linux/mm/memblock.c
<<
>>
Prefs
   1/*
   2 * Procedures for maintaining information about logical memory blocks.
   3 *
   4 * Peter Bergner, IBM Corp.     June 2001.
   5 * Copyright (C) 2001 Peter Bergner.
   6 *
   7 *      This program is free software; you can redistribute it and/or
   8 *      modify it under the terms of the GNU General Public License
   9 *      as published by the Free Software Foundation; either version
  10 *      2 of the License, or (at your option) any later version.
  11 */
  12
  13#include <linux/kernel.h>
  14#include <linux/slab.h>
  15#include <linux/init.h>
  16#include <linux/bitops.h>
  17#include <linux/poison.h>
  18#include <linux/pfn.h>
  19#include <linux/debugfs.h>
  20#include <linux/kmemleak.h>
  21#include <linux/seq_file.h>
  22#include <linux/memblock.h>
  23#include <linux/bootmem.h>
  24
  25#include <asm/sections.h>
  26#include <linux/io.h>
  27
  28#include "internal.h"
  29
  30/**
  31 * DOC: memblock overview
  32 *
  33 * Memblock is a method of managing memory regions during the early
  34 * boot period when the usual kernel memory allocators are not up and
  35 * running.
  36 *
  37 * Memblock views the system memory as collections of contiguous
  38 * regions. There are several types of these collections:
  39 *
  40 * * ``memory`` - describes the physical memory available to the
  41 *   kernel; this may differ from the actual physical memory installed
  42 *   in the system, for instance when the memory is restricted with
  43 *   ``mem=`` command line parameter
  44 * * ``reserved`` - describes the regions that were allocated
  45 * * ``physmap`` - describes the actual physical memory regardless of
  46 *   the possible restrictions; the ``physmap`` type is only available
  47 *   on some architectures.
  48 *
  49 * Each region is represented by :c:type:`struct memblock_region` that
  50 * defines the region extents, its attributes and NUMA node id on NUMA
  51 * systems. Every memory type is described by the :c:type:`struct
  52 * memblock_type` which contains an array of memory regions along with
  53 * the allocator metadata. The memory types are nicely wrapped with
  54 * :c:type:`struct memblock`. This structure is statically initialzed
  55 * at build time. The region arrays for the "memory" and "reserved"
  56 * types are initially sized to %INIT_MEMBLOCK_REGIONS and for the
  57 * "physmap" type to %INIT_PHYSMEM_REGIONS.
  58 * The :c:func:`memblock_allow_resize` enables automatic resizing of
  59 * the region arrays during addition of new regions. This feature
  60 * should be used with care so that memory allocated for the region
  61 * array will not overlap with areas that should be reserved, for
  62 * example initrd.
  63 *
  64 * The early architecture setup should tell memblock what the physical
  65 * memory layout is by using :c:func:`memblock_add` or
  66 * :c:func:`memblock_add_node` functions. The first function does not
  67 * assign the region to a NUMA node and it is appropriate for UMA
  68 * systems. Yet, it is possible to use it on NUMA systems as well and
  69 * assign the region to a NUMA node later in the setup process using
  70 * :c:func:`memblock_set_node`. The :c:func:`memblock_add_node`
  71 * performs such an assignment directly.
  72 *
  73 * Once memblock is setup the memory can be allocated using either
  74 * memblock or bootmem APIs.
  75 *
  76 * As the system boot progresses, the architecture specific
  77 * :c:func:`mem_init` function frees all the memory to the buddy page
  78 * allocator.
  79 *
  80 * If an architecure enables %CONFIG_ARCH_DISCARD_MEMBLOCK, the
  81 * memblock data structures will be discarded after the system
  82 * initialization compltes.
  83 */
  84
  85static struct memblock_region memblock_memory_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  86static struct memblock_region memblock_reserved_init_regions[INIT_MEMBLOCK_REGIONS] __initdata_memblock;
  87#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
  88static struct memblock_region memblock_physmem_init_regions[INIT_PHYSMEM_REGIONS] __initdata_memblock;
  89#endif
  90
  91struct memblock memblock __initdata_memblock = {
  92        .memory.regions         = memblock_memory_init_regions,
  93        .memory.cnt             = 1,    /* empty dummy entry */
  94        .memory.max             = INIT_MEMBLOCK_REGIONS,
  95        .memory.name            = "memory",
  96
  97        .reserved.regions       = memblock_reserved_init_regions,
  98        .reserved.cnt           = 1,    /* empty dummy entry */
  99        .reserved.max           = INIT_MEMBLOCK_REGIONS,
 100        .reserved.name          = "reserved",
 101
 102#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
 103        .physmem.regions        = memblock_physmem_init_regions,
 104        .physmem.cnt            = 1,    /* empty dummy entry */
 105        .physmem.max            = INIT_PHYSMEM_REGIONS,
 106        .physmem.name           = "physmem",
 107#endif
 108
 109        .bottom_up              = false,
 110        .current_limit          = MEMBLOCK_ALLOC_ANYWHERE,
 111};
 112
 113int memblock_debug __initdata_memblock;
 114static bool system_has_some_mirror __initdata_memblock = false;
 115static int memblock_can_resize __initdata_memblock;
 116static int memblock_memory_in_slab __initdata_memblock = 0;
 117static int memblock_reserved_in_slab __initdata_memblock = 0;
 118
 119enum memblock_flags __init_memblock choose_memblock_flags(void)
 120{
 121        return system_has_some_mirror ? MEMBLOCK_MIRROR : MEMBLOCK_NONE;
 122}
 123
 124/* adjust *@size so that (@base + *@size) doesn't overflow, return new size */
 125static inline phys_addr_t memblock_cap_size(phys_addr_t base, phys_addr_t *size)
 126{
 127        return *size = min(*size, PHYS_ADDR_MAX - base);
 128}
 129
 130/*
 131 * Address comparison utilities
 132 */
 133static unsigned long __init_memblock memblock_addrs_overlap(phys_addr_t base1, phys_addr_t size1,
 134                                       phys_addr_t base2, phys_addr_t size2)
 135{
 136        return ((base1 < (base2 + size2)) && (base2 < (base1 + size1)));
 137}
 138
 139bool __init_memblock memblock_overlaps_region(struct memblock_type *type,
 140                                        phys_addr_t base, phys_addr_t size)
 141{
 142        unsigned long i;
 143
 144        for (i = 0; i < type->cnt; i++)
 145                if (memblock_addrs_overlap(base, size, type->regions[i].base,
 146                                           type->regions[i].size))
 147                        break;
 148        return i < type->cnt;
 149}
 150
 151/**
 152 * __memblock_find_range_bottom_up - find free area utility in bottom-up
 153 * @start: start of candidate range
 154 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 155 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 156 * @size: size of free area to find
 157 * @align: alignment of free area to find
 158 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 159 * @flags: pick from blocks based on memory attributes
 160 *
 161 * Utility called from memblock_find_in_range_node(), find free area bottom-up.
 162 *
 163 * Return:
 164 * Found address on success, 0 on failure.
 165 */
 166static phys_addr_t __init_memblock
 167__memblock_find_range_bottom_up(phys_addr_t start, phys_addr_t end,
 168                                phys_addr_t size, phys_addr_t align, int nid,
 169                                enum memblock_flags flags)
 170{
 171        phys_addr_t this_start, this_end, cand;
 172        u64 i;
 173
 174        for_each_free_mem_range(i, nid, flags, &this_start, &this_end, NULL) {
 175                this_start = clamp(this_start, start, end);
 176                this_end = clamp(this_end, start, end);
 177
 178                cand = round_up(this_start, align);
 179                if (cand < this_end && this_end - cand >= size)
 180                        return cand;
 181        }
 182
 183        return 0;
 184}
 185
 186/**
 187 * __memblock_find_range_top_down - find free area utility, in top-down
 188 * @start: start of candidate range
 189 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 190 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 191 * @size: size of free area to find
 192 * @align: alignment of free area to find
 193 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 194 * @flags: pick from blocks based on memory attributes
 195 *
 196 * Utility called from memblock_find_in_range_node(), find free area top-down.
 197 *
 198 * Return:
 199 * Found address on success, 0 on failure.
 200 */
 201static phys_addr_t __init_memblock
 202__memblock_find_range_top_down(phys_addr_t start, phys_addr_t end,
 203                               phys_addr_t size, phys_addr_t align, int nid,
 204                               enum memblock_flags flags)
 205{
 206        phys_addr_t this_start, this_end, cand;
 207        u64 i;
 208
 209        for_each_free_mem_range_reverse(i, nid, flags, &this_start, &this_end,
 210                                        NULL) {
 211                this_start = clamp(this_start, start, end);
 212                this_end = clamp(this_end, start, end);
 213
 214                if (this_end < size)
 215                        continue;
 216
 217                cand = round_down(this_end - size, align);
 218                if (cand >= this_start)
 219                        return cand;
 220        }
 221
 222        return 0;
 223}
 224
 225/**
 226 * memblock_find_in_range_node - find free area in given range and node
 227 * @size: size of free area to find
 228 * @align: alignment of free area to find
 229 * @start: start of candidate range
 230 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 231 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 232 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
 233 * @flags: pick from blocks based on memory attributes
 234 *
 235 * Find @size free area aligned to @align in the specified range and node.
