linux/mm/memory-failure.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008, 2009 Intel Corporation
   3 * Authors: Andi Kleen, Fengguang Wu
   4 *
   5 * This software may be redistributed and/or modified under the terms of
   6 * the GNU General Public License ("GPL") version 2 only as published by the
   7 * Free Software Foundation.
   8 *
   9 * High level machine check handler. Handles pages reported by the
  10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
  11 * failure.
  12 * 
  13 * In addition there is a "soft offline" entry point that allows stop using
  14 * not-yet-corrupted-by-suspicious pages without killing anything.
  15 *
  16 * Handles page cache pages in various states.  The tricky part
  17 * here is that we can access any page asynchronously in respect to 
  18 * other VM users, because memory failures could happen anytime and 
  19 * anywhere. This could violate some of their assumptions. This is why 
  20 * this code has to be extremely careful. Generally it tries to use 
  21 * normal locking rules, as in get the standard locks, even if that means 
  22 * the error handling takes potentially a long time.
  23 *
  24 * It can be very tempting to add handling for obscure cases here.
  25 * In general any code for handling new cases should only be added iff:
  26 * - You know how to test it.
  27 * - You have a test that can be added to mce-test
  28 *   https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
  29 * - The case actually shows up as a frequent (top 10) page state in
  30 *   tools/vm/page-types when running a real workload.
  31 * 
  32 * There are several operations here with exponential complexity because
  33 * of unsuitable VM data structures. For example the operation to map back 
  34 * from RMAP chains to processes has to walk the complete process list and 
  35 * has non linear complexity with the number. But since memory corruptions
  36 * are rare we hope to get away with this. This avoids impacting the core 
  37 * VM.
  38 */
  39#include <linux/kernel.h>
  40#include <linux/mm.h>
  41#include <linux/page-flags.h>
  42#include <linux/kernel-page-flags.h>
  43#include <linux/sched/signal.h>
  44#include <linux/sched/task.h>
  45#include <linux/ksm.h>
  46#include <linux/rmap.h>
  47#include <linux/export.h>
  48#include <linux/pagemap.h>
  49#include <linux/swap.h>
  50#include <linux/backing-dev.h>
  51#include <linux/migrate.h>
  52#include <linux/suspend.h>
  53#include <linux/slab.h>
  54#include <linux/swapops.h>
  55#include <linux/hugetlb.h>
  56#include <linux/memory_hotplug.h>
  57#include <linux/mm_inline.h>
  58#include <linux/memremap.h>
  59#include <linux/kfifo.h>
  60#include <linux/ratelimit.h>
  61#include <linux/page-isolation.h>
  62#include "internal.h"
  63#include "ras/ras_event.h"
  64
  65int sysctl_memory_failure_early_kill __read_mostly = 0;
  66
  67int sysctl_memory_failure_recovery __read_mostly = 1;
  68
  69atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
  70
  71#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
  72
  73u32 hwpoison_filter_enable = 0;
  74u32 hwpoison_filter_dev_major = ~0U;
  75u32 hwpoison_filter_dev_minor = ~0U;
  76u64 hwpoison_filter_flags_mask;
  77u64 hwpoison_filter_flags_value;
  78EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
  79EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
  80EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
  81EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
  82EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
  83
  84static int hwpoison_filter_dev(struct page *p)
  85{
  86        struct address_space *mapping;
  87        dev_t dev;
  88
  89        if (hwpoison_filter_dev_major == ~0U &&
  90            hwpoison_filter_dev_minor == ~0U)
  91                return 0;
  92
  93        /*
  94         * page_mapping() does not accept slab pages.
  95         */
  96        if (PageSlab(p))
  97                return -EINVAL;
  98
  99        mapping = page_mapping(p);
 100        if (mapping == NULL || mapping->host == NULL)
 101                return -EINVAL;
 102
 103        dev = mapping->host->i_sb->s_dev;
 104        if (hwpoison_filter_dev_major != ~0U &&
 105            hwpoison_filter_dev_major != MAJOR(dev))
 106                return -EINVAL;
 107        if (hwpoison_filter_dev_minor != ~0U &&
 108            hwpoison_filter_dev_minor != MINOR(dev))
 109                return -EINVAL;
 110
 111        return 0;
 112}
 113
 114static int hwpoison_filter_flags(struct page *p)
 115{
 116        if (!hwpoison_filter_flags_mask)
 117                return 0;
 118
 119        if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
 120                                    hwpoison_filter_flags_value)
 121                return 0;
 122        else
 123                return -EINVAL;
 124}
 125
 126/*
 127 * This allows stress tests to limit test scope to a collection of tasks
 128 * by putting them under some memcg. This prevents killing unrelated/important
 129 * processes such as /sbin/init. Note that the target task may share clean
 130 * pages with init (eg. libc text), which is harmless. If the target task
 131 * share _dirty_ pages with another task B, the test scheme must make sure B
 132 * is also included in the memcg. At last, due to race conditions this filter
 133 * can only guarantee that the page either belongs to the memcg tasks, or is
 134 * a freed page.
