linux/mm/ksm.c
<<
>>
Prefs
   1/*
   2 * Memory merging support.
   3 *
   4 * This code enables dynamic sharing of identical pages found in different
   5 * memory areas, even if they are not shared by fork()
   6 *
   7 * Copyright (C) 2008-2009 Red Hat, Inc.
   8 * Authors:
   9 *      Izik Eidus
  10 *      Andrea Arcangeli
  11 *      Chris Wright
  12 *      Hugh Dickins
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.
  15 */
  16
  17#include <linux/errno.h>
  18#include <linux/mm.h>
  19#include <linux/fs.h>
  20#include <linux/mman.h>
  21#include <linux/sched.h>
  22#include <linux/sched/mm.h>
  23#include <linux/sched/coredump.h>
  24#include <linux/rwsem.h>
  25#include <linux/pagemap.h>
  26#include <linux/rmap.h>
  27#include <linux/spinlock.h>
  28#include <linux/jhash.h>
  29#include <linux/delay.h>
  30#include <linux/kthread.h>
  31#include <linux/wait.h>
  32#include <linux/slab.h>
  33#include <linux/rbtree.h>
  34#include <linux/memory.h>
  35#include <linux/mmu_notifier.h>
  36#include <linux/swap.h>
  37#include <linux/ksm.h>
  38#include <linux/hashtable.h>
  39#include <linux/freezer.h>
  40#include <linux/oom.h>
  41#include <linux/numa.h>
  42
  43#include <asm/tlbflush.h>
  44#include "internal.h"
  45
  46#ifdef CONFIG_NUMA
  47#define NUMA(x)         (x)
  48#define DO_NUMA(x)      do { (x); } while (0)
  49#else
  50#define NUMA(x)         (0)
  51#define DO_NUMA(x)      do { } while (0)
  52#endif
  53
  54/**
  55 * DOC: Overview
  56 *
  57 * A few notes about the KSM scanning process,
  58 * to make it easier to understand the data structures below:
  59 *
  60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
  61 * contents into a data structure that holds pointers to the pages' locations.
  62 *
  63 * Since the contents of the pages may change at any moment, KSM cannot just
  64 * insert the pages into a normal sorted tree and expect it to find anything.
  65 * Therefore KSM uses two data structures - the stable and the unstable tree.
  66 *
  67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
  68 * by their contents.  Because each such page is write-protected, searching on
  69 * this tree is fully assured to be working (except when pages are unmapped),
  70 * and therefore this tree is called the stable tree.
  71 *
  72 * The stable tree node includes information required for reverse
  73 * mapping from a KSM page to virtual addresses that map this page.
  74 *
  75 * In order to avoid large latencies of the rmap walks on KSM pages,
  76 * KSM maintains two types of nodes in the stable tree:
  77 *
  78 * * the regular nodes that keep the reverse mapping structures in a
  79 *   linked list
  80 * * the "chains" that link nodes ("dups") that represent the same
  81 *   write protected memory content, but each "dup" corresponds to a
  82 *   different KSM page copy of that content
  83 *
  84 * Internally, the regular nodes, "dups" and "chains" are represented
  85 * using the same :c:type:`struct stable_node` structure.
  86 *
  87 * In addition to the stable tree, KSM uses a second data structure called the
  88 * unstable tree: this tree holds pointers to pages which have been found to
  89 * be "unchanged for a period of time".  The unstable tree sorts these pages
  90 * by their contents, but since they are not write-protected, KSM cannot rely
  91 * upon the unstable tree to work correctly - the unstable tree is liable to
  92 * be corrupted as its contents are modified, and so it is called unstable.
  93 *
  94 * KSM solves this problem by several techniques:
  95 *
  96 * 1) The unstable tree is flushed every time KSM completes scanning all
  97 *    memory areas, and then the tree is rebuilt again from the beginning.
  98 * 2) KSM will only insert into the unstable tree, pages whose hash value
  99 *    has not changed since the previous scan of all memory areas.
 100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
 101 *    colors of the nodes and not on their contents, assuring that even when
 102 *    the tree gets "corrupted" it won't get out of balance, so scanning time
 103 *    remains the same (also, searching and inserting nodes in an rbtree uses
 104 *    the same algorithm, so we have no overhead when we flush and rebuild).
 105 * 4) KSM never flushes the stable tree, which means that even if it were to
 106 *    take 10 attempts to find a page in the unstable tree, once it is found,
 107 *    it is secured in the stable tree.  (When we scan a new page, we first
 108 *    compare it against the stable tree, and then against the unstable tree.)
 109 *
 110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
 111 * stable trees and multiple unstable trees: one of each for each NUMA node.
 112 */
 113
 114/**
 115 * struct mm_slot - ksm information per mm that is being scanned
 116 * @link: link to the mm_slots hash list
 117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
 118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
 119 * @mm: the mm that this information is valid for
 120 */
 121struct mm_slot {
 122        struct hlist_node link;
 123        struct list_head mm_list;
 124        struct rmap_item *rmap_list;
 125        struct mm_struct *mm;
 126};
 127
 128/**
 129 * struct ksm_scan - cursor for scanning
 130 * @mm_slot: the current mm_slot we are scanning
 131 * @address: the next address inside that to be scanned
 132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
 133 * @seqnr: count of completed full scans (needed when removing unstable node)
 134 *
 135 * There is only the one ksm_scan instance of this cursor structure.
 136 */
 137struct ksm_scan {
 138        struct mm_slot *mm_slot;
 139        unsigned long address;
 140        struct rmap_item **rmap_list;
 141        unsigned long seqnr;
 142};
 143
 144/**
 145 * struct stable_node - node of the stable rbtree
 146 * @node: rb node of this ksm page in the stable tree
 147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
 148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
 149 * @list: linked into migrate_nodes, pending placement in the proper node tree
 150 * @hlist: hlist head of rmap_items using this ksm page
 151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
 152 * @chain_prune_time: time of the last full garbage collection
 153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
 154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
 155 */
 156struct stable_node {
 157        union {
 158                struct rb_node node;    /* when node of stable tree */
 159                struct {                /* when listed for migration */
 160                        struct list_head *head;
 161                        struct {
 162                                struct hlist_node hlist_dup;
 163                                struct list_head list;
 164                        };
 165                };
 166        };
 167        struct hlist_head hlist;
 168        union {
 169                unsigned long kpfn;
 170                unsigned long chain_prune_time;
 171        };
 172        /*
 173         * STABLE_NODE_CHAIN can be any negative number in
 174         * rmap_hlist_len negative range, but better not -1 to be able
 175         * to reliably detect underflows.
 176         */
 177#define STABLE_NODE_CHAIN -1024
 178        int rmap_hlist_len;
 179#ifdef CONFIG_NUMA
 180        int nid;
 181#endif
 182};
 183
 184/**
 185 * struct rmap_item - reverse mapping item for virtual addresses
 186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
 187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
 188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
 189 * @mm: the memory structure this rmap_item is pointing into
 190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
 191 * @oldchecksum: previous checksum of the page at that virtual address
 192 * @node: rb node of this rmap_item in the unstable tree
 193 * @head: pointer to stable_node heading this list in the stable tree
 194 * @hlist: link into hlist of rmap_items hanging off that stable_node
 195 */
 196struct rmap_item {
 197        struct rmap_item *rmap_list;
 198        union {
 199                struct anon_vma *anon_vma;      /* when stable */
 200#ifdef CONFIG_NUMA
 201                int nid;                /* when node of unstable tree */
 202#endif
 203        };
 204        struct mm_struct *mm;
 205        unsigned long address;          /* + low bits used for flags below */
 206        unsigned int oldchecksum;       /* when unstable */
 207        union {
 208                struct rb_node node;    /* when node of unstable tree */
 209                struct {                /* when listed from stable tree */
 210                        struct stable_node *head;
 211                        struct hlist_node hlist;
 212                };
 213        };
 214};
 215
 216#define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
 217#define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
 218#define STABLE_FLAG     0x200   /* is listed from the stable tree */
 219#define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
 220                                /* to mask all the flags */
 221
 222/* The stable and unstable tree heads */
 223static struct rb_root one_stable_tree[1] = { RB_ROOT };
 224static struct rb_root one_unstable_tree[1] = { RB_ROOT };
 225static struct rb_root *root_stable_tree = one_stable_tree;
 226static struct rb_root *root_unstable_tree = one_unstable_tree;
 227
 228/* Recently migrated nodes of stable tree, pending proper placement */
 229static LIST_HEAD(migrate_nodes);
 230#define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
 231
 232#define MM_SLOTS_HASH_BITS 10
 233static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 234
 235static struct mm_slot ksm_mm_head = {
 236        .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
 237};
 238static struct ksm_scan ksm_scan = {
 239        .mm_slot = &ksm_mm_head,
 240};
 241
 242static struct kmem_cache *rmap_item_cache;
 243static struct kmem_cache *stable_node_cache;
 244static struct kmem_cache *mm_slot_cache;
 245
 246/* The number of nodes in the stable tree */
 247static unsigned long ksm_pages_shared;
 248
 249/* The number of page slots additionally sharing those nodes */
 250static unsigned long ksm_pages_sharing;
 251
 252/* The number of nodes in the unstable tree */
 253static unsigned long ksm_pages_unshared;
 254
 255/* The number of rmap_items in use: to calculate pages_volatile */
 256static unsigned long ksm_rmap_items;
 257
 258/* The number of stable_node chains */
 259static unsigned long ksm_stable_node_chains;
 260
 261/* The number of stable_node dups linked to the stable_node chains */
 262static unsigned long ksm_stable_node_dups;
 263
 264/* Delay in pruning stale stable_node_dups in the stable_node_chains */
 265static int ksm_stable_node_chains_prune_millisecs = 2000;
 266
 267/* Maximum number of page slots sharing a stable node */
 268static int ksm_max_page_sharing = 256;
 269
 270/* Number of pages ksmd should scan in one batch */
 271static unsigned int ksm_thread_pages_to_scan = 100;
 272
 273/* Milliseconds ksmd should sleep between batches */
 274static unsigned int ksm_thread_sleep_millisecs = 20;
 275
 276/* Checksum of an empty (zeroed) page */
 277static unsigned int zero_checksum __read_mostly;
 278
 279/* Whether to merge empty (zeroed) pages with actual zero pages */
 280static bool ksm_use_zero_pages __read_mostly;
 281
 282#ifdef CONFIG_NUMA
 283/* Zeroed when merging across nodes is not allowed */
 284static unsigned int ksm_merge_across_nodes = 1;
 285static int ksm_nr_node_ids = 1;
 286#else
 287#define ksm_merge_across_nodes  1U
 288#define ksm_nr_node_ids         1
 289#endif
 290
 291#define KSM_RUN_STOP    0
 292#define KSM_RUN_MERGE   1
 293#define KSM_RUN_UNMERGE 2
 294#define KSM_RUN_OFFLINE 4
 295static unsigned long ksm_run = KSM_RUN_STOP;
 296static void wait_while_offlining(void);
 297
 298static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
 299static DEFINE_MUTEX(ksm_thread_mutex);
 300static DEFINE_SPINLOCK(ksm_mmlist_lock);
 301
 302#define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
 303                sizeof(struct __struct), __alignof__(struct __struct),\
 304                (__flags), NULL)
 305
 306static int __init ksm_slab_init(void)
 307{
 308        rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
 309        if (!rmap_item_cache)
 310                goto out;
 311
 312        stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
 313        if (!stable_node_cache)
 314                goto out_free1;
 315
 316        mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
 317        if (!mm_slot_cache)
 318                goto out_free2;
 319
 320        return 0;
 321
 322out_free2:
 323        kmem_cache_destroy(stable_node_cache);
 324out_free1:
 325        kmem_cache_destroy(rmap_item_cache);
 326out:
 327        return -ENOMEM;
 328}
 329
 330static void __init ksm_slab_free(void)
 331{
 332        kmem_cache_destroy(mm_slot_cache);
 333        kmem_cache_destroy(stable_node_cache);
 334        kmem_cache_destroy(rmap_item_cache);
 335        mm_slot_cache = NULL;
 336}
 337
 338static __always_inline bool is_stable_node_chain(struct stable_node *chain)
 339{
 340        return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
 341}
 342
 343static __always_inline bool is_stable_node_dup(struct stable_node *dup)
 344{
 345        return dup->head == STABLE_NODE_DUP_HEAD;
 346}
 347
 348static inline void stable_node_chain_add_dup(struct stable_node *dup,
 349                                             struct stable_node *chain)
 350{
 351        VM_BUG_ON(is_stable_node_dup(dup));
 352        dup->head = STABLE_NODE_DUP_HEAD;
 353        VM_BUG_ON(!is_stable_node_chain(chain));
 354        hlist_add_head(&dup->hlist_dup, &chain->hlist);
 355        ksm_stable_node_dups++;
 356}
 357
 358static inline void __stable_node_dup_del(struct stable_node *dup)
 359{
 360        VM_BUG_ON(!is_stable_node_dup(dup));
 361        hlist_del(&dup->hlist_dup);
 362        ksm_stable_node_dups--;
 363}
 364
 365static inline void stable_node_dup_del(struct stable_node *dup)
 366{
 367        VM_BUG_ON(is_stable_node_chain(dup));
 368        if (is_stable_node_dup(dup))
 369                __stable_node_dup_del(dup);
 370        else
 371                rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
 372#ifdef CONFIG_DEBUG_VM
 373        dup->head = NULL;
 374#endif
 375}
 376
 377static inline struct rmap_item *alloc_rmap_item(void)
 378{
 379        struct rmap_item *rmap_item;
 380
 381        rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
 382                                                __GFP_NORETRY | __GFP_NOWARN);
 383        if (rmap_item)
 384                ksm_rmap_items++;
 385        return rmap_item;
 386}
 387
 388static inline void free_rmap_item(struct rmap_item *rmap_item)
 389{
 390        ksm_rmap_items--;
 391        rmap_item->mm = NULL;   /* debug safety */
 392        kmem_cache_free(rmap_item_cache, rmap_item);
 393}
 394
 395static inline struct stable_node *alloc_stable_node(void)
 396{
 397        /*
 398         * The allocation can take too long with GFP_KERNEL when memory is under
 399         * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
 400         * grants access to memory reserves, helping to avoid this problem.