 236 *
 237 * When allocation direction is bottom-up, the @start should be greater
 238 * than the end of the kernel image. Otherwise, it will be trimmed. The
 239 * reason is that we want the bottom-up allocation just near the kernel
 240 * image so it is highly likely that the allocated memory and the kernel
 241 * will reside in the same node.
 242 *
 243 * If bottom-up allocation failed, will try to allocate memory top-down.
 244 *
 245 * Return:
 246 * Found address on success, 0 on failure.
 247 */
 248phys_addr_t __init_memblock memblock_find_in_range_node(phys_addr_t size,
 249                                        phys_addr_t align, phys_addr_t start,
 250                                        phys_addr_t end, int nid,
 251                                        enum memblock_flags flags)
 252{
 253        phys_addr_t kernel_end, ret;
 254
 255        /* pump up @end */
 256        if (end == MEMBLOCK_ALLOC_ACCESSIBLE)
 257                end = memblock.current_limit;
 258
 259        /* avoid allocating the first page */
 260        start = max_t(phys_addr_t, start, PAGE_SIZE);
 261        end = max(start, end);
 262        kernel_end = __pa_symbol(_end);
 263
 264        /*
 265         * try bottom-up allocation only when bottom-up mode
 266         * is set and @end is above the kernel image.
 267         */
 268        if (memblock_bottom_up() && end > kernel_end) {
 269                phys_addr_t bottom_up_start;
 270
 271                /* make sure we will allocate above the kernel */
 272                bottom_up_start = max(start, kernel_end);
 273
 274                /* ok, try bottom-up allocation first */
 275                ret = __memblock_find_range_bottom_up(bottom_up_start, end,
 276                                                      size, align, nid, flags);
 277                if (ret)
 278                        return ret;
 279
 280                /*
 281                 * we always limit bottom-up allocation above the kernel,
 282                 * but top-down allocation doesn't have the limit, so
 283                 * retrying top-down allocation may succeed when bottom-up
 284                 * allocation failed.
 285                 *
 286                 * bottom-up allocation is expected to be fail very rarely,
 287                 * so we use WARN_ONCE() here to see the stack trace if
 288                 * fail happens.
 289                 */
 290                WARN_ONCE(IS_ENABLED(CONFIG_MEMORY_HOTREMOVE),
 291                          "memblock: bottom-up allocation failed, memory hotremove may be affected\n");
 292        }
 293
 294        return __memblock_find_range_top_down(start, end, size, align, nid,
 295                                              flags);
 296}
 297
 298/**
 299 * memblock_find_in_range - find free area in given range
 300 * @start: start of candidate range
 301 * @end: end of candidate range, can be %MEMBLOCK_ALLOC_ANYWHERE or
 302 *       %MEMBLOCK_ALLOC_ACCESSIBLE
 303 * @size: size of free area to find
 304 * @align: alignment of free area to find
 305 *
 306 * Find @size free area aligned to @align in the specified range.
 307 *
 308 * Return:
 309 * Found address on success, 0 on failure.
 310 */
 311phys_addr_t __init_memblock memblock_find_in_range(phys_addr_t start,
 312                                        phys_addr_t end, phys_addr_t size,
 313                                        phys_addr_t align)
 314{
 315        phys_addr_t ret;
 316        enum memblock_flags flags = choose_memblock_flags();
 317
 318again:
 319        ret = memblock_find_in_range_node(size, align, start, end,
 320                                            NUMA_NO_NODE, flags);
 321
 322        if (!ret && (flags & MEMBLOCK_MIRROR)) {
 323                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
 324                        &size);
 325                flags &= ~MEMBLOCK_MIRROR;
 326                goto again;
 327        }
 328
 329        return ret;
 330}
 331
 332static void __init_memblock memblock_remove_region(struct memblock_type *type, unsigned long r)
 333{
 334        type->total_size -= type->regions[r].size;
 335        memmove(&type->regions[r], &type->regions[r + 1],
 336                (type->cnt - (r + 1)) * sizeof(type->regions[r]));
 337        type->cnt--;
 338
 339        /* Special case for empty arrays */
 340        if (type->cnt == 0) {
 341                WARN_ON(type->total_size != 0);
 342                type->cnt = 1;
 343                type->regions[0].base = 0;
 344                type->regions[0].size = 0;
 345                type->regions[0].flags = 0;
 346                memblock_set_region_node(&type->regions[0], MAX_NUMNODES);
 347        }
 348}
 349
 350#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
 351/**
 352 * memblock_discard - discard memory and reserved arrays if they were allocated
 353 */
 354void __init memblock_discard(void)
 355{
 356        phys_addr_t addr, size;
 357
 358        if (memblock.reserved.regions != memblock_reserved_init_regions) {
 359                addr = __pa(memblock.reserved.regions);
 360                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 361                                  memblock.reserved.max);
 362                __memblock_free_late(addr, size);
 363        }
 364
 365        if (memblock.memory.regions != memblock_memory_init_regions) {
 366                addr = __pa(memblock.memory.regions);
 367                size = PAGE_ALIGN(sizeof(struct memblock_region) *
 368                                  memblock.memory.max);
 369                __memblock_free_late(addr, size);
 370        }
 371}
 372#endif
 373
 374/**
 375 * memblock_double_array - double the size of the memblock regions array
 376 * @type: memblock type of the regions array being doubled
 377 * @new_area_start: starting address of memory range to avoid overlap with
 378 * @new_area_size: size of memory range to avoid overlap with
 379 *
 380 * Double the size of the @type regions array. If memblock is being used to
 381 * allocate memory for a new reserved regions array and there is a previously
 382 * allocated memory range [@new_area_start, @new_area_start + @new_area_size]
 383 * waiting to be reserved, ensure the memory used by the new array does
 384 * not overlap.
 385 *
 386 * Return:
 387 * 0 on success, -1 on failure.
 388 */
 389static int __init_memblock memblock_double_array(struct memblock_type *type,
 390                                                phys_addr_t new_area_start,
 391                                                phys_addr_t new_area_size)
 392{
 393        struct memblock_region *new_array, *old_array;
 394        phys_addr_t old_alloc_size, new_alloc_size;
 395        phys_addr_t old_size, new_size, addr, new_end;
 396        int use_slab = slab_is_available();
 397        int *in_slab;
 398
 399        /* We don't allow resizing until we know about the reserved regions
 400         * of memory that aren't suitable for allocation
 401         */
 402        if (!memblock_can_resize)
 403                return -1;
 404
 405        /* Calculate new doubled size */
 406        old_size = type->max * sizeof(struct memblock_region);
 407        new_size = old_size << 1;
 408        /*
 409         * We need to allocated new one align to PAGE_SIZE,
 410         *   so we can free them completely later.
 411         */
 412        old_alloc_size = PAGE_ALIGN(old_size);
 413        new_alloc_size = PAGE_ALIGN(new_size);
 414
 415        /* Retrieve the slab flag */
 416        if (type == &memblock.memory)
 417                in_slab = &memblock_memory_in_slab;
 418        else
 419                in_slab = &memblock_reserved_in_slab;
 420
 421        /* Try to find some space for it.
 422         *
 423         * WARNING: We assume that either slab_is_available() and we use it or
 424         * we use MEMBLOCK for allocations. That means that this is unsafe to
 425         * use when bootmem is currently active (unless bootmem itself is
 426         * implemented on top of MEMBLOCK which isn't the case yet)
 427         *
 428         * This should however not be an issue for now, as we currently only
 429         * call into MEMBLOCK while it's still active, or much later when slab
 430         * is active for memory hotplug operations
 431         */
 432        if (use_slab) {
 433                new_array = kmalloc(new_size, GFP_KERNEL);
 434                addr = new_array ? __pa(new_array) : 0;
 435        } else {
 436                /* only exclude range when trying to double reserved.regions */
 437                if (type != &memblock.reserved)
 438                        new_area_start = new_area_size = 0;
 439
 440                addr = memblock_find_in_range(new_area_start + new_area_size,
 441                                                memblock.current_limit,
 442                                                new_alloc_size, PAGE_SIZE);
 443                if (!addr && new_area_size)
 444                        addr = memblock_find_in_range(0,
 445                                min(new_area_start, memblock.current_limit),
 446                                new_alloc_size, PAGE_SIZE);
 447
 448                new_array = addr ? __va(addr) : NULL;
 449        }
 450        if (!addr) {
 451                pr_err("memblock: Failed to double %s array from %ld to %ld entries !\n",
 452                       type->name, type->max, type->max * 2);
 453                return -1;
 454        }
 455
 456        new_end = addr + new_size - 1;
 457        memblock_dbg("memblock: %s is doubled to %ld at [%pa-%pa]",
 458                        type->name, type->max * 2, &addr, &new_end);
 459
 460        /*
 461         * Found space, we now need to move the array over before we add the
 462         * reserved region since it may be our reserved array itself that is
 463         * full.
