM_UPDATE_INVALIDATE, start, end);
 205}
 206
 207static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
 208        .release                = hmm_release,
 209        .invalidate_range_start = hmm_invalidate_range_start,
 210        .invalidate_range_end   = hmm_invalidate_range_end,
 211};
 212
 213/*
 214 * hmm_mirror_register() - register a mirror against an mm
 215 *
 216 * @mirror: new mirror struct to register
 217 * @mm: mm to register against
 218 *
 219 * To start mirroring a process address space, the device driver must register
 220 * an HMM mirror struct.
 221 *
 222 * THE mm->mmap_sem MUST BE HELD IN WRITE MODE !
 223 */
 224int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
 225{
 226        /* Sanity check */
 227        if (!mm || !mirror || !mirror->ops)
 228                return -EINVAL;
 229
 230again:
 231        mirror->hmm = hmm_register(mm);
 232        if (!mirror->hmm)
 233                return -ENOMEM;
 234
 235        down_write(&mirror->hmm->mirrors_sem);
 236        if (mirror->hmm->mm == NULL) {
 237                /*
 238                 * A racing hmm_mirror_unregister() is about to destroy the hmm
 239                 * struct. Try again to allocate a new one.
 240                 */
 241                up_write(&mirror->hmm->mirrors_sem);
 242                mirror->hmm = NULL;
 243                goto again;
 244        } else {
 245                list_add(&mirror->list, &mirror->hmm->mirrors);
 246                up_write(&mirror->hmm->mirrors_sem);
 247        }
 248
 249        return 0;
 250}
 251EXPORT_SYMBOL(hmm_mirror_register);
 252
 253/*
 254 * hmm_mirror_unregister() - unregister a mirror
 255 *
 256 * @mirror: new mirror struct to register
 257 *
 258 * Stop mirroring a process address space, and cleanup.
 259 */
 260void hmm_mirror_unregister(struct hmm_mirror *mirror)
 261{
 262        bool should_unregister = false;
 263        struct mm_struct *mm;
 264        struct hmm *hmm;
 265
 266        if (mirror->hmm == NULL)
 267                return;
 268
 269        hmm = mirror->hmm;
 270        down_write(&hmm->mirrors_sem);
 271        list_del_init(&mirror->list);
 272        should_unregister = list_empty(&hmm->mirrors);
 273        mirror->hmm = NULL;
 274        mm = hmm->mm;
 275        hmm->mm = NULL;
 276        up_write(&hmm->mirrors_sem);
 277
 278        if (!should_unregister || mm == NULL)
 279                return;
 280
 281        spin_lock(&mm->page_table_lock);
 282        if (mm->hmm == hmm)
 283                mm->hmm = NULL;
 284        spin_unlock(&mm->page_table_lock);
 285
 286        mmu_notifier_unregister_no_release(&hmm->mmu_notifier, mm);
 287        kfree(hmm);
 288}
 289EXPORT_SYMBOL(hmm_mirror_unregister);
 290
 291struct hmm_vma_walk {
 292        struct hmm_range        *range;
 293        unsigned long           last;
 294        bool                    fault;
 295        bool                    block;
 296};
 297
 298static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
 299                            bool write_fault, uint64_t *pfn)
 300{
 301        unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_REMOTE;
 302        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 303        struct hmm_range *range = hmm_vma_walk->range;
 304        struct vm_area_struct *vma = walk->vma;
 305        vm_fault_t ret;
 306
 307        flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
 308        flags |= write_fault ? FAULT_FLAG_WRITE : 0;
 309        ret = handle_mm_fault(vma, addr, flags);
 310        if (ret & VM_FAULT_RETRY)
 311                return -EBUSY;
 312        if (ret & VM_FAULT_ERROR) {
 313                *pfn = range->values[HMM_PFN_ERROR];
 314                return -EFAULT;
 315        }
 316
 317        return -EAGAIN;
 318}
 319
 320static int hmm_pfns_bad(unsigned long addr,
 321                        unsigned long end,
 322                        struct mm_walk *walk)
 323{
 324        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 325        struct hmm_range *range = hmm_vma_walk->range;
 326        uint64_t *pfns = range->pfns;
 327        unsigned long i;
 328
 329        i = (addr - range->start) >> PAGE_SHIFT;
 330        for (; addr < end; addr += PAGE_SIZE, i++)
 331                pfns[i] = range->values[HMM_PFN_ERROR];
 332
 333        return 0;
 334}
 335
 336/*
 337 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
 338 * @start: range virtual start address (inclusive)
 339 * @end: range virtual end address (exclusive)
 340 * @fault: should we fault or not ?
 341 * @write_fault: write fault ?
 342 * @walk: mm_walk structure
 343 * Returns: 0 on success, -EAGAIN after page fault, or page fault error
 344 *
 345 * This function will be called whenever pmd_none() or pte_none() returns true,
 346 * or whenever there is no page directory covering the virtual address range.