 401         */
 402        return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
 403}
 404
 405static inline void free_stable_node(struct stable_node *stable_node)
 406{
 407        VM_BUG_ON(stable_node->rmap_hlist_len &&
 408                  !is_stable_node_chain(stable_node));
 409        kmem_cache_free(stable_node_cache, stable_node);
 410}
 411
 412static inline struct mm_slot *alloc_mm_slot(void)
 413{
 414        if (!mm_slot_cache)     /* initialization failed */
 415                return NULL;
 416        return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
 417}
 418
 419static inline void free_mm_slot(struct mm_slot *mm_slot)
 420{
 421        kmem_cache_free(mm_slot_cache, mm_slot);
 422}
 423
 424static struct mm_slot *get_mm_slot(struct mm_struct *mm)
 425{
 426        struct mm_slot *slot;
 427
 428        hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
 429                if (slot->mm == mm)
 430                        return slot;
 431
 432        return NULL;
 433}
 434
 435static void insert_to_mm_slots_hash(struct mm_struct *mm,
 436                                    struct mm_slot *mm_slot)
 437{
 438        mm_slot->mm = mm;
 439        hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
 440}
 441
 442/*
 443 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
 444 * page tables after it has passed through ksm_exit() - which, if necessary,
 445 * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
 446 * a special flag: they can just back out as soon as mm_users goes to zero.
 447 * ksm_test_exit() is used throughout to make this test for exit: in some
 448 * places for correctness, in some places just to avoid unnecessary work.
 449 */
 450static inline bool ksm_test_exit(struct mm_struct *mm)
 451{
 452        return atomic_read(&mm->mm_users) == 0;
 453}
 454
 455/*
 456 * We use break_ksm to break COW on a ksm page: it's a stripped down
 457 *
 458 *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
 459 *              put_page(page);
 460 *
 461 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
 462 * in case the application has unmapped and remapped mm,addr meanwhile.
 463 * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
 464 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
 465 *
 466 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
 467 * of the process that owns 'vma'.  We also do not want to enforce
 468 * protection keys here anyway.
 469 */
 470static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
 471{
 472        struct page *page;
 473        vm_fault_t ret = 0;
 474
 475        do {
 476                cond_resched();
 477                page = follow_page(vma, addr,
 478                                FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
 479                if (IS_ERR_OR_NULL(page))
 480                        break;
 481                if (PageKsm(page))
 482                        ret = handle_mm_fault(vma, addr,
 483                                        FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
 484                else
 485                        ret = VM_FAULT_WRITE;
 486                put_page(page);
 487        } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
 488        /*
 489         * We must loop because handle_mm_fault() may back out if there's
 490         * any difficulty e.g. if pte accessed bit gets updated concurrently.
 491         *
 492         * VM_FAULT_WRITE is what we have been hoping for: it indicates that
 493         * COW has been broken, even if the vma does not permit VM_WRITE;
 494         * but note that a concurrent fault might break PageKsm for us.
 495         *
 496         * VM_FAULT_SIGBUS could occur if we race with truncation of the
 497         * backing file, which also invalidates anonymous pages: that's
 498         * okay, that truncation will have unmapped the PageKsm for us.
 499         *
 500         * VM_FAULT_OOM: at the time of writing (late July 2009), setting
 501         * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
 502         * current task has TIF_MEMDIE set, and will be OOM killed on return
 503         * to user; and ksmd, having no mm, would never be chosen for that.
 504         *
 505         * But if the mm is in a limited mem_cgroup, then the fault may fail
 506         * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
 507         * even ksmd can fail in this way - though it's usually breaking ksm
 508         * just to undo a merge it made a moment before, so unlikely to oom.
 509         *
 510         * That's a pity: we might therefore have more kernel pages allocated
 511         * than we're counting as nodes in the stable tree; but ksm_do_scan
 512         * will retry to break_cow on each pass, so should recover the page
 513         * in due course.  The important thing is to not let VM_MERGEABLE
 514         * be cleared while any such pages might remain in the area.
 515         */
 516        return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
 517}
 518
 519static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
 520                unsigned long addr)
 521{
 522        struct vm_area_struct *vma;
 523        if (ksm_test_exit(mm))
 524                return NULL;
 525        vma = find_vma(mm, addr);
 526        if (!vma || vma->vm_start > addr)
 527                return NULL;
 528        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 529                return NULL;
 530        return vma;
 531}
 532
 533static void break_cow(struct rmap_item *rmap_item)
 534{
 535        struct mm_struct *mm = rmap_item->mm;
 536        unsigned long addr = rmap_item->address;
 537        struct vm_area_struct *vma;
 538
 539        /*
 540         * It is not an accident that whenever we want to break COW
 541         * to undo, we also need to drop a reference to the anon_vma.
 542         */
 543        put_anon_vma(rmap_item->anon_vma);
 544
 545        down_read(&mm->mmap_sem);
 546        vma = find_mergeable_vma(mm, addr);
 547        if (vma)
 548                break_ksm(vma, addr);
 549        up_read(&mm->mmap_sem);
 550}
 551
 552static struct page *get_mergeable_page(struct rmap_item *rmap_item)
 553{
 554        struct mm_struct *mm = rmap_item->mm;
 555        unsigned long addr = rmap_item->address;
 556        struct vm_area_struct *vma;
 557        struct page *page;
 558
 559        down_read(&mm->mmap_sem);
 560        vma = find_mergeable_vma(mm, addr);
 561        if (!vma)
 562                goto out;
 563
 564        page = follow_page(vma, addr, FOLL_GET);
 565        if (IS_ERR_OR_NULL(page))
 566                goto out;
 567        if (PageAnon(page)) {
 568                flush_anon_page(vma, page, addr);
 569                flush_dcache_page(page);
 570        } else {
 571                put_page(page);
 572out:
 573                page = NULL;
 574        }
 575        up_read(&mm->mmap_sem);
 576        return page;
 577}
 578
 579/*
 580 * This helper is used for getting right index into array of tree roots.
 581 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
 582 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
 583 * every node has its own stable and unstable tree.
 584 */
 585static inline int get_kpfn_nid(unsigned long kpfn)
 586{
 587        return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
 588}
 589
 590static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
 591                                                   struct rb_root *root)
 592{
 593        struct stable_node *chain = alloc_stable_node();
 594        VM_BUG_ON(is_stable_node_chain(dup));
 595        if (likely(chain)) {
 596                INIT_HLIST_HEAD(&chain->hlist);
 597                chain->chain_prune_time = jiffies;
 598                chain->rmap_hlist_len = STABLE_NODE_CHAIN;
 599#if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
 600                chain->nid = -1; /* debug */
 601#endif
 602                ksm_stable_node_chains++;
 603
 604                /*
 605                 * Put the stable node chain in the first dimension of
 606                 * the stable tree and at the same time remove the old
 607                 * stable node.
 608                 */
 609                rb_replace_node(&dup->node, &chain->node, root);
 610
 611                /*
 612                 * Move the old stable node to the second dimension
 613                 * queued in the hlist_dup. The invariant is that all
 614                 * dup stable_nodes in the chain->hlist point to pages
 615                 * that are wrprotected and have the exact same
 616                 * content.
 617                 */
 618                stable_node_chain_add_dup(dup, chain);
 619        }
 620        return chain;
 621}
 622
 623static inline void free_stable_node_chain(struct stable_node *chain,
 624                                          struct rb_root *root)
 625{
 626        rb_erase(&chain->node, root);
 627        free_stable_node(chain);
 628        ksm_stable_node_chains--;
 629}
 630
 631static void remove_node_from_stable_tree(struct stable_node *stable_node)
 632{
 633        struct rmap_item *rmap_item;
 634
 635        /* check it's not STABLE_NODE_CHAIN or negative */
 636        BUG_ON(stable_node->rmap_hlist_len < 0);
 637
 638        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
 639                if (rmap_item->hlist.next)
 640                        ksm_pages_sharing--;
 641                else
 642                        ksm_pages_shared--;
 643                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 644                stable_node->rmap_hlist_len--;
 645                put_anon_vma(rmap_item->anon_vma);
 646                rmap_item->address &= PAGE_MASK;
 647                cond_resched();
 648        }
 649
 650        /*
 651         * We need the second aligned pointer of the migrate_nodes
 652         * list_head to stay clear from the rb_parent_color union
 653         * (aligned and different than any node) and also different
 654         * from &migrate_nodes. This will verify that future list.h changes
 655         * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
 656         */
 657#if defined(GCC_VERSION) && GCC_VERSION >= 40903
 658        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
 659        BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
 660#endif
 661
 662        if (stable_node->head == &migrate_nodes)
 663                list_del(&stable_node->list);
 664        else
 665                stable_node_dup_del(stable_node);
 666        free_stable_node(stable_node);
 667}
 668
 669/*
 670 * get_ksm_page: checks if the page indicated by the stable node
 671 * is still its ksm page, despite having held no reference to it.
 672 * In which case we can trust the content of the page, and it
 673 * returns the gotten page; but if the page has now been zapped,
 674 * remove the stale node from the stable tree and return NULL.
 675 * But beware, the stable node's page might be being migrated.
 676 *
 677 * You would expect the stable_node to hold a reference to the ksm page.
 678 * But if it increments the page's count, swapping out has to wait for
 679 * ksmd to come around again before it can free the page, which may take
 680 * seconds or even minutes: much too unresponsive.  So instead we use a
 681 * "keyhole reference": access to the ksm page from the stable node peeps
 682 * out through its keyhole to see if that page still holds the right key,
 683 * pointing back to this stable node.  This relies on freeing a PageAnon
 684 * page to reset its page->mapping to NULL, and relies on no other use of
 685 * a page to put something that might look like our key in page->mapping.
 686 * is on its way to being freed; but it is an anomaly to bear in mind.
 687 */
 688static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
 689{
 690        struct page *page;
 691        void *expected_mapping;
 692        unsigned long kpfn;
 693
 694        expected_mapping = (void *)((unsigned long)stable_node |
 695                                        PAGE_MAPPING_KSM);
 696again:
 697        kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
 698        page = pfn_to_page(kpfn);
 699        if (READ_ONCE(page->mapping) != expected_mapping)
 700                goto stale;
 701
 702        /*
 703         * We cannot do anything with the page while its refcount is 0.
 704         * Usually 0 means free, or tail of a higher-order page: in which
 705         * case this node is no longer referenced, and should be freed;
 706         * however, it might mean that the page is under page_ref_freeze().
 707         * The __remove_mapping() case is easy, again the node is now stale;
 708         * but if page is swapcache in migrate_page_move_mapping(), it might
 709         * still be our page, in which case it's essential to keep the node.
 710         */
 711        while (!get_page_unless_zero(page)) {
 712                /*
 713                 * Another check for page->mapping != expected_mapping would
 714                 * work here too.  We have chosen the !PageSwapCache test to
 715                 * optimize the common case, when the page is or is about to
 716                 * be freed: PageSwapCache is cleared (under spin_lock_irq)
 717                 * in the ref_freeze section of __remove_mapping(); but Anon
 718                 * page->mapping reset to NULL later, in free_pages_prepare().
 719                 */
 720                if (!PageSwapCache(page))
 721                        goto stale;
 722                cpu_relax();
 723        }
 724
 725        if (READ_ONCE(page->mapping) != expected_mapping) {
 726                put_page(page);
 727                goto stale;
 728        }
 729
 730        if (lock_it) {
 731                lock_page(page);
 732                if (READ_ONCE(page->mapping) != expected_mapping) {
 733                        unlock_page(page);
 734                        put_page(page);
 735                        goto stale;
 736                }
 737        }
 738        return page;
 739
 740stale:
 741        /*
 742         * We come here from above when page->mapping or !PageSwapCache
 743         * suggests that the node is stale; but it might be under migration.
 744         * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
 745         * before checking whether node->kpfn has been changed.
 746         */
 747        smp_rmb();
 748        if (READ_ONCE(stable_node->kpfn) != kpfn)
 749                goto again;
 750        remove_node_from_stable_tree(stable_node);
 751        return NULL;
 752}
 753
 754/*
 755 * Removing rmap_item from stable or unstable tree.
 756 * This function will clean the information from the stable/unstable tree.