 464         */
 465        memcpy(new_array, type->regions, old_size);
 466        memset(new_array + type->max, 0, old_size);
 467        old_array = type->regions;
 468        type->regions = new_array;
 469        type->max <<= 1;
 470
 471        /* Free old array. We needn't free it if the array is the static one */
 472        if (*in_slab)
 473                kfree(old_array);
 474        else if (old_array != memblock_memory_init_regions &&
 475                 old_array != memblock_reserved_init_regions)
 476                memblock_free(__pa(old_array), old_alloc_size);
 477
 478        /*
 479         * Reserve the new array if that comes from the memblock.  Otherwise, we
 480         * needn't do it
 481         */
 482        if (!use_slab)
 483                BUG_ON(memblock_reserve(addr, new_alloc_size));
 484
 485        /* Update slab flag */
 486        *in_slab = use_slab;
 487
 488        return 0;
 489}
 490
 491/**
 492 * memblock_merge_regions - merge neighboring compatible regions
 493 * @type: memblock type to scan
 494 *
 495 * Scan @type and merge neighboring compatible regions.
 496 */
 497static void __init_memblock memblock_merge_regions(struct memblock_type *type)
 498{
 499        int i = 0;
 500
 501        /* cnt never goes below 1 */
 502        while (i < type->cnt - 1) {
 503                struct memblock_region *this = &type->regions[i];
 504                struct memblock_region *next = &type->regions[i + 1];
 505
 506                if (this->base + this->size != next->base ||
 507                    memblock_get_region_node(this) !=
 508                    memblock_get_region_node(next) ||
 509                    this->flags != next->flags) {
 510                        BUG_ON(this->base + this->size > next->base);
 511                        i++;
 512                        continue;
 513                }
 514
 515                this->size += next->size;
 516                /* move forward from next + 1, index of which is i + 2 */
 517                memmove(next, next + 1, (type->cnt - (i + 2)) * sizeof(*next));
 518                type->cnt--;
 519        }
 520}
 521
 522/**
 523 * memblock_insert_region - insert new memblock region
 524 * @type:       memblock type to insert into
 525 * @idx:        index for the insertion point
 526 * @base:       base address of the new region
 527 * @size:       size of the new region
 528 * @nid:        node id of the new region
 529 * @flags:      flags of the new region
 530 *
 531 * Insert new memblock region [@base, @base + @size) into @type at @idx.
 532 * @type must already have extra room to accommodate the new region.
 533 */
 534static void __init_memblock memblock_insert_region(struct memblock_type *type,
 535                                                   int idx, phys_addr_t base,
 536                                                   phys_addr_t size,
 537                                                   int nid,
 538                                                   enum memblock_flags flags)
 539{
 540        struct memblock_region *rgn = &type->regions[idx];
 541
 542        BUG_ON(type->cnt >= type->max);
 543        memmove(rgn + 1, rgn, (type->cnt - idx) * sizeof(*rgn));
 544        rgn->base = base;
 545        rgn->size = size;
 546        rgn->flags = flags;
 547        memblock_set_region_node(rgn, nid);
 548        type->cnt++;
 549        type->total_size += size;
 550}
 551
 552/**
 553 * memblock_add_range - add new memblock region
 554 * @type: memblock type to add new region into
 555 * @base: base address of the new region
 556 * @size: size of the new region
 557 * @nid: nid of the new region
 558 * @flags: flags of the new region
 559 *
 560 * Add new memblock region [@base, @base + @size) into @type.  The new region
 561 * is allowed to overlap with existing ones - overlaps don't affect already
 562 * existing regions.  @type is guaranteed to be minimal (all neighbouring
 563 * compatible regions are merged) after the addition.
 564 *
 565 * Return:
 566 * 0 on success, -errno on failure.
 567 */
 568int __init_memblock memblock_add_range(struct memblock_type *type,
 569                                phys_addr_t base, phys_addr_t size,
 570                                int nid, enum memblock_flags flags)
 571{
 572        bool insert = false;
 573        phys_addr_t obase = base;
 574        phys_addr_t end = base + memblock_cap_size(base, &size);
 575        int idx, nr_new;
 576        struct memblock_region *rgn;
 577
 578        if (!size)
 579                return 0;
 580
 581        /* special case for empty array */
 582        if (type->regions[0].size == 0) {
 583                WARN_ON(type->cnt != 1 || type->total_size);
 584                type->regions[0].base = base;
 585                type->regions[0].size = size;
 586                type->regions[0].flags = flags;
 587                memblock_set_region_node(&type->regions[0], nid);
 588                type->total_size = size;
 589                return 0;
 590        }
 591repeat:
 592        /*
 593         * The following is executed twice.  Once with %false @insert and
 594         * then with %true.  The first counts the number of regions needed
 595         * to accommodate the new area.  The second actually inserts them.
 596         */
 597        base = obase;
 598        nr_new = 0;
 599
 600        for_each_memblock_type(idx, type, rgn) {
 601                phys_addr_t rbase = rgn->base;
 602                phys_addr_t rend = rbase + rgn->size;
 603
 604                if (rbase >= end)
 605                        break;
 606                if (rend <= base)
 607                        continue;
 608                /*
 609                 * @rgn overlaps.  If it separates the lower part of new
 610                 * area, insert that portion.
 611                 */
 612                if (rbase > base) {
 613#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 614                        WARN_ON(nid != memblock_get_region_node(rgn));
 615#endif
 616                        WARN_ON(flags != rgn->flags);
 617                        nr_new++;
 618                        if (insert)
 619                                memblock_insert_region(type, idx++, base,
 620                                                       rbase - base, nid,
 621                                                       flags);
 622                }
 623                /* area below @rend is dealt with, forget about it */
 624                base = min(rend, end);
 625        }
 626
 627        /* insert the remaining portion */
 628        if (base < end) {
 629                nr_new++;
 630                if (insert)
 631                        memblock_insert_region(type, idx, base, end - base,
 632                                               nid, flags);
 633        }
 634
 635        if (!nr_new)
 636                return 0;
 637
 638        /*
 639         * If this was the first round, resize array and repeat for actual
 640         * insertions; otherwise, merge and return.
 641         */
 642        if (!insert) {
 643                while (type->cnt + nr_new > type->max)
 644                        if (memblock_double_array(type, obase, size) < 0)
 645                                return -ENOMEM;
 646                insert = true;
 647                goto repeat;
 648        } else {
 649                memblock_merge_regions(type);
 650                return 0;
 651        }
 652}
 653
 654/**
 655 * memblock_add_node - add new memblock region within a NUMA node
 656 * @base: base address of the new region
 657 * @size: size of the new region
 658 * @nid: nid of the new region
 659 *
 660 * Add new memblock region [@base, @base + @size) to the "memory"
 661 * type. See memblock_add_range() description for mode details
 662 *
 663 * Return:
 664 * 0 on success, -errno on failure.
 665 */
 666int __init_memblock memblock_add_node(phys_addr_t base, phys_addr_t size,
 667                                       int nid)
 668{
 669        return memblock_add_range(&memblock.memory, base, size, nid, 0);
 670}
 671
 672/**
 673 * memblock_add - add new memblock region
 674 * @base: base address of the new region
 675 * @size: size of the new region
 676 *
 677 * Add new memblock region [@base, @base + @size) to the "memory"
 678 * type. See memblock_add_range() description for mode details
 679 *
 680 * Return:
 681 * 0 on success, -errno on failure.
 682 */
 683int __init_memblock memblock_add(phys_addr_t base, phys_addr_t size)
 684{
 685        phys_addr_t end = base + size - 1;
 686
 687        memblock_dbg("memblock_add: [%pa-%pa] %pF\n",
 688                     &base, &end, (void *)_RET_IP_);
 689
 690        return memblock_add_range(&memblock.memory, base, size, MAX_NUMNODES, 0);
 691}
 692
 693/**
 694 * memblock_isolate_range - isolate given range into disjoint memblocks
 695 * @type: memblock type to isolate range for
 696 * @base: base of range to isolate
 697 * @size: size of range to isolate
 698 * @start_rgn: out parameter for the start of isolated region
 699 * @end_rgn: out parameter for the end of isolated region
 700 *
 701 * Walk @type and ensure that regions don't cross the boundaries defined by
 702 * [@base, @base + @size).  Crossing regions are split at the boundaries,
 703 * which may create at most two more regions.  The index of the first
 704 * region inside the range is returned in *@start_rgn and end in *@end_rgn.