 347 */
 348static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
 349                              bool fault, bool write_fault,
 350                              struct mm_walk *walk)
 351{
 352        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 353        struct hmm_range *range = hmm_vma_walk->range;
 354        uint64_t *pfns = range->pfns;
 355        unsigned long i;
 356
 357        hmm_vma_walk->last = addr;
 358        i = (addr - range->start) >> PAGE_SHIFT;
 359        for (; addr < end; addr += PAGE_SIZE, i++) {
 360                pfns[i] = range->values[HMM_PFN_NONE];
 361                if (fault || write_fault) {
 362                        int ret;
 363
 364                        ret = hmm_vma_do_fault(walk, addr, write_fault,
 365                                               &pfns[i]);
 366                        if (ret != -EAGAIN)
 367                                return ret;
 368                }
 369        }
 370
 371        return (fault || write_fault) ? -EAGAIN : 0;
 372}
 373
 374static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 375                                      uint64_t pfns, uint64_t cpu_flags,
 376                                      bool *fault, bool *write_fault)
 377{
 378        struct hmm_range *range = hmm_vma_walk->range;
 379
 380        *fault = *write_fault = false;
 381        if (!hmm_vma_walk->fault)
 382                return;
 383
 384        /* We aren't ask to do anything ... */
 385        if (!(pfns & range->flags[HMM_PFN_VALID]))
 386                return;
 387        /* If this is device memory than only fault if explicitly requested */
 388        if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
 389                /* Do we fault on device memory ? */
 390                if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
 391                        *write_fault = pfns & range->flags[HMM_PFN_WRITE];
 392                        *fault = true;
 393                }
 394                return;
 395        }
 396
 397        /* If CPU page table is not valid then we need to fault */
 398        *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
 399        /* Need to write fault ? */
 400        if ((pfns & range->flags[HMM_PFN_WRITE]) &&
 401            !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
 402                *write_fault = true;
 403                *fault = true;
 404        }
 405}
 406
 407static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
 408                                 const uint64_t *pfns, unsigned long npages,
 409                                 uint64_t cpu_flags, bool *fault,
 410                                 bool *write_fault)
 411{
 412        unsigned long i;
 413
 414        if (!hmm_vma_walk->fault) {
 415                *fault = *write_fault = false;
 416                return;
 417        }
 418
 419        for (i = 0; i < npages; ++i) {
 420                hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
 421                                   fault, write_fault);
 422                if ((*fault) || (*write_fault))
 423                        return;
 424        }
 425}
 426
 427static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
 428                             struct mm_walk *walk)
 429{
 430        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 431        struct hmm_range *range = hmm_vma_walk->range;
 432        bool fault, write_fault;
 433        unsigned long i, npages;
 434        uint64_t *pfns;
 435
 436        i = (addr - range->start) >> PAGE_SHIFT;
 437        npages = (end - addr) >> PAGE_SHIFT;
 438        pfns = &range->pfns[i];
 439        hmm_range_need_fault(hmm_vma_walk, pfns, npages,
 440                             0, &fault, &write_fault);
 441        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 442}
 443
 444static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
 445{
 446        if (pmd_protnone(pmd))
 447                return 0;
 448        return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
 449                                range->flags[HMM_PFN_WRITE] :
 450                                range->flags[HMM_PFN_VALID];
 451}
 452
 453static int hmm_vma_handle_pmd(struct mm_walk *walk,
 454                              unsigned long addr,
 455                              unsigned long end,
 456                              uint64_t *pfns,
 457                              pmd_t pmd)
 458{
 459        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 460        struct hmm_range *range = hmm_vma_walk->range;
 461        unsigned long pfn, npages, i;
 462        bool fault, write_fault;
 463        uint64_t cpu_flags;
 464
 465        npages = (end - addr) >> PAGE_SHIFT;
 466        cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
 467        hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
 468                             &fault, &write_fault);
 469
 470        if (pmd_protnone(pmd) || fault || write_fault)
 471                return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 472
 473        pfn = pmd_pfn(pmd) + pte_index(addr);
 474        for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++)
 475                pfns[i] = hmm_pfn_from_pfn(range, pfn) | cpu_flags;
 476        hmm_vma_walk->last = end;
 477        return 0;
 478}
 479
 480static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
 481{
 482        if (pte_none(pte) || !pte_present(pte))
 483                return 0;
 484        return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
 485                                range->flags[HMM_PFN_WRITE] :
 486                                range->flags[HMM_PFN_VALID];
 487}
 488
 489static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
 490                              unsigned long end, pmd_t *pmdp, pte_t *ptep,
 491                              uint64_t *pfn)
 492{
 493        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 494        struct hmm_range *range = hmm_vma_walk->range;
 495        struct vm_area_struct *vma = walk->vma;
 496        bool fault, write_fault;
 497        uint64_t cpu_flags;
 498        pte_t pte = *ptep;
 499        uint64_t orig_pfn = *pfn;
 500
 501        *pfn = range->values[HMM_PFN_NONE];
 502        cpu_flags = pte_to_hmm_pfn_flags(range, pte);
 503        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 504                           &fault, &write_fault);
 505
 506        if (pte_none(pte)) {
 507                if (fault || write_fault)
 508                        goto fault;
 509                return 0;
 510        }
 511
 512        if (!pte_present(pte)) {
 513                swp_entry_t entry = pte_to_swp_entry(pte);
 514
 515                if (!non_swap_entry(entry)) {
 516                        if (fault || write_fault)
 517                                goto fault;
 518                        return 0;
 519                }
 520
 521                /*
 522                 * This is a special swap entry, ignore migration, use
 523                 * device and report anything else as error.
 524                 */
 525                if (is_device_private_entry(entry)) {
 526                        cpu_flags = range->flags[HMM_PFN_VALID] |
 527                                range->flags[HMM_PFN_DEVICE_PRIVATE];
 528                        cpu_flags |= is_write_device_private_entry(entry) ?