 757 */
 758static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
 759{
 760        if (rmap_item->address & STABLE_FLAG) {
 761                struct stable_node *stable_node;
 762                struct page *page;
 763
 764                stable_node = rmap_item->head;
 765                page = get_ksm_page(stable_node, true);
 766                if (!page)
 767                        goto out;
 768
 769                hlist_del(&rmap_item->hlist);
 770                unlock_page(page);
 771                put_page(page);
 772
 773                if (!hlist_empty(&stable_node->hlist))
 774                        ksm_pages_sharing--;
 775                else
 776                        ksm_pages_shared--;
 777                VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
 778                stable_node->rmap_hlist_len--;
 779
 780                put_anon_vma(rmap_item->anon_vma);
 781                rmap_item->address &= PAGE_MASK;
 782
 783        } else if (rmap_item->address & UNSTABLE_FLAG) {
 784                unsigned char age;
 785                /*
 786                 * Usually ksmd can and must skip the rb_erase, because
 787                 * root_unstable_tree was already reset to RB_ROOT.
 788                 * But be careful when an mm is exiting: do the rb_erase
 789                 * if this rmap_item was inserted by this scan, rather
 790                 * than left over from before.
 791                 */
 792                age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
 793                BUG_ON(age > 1);
 794                if (!age)
 795                        rb_erase(&rmap_item->node,
 796                                 root_unstable_tree + NUMA(rmap_item->nid));
 797                ksm_pages_unshared--;
 798                rmap_item->address &= PAGE_MASK;
 799        }
 800out:
 801        cond_resched();         /* we're called from many long loops */
 802}
 803
 804static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
 805                                       struct rmap_item **rmap_list)
 806{
 807        while (*rmap_list) {
 808                struct rmap_item *rmap_item = *rmap_list;
 809                *rmap_list = rmap_item->rmap_list;
 810                remove_rmap_item_from_tree(rmap_item);
 811                free_rmap_item(rmap_item);
 812        }
 813}
 814
 815/*
 816 * Though it's very tempting to unmerge rmap_items from stable tree rather
 817 * than check every pte of a given vma, the locking doesn't quite work for
 818 * that - an rmap_item is assigned to the stable tree after inserting ksm
 819 * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
 820 * rmap_items from parent to child at fork time (so as not to waste time
 821 * if exit comes before the next scan reaches it).
 822 *
 823 * Similarly, although we'd like to remove rmap_items (so updating counts
 824 * and freeing memory) when unmerging an area, it's easier to leave that
 825 * to the next pass of ksmd - consider, for example, how ksmd might be
 826 * in cmp_and_merge_page on one of the rmap_items we would be removing.
 827 */
 828static int unmerge_ksm_pages(struct vm_area_struct *vma,
 829                             unsigned long start, unsigned long end)
 830{
 831        unsigned long addr;
 832        int err = 0;
 833
 834        for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
 835                if (ksm_test_exit(vma->vm_mm))
 836                        break;
 837                if (signal_pending(current))
 838                        err = -ERESTARTSYS;
 839                else
 840                        err = break_ksm(vma, addr);
 841        }
 842        return err;
 843}
 844
 845static inline struct stable_node *page_stable_node(struct page *page)
 846{
 847        return PageKsm(page) ? page_rmapping(page) : NULL;
 848}
 849
 850static inline void set_page_stable_node(struct page *page,
 851                                        struct stable_node *stable_node)
 852{
 853        page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
 854}
 855
 856#ifdef CONFIG_SYSFS
 857/*
 858 * Only called through the sysfs control interface:
 859 */
 860static int remove_stable_node(struct stable_node *stable_node)
 861{
 862        struct page *page;
 863        int err;
 864
 865        page = get_ksm_page(stable_node, true);
 866        if (!page) {
 867                /*
 868                 * get_ksm_page did remove_node_from_stable_tree itself.
 869                 */
 870                return 0;
 871        }
 872
 873        if (WARN_ON_ONCE(page_mapped(page))) {
 874                /*
 875                 * This should not happen: but if it does, just refuse to let
 876                 * merge_across_nodes be switched - there is no need to panic.
 877                 */
 878                err = -EBUSY;
 879        } else {
 880                /*
 881                 * The stable node did not yet appear stale to get_ksm_page(),
 882                 * since that allows for an unmapped ksm page to be recognized
 883                 * right up until it is freed; but the node is safe to remove.
 884                 * This page might be in a pagevec waiting to be freed,
 885                 * or it might be PageSwapCache (perhaps under writeback),
 886                 * or it might have been removed from swapcache a moment ago.
 887                 */
 888                set_page_stable_node(page, NULL);
 889                remove_node_from_stable_tree(stable_node);
 890                err = 0;
 891        }
 892
 893        unlock_page(page);
 894        put_page(page);
 895        return err;
 896}
 897
 898static int remove_stable_node_chain(struct stable_node *stable_node,
 899                                    struct rb_root *root)
 900{
 901        struct stable_node *dup;
 902        struct hlist_node *hlist_safe;
 903
 904        if (!is_stable_node_chain(stable_node)) {
 905                VM_BUG_ON(is_stable_node_dup(stable_node));
 906                if (remove_stable_node(stable_node))
 907                        return true;
 908                else
 909                        return false;
 910        }
 911
 912        hlist_for_each_entry_safe(dup, hlist_safe,
 913                                  &stable_node->hlist, hlist_dup) {
 914                VM_BUG_ON(!is_stable_node_dup(dup));
 915                if (remove_stable_node(dup))
 916                        return true;
 917        }
 918        BUG_ON(!hlist_empty(&stable_node->hlist));
 919        free_stable_node_chain(stable_node, root);
 920        return false;
 921}
 922
 923static int remove_all_stable_nodes(void)
 924{
 925        struct stable_node *stable_node, *next;
 926        int nid;
 927        int err = 0;
 928
 929        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
 930                while (root_stable_tree[nid].rb_node) {
 931                        stable_node = rb_entry(root_stable_tree[nid].rb_node,
 932                                                struct stable_node, node);
 933                        if (remove_stable_node_chain(stable_node,
 934                                                     root_stable_tree + nid)) {
 935                                err = -EBUSY;
 936                                break;  /* proceed to next nid */
 937                        }
 938                        cond_resched();
 939                }
 940        }
 941        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
 942                if (remove_stable_node(stable_node))
 943                        err = -EBUSY;
 944                cond_resched();
 945        }
 946        return err;
 947}
 948
 949static int unmerge_and_remove_all_rmap_items(void)
 950{
 951        struct mm_slot *mm_slot;
 952        struct mm_struct *mm;
 953        struct vm_area_struct *vma;
 954        int err = 0;
 955
 956        spin_lock(&ksm_mmlist_lock);
 957        ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
 958                                                struct mm_slot, mm_list);
 959        spin_unlock(&ksm_mmlist_lock);
 960
 961        for (mm_slot = ksm_scan.mm_slot;
 962                        mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
 963                mm = mm_slot->mm;
 964                down_read(&mm->mmap_sem);
 965                for (vma = mm->mmap; vma; vma = vma->vm_next) {
 966                        if (ksm_test_exit(mm))
 967                                break;
 968                        if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
 969                                continue;
 970                        err = unmerge_ksm_pages(vma,
 971                                                vma->vm_start, vma->vm_end);
 972                        if (err)
 973                                goto error;
 974                }
 975
 976                remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
 977                up_read(&mm->mmap_sem);
 978
 979                spin_lock(&ksm_mmlist_lock);
 980                ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
 981                                                struct mm_slot, mm_list);
 982                if (ksm_test_exit(mm)) {
 983                        hash_del(&mm_slot->link);
 984                        list_del(&mm_slot->mm_list);
 985                        spin_unlock(&ksm_mmlist_lock);
 986
 987                        free_mm_slot(mm_slot);
 988                        clear_bit(MMF_VM_MERGEABLE, &mm->flags);
 989                        mmdrop(mm);
 990                } else
 991                        spin_unlock(&ksm_mmlist_lock);
 992        }
 993
 994        /* Clean up stable nodes, but don't worry if some are still busy */
 995        remove_all_stable_nodes();
 996        ksm_scan.seqnr = 0;
 997        return 0;
 998
 999error:
1000        up_read(&mm->mmap_sem);
1001        spin_lock(&ksm_mmlist_lock);
1002        ksm_scan.mm_slot = &ksm_mm_head;
1003        spin_unlock(&ksm_mmlist_lock);
1004        return err;
1005}
1006#endif /* CONFIG_SYSFS */
1007
1008static u32 calc_checksum(struct page *page)
1009{
1010        u32 checksum;
1011        void *addr = kmap_atomic(page);
1012        checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1013        kunmap_atomic(addr);
1014        return checksum;
1015}
1016
1017static int memcmp_pages(struct page *page1, struct page *page2)
1018{
1019        char *addr1, *addr2;
1020        int ret;
1021
1022        addr1 = kmap_atomic(page1);
1023        addr2 = kmap_atomic(page2);
1024        ret = memcmp(addr1, addr2, PAGE_SIZE);
1025        kunmap_atomic(addr2);
1026        kunmap_atomic(addr1);
1027        return ret;
1028}
1029
1030static inline int pages_identical(struct page *page1, struct page *page2)
1031{
1032        return !memcmp_pages(page1, page2);
1033}
1034
1035static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1036                              pte_t *orig_pte)
1037{
1038        struct mm_struct *mm = vma->vm_mm;
1039        struct page_vma_mapped_walk pvmw = {
1040                .page = page,
1041                .vma = vma,
1042        };
1043        int swapped;
1044        int err = -EFAULT;
1045        unsigned long mmun_start;       /* For mmu_notifiers */
1046        unsigned long mmun_end;         /* For mmu_notifiers */
1047
1048        pvmw.address = page_address_in_vma(page, vma);
1049        if (pvmw.address == -EFAULT)
1050                goto out;
1051
1052        BUG_ON(PageTransCompound(page));
1053
1054        mmun_start = pvmw.address;
1055        mmun_end   = pvmw.address + PAGE_SIZE;
1056        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1057
1058        if (!page_vma_mapped_walk(&pvmw))
1059                goto out_mn;
1060        if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061                goto out_unlock;
1062
1063        if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064            (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065                                                mm_tlb_flush_pending(mm)) {
1066                pte_t entry;
1067
1068                swapped = PageSwapCache(page);
1069                flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070                /*
1071                 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072                 * take any lock, therefore the check that we are going to make
1073                 * with the pagecount against the mapcount is racey and
1074                 * O_DIRECT can happen right after the check.
1075                 * So we clear the pte and flush the tlb before the check
1076                 * this assure us that no O_DIRECT can happen after the check
1077                 * or in the middle of the check.
1078                 *
1079                 * No need to notify as we are downgrading page table to read
1080                 * only not changing it to point to a new page.
1081                 *
1082                 * See Documentation/vm/mmu_notifier.rst
1083                 */
1084                entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085                /*
1086                 * Check that no O_DIRECT or similar I/O is in progress on the
1087                 * page
1088                 */
1089                if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090                        set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091                        goto out_unlock;
1092                }
1093                if (pte_dirty(entry))
1094                        set_page_dirty(page);
1095
1096                if (pte_protnone(entry))
1097                        entry = pte_mkclean(pte_clear_savedwrite(entry));
1098                else
1099                        entry = pte_mkclean(pte_wrprotect(entry));
1100                set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101        }
1102        *orig_pte = *pvmw.pte;
1103        err = 0;
1104
1105out_unlock:
1106        page_vma_mapped_walk_done(&pvmw);
1107out_mn:
1108        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109out:
1110        return err;
1111}
1112
1113/**
1114 * replace_page - replace page in vma by new ksm page
1115 * @vma:      vma that holds the pte pointing to page
1116 * @page:     the page we are replacing by kpage
1117 * @kpage:    the ksm page we replace page by
1118 * @orig_pte: the original value of the pte
1119 *
1120 * Returns 0 on success, -EFAULT on failure.
1121 */
1122static int replace_page(struct vm_area_struct *vma, struct page *page,
1123                        struct page *kpage, pte_t orig_pte)
1124{
1125        struct mm_struct *mm = vma->vm_mm;
1126        pmd_t *pmd;
1127        pte_t *ptep;
1128        pte_t newpte;
1129        spinlock_t *ptl;
1130        unsigned long addr;
1131        int err = -EFAULT;
1132        unsigned long mmun_start;       /* For mmu_notifiers */
1133        unsigned long mmun_end;         /* For mmu_notifiers */
1134
1135        addr = page_address_in_vma(page, vma);
1136        if (addr == -EFAULT)
1137                goto out;
1138
1139        pmd = mm_find_pmd(mm, addr);
1140        if (!pmd)
1141                goto out;
1142
1143        mmun_start = addr;
1144        mmun_end   = addr + PAGE_SIZE;
1145        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1146
1147        ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1148        if (!pte_same(*ptep, orig_pte)) {
1149                pte_unmap_unlock(ptep, ptl);
1150                goto out_mn;
1151        }
1152
1153        /*
1154         * No need to check ksm_use_zero_pages here: we can only have a
1155         * zero_page here if ksm_use_zero_pages was enabled alreaady.
1156         */
1157        if (!is_zero_pfn(page_to_pfn(kpage))) {
1158                get_page(kpage);
1159                page_add_anon_rmap(kpage, vma, addr, false);
1160                newpte = mk_pte(kpage, vma->vm_page_prot);
1161        } else {
1162                newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1163                                               vma->vm_page_prot));
1164                /*
1165                 * We're replacing an anonymous page with a zero page, which is
1166                 * not anonymous. We need to do proper accounting otherwise we
1167                 * will get wrong values in /proc, and a BUG message in dmesg
1168                 * when tearing down the mm.
1169                 */
1170                dec_mm_counter(mm, MM_ANONPAGES);
1171        }
1172
1173        flush_cache_page(vma, addr, pte_pfn(*ptep));
1174        /*
1175         * No need to notify as we are replacing a read only page with another
1176         * read only page with the same content.
