linux/mm/huge_memory.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/sched/coredump.h>
  13#include <linux/sched/numa_balancing.h>
  14#include <linux/highmem.h>
  15#include <linux/hugetlb.h>
  16#include <linux/mmu_notifier.h>
  17#include <linux/rmap.h>
  18#include <linux/swap.h>
  19#include <linux/shrinker.h>
  20#include <linux/mm_inline.h>
  21#include <linux/swapops.h>
  22#include <linux/dax.h>
  23#include <linux/khugepaged.h>
  24#include <linux/freezer.h>
  25#include <linux/pfn_t.h>
  26#include <linux/mman.h>
  27#include <linux/memremap.h>
  28#include <linux/pagemap.h>
  29#include <linux/debugfs.h>
  30#include <linux/migrate.h>
  31#include <linux/hashtable.h>
  32#include <linux/userfaultfd_k.h>
  33#include <linux/page_idle.h>
  34#include <linux/shmem_fs.h>
  35#include <linux/oom.h>
  36
  37#include <asm/tlb.h>
  38#include <asm/pgalloc.h>
  39#include "internal.h"
  40
  41/*
  42 * By default, transparent hugepage support is disabled in order to avoid
  43 * risking an increased memory footprint for applications that are not
  44 * guaranteed to benefit from it. When transparent hugepage support is
  45 * enabled, it is for all mappings, and khugepaged scans all mappings.
  46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  47 * for all hugepage allocations.
  48 */
  49unsigned long transparent_hugepage_flags __read_mostly =
  50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  51        (1<<TRANSPARENT_HUGEPAGE_FLAG)|
  52#endif
  53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  54        (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  55#endif
  56        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  57        (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  58        (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  59
  60static struct shrinker deferred_split_shrinker;
  61
  62static atomic_t huge_zero_refcount;
  63struct page *huge_zero_page __read_mostly;
  64
  65static struct page *get_huge_zero_page(void)
  66{
  67        struct page *zero_page;
  68retry:
  69        if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
  70                return READ_ONCE(huge_zero_page);
  71
  72        zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
  73                        HPAGE_PMD_ORDER);
  74        if (!zero_page) {
  75                count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
  76                return NULL;
  77        }
  78        count_vm_event(THP_ZERO_PAGE_ALLOC);
  79        preempt_disable();
  80        if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
  81                preempt_enable();
  82                __free_pages(zero_page, compound_order(zero_page));
  83                goto retry;
  84        }
  85
  86        /* We take additional reference here. It will be put back by shrinker */
  87        atomic_set(&huge_zero_refcount, 2);
  88        preempt_enable();
  89        return READ_ONCE(huge_zero_page);
  90}
  91
  92static void put_huge_zero_page(void)
  93{
  94        /*
  95         * Counter should never go to zero here. Only shrinker can put
  96         * last reference.
  97         */
  98        BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
  99}
 100
 101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
 102{
 103        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 104                return READ_ONCE(huge_zero_page);
 105
 106        if (!get_huge_zero_page())
 107                return NULL;
 108
 109        if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 110                put_huge_zero_page();
 111
 112        return READ_ONCE(huge_zero_page);
 113}
 114
 115void mm_put_huge_zero_page(struct mm_struct *mm)
 116{
 117        if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
 118                put_huge_zero_page();
 119}
 120
 121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 122                                        struct shrink_control *sc)
 123{
 124        /* we can free zero page only if last reference remains */
 125        return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 126}
 127
 128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 129                                       struct shrink_control *sc)
 130{
 131        if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 132                struct page *zero_page = xchg(&huge_zero_page, NULL);
 133                BUG_ON(zero_page == NULL);
 134                __free_pages(zero_page, compound_order(zero_page));
 135                return HPAGE_PMD_NR;
 136        }
 137
 138        return 0;
 139}
 140
 141static struct shrinker huge_zero_page_shrinker = {
 142        .count_objects = shrink_huge_zero_page_count,
 143        .scan_objects = shrink_huge_zero_page_scan,
 144        .seeks = DEFAULT_SEEKS,
 145};
 146
 147#ifdef CONFIG_SYSFS
 148static ssize_t enabled_show(struct kobject *kobj,
 149                            struct kobj_attribute *attr, char *buf)
 150{
 151        if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 152                return sprintf(buf, "[always] madvise never\n");
 153        else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 154                return sprintf(buf, "always [madvise] never\n");
 155        else
 156                return sprintf(buf, "always madvise [never]\n");
 157}
 158
 159static ssize_t enabled_store(struct kobject *kobj,
 160                             struct kobj_attribute *attr,
 161                             const char *buf, size_t count)
 162{
 163        ssize_t ret = count;
 164
 165        if (!memcmp("always", buf,
 166                    min(sizeof("always")-1, count))) {
 167                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 168                set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 169        } else if (!memcmp("madvise", buf,
 170                           min(sizeof("madvise")-1, count))) {
 171                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 172                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 173        } else if (!memcmp("never", buf,
 174                           min(sizeof("never")-1, count))) {
 175                clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
 176                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
 177        } else
 178                ret = -EINVAL;
 179
 180        if (ret > 0) {
 181                int err = start_stop_khugepaged();
 182                if (err)
 183                        ret = err;
 184        }
 185        return ret;
 186}
 187static struct kobj_attribute enabled_attr =
 188        __ATTR(enabled, 0644, enabled_show, enabled_store);
 189
 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
 191                                struct kobj_attribute *attr, char *buf,
 192                                enum transparent_hugepage_flag flag)
 193{
 194        return sprintf(buf, "%d\n",
 195                       !!test_bit(flag, &transparent_hugepage_flags));
 196}
 197
 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
 199                                 struct kobj_attribute *attr,
 200                                 const char *buf, size_t count,
 201                                 enum transparent_hugepage_flag flag)
 202{
 203        unsigned long value;
 204        int ret;
 205
 206        ret = kstrtoul(buf, 10, &value);
 207        if (ret < 0)
 208                return ret;
 209        if (value > 1)
 210                return -EINVAL;
 211
 212        if (value)
 213                set_bit(flag, &transparent_hugepage_flags);
 214        else
 215                clear_bit(flag, &transparent_hugepage_flags);
 216
 217        return count;
 218}
 219
 220static ssize_t defrag_show(struct kobject *kobj,
 221                           struct kobj_attribute *attr, char *buf)
 222{
 223        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 224                return sprintf(buf, "[always] defer defer+madvise madvise never\n");
 225        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 226                return sprintf(buf, "always [defer] defer+madvise madvise never\n");
 227        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 228                return sprintf(buf, "always defer [defer+madvise] madvise never\n");
 229        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 230                return sprintf(buf, "always defer defer+madvise [madvise] never\n");
 231        return sprintf(buf, "always defer defer+madvise madvise [never]\n");
 232}
 233
 234static ssize_t defrag_store(struct kobject *kobj,
 235                            struct kobj_attribute *attr,
 236                            const char *buf, size_t count)
 237{
 238        if (!memcmp("always", buf,
 239                    min(sizeof("always")-1, count))) {
 240                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 241                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 242                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 243                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 244        } else if (!memcmp("defer+madvise", buf,
 245                    min(sizeof("defer+madvise")-1, count))) {
 246                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 247                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 248                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 249                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 250        } else if (!memcmp("defer", buf,
 251                    min(sizeof("defer")-1, count))) {
 252                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 253                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 254                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 255                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 256        } else if (!memcmp("madvise", buf,
 257                           min(sizeof("madvise")-1, count))) {
 258                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 259                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 260                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 261                set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 262        } else if (!memcmp("never", buf,
 263                           min(sizeof("never")-1, count))) {
 264                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
 265                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
 266                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
 267                clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
 268        } else
 269                return -EINVAL;
 270
 271        return count;
 272}
 273static struct kobj_attribute defrag_attr =
 274        __ATTR(defrag, 0644, defrag_show, defrag_store);
 275
 276static ssize_t use_zero_page_show(struct kobject *kobj,
 277                struct kobj_attribute *attr, char *buf)
 278{
 279        return single_hugepage_flag_show(kobj, attr, buf,
 280                                TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 281}
 282static ssize_t use_zero_page_store(struct kobject *kobj,
 283                struct kobj_attribute *attr, const char *buf, size_t count)
 284{
 285        return single_hugepage_flag_store(kobj, attr, buf, count,
 286                                 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 287}
 288static struct kobj_attribute use_zero_page_attr =
 289        __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 290
 291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
 292                struct kobj_attribute *attr, char *buf)
 293{
 294        return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
 295}
 296static struct kobj_attribute hpage_pmd_size_attr =
 297        __ATTR_RO(hpage_pmd_size);
 298
 299#ifdef CONFIG_DEBUG_VM
 300static ssize_t debug_cow_show(struct kobject *kobj,
 301                                struct kobj_attribute *attr, char *buf)
 302{
 303        return single_hugepage_flag_show(kobj, attr, buf,
 304                                TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 305}
 306static ssize_t debug_cow_store(struct kobject *kobj,
 307                               struct kobj_attribute *attr,
 308                               const char *buf, size_t count)
 309{
 310        return single_hugepage_flag_store(kobj, attr, buf, count,
 311                                 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 312}
 313static struct kobj_attribute debug_cow_attr =
 314        __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 315#endif /* CONFIG_DEBUG_VM */
 316
 317static struct attribute *hugepage_attr[] = {
 318        &enabled_attr.attr,
 319        &defrag_attr.attr,
 320        &use_zero_page_attr.attr,
 321        &hpage_pmd_size_attr.attr,
 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
 323        &shmem_enabled_attr.attr,
 324#endif
 325#ifdef CONFIG_DEBUG_VM
 326        &debug_cow_attr.attr,
 327#endif
 328        NULL,
 329};
 330
 331static const struct attribute_group hugepage_attr_group = {
 332        .attrs = hugepage_attr,
 333};
 334
 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 336{
 337        int err;
 338
 339        *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 340        if (unlikely(!*hugepage_kobj)) {
 341                pr_err("failed to create transparent hugepage kobject\n");
 342                return -ENOMEM;
 343        }
 344
 345        err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 346        if (err) {
 347                pr_err("failed to register transparent hugepage group\n");
 348                goto delete_obj;
 349        }
 350
 351        err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 352        if (err) {
 353                pr_err("failed to register transparent hugepage group\n");
 354                goto remove_hp_group;
 355        }
 356
 357        return 0;
 358
 359remove_hp_group:
 360        sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 361delete_obj:
 362        kobject_put(*hugepage_kobj);
 363        return err;
 364}
 365
 366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 367{
 368        sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 369        sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 370        kobject_put(hugepage_kobj);
 371}
 372#else
 373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 374{
 375        return 0;
 376}
 377
 378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 379{
 380}
 381#endif /* CONFIG_SYSFS */
 382
 383static int __init hugepage_init(void)
 384{
 385        int err;
 386        struct kobject *hugepage_kobj;
 387
 388        if (!has_transparent_hugepage()) {
 389                transparent_hugepage_flags = 0;
 390                return -EINVAL;
 391        }
 392
 393        /*
 394         * hugepages can't be allocated by the buddy allocator
 395         */
 396        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 397        /*
 398         * we use page->mapping and page->index in second tail page
 399         * as list_head: assuming THP order >= 2
 400         */
 401        MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 402
 403        err = hugepage_init_sysfs(&hugepage_kobj);
 404        if (err)
 405                goto err_sysfs;
 406
 407        err = khugepaged_init();
 408        if (err)
 409                goto err_slab;
 410
 411        err = register_shrinker(&huge_zero_page_shrinker);
 412        if (err)
 413                goto err_hzp_shrinker;
 414        err = register_shrinker(&deferred_split_shrinker);
 415        if (err)
 416                goto err_split_shrinker;
 417
 418        /*
 419         * By default disable transparent hugepages on smaller systems,
 420         * where the extra memory used could hurt more than TLB overhead
 421         * is likely to save.  The admin can still enable it through /sys.