 705 *
 706 * Return:
 707 * 0 on success, -errno on failure.
 708 */
 709static int __init_memblock memblock_isolate_range(struct memblock_type *type,
 710                                        phys_addr_t base, phys_addr_t size,
 711                                        int *start_rgn, int *end_rgn)
 712{
 713        phys_addr_t end = base + memblock_cap_size(base, &size);
 714        int idx;
 715        struct memblock_region *rgn;
 716
 717        *start_rgn = *end_rgn = 0;
 718
 719        if (!size)
 720                return 0;
 721
 722        /* we'll create at most two more regions */
 723        while (type->cnt + 2 > type->max)
 724                if (memblock_double_array(type, base, size) < 0)
 725                        return -ENOMEM;
 726
 727        for_each_memblock_type(idx, type, rgn) {
 728                phys_addr_t rbase = rgn->base;
 729                phys_addr_t rend = rbase + rgn->size;
 730
 731                if (rbase >= end)
 732                        break;
 733                if (rend <= base)
 734                        continue;
 735
 736                if (rbase < base) {
 737                        /*
 738                         * @rgn intersects from below.  Split and continue
 739                         * to process the next region - the new top half.
 740                         */
 741                        rgn->base = base;
 742                        rgn->size -= base - rbase;
 743                        type->total_size -= base - rbase;
 744                        memblock_insert_region(type, idx, rbase, base - rbase,
 745                                               memblock_get_region_node(rgn),
 746                                               rgn->flags);
 747                } else if (rend > end) {
 748                        /*
 749                         * @rgn intersects from above.  Split and redo the
 750                         * current region - the new bottom half.
 751                         */
 752                        rgn->base = end;
 753                        rgn->size -= end - rbase;
 754                        type->total_size -= end - rbase;
 755                        memblock_insert_region(type, idx--, rbase, end - rbase,
 756                                               memblock_get_region_node(rgn),
 757                                               rgn->flags);
 758                } else {
 759                        /* @rgn is fully contained, record it */
 760                        if (!*end_rgn)
 761                                *start_rgn = idx;
 762                        *end_rgn = idx + 1;
 763                }
 764        }
 765
 766        return 0;
 767}
 768
 769static int __init_memblock memblock_remove_range(struct memblock_type *type,
 770                                          phys_addr_t base, phys_addr_t size)
 771{
 772        int start_rgn, end_rgn;
 773        int i, ret;
 774
 775        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 776        if (ret)
 777                return ret;
 778
 779        for (i = end_rgn - 1; i >= start_rgn; i--)
 780                memblock_remove_region(type, i);
 781        return 0;
 782}
 783
 784int __init_memblock memblock_remove(phys_addr_t base, phys_addr_t size)
 785{
 786        phys_addr_t end = base + size - 1;
 787
 788        memblock_dbg("memblock_remove: [%pa-%pa] %pS\n",
 789                     &base, &end, (void *)_RET_IP_);
 790
 791        return memblock_remove_range(&memblock.memory, base, size);
 792}
 793
 794
 795int __init_memblock memblock_free(phys_addr_t base, phys_addr_t size)
 796{
 797        phys_addr_t end = base + size - 1;
 798
 799        memblock_dbg("   memblock_free: [%pa-%pa] %pF\n",
 800                     &base, &end, (void *)_RET_IP_);
 801
 802        kmemleak_free_part_phys(base, size);
 803        return memblock_remove_range(&memblock.reserved, base, size);
 804}
 805
 806int __init_memblock memblock_reserve(phys_addr_t base, phys_addr_t size)
 807{
 808        phys_addr_t end = base + size - 1;
 809
 810        memblock_dbg("memblock_reserve: [%pa-%pa] %pF\n",
 811                     &base, &end, (void *)_RET_IP_);
 812
 813        return memblock_add_range(&memblock.reserved, base, size, MAX_NUMNODES, 0);
 814}
 815
 816/**
 817 * memblock_setclr_flag - set or clear flag for a memory region
 818 * @base: base address of the region
 819 * @size: size of the region
 820 * @set: set or clear the flag
 821 * @flag: the flag to udpate
 822 *
 823 * This function isolates region [@base, @base + @size), and sets/clears flag
 824 *
 825 * Return: 0 on success, -errno on failure.
 826 */
 827static int __init_memblock memblock_setclr_flag(phys_addr_t base,
 828                                phys_addr_t size, int set, int flag)
 829{
 830        struct memblock_type *type = &memblock.memory;
 831        int i, ret, start_rgn, end_rgn;
 832
 833        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
 834        if (ret)
 835                return ret;
 836
 837        for (i = start_rgn; i < end_rgn; i++)
 838                if (set)
 839                        memblock_set_region_flags(&type->regions[i], flag);
 840                else
 841                        memblock_clear_region_flags(&type->regions[i], flag);
 842
 843        memblock_merge_regions(type);
 844        return 0;
 845}
 846
 847/**
 848 * memblock_mark_hotplug - Mark hotpluggable memory with flag MEMBLOCK_HOTPLUG.
 849 * @base: the base phys addr of the region
 850 * @size: the size of the region
 851 *
 852 * Return: 0 on success, -errno on failure.
 853 */
 854int __init_memblock memblock_mark_hotplug(phys_addr_t base, phys_addr_t size)
 855{
 856        return memblock_setclr_flag(base, size, 1, MEMBLOCK_HOTPLUG);
 857}
 858
 859/**
 860 * memblock_clear_hotplug - Clear flag MEMBLOCK_HOTPLUG for a specified region.
 861 * @base: the base phys addr of the region
 862 * @size: the size of the region
 863 *
 864 * Return: 0 on success, -errno on failure.
 865 */
 866int __init_memblock memblock_clear_hotplug(phys_addr_t base, phys_addr_t size)
 867{
 868        return memblock_setclr_flag(base, size, 0, MEMBLOCK_HOTPLUG);
 869}
 870
 871/**
 872 * memblock_mark_mirror - Mark mirrored memory with flag MEMBLOCK_MIRROR.
 873 * @base: the base phys addr of the region
 874 * @size: the size of the region
 875 *
 876 * Return: 0 on success, -errno on failure.
 877 */
 878int __init_memblock memblock_mark_mirror(phys_addr_t base, phys_addr_t size)
 879{
 880        system_has_some_mirror = true;
 881
 882        return memblock_setclr_flag(base, size, 1, MEMBLOCK_MIRROR);
 883}
 884
 885/**
 886 * memblock_mark_nomap - Mark a memory region with flag MEMBLOCK_NOMAP.
 887 * @base: the base phys addr of the region
 888 * @size: the size of the region
 889 *
 890 * Return: 0 on success, -errno on failure.
 891 */
 892int __init_memblock memblock_mark_nomap(phys_addr_t base, phys_addr_t size)
 893{
 894        return memblock_setclr_flag(base, size, 1, MEMBLOCK_NOMAP);
 895}
 896
 897/**
 898 * memblock_clear_nomap - Clear flag MEMBLOCK_NOMAP for a specified region.
 899 * @base: the base phys addr of the region
 900 * @size: the size of the region
 901 *
 902 * Return: 0 on success, -errno on failure.
 903 */
 904int __init_memblock memblock_clear_nomap(phys_addr_t base, phys_addr_t size)
 905{
 906        return memblock_setclr_flag(base, size, 0, MEMBLOCK_NOMAP);
 907}
 908
 909/**
 910 * __next_reserved_mem_region - next function for for_each_reserved_region()
 911 * @idx: pointer to u64 loop variable
 912 * @out_start: ptr to phys_addr_t for start address of the region, can be %NULL
 913 * @out_end: ptr to phys_addr_t for end address of the region, can be %NULL
 914 *
 915 * Iterate over all reserved memory regions.
 916 */
 917void __init_memblock __next_reserved_mem_region(u64 *idx,
 918                                           phys_addr_t *out_start,
 919                                           phys_addr_t *out_end)
 920{
 921        struct memblock_type *type = &memblock.reserved;
 922
 923        if (*idx < type->cnt) {
 924                struct memblock_region *r = &type->regions[*idx];
 925                phys_addr_t base = r->base;
 926                phys_addr_t size = r->size;
 927
 928                if (out_start)
 929                        *out_start = base;
 930                if (out_end)
 931                        *out_end = base + size - 1;
 932
 933                *idx += 1;
 934                return;
 935        }
 936
 937        /* signal end of iteration */
 938        *idx = ULLONG_MAX;
 939}
 940
 941/**
 942 * __next__mem_range - next function for for_each_free_mem_range() etc.