1177         *
1178         * See Documentation/vm/mmu_notifier.rst
1179         */
1180        ptep_clear_flush(vma, addr, ptep);
1181        set_pte_at_notify(mm, addr, ptep, newpte);
1182
1183        page_remove_rmap(page, false);
1184        if (!page_mapped(page))
1185                try_to_free_swap(page);
1186        put_page(page);
1187
1188        pte_unmap_unlock(ptep, ptl);
1189        err = 0;
1190out_mn:
1191        mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1192out:
1193        return err;
1194}
1195
1196/*
1197 * try_to_merge_one_page - take two pages and merge them into one
1198 * @vma: the vma that holds the pte pointing to page
1199 * @page: the PageAnon page that we want to replace with kpage
1200 * @kpage: the PageKsm page that we want to map instead of page,
1201 *         or NULL the first time when we want to use page as kpage.
1202 *
1203 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1204 */
1205static int try_to_merge_one_page(struct vm_area_struct *vma,
1206                                 struct page *page, struct page *kpage)
1207{
1208        pte_t orig_pte = __pte(0);
1209        int err = -EFAULT;
1210
1211        if (page == kpage)                      /* ksm page forked */
1212                return 0;
1213
1214        if (!PageAnon(page))
1215                goto out;
1216
1217        /*
1218         * We need the page lock to read a stable PageSwapCache in
1219         * write_protect_page().  We use trylock_page() instead of
1220         * lock_page() because we don't want to wait here - we
1221         * prefer to continue scanning and merging different pages,
1222         * then come back to this page when it is unlocked.
1223         */
1224        if (!trylock_page(page))
1225                goto out;
1226
1227        if (PageTransCompound(page)) {
1228                if (split_huge_page(page))
1229                        goto out_unlock;
1230        }
1231
1232        /*
1233         * If this anonymous page is mapped only here, its pte may need
1234         * to be write-protected.  If it's mapped elsewhere, all of its
1235         * ptes are necessarily already write-protected.  But in either
1236         * case, we need to lock and check page_count is not raised.
1237         */
1238        if (write_protect_page(vma, page, &orig_pte) == 0) {
1239                if (!kpage) {
1240                        /*
1241                         * While we hold page lock, upgrade page from
1242                         * PageAnon+anon_vma to PageKsm+NULL stable_node:
1243                         * stable_tree_insert() will update stable_node.
1244                         */
1245                        set_page_stable_node(page, NULL);
1246                        mark_page_accessed(page);
1247                        /*
1248                         * Page reclaim just frees a clean page with no dirty
1249                         * ptes: make sure that the ksm page would be swapped.
1250                         */
1251                        if (!PageDirty(page))
1252                                SetPageDirty(page);
1253                        err = 0;
1254                } else if (pages_identical(page, kpage))
1255                        err = replace_page(vma, page, kpage, orig_pte);
1256        }
1257
1258        if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1259                munlock_vma_page(page);
1260                if (!PageMlocked(kpage)) {
1261                        unlock_page(page);
1262                        lock_page(kpage);
1263                        mlock_vma_page(kpage);
1264                        page = kpage;           /* for final unlock */
1265                }
1266        }
1267
1268out_unlock:
1269        unlock_page(page);
1270out:
1271        return err;
1272}
1273
1274/*
1275 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1276 * but no new kernel page is allocated: kpage must already be a ksm page.
1277 *
1278 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1279 */
1280static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1281                                      struct page *page, struct page *kpage)
1282{
1283        struct mm_struct *mm = rmap_item->mm;
1284        struct vm_area_struct *vma;
1285        int err = -EFAULT;
1286
1287        down_read(&mm->mmap_sem);
1288        vma = find_mergeable_vma(mm, rmap_item->address);
1289        if (!vma)
1290                goto out;
1291
1292        err = try_to_merge_one_page(vma, page, kpage);
1293        if (err)
1294                goto out;
1295
1296        /* Unstable nid is in union with stable anon_vma: remove first */
1297        remove_rmap_item_from_tree(rmap_item);
1298
1299        /* Must get reference to anon_vma while still holding mmap_sem */
1300        rmap_item->anon_vma = vma->anon_vma;
1301        get_anon_vma(vma->anon_vma);
1302out:
1303        up_read(&mm->mmap_sem);
1304        return err;
1305}
1306
1307/*
1308 * try_to_merge_two_pages - take two identical pages and prepare them
1309 * to be merged into one page.
1310 *
1311 * This function returns the kpage if we successfully merged two identical
1312 * pages into one ksm page, NULL otherwise.
1313 *
1314 * Note that this function upgrades page to ksm page: if one of the pages
1315 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1316 */
1317static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1318                                           struct page *page,
1319                                           struct rmap_item *tree_rmap_item,
1320                                           struct page *tree_page)
1321{
1322        int err;
1323
1324        err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1325        if (!err) {
1326                err = try_to_merge_with_ksm_page(tree_rmap_item,
1327                                                        tree_page, page);
1328                /*
1329                 * If that fails, we have a ksm page with only one pte
1330                 * pointing to it: so break it.
1331                 */
1332                if (err)
1333                        break_cow(rmap_item);
1334        }
1335        return err ? NULL : page;
1336}
1337
1338static __always_inline
1339bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1340{
1341        VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1342        /*
1343         * Check that at least one mapping still exists, otherwise
1344         * there's no much point to merge and share with this
1345         * stable_node, as the underlying tree_page of the other
1346         * sharer is going to be freed soon.
1347         */
1348        return stable_node->rmap_hlist_len &&
1349                stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1350}
1351
1352static __always_inline
1353bool is_page_sharing_candidate(struct stable_node *stable_node)
1354{
1355        return __is_page_sharing_candidate(stable_node, 0);
1356}
1357
1358static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1359                                    struct stable_node **_stable_node,
1360                                    struct rb_root *root,
1361                                    bool prune_stale_stable_nodes)
1362{
1363        struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1364        struct hlist_node *hlist_safe;
1365        struct page *_tree_page, *tree_page = NULL;
1366        int nr = 0;
1367        int found_rmap_hlist_len;
1368
1369        if (!prune_stale_stable_nodes ||
1370            time_before(jiffies, stable_node->chain_prune_time +
1371                        msecs_to_jiffies(
1372                                ksm_stable_node_chains_prune_millisecs)))
1373                prune_stale_stable_nodes = false;
1374        else
1375                stable_node->chain_prune_time = jiffies;
1376
1377        hlist_for_each_entry_safe(dup, hlist_safe,
1378                                  &stable_node->hlist, hlist_dup) {
1379                cond_resched();
1380                /*
1381                 * We must walk all stable_node_dup to prune the stale
1382                 * stable nodes during lookup.
1383                 *
1384                 * get_ksm_page can drop the nodes from the
1385                 * stable_node->hlist if they point to freed pages
1386                 * (that's why we do a _safe walk). The "dup"
1387                 * stable_node parameter itself will be freed from
1388                 * under us if it returns NULL.
1389                 */
1390                _tree_page = get_ksm_page(dup, false);
1391                if (!_tree_page)
1392                        continue;
1393                nr += 1;
1394                if (is_page_sharing_candidate(dup)) {
1395                        if (!found ||
1396                            dup->rmap_hlist_len > found_rmap_hlist_len) {
1397                                if (found)
1398                                        put_page(tree_page);
1399                                found = dup;
1400                                found_rmap_hlist_len = found->rmap_hlist_len;
1401                                tree_page = _tree_page;
1402
1403                                /* skip put_page for found dup */
1404                                if (!prune_stale_stable_nodes)
1405                                        break;
1406                                continue;
1407                        }
1408                }
1409                put_page(_tree_page);
1410        }
1411
1412        if (found) {
1413                /*
1414                 * nr is counting all dups in the chain only if
1415                 * prune_stale_stable_nodes is true, otherwise we may
1416                 * break the loop at nr == 1 even if there are
1417                 * multiple entries.
1418                 */
1419                if (prune_stale_stable_nodes && nr == 1) {
1420                        /*
1421                         * If there's not just one entry it would
1422                         * corrupt memory, better BUG_ON. In KSM
1423                         * context with no lock held it's not even
1424                         * fatal.
1425                         */
1426                        BUG_ON(stable_node->hlist.first->next);
1427
1428                        /*
1429                         * There's just one entry and it is below the
1430                         * deduplication limit so drop the chain.
1431                         */
1432                        rb_replace_node(&stable_node->node, &found->node,
1433                                        root);
1434                        free_stable_node(stable_node);
1435                        ksm_stable_node_chains--;
1436                        ksm_stable_node_dups--;
1437                        /*
1438                         * NOTE: the caller depends on the stable_node
1439                         * to be equal to stable_node_dup if the chain
1440                         * was collapsed.
1441                         */
1442                        *_stable_node = found;
1443                        /*
1444                         * Just for robustneess as stable_node is
1445                         * otherwise left as a stable pointer, the
1446                         * compiler shall optimize it away at build
1447                         * time.
1448                         */
1449                        stable_node = NULL;
1450                } else if (stable_node->hlist.first != &found->hlist_dup &&
1451                           __is_page_sharing_candidate(found, 1)) {
1452                        /*
1453                         * If the found stable_node dup can accept one
1454                         * more future merge (in addition to the one
1455                         * that is underway) and is not at the head of
1456                         * the chain, put it there so next search will
1457                         * be quicker in the !prune_stale_stable_nodes
1458                         * case.
1459                         *
1460                         * NOTE: it would be inaccurate to use nr > 1
1461                         * instead of checking the hlist.first pointer
1462                         * directly, because in the
1463                         * prune_stale_stable_nodes case "nr" isn't
1464                         * the position of the found dup in the chain,
1465                         * but the total number of dups in the chain.
1466                         */
1467                        hlist_del(&found->hlist_dup);
1468                        hlist_add_head(&found->hlist_dup,
1469                                       &stable_node->hlist);
1470                }
1471        }
1472
1473        *_stable_node_dup = found;
1474        return tree_page;
1475}
1476
1477static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1478                                               struct rb_root *root)
1479{
1480        if (!is_stable_node_chain(stable_node))
1481                return stable_node;
1482        if (hlist_empty(&stable_node->hlist)) {
1483                free_stable_node_chain(stable_node, root);
1484                return NULL;
1485        }
1486        return hlist_entry(stable_node->hlist.first,
1487                           typeof(*stable_node), hlist_dup);
1488}
1489
1490/*
1491 * Like for get_ksm_page, this function can free the *_stable_node and
1492 * *_stable_node_dup if the returned tree_page is NULL.
1493 *
1494 * It can also free and overwrite *_stable_node with the found
1495 * stable_node_dup if the chain is collapsed (in which case
1496 * *_stable_node will be equal to *_stable_node_dup like if the chain
1497 * never existed). It's up to the caller to verify tree_page is not
1498 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1499 *
1500 * *_stable_node_dup is really a second output parameter of this
1501 * function and will be overwritten in all cases, the caller doesn't
1502 * need to initialize it.
1503 */
1504static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1505                                        struct stable_node **_stable_node,
1506                                        struct rb_root *root,
1507                                        bool prune_stale_stable_nodes)
1508{
1509        struct stable_node *stable_node = *_stable_node;
1510        if (!is_stable_node_chain(stable_node)) {
1511                if (is_page_sharing_candidate(stable_node)) {
1512                        *_stable_node_dup = stable_node;
1513                        return get_ksm_page(stable_node, false);
1514                }
1515                /*
1516                 * _stable_node_dup set to NULL means the stable_node
1517                 * reached the ksm_max_page_sharing limit.
1518                 */
1519                *_stable_node_dup = NULL;
1520                return NULL;
1521        }
1522        return stable_node_dup(_stable_node_dup, _stable_node, root,
1523                               prune_stale_stable_nodes);
1524}
1525
1526static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1527                                                struct stable_node **s_n,
1528                                                struct rb_root *root)
1529{
1530        return __stable_node_chain(s_n_d, s_n, root, true);
1531}
1532
1533static __always_inline struct page *chain(struct stable_node **s_n_d,
1534                                          struct stable_node *s_n,
1535                                          struct rb_root *root)
1536{
1537        struct stable_node *old_stable_node = s_n;
1538        struct page *tree_page;
1539
1540        tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1541        /* not pruning dups so s_n cannot have changed */
1542        VM_BUG_ON(s_n != old_stable_node);
1543        return tree_page;
1544}
1545
1546/*
1547 * stable_tree_search - search for page inside the stable tree
1548 *
1549 * This function checks if there is a page inside the stable tree
1550 * with identical content to the page that we are scanning right now.
1551 *
1552 * This function returns the stable tree node of identical content if found,
1553 * NULL otherwise.
1554 */
1555static struct page *stable_tree_search(struct page *page)
1556{
1557        int nid;
1558        struct rb_root *root;
1559        struct rb_node **new;
1560        struct rb_node *parent;
1561        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1562        struct stable_node *page_node;
1563
1564        page_node = page_stable_node(page);
1565        if (page_node && page_node->head != &migrate_nodes) {
1566                /* ksm page forked */
1567                get_page(page);
1568                return page;
1569        }
1570
1571        nid = get_kpfn_nid(page_to_pfn(page));
1572        root = root_stable_tree + nid;
1573again:
1574        new = &root->rb_node;
1575        parent = NULL;
1576
1577        while (*new) {
1578                struct page *tree_page;
1579                int ret;
1580
1581                cond_resched();
1582                stable_node = rb_entry(*new, struct stable_node, node);
1583                stable_node_any = NULL;
1584                tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1585                /*
1586                 * NOTE: stable_node may have been freed by
1587                 * chain_prune() if the returned stable_node_dup is
1588                 * not NULL. stable_node_dup may have been inserted in
1589                 * the rbtree instead as a regular stable_node (in
1590                 * order to collapse the stable_node chain if a single
1591                 * stable_node dup was found in it). In such case the
1592                 * stable_node is overwritten by the calleee to point
1593                 * to the stable_node_dup that was collapsed in the
1594                 * stable rbtree and stable_node will be equal to
1595                 * stable_node_dup like if the chain never existed.