 529                                range->flags[HMM_PFN_WRITE] : 0;
 530                        hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
 531                                           &fault, &write_fault);
 532                        if (fault || write_fault)
 533                                goto fault;
 534                        *pfn = hmm_pfn_from_pfn(range, swp_offset(entry));
 535                        *pfn |= cpu_flags;
 536                        return 0;
 537                }
 538
 539                if (is_migration_entry(entry)) {
 540                        if (fault || write_fault) {
 541                                pte_unmap(ptep);
 542                                hmm_vma_walk->last = addr;
 543                                migration_entry_wait(vma->vm_mm,
 544                                                     pmdp, addr);
 545                                return -EAGAIN;
 546                        }
 547                        return 0;
 548                }
 549
 550                /* Report error for everything else */
 551                *pfn = range->values[HMM_PFN_ERROR];
 552                return -EFAULT;
 553        }
 554
 555        if (fault || write_fault)
 556                goto fault;
 557
 558        *pfn = hmm_pfn_from_pfn(range, pte_pfn(pte)) | cpu_flags;
 559        return 0;
 560
 561fault:
 562        pte_unmap(ptep);
 563        /* Fault any virtual address we were asked to fault */
 564        return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
 565}
 566
 567static int hmm_vma_walk_pmd(pmd_t *pmdp,
 568                            unsigned long start,
 569                            unsigned long end,
 570                            struct mm_walk *walk)
 571{
 572        struct hmm_vma_walk *hmm_vma_walk = walk->private;
 573        struct hmm_range *range = hmm_vma_walk->range;
 574        uint64_t *pfns = range->pfns;
 575        unsigned long addr = start, i;
 576        pte_t *ptep;
 577
 578        i = (addr - range->start) >> PAGE_SHIFT;
 579
 580again:
 581        if (pmd_none(*pmdp))
 582                return hmm_vma_walk_hole(start, end, walk);
 583
 584        if (pmd_huge(*pmdp) && (range->vma->vm_flags & VM_HUGETLB))
 585                return hmm_pfns_bad(start, end, walk);
 586
 587        if (pmd_devmap(*pmdp) || pmd_trans_huge(*pmdp)) {
 588                pmd_t pmd;
 589
 590                /*
 591                 * No need to take pmd_lock here, even if some other threads
 592                 * is splitting the huge pmd we will get that event through
 593                 * mmu_notifier callback.
 594                 *
 595                 * So just read pmd value and check again its a transparent
 596                 * huge or device mapping one and compute corresponding pfn
 597                 * values.
 598                 */
 599                pmd = pmd_read_atomic(pmdp);
 600                barrier();
 601                if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
 602                        goto again;
 603
 604                return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
 605        }
 606
 607        if (pmd_bad(*pmdp))
 608                return hmm_pfns_bad(start, end, walk);
 609
 610        ptep = pte_offset_map(pmdp, addr);
 611        for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
 612                int r;
 613
 614                r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
 615                if (r) {
 616                        /* hmm_vma_handle_pte() did unmap pte directory */
 617                        hmm_vma_walk->last = addr;
 618                        return r;
 619                }
 620        }
 621        pte_unmap(ptep - 1);
 622
 623        hmm_vma_walk->last = addr;
 624        return 0;
 625}
 626
 627static void hmm_pfns_clear(struct hmm_range *range,
 628                           uint64_t *pfns,
 629                           unsigned long addr,
 630                           unsigned long end)
 631{
 632        for (; addr < end; addr += PAGE_SIZE, pfns++)
 633                *pfns = range->values[HMM_PFN_NONE];
 634}
 635
 636static void hmm_pfns_special(struct hmm_range *range)
 637{
 638        unsigned long addr = range->start, i = 0;
 639
 640        for (; addr < range->end; addr += PAGE_SIZE, i++)
 641                range->pfns[i] = range->values[HMM_PFN_SPECIAL];
 642}
 643
 644/*
 645 * hmm_vma_get_pfns() - snapshot CPU page table for a range of virtual addresses
 646 * @range: range being snapshotted
 647 * Returns: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
 648 *          vma permission, 0 success
 649 *
 650 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
 651 * validity is tracked by range struct. See hmm_vma_range_done() for further
 652 * information.
 653 *
 654 * The range struct is initialized here. It tracks the CPU page table, but only
 655 * if the function returns success (0), in which case the caller must then call
 656 * hmm_vma_range_done() to stop CPU page table update tracking on this range.
 657 *
 658 * NOT CALLING hmm_vma_range_done() IF FUNCTION RETURNS 0 WILL LEAD TO SERIOUS
 659 * MEMORY CORRUPTION ! YOU HAVE BEEN WARNED !
 660 */
 661int hmm_vma_get_pfns(struct hmm_range *range)
 662{
 663        struct vm_area_struct *vma = range->vma;
 664        struct hmm_vma_walk hmm_vma_walk;
 665        struct mm_walk mm_walk;
 666        struct hmm *hmm;
 667
 668        /* Sanity check, this really should not happen ! */
 669        if (range->start < vma->vm_start || range->start >= vma->vm_end)
 670                return -EINVAL;
 671        if (range->end < vma->vm_start || range->end > vma->vm_end)
 672                return -EINVAL;
 673
 674        hmm = hmm_register(vma->vm_mm);
 675        if (!hmm)
 676                return -ENOMEM;
 677        /* Caller must have registered a mirror, via hmm_mirror_register() ! */
 678        if (!hmm->mmu_notifier.ops)
 679                return -EINVAL;
 680
 681        /* FIXME support hugetlb fs */
 682        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
 683                        vma_is_dax(vma)) {
 684                hmm_pfns_special(range);
 685                return -EINVAL;
 686        }
 687
 688        if (!(vma->vm_flags & VM_READ)) {
 689                /*
 690                 * If vma do not allow read access, then assume that it does
 691                 * not allow write access, either. Architecture that allow
 692                 * write without read access are not supported by HMM, because
 693                 * operations such has atomic access would not work.