 422         */
 423        if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 424                transparent_hugepage_flags = 0;
 425                return 0;
 426        }
 427
 428        err = start_stop_khugepaged();
 429        if (err)
 430                goto err_khugepaged;
 431
 432        return 0;
 433err_khugepaged:
 434        unregister_shrinker(&deferred_split_shrinker);
 435err_split_shrinker:
 436        unregister_shrinker(&huge_zero_page_shrinker);
 437err_hzp_shrinker:
 438        khugepaged_destroy();
 439err_slab:
 440        hugepage_exit_sysfs(hugepage_kobj);
 441err_sysfs:
 442        return err;
 443}
 444subsys_initcall(hugepage_init);
 445
 446static int __init setup_transparent_hugepage(char *str)
 447{
 448        int ret = 0;
 449        if (!str)
 450                goto out;
 451        if (!strcmp(str, "always")) {
 452                set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 453                        &transparent_hugepage_flags);
 454                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 455                          &transparent_hugepage_flags);
 456                ret = 1;
 457        } else if (!strcmp(str, "madvise")) {
 458                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 459                          &transparent_hugepage_flags);
 460                set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 461                        &transparent_hugepage_flags);
 462                ret = 1;
 463        } else if (!strcmp(str, "never")) {
 464                clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 465                          &transparent_hugepage_flags);
 466                clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 467                          &transparent_hugepage_flags);
 468                ret = 1;
 469        }
 470out:
 471        if (!ret)
 472                pr_warn("transparent_hugepage= cannot parse, ignored\n");
 473        return ret;
 474}
 475__setup("transparent_hugepage=", setup_transparent_hugepage);
 476
 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 478{
 479        if (likely(vma->vm_flags & VM_WRITE))
 480                pmd = pmd_mkwrite(pmd);
 481        return pmd;
 482}
 483
 484static inline struct list_head *page_deferred_list(struct page *page)
 485{
 486        /* ->lru in the tail pages is occupied by compound_head. */
 487        return &page[2].deferred_list;
 488}
 489
 490void prep_transhuge_page(struct page *page)
 491{
 492        /*
 493         * we use page->mapping and page->indexlru in second tail page
 494         * as list_head: assuming THP order >= 2
 495         */
 496
 497        INIT_LIST_HEAD(page_deferred_list(page));
 498        set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 499}
 500
 501unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
 502                loff_t off, unsigned long flags, unsigned long size)
 503{
 504        unsigned long addr;
 505        loff_t off_end = off + len;
 506        loff_t off_align = round_up(off, size);
 507        unsigned long len_pad;
 508
 509        if (off_end <= off_align || (off_end - off_align) < size)
 510                return 0;
 511
 512        len_pad = len + size;
 513        if (len_pad < len || (off + len_pad) < off)
 514                return 0;
 515
 516        addr = current->mm->get_unmapped_area(filp, 0, len_pad,
 517                                              off >> PAGE_SHIFT, flags);
 518        if (IS_ERR_VALUE(addr))
 519                return 0;
 520
 521        addr += (off - addr) & (size - 1);
 522        return addr;
 523}
 524
 525unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
 526                unsigned long len, unsigned long pgoff, unsigned long flags)
 527{
 528        loff_t off = (loff_t)pgoff << PAGE_SHIFT;
 529
 530        if (addr)
 531                goto out;
 532        if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
 533                goto out;
 534
 535        addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
 536        if (addr)
 537                return addr;
 538
 539 out:
 540        return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
 541}
 542EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
 543
 544static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
 545                        struct page *page, gfp_t gfp)
 546{
 547        struct vm_area_struct *vma = vmf->vma;
 548        struct mem_cgroup *memcg;
 549        pgtable_t pgtable;
 550        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 551        vm_fault_t ret = 0;
 552
 553        VM_BUG_ON_PAGE(!PageCompound(page), page);
 554
 555        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
 556                put_page(page);
 557                count_vm_event(THP_FAULT_FALLBACK);
 558                return VM_FAULT_FALLBACK;
 559        }
 560
 561        pgtable = pte_alloc_one(vma->vm_mm, haddr);
 562        if (unlikely(!pgtable)) {
 563                ret = VM_FAULT_OOM;
 564                goto release;
 565        }
 566
 567        clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
 568        /*
 569         * The memory barrier inside __SetPageUptodate makes sure that
 570         * clear_huge_page writes become visible before the set_pmd_at()
 571         * write.
 572         */
 573        __SetPageUptodate(page);
 574
 575        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 576        if (unlikely(!pmd_none(*vmf->pmd))) {
 577                goto unlock_release;
 578        } else {
 579                pmd_t entry;
 580
 581                ret = check_stable_address_space(vma->vm_mm);
 582                if (ret)
 583                        goto unlock_release;
 584
 585                /* Deliver the page fault to userland */
 586                if (userfaultfd_missing(vma)) {
 587                        vm_fault_t ret2;
 588
 589                        spin_unlock(vmf->ptl);
 590                        mem_cgroup_cancel_charge(page, memcg, true);
 591                        put_page(page);
 592                        pte_free(vma->vm_mm, pgtable);
 593                        ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
 594                        VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
 595                        return ret2;
 596                }
 597
 598                entry = mk_huge_pmd(page, vma->vm_page_prot);
 599                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 600                page_add_new_anon_rmap(page, vma, haddr, true);
 601                mem_cgroup_commit_charge(page, memcg, false, true);
 602                lru_cache_add_active_or_unevictable(page, vma);
 603                pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
 604                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
 605                add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 606                mm_inc_nr_ptes(vma->vm_mm);
 607                spin_unlock(vmf->ptl);
 608                count_vm_event(THP_FAULT_ALLOC);
 609        }
 610
 611        return 0;
 612unlock_release:
 613        spin_unlock(vmf->ptl);
 614release:
 615        if (pgtable)
 616                pte_free(vma->vm_mm, pgtable);
 617        mem_cgroup_cancel_charge(page, memcg, true);
 618        put_page(page);
 619        return ret;
 620
 621}
 622
 623/*
 624 * always: directly stall for all thp allocations
 625 * defer: wake kswapd and fail if not immediately available
 626 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
 627 *                fail if not immediately available
 628 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
 629 *          available
 630 * never: never stall for any thp allocation
 631 */
 632static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 633{
 634        const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
 635
 636        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 637                return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
 638        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 639                return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
 640        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
 641                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 642                                                             __GFP_KSWAPD_RECLAIM);
 643        if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 644                return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
 645                                                             0);
 646        return GFP_TRANSHUGE_LIGHT;
 647}
 648
 649/* Caller must hold page table lock. */
 650static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 651                struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 652                struct page *zero_page)
 653{
 654        pmd_t entry;
 655        if (!pmd_none(*pmd))
 656                return false;
 657        entry = mk_pmd(zero_page, vma->vm_page_prot);
 658        entry = pmd_mkhuge(entry);
 659        if (pgtable)
 660                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 661        set_pmd_at(mm, haddr, pmd, entry);
 662        mm_inc_nr_ptes(mm);
 663        return true;
 664}
 665
 666vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
 667{
 668        struct vm_area_struct *vma = vmf->vma;
 669        gfp_t gfp;
 670        struct page *page;
 671        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
 672
 673        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 674                return VM_FAULT_FALLBACK;
 675        if (unlikely(anon_vma_prepare(vma)))
 676                return VM_FAULT_OOM;
 677        if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 678                return VM_FAULT_OOM;
 679        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
 680                        !mm_forbids_zeropage(vma->vm_mm) &&
 681                        transparent_hugepage_use_zero_page()) {
 682                pgtable_t pgtable;
 683                struct page *zero_page;
 684                bool set;
 685                vm_fault_t ret;
 686                pgtable = pte_alloc_one(vma->vm_mm, haddr);
 687                if (unlikely(!pgtable))
 688                        return VM_FAULT_OOM;
 689                zero_page = mm_get_huge_zero_page(vma->vm_mm);
 690                if (unlikely(!zero_page)) {
 691                        pte_free(vma->vm_mm, pgtable);
 692                        count_vm_event(THP_FAULT_FALLBACK);
 693                        return VM_FAULT_FALLBACK;
 694                }
 695                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
 696                ret = 0;
 697                set = false;
 698                if (pmd_none(*vmf->pmd)) {
 699                        ret = check_stable_address_space(vma->vm_mm);
 700                        if (ret) {
 701                                spin_unlock(vmf->ptl);
 702                        } else if (userfaultfd_missing(vma)) {
 703                                spin_unlock(vmf->ptl);
 704                                ret = handle_userfault(vmf, VM_UFFD_MISSING);
 705                                VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 706                        } else {
 707                                set_huge_zero_page(pgtable, vma->vm_mm, vma,
 708                                                   haddr, vmf->pmd, zero_page);
 709                                spin_unlock(vmf->ptl);
 710                                set = true;
 711                        }
 712                } else
 713                        spin_unlock(vmf->ptl);
 714                if (!set)
 715                        pte_free(vma->vm_mm, pgtable);
 716                return ret;
 717        }
 718        gfp = alloc_hugepage_direct_gfpmask(vma);
 719        page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 720        if (unlikely(!page)) {
 721                count_vm_event(THP_FAULT_FALLBACK);
 722                return VM_FAULT_FALLBACK;
 723        }
 724        prep_transhuge_page(page);
 725        return __do_huge_pmd_anonymous_page(vmf, page, gfp);
 726}
 727
 728static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 729                pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
 730                pgtable_t pgtable)
 731{
 732        struct mm_struct *mm = vma->vm_mm;
 733        pmd_t entry;
 734        spinlock_t *ptl;
 735
 736        ptl = pmd_lock(mm, pmd);
 737        entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 738        if (pfn_t_devmap(pfn))
 739                entry = pmd_mkdevmap(entry);
 740        if (write) {
 741                entry = pmd_mkyoung(pmd_mkdirty(entry));
 742                entry = maybe_pmd_mkwrite(entry, vma);
 743        }
 744
 745        if (pgtable) {
 746                pgtable_trans_huge_deposit(mm, pmd, pgtable);
 747                mm_inc_nr_ptes(mm);
 748        }
 749
 750        set_pmd_at(mm, addr, pmd, entry);
 751        update_mmu_cache_pmd(vma, addr, pmd);
 752        spin_unlock(ptl);
 753}
 754
 755vm_fault_t vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 756                        pmd_t *pmd, pfn_t pfn, bool write)
 757{
 758        pgprot_t pgprot = vma->vm_page_prot;
 759        pgtable_t pgtable = NULL;
 760        /*
 761         * If we had pmd_special, we could avoid all these restrictions,
 762         * but we need to be consistent with PTEs and architectures that
 763         * can't support a 'special' bit.