1596                 */
1597                if (!stable_node_dup) {
1598                        /*
1599                         * Either all stable_node dups were full in
1600                         * this stable_node chain, or this chain was
1601                         * empty and should be rb_erased.
1602                         */
1603                        stable_node_any = stable_node_dup_any(stable_node,
1604                                                              root);
1605                        if (!stable_node_any) {
1606                                /* rb_erase just run */
1607                                goto again;
1608                        }
1609                        /*
1610                         * Take any of the stable_node dups page of
1611                         * this stable_node chain to let the tree walk
1612                         * continue. All KSM pages belonging to the
1613                         * stable_node dups in a stable_node chain
1614                         * have the same content and they're
1615                         * wrprotected at all times. Any will work
1616                         * fine to continue the walk.
1617                         */
1618                        tree_page = get_ksm_page(stable_node_any, false);
1619                }
1620                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1621                if (!tree_page) {
1622                        /*
1623                         * If we walked over a stale stable_node,
1624                         * get_ksm_page() will call rb_erase() and it
1625                         * may rebalance the tree from under us. So
1626                         * restart the search from scratch. Returning
1627                         * NULL would be safe too, but we'd generate
1628                         * false negative insertions just because some
1629                         * stable_node was stale.
1630                         */
1631                        goto again;
1632                }
1633
1634                ret = memcmp_pages(page, tree_page);
1635                put_page(tree_page);
1636
1637                parent = *new;
1638                if (ret < 0)
1639                        new = &parent->rb_left;
1640                else if (ret > 0)
1641                        new = &parent->rb_right;
1642                else {
1643                        if (page_node) {
1644                                VM_BUG_ON(page_node->head != &migrate_nodes);
1645                                /*
1646                                 * Test if the migrated page should be merged
1647                                 * into a stable node dup. If the mapcount is
1648                                 * 1 we can migrate it with another KSM page
1649                                 * without adding it to the chain.
1650                                 */
1651                                if (page_mapcount(page) > 1)
1652                                        goto chain_append;
1653                        }
1654
1655                        if (!stable_node_dup) {
1656                                /*
1657                                 * If the stable_node is a chain and
1658                                 * we got a payload match in memcmp
1659                                 * but we cannot merge the scanned
1660                                 * page in any of the existing
1661                                 * stable_node dups because they're
1662                                 * all full, we need to wait the
1663                                 * scanned page to find itself a match
1664                                 * in the unstable tree to create a
1665                                 * brand new KSM page to add later to
1666                                 * the dups of this stable_node.
1667                                 */
1668                                return NULL;
1669                        }
1670
1671                        /*
1672                         * Lock and unlock the stable_node's page (which
1673                         * might already have been migrated) so that page
1674                         * migration is sure to notice its raised count.
1675                         * It would be more elegant to return stable_node
1676                         * than kpage, but that involves more changes.
1677                         */
1678                        tree_page = get_ksm_page(stable_node_dup, true);
1679                        if (unlikely(!tree_page))
1680                                /*
1681                                 * The tree may have been rebalanced,
1682                                 * so re-evaluate parent and new.
1683                                 */
1684                                goto again;
1685                        unlock_page(tree_page);
1686
1687                        if (get_kpfn_nid(stable_node_dup->kpfn) !=
1688                            NUMA(stable_node_dup->nid)) {
1689                                put_page(tree_page);
1690                                goto replace;
1691                        }
1692                        return tree_page;
1693                }
1694        }
1695
1696        if (!page_node)
1697                return NULL;
1698
1699        list_del(&page_node->list);
1700        DO_NUMA(page_node->nid = nid);
1701        rb_link_node(&page_node->node, parent, new);
1702        rb_insert_color(&page_node->node, root);
1703out:
1704        if (is_page_sharing_candidate(page_node)) {
1705                get_page(page);
1706                return page;
1707        } else
1708                return NULL;
1709
1710replace:
1711        /*
1712         * If stable_node was a chain and chain_prune collapsed it,
1713         * stable_node has been updated to be the new regular
1714         * stable_node. A collapse of the chain is indistinguishable
1715         * from the case there was no chain in the stable
1716         * rbtree. Otherwise stable_node is the chain and
1717         * stable_node_dup is the dup to replace.
1718         */
1719        if (stable_node_dup == stable_node) {
1720                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1721                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1722                /* there is no chain */
1723                if (page_node) {
1724                        VM_BUG_ON(page_node->head != &migrate_nodes);
1725                        list_del(&page_node->list);
1726                        DO_NUMA(page_node->nid = nid);
1727                        rb_replace_node(&stable_node_dup->node,
1728                                        &page_node->node,
1729                                        root);
1730                        if (is_page_sharing_candidate(page_node))
1731                                get_page(page);
1732                        else
1733                                page = NULL;
1734                } else {
1735                        rb_erase(&stable_node_dup->node, root);
1736                        page = NULL;
1737                }
1738        } else {
1739                VM_BUG_ON(!is_stable_node_chain(stable_node));
1740                __stable_node_dup_del(stable_node_dup);
1741                if (page_node) {
1742                        VM_BUG_ON(page_node->head != &migrate_nodes);
1743                        list_del(&page_node->list);
1744                        DO_NUMA(page_node->nid = nid);
1745                        stable_node_chain_add_dup(page_node, stable_node);
1746                        if (is_page_sharing_candidate(page_node))
1747                                get_page(page);
1748                        else
1749                                page = NULL;
1750                } else {
1751                        page = NULL;
1752                }
1753        }
1754        stable_node_dup->head = &migrate_nodes;
1755        list_add(&stable_node_dup->list, stable_node_dup->head);
1756        return page;
1757
1758chain_append:
1759        /* stable_node_dup could be null if it reached the limit */
1760        if (!stable_node_dup)
1761                stable_node_dup = stable_node_any;
1762        /*
1763         * If stable_node was a chain and chain_prune collapsed it,
1764         * stable_node has been updated to be the new regular
1765         * stable_node. A collapse of the chain is indistinguishable
1766         * from the case there was no chain in the stable
1767         * rbtree. Otherwise stable_node is the chain and
1768         * stable_node_dup is the dup to replace.
1769         */
1770        if (stable_node_dup == stable_node) {
1771                VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1772                VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1773                /* chain is missing so create it */
1774                stable_node = alloc_stable_node_chain(stable_node_dup,
1775                                                      root);
1776                if (!stable_node)
1777                        return NULL;
1778        }
1779        /*
1780         * Add this stable_node dup that was
1781         * migrated to the stable_node chain
1782         * of the current nid for this page
1783         * content.
1784         */
1785        VM_BUG_ON(!is_stable_node_chain(stable_node));
1786        VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1787        VM_BUG_ON(page_node->head != &migrate_nodes);
1788        list_del(&page_node->list);
1789        DO_NUMA(page_node->nid = nid);
1790        stable_node_chain_add_dup(page_node, stable_node);
1791        goto out;
1792}
1793
1794/*
1795 * stable_tree_insert - insert stable tree node pointing to new ksm page
1796 * into the stable tree.
1797 *
1798 * This function returns the stable tree node just allocated on success,
1799 * NULL otherwise.
1800 */
1801static struct stable_node *stable_tree_insert(struct page *kpage)
1802{
1803        int nid;
1804        unsigned long kpfn;
1805        struct rb_root *root;
1806        struct rb_node **new;
1807        struct rb_node *parent;
1808        struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1809        bool need_chain = false;
1810
1811        kpfn = page_to_pfn(kpage);
1812        nid = get_kpfn_nid(kpfn);
1813        root = root_stable_tree + nid;
1814again:
1815        parent = NULL;
1816        new = &root->rb_node;
1817
1818        while (*new) {
1819                struct page *tree_page;
1820                int ret;
1821
1822                cond_resched();
1823                stable_node = rb_entry(*new, struct stable_node, node);
1824                stable_node_any = NULL;
1825                tree_page = chain(&stable_node_dup, stable_node, root);
1826                if (!stable_node_dup) {
1827                        /*
1828                         * Either all stable_node dups were full in
1829                         * this stable_node chain, or this chain was
1830                         * empty and should be rb_erased.
1831                         */
1832                        stable_node_any = stable_node_dup_any(stable_node,
1833                                                              root);
1834                        if (!stable_node_any) {
1835                                /* rb_erase just run */
1836                                goto again;
1837                        }
1838                        /*
1839                         * Take any of the stable_node dups page of
1840                         * this stable_node chain to let the tree walk
1841                         * continue. All KSM pages belonging to the
1842                         * stable_node dups in a stable_node chain
1843                         * have the same content and they're
1844                         * wrprotected at all times. Any will work
1845                         * fine to continue the walk.
1846                         */
1847                        tree_page = get_ksm_page(stable_node_any, false);
1848                }
1849                VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1850                if (!tree_page) {
1851                        /*
1852                         * If we walked over a stale stable_node,
1853                         * get_ksm_page() will call rb_erase() and it
1854                         * may rebalance the tree from under us. So
1855                         * restart the search from scratch. Returning
1856                         * NULL would be safe too, but we'd generate
1857                         * false negative insertions just because some
1858                         * stable_node was stale.
1859                         */
1860                        goto again;
1861                }
1862
1863                ret = memcmp_pages(kpage, tree_page);
1864                put_page(tree_page);
1865
1866                parent = *new;
1867                if (ret < 0)
1868                        new = &parent->rb_left;
1869                else if (ret > 0)
1870                        new = &parent->rb_right;
1871                else {
1872                        need_chain = true;
1873                        break;
1874                }
1875        }
1876
1877        stable_node_dup = alloc_stable_node();
1878        if (!stable_node_dup)
1879                return NULL;
1880
1881        INIT_HLIST_HEAD(&stable_node_dup->hlist);
1882        stable_node_dup->kpfn = kpfn;
1883        set_page_stable_node(kpage, stable_node_dup);
1884        stable_node_dup->rmap_hlist_len = 0;
1885        DO_NUMA(stable_node_dup->nid = nid);
1886        if (!need_chain) {
1887                rb_link_node(&stable_node_dup->node, parent, new);
1888                rb_insert_color(&stable_node_dup->node, root);
1889        } else {
1890                if (!is_stable_node_chain(stable_node)) {
1891                        struct stable_node *orig = stable_node;
1892                        /* chain is missing so create it */
1893                        stable_node = alloc_stable_node_chain(orig, root);
1894                        if (!stable_node) {
1895                                free_stable_node(stable_node_dup);
1896                                return NULL;
1897                        }
1898                }
1899                stable_node_chain_add_dup(stable_node_dup, stable_node);
1900        }
1901
1902        return stable_node_dup;
1903}
1904
1905/*
1906 * unstable_tree_search_insert - search for identical page,
1907 * else insert rmap_item into the unstable tree.
1908 *
1909 * This function searches for a page in the unstable tree identical to the
1910 * page currently being scanned; and if no identical page is found in the
1911 * tree, we insert rmap_item as a new object into the unstable tree.
1912 *
1913 * This function returns pointer to rmap_item found to be identical
1914 * to the currently scanned page, NULL otherwise.
1915 *
1916 * This function does both searching and inserting, because they share
1917 * the same walking algorithm in an rbtree.
1918 */
1919static
1920struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1921                                              struct page *page,
1922                                              struct page **tree_pagep)
1923{
1924        struct rb_node **new;
1925        struct rb_root *root;
1926        struct rb_node *parent = NULL;
1927        int nid;
1928
1929        nid = get_kpfn_nid(page_to_pfn(page));
1930        root = root_unstable_tree + nid;
1931        new = &root->rb_node;
1932
1933        while (*new) {
1934                struct rmap_item *tree_rmap_item;
1935                struct page *tree_page;
1936                int ret;
1937
1938                cond_resched();
1939                tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1940                tree_page = get_mergeable_page(tree_rmap_item);
1941                if (!tree_page)
1942                        return NULL;
1943
1944                /*
1945                 * Don't substitute a ksm page for a forked page.
1946                 */
1947                if (page == tree_page) {
1948                        put_page(tree_page);
1949                        return NULL;
1950                }
1951
1952                ret = memcmp_pages(page, tree_page);
1953
1954                parent = *new;
1955                if (ret < 0) {
1956                        put_page(tree_page);
1957                        new = &parent->rb_left;
1958                } else if (ret > 0) {
1959                        put_page(tree_page);
1960                        new = &parent->rb_right;
1961                } else if (!ksm_merge_across_nodes &&
1962                           page_to_nid(tree_page) != nid) {
1963                        /*
1964                         * If tree_page has been migrated to another NUMA node,
1965                         * it will be flushed out and put in the right unstable
1966                         * tree next time: only merge with it when across_nodes.