 694                 */
 695                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 696                return -EPERM;
 697        }
 698
 699        /* Initialize range to track CPU page table update */
 700        spin_lock(&hmm->lock);
 701        range->valid = true;
 702        list_add_rcu(&range->list, &hmm->ranges);
 703        spin_unlock(&hmm->lock);
 704
 705        hmm_vma_walk.fault = false;
 706        hmm_vma_walk.range = range;
 707        mm_walk.private = &hmm_vma_walk;
 708
 709        mm_walk.vma = vma;
 710        mm_walk.mm = vma->vm_mm;
 711        mm_walk.pte_entry = NULL;
 712        mm_walk.test_walk = NULL;
 713        mm_walk.hugetlb_entry = NULL;
 714        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 715        mm_walk.pte_hole = hmm_vma_walk_hole;
 716
 717        walk_page_range(range->start, range->end, &mm_walk);
 718        return 0;
 719}
 720EXPORT_SYMBOL(hmm_vma_get_pfns);
 721
 722/*
 723 * hmm_vma_range_done() - stop tracking change to CPU page table over a range
 724 * @range: range being tracked
 725 * Returns: false if range data has been invalidated, true otherwise
 726 *
 727 * Range struct is used to track updates to the CPU page table after a call to
 728 * either hmm_vma_get_pfns() or hmm_vma_fault(). Once the device driver is done
 729 * using the data,  or wants to lock updates to the data it got from those
 730 * functions, it must call the hmm_vma_range_done() function, which will then
 731 * stop tracking CPU page table updates.
 732 *
 733 * Note that device driver must still implement general CPU page table update
 734 * tracking either by using hmm_mirror (see hmm_mirror_register()) or by using
 735 * the mmu_notifier API directly.
 736 *
 737 * CPU page table update tracking done through hmm_range is only temporary and
 738 * to be used while trying to duplicate CPU page table contents for a range of
 739 * virtual addresses.
 740 *
 741 * There are two ways to use this :
 742 * again:
 743 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 744 *   trans = device_build_page_table_update_transaction(pfns);
 745 *   device_page_table_lock();
 746 *   if (!hmm_vma_range_done(range)) {
 747 *     device_page_table_unlock();
 748 *     goto again;
 749 *   }
 750 *   device_commit_transaction(trans);
 751 *   device_page_table_unlock();
 752 *
 753 * Or:
 754 *   hmm_vma_get_pfns(range); or hmm_vma_fault(...);
 755 *   device_page_table_lock();
 756 *   hmm_vma_range_done(range);
 757 *   device_update_page_table(range->pfns);
 758 *   device_page_table_unlock();
 759 */
 760bool hmm_vma_range_done(struct hmm_range *range)
 761{
 762        unsigned long npages = (range->end - range->start) >> PAGE_SHIFT;
 763        struct hmm *hmm;
 764
 765        if (range->end <= range->start) {
 766                BUG();
 767                return false;
 768        }
 769
 770        hmm = hmm_register(range->vma->vm_mm);
 771        if (!hmm) {
 772                memset(range->pfns, 0, sizeof(*range->pfns) * npages);
 773                return false;
 774        }
 775
 776        spin_lock(&hmm->lock);
 777        list_del_rcu(&range->list);
 778        spin_unlock(&hmm->lock);
 779
 780        return range->valid;
 781}
 782EXPORT_SYMBOL(hmm_vma_range_done);
 783
 784/*
 785 * hmm_vma_fault() - try to fault some address in a virtual address range
 786 * @range: range being faulted
 787 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
 788 * Returns: 0 success, error otherwise (-EAGAIN means mmap_sem have been drop)
 789 *
 790 * This is similar to a regular CPU page fault except that it will not trigger
 791 * any memory migration if the memory being faulted is not accessible by CPUs.
 792 *
 793 * On error, for one virtual address in the range, the function will mark the
 794 * corresponding HMM pfn entry with an error flag.
 795 *
 796 * Expected use pattern:
 797 * retry:
 798 *   down_read(&mm->mmap_sem);
 799 *   // Find vma and address device wants to fault, initialize hmm_pfn_t
 800 *   // array accordingly
 801 *   ret = hmm_vma_fault(range, write, block);
 802 *   switch (ret) {
 803 *   case -EAGAIN:
 804 *     hmm_vma_range_done(range);
 805 *     // You might want to rate limit or yield to play nicely, you may
 806 *     // also commit any valid pfn in the array assuming that you are
 807 *     // getting true from hmm_vma_range_monitor_end()
 808 *     goto retry;
 809 *   case 0:
 810 *     break;
 811 *   case -ENOMEM:
 812 *   case -EINVAL:
 813 *   case -EPERM:
 814 *   default:
 815 *     // Handle error !