 764         */
 765        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 766                        !pfn_t_devmap(pfn));
 767        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 768                                                (VM_PFNMAP|VM_MIXEDMAP));
 769        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 770
 771        if (addr < vma->vm_start || addr >= vma->vm_end)
 772                return VM_FAULT_SIGBUS;
 773
 774        if (arch_needs_pgtable_deposit()) {
 775                pgtable = pte_alloc_one(vma->vm_mm, addr);
 776                if (!pgtable)
 777                        return VM_FAULT_OOM;
 778        }
 779
 780        track_pfn_insert(vma, &pgprot, pfn);
 781
 782        insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
 783        return VM_FAULT_NOPAGE;
 784}
 785EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
 786
 787#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 788static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
 789{
 790        if (likely(vma->vm_flags & VM_WRITE))
 791                pud = pud_mkwrite(pud);
 792        return pud;
 793}
 794
 795static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 796                pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
 797{
 798        struct mm_struct *mm = vma->vm_mm;
 799        pud_t entry;
 800        spinlock_t *ptl;
 801
 802        ptl = pud_lock(mm, pud);
 803        entry = pud_mkhuge(pfn_t_pud(pfn, prot));
 804        if (pfn_t_devmap(pfn))
 805                entry = pud_mkdevmap(entry);
 806        if (write) {
 807                entry = pud_mkyoung(pud_mkdirty(entry));
 808                entry = maybe_pud_mkwrite(entry, vma);
 809        }
 810        set_pud_at(mm, addr, pud, entry);
 811        update_mmu_cache_pud(vma, addr, pud);
 812        spin_unlock(ptl);
 813}
 814
 815vm_fault_t vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
 816                        pud_t *pud, pfn_t pfn, bool write)
 817{
 818        pgprot_t pgprot = vma->vm_page_prot;
 819        /*
 820         * If we had pud_special, we could avoid all these restrictions,
 821         * but we need to be consistent with PTEs and architectures that
 822         * can't support a 'special' bit.
 823         */
 824        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
 825                        !pfn_t_devmap(pfn));
 826        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
 827                                                (VM_PFNMAP|VM_MIXEDMAP));
 828        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
 829
 830        if (addr < vma->vm_start || addr >= vma->vm_end)
 831                return VM_FAULT_SIGBUS;
 832
 833        track_pfn_insert(vma, &pgprot, pfn);
 834
 835        insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
 836        return VM_FAULT_NOPAGE;
 837}
 838EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
 839#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
 840
 841static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
 842                pmd_t *pmd, int flags)
 843{
 844        pmd_t _pmd;
 845
 846        _pmd = pmd_mkyoung(*pmd);
 847        if (flags & FOLL_WRITE)
 848                _pmd = pmd_mkdirty(_pmd);
 849        if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
 850                                pmd, _pmd, flags & FOLL_WRITE))
 851                update_mmu_cache_pmd(vma, addr, pmd);
 852}
 853
 854struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
 855                pmd_t *pmd, int flags)
 856{
 857        unsigned long pfn = pmd_pfn(*pmd);
 858        struct mm_struct *mm = vma->vm_mm;
 859        struct dev_pagemap *pgmap;
 860        struct page *page;
 861
 862        assert_spin_locked(pmd_lockptr(mm, pmd));
 863
 864        /*
 865         * When we COW a devmap PMD entry, we split it into PTEs, so we should
 866         * not be in this function with `flags & FOLL_COW` set.
 867         */
 868        WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
 869
 870        if (flags & FOLL_WRITE && !pmd_write(*pmd))
 871                return NULL;
 872
 873        if (pmd_present(*pmd) && pmd_devmap(*pmd))
 874                /* pass */;
 875        else
 876                return NULL;
 877
 878        if (flags & FOLL_TOUCH)
 879                touch_pmd(vma, addr, pmd, flags);
 880
 881        /*
 882         * device mapped pages can only be returned if the
 883         * caller will manage the page reference count.
 884         */
 885        if (!(flags & FOLL_GET))
 886                return ERR_PTR(-EEXIST);
 887
 888        pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
 889        pgmap = get_dev_pagemap(pfn, NULL);
 890        if (!pgmap)
 891                return ERR_PTR(-EFAULT);
 892        page = pfn_to_page(pfn);
 893        get_page(page);
 894        put_dev_pagemap(pgmap);
 895
 896        return page;
 897}
 898
 899int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 900                  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 901                  struct vm_area_struct *vma)
 902{
 903        spinlock_t *dst_ptl, *src_ptl;
 904        struct page *src_page;
 905        pmd_t pmd;
 906        pgtable_t pgtable = NULL;
 907        int ret = -ENOMEM;
 908
 909        /* Skip if can be re-fill on fault */
 910        if (!vma_is_anonymous(vma))
 911                return 0;
 912
 913        pgtable = pte_alloc_one(dst_mm, addr);
 914        if (unlikely(!pgtable))
 915                goto out;
 916
 917        dst_ptl = pmd_lock(dst_mm, dst_pmd);
 918        src_ptl = pmd_lockptr(src_mm, src_pmd);
 919        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 920
 921        ret = -EAGAIN;
 922        pmd = *src_pmd;
 923
 924#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 925        if (unlikely(is_swap_pmd(pmd))) {
 926                swp_entry_t entry = pmd_to_swp_entry(pmd);
 927
 928                VM_BUG_ON(!is_pmd_migration_entry(pmd));
 929                if (is_write_migration_entry(entry)) {
 930                        make_migration_entry_read(&entry);
 931                        pmd = swp_entry_to_pmd(entry);
 932                        if (pmd_swp_soft_dirty(*src_pmd))
 933                                pmd = pmd_swp_mksoft_dirty(pmd);
 934                        set_pmd_at(src_mm, addr, src_pmd, pmd);
 935                }
 936                add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 937                mm_inc_nr_ptes(dst_mm);
 938                pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 939                set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 940                ret = 0;
 941                goto out_unlock;
 942        }
 943#endif
 944
 945        if (unlikely(!pmd_trans_huge(pmd))) {
 946                pte_free(dst_mm, pgtable);
 947                goto out_unlock;
 948        }
 949        /*
 950         * When page table lock is held, the huge zero pmd should not be
 951         * under splitting since we don't split the page itself, only pmd to
 952         * a page table.
 953         */
 954        if (is_huge_zero_pmd(pmd)) {
 955                struct page *zero_page;
 956                /*
 957                 * get_huge_zero_page() will never allocate a new page here,
 958                 * since we already have a zero page to copy. It just takes a
 959                 * reference.
 960                 */
 961                zero_page = mm_get_huge_zero_page(dst_mm);
 962                set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 963                                zero_page);
 964                ret = 0;
 965                goto out_unlock;
 966        }
 967
 968        src_page = pmd_page(pmd);
 969        VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 970        get_page(src_page);
 971        page_dup_rmap(src_page, true);
 972        add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 973        mm_inc_nr_ptes(dst_mm);
 974        pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 975
 976        pmdp_set_wrprotect(src_mm, addr, src_pmd);
 977        pmd = pmd_mkold(pmd_wrprotect(pmd));
 978        set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 979
 980        ret = 0;
 981out_unlock:
 982        spin_unlock(src_ptl);
 983        spin_unlock(dst_ptl);
 984out:
 985        return ret;
 986}
 987
 988#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
 989static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
 990                pud_t *pud, int flags)
 991{
 992        pud_t _pud;
 993
 994        _pud = pud_mkyoung(*pud);
 995        if (flags & FOLL_WRITE)
 996                _pud = pud_mkdirty(_pud);
 997        if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
 998                                pud, _pud, flags & FOLL_WRITE))
 999                update_mmu_cache_pud(vma, addr, pud);
1000}
1001
1002struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1003                pud_t *pud, int flags)
1004{
1005        unsigned long pfn = pud_pfn(*pud);
1006        struct mm_struct *mm = vma->vm_mm;
1007        struct dev_pagemap *pgmap;
1008        struct page *page;
1009
1010        assert_spin_locked(pud_lockptr(mm, pud));
1011
1012        if (flags & FOLL_WRITE && !pud_write(*pud))
1013                return NULL;
1014
1015        if (pud_present(*pud) && pud_devmap(*pud))
1016                /* pass */;
1017        else
1018                return NULL;
1019
1020        if (flags & FOLL_TOUCH)
1021                touch_pud(vma, addr, pud, flags);
1022
1023        /*
1024         * device mapped pages can only be returned if the
1025         * caller will manage the page reference count.
1026         */
1027        if (!(flags & FOLL_GET))
1028                return ERR_PTR(-EEXIST);
1029
1030        pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1031        pgmap = get_dev_pagemap(pfn, NULL);
1032        if (!pgmap)
1033                return ERR_PTR(-EFAULT);
1034        page = pfn_to_page(pfn);
1035        get_page(page);
1036        put_dev_pagemap(pgmap);
1037
1038        return page;
1039}
1040
1041int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1042                  pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1043                  struct vm_area_struct *vma)
1044{
1045        spinlock_t *dst_ptl, *src_ptl;
1046        pud_t pud;
1047        int ret;
1048
1049        dst_ptl = pud_lock(dst_mm, dst_pud);
1050        src_ptl = pud_lockptr(src_mm, src_pud);
1051        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1052
1053        ret = -EAGAIN;
1054        pud = *src_pud;
1055        if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1056                goto out_unlock;
1057
1058        /*
1059         * When page table lock is held, the huge zero pud should not be
1060         * under splitting since we don't split the page itself, only pud to
1061         * a page table.
1062         */
1063        if (is_huge_zero_pud(pud)) {
1064                /* No huge zero pud yet */
1065        }
1066
1067        pudp_set_wrprotect(src_mm, addr, src_pud);
1068        pud = pud_mkold(pud_wrprotect(pud));
1069        set_pud_at(dst_mm, addr, dst_pud, pud);
1070
1071        ret = 0;
1072out_unlock:
1073        spin_unlock(src_ptl);
1074        spin_unlock(dst_ptl);
1075        return ret;
1076}
1077
1078void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1079{
1080        pud_t entry;
1081        unsigned long haddr;
1082        bool write = vmf->flags & FAULT_FLAG_WRITE;
1083
1084        vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1085        if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1086                goto unlock;
1087
1088        entry = pud_mkyoung(orig_pud);
1089        if (write)
1090                entry = pud_mkdirty(entry);
1091        haddr = vmf->address & HPAGE_PUD_MASK;
1092        if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1093                update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1094
1095unlock:
1096        spin_unlock(vmf->ptl);
1097}
1098#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1099
1100void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
1101{
1102        pmd_t entry;
1103        unsigned long haddr;
1104        bool write = vmf->flags & FAULT_FLAG_WRITE;
1105
1106        vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1107        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1108                goto unlock;
1109
1110        entry = pmd_mkyoung(orig_pmd);
1111        if (write)
1112                entry = pmd_mkdirty(entry);
1113        haddr = vmf->address & HPAGE_PMD_MASK;
1114        if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
1115                update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
1116
1117unlock:
1118        spin_unlock(vmf->ptl);
1119}
1120
1121static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1122                        pmd_t orig_pmd, struct page *page)
1123{
1124        struct vm_area_struct *vma = vmf->vma;
1125        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1126        struct mem_cgroup *memcg;
1127        pgtable_t pgtable;
1128        pmd_t _pmd;
1129        int i;
1130        vm_fault_t ret = 0;
1131        struct page **pages;
1132        unsigned long mmun_start;       /* For mmu_notifiers */
1133        unsigned long mmun_end;         /* For mmu_notifiers */
1134
1135        pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1136                              GFP_KERNEL);
1137        if (unlikely(!pages)) {
1138                ret |= VM_FAULT_OOM;
1139                goto out;
1140        }
1141
1142        for (i = 0; i < HPAGE_PMD_NR; i++) {
1143                pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
1144                                               vmf->address, page_to_nid(page));
1145                if (unlikely(!pages[i] ||
1146                             mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
1147                                     GFP_KERNEL, &memcg, false))) {
1148                        if (pages[i])
1149                                put_page(pages[i]);
1150                        while (--i >= 0) {
1151                                memcg = (void *)page_private(pages[i]);
1152                                set_page_private(pages[i], 0);
1153                                mem_cgroup_cancel_charge(pages[i], memcg,
1154                                                false);
1155                                put_page(pages[i]);
1156                        }
1157                        kfree(pages);
1158                        ret |= VM_FAULT_OOM;
1159                        goto out;
1160                }
1161                set_page_private(pages[i], (unsigned long)memcg);
1162        }
1163
1164        for (i = 0; i < HPAGE_PMD_NR; i++) {
1165                copy_user_highpage(pages[i], page + i,
1166                                   haddr + PAGE_SIZE * i, vma);
1167                __SetPageUptodate(pages[i]);
1168                cond_resched();
1169        }
1170
1171        mmun_start = haddr;
1172        mmun_end   = haddr + HPAGE_PMD_SIZE;
1173        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1174
1175        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1176        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1177                goto out_free_pages;
1178        VM_BUG_ON_PAGE(!PageHead(page), page);
1179
1180        /*
1181         * Leave pmd empty until pte is filled note we must notify here as
1182         * concurrent CPU thread might write to new page before the call to
1183         * mmu_notifier_invalidate_range_end() happens which can lead to a
1184         * device seeing memory write in different order than CPU.