 943 * @idx: pointer to u64 loop variable
 944 * @nid: node selector, %NUMA_NO_NODE for all nodes
 945 * @flags: pick from blocks based on memory attributes
 946 * @type_a: pointer to memblock_type from where the range is taken
 947 * @type_b: pointer to memblock_type which excludes memory from being taken
 948 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
 949 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
 950 * @out_nid: ptr to int for nid of the range, can be %NULL
 951 *
 952 * Find the first area from *@idx which matches @nid, fill the out
 953 * parameters, and update *@idx for the next iteration.  The lower 32bit of
 954 * *@idx contains index into type_a and the upper 32bit indexes the
 955 * areas before each region in type_b.  For example, if type_b regions
 956 * look like the following,
 957 *
 958 *      0:[0-16), 1:[32-48), 2:[128-130)
 959 *
 960 * The upper 32bit indexes the following regions.
 961 *
 962 *      0:[0-0), 1:[16-32), 2:[48-128), 3:[130-MAX)
 963 *
 964 * As both region arrays are sorted, the function advances the two indices
 965 * in lockstep and returns each intersection.
 966 */
 967void __init_memblock __next_mem_range(u64 *idx, int nid,
 968                                      enum memblock_flags flags,
 969                                      struct memblock_type *type_a,
 970                                      struct memblock_type *type_b,
 971                                      phys_addr_t *out_start,
 972                                      phys_addr_t *out_end, int *out_nid)
 973{
 974        int idx_a = *idx & 0xffffffff;
 975        int idx_b = *idx >> 32;
 976
 977        if (WARN_ONCE(nid == MAX_NUMNODES,
 978        "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
 979                nid = NUMA_NO_NODE;
 980
 981        for (; idx_a < type_a->cnt; idx_a++) {
 982                struct memblock_region *m = &type_a->regions[idx_a];
 983
 984                phys_addr_t m_start = m->base;
 985                phys_addr_t m_end = m->base + m->size;
 986                int         m_nid = memblock_get_region_node(m);
 987
 988                /* only memory regions are associated with nodes, check it */
 989                if (nid != NUMA_NO_NODE && nid != m_nid)
 990                        continue;
 991
 992                /* skip hotpluggable memory regions if needed */
 993                if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
 994                        continue;
 995
 996                /* if we want mirror memory skip non-mirror memory regions */
 997                if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
 998                        continue;
 999
1000                /* skip nomap memory unless we were asked for it explicitly */
1001                if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1002                        continue;
1003
1004                if (!type_b) {
1005                        if (out_start)
1006                                *out_start = m_start;
1007                        if (out_end)
1008                                *out_end = m_end;
1009                        if (out_nid)
1010                                *out_nid = m_nid;
1011                        idx_a++;
1012                        *idx = (u32)idx_a | (u64)idx_b << 32;
1013                        return;
1014                }
1015
1016                /* scan areas before each reservation */
1017                for (; idx_b < type_b->cnt + 1; idx_b++) {
1018                        struct memblock_region *r;
1019                        phys_addr_t r_start;
1020                        phys_addr_t r_end;
1021
1022                        r = &type_b->regions[idx_b];
1023                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1024                        r_end = idx_b < type_b->cnt ?
1025                                r->base : PHYS_ADDR_MAX;
1026
1027                        /*
1028                         * if idx_b advanced past idx_a,
1029                         * break out to advance idx_a
1030                         */
1031                        if (r_start >= m_end)
1032                                break;
1033                        /* if the two regions intersect, we're done */
1034                        if (m_start < r_end) {
1035                                if (out_start)
1036                                        *out_start =
1037                                                max(m_start, r_start);
1038                                if (out_end)
1039                                        *out_end = min(m_end, r_end);
1040                                if (out_nid)
1041                                        *out_nid = m_nid;
1042                                /*
1043                                 * The region which ends first is
1044                                 * advanced for the next iteration.
1045                                 */
1046                                if (m_end <= r_end)
1047                                        idx_a++;
1048                                else
1049                                        idx_b++;
1050                                *idx = (u32)idx_a | (u64)idx_b << 32;
1051                                return;
1052                        }
1053                }
1054        }
1055
1056        /* signal end of iteration */
1057        *idx = ULLONG_MAX;
1058}
1059
1060/**
1061 * __next_mem_range_rev - generic next function for for_each_*_range_rev()
1062 *
1063 * @idx: pointer to u64 loop variable
1064 * @nid: node selector, %NUMA_NO_NODE for all nodes
1065 * @flags: pick from blocks based on memory attributes
1066 * @type_a: pointer to memblock_type from where the range is taken
1067 * @type_b: pointer to memblock_type which excludes memory from being taken
1068 * @out_start: ptr to phys_addr_t for start address of the range, can be %NULL
1069 * @out_end: ptr to phys_addr_t for end address of the range, can be %NULL
1070 * @out_nid: ptr to int for nid of the range, can be %NULL
1071 *
1072 * Finds the next range from type_a which is not marked as unsuitable
1073 * in type_b.
1074 *
1075 * Reverse of __next_mem_range().
1076 */
1077void __init_memblock __next_mem_range_rev(u64 *idx, int nid,
1078                                          enum memblock_flags flags,
1079                                          struct memblock_type *type_a,
1080                                          struct memblock_type *type_b,
1081                                          phys_addr_t *out_start,
1082                                          phys_addr_t *out_end, int *out_nid)
1083{
1084        int idx_a = *idx & 0xffffffff;
1085        int idx_b = *idx >> 32;
1086
1087        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1088                nid = NUMA_NO_NODE;
1089
1090        if (*idx == (u64)ULLONG_MAX) {
1091                idx_a = type_a->cnt - 1;
1092                if (type_b != NULL)
1093                        idx_b = type_b->cnt;
1094                else
1095                        idx_b = 0;
1096        }
1097
1098        for (; idx_a >= 0; idx_a--) {
1099                struct memblock_region *m = &type_a->regions[idx_a];
1100
1101                phys_addr_t m_start = m->base;
1102                phys_addr_t m_end = m->base + m->size;
1103                int m_nid = memblock_get_region_node(m);
1104
1105                /* only memory regions are associated with nodes, check it */
1106                if (nid != NUMA_NO_NODE && nid != m_nid)
1107                        continue;
1108
1109                /* skip hotpluggable memory regions if needed */
1110                if (movable_node_is_enabled() && memblock_is_hotpluggable(m))
1111                        continue;
1112
1113                /* if we want mirror memory skip non-mirror memory regions */
1114                if ((flags & MEMBLOCK_MIRROR) && !memblock_is_mirror(m))
1115                        continue;
1116
1117                /* skip nomap memory unless we were asked for it explicitly */
1118                if (!(flags & MEMBLOCK_NOMAP) && memblock_is_nomap(m))
1119                        continue;
1120
1121                if (!type_b) {
1122                        if (out_start)
1123                                *out_start = m_start;
1124                        if (out_end)
1125                                *out_end = m_end;
1126                        if (out_nid)
1127                                *out_nid = m_nid;
1128                        idx_a--;
1129                        *idx = (u32)idx_a | (u64)idx_b << 32;
1130                        return;
1131                }
1132
1133                /* scan areas before each reservation */
1134                for (; idx_b >= 0; idx_b--) {
1135                        struct memblock_region *r;
1136                        phys_addr_t r_start;
1137                        phys_addr_t r_end;
1138
1139                        r = &type_b->regions[idx_b];
1140                        r_start = idx_b ? r[-1].base + r[-1].size : 0;
1141                        r_end = idx_b < type_b->cnt ?
1142                                r->base : PHYS_ADDR_MAX;
1143                        /*
1144                         * if idx_b advanced past idx_a,
1145                         * break out to advance idx_a
1146                         */
1147
1148                        if (r_end <= m_start)
1149                                break;
1150                        /* if the two regions intersect, we're done */
1151                        if (m_end > r_start) {
1152                                if (out_start)
1153                                        *out_start = max(m_start, r_start);
1154                                if (out_end)
1155                                        *out_end = min(m_end, r_end);
1156                                if (out_nid)
1157                                        *out_nid = m_nid;
1158                                if (m_start >= r_start)
1159                                        idx_a--;
1160                                else
1161                                        idx_b--;
1162                                *idx = (u32)idx_a | (u64)idx_b << 32;
1163                                return;
1164                        }
1165                }
1166        }
1167        /* signal end of iteration */
1168        *idx = ULLONG_MAX;
1169}
1170
1171#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1172/*
1173 * Common iterator interface used to define for_each_mem_range().
1174 */
1175void __init_memblock __next_mem_pfn_range(int *idx, int nid,
1176                                unsigned long *out_start_pfn,
1177                                unsigned long *out_end_pfn, int *out_nid)
1178{
1179        struct memblock_type *type = &memblock.memory;
1180        struct memblock_region *r;
1181
1182        while (++*idx < type->cnt) {
1183                r = &type->regions[*idx];
1184
1185                if (PFN_UP(r->base) >= PFN_DOWN(r->base + r->size))
1186                        continue;
1187                if (nid == MAX_NUMNODES || nid == r->nid)
1188                        break;
1189        }
1190        if (*idx >= type->cnt) {
1191                *idx = -1;
1192                return;
1193        }
1194
1195        if (out_start_pfn)
1196                *out_start_pfn = PFN_UP(r->base);
1197        if (out_end_pfn)
1198                *out_end_pfn = PFN_DOWN(r->base + r->size);
1199        if (out_nid)
1200                *out_nid = r->nid;
1201}
1202
1203/**
1204 * memblock_set_node - set node ID on memblock regions
1205 * @base: base of area to set node ID for
1206 * @size: size of area to set node ID for
1207 * @type: memblock type to set node ID for
1208 * @nid: node ID to set
1209 *
1210 * Set the nid of memblock @type regions in [@base, @base + @size) to @nid.