 816 *     up_read(&mm->mmap_sem)
 817 *     return;
 818 *   }
 819 *   // Take device driver lock that serialize device page table update
 820 *   driver_lock_device_page_table_update();
 821 *   hmm_vma_range_done(range);
 822 *   // Commit pfns we got from hmm_vma_fault()
 823 *   driver_unlock_device_page_table_update();
 824 *   up_read(&mm->mmap_sem)
 825 *
 826 * YOU MUST CALL hmm_vma_range_done() AFTER THIS FUNCTION RETURN SUCCESS (0)
 827 * BEFORE FREEING THE range struct OR YOU WILL HAVE SERIOUS MEMORY CORRUPTION !
 828 *
 829 * YOU HAVE BEEN WARNED !
 830 */
 831int hmm_vma_fault(struct hmm_range *range, bool block)
 832{
 833        struct vm_area_struct *vma = range->vma;
 834        unsigned long start = range->start;
 835        struct hmm_vma_walk hmm_vma_walk;
 836        struct mm_walk mm_walk;
 837        struct hmm *hmm;
 838        int ret;
 839
 840        /* Sanity check, this really should not happen ! */
 841        if (range->start < vma->vm_start || range->start >= vma->vm_end)
 842                return -EINVAL;
 843        if (range->end < vma->vm_start || range->end > vma->vm_end)
 844                return -EINVAL;
 845
 846        hmm = hmm_register(vma->vm_mm);
 847        if (!hmm) {
 848                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 849                return -ENOMEM;
 850        }
 851        /* Caller must have registered a mirror using hmm_mirror_register() */
 852        if (!hmm->mmu_notifier.ops)
 853                return -EINVAL;
 854
 855        /* FIXME support hugetlb fs */
 856        if (is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
 857                        vma_is_dax(vma)) {
 858                hmm_pfns_special(range);
 859                return -EINVAL;
 860        }
 861
 862        if (!(vma->vm_flags & VM_READ)) {
 863                /*
 864                 * If vma do not allow read access, then assume that it does
 865                 * not allow write access, either. Architecture that allow
 866                 * write without read access are not supported by HMM, because
 867                 * operations such has atomic access would not work.
 868                 */
 869                hmm_pfns_clear(range, range->pfns, range->start, range->end);
 870                return -EPERM;
 871        }
 872
 873        /* Initialize range to track CPU page table update */
 874        spin_lock(&hmm->lock);
 875        range->valid = true;
 876        list_add_rcu(&range->list, &hmm->ranges);
 877        spin_unlock(&hmm->lock);
 878
 879        hmm_vma_walk.fault = true;
 880        hmm_vma_walk.block = block;
 881        hmm_vma_walk.range = range;
 882        mm_walk.private = &hmm_vma_walk;
 883        hmm_vma_walk.last = range->start;
 884
 885        mm_walk.vma = vma;
 886        mm_walk.mm = vma->vm_mm;
 887        mm_walk.pte_entry = NULL;
 888        mm_walk.test_walk = NULL;
 889        mm_walk.hugetlb_entry = NULL;
 890        mm_walk.pmd_entry = hmm_vma_walk_pmd;
 891        mm_walk.pte_hole = hmm_vma_walk_hole;
 892
 893        do {
 894                ret = walk_page_range(start, range->end, &mm_walk);
 895                start = hmm_vma_walk.last;
 896        } while (ret == -EAGAIN);
 897
 898        if (ret) {
 899                unsigned long i;
 900
 901                i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
 902                hmm_pfns_clear(range, &range->pfns[i], hmm_vma_walk.last,
 903                               range->end);
 904                hmm_vma_range_done(range);
 905        }
 906        return ret;
 907}
 908EXPORT_SYMBOL(hmm_vma_fault);
 909#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
 910
 911
 912#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) ||  IS_ENABLED(CONFIG_DEVICE_PUBLIC)
 913struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
 914                                       unsigned long addr)
 915{
 916        struct page *page;
 917
 918        page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
 919        if (!page)
 920                return NULL;
 921        lock_page(page);
 922        return page;
 923}
 924EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
 925
 926
 927static void hmm_devmem_ref_release(struct percpu_ref *ref)
 928{
 929        struct hmm_devmem *devmem;
 930
 931        devmem = container_of(ref, struct hmm_devmem, ref);
 932        complete(&devmem->completion);
 933}
 934
 935static void hmm_devmem_ref_exit(void *data)
 936{
 937        struct percpu_ref *ref = data;
 938        struct hmm_devmem *devmem;
 939
 940        devmem = container_of(ref, struct hmm_devmem, ref);
 941        percpu_ref_exit(ref);
 942        devm_remove_action(devmem->device, &hmm_devmem_ref_exit, data);
 943}
 944
 945static void hmm_devmem_ref_kill(void *data)
 946{
 947        struct percpu_ref *ref = data;
 948        struct hmm_devmem *devmem;
 949
 950        devmem = container_of(ref, struct hmm_devmem, ref);
 951        percpu_ref_kill(ref);
 952        wait_for_completion(&devmem->completion);
 953        devm_remove_action(devmem->device, &hmm_devmem_ref_kill, data);
 954}
 955
 956static int hmm_devmem_fault(struct vm_area_struct *vma,
 957                            unsigned long addr,
 958                            const struct page *page,
 959                            unsigned int flags,
 960                            pmd_t *pmdp)
 961{
 962        struct hmm_devmem *devmem = page->pgmap->data;
 963