1185         *
1186         * See Documentation/vm/mmu_notifier.rst
1187         */
1188        pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1189
1190        pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
1191        pmd_populate(vma->vm_mm, &_pmd, pgtable);
1192
1193        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1194                pte_t entry;
1195                entry = mk_pte(pages[i], vma->vm_page_prot);
1196                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1197                memcg = (void *)page_private(pages[i]);
1198                set_page_private(pages[i], 0);
1199                page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
1200                mem_cgroup_commit_charge(pages[i], memcg, false, false);
1201                lru_cache_add_active_or_unevictable(pages[i], vma);
1202                vmf->pte = pte_offset_map(&_pmd, haddr);
1203                VM_BUG_ON(!pte_none(*vmf->pte));
1204                set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1205                pte_unmap(vmf->pte);
1206        }
1207        kfree(pages);
1208
1209        smp_wmb(); /* make pte visible before pmd */
1210        pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
1211        page_remove_rmap(page, true);
1212        spin_unlock(vmf->ptl);
1213
1214        /*
1215         * No need to double call mmu_notifier->invalidate_range() callback as
1216         * the above pmdp_huge_clear_flush_notify() did already call it.
1217         */
1218        mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1219                                                mmun_end);
1220
1221        ret |= VM_FAULT_WRITE;
1222        put_page(page);
1223
1224out:
1225        return ret;
1226
1227out_free_pages:
1228        spin_unlock(vmf->ptl);
1229        mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1230        for (i = 0; i < HPAGE_PMD_NR; i++) {
1231                memcg = (void *)page_private(pages[i]);
1232                set_page_private(pages[i], 0);
1233                mem_cgroup_cancel_charge(pages[i], memcg, false);
1234                put_page(pages[i]);
1235        }
1236        kfree(pages);
1237        goto out;
1238}
1239
1240vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
1241{
1242        struct vm_area_struct *vma = vmf->vma;
1243        struct page *page = NULL, *new_page;
1244        struct mem_cgroup *memcg;
1245        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1246        unsigned long mmun_start;       /* For mmu_notifiers */
1247        unsigned long mmun_end;         /* For mmu_notifiers */
1248        gfp_t huge_gfp;                 /* for allocation and charge */
1249        vm_fault_t ret = 0;
1250
1251        vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
1252        VM_BUG_ON_VMA(!vma->anon_vma, vma);
1253        if (is_huge_zero_pmd(orig_pmd))
1254                goto alloc;
1255        spin_lock(vmf->ptl);
1256        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
1257                goto out_unlock;
1258
1259        page = pmd_page(orig_pmd);
1260        VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1261        /*
1262         * We can only reuse the page if nobody else maps the huge page or it's
1263         * part.
1264         */
1265        if (!trylock_page(page)) {
1266                get_page(page);
1267                spin_unlock(vmf->ptl);
1268                lock_page(page);
1269                spin_lock(vmf->ptl);
1270                if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1271                        unlock_page(page);
1272                        put_page(page);
1273                        goto out_unlock;
1274                }
1275                put_page(page);
1276        }
1277        if (reuse_swap_page(page, NULL)) {
1278                pmd_t entry;
1279                entry = pmd_mkyoung(orig_pmd);
1280                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1281                if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry,  1))
1282                        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1283                ret |= VM_FAULT_WRITE;
1284                unlock_page(page);
1285                goto out_unlock;
1286        }
1287        unlock_page(page);
1288        get_page(page);
1289        spin_unlock(vmf->ptl);
1290alloc:
1291        if (transparent_hugepage_enabled(vma) &&
1292            !transparent_hugepage_debug_cow()) {
1293                huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1294                new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1295        } else
1296                new_page = NULL;
1297
1298        if (likely(new_page)) {
1299                prep_transhuge_page(new_page);
1300        } else {
1301                if (!page) {
1302                        split_huge_pmd(vma, vmf->pmd, vmf->address);
1303                        ret |= VM_FAULT_FALLBACK;
1304                } else {
1305                        ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
1306                        if (ret & VM_FAULT_OOM) {
1307                                split_huge_pmd(vma, vmf->pmd, vmf->address);
1308                                ret |= VM_FAULT_FALLBACK;
1309                        }
1310                        put_page(page);
1311                }
1312                count_vm_event(THP_FAULT_FALLBACK);
1313                goto out;
1314        }
1315
1316        if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
1317                                        huge_gfp, &memcg, true))) {
1318                put_page(new_page);
1319                split_huge_pmd(vma, vmf->pmd, vmf->address);
1320                if (page)
1321                        put_page(page);
1322                ret |= VM_FAULT_FALLBACK;
1323                count_vm_event(THP_FAULT_FALLBACK);
1324                goto out;
1325        }
1326
1327        count_vm_event(THP_FAULT_ALLOC);
1328
1329        if (!page)
1330                clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
1331        else
1332                copy_user_huge_page(new_page, page, vmf->address,
1333                                    vma, HPAGE_PMD_NR);
1334        __SetPageUptodate(new_page);
1335
1336        mmun_start = haddr;
1337        mmun_end   = haddr + HPAGE_PMD_SIZE;
1338        mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1339
1340        spin_lock(vmf->ptl);
1341        if (page)
1342                put_page(page);
1343        if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1344                spin_unlock(vmf->ptl);
1345                mem_cgroup_cancel_charge(new_page, memcg, true);
1346                put_page(new_page);
1347                goto out_mn;
1348        } else {
1349                pmd_t entry;
1350                entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1351                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1352                pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
1353                page_add_new_anon_rmap(new_page, vma, haddr, true);
1354                mem_cgroup_commit_charge(new_page, memcg, false, true);
1355                lru_cache_add_active_or_unevictable(new_page, vma);
1356                set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1357                update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1358                if (!page) {
1359                        add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1360                } else {
1361                        VM_BUG_ON_PAGE(!PageHead(page), page);
1362                        page_remove_rmap(page, true);
1363                        put_page(page);
1364                }
1365                ret |= VM_FAULT_WRITE;
1366        }
1367        spin_unlock(vmf->ptl);
1368out_mn:
1369        /*
1370         * No need to double call mmu_notifier->invalidate_range() callback as
1371         * the above pmdp_huge_clear_flush_notify() did already call it.
1372         */
1373        mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1374                                               mmun_end);
1375out:
1376        return ret;
1377out_unlock:
1378        spin_unlock(vmf->ptl);
1379        return ret;
1380}
1381
1382/*
1383 * FOLL_FORCE can write to even unwritable pmd's, but only
1384 * after we've gone through a COW cycle and they are dirty.
1385 */
1386static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1387{
1388        return pmd_write(pmd) ||
1389               ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1390}
1391
1392struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1393                                   unsigned long addr,
1394                                   pmd_t *pmd,
1395                                   unsigned int flags)
1396{
1397        struct mm_struct *mm = vma->vm_mm;
1398        struct page *page = NULL;
1399
1400        assert_spin_locked(pmd_lockptr(mm, pmd));
1401
1402        if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
1403                goto out;
1404
1405        /* Avoid dumping huge zero page */
1406        if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1407                return ERR_PTR(-EFAULT);
1408
1409        /* Full NUMA hinting faults to serialise migration in fault paths */
1410        if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1411                goto out;
1412
1413        page = pmd_page(*pmd);
1414        VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
1415        if (flags & FOLL_TOUCH)
1416                touch_pmd(vma, addr, pmd, flags);
1417        if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1418                /*
1419                 * We don't mlock() pte-mapped THPs. This way we can avoid
1420                 * leaking mlocked pages into non-VM_LOCKED VMAs.
1421                 *
1422                 * For anon THP:
1423                 *
1424                 * In most cases the pmd is the only mapping of the page as we
1425                 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1426                 * writable private mappings in populate_vma_page_range().
1427                 *
1428                 * The only scenario when we have the page shared here is if we
1429                 * mlocking read-only mapping shared over fork(). We skip
1430                 * mlocking such pages.
1431                 *
1432                 * For file THP:
1433                 *
1434                 * We can expect PageDoubleMap() to be stable under page lock:
1435                 * for file pages we set it in page_add_file_rmap(), which
1436                 * requires page to be locked.
1437                 */
1438
1439                if (PageAnon(page) && compound_mapcount(page) != 1)
1440                        goto skip_mlock;
1441                if (PageDoubleMap(page) || !page->mapping)
1442                        goto skip_mlock;
1443                if (!trylock_page(page))
1444                        goto skip_mlock;
1445                lru_add_drain();
1446                if (page->mapping && !PageDoubleMap(page))
1447                        mlock_vma_page(page);
1448                unlock_page(page);
1449        }
1450skip_mlock:
1451        page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1452        VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
1453        if (flags & FOLL_GET)
1454                get_page(page);
1455
1456out:
1457        return page;
1458}
1459
1460/* NUMA hinting page fault entry point for trans huge pmds */
1461vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
1462{
1463        struct vm_area_struct *vma = vmf->vma;
1464        struct anon_vma *anon_vma = NULL;
1465        struct page *page;
1466        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
1467        int page_nid = -1, this_nid = numa_node_id();
1468        int target_nid, last_cpupid = -1;
1469        bool page_locked;
1470        bool migrated = false;
1471        bool was_writable;
1472        int flags = 0;
1473
1474        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1475        if (unlikely(!pmd_same(pmd, *vmf->pmd)))
1476                goto out_unlock;
1477
1478        /*
1479         * If there are potential migrations, wait for completion and retry
1480         * without disrupting NUMA hinting information. Do not relock and
1481         * check_same as the page may no longer be mapped.