1211 * Regions which cross the area boundaries are split as necessary.
1212 *
1213 * Return:
1214 * 0 on success, -errno on failure.
1215 */
1216int __init_memblock memblock_set_node(phys_addr_t base, phys_addr_t size,
1217                                      struct memblock_type *type, int nid)
1218{
1219        int start_rgn, end_rgn;
1220        int i, ret;
1221
1222        ret = memblock_isolate_range(type, base, size, &start_rgn, &end_rgn);
1223        if (ret)
1224                return ret;
1225
1226        for (i = start_rgn; i < end_rgn; i++)
1227                memblock_set_region_node(&type->regions[i], nid);
1228
1229        memblock_merge_regions(type);
1230        return 0;
1231}
1232#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
1233
1234static phys_addr_t __init memblock_alloc_range_nid(phys_addr_t size,
1235                                        phys_addr_t align, phys_addr_t start,
1236                                        phys_addr_t end, int nid,
1237                                        enum memblock_flags flags)
1238{
1239        phys_addr_t found;
1240
1241        if (!align)
1242                align = SMP_CACHE_BYTES;
1243
1244        found = memblock_find_in_range_node(size, align, start, end, nid,
1245                                            flags);
1246        if (found && !memblock_reserve(found, size)) {
1247                /*
1248                 * The min_count is set to 0 so that memblock allocations are
1249                 * never reported as leaks.
1250                 */
1251                kmemleak_alloc_phys(found, size, 0, 0);
1252                return found;
1253        }
1254        return 0;
1255}
1256
1257phys_addr_t __init memblock_alloc_range(phys_addr_t size, phys_addr_t align,
1258                                        phys_addr_t start, phys_addr_t end,
1259                                        enum memblock_flags flags)
1260{
1261        return memblock_alloc_range_nid(size, align, start, end, NUMA_NO_NODE,
1262                                        flags);
1263}
1264
1265phys_addr_t __init memblock_alloc_base_nid(phys_addr_t size,
1266                                        phys_addr_t align, phys_addr_t max_addr,
1267                                        int nid, enum memblock_flags flags)
1268{
1269        return memblock_alloc_range_nid(size, align, 0, max_addr, nid, flags);
1270}
1271
1272phys_addr_t __init memblock_alloc_nid(phys_addr_t size, phys_addr_t align, int nid)
1273{
1274        enum memblock_flags flags = choose_memblock_flags();
1275        phys_addr_t ret;
1276
1277again:
1278        ret = memblock_alloc_base_nid(size, align, MEMBLOCK_ALLOC_ACCESSIBLE,
1279                                      nid, flags);
1280
1281        if (!ret && (flags & MEMBLOCK_MIRROR)) {
1282                flags &= ~MEMBLOCK_MIRROR;
1283                goto again;
1284        }
1285        return ret;
1286}
1287
1288phys_addr_t __init __memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1289{
1290        return memblock_alloc_base_nid(size, align, max_addr, NUMA_NO_NODE,
1291                                       MEMBLOCK_NONE);
1292}
1293
1294phys_addr_t __init memblock_alloc_base(phys_addr_t size, phys_addr_t align, phys_addr_t max_addr)
1295{
1296        phys_addr_t alloc;
1297
1298        alloc = __memblock_alloc_base(size, align, max_addr);
1299
1300        if (alloc == 0)
1301                panic("ERROR: Failed to allocate %pa bytes below %pa.\n",
1302                      &size, &max_addr);
1303
1304        return alloc;
1305}
1306
1307phys_addr_t __init memblock_alloc(phys_addr_t size, phys_addr_t align)
1308{
1309        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1310}
1311
1312phys_addr_t __init memblock_alloc_try_nid(phys_addr_t size, phys_addr_t align, int nid)
1313{
1314        phys_addr_t res = memblock_alloc_nid(size, align, nid);
1315
1316        if (res)
1317                return res;
1318        return memblock_alloc_base(size, align, MEMBLOCK_ALLOC_ACCESSIBLE);
1319}
1320
1321#if defined(CONFIG_NO_BOOTMEM)
1322/**
1323 * memblock_virt_alloc_internal - allocate boot memory block
1324 * @size: size of memory block to be allocated in bytes
1325 * @align: alignment of the region and block's size
1326 * @min_addr: the lower bound of the memory region to allocate (phys address)
1327 * @max_addr: the upper bound of the memory region to allocate (phys address)
1328 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1329 *
1330 * The @min_addr limit is dropped if it can not be satisfied and the allocation
1331 * will fall back to memory below @min_addr. Also, allocation may fall back
1332 * to any node in the system if the specified node can not
1333 * hold the requested memory.
1334 *
1335 * The allocation is performed from memory region limited by
1336 * memblock.current_limit if @max_addr == %BOOTMEM_ALLOC_ACCESSIBLE.
1337 *
1338 * The memory block is aligned on %SMP_CACHE_BYTES if @align == 0.
1339 *
1340 * The phys address of allocated boot memory block is converted to virtual and
1341 * allocated memory is reset to 0.
1342 *
1343 * In addition, function sets the min_count to 0 using kmemleak_alloc for
1344 * allocated boot memory block, so that it is never reported as leaks.
1345 *
1346 * Return:
1347 * Virtual address of allocated memory block on success, NULL on failure.
1348 */
1349static void * __init memblock_virt_alloc_internal(
1350                                phys_addr_t size, phys_addr_t align,
1351                                phys_addr_t min_addr, phys_addr_t max_addr,
1352                                int nid)
1353{
1354        phys_addr_t alloc;
1355        void *ptr;
1356        enum memblock_flags flags = choose_memblock_flags();
1357
1358        if (WARN_ONCE(nid == MAX_NUMNODES, "Usage of MAX_NUMNODES is deprecated. Use NUMA_NO_NODE instead\n"))
1359                nid = NUMA_NO_NODE;
1360
1361        /*
1362         * Detect any accidental use of these APIs after slab is ready, as at
1363         * this moment memblock may be deinitialized already and its
1364         * internal data may be destroyed (after execution of free_all_bootmem)
1365         */
1366        if (WARN_ON_ONCE(slab_is_available()))
1367                return kzalloc_node(size, GFP_NOWAIT, nid);
1368
1369        if (!align)
1370                align = SMP_CACHE_BYTES;
1371
1372        if (max_addr > memblock.current_limit)
1373                max_addr = memblock.current_limit;
1374again:
1375        alloc = memblock_find_in_range_node(size, align, min_addr, max_addr,
1376                                            nid, flags);
1377        if (alloc && !memblock_reserve(alloc, size))
1378                goto done;
1379
1380        if (nid != NUMA_NO_NODE) {
1381                alloc = memblock_find_in_range_node(size, align, min_addr,
1382                                                    max_addr, NUMA_NO_NODE,
1383                                                    flags);
1384                if (alloc && !memblock_reserve(alloc, size))
1385                        goto done;
1386        }
1387
1388        if (min_addr) {
1389                min_addr = 0;
1390                goto again;
1391        }
1392
1393        if (flags & MEMBLOCK_MIRROR) {
1394                flags &= ~MEMBLOCK_MIRROR;
1395                pr_warn("Could not allocate %pap bytes of mirrored memory\n",
1396                        &size);
1397                goto again;
1398        }
1399
1400        return NULL;
1401done:
1402        ptr = phys_to_virt(alloc);
1403
1404        /*
1405         * The min_count is set to 0 so that bootmem allocated blocks
1406         * are never reported as leaks. This is because many of these blocks
1407         * are only referred via the physical address which is not
1408         * looked up by kmemleak.
1409         */
1410        kmemleak_alloc(ptr, size, 0, 0);
1411
1412        return ptr;
1413}
1414
1415/**
1416 * memblock_virt_alloc_try_nid_raw - allocate boot memory block without zeroing
1417 * memory and without panicking
1418 * @size: size of memory block to be allocated in bytes
1419 * @align: alignment of the region and block's size
1420 * @min_addr: the lower bound of the memory region from where the allocation
1421 *        is preferred (phys address)
1422 * @max_addr: the upper bound of the memory region from where the allocation
1423 *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1424 *            allocate only from memory limited by memblock.current_limit value
1425 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1426 *
1427 * Public function, provides additional debug information (including caller
1428 * info), if enabled. Does not zero allocated memory, does not panic if request
1429 * cannot be satisfied.