1967                         */
1968                        put_page(tree_page);
1969                        return NULL;
1970                } else {
1971                        *tree_pagep = tree_page;
1972                        return tree_rmap_item;
1973                }
1974        }
1975
1976        rmap_item->address |= UNSTABLE_FLAG;
1977        rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1978        DO_NUMA(rmap_item->nid = nid);
1979        rb_link_node(&rmap_item->node, parent, new);
1980        rb_insert_color(&rmap_item->node, root);
1981
1982        ksm_pages_unshared++;
1983        return NULL;
1984}
1985
1986/*
1987 * stable_tree_append - add another rmap_item to the linked list of
1988 * rmap_items hanging off a given node of the stable tree, all sharing
1989 * the same ksm page.
1990 */
1991static void stable_tree_append(struct rmap_item *rmap_item,
1992                               struct stable_node *stable_node,
1993                               bool max_page_sharing_bypass)
1994{
1995        /*
1996         * rmap won't find this mapping if we don't insert the
1997         * rmap_item in the right stable_node
1998         * duplicate. page_migration could break later if rmap breaks,
1999         * so we can as well crash here. We really need to check for
2000         * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2001         * for other negative values as an undeflow if detected here
2002         * for the first time (and not when decreasing rmap_hlist_len)
2003         * would be sign of memory corruption in the stable_node.
2004         */
2005        BUG_ON(stable_node->rmap_hlist_len < 0);
2006
2007        stable_node->rmap_hlist_len++;
2008        if (!max_page_sharing_bypass)
2009                /* possibly non fatal but unexpected overflow, only warn */
2010                WARN_ON_ONCE(stable_node->rmap_hlist_len >
2011                             ksm_max_page_sharing);
2012
2013        rmap_item->head = stable_node;
2014        rmap_item->address |= STABLE_FLAG;
2015        hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2016
2017        if (rmap_item->hlist.next)
2018                ksm_pages_sharing++;
2019        else
2020                ksm_pages_shared++;
2021}
2022
2023/*
2024 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2025 * if not, compare checksum to previous and if it's the same, see if page can
2026 * be inserted into the unstable tree, or merged with a page already there and
2027 * both transferred to the stable tree.
2028 *
2029 * @page: the page that we are searching identical page to.
2030 * @rmap_item: the reverse mapping into the virtual address of this page
2031 */
2032static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2033{
2034        struct mm_struct *mm = rmap_item->mm;
2035        struct rmap_item *tree_rmap_item;
2036        struct page *tree_page = NULL;
2037        struct stable_node *stable_node;
2038        struct page *kpage;
2039        unsigned int checksum;
2040        int err;
2041        bool max_page_sharing_bypass = false;
2042
2043        stable_node = page_stable_node(page);
2044        if (stable_node) {
2045                if (stable_node->head != &migrate_nodes &&
2046                    get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2047                    NUMA(stable_node->nid)) {
2048                        stable_node_dup_del(stable_node);
2049                        stable_node->head = &migrate_nodes;
2050                        list_add(&stable_node->list, stable_node->head);
2051                }
2052                if (stable_node->head != &migrate_nodes &&
2053                    rmap_item->head == stable_node)
2054                        return;
2055                /*
2056                 * If it's a KSM fork, allow it to go over the sharing limit
2057                 * without warnings.
2058                 */
2059                if (!is_page_sharing_candidate(stable_node))
2060                        max_page_sharing_bypass = true;
2061        }
2062
2063        /* We first start with searching the page inside the stable tree */
2064        kpage = stable_tree_search(page);
2065        if (kpage == page && rmap_item->head == stable_node) {
2066                put_page(kpage);
2067                return;
2068        }
2069
2070        remove_rmap_item_from_tree(rmap_item);
2071
2072        if (kpage) {
2073                err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2074                if (!err) {
2075                        /*
2076                         * The page was successfully merged:
2077                         * add its rmap_item to the stable tree.
2078                         */
2079                        lock_page(kpage);
2080                        stable_tree_append(rmap_item, page_stable_node(kpage),
2081                                           max_page_sharing_bypass);
2082                        unlock_page(kpage);
2083                }
2084                put_page(kpage);
2085                return;
2086        }
2087
2088        /*
2089         * If the hash value of the page has changed from the last time
2090         * we calculated it, this page is changing frequently: therefore we
2091         * don't want to insert it in the unstable tree, and we don't want
2092         * to waste our time searching for something identical to it there.
2093         */
2094        checksum = calc_checksum(page);
2095        if (rmap_item->oldchecksum != checksum) {
2096                rmap_item->oldchecksum = checksum;
2097                return;
2098        }
2099
2100        /*
2101         * Same checksum as an empty page. We attempt to merge it with the
2102         * appropriate zero page if the user enabled this via sysfs.
2103         */
2104        if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105                struct vm_area_struct *vma;
2106
2107                down_read(&mm->mmap_sem);
2108                vma = find_mergeable_vma(mm, rmap_item->address);
2109                err = try_to_merge_one_page(vma, page,
2110                                            ZERO_PAGE(rmap_item->address));
2111                up_read(&mm->mmap_sem);
2112                /*
2113                 * In case of failure, the page was not really empty, so we
2114                 * need to continue. Otherwise we're done.
2115                 */
2116                if (!err)
2117                        return;
2118        }
2119        tree_rmap_item =
2120                unstable_tree_search_insert(rmap_item, page, &tree_page);
2121        if (tree_rmap_item) {
2122                bool split;
2123
2124                kpage = try_to_merge_two_pages(rmap_item, page,
2125                                                tree_rmap_item, tree_page);
2126                /*
2127                 * If both pages we tried to merge belong to the same compound
2128                 * page, then we actually ended up increasing the reference
2129                 * count of the same compound page twice, and split_huge_page
2130                 * failed.
2131                 * Here we set a flag if that happened, and we use it later to
2132                 * try split_huge_page again. Since we call put_page right
2133                 * afterwards, the reference count will be correct and
2134                 * split_huge_page should succeed.
2135                 */
2136                split = PageTransCompound(page)
2137                        && compound_head(page) == compound_head(tree_page);
2138                put_page(tree_page);
2139                if (kpage) {
2140                        /*
2141                         * The pages were successfully merged: insert new
2142                         * node in the stable tree and add both rmap_items.
2143                         */
2144                        lock_page(kpage);
2145                        stable_node = stable_tree_insert(kpage);
2146                        if (stable_node) {
2147                                stable_tree_append(tree_rmap_item, stable_node,
2148                                                   false);
2149                                stable_tree_append(rmap_item, stable_node,
2150                                                   false);
2151                        }
2152                        unlock_page(kpage);
2153
2154                        /*
2155                         * If we fail to insert the page into the stable tree,
2156                         * we will have 2 virtual addresses that are pointing
2157                         * to a ksm page left outside the stable tree,
2158                         * in which case we need to break_cow on both.
2159                         */
2160                        if (!stable_node) {
2161                                break_cow(tree_rmap_item);
2162                                break_cow(rmap_item);
2163                        }
2164                } else if (split) {
2165                        /*
2166                         * We are here if we tried to merge two pages and
2167                         * failed because they both belonged to the same
2168                         * compound page. We will split the page now, but no
2169                         * merging will take place.
2170                         * We do not want to add the cost of a full lock; if
2171                         * the page is locked, it is better to skip it and
2172                         * perhaps try again later.
2173                         */
2174                        if (!trylock_page(page))
2175                                return;
2176                        split_huge_page(page);
2177                        unlock_page(page);
2178                }
2179        }
2180}
2181
2182static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2183                                            struct rmap_item **rmap_list,
2184                                            unsigned long addr)
2185{
2186        struct rmap_item *rmap_item;
2187
2188        while (*rmap_list) {
2189                rmap_item = *rmap_list;
2190                if ((rmap_item->address & PAGE_MASK) == addr)
2191                        return rmap_item;
2192                if (rmap_item->address > addr)
2193                        break;
2194                *rmap_list = rmap_item->rmap_list;
2195                remove_rmap_item_from_tree(rmap_item);
2196                free_rmap_item(rmap_item);
2197        }
2198
2199        rmap_item = alloc_rmap_item();
2200        if (rmap_item) {
2201                /* It has already been zeroed */
2202                rmap_item->mm = mm_slot->mm;
2203                rmap_item->address = addr;
2204                rmap_item->rmap_list = *rmap_list;
2205                *rmap_list = rmap_item;
2206        }
2207        return rmap_item;
2208}
2209
2210static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2211{
2212        struct mm_struct *mm;
2213        struct mm_slot *slot;
2214        struct vm_area_struct *vma;
2215        struct rmap_item *rmap_item;
2216        int nid;
2217
2218        if (list_empty(&ksm_mm_head.mm_list))
2219                return NULL;
2220
2221        slot = ksm_scan.mm_slot;
2222        if (slot == &ksm_mm_head) {
2223                /*
2224                 * A number of pages can hang around indefinitely on per-cpu
2225                 * pagevecs, raised page count preventing write_protect_page
2226                 * from merging them.  Though it doesn't really matter much,
2227                 * it is puzzling to see some stuck in pages_volatile until
2228                 * other activity jostles them out, and they also prevented
2229                 * LTP's KSM test from succeeding deterministically; so drain
2230                 * them here (here rather than on entry to ksm_do_scan(),
2231                 * so we don't IPI too often when pages_to_scan is set low).
2232                 */
2233                lru_add_drain_all();
2234
2235                /*
2236                 * Whereas stale stable_nodes on the stable_tree itself
2237                 * get pruned in the regular course of stable_tree_search(),
2238                 * those moved out to the migrate_nodes list can accumulate:
2239                 * so prune them once before each full scan.
2240                 */
2241                if (!ksm_merge_across_nodes) {
2242                        struct stable_node *stable_node, *next;
2243                        struct page *page;
2244
2245                        list_for_each_entry_safe(stable_node, next,
2246                                                 &migrate_nodes, list) {
2247                                page = get_ksm_page(stable_node, false);
2248                                if (page)
2249                                        put_page(page);
2250                                cond_resched();
2251                        }
2252                }
2253
2254                for (nid = 0; nid < ksm_nr_node_ids; nid++)
2255                        root_unstable_tree[nid] = RB_ROOT;
2256
2257                spin_lock(&ksm_mmlist_lock);
2258                slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2259                ksm_scan.mm_slot = slot;
2260                spin_unlock(&ksm_mmlist_lock);
2261                /*
2262                 * Although we tested list_empty() above, a racing __ksm_exit
2263                 * of the last mm on the list may have removed it since then.
2264                 */
2265                if (slot == &ksm_mm_head)
2266                        return NULL;
2267next_mm:
2268                ksm_scan.address = 0;
2269                ksm_scan.rmap_list = &slot->rmap_list;
2270        }
2271
2272        mm = slot->mm;
2273        down_read(&mm->mmap_sem);
2274        if (ksm_test_exit(mm))
2275                vma = NULL;
2276        else
2277                vma = find_vma(mm, ksm_scan.address);
2278
2279        for (; vma; vma = vma->vm_next) {
2280                if (!(vma->vm_flags & VM_MERGEABLE))
2281                        continue;
2282                if (ksm_scan.address < vma->vm_start)
2283                        ksm_scan.address = vma->vm_start;
2284                if (!vma->anon_vma)
2285                        ksm_scan.address = vma->vm_end;
2286
2287                while (ksm_scan.address < vma->vm_end) {
2288                        if (ksm_test_exit(mm))
2289                                break;
2290                        *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2291                        if (IS_ERR_OR_NULL(*page)) {
2292                                ksm_scan.address += PAGE_SIZE;
2293                                cond_resched();
2294                                continue;
2295                        }
2296                        if (PageAnon(*page)) {
2297                                flush_anon_page(vma, *page, ksm_scan.address);
2298                                flush_dcache_page(*page);
2299                                rmap_item = get_next_rmap_item(slot,
2300                                        ksm_scan.rmap_list, ksm_scan.address);
2301                                if (rmap_item) {
2302                                        ksm_scan.rmap_list =
2303                                                        &rmap_item->rmap_list;
2304                                        ksm_scan.address += PAGE_SIZE;
2305                                } else
2306                                        put_page(*page);
2307                                up_read(&mm->mmap_sem);
2308                                return rmap_item;
2309                        }
2310                        put_page(*page);
2311                        ksm_scan.address += PAGE_SIZE;
2312                        cond_resched();
2313                }
2314        }
2315
2316        if (ksm_test_exit(mm)) {
2317                ksm_scan.address = 0;
2318                ksm_scan.rmap_list = &slot->rmap_list;
2319        }
2320        /*
2321         * Nuke all the rmap_items that are above this current rmap:
2322         * because there were no VM_MERGEABLE vmas with such addresses.
2323         */
2324        remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2325
2326        spin_lock(&ksm_mmlist_lock);
2327        ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2328                                                struct mm_slot, mm_list);
2329        if (ksm_scan.address == 0) {
2330                /*
2331                 * We've completed a full scan of all vmas, holding mmap_sem
2332                 * throughout, and found no VM_MERGEABLE: so do the same as
2333                 * __ksm_exit does to remove this mm from all our lists now.
2334                 * This applies either when cleaning up after __ksm_exit
2335                 * (but beware: we can reach here even before __ksm_exit),
2336                 * or when all VM_MERGEABLE areas have been unmapped (and
2337                 * mmap_sem then protects against race with MADV_MERGEABLE).