1482         */
1483        if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1484                page = pmd_page(*vmf->pmd);
1485                if (!get_page_unless_zero(page))
1486                        goto out_unlock;
1487                spin_unlock(vmf->ptl);
1488                wait_on_page_locked(page);
1489                put_page(page);
1490                goto out;
1491        }
1492
1493        page = pmd_page(pmd);
1494        BUG_ON(is_huge_zero_page(page));
1495        page_nid = page_to_nid(page);
1496        last_cpupid = page_cpupid_last(page);
1497        count_vm_numa_event(NUMA_HINT_FAULTS);
1498        if (page_nid == this_nid) {
1499                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500                flags |= TNF_FAULT_LOCAL;
1501        }
1502
1503        /* See similar comment in do_numa_page for explanation */
1504        if (!pmd_savedwrite(pmd))
1505                flags |= TNF_NO_GROUP;
1506
1507        /*
1508         * Acquire the page lock to serialise THP migrations but avoid dropping
1509         * page_table_lock if at all possible
1510         */
1511        page_locked = trylock_page(page);
1512        target_nid = mpol_misplaced(page, vma, haddr);
1513        if (target_nid == -1) {
1514                /* If the page was locked, there are no parallel migrations */
1515                if (page_locked)
1516                        goto clear_pmdnuma;
1517        }
1518
1519        /* Migration could have started since the pmd_trans_migrating check */
1520        if (!page_locked) {
1521                page_nid = -1;
1522                if (!get_page_unless_zero(page))
1523                        goto out_unlock;
1524                spin_unlock(vmf->ptl);
1525                wait_on_page_locked(page);
1526                put_page(page);
1527                goto out;
1528        }
1529
1530        /*
1531         * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1532         * to serialises splits
1533         */
1534        get_page(page);
1535        spin_unlock(vmf->ptl);
1536        anon_vma = page_lock_anon_vma_read(page);
1537
1538        /* Confirm the PMD did not change while page_table_lock was released */
1539        spin_lock(vmf->ptl);
1540        if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
1541                unlock_page(page);
1542                put_page(page);
1543                page_nid = -1;
1544                goto out_unlock;
1545        }
1546
1547        /* Bail if we fail to protect against THP splits for any reason */
1548        if (unlikely(!anon_vma)) {
1549                put_page(page);
1550                page_nid = -1;
1551                goto clear_pmdnuma;
1552        }
1553
1554        /*
1555         * Since we took the NUMA fault, we must have observed the !accessible
1556         * bit. Make sure all other CPUs agree with that, to avoid them
1557         * modifying the page we're about to migrate.
1558         *
1559         * Must be done under PTL such that we'll observe the relevant
1560         * inc_tlb_flush_pending().
1561         *
1562         * We are not sure a pending tlb flush here is for a huge page
1563         * mapping or not. Hence use the tlb range variant
1564         */
1565        if (mm_tlb_flush_pending(vma->vm_mm))
1566                flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1567
1568        /*
1569         * Migrate the THP to the requested node, returns with page unlocked
1570         * and access rights restored.
1571         */
1572        spin_unlock(vmf->ptl);
1573
1574        migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1575                                vmf->pmd, pmd, vmf->address, page, target_nid);
1576        if (migrated) {
1577                flags |= TNF_MIGRATED;
1578                page_nid = target_nid;
1579        } else
1580                flags |= TNF_MIGRATE_FAIL;
1581
1582        goto out;
1583clear_pmdnuma:
1584        BUG_ON(!PageLocked(page));
1585        was_writable = pmd_savedwrite(pmd);
1586        pmd = pmd_modify(pmd, vma->vm_page_prot);
1587        pmd = pmd_mkyoung(pmd);
1588        if (was_writable)
1589                pmd = pmd_mkwrite(pmd);
1590        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1591        update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
1592        unlock_page(page);
1593out_unlock:
1594        spin_unlock(vmf->ptl);
1595
1596out:
1597        if (anon_vma)
1598                page_unlock_anon_vma_read(anon_vma);
1599
1600        if (page_nid != -1)
1601                task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1602                                flags);
1603
1604        return 0;
1605}
1606
1607/*
1608 * Return true if we do MADV_FREE successfully on entire pmd page.
1609 * Otherwise, return false.
1610 */
1611bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1612                pmd_t *pmd, unsigned long addr, unsigned long next)
1613{
1614        spinlock_t *ptl;
1615        pmd_t orig_pmd;
1616        struct page *page;
1617        struct mm_struct *mm = tlb->mm;
1618        bool ret = false;
1619
1620        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1621
1622        ptl = pmd_trans_huge_lock(pmd, vma);
1623        if (!ptl)
1624                goto out_unlocked;
1625
1626        orig_pmd = *pmd;
1627        if (is_huge_zero_pmd(orig_pmd))
1628                goto out;
1629
1630        if (unlikely(!pmd_present(orig_pmd))) {
1631                VM_BUG_ON(thp_migration_supported() &&
1632                                  !is_pmd_migration_entry(orig_pmd));
1633                goto out;
1634        }
1635
1636        page = pmd_page(orig_pmd);
1637        /*
1638         * If other processes are mapping this page, we couldn't discard
1639         * the page unless they all do MADV_FREE so let's skip the page.
1640         */
1641        if (page_mapcount(page) != 1)
1642                goto out;
1643
1644        if (!trylock_page(page))
1645                goto out;
1646
1647        /*
1648         * If user want to discard part-pages of THP, split it so MADV_FREE
1649         * will deactivate only them.
1650         */
1651        if (next - addr != HPAGE_PMD_SIZE) {
1652                get_page(page);
1653                spin_unlock(ptl);
1654                split_huge_page(page);
1655                unlock_page(page);
1656                put_page(page);
1657                goto out_unlocked;
1658        }
1659
1660        if (PageDirty(page))
1661                ClearPageDirty(page);
1662        unlock_page(page);
1663
1664        if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1665                pmdp_invalidate(vma, addr, pmd);
1666                orig_pmd = pmd_mkold(orig_pmd);
1667                orig_pmd = pmd_mkclean(orig_pmd);
1668
1669                set_pmd_at(mm, addr, pmd, orig_pmd);
1670                tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1671        }
1672
1673        mark_page_lazyfree(page);
1674        ret = true;
1675out:
1676        spin_unlock(ptl);
1677out_unlocked:
1678        return ret;
1679}
1680
1681static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1682{
1683        pgtable_t pgtable;
1684
1685        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1686        pte_free(mm, pgtable);
1687        mm_dec_nr_ptes(mm);
1688}
1689
1690int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1691                 pmd_t *pmd, unsigned long addr)
1692{
1693        pmd_t orig_pmd;
1694        spinlock_t *ptl;
1695
1696        tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1697
1698        ptl = __pmd_trans_huge_lock(pmd, vma);
1699        if (!ptl)
1700                return 0;
1701        /*
1702         * For architectures like ppc64 we look at deposited pgtable
1703         * when calling pmdp_huge_get_and_clear. So do the
1704         * pgtable_trans_huge_withdraw after finishing pmdp related
1705         * operations.
1706         */
1707        orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1708                        tlb->fullmm);
1709        tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1710        if (vma_is_dax(vma)) {
1711                if (arch_needs_pgtable_deposit())
1712                        zap_deposited_table(tlb->mm, pmd);
1713                spin_unlock(ptl);
1714                if (is_huge_zero_pmd(orig_pmd))
1715                        tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1716        } else if (is_huge_zero_pmd(orig_pmd)) {
1717                zap_deposited_table(tlb->mm, pmd);
1718                spin_unlock(ptl);
1719                tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
1720        } else {
1721                struct page *page = NULL;
1722                int flush_needed = 1;
1723
1724                if (pmd_present(orig_pmd)) {
1725                        page = pmd_page(orig_pmd);
1726                        page_remove_rmap(page, true);
1727                        VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1728                        VM_BUG_ON_PAGE(!PageHead(page), page);
1729                } else if (thp_migration_supported()) {
1730                        swp_entry_t entry;
1731
1732                        VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1733                        entry = pmd_to_swp_entry(orig_pmd);
1734                        page = pfn_to_page(swp_offset(entry));
1735                        flush_needed = 0;
1736                } else
1737                        WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1738
1739                if (PageAnon(page)) {
1740                        zap_deposited_table(tlb->mm, pmd);
1741                        add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1742                } else {
1743                        if (arch_needs_pgtable_deposit())
1744                                zap_deposited_table(tlb->mm, pmd);
1745                        add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
1746                }
1747
1748                spin_unlock(ptl);
1749                if (flush_needed)
1750                        tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1751        }
1752        return 1;
1753}
1754
1755#ifndef pmd_move_must_withdraw
1756static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1757                                         spinlock_t *old_pmd_ptl,
1758                                         struct vm_area_struct *vma)
1759{
1760        /*
1761         * With split pmd lock we also need to move preallocated
1762         * PTE page table if new_pmd is on different PMD page table.
1763         *
1764         * We also don't deposit and withdraw tables for file pages.
1765         */
1766        return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1767}
1768#endif
1769
1770static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1771{
1772#ifdef CONFIG_MEM_SOFT_DIRTY
1773        if (unlikely(is_pmd_migration_entry(pmd)))
1774                pmd = pmd_swp_mksoft_dirty(pmd);
1775        else if (pmd_present(pmd))
1776                pmd = pmd_mksoft_dirty(pmd);
1777#endif
1778        return pmd;
1779}
1780
1781bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1782                  unsigned long new_addr, unsigned long old_end,
1783                  pmd_t *old_pmd, pmd_t *new_pmd)
1784{
1785        spinlock_t *old_ptl, *new_ptl;
1786        pmd_t pmd;
1787        struct mm_struct *mm = vma->vm_mm;
1788        bool force_flush = false;
1789
1790        if ((old_addr & ~HPAGE_PMD_MASK) ||
1791            (new_addr & ~HPAGE_PMD_MASK) ||
1792            old_end - old_addr < HPAGE_PMD_SIZE)
1793                return false;
1794
1795        /*
1796         * The destination pmd shouldn't be established, free_pgtables()
1797         * should have release it.
1798         */
1799        if (WARN_ON(!pmd_none(*new_pmd))) {
1800                VM_BUG_ON(pmd_trans_huge(*new_pmd));
1801                return false;
1802        }
1803
1804        /*
1805         * We don't have to worry about the ordering of src and dst
1806         * ptlocks because exclusive mmap_sem prevents deadlock.
1807         */
1808        old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1809        if (old_ptl) {
1810                new_ptl = pmd_lockptr(mm, new_pmd);
1811                if (new_ptl != old_ptl)
1812                        spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1813                pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1814                if (pmd_present(pmd))
1815                        force_flush = true;
1816                VM_BUG_ON(!pmd_none(*new_pmd));
1817
1818                if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
1819                        pgtable_t pgtable;
1820                        pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1821                        pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1822                }
1823                pmd = move_soft_dirty_pmd(pmd);
1824                set_pmd_at(mm, new_addr, new_pmd, pmd);
1825                if (force_flush)
1826                        flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1827                if (new_ptl != old_ptl)
1828                        spin_unlock(new_ptl);
1829                spin_unlock(old_ptl);
1830                return true;
1831        }
1832        return false;
1833}
1834
1835/*
1836 * Returns
1837 *  - 0 if PMD could not be locked
1838 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1839 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1840 */
1841int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1842                unsigned long addr, pgprot_t newprot, int prot_numa)
1843{
1844        struct mm_struct *mm = vma->vm_mm;
1845        spinlock_t *ptl;
1846        pmd_t entry;
1847        bool preserve_write;
1848        int ret;
1849
1850        ptl = __pmd_trans_huge_lock(pmd, vma);
1851        if (!ptl)
1852                return 0;
1853
1854        preserve_write = prot_numa && pmd_write(*pmd);
1855        ret = 1;
1856
1857#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1858        if (is_swap_pmd(*pmd)) {
1859                swp_entry_t entry = pmd_to_swp_entry(*pmd);
1860
1861                VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1862                if (is_write_migration_entry(entry)) {
1863                        pmd_t newpmd;
1864                        /*
1865                         * A protection check is difficult so
1866                         * just be safe and disable write
1867                         */
1868                        make_migration_entry_read(&entry);
1869                        newpmd = swp_entry_to_pmd(entry);
1870                        if (pmd_swp_soft_dirty(*pmd))
1871                                newpmd = pmd_swp_mksoft_dirty(newpmd);
1872                        set_pmd_at(mm, addr, pmd, newpmd);
1873                }
1874                goto unlock;
1875        }
1876#endif
1877
1878        /*
1879         * Avoid trapping faults against the zero page. The read-only
1880         * data is likely to be read-cached on the local CPU and
1881         * local/remote hits to the zero page are not interesting.