 964        return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
 965}
 966
 967static void hmm_devmem_free(struct page *page, void *data)
 968{
 969        struct hmm_devmem *devmem = data;
 970
 971        page->mapping = NULL;
 972
 973        devmem->ops->free(devmem, page);
 974}
 975
 976static DEFINE_MUTEX(hmm_devmem_lock);
 977static RADIX_TREE(hmm_devmem_radix, GFP_KERNEL);
 978
 979static void hmm_devmem_radix_release(struct resource *resource)
 980{
 981        resource_size_t key;
 982
 983        mutex_lock(&hmm_devmem_lock);
 984        for (key = resource->start;
 985             key <= resource->end;
 986             key += PA_SECTION_SIZE)
 987                radix_tree_delete(&hmm_devmem_radix, key >> PA_SECTION_SHIFT);
 988        mutex_unlock(&hmm_devmem_lock);
 989}
 990
 991static void hmm_devmem_release(struct device *dev, void *data)
 992{
 993        struct hmm_devmem *devmem = data;
 994        struct resource *resource = devmem->resource;
 995        unsigned long start_pfn, npages;
 996        struct zone *zone;
 997        struct page *page;
 998
 999        if (percpu_ref_tryget_live(&devmem->ref)) {
1000                dev_WARN(dev, "%s: page mapping is still live!\n", __func__);
1001                percpu_ref_put(&devmem->ref);
1002        }
1003
1004        /* pages are dead and unused, undo the arch mapping */
1005        start_pfn = (resource->start & ~(PA_SECTION_SIZE - 1)) >> PAGE_SHIFT;
1006        npages = ALIGN(resource_size(resource), PA_SECTION_SIZE) >> PAGE_SHIFT;
1007
1008        page = pfn_to_page(start_pfn);
1009        zone = page_zone(page);
1010
1011        mem_hotplug_begin();
1012        if (resource->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY)
1013                __remove_pages(zone, start_pfn, npages, NULL);
1014        else
1015                arch_remove_memory(start_pfn << PAGE_SHIFT,
1016                                   npages << PAGE_SHIFT, NULL);
1017        mem_hotplug_done();
1018
1019        hmm_devmem_radix_release(resource);
1020}
1021
1022static int hmm_devmem_pages_create(struct hmm_devmem *devmem)
1023{
1024        resource_size_t key, align_start, align_size, align_end;
1025        struct device *device = devmem->device;
1026        int ret, nid, is_ram;
1027        unsigned long pfn;
1028
1029        align_start = devmem->resource->start & ~(PA_SECTION_SIZE - 1);
1030        align_size = ALIGN(devmem->resource->start +
1031                           resource_size(devmem->resource),
1032                           PA_SECTION_SIZE) - align_start;
1033
1034        is_ram = region_intersects(align_start, align_size,
1035                                   IORESOURCE_SYSTEM_RAM,
1036                                   IORES_DESC_NONE);
1037        if (is_ram == REGION_MIXED) {
1038                WARN_ONCE(1, "%s attempted on mixed region %pr\n",
1039                                __func__, devmem->resource);
1040                return -ENXIO;
1041        }
1042        if (is_ram == REGION_INTERSECTS)
1043                return -ENXIO;
1044
1045        if (devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY)
1046                devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1047        else
1048                devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1049
1050        devmem->pagemap.res = *devmem->resource;
1051        devmem->pagemap.page_fault = hmm_devmem_fault;
1052        devmem->pagemap.page_free = hmm_devmem_free;
1053        devmem->pagemap.dev = devmem->device;
1054        devmem->pagemap.ref = &devmem->ref;
1055        devmem->pagemap.data = devmem;
1056
1057        mutex_lock(&hmm_devmem_lock);
1058        align_end = align_start + align_size - 1;
1059        for (key = align_start; key <= align_end; key += PA_SECTION_SIZE) {
1060                struct hmm_devmem *dup;
1061
1062                dup = radix_tree_lookup(&hmm_devmem_radix,
1063                                        key >> PA_SECTION_SHIFT);
1064                if (dup) {
1065                        dev_err(device, "%s: collides with mapping for %s\n",
1066                                __func__, dev_name(dup->device));
1067                        mutex_unlock(&hmm_devmem_lock);
1068                        ret = -EBUSY;
1069                        goto error;
1070                }
1071                ret = radix_tree_insert(&hmm_devmem_radix,
1072                                        key >> PA_SECTION_SHIFT,
1073                                        devmem);
1074                if (ret) {
1075                        dev_err(device, "%s: failed: %d\n", __func__, ret);
1076                        mutex_unlock(&hmm_devmem_lock);
1077                        goto error_radix;
1078                }
1079        }
1080        mutex_unlock(&hmm_devmem_lock);
1081
1082        nid = dev_to_node(device);
1083        if (nid < 0)
1084                nid = numa_mem_id();
1085
1086        mem_hotplug_begin();
1087        /*
1088         * For device private memory we call add_pages() as we only need to
1089         * allocate and initialize struct page for the device memory. More-
1090         * over the device memory is un-accessible thus we do not want to
1091         * create a linear mapping for the memory like arch_add_memory()
1092         * would do.
1093         *
1094         * For device public memory, which is accesible by the CPU, we do
1095         * want the linear mapping and thus use arch_add_memory().