2338                 */
2339                hash_del(&slot->link);
2340                list_del(&slot->mm_list);
2341                spin_unlock(&ksm_mmlist_lock);
2342
2343                free_mm_slot(slot);
2344                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2345                up_read(&mm->mmap_sem);
2346                mmdrop(mm);
2347        } else {
2348                up_read(&mm->mmap_sem);
2349                /*
2350                 * up_read(&mm->mmap_sem) first because after
2351                 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2352                 * already have been freed under us by __ksm_exit()
2353                 * because the "mm_slot" is still hashed and
2354                 * ksm_scan.mm_slot doesn't point to it anymore.
2355                 */
2356                spin_unlock(&ksm_mmlist_lock);
2357        }
2358
2359        /* Repeat until we've completed scanning the whole list */
2360        slot = ksm_scan.mm_slot;
2361        if (slot != &ksm_mm_head)
2362                goto next_mm;
2363
2364        ksm_scan.seqnr++;
2365        return NULL;
2366}
2367
2368/**
2369 * ksm_do_scan  - the ksm scanner main worker function.
2370 * @scan_npages:  number of pages we want to scan before we return.
2371 */
2372static void ksm_do_scan(unsigned int scan_npages)
2373{
2374        struct rmap_item *rmap_item;
2375        struct page *uninitialized_var(page);
2376
2377        while (scan_npages-- && likely(!freezing(current))) {
2378                cond_resched();
2379                rmap_item = scan_get_next_rmap_item(&page);
2380                if (!rmap_item)
2381                        return;
2382                cmp_and_merge_page(page, rmap_item);
2383                put_page(page);
2384        }
2385}
2386
2387static int ksmd_should_run(void)
2388{
2389        return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2390}
2391
2392static int ksm_scan_thread(void *nothing)
2393{
2394        set_freezable();
2395        set_user_nice(current, 5);
2396
2397        while (!kthread_should_stop()) {
2398                mutex_lock(&ksm_thread_mutex);
2399                wait_while_offlining();
2400                if (ksmd_should_run())
2401                        ksm_do_scan(ksm_thread_pages_to_scan);
2402                mutex_unlock(&ksm_thread_mutex);
2403
2404                try_to_freeze();
2405
2406                if (ksmd_should_run()) {
2407                        schedule_timeout_interruptible(
2408                                msecs_to_jiffies(ksm_thread_sleep_millisecs));
2409                } else {
2410                        wait_event_freezable(ksm_thread_wait,
2411                                ksmd_should_run() || kthread_should_stop());
2412                }
2413        }
2414        return 0;
2415}
2416
2417int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2418                unsigned long end, int advice, unsigned long *vm_flags)
2419{
2420        struct mm_struct *mm = vma->vm_mm;
2421        int err;
2422
2423        switch (advice) {
2424        case MADV_MERGEABLE:
2425                /*
2426                 * Be somewhat over-protective for now!
2427                 */
2428                if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2429                                 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2430                                 VM_HUGETLB | VM_MIXEDMAP))
2431                        return 0;               /* just ignore the advice */
2432
2433                if (vma_is_dax(vma))
2434                        return 0;
2435
2436#ifdef VM_SAO
2437                if (*vm_flags & VM_SAO)
2438                        return 0;
2439#endif
2440#ifdef VM_SPARC_ADI
2441                if (*vm_flags & VM_SPARC_ADI)
2442                        return 0;
2443#endif
2444
2445                if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2446                        err = __ksm_enter(mm);
2447                        if (err)
2448                                return err;
2449                }
2450
2451                *vm_flags |= VM_MERGEABLE;
2452                break;
2453
2454        case MADV_UNMERGEABLE:
2455                if (!(*vm_flags & VM_MERGEABLE))
2456                        return 0;               /* just ignore the advice */
2457
2458                if (vma->anon_vma) {
2459                        err = unmerge_ksm_pages(vma, start, end);
2460                        if (err)
2461                                return err;
2462                }
2463
2464                *vm_flags &= ~VM_MERGEABLE;
2465                break;
2466        }
2467
2468        return 0;
2469}
2470
2471int __ksm_enter(struct mm_struct *mm)
2472{
2473        struct mm_slot *mm_slot;
2474        int needs_wakeup;
2475
2476        mm_slot = alloc_mm_slot();
2477        if (!mm_slot)
2478                return -ENOMEM;
2479
2480        /* Check ksm_run too?  Would need tighter locking */
2481        needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2482
2483        spin_lock(&ksm_mmlist_lock);
2484        insert_to_mm_slots_hash(mm, mm_slot);
2485        /*
2486         * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2487         * insert just behind the scanning cursor, to let the area settle
2488         * down a little; when fork is followed by immediate exec, we don't
2489         * want ksmd to waste time setting up and tearing down an rmap_list.
2490         *
2491         * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2492         * scanning cursor, otherwise KSM pages in newly forked mms will be
2493         * missed: then we might as well insert at the end of the list.
2494         */
2495        if (ksm_run & KSM_RUN_UNMERGE)
2496                list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2497        else
2498                list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2499        spin_unlock(&ksm_mmlist_lock);
2500
2501        set_bit(MMF_VM_MERGEABLE, &mm->flags);
2502        mmgrab(mm);
2503
2504        if (needs_wakeup)
2505                wake_up_interruptible(&ksm_thread_wait);
2506
2507        return 0;
2508}
2509
2510void __ksm_exit(struct mm_struct *mm)
2511{
2512        struct mm_slot *mm_slot;
2513        int easy_to_free = 0;
2514
2515        /*
2516         * This process is exiting: if it's straightforward (as is the
2517         * case when ksmd was never running), free mm_slot immediately.
2518         * But if it's at the cursor or has rmap_items linked to it, use
2519         * mmap_sem to synchronize with any break_cows before pagetables
2520         * are freed, and leave the mm_slot on the list for ksmd to free.
2521         * Beware: ksm may already have noticed it exiting and freed the slot.
2522         */
2523
2524        spin_lock(&ksm_mmlist_lock);
2525        mm_slot = get_mm_slot(mm);
2526        if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2527                if (!mm_slot->rmap_list) {
2528                        hash_del(&mm_slot->link);
2529                        list_del(&mm_slot->mm_list);
2530                        easy_to_free = 1;
2531                } else {
2532                        list_move(&mm_slot->mm_list,
2533                                  &ksm_scan.mm_slot->mm_list);
2534                }
2535        }
2536        spin_unlock(&ksm_mmlist_lock);
2537
2538        if (easy_to_free) {
2539                free_mm_slot(mm_slot);
2540                clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2541                mmdrop(mm);
2542        } else if (mm_slot) {
2543                down_write(&mm->mmap_sem);
2544                up_write(&mm->mmap_sem);
2545        }
2546}
2547
2548struct page *ksm_might_need_to_copy(struct page *page,
2549                        struct vm_area_struct *vma, unsigned long address)
2550{
2551        struct anon_vma *anon_vma = page_anon_vma(page);
2552        struct page *new_page;
2553
2554        if (PageKsm(page)) {
2555                if (page_stable_node(page) &&
2556                    !(ksm_run & KSM_RUN_UNMERGE))
2557                        return page;    /* no need to copy it */
2558        } else if (!anon_vma) {
2559                return page;            /* no need to copy it */
2560        } else if (anon_vma->root == vma->anon_vma->root &&
2561                 page->index == linear_page_index(vma, address)) {
2562                return page;            /* still no need to copy it */
2563        }
2564        if (!PageUptodate(page))
2565                return page;            /* let do_swap_page report the error */
2566
2567        new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2568        if (new_page) {
2569                copy_user_highpage(new_page, page, address, vma);
2570
2571                SetPageDirty(new_page);
2572                __SetPageUptodate(new_page);
2573                __SetPageLocked(new_page);
2574        }
2575
2576        return new_page;
2577}
2578
2579void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2580{
2581        struct stable_node *stable_node;
2582        struct rmap_item *rmap_item;
2583        int search_new_forks = 0;
2584
2585        VM_BUG_ON_PAGE(!PageKsm(page), page);
2586
2587        /*
2588         * Rely on the page lock to protect against concurrent modifications
2589         * to that page's node of the stable tree.
2590         */
2591        VM_BUG_ON_PAGE(!PageLocked(page), page);
2592
2593        stable_node = page_stable_node(page);
2594        if (!stable_node)
2595                return;
2596again:
2597        hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2598                struct anon_vma *anon_vma = rmap_item->anon_vma;
2599                struct anon_vma_chain *vmac;
2600                struct vm_area_struct *vma;
2601
2602                cond_resched();
2603                anon_vma_lock_read(anon_vma);
2604                anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2605                                               0, ULONG_MAX) {
2606                        unsigned long addr;
2607
2608                        cond_resched();
2609                        vma = vmac->vma;
2610
2611                        /* Ignore the stable/unstable/sqnr flags */
2612                        addr = rmap_item->address & ~KSM_FLAG_MASK;
2613
2614                        if (addr < vma->vm_start || addr >= vma->vm_end)
2615                                continue;
2616                        /*
2617                         * Initially we examine only the vma which covers this
2618                         * rmap_item; but later, if there is still work to do,
2619                         * we examine covering vmas in other mms: in case they
2620                         * were forked from the original since ksmd passed.
2621                         */
2622                        if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2623                                continue;
2624
2625                        if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2626                                continue;
2627
2628                        if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2629                                anon_vma_unlock_read(anon_vma);
2630                                return;
2631                        }
2632                        if (rwc->done && rwc->done(page)) {
2633                                anon_vma_unlock_read(anon_vma);
2634                                return;
2635                        }
2636                }
2637                anon_vma_unlock_read(anon_vma);
2638        }
2639        if (!search_new_forks++)
2640                goto again;
2641}
2642
2643#ifdef CONFIG_MIGRATION
2644void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2645{
2646        struct stable_node *stable_node;
2647
2648        VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2649        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2650        VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2651
2652        stable_node = page_stable_node(newpage);
2653        if (stable_node) {
2654                VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2655                stable_node->kpfn = page_to_pfn(newpage);
2656                /*
2657                 * newpage->mapping was set in advance; now we need smp_wmb()
2658                 * to make sure that the new stable_node->kpfn is visible
2659                 * to get_ksm_page() before it can see that oldpage->mapping
2660                 * has gone stale (or that PageSwapCache has been cleared).
2661                 */
2662                smp_wmb();
2663                set_page_stable_node(oldpage, NULL);
2664        }
2665}
2666#endif /* CONFIG_MIGRATION */
2667
2668#ifdef CONFIG_MEMORY_HOTREMOVE
2669static void wait_while_offlining(void)
2670{
2671        while (ksm_run & KSM_RUN_OFFLINE) {
2672                mutex_unlock(&ksm_thread_mutex);
2673                wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2674                            TASK_UNINTERRUPTIBLE);
2675                mutex_lock(&ksm_thread_mutex);
2676        }
2677}
2678
2679static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2680                                         unsigned long start_pfn,
2681                                         unsigned long end_pfn)
2682{
2683        if (stable_node->kpfn >= start_pfn &&
2684            stable_node->kpfn < end_pfn) {
2685                /*
2686                 * Don't get_ksm_page, page has already gone:
2687                 * which is why we keep kpfn instead of page*
2688                 */
2689                remove_node_from_stable_tree(stable_node);
2690                return true;
2691        }
2692        return false;
2693}
2694
2695static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2696                                           unsigned long start_pfn,
2697                                           unsigned long end_pfn,
2698                                           struct rb_root *root)
2699{
2700        struct stable_node *dup;
2701        struct hlist_node *hlist_safe;
2702
2703        if (!is_stable_node_chain(stable_node)) {
2704                VM_BUG_ON(is_stable_node_dup(stable_node));
2705                return stable_node_dup_remove_range(stable_node, start_pfn,
2706                                                    end_pfn);
2707        }
2708
2709        hlist_for_each_entry_safe(dup, hlist_safe,
2710                                  &stable_node->hlist, hlist_dup) {
2711                VM_BUG_ON(!is_stable_node_dup(dup));
2712                stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2713        }
2714        if (hlist_empty(&stable_node->hlist)) {
2715                free_stable_node_chain(stable_node, root);
2716                return true; /* notify caller that tree was rebalanced */
2717        } else
2718                return false;
2719}
2720
2721static void ksm_check_stable_tree(unsigned long start_pfn,
2722                                  unsigned long end_pfn)
2723{
2724        struct stable_node *stable_node, *next;
2725        struct rb_node *node;
2726        int nid;
2727
2728        for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2729                node = rb_first(root_stable_tree + nid);
2730                while (node) {
2731                        stable_node = rb_entry(node, struct stable_node, node);
2732                        if (stable_node_chain_remove_range(stable_node,
2733                                                           start_pfn, end_pfn,
2734                                                           root_stable_tree +
2735                                                           nid))
2736                                node = rb_first(root_stable_tree + nid);
2737                        else
2738                                node = rb_next(node);
2739                        cond_resched();
2740                }
2741        }
2742        list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2743                if (stable_node->kpfn >= start_pfn &&
2744                    stable_node->kpfn < end_pfn)
2745                        remove_node_from_stable_tree(stable_node);
2746                cond_resched();
2747        }
2748}
2749
2750static int ksm_memory_callback(struct notifier_block *self,
2751                               unsigned long action, void *arg)
2752{
2753        struct memory_notify *mn = arg;
2754
2755        switch (action) {
2756        case MEM_GOING_OFFLINE:
2757                /*
2758                 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2759                 * and remove_all_stable_nodes() while memory is going offline:
2760                 * it is unsafe for them to touch the stable tree at this time.
2761                 * But unmerge_ksm_pages(), rmap lookups and other entry points
2762                 * which do not need the ksm_thread_mutex are all safe.