1882         */
1883        if (prot_numa && is_huge_zero_pmd(*pmd))
1884                goto unlock;
1885
1886        if (prot_numa && pmd_protnone(*pmd))
1887                goto unlock;
1888
1889        /*
1890         * In case prot_numa, we are under down_read(mmap_sem). It's critical
1891         * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1892         * which is also under down_read(mmap_sem):
1893         *
1894         *      CPU0:                           CPU1:
1895         *                              change_huge_pmd(prot_numa=1)
1896         *                               pmdp_huge_get_and_clear_notify()
1897         * madvise_dontneed()
1898         *  zap_pmd_range()
1899         *   pmd_trans_huge(*pmd) == 0 (without ptl)
1900         *   // skip the pmd
1901         *                               set_pmd_at();
1902         *                               // pmd is re-established
1903         *
1904         * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1905         * which may break userspace.
1906         *
1907         * pmdp_invalidate() is required to make sure we don't miss
1908         * dirty/young flags set by hardware.
1909         */
1910        entry = pmdp_invalidate(vma, addr, pmd);
1911
1912        entry = pmd_modify(entry, newprot);
1913        if (preserve_write)
1914                entry = pmd_mk_savedwrite(entry);
1915        ret = HPAGE_PMD_NR;
1916        set_pmd_at(mm, addr, pmd, entry);
1917        BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1918unlock:
1919        spin_unlock(ptl);
1920        return ret;
1921}
1922
1923/*
1924 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
1925 *
1926 * Note that if it returns page table lock pointer, this routine returns without
1927 * unlocking page table lock. So callers must unlock it.
1928 */
1929spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1930{
1931        spinlock_t *ptl;
1932        ptl = pmd_lock(vma->vm_mm, pmd);
1933        if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1934                        pmd_devmap(*pmd)))
1935                return ptl;
1936        spin_unlock(ptl);
1937        return NULL;
1938}
1939
1940/*
1941 * Returns true if a given pud maps a thp, false otherwise.
1942 *
1943 * Note that if it returns true, this routine returns without unlocking page
1944 * table lock. So callers must unlock it.
1945 */
1946spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1947{
1948        spinlock_t *ptl;
1949
1950        ptl = pud_lock(vma->vm_mm, pud);
1951        if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1952                return ptl;
1953        spin_unlock(ptl);
1954        return NULL;
1955}
1956
1957#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1958int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1959                 pud_t *pud, unsigned long addr)
1960{
1961        pud_t orig_pud;
1962        spinlock_t *ptl;
1963
1964        ptl = __pud_trans_huge_lock(pud, vma);
1965        if (!ptl)
1966                return 0;
1967        /*
1968         * For architectures like ppc64 we look at deposited pgtable
1969         * when calling pudp_huge_get_and_clear. So do the
1970         * pgtable_trans_huge_withdraw after finishing pudp related
1971         * operations.
1972         */
1973        orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1974                        tlb->fullmm);
1975        tlb_remove_pud_tlb_entry(tlb, pud, addr);
1976        if (vma_is_dax(vma)) {
1977                spin_unlock(ptl);
1978                /* No zero page support yet */
1979        } else {
1980                /* No support for anonymous PUD pages yet */
1981                BUG();
1982        }
1983        return 1;
1984}
1985
1986static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1987                unsigned long haddr)
1988{
1989        VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1990        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1991        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1992        VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1993
1994        count_vm_event(THP_SPLIT_PUD);
1995
1996        pudp_huge_clear_flush_notify(vma, haddr, pud);
1997}
1998
1999void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2000                unsigned long address)
2001{
2002        spinlock_t *ptl;
2003        struct mm_struct *mm = vma->vm_mm;
2004        unsigned long haddr = address & HPAGE_PUD_MASK;
2005
2006        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2007        ptl = pud_lock(mm, pud);
2008        if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2009                goto out;
2010        __split_huge_pud_locked(vma, pud, haddr);
2011
2012out:
2013        spin_unlock(ptl);
2014        /*
2015         * No need to double call mmu_notifier->invalidate_range() callback as
2016         * the above pudp_huge_clear_flush_notify() did already call it.
2017         */
2018        mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2019                                               HPAGE_PUD_SIZE);
2020}
2021#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2022
2023static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2024                unsigned long haddr, pmd_t *pmd)
2025{
2026        struct mm_struct *mm = vma->vm_mm;
2027        pgtable_t pgtable;
2028        pmd_t _pmd;
2029        int i;
2030
2031        /*
2032         * Leave pmd empty until pte is filled note that it is fine to delay
2033         * notification until mmu_notifier_invalidate_range_end() as we are
2034         * replacing a zero pmd write protected page with a zero pte write
2035         * protected page.
2036         *
2037         * See Documentation/vm/mmu_notifier.rst
2038         */
2039        pmdp_huge_clear_flush(vma, haddr, pmd);
2040
2041        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2042        pmd_populate(mm, &_pmd, pgtable);
2043
2044        for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2045                pte_t *pte, entry;
2046                entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2047                entry = pte_mkspecial(entry);
2048                pte = pte_offset_map(&_pmd, haddr);
2049                VM_BUG_ON(!pte_none(*pte));
2050                set_pte_at(mm, haddr, pte, entry);
2051                pte_unmap(pte);
2052        }
2053        smp_wmb(); /* make pte visible before pmd */
2054        pmd_populate(mm, pmd, pgtable);
2055}
2056
2057static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2058                unsigned long haddr, bool freeze)
2059{
2060        struct mm_struct *mm = vma->vm_mm;
2061        struct page *page;
2062        pgtable_t pgtable;
2063        pmd_t old_pmd, _pmd;
2064        bool young, write, soft_dirty, pmd_migration = false;
2065        unsigned long addr;
2066        int i;
2067
2068        VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2069        VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2070        VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2071        VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2072                                && !pmd_devmap(*pmd));
2073
2074        count_vm_event(THP_SPLIT_PMD);
2075
2076        if (!vma_is_anonymous(vma)) {
2077                _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2078                /*
2079                 * We are going to unmap this huge page. So
2080                 * just go ahead and zap it
2081                 */
2082                if (arch_needs_pgtable_deposit())
2083                        zap_deposited_table(mm, pmd);
2084                if (vma_is_dax(vma))
2085                        return;
2086                page = pmd_page(_pmd);
2087                if (!PageDirty(page) && pmd_dirty(_pmd))
2088                        set_page_dirty(page);
2089                if (!PageReferenced(page) && pmd_young(_pmd))
2090                        SetPageReferenced(page);
2091                page_remove_rmap(page, true);
2092                put_page(page);
2093                add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
2094                return;
2095        } else if (is_huge_zero_pmd(*pmd)) {
2096                /*
2097                 * FIXME: Do we want to invalidate secondary mmu by calling
2098                 * mmu_notifier_invalidate_range() see comments below inside
2099                 * __split_huge_pmd() ?
2100                 *
2101                 * We are going from a zero huge page write protected to zero
2102                 * small page also write protected so it does not seems useful
2103                 * to invalidate secondary mmu at this time.
2104                 */
2105                return __split_huge_zero_page_pmd(vma, haddr, pmd);
2106        }
2107
2108        /*
2109         * Up to this point the pmd is present and huge and userland has the
2110         * whole access to the hugepage during the split (which happens in
2111         * place). If we overwrite the pmd with the not-huge version pointing
2112         * to the pte here (which of course we could if all CPUs were bug
2113         * free), userland could trigger a small page size TLB miss on the
2114         * small sized TLB while the hugepage TLB entry is still established in
2115         * the huge TLB. Some CPU doesn't like that.
2116         * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2117         * 383 on page 93. Intel should be safe but is also warns that it's
2118         * only safe if the permission and cache attributes of the two entries
2119         * loaded in the two TLB is identical (which should be the case here).
2120         * But it is generally safer to never allow small and huge TLB entries
2121         * for the same virtual address to be loaded simultaneously. So instead
2122         * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2123         * current pmd notpresent (atomically because here the pmd_trans_huge
2124         * must remain set at all times on the pmd until the split is complete
2125         * for this pmd), then we flush the SMP TLB and finally we write the
2126         * non-huge version of the pmd entry with pmd_populate.
2127         */
2128        old_pmd = pmdp_invalidate(vma, haddr, pmd);
2129
2130#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2131        pmd_migration = is_pmd_migration_entry(old_pmd);
2132        if (pmd_migration) {
2133                swp_entry_t entry;
2134
2135                entry = pmd_to_swp_entry(old_pmd);
2136                page = pfn_to_page(swp_offset(entry));
2137        } else
2138#endif
2139                page = pmd_page(old_pmd);
2140        VM_BUG_ON_PAGE(!page_count(page), page);
2141        page_ref_add(page, HPAGE_PMD_NR - 1);
2142        if (pmd_dirty(old_pmd))
2143                SetPageDirty(page);
2144        write = pmd_write(old_pmd);
2145        young = pmd_young(old_pmd);
2146        soft_dirty = pmd_soft_dirty(old_pmd);
2147
2148        /*
2149         * Withdraw the table only after we mark the pmd entry invalid.
2150         * This's critical for some architectures (Power).
2151         */
2152        pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2153        pmd_populate(mm, &_pmd, pgtable);
2154
2155        for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2156                pte_t entry, *pte;
2157                /*
2158                 * Note that NUMA hinting access restrictions are not
2159                 * transferred to avoid any possibility of altering
2160                 * permissions across VMAs.
2161                 */
2162                if (freeze || pmd_migration) {
2163                        swp_entry_t swp_entry;
2164                        swp_entry = make_migration_entry(page + i, write);
2165                        entry = swp_entry_to_pte(swp_entry);
2166                        if (soft_dirty)
2167                                entry = pte_swp_mksoft_dirty(entry);
2168                } else {
2169                        entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
2170                        entry = maybe_mkwrite(entry, vma);
2171                        if (!write)
2172                                entry = pte_wrprotect(entry);
2173                        if (!young)
2174                                entry = pte_mkold(entry);
2175                        if (soft_dirty)
2176                                entry = pte_mksoft_dirty(entry);
2177                }
2178                pte = pte_offset_map(&_pmd, addr);
2179                BUG_ON(!pte_none(*pte));
2180                set_pte_at(mm, addr, pte, entry);
2181                atomic_inc(&page[i]._mapcount);
2182                pte_unmap(pte);
2183        }
2184
2185        /*
2186         * Set PG_double_map before dropping compound_mapcount to avoid
2187         * false-negative page_mapped().
2188         */
2189        if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2190                for (i = 0; i < HPAGE_PMD_NR; i++)
2191                        atomic_inc(&page[i]._mapcount);
2192        }
2193
2194        if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2195                /* Last compound_mapcount is gone. */
2196                __dec_node_page_state(page, NR_ANON_THPS);
2197                if (TestClearPageDoubleMap(page)) {
2198                        /* No need in mapcount reference anymore */
2199                        for (i = 0; i < HPAGE_PMD_NR; i++)
2200                                atomic_dec(&page[i]._mapcount);
2201                }
2202        }
2203
2204        smp_wmb(); /* make pte visible before pmd */
2205        pmd_populate(mm, pmd, pgtable);
2206
2207        if (freeze) {
2208                for (i = 0; i < HPAGE_PMD_NR; i++) {
2209                        page_remove_rmap(page + i, false);
2210                        put_page(page + i);
2211                }
2212        }
2213}
2214
2215void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2216                unsigned long address, bool freeze, struct page *page)
2217{
2218        spinlock_t *ptl;
2219        struct mm_struct *mm = vma->vm_mm;
2220        unsigned long haddr = address & HPAGE_PMD_MASK;
2221
2222        mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2223        ptl = pmd_lock(mm, pmd);
2224
2225        /*
2226         * If caller asks to setup a migration entries, we need a page to check
2227         * pmd against. Otherwise we can end up replacing wrong page.