1430 *
1431 * Return:
1432 * Virtual address of allocated memory block on success, NULL on failure.
1433 */
1434void * __init memblock_virt_alloc_try_nid_raw(
1435                        phys_addr_t size, phys_addr_t align,
1436                        phys_addr_t min_addr, phys_addr_t max_addr,
1437                        int nid)
1438{
1439        void *ptr;
1440
1441        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1442                     __func__, (u64)size, (u64)align, nid, &min_addr,
1443                     &max_addr, (void *)_RET_IP_);
1444
1445        ptr = memblock_virt_alloc_internal(size, align,
1446                                           min_addr, max_addr, nid);
1447#ifdef CONFIG_DEBUG_VM
1448        if (ptr && size > 0)
1449                memset(ptr, PAGE_POISON_PATTERN, size);
1450#endif
1451        return ptr;
1452}
1453
1454/**
1455 * memblock_virt_alloc_try_nid_nopanic - allocate boot memory block
1456 * @size: size of memory block to be allocated in bytes
1457 * @align: alignment of the region and block's size
1458 * @min_addr: the lower bound of the memory region from where the allocation
1459 *        is preferred (phys address)
1460 * @max_addr: the upper bound of the memory region from where the allocation
1461 *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1462 *            allocate only from memory limited by memblock.current_limit value
1463 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1464 *
1465 * Public function, provides additional debug information (including caller
1466 * info), if enabled. This function zeroes the allocated memory.
1467 *
1468 * Return:
1469 * Virtual address of allocated memory block on success, NULL on failure.
1470 */
1471void * __init memblock_virt_alloc_try_nid_nopanic(
1472                                phys_addr_t size, phys_addr_t align,
1473                                phys_addr_t min_addr, phys_addr_t max_addr,
1474                                int nid)
1475{
1476        void *ptr;
1477
1478        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1479                     __func__, (u64)size, (u64)align, nid, &min_addr,
1480                     &max_addr, (void *)_RET_IP_);
1481
1482        ptr = memblock_virt_alloc_internal(size, align,
1483                                           min_addr, max_addr, nid);
1484        if (ptr)
1485                memset(ptr, 0, size);
1486        return ptr;
1487}
1488
1489/**
1490 * memblock_virt_alloc_try_nid - allocate boot memory block with panicking
1491 * @size: size of memory block to be allocated in bytes
1492 * @align: alignment of the region and block's size
1493 * @min_addr: the lower bound of the memory region from where the allocation
1494 *        is preferred (phys address)
1495 * @max_addr: the upper bound of the memory region from where the allocation
1496 *            is preferred (phys address), or %BOOTMEM_ALLOC_ACCESSIBLE to
1497 *            allocate only from memory limited by memblock.current_limit value
1498 * @nid: nid of the free area to find, %NUMA_NO_NODE for any node
1499 *
1500 * Public panicking version of memblock_virt_alloc_try_nid_nopanic()
1501 * which provides debug information (including caller info), if enabled,
1502 * and panics if the request can not be satisfied.
1503 *
1504 * Return:
1505 * Virtual address of allocated memory block on success, NULL on failure.
1506 */
1507void * __init memblock_virt_alloc_try_nid(
1508                        phys_addr_t size, phys_addr_t align,
1509                        phys_addr_t min_addr, phys_addr_t max_addr,
1510                        int nid)
1511{
1512        void *ptr;
1513
1514        memblock_dbg("%s: %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa %pF\n",
1515                     __func__, (u64)size, (u64)align, nid, &min_addr,
1516                     &max_addr, (void *)_RET_IP_);
1517        ptr = memblock_virt_alloc_internal(size, align,
1518                                           min_addr, max_addr, nid);
1519        if (ptr) {
1520                memset(ptr, 0, size);
1521                return ptr;
1522        }
1523
1524        panic("%s: Failed to allocate %llu bytes align=0x%llx nid=%d from=%pa max_addr=%pa\n",
1525              __func__, (u64)size, (u64)align, nid, &min_addr, &max_addr);
1526        return NULL;
1527}
1528#endif
1529
1530/**
1531 * __memblock_free_early - free boot memory block
1532 * @base: phys starting address of the  boot memory block
1533 * @size: size of the boot memory block in bytes
1534 *
1535 * Free boot memory block previously allocated by memblock_virt_alloc_xx() API.
1536 * The freeing memory will not be released to the buddy allocator.
1537 */
1538void __init __memblock_free_early(phys_addr_t base, phys_addr_t size)
1539{
1540        phys_addr_t end = base + size - 1;
1541
1542        memblock_dbg("%s: [%pa-%pa] %pF\n",
1543                     __func__, &base, &end, (void *)_RET_IP_);
1544        kmemleak_free_part_phys(base, size);
1545        memblock_remove_range(&memblock.reserved, base, size);
1546}
1547
1548/**
1549 * __memblock_free_late - free bootmem block pages directly to buddy allocator
1550 * @base: phys starting address of the  boot memory block
1551 * @size: size of the boot memory block in bytes
1552 *
1553 * This is only useful when the bootmem allocator has already been torn
1554 * down, but we are still initializing the system.  Pages are released directly
1555 * to the buddy allocator, no bootmem metadata is updated because it is gone.
1556 */
1557void __init __memblock_free_late(phys_addr_t base, phys_addr_t size)
1558{
1559        phys_addr_t cursor, end;
1560
1561        end = base + size - 1;
1562        memblock_dbg("%s: [%pa-%pa] %pF\n",
1563                     __func__, &base, &end, (void *)_RET_IP_);
1564        kmemleak_free_part_phys(base, size);
1565        cursor = PFN_UP(base);
1566        end = PFN_DOWN(base + size);
1567
1568        for (; cursor < end; cursor++) {
1569                __free_pages_bootmem(pfn_to_page(cursor), cursor, 0);
1570                totalram_pages++;
1571        }
1572}
1573
1574/*
1575 * Remaining API functions
1576 */
1577
1578phys_addr_t __init_memblock memblock_phys_mem_size(void)
1579{
1580        return memblock.memory.total_size;
1581}
1582
1583phys_addr_t __init_memblock memblock_reserved_size(void)
1584{
1585        return memblock.reserved.total_size;
1586}
1587
1588phys_addr_t __init memblock_mem_size(unsigned long limit_pfn)
1589{
1590        unsigned long pages = 0;
1591        struct memblock_region *r;
1592        unsigned long start_pfn, end_pfn;
1593
1594        for_each_memblock(memory, r) {
1595                start_pfn = memblock_region_memory_base_pfn(r);
1596                end_pfn = memblock_region_memory_end_pfn(r);
1597                start_pfn = min_t(unsigned long, start_pfn, limit_pfn);
1598                end_pfn = min_t(unsigned long, end_pfn, limit_pfn);
1599                pages += end_pfn - start_pfn;
1600        }
1601
1602        return PFN_PHYS(pages);
1603}
1604
1605/* lowest address */
1606phys_addr_t __init_memblock memblock_start_of_DRAM(void)
1607{
1608        return memblock.memory.regions[0].base;
1609}
1610
1611phys_addr_t __init_memblock memblock_end_of_DRAM(void)
1612{
1613        int idx = memblock.memory.cnt - 1;
1614
1615        return (memblock.memory.regions[idx].base + memblock.memory.regions[idx].size);
1616}
1617
1618static phys_addr_t __init_memblock __find_max_addr(phys_addr_t limit)
1619{
1620        phys_addr_t max_addr = PHYS_ADDR_MAX;
1621        struct memblock_region *r;
1622
1623        /*
1624         * translate the memory @limit size into the max address within one of
1625         * the memory memblock regions, if the @limit exceeds the total size
1626         * of those regions, max_addr will keep original value PHYS_ADDR_MAX
1627         */
1628        for_each_memblock(memory, r) {
1629                if (limit <= r->size) {
1630                        max_addr = r->base + limit;
1631                        break;
1632                }
1633                limit -= r->size;
1634        }
1635
1636        return max_addr;
1637}
1638
1639void __init memblock_enforce_memory_limit(phys_addr_t limit)
1640{
1641        phys_addr_t max_addr = PHYS_ADDR_MAX;
1642
1643        if (!limit)
1644                return;
1645
1646        max_addr = __find_max_addr(limit);
1647
1648        /* @limit exceeds the total size of the memory, do nothing */
1649        if (max_addr == PHYS_ADDR_MAX)
1650                return;
1651
1652        /* truncate both memory and reserved regions */
1653        memblock_remove_range(&memblock.memory, max_addr,
1654                              PHYS_ADDR_MAX);
1655        memblock_remove_range(&memblock.reserved, max_addr,
1656                              PHYS_ADDR_MAX);
1657}
1658
1659void __init memblock_cap_memory_range(phys_addr_t base, phys_addr_t size)
1660{