1096         */
1097        if (devmem->pagemap.type == MEMORY_DEVICE_PUBLIC)
1098                ret = arch_add_memory(nid, align_start, align_size, NULL,
1099                                false);
1100        else
1101                ret = add_pages(nid, align_start >> PAGE_SHIFT,
1102                                align_size >> PAGE_SHIFT, NULL, false);
1103        if (ret) {
1104                mem_hotplug_done();
1105                goto error_add_memory;
1106        }
1107        move_pfn_range_to_zone(&NODE_DATA(nid)->node_zones[ZONE_DEVICE],
1108                                align_start >> PAGE_SHIFT,
1109                                align_size >> PAGE_SHIFT, NULL);
1110        mem_hotplug_done();
1111
1112        for (pfn = devmem->pfn_first; pfn < devmem->pfn_last; pfn++) {
1113                struct page *page = pfn_to_page(pfn);
1114
1115                page->pgmap = &devmem->pagemap;
1116        }
1117        return 0;
1118
1119error_add_memory:
1120        untrack_pfn(NULL, PHYS_PFN(align_start), align_size);
1121error_radix:
1122        hmm_devmem_radix_release(devmem->resource);
1123error:
1124        return ret;
1125}
1126
1127static int hmm_devmem_match(struct device *dev, void *data, void *match_data)
1128{
1129        struct hmm_devmem *devmem = data;
1130
1131        return devmem->resource == match_data;
1132}
1133
1134static void hmm_devmem_pages_remove(struct hmm_devmem *devmem)
1135{
1136        devres_release(devmem->device, &hmm_devmem_release,
1137                       &hmm_devmem_match, devmem->resource);
1138}
1139
1140/*
1141 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1142 *
1143 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1144 * @device: device struct to bind the resource too
1145 * @size: size in bytes of the device memory to add
1146 * Returns: pointer to new hmm_devmem struct ERR_PTR otherwise
1147 *
1148 * This function first finds an empty range of physical address big enough to
1149 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1150 * in turn allocates struct pages. It does not do anything beyond that; all
1151 * events affecting the memory will go through the various callbacks provided
1152 * by hmm_devmem_ops struct.
1153 *
1154 * Device driver should call this function during device initialization and
1155 * is then responsible of memory management. HMM only provides helpers.
1156 */
1157struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1158                                  struct device *device,
1159                                  unsigned long size)
1160{
1161        struct hmm_devmem *devmem;
1162        resource_size_t addr;
1163        int ret;
1164
1165        dev_pagemap_get_ops();
1166
1167        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1168                                   GFP_KERNEL, dev_to_node(device));
1169        if (!devmem)
1170                return ERR_PTR(-ENOMEM);
1171
1172        init_completion(&devmem->completion);
1173        devmem->pfn_first = -1UL;
1174        devmem->pfn_last = -1UL;
1175        devmem->resource = NULL;
1176        devmem->device = device;
1177        devmem->ops = ops;
1178
1179        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1180                              0, GFP_KERNEL);
1181        if (ret)
1182                goto error_percpu_ref;
1183
1184        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1185        if (ret)
1186                goto error_devm_add_action;
1187
1188        size = ALIGN(size, PA_SECTION_SIZE);
1189        addr = min((unsigned long)iomem_resource.end,
1190                   (1UL << MAX_PHYSMEM_BITS) - 1);
1191        addr = addr - size + 1UL;
1192
1193        /*
1194         * FIXME add a new helper to quickly walk resource tree and find free
1195         * range
1196         *
1197         * FIXME what about ioport_resource resource ?
1198         */
1199        for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1200                ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1201                if (ret != REGION_DISJOINT)
1202                        continue;
1203
1204                devmem->resource = devm_request_mem_region(device, addr, size,
1205                                                           dev_name(device));
1206                if (!devmem->resource) {
1207                        ret = -ENOMEM;
1208                        goto error_no_resource;
1209                }
1210                break;
1211        }
1212        if (!devmem->resource) {
1213                ret = -ERANGE;
1214                goto error_no_resource;
1215        }
1216
1217        devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1218        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1219        devmem->pfn_last = devmem->pfn_first +
1220                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1221
1222        ret = hmm_devmem_pages_create(devmem);
1223        if (ret)
1224                goto error_pages;
1225
1226        devres_add(device, devmem);
1227
1228        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1229        if (ret) {
1230                hmm_devmem_remove(devmem);
1231                return ERR_PTR(ret);
1232        }
1233
1234        return devmem;
1235
1236error_pages:
1237        devm_release_mem_region(device, devmem->resource->start,
1238                                resource_size(devmem->resource));
1239error_no_resource:
1240error_devm_add_action:
1241        hmm_devmem_ref_kill(&devmem->ref);
1242        hmm_devmem_ref_exit(&devmem->ref);
1243error_percpu_ref:
1244        devres_free(devmem);
1245        return ERR_PTR(ret);
1246}
1247EXPORT_SYMBOL(hmm_devmem_add);
1248
1249struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1250                                           struct device *device,
1251                                           struct resource *res)