2228         */
2229        VM_BUG_ON(freeze && !page);
2230        if (page && page != pmd_page(*pmd))
2231                goto out;
2232
2233        if (pmd_trans_huge(*pmd)) {
2234                page = pmd_page(*pmd);
2235                if (PageMlocked(page))
2236                        clear_page_mlock(page);
2237        } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
2238                goto out;
2239        __split_huge_pmd_locked(vma, pmd, haddr, freeze);
2240out:
2241        spin_unlock(ptl);
2242        /*
2243         * No need to double call mmu_notifier->invalidate_range() callback.
2244         * They are 3 cases to consider inside __split_huge_pmd_locked():
2245         *  1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2246         *  2) __split_huge_zero_page_pmd() read only zero page and any write
2247         *    fault will trigger a flush_notify before pointing to a new page
2248         *    (it is fine if the secondary mmu keeps pointing to the old zero
2249         *    page in the meantime)
2250         *  3) Split a huge pmd into pte pointing to the same page. No need
2251         *     to invalidate secondary tlb entry they are all still valid.
2252         *     any further changes to individual pte will notify. So no need
2253         *     to call mmu_notifier->invalidate_range()
2254         */
2255        mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2256                                               HPAGE_PMD_SIZE);
2257}
2258
2259void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2260                bool freeze, struct page *page)
2261{
2262        pgd_t *pgd;
2263        p4d_t *p4d;
2264        pud_t *pud;
2265        pmd_t *pmd;
2266
2267        pgd = pgd_offset(vma->vm_mm, address);
2268        if (!pgd_present(*pgd))
2269                return;
2270
2271        p4d = p4d_offset(pgd, address);
2272        if (!p4d_present(*p4d))
2273                return;
2274
2275        pud = pud_offset(p4d, address);
2276        if (!pud_present(*pud))
2277                return;
2278
2279        pmd = pmd_offset(pud, address);
2280
2281        __split_huge_pmd(vma, pmd, address, freeze, page);
2282}
2283
2284void vma_adjust_trans_huge(struct vm_area_struct *vma,
2285                             unsigned long start,
2286                             unsigned long end,
2287                             long adjust_next)
2288{
2289        /*
2290         * If the new start address isn't hpage aligned and it could
2291         * previously contain an hugepage: check if we need to split
2292         * an huge pmd.
2293         */
2294        if (start & ~HPAGE_PMD_MASK &&
2295            (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2296            (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2297                split_huge_pmd_address(vma, start, false, NULL);
2298
2299        /*
2300         * If the new end address isn't hpage aligned and it could
2301         * previously contain an hugepage: check if we need to split
2302         * an huge pmd.
2303         */
2304        if (end & ~HPAGE_PMD_MASK &&
2305            (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2306            (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2307                split_huge_pmd_address(vma, end, false, NULL);
2308
2309        /*
2310         * If we're also updating the vma->vm_next->vm_start, if the new
2311         * vm_next->vm_start isn't page aligned and it could previously
2312         * contain an hugepage: check if we need to split an huge pmd.
2313         */
2314        if (adjust_next > 0) {
2315                struct vm_area_struct *next = vma->vm_next;
2316                unsigned long nstart = next->vm_start;
2317                nstart += adjust_next << PAGE_SHIFT;
2318                if (nstart & ~HPAGE_PMD_MASK &&
2319                    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2320                    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2321                        split_huge_pmd_address(next, nstart, false, NULL);
2322        }
2323}
2324
2325static void freeze_page(struct page *page)
2326{
2327        enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
2328                TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
2329        bool unmap_success;
2330
2331        VM_BUG_ON_PAGE(!PageHead(page), page);
2332
2333        if (PageAnon(page))
2334                ttu_flags |= TTU_SPLIT_FREEZE;
2335
2336        unmap_success = try_to_unmap(page, ttu_flags);
2337        VM_BUG_ON_PAGE(!unmap_success, page);
2338}
2339
2340static void unfreeze_page(struct page *page)
2341{
2342        int i;
2343        if (PageTransHuge(page)) {
2344                remove_migration_ptes(page, page, true);
2345        } else {
2346                for (i = 0; i < HPAGE_PMD_NR; i++)
2347                        remove_migration_ptes(page + i, page + i, true);
2348        }
2349}
2350
2351static void __split_huge_page_tail(struct page *head, int tail,
2352                struct lruvec *lruvec, struct list_head *list)
2353{
2354        struct page *page_tail = head + tail;
2355
2356        VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
2357
2358        /*
2359         * Clone page flags before unfreezing refcount.
2360         *
2361         * After successful get_page_unless_zero() might follow flags change,
2362         * for exmaple lock_page() which set PG_waiters.
2363         */
2364        page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2365        page_tail->flags |= (head->flags &
2366                        ((1L << PG_referenced) |
2367                         (1L << PG_swapbacked) |
2368                         (1L << PG_swapcache) |
2369                         (1L << PG_mlocked) |
2370                         (1L << PG_uptodate) |
2371                         (1L << PG_active) |
2372                         (1L << PG_locked) |
2373                         (1L << PG_unevictable) |
2374                         (1L << PG_dirty)));
2375
2376        /* Page flags must be visible before we make the page non-compound. */
2377        smp_wmb();
2378
2379        /*
2380         * Clear PageTail before unfreezing page refcount.
2381         *
2382         * After successful get_page_unless_zero() might follow put_page()
2383         * which needs correct compound_head().
2384         */
2385        clear_compound_head(page_tail);
2386
2387        /* Finally unfreeze refcount. Additional reference from page cache. */
2388        page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2389                                          PageSwapCache(head)));
2390
2391        if (page_is_young(head))
2392                set_page_young(page_tail);
2393        if (page_is_idle(head))
2394                set_page_idle(page_tail);
2395
2396        /* ->mapping in first tail page is compound_mapcount */
2397        VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2398                        page_tail);
2399        page_tail->mapping = head->mapping;
2400
2401        page_tail->index = head->index + tail;
2402        page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2403
2404        /*
2405         * always add to the tail because some iterators expect new
2406         * pages to show after the currently processed elements - e.g.
2407         * migrate_pages
2408         */
2409        lru_add_page_tail(head, page_tail, lruvec, list);
2410}
2411
2412static void __split_huge_page(struct page *page, struct list_head *list,
2413                unsigned long flags)
2414{
2415        struct page *head = compound_head(page);
2416        struct zone *zone = page_zone(head);
2417        struct lruvec *lruvec;
2418        pgoff_t end = -1;
2419        int i;
2420
2421        lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
2422
2423        /* complete memcg works before add pages to LRU */
2424        mem_cgroup_split_huge_fixup(head);
2425
2426        if (!PageAnon(page))
2427                end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2428
2429        for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
2430                __split_huge_page_tail(head, i, lruvec, list);
2431                /* Some pages can be beyond i_size: drop them from page cache */
2432                if (head[i].index >= end) {
2433                        ClearPageDirty(head + i);
2434                        __delete_from_page_cache(head + i, NULL);
2435                        if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2436                                shmem_uncharge(head->mapping->host, 1);
2437                        put_page(head + i);
2438                }
2439        }
2440
2441        ClearPageCompound(head);
2442        /* See comment in __split_huge_page_tail() */
2443        if (PageAnon(head)) {
2444                /* Additional pin to radix tree of swap cache */
2445                if (PageSwapCache(head))
2446                        page_ref_add(head, 2);
2447                else
2448                        page_ref_inc(head);
2449        } else {
2450                /* Additional pin to radix tree */
2451                page_ref_add(head, 2);
2452                xa_unlock(&head->mapping->i_pages);
2453        }
2454
2455        spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2456
2457        unfreeze_page(head);
2458
2459        for (i = 0; i < HPAGE_PMD_NR; i++) {
2460                struct page *subpage = head + i;
2461                if (subpage == page)
2462                        continue;
2463                unlock_page(subpage);
2464
2465                /*
2466                 * Subpages may be freed if there wasn't any mapping
2467                 * like if add_to_swap() is running on a lru page that
2468                 * had its mapping zapped. And freeing these pages
2469                 * requires taking the lru_lock so we do the put_page
2470                 * of the tail pages after the split is complete.
2471                 */
2472                put_page(subpage);
2473        }
2474}
2475
2476int total_mapcount(struct page *page)
2477{
2478        int i, compound, ret;
2479
2480        VM_BUG_ON_PAGE(PageTail(page), page);
2481
2482        if (likely(!PageCompound(page)))
2483                return atomic_read(&page->_mapcount) + 1;
2484
2485        compound = compound_mapcount(page);
2486        if (PageHuge(page))
2487                return compound;
2488        ret = compound;
2489        for (i = 0; i < HPAGE_PMD_NR; i++)
2490                ret += atomic_read(&page[i]._mapcount) + 1;
2491        /* File pages has compound_mapcount included in _mapcount */
2492        if (!PageAnon(page))
2493                return ret - compound * HPAGE_PMD_NR;
2494        if (PageDoubleMap(page))
2495                ret -= HPAGE_PMD_NR;
2496        return ret;
2497}
2498
2499/*
2500 * This calculates accurately how many mappings a transparent hugepage
2501 * has (unlike page_mapcount() which isn't fully accurate). This full
2502 * accuracy is primarily needed to know if copy-on-write faults can
2503 * reuse the page and change the mapping to read-write instead of
2504 * copying them. At the same time this returns the total_mapcount too.
2505 *
2506 * The function returns the highest mapcount any one of the subpages
2507 * has. If the return value is one, even if different processes are
2508 * mapping different subpages of the transparent hugepage, they can
2509 * all reuse it, because each process is reusing a different subpage.
2510 *
2511 * The total_mapcount is instead counting all virtual mappings of the
2512 * subpages. If the total_mapcount is equal to "one", it tells the
2513 * caller all mappings belong to the same "mm" and in turn the
2514 * anon_vma of the transparent hugepage can become the vma->anon_vma
2515 * local one as no other process may be mapping any of the subpages.
2516 *
2517 * It would be more accurate to replace page_mapcount() with
2518 * page_trans_huge_mapcount(), however we only use
2519 * page_trans_huge_mapcount() in the copy-on-write faults where we
2520 * need full accuracy to avoid breaking page pinning, because
2521 * page_trans_huge_mapcount() is slower than page_mapcount().
2522 */
2523int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2524{
2525        int i, ret, _total_mapcount, mapcount;
2526
2527        /* hugetlbfs shouldn't call it */
2528        VM_BUG_ON_PAGE(PageHuge(page), page);
2529
2530        if (likely(!PageTransCompound(page))) {
2531                mapcount = atomic_read(&page->_mapcount) + 1;
2532                if (total_mapcount)
2533                        *total_mapcount = mapcount;
2534                return mapcount;
2535        }
2536
2537        page = compound_head(page);
2538
2539        _total_mapcount = ret = 0;
2540        for (i = 0; i < HPAGE_PMD_NR; i++) {
2541                mapcount = atomic_read(&page[i]._mapcount) + 1;
2542                ret = max(ret, mapcount);
2543                _total_mapcount += mapcount;
2544        }
2545        if (PageDoubleMap(page)) {
2546                ret -= 1;
2547                _total_mapcount -= HPAGE_PMD_NR;
2548        }
2549        mapcount = compound_mapcount(page);
2550        ret += mapcount;
2551        _total_mapcount += mapcount;
2552        if (total_mapcount)
2553                *total_mapcount = _total_mapcount;
2554        return ret;
2555}
2556
2557/* Racy check whether the huge page can be split */
2558bool can_split_huge_page(struct page *page, int *pextra_pins)
2559{
2560        int extra_pins;
2561
2562        /* Additional pins from radix tree */
2563        if (PageAnon(page))
2564                extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2565        else
2566                extra_pins = HPAGE_PMD_NR;
2567        if (pextra_pins)
2568                *pextra_pins = extra_pins;
2569        return total_mapcount(page) == page_count(page) - extra_pins - 1;
2570}
2571
2572/*
2573 * This function splits huge page into normal pages. @page can point to any
2574 * subpage of huge page to split. Split doesn't change the position of @page.