2763                 */
2764                mutex_lock(&ksm_thread_mutex);
2765                ksm_run |= KSM_RUN_OFFLINE;
2766                mutex_unlock(&ksm_thread_mutex);
2767                break;
2768
2769        case MEM_OFFLINE:
2770                /*
2771                 * Most of the work is done by page migration; but there might
2772                 * be a few stable_nodes left over, still pointing to struct
2773                 * pages which have been offlined: prune those from the tree,
2774                 * otherwise get_ksm_page() might later try to access a
2775                 * non-existent struct page.
2776                 */
2777                ksm_check_stable_tree(mn->start_pfn,
2778                                      mn->start_pfn + mn->nr_pages);
2779                /* fallthrough */
2780
2781        case MEM_CANCEL_OFFLINE:
2782                mutex_lock(&ksm_thread_mutex);
2783                ksm_run &= ~KSM_RUN_OFFLINE;
2784                mutex_unlock(&ksm_thread_mutex);
2785
2786                smp_mb();       /* wake_up_bit advises this */
2787                wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2788                break;
2789        }
2790        return NOTIFY_OK;
2791}
2792#else
2793static void wait_while_offlining(void)
2794{
2795}
2796#endif /* CONFIG_MEMORY_HOTREMOVE */
2797
2798#ifdef CONFIG_SYSFS
2799/*
2800 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2801 */
2802
2803#define KSM_ATTR_RO(_name) \
2804        static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2805#define KSM_ATTR(_name) \
2806        static struct kobj_attribute _name##_attr = \
2807                __ATTR(_name, 0644, _name##_show, _name##_store)
2808
2809static ssize_t sleep_millisecs_show(struct kobject *kobj,
2810                                    struct kobj_attribute *attr, char *buf)
2811{
2812        return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2813}
2814
2815static ssize_t sleep_millisecs_store(struct kobject *kobj,
2816                                     struct kobj_attribute *attr,
2817                                     const char *buf, size_t count)
2818{
2819        unsigned long msecs;
2820        int err;
2821
2822        err = kstrtoul(buf, 10, &msecs);
2823        if (err || msecs > UINT_MAX)
2824                return -EINVAL;
2825
2826        ksm_thread_sleep_millisecs = msecs;
2827
2828        return count;
2829}
2830KSM_ATTR(sleep_millisecs);
2831
2832static ssize_t pages_to_scan_show(struct kobject *kobj,
2833                                  struct kobj_attribute *attr, char *buf)
2834{
2835        return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2836}
2837
2838static ssize_t pages_to_scan_store(struct kobject *kobj,
2839                                   struct kobj_attribute *attr,
2840                                   const char *buf, size_t count)
2841{
2842        int err;
2843        unsigned long nr_pages;
2844
2845        err = kstrtoul(buf, 10, &nr_pages);
2846        if (err || nr_pages > UINT_MAX)
2847                return -EINVAL;
2848
2849        ksm_thread_pages_to_scan = nr_pages;
2850
2851        return count;
2852}
2853KSM_ATTR(pages_to_scan);
2854
2855static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2856                        char *buf)
2857{
2858        return sprintf(buf, "%lu\n", ksm_run);
2859}
2860
2861static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2862                         const char *buf, size_t count)
2863{
2864        int err;
2865        unsigned long flags;
2866
2867        err = kstrtoul(buf, 10, &flags);
2868        if (err || flags > UINT_MAX)
2869                return -EINVAL;
2870        if (flags > KSM_RUN_UNMERGE)
2871                return -EINVAL;
2872
2873        /*
2874         * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2875         * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2876         * breaking COW to free the pages_shared (but leaves mm_slots
2877         * on the list for when ksmd may be set running again).
2878         */
2879
2880        mutex_lock(&ksm_thread_mutex);
2881        wait_while_offlining();
2882        if (ksm_run != flags) {
2883                ksm_run = flags;
2884                if (flags & KSM_RUN_UNMERGE) {
2885                        set_current_oom_origin();
2886                        err = unmerge_and_remove_all_rmap_items();
2887                        clear_current_oom_origin();
2888                        if (err) {
2889                                ksm_run = KSM_RUN_STOP;
2890                                count = err;
2891                        }
2892                }
2893        }
2894        mutex_unlock(&ksm_thread_mutex);
2895
2896        if (flags & KSM_RUN_MERGE)
2897                wake_up_interruptible(&ksm_thread_wait);
2898
2899        return count;
2900}
2901KSM_ATTR(run);
2902
2903#ifdef CONFIG_NUMA
2904static ssize_t merge_across_nodes_show(struct kobject *kobj,
2905                                struct kobj_attribute *attr, char *buf)
2906{
2907        return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2908}
2909
2910static ssize_t merge_across_nodes_store(struct kobject *kobj,
2911                                   struct kobj_attribute *attr,
2912                                   const char *buf, size_t count)
2913{
2914        int err;
2915        unsigned long knob;
2916
2917        err = kstrtoul(buf, 10, &knob);
2918        if (err)
2919                return err;
2920        if (knob > 1)
2921                return -EINVAL;
2922
2923        mutex_lock(&ksm_thread_mutex);
2924        wait_while_offlining();
2925        if (ksm_merge_across_nodes != knob) {
2926                if (ksm_pages_shared || remove_all_stable_nodes())
2927                        err = -EBUSY;
2928                else if (root_stable_tree == one_stable_tree) {
2929                        struct rb_root *buf;
2930                        /*
2931                         * This is the first time that we switch away from the
2932                         * default of merging across nodes: must now allocate
2933                         * a buffer to hold as many roots as may be needed.
2934                         * Allocate stable and unstable together:
2935                         * MAXSMP NODES_SHIFT 10 will use 16kB.
2936                         */
2937                        buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2938                                      GFP_KERNEL);
2939                        /* Let us assume that RB_ROOT is NULL is zero */
2940                        if (!buf)
2941                                err = -ENOMEM;
2942                        else {
2943                                root_stable_tree = buf;
2944                                root_unstable_tree = buf + nr_node_ids;
2945                                /* Stable tree is empty but not the unstable */
2946                                root_unstable_tree[0] = one_unstable_tree[0];
2947                        }
2948                }
2949                if (!err) {
2950                        ksm_merge_across_nodes = knob;
2951                        ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2952                }
2953        }
2954        mutex_unlock(&ksm_thread_mutex);
2955
2956        return err ? err : count;
2957}
2958KSM_ATTR(merge_across_nodes);
2959#endif
2960
2961static ssize_t use_zero_pages_show(struct kobject *kobj,
2962                                struct kobj_attribute *attr, char *buf)
2963{
2964        return sprintf(buf, "%u\n", ksm_use_zero_pages);
2965}
2966static ssize_t use_zero_pages_store(struct kobject *kobj,
2967                                   struct kobj_attribute *attr,
2968                                   const char *buf, size_t count)
2969{
2970        int err;
2971        bool value;
2972
2973        err = kstrtobool(buf, &value);
2974        if (err)
2975                return -EINVAL;
2976
2977        ksm_use_zero_pages = value;
2978
2979        return count;
2980}
2981KSM_ATTR(use_zero_pages);
2982
2983static ssize_t max_page_sharing_show(struct kobject *kobj,
2984                                     struct kobj_attribute *attr, char *buf)
2985{
2986        return sprintf(buf, "%u\n", ksm_max_page_sharing);
2987}
2988
2989static ssize_t max_page_sharing_store(struct kobject *kobj,
2990                                      struct kobj_attribute *attr,
2991                                      const char *buf, size_t count)
2992{
2993        int err;
2994        int knob;
2995
2996        err = kstrtoint(buf, 10, &knob);
2997        if (err)
2998                return err;
2999        /*
3000         * When a KSM page is created it is shared by 2 mappings. This
3001         * being a signed comparison, it implicitly verifies it's not
3002         * negative.
3003         */
3004        if (knob < 2)
3005                return -EINVAL;
3006
3007        if (READ_ONCE(ksm_max_page_sharing) == knob)
3008                return count;
3009
3010        mutex_lock(&ksm_thread_mutex);
3011        wait_while_offlining();
3012        if (ksm_max_page_sharing != knob) {
3013                if (ksm_pages_shared || remove_all_stable_nodes())
3014                        err = -EBUSY;
3015                else
3016                        ksm_max_page_sharing = knob;
3017        }
3018        mutex_unlock(&ksm_thread_mutex);
3019
3020        return err ? err : count;
3021}
3022KSM_ATTR(max_page_sharing);
3023
3024static ssize_t pages_shared_show(struct kobject *kobj,
3025                                 struct kobj_attribute *attr, char *buf)
3026{
3027        return sprintf(buf, "%lu\n", ksm_pages_shared);
3028}
3029KSM_ATTR_RO(pages_shared);
3030
3031static ssize_t pages_sharing_show(struct kobject *kobj,
3032                                  struct kobj_attribute *attr, char *buf)
3033{
3034        return sprintf(buf, "%lu\n", ksm_pages_sharing);
3035}
3036KSM_ATTR_RO(pages_sharing);
3037
3038static ssize_t pages_unshared_show(struct kobject *kobj,
3039                                   struct kobj_attribute *attr, char *buf)
3040{
3041        return sprintf(buf, "%lu\n", ksm_pages_unshared);
3042}
3043KSM_ATTR_RO(pages_unshared);
3044
3045static ssize_t pages_volatile_show(struct kobject *kobj,
3046                                   struct kobj_attribute *attr, char *buf)
3047{
3048        long ksm_pages_volatile;
3049
3050        ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3051                                - ksm_pages_sharing - ksm_pages_unshared;
3052        /*
3053         * It was not worth any locking to calculate that statistic,
3054         * but it might therefore sometimes be negative: conceal that.
3055         */
3056        if (ksm_pages_volatile < 0)
3057                ksm_pages_volatile = 0;
3058        return sprintf(buf, "%ld\n", ksm_pages_volatile);
3059}
3060KSM_ATTR_RO(pages_volatile);
3061
3062static ssize_t stable_node_dups_show(struct kobject *kobj,
3063                                     struct kobj_attribute *attr, char *buf)
3064{
3065        return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3066}
3067KSM_ATTR_RO(stable_node_dups);
3068
3069static ssize_t stable_node_chains_show(struct kobject *kobj,
3070                                       struct kobj_attribute *attr, char *buf)
3071{
3072        return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3073}
3074KSM_ATTR_RO(stable_node_chains);
3075
3076static ssize_t
3077stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3078                                        struct kobj_attribute *attr,
3079                                        char *buf)
3080{
3081        return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3082}
3083
3084static ssize_t
3085stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3086                                         struct kobj_attribute *attr,
3087                                         const char *buf, size_t count)
3088{
3089        unsigned long msecs;
3090        int err;
3091
3092        err = kstrtoul(buf, 10, &msecs);
3093        if (err || msecs > UINT_MAX)
3094                return -EINVAL;
3095
3096        ksm_stable_node_chains_prune_millisecs = msecs;
3097
3098        return count;
3099}
3100KSM_ATTR(stable_node_chains_prune_millisecs);
3101
3102static ssize_t full_scans_show(struct kobject *kobj,
3103                               struct kobj_attribute *attr, char *buf)
3104{
3105        return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3106}
3107KSM_ATTR_RO(full_scans);
3108
3109static struct attribute *ksm_attrs[] = {
3110        &sleep_millisecs_attr.attr,
3111        &pages_to_scan_attr.attr,
3112        &run_attr.attr,
3113        &pages_shared_attr.attr,
3114        &pages_sharing_attr.attr,
3115        &pages_unshared_attr.attr,
3116        &pages_volatile_attr.attr,
3117        &full_scans_attr.attr,
3118#ifdef CONFIG_NUMA
3119        &merge_across_nodes_attr.attr,
3120#endif
3121        &max_page_sharing_attr.attr,
3122        &stable_node_chains_attr.attr,
3123        &stable_node_dups_attr.attr,
3124        &stable_node_chains_prune_millisecs_attr.attr,
3125        &use_zero_pages_attr.attr,
3126        NULL,
3127};
3128
3129static const struct attribute_group ksm_attr_group = {
3130        .attrs = ksm_attrs,
3131        .name = "ksm",
3132};
3133#endif /* CONFIG_SYSFS */
3134
3135static int __init ksm_init(void)
3136{
3137        struct task_struct *ksm_thread;
3138        int err;
3139
3140        /* The correct value depends on page size and endianness */
3141        zero_checksum = calc_checksum(ZERO_PAGE(0));
3142        /* Default to false for backwards compatibility */
3143        ksm_use_zero_pages = false;
3144
3145        err = ksm_slab_init();
3146        if (err)
3147                goto out;
3148
3149        ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3150        if (IS_ERR(ksm_thread)) {
3151                pr_err("ksm: creating kthread failed\n");
3152                err = PTR_ERR(ksm_thread);
3153                goto out_free;
3154        }
3155
3156#ifdef CONFIG_SYSFS
3157        err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3158        if (err) {
3159                pr_err("ksm: register sysfs failed\n");
3160                kthread_stop(ksm_thread);
3161                goto out_free;
3162        }
3163#else
3164        ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3165
3166#endif /* CONFIG_SYSFS */
3167
3168#ifdef CONFIG_MEMORY_HOTREMOVE
3169        /* There is no significance to this priority 100 */
3170        hotplug_memory_notifier(ksm_memory_callback, 100);
3171#endif
3172        return 0;
3173
3174out_free:
3175        ksm_slab_free();
3176out:
3177        return err;
3178}
3179subsys_initcall(ksm_init);
3180