1252{
1253        struct hmm_devmem *devmem;
1254        int ret;
1255
1256        if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1257                return ERR_PTR(-EINVAL);
1258
1259        dev_pagemap_get_ops();
1260
1261        devmem = devres_alloc_node(&hmm_devmem_release, sizeof(*devmem),
1262                                   GFP_KERNEL, dev_to_node(device));
1263        if (!devmem)
1264                return ERR_PTR(-ENOMEM);
1265
1266        init_completion(&devmem->completion);
1267        devmem->pfn_first = -1UL;
1268        devmem->pfn_last = -1UL;
1269        devmem->resource = res;
1270        devmem->device = device;
1271        devmem->ops = ops;
1272
1273        ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1274                              0, GFP_KERNEL);
1275        if (ret)
1276                goto error_percpu_ref;
1277
1278        ret = devm_add_action(device, hmm_devmem_ref_exit, &devmem->ref);
1279        if (ret)
1280                goto error_devm_add_action;
1281
1282
1283        devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1284        devmem->pfn_last = devmem->pfn_first +
1285                           (resource_size(devmem->resource) >> PAGE_SHIFT);
1286
1287        ret = hmm_devmem_pages_create(devmem);
1288        if (ret)
1289                goto error_devm_add_action;
1290
1291        devres_add(device, devmem);
1292
1293        ret = devm_add_action(device, hmm_devmem_ref_kill, &devmem->ref);
1294        if (ret) {
1295                hmm_devmem_remove(devmem);
1296                return ERR_PTR(ret);
1297        }
1298
1299        return devmem;
1300
1301error_devm_add_action:
1302        hmm_devmem_ref_kill(&devmem->ref);
1303        hmm_devmem_ref_exit(&devmem->ref);
1304error_percpu_ref:
1305        devres_free(devmem);
1306        return ERR_PTR(ret);
1307}
1308EXPORT_SYMBOL(hmm_devmem_add_resource);
1309
1310/*
1311 * hmm_devmem_remove() - remove device memory (kill and free ZONE_DEVICE)
1312 *
1313 * @devmem: hmm_devmem struct use to track and manage the ZONE_DEVICE memory
1314 *
1315 * This will hot-unplug memory that was hotplugged by hmm_devmem_add on behalf
1316 * of the device driver. It will free struct page and remove the resource that
1317 * reserved the physical address range for this device memory.
1318 */
1319void hmm_devmem_remove(struct hmm_devmem *devmem)
1320{
1321        resource_size_t start, size;
1322        struct device *device;
1323        bool cdm = false;
1324
1325        if (!devmem)
1326                return;
1327
1328        device = devmem->device;
1329        start = devmem->resource->start;
1330        size = resource_size(devmem->resource);
1331
1332        cdm = devmem->resource->desc == IORES_DESC_DEVICE_PUBLIC_MEMORY;
1333        hmm_devmem_ref_kill(&devmem->ref);
1334        hmm_devmem_ref_exit(&devmem->ref);
1335        hmm_devmem_pages_remove(devmem);
1336
1337        if (!cdm)
1338                devm_release_mem_region(device, start, size);
1339}
1340EXPORT_SYMBOL(hmm_devmem_remove);
1341
1342/*
1343 * A device driver that wants to handle multiple devices memory through a
1344 * single fake device can use hmm_device to do so. This is purely a helper
1345 * and it is not needed to make use of any HMM functionality.
1346 */
1347#define HMM_DEVICE_MAX 256
1348
1349static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1350static DEFINE_SPINLOCK(hmm_device_lock);
1351static struct class *hmm_device_class;
1352static dev_t hmm_device_devt;
1353
1354static void hmm_device_release(struct device *device)
1355{
1356        struct hmm_device *hmm_device;
1357
1358        hmm_device = container_of(device, struct hmm_device, device);
1359        spin_lock(&hmm_device_lock);
1360        clear_bit(hmm_device->minor, hmm_device_mask);
1361        spin_unlock(&hmm_device_lock);
1362
1363        kfree(hmm_device);
1364}
1365
1366struct hmm_device *hmm_device_new(void *drvdata)
1367{
1368        struct hmm_device *hmm_device;
1369
1370        hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1371        if (!hmm_device)
1372                return ERR_PTR(-ENOMEM);
1373
1374        spin_lock(&hmm_device_lock);
1375        hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1376        if (hmm_device->minor >= HMM_DEVICE_MAX) {
1377                spin_unlock(&hmm_device_lock);
1378                kfree(hmm_device);
1379                return ERR_PTR(-EBUSY);
1380        }
1381        set_bit(hmm_device->minor, hmm_device_mask);
1382        spin_unlock(&hmm_device_lock);
1383
1384        dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1385        hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1386                                        hmm_device->minor);
1387        hmm_device->device.release = hmm_device_release;
1388        dev_set_drvdata(&hmm_device->device, drvdata);
1389        hmm_device->device.class = hmm_device_class;
1390        device_initialize(&hmm_device->device);
1391
1392        return hmm_device;
1393}
1394EXPORT_SYMBOL(hmm_device_new);
1395
1396void hmm_device_put(struct hmm_device *hmm_device)
1397{
1398        put_device(&hmm_device->device);
1399}
1400EXPORT_SYMBOL(hmm_device_put);
1401
1402static int __init hmm_init(void)
1403{
1404        int ret;
1405
1406        ret = alloc_chrdev_region(&hmm_device_devt, 0,
1407                                  HMM_DEVICE_MAX,
1408                                  "hmm_device");
1409        if (ret)
1410                return ret;
1411
1412        hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1413        if (IS_ERR(hmm_device_class)) {
1414                unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1415                return PTR_ERR(hmm_device_class);
1416        }
1417        return 0;
1418}
1419
1420device_initcall(hmm_init);
1421#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */
1422