2575 *
2576 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2577 * The huge page must be locked.
2578 *
2579 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2580 *
2581 * Both head page and tail pages will inherit mapping, flags, and so on from
2582 * the hugepage.
2583 *
2584 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2585 * they are not mapped.
2586 *
2587 * Returns 0 if the hugepage is split successfully.
2588 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2589 * us.
2590 */
2591int split_huge_page_to_list(struct page *page, struct list_head *list)
2592{
2593        struct page *head = compound_head(page);
2594        struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
2595        struct anon_vma *anon_vma = NULL;
2596        struct address_space *mapping = NULL;
2597        int count, mapcount, extra_pins, ret;
2598        bool mlocked;
2599        unsigned long flags;
2600
2601        VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
2602        VM_BUG_ON_PAGE(!PageLocked(page), page);
2603        VM_BUG_ON_PAGE(!PageCompound(page), page);
2604
2605        if (PageWriteback(page))
2606                return -EBUSY;
2607
2608        if (PageAnon(head)) {
2609                /*
2610                 * The caller does not necessarily hold an mmap_sem that would
2611                 * prevent the anon_vma disappearing so we first we take a
2612                 * reference to it and then lock the anon_vma for write. This
2613                 * is similar to page_lock_anon_vma_read except the write lock
2614                 * is taken to serialise against parallel split or collapse
2615                 * operations.
2616                 */
2617                anon_vma = page_get_anon_vma(head);
2618                if (!anon_vma) {
2619                        ret = -EBUSY;
2620                        goto out;
2621                }
2622                mapping = NULL;
2623                anon_vma_lock_write(anon_vma);
2624        } else {
2625                mapping = head->mapping;
2626
2627                /* Truncated ? */
2628                if (!mapping) {
2629                        ret = -EBUSY;
2630                        goto out;
2631                }
2632
2633                anon_vma = NULL;
2634                i_mmap_lock_read(mapping);
2635        }
2636
2637        /*
2638         * Racy check if we can split the page, before freeze_page() will
2639         * split PMDs
2640         */
2641        if (!can_split_huge_page(head, &extra_pins)) {
2642                ret = -EBUSY;
2643                goto out_unlock;
2644        }
2645
2646        mlocked = PageMlocked(page);
2647        freeze_page(head);
2648        VM_BUG_ON_PAGE(compound_mapcount(head), head);
2649
2650        /* Make sure the page is not on per-CPU pagevec as it takes pin */
2651        if (mlocked)
2652                lru_add_drain();
2653
2654        /* prevent PageLRU to go away from under us, and freeze lru stats */
2655        spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
2656
2657        if (mapping) {
2658                void **pslot;
2659
2660                xa_lock(&mapping->i_pages);
2661                pslot = radix_tree_lookup_slot(&mapping->i_pages,
2662                                page_index(head));
2663                /*
2664                 * Check if the head page is present in radix tree.
2665                 * We assume all tail are present too, if head is there.
2666                 */
2667                if (radix_tree_deref_slot_protected(pslot,
2668                                        &mapping->i_pages.xa_lock) != head)
2669                        goto fail;
2670        }
2671
2672        /* Prevent deferred_split_scan() touching ->_refcount */
2673        spin_lock(&pgdata->split_queue_lock);
2674        count = page_count(head);
2675        mapcount = total_mapcount(head);
2676        if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
2677                if (!list_empty(page_deferred_list(head))) {
2678                        pgdata->split_queue_len--;
2679                        list_del(page_deferred_list(head));
2680                }
2681                if (mapping)
2682                        __dec_node_page_state(page, NR_SHMEM_THPS);
2683                spin_unlock(&pgdata->split_queue_lock);
2684                __split_huge_page(page, list, flags);
2685                if (PageSwapCache(head)) {
2686                        swp_entry_t entry = { .val = page_private(head) };
2687
2688                        ret = split_swap_cluster(entry);
2689                } else
2690                        ret = 0;
2691        } else {
2692                if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2693                        pr_alert("total_mapcount: %u, page_count(): %u\n",
2694                                        mapcount, count);
2695                        if (PageTail(page))
2696                                dump_page(head, NULL);
2697                        dump_page(page, "total_mapcount(head) > 0");
2698                        BUG();
2699                }
2700                spin_unlock(&pgdata->split_queue_lock);
2701fail:           if (mapping)
2702                        xa_unlock(&mapping->i_pages);
2703                spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
2704                unfreeze_page(head);
2705                ret = -EBUSY;
2706        }
2707
2708out_unlock:
2709        if (anon_vma) {
2710                anon_vma_unlock_write(anon_vma);
2711                put_anon_vma(anon_vma);
2712        }
2713        if (mapping)
2714                i_mmap_unlock_read(mapping);
2715out:
2716        count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2717        return ret;
2718}
2719
2720void free_transhuge_page(struct page *page)
2721{
2722        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2723        unsigned long flags;
2724
2725        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2726        if (!list_empty(page_deferred_list(page))) {
2727                pgdata->split_queue_len--;
2728                list_del(page_deferred_list(page));
2729        }
2730        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2731        free_compound_page(page);
2732}
2733
2734void deferred_split_huge_page(struct page *page)
2735{
2736        struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
2737        unsigned long flags;
2738
2739        VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2740
2741        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2742        if (list_empty(page_deferred_list(page))) {
2743                count_vm_event(THP_DEFERRED_SPLIT_PAGE);
2744                list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2745                pgdata->split_queue_len++;
2746        }
2747        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2748}
2749
2750static unsigned long deferred_split_count(struct shrinker *shrink,
2751                struct shrink_control *sc)
2752{
2753        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2754        return READ_ONCE(pgdata->split_queue_len);
2755}
2756
2757static unsigned long deferred_split_scan(struct shrinker *shrink,
2758                struct shrink_control *sc)
2759{
2760        struct pglist_data *pgdata = NODE_DATA(sc->nid);
2761        unsigned long flags;
2762        LIST_HEAD(list), *pos, *next;
2763        struct page *page;
2764        int split = 0;
2765
2766        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2767        /* Take pin on all head pages to avoid freeing them under us */
2768        list_for_each_safe(pos, next, &pgdata->split_queue) {
2769                page = list_entry((void *)pos, struct page, mapping);
2770                page = compound_head(page);
2771                if (get_page_unless_zero(page)) {
2772                        list_move(page_deferred_list(page), &list);
2773                } else {
2774                        /* We lost race with put_compound_page() */
2775                        list_del_init(page_deferred_list(page));
2776                        pgdata->split_queue_len--;
2777                }
2778                if (!--sc->nr_to_scan)
2779                        break;
2780        }
2781        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2782
2783        list_for_each_safe(pos, next, &list) {
2784                page = list_entry((void *)pos, struct page, mapping);
2785                if (!trylock_page(page))
2786                        goto next;
2787                /* split_huge_page() removes page from list on success */
2788                if (!split_huge_page(page))
2789                        split++;
2790                unlock_page(page);
2791next:
2792                put_page(page);
2793        }
2794
2795        spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2796        list_splice_tail(&list, &pgdata->split_queue);
2797        spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
2798
2799        /*
2800         * Stop shrinker if we didn't split any page, but the queue is empty.
2801         * This can happen if pages were freed under us.
2802         */
2803        if (!split && list_empty(&pgdata->split_queue))
2804                return SHRINK_STOP;
2805        return split;
2806}
2807
2808static struct shrinker deferred_split_shrinker = {
2809        .count_objects = deferred_split_count,
2810        .scan_objects = deferred_split_scan,
2811        .seeks = DEFAULT_SEEKS,
2812        .flags = SHRINKER_NUMA_AWARE,
2813};
2814
2815#ifdef CONFIG_DEBUG_FS
2816static int split_huge_pages_set(void *data, u64 val)
2817{
2818        struct zone *zone;
2819        struct page *page;
2820        unsigned long pfn, max_zone_pfn;
2821        unsigned long total = 0, split = 0;
2822
2823        if (val != 1)
2824                return -EINVAL;
2825
2826        for_each_populated_zone(zone) {
2827                max_zone_pfn = zone_end_pfn(zone);
2828                for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2829                        if (!pfn_valid(pfn))
2830                                continue;
2831
2832                        page = pfn_to_page(pfn);
2833                        if (!get_page_unless_zero(page))
2834                                continue;
2835
2836                        if (zone != page_zone(page))
2837                                goto next;
2838
2839                        if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
2840                                goto next;
2841
2842                        total++;
2843                        lock_page(page);
2844                        if (!split_huge_page(page))
2845                                split++;
2846                        unlock_page(page);
2847next:
2848                        put_page(page);
2849                }
2850        }
2851
2852        pr_info("%lu of %lu THP split\n", split, total);
2853
2854        return 0;
2855}
2856DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2857                "%llu\n");
2858
2859static int __init split_huge_pages_debugfs(void)
2860{
2861        void *ret;
2862
2863        ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
2864                        &split_huge_pages_fops);
2865        if (!ret)
2866                pr_warn("Failed to create split_huge_pages in debugfs");
2867        return 0;
2868}
2869late_initcall(split_huge_pages_debugfs);
2870#endif
2871
2872#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2873void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2874                struct page *page)
2875{
2876        struct vm_area_struct *vma = pvmw->vma;
2877        struct mm_struct *mm = vma->vm_mm;
2878        unsigned long address = pvmw->address;
2879        pmd_t pmdval;
2880        swp_entry_t entry;
2881        pmd_t pmdswp;
2882
2883        if (!(pvmw->pmd && !pvmw->pte))
2884                return;
2885
2886        flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2887        pmdval = *pvmw->pmd;
2888        pmdp_invalidate(vma, address, pvmw->pmd);
2889        if (pmd_dirty(pmdval))
2890                set_page_dirty(page);
2891        entry = make_migration_entry(page, pmd_write(pmdval));
2892        pmdswp = swp_entry_to_pmd(entry);
2893        if (pmd_soft_dirty(pmdval))
2894                pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2895        set_pmd_at(mm, address, pvmw->pmd, pmdswp);
2896        page_remove_rmap(page, true);
2897        put_page(page);
2898}
2899
2900void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2901{
2902        struct vm_area_struct *vma = pvmw->vma;
2903        struct mm_struct *mm = vma->vm_mm;
2904        unsigned long address = pvmw->address;
2905        unsigned long mmun_start = address & HPAGE_PMD_MASK;
2906        pmd_t pmde;
2907        swp_entry_t entry;
2908
2909        if (!(pvmw->pmd && !pvmw->pte))
2910                return;
2911
2912        entry = pmd_to_swp_entry(*pvmw->pmd);
2913        get_page(new);
2914        pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2915        if (pmd_swp_soft_dirty(*pvmw->pmd))
2916                pmde = pmd_mksoft_dirty(pmde);
2917        if (is_write_migration_entry(entry))
2918                pmde = maybe_pmd_mkwrite(pmde, vma);
2919
2920        flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2921        if (PageAnon(new))
2922                page_add_anon_rmap(new, vma, mmun_start, true);
2923        else
2924                page_add_file_rmap(new, true);
2925        set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2926        if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
2927                mlock_vma_page(new);
2928        update_mmu_cache_pmd(vma, address, pvmw->pmd);
2929}
2930#endif
2931