1661        int start_rgn, end_rgn;
1662        int i, ret;
1663
1664        if (!size)
1665                return;
1666
1667        ret = memblock_isolate_range(&memblock.memory, base, size,
1668                                                &start_rgn, &end_rgn);
1669        if (ret)
1670                return;
1671
1672        /* remove all the MAP regions */
1673        for (i = memblock.memory.cnt - 1; i >= end_rgn; i--)
1674                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1675                        memblock_remove_region(&memblock.memory, i);
1676
1677        for (i = start_rgn - 1; i >= 0; i--)
1678                if (!memblock_is_nomap(&memblock.memory.regions[i]))
1679                        memblock_remove_region(&memblock.memory, i);
1680
1681        /* truncate the reserved regions */
1682        memblock_remove_range(&memblock.reserved, 0, base);
1683        memblock_remove_range(&memblock.reserved,
1684                        base + size, PHYS_ADDR_MAX);
1685}
1686
1687void __init memblock_mem_limit_remove_map(phys_addr_t limit)
1688{
1689        phys_addr_t max_addr;
1690
1691        if (!limit)
1692                return;
1693
1694        max_addr = __find_max_addr(limit);
1695
1696        /* @limit exceeds the total size of the memory, do nothing */
1697        if (max_addr == PHYS_ADDR_MAX)
1698                return;
1699
1700        memblock_cap_memory_range(0, max_addr);
1701}
1702
1703static int __init_memblock memblock_search(struct memblock_type *type, phys_addr_t addr)
1704{
1705        unsigned int left = 0, right = type->cnt;
1706
1707        do {
1708                unsigned int mid = (right + left) / 2;
1709
1710                if (addr < type->regions[mid].base)
1711                        right = mid;
1712                else if (addr >= (type->regions[mid].base +
1713                                  type->regions[mid].size))
1714                        left = mid + 1;
1715                else
1716                        return mid;
1717        } while (left < right);
1718        return -1;
1719}
1720
1721bool __init memblock_is_reserved(phys_addr_t addr)
1722{
1723        return memblock_search(&memblock.reserved, addr) != -1;
1724}
1725
1726bool __init_memblock memblock_is_memory(phys_addr_t addr)
1727{
1728        return memblock_search(&memblock.memory, addr) != -1;
1729}
1730
1731bool __init_memblock memblock_is_map_memory(phys_addr_t addr)
1732{
1733        int i = memblock_search(&memblock.memory, addr);
1734
1735        if (i == -1)
1736                return false;
1737        return !memblock_is_nomap(&memblock.memory.regions[i]);
1738}
1739
1740#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1741int __init_memblock memblock_search_pfn_nid(unsigned long pfn,
1742                         unsigned long *start_pfn, unsigned long *end_pfn)
1743{
1744        struct memblock_type *type = &memblock.memory;
1745        int mid = memblock_search(type, PFN_PHYS(pfn));
1746
1747        if (mid == -1)
1748                return -1;
1749
1750        *start_pfn = PFN_DOWN(type->regions[mid].base);
1751        *end_pfn = PFN_DOWN(type->regions[mid].base + type->regions[mid].size);
1752
1753        return type->regions[mid].nid;
1754}
1755#endif
1756
1757/**
1758 * memblock_is_region_memory - check if a region is a subset of memory
1759 * @base: base of region to check
1760 * @size: size of region to check
1761 *
1762 * Check if the region [@base, @base + @size) is a subset of a memory block.
1763 *
1764 * Return:
1765 * 0 if false, non-zero if true
1766 */
1767bool __init_memblock memblock_is_region_memory(phys_addr_t base, phys_addr_t size)
1768{
1769        int idx = memblock_search(&memblock.memory, base);
1770        phys_addr_t end = base + memblock_cap_size(base, &size);
1771
1772        if (idx == -1)
1773                return false;
1774        return (memblock.memory.regions[idx].base +
1775                 memblock.memory.regions[idx].size) >= end;
1776}
1777
1778/**
1779 * memblock_is_region_reserved - check if a region intersects reserved memory
1780 * @base: base of region to check
1781 * @size: size of region to check
1782 *
1783 * Check if the region [@base, @base + @size) intersects a reserved
1784 * memory block.
1785 *
1786 * Return:
1787 * True if they intersect, false if not.
1788 */
1789bool __init_memblock memblock_is_region_reserved(phys_addr_t base, phys_addr_t size)
1790{
1791        memblock_cap_size(base, &size);
1792        return memblock_overlaps_region(&memblock.reserved, base, size);
1793}
1794
1795void __init_memblock memblock_trim_memory(phys_addr_t align)
1796{
1797        phys_addr_t start, end, orig_start, orig_end;
1798        struct memblock_region *r;
1799
1800        for_each_memblock(memory, r) {
1801                orig_start = r->base;
1802                orig_end = r->base + r->size;
1803                start = round_up(orig_start, align);
1804                end = round_down(orig_end, align);
1805
1806                if (start == orig_start && end == orig_end)
1807                        continue;
1808
1809                if (start < end) {
1810                        r->base = start;
1811                        r->size = end - start;
1812                } else {
1813                        memblock_remove_region(&memblock.memory,
1814                                               r - memblock.memory.regions);
1815                        r--;
1816                }
1817        }
1818}
1819
1820void __init_memblock memblock_set_current_limit(phys_addr_t limit)
1821{
1822        memblock.current_limit = limit;
1823}
1824
1825phys_addr_t __init_memblock memblock_get_current_limit(void)
1826{
1827        return memblock.current_limit;
1828}
1829
1830static void __init_memblock memblock_dump(struct memblock_type *type)
1831{
1832        phys_addr_t base, end, size;
1833        enum memblock_flags flags;
1834        int idx;
1835        struct memblock_region *rgn;
1836
1837        pr_info(" %s.cnt  = 0x%lx\n", type->name, type->cnt);
1838
1839        for_each_memblock_type(idx, type, rgn) {
1840                char nid_buf[32] = "";
1841
1842                base = rgn->base;
1843                size = rgn->size;
1844                end = base + size - 1;
1845                flags = rgn->flags;
1846#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
1847                if (memblock_get_region_node(rgn) != MAX_NUMNODES)
1848                        snprintf(nid_buf, sizeof(nid_buf), " on node %d",
1849                                 memblock_get_region_node(rgn));
1850#endif
1851                pr_info(" %s[%#x]\t[%pa-%pa], %pa bytes%s flags: %#x\n",
1852                        type->name, idx, &base, &end, &size, nid_buf, flags);
1853        }
1854}
1855
1856void __init_memblock __memblock_dump_all(void)
1857{
1858        pr_info("MEMBLOCK configuration:\n");
1859        pr_info(" memory size = %pa reserved size = %pa\n",
1860                &memblock.memory.total_size,
1861                &memblock.reserved.total_size);
1862
1863        memblock_dump(&memblock.memory);
1864        memblock_dump(&memblock.reserved);
1865#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1866        memblock_dump(&memblock.physmem);
1867#endif
1868}
1869
1870void __init memblock_allow_resize(void)
1871{
1872        memblock_can_resize = 1;
1873}
1874
1875static int __init early_memblock(char *p)
1876{
1877        if (p && strstr(p, "debug"))
1878                memblock_debug = 1;
1879        return 0;
1880}
1881early_param("memblock", early_memblock);
1882
1883#if defined(CONFIG_DEBUG_FS) && !defined(CONFIG_ARCH_DISCARD_MEMBLOCK)
1884
1885static int memblock_debug_show(struct seq_file *m, void *private)
1886{
1887        struct memblock_type *type = m->private;
1888        struct memblock_region *reg;
1889        int i;
1890        phys_addr_t end;
1891
1892        for (i = 0; i < type->cnt; i++) {
1893                reg = &type->regions[i];
1894                end = reg->base + reg->size - 1;
1895
1896                seq_printf(m, "%4d: ", i);
1897                seq_printf(m, "%pa..%pa\n", &reg->base, &end);
1898        }
1899        return 0;
1900}
1901DEFINE_SHOW_ATTRIBUTE(memblock_debug);
1902
1903static int __init memblock_init_debugfs(void)
1904{
1905        struct dentry *root = debugfs_create_dir("memblock", NULL);
1906        if (!root)
1907                return -ENXIO;
1908        debugfs_create_file("memory", 0444, root,
1909                            &memblock.memory, &memblock_debug_fops);
1910        debugfs_create_file("reserved", 0444, root,
1911                            &memblock.reserved, &memblock_debug_fops);
1912#ifdef CONFIG_HAVE_MEMBLOCK_PHYS_MAP
1913        debugfs_create_file("physmem", 0444, root,
1914                            &memblock.physmem, &memblock_debug_fops);
1915#endif
1916
1917        return 0;
1918}
1919__initcall(memblock_init_debugfs);
1920
1921#endif /* CONFIG_DEBUG_FS */
1922