 135 */
 136#ifdef CONFIG_MEMCG
 137u64 hwpoison_filter_memcg;
 138EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
 139static int hwpoison_filter_task(struct page *p)
 140{
 141        if (!hwpoison_filter_memcg)
 142                return 0;
 143
 144        if (page_cgroup_ino(p) != hwpoison_filter_memcg)
 145                return -EINVAL;
 146
 147        return 0;
 148}
 149#else
 150static int hwpoison_filter_task(struct page *p) { return 0; }
 151#endif
 152
 153int hwpoison_filter(struct page *p)
 154{
 155        if (!hwpoison_filter_enable)
 156                return 0;
 157
 158        if (hwpoison_filter_dev(p))
 159                return -EINVAL;
 160
 161        if (hwpoison_filter_flags(p))
 162                return -EINVAL;
 163
 164        if (hwpoison_filter_task(p))
 165                return -EINVAL;
 166
 167        return 0;
 168}
 169#else
 170int hwpoison_filter(struct page *p)
 171{
 172        return 0;
 173}
 174#endif
 175
 176EXPORT_SYMBOL_GPL(hwpoison_filter);
 177
 178/*
 179 * Kill all processes that have a poisoned page mapped and then isolate
 180 * the page.
 181 *
 182 * General strategy:
 183 * Find all processes having the page mapped and kill them.
 184 * But we keep a page reference around so that the page is not
 185 * actually freed yet.
 186 * Then stash the page away
 187 *
 188 * There's no convenient way to get back to mapped processes
 189 * from the VMAs. So do a brute-force search over all
 190 * running processes.
 191 *
 192 * Remember that machine checks are not common (or rather
 193 * if they are common you have other problems), so this shouldn't
 194 * be a performance issue.
 195 *
 196 * Also there are some races possible while we get from the
 197 * error detection to actually handle it.
 198 */
 199
 200struct to_kill {
 201        struct list_head nd;
 202        struct task_struct *tsk;
 203        unsigned long addr;
 204        short size_shift;
 205        char addr_valid;
 206};
 207
 208/*
 209 * Send all the processes who have the page mapped a signal.
 210 * ``action optional'' if they are not immediately affected by the error
 211 * ``action required'' if error happened in current execution context
 212 */
 213static int kill_proc(struct to_kill *tk, unsigned long pfn, int flags)
 214{
 215        struct task_struct *t = tk->tsk;
 216        short addr_lsb = tk->size_shift;
 217        int ret;
 218
 219        pr_err("Memory failure: %#lx: Killing %s:%d due to hardware memory corruption\n",
 220                pfn, t->comm, t->pid);
 221
 222        if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
 223                ret = force_sig_mceerr(BUS_MCEERR_AR, (void __user *)tk->addr,
 224                                       addr_lsb, current);
 225        } else {
 226                /*
 227                 * Don't use force here, it's convenient if the signal
 228                 * can be temporarily blocked.
 229                 * This could cause a loop when the user sets SIGBUS
 230                 * to SIG_IGN, but hopefully no one will do that?
 231                 */
 232                ret = send_sig_mceerr(BUS_MCEERR_AO, (void __user *)tk->addr,
 233                                      addr_lsb, t);  /* synchronous? */
 234        }
 235        if (ret < 0)
 236                pr_info("Memory failure: Error sending signal to %s:%d: %d\n",
 237                        t->comm, t->pid, ret);
 238        return ret;
 239}
 240
 241/*
 242 * When a unknown page type is encountered drain as many buffers as possible
 243 * in the hope to turn the page into a LRU or free page, which we can handle.
 244 */
 245void shake_page(struct page *p, int access)
 246{
 247        if (PageHuge(p))
 248                return;
 249
 250        if (!PageSlab(p)) {
 251                lru_add_drain_all();
 252                if (PageLRU(p))
 253                        return;
 254                drain_all_pages(page_zone(p));
 255                if (PageLRU(p) || is_free_buddy_page(p))
 256                        return;
 257        }
 258
 259        /*
 260         * Only call shrink_node_slabs here (which would also shrink
 261         * other caches) if access is not potentially fatal.
 262         */
 263        if (access)
 264                drop_slab_node(page_to_nid(p));
 265}
 266EXPORT_SYMBOL_GPL(shake_page);
 267
 268static unsigned long dev_pagemap_mapping_shift(struct page *page,
 269                struct vm_area_struct *vma)
 270{
 271        unsigned long address = vma_address(page, vma);
 272        pgd_t *pgd;
 273        p4d_t *p4d;
 274        pud_t *pud;
 275        pmd_t *pmd;
 276        pte_t *pte;
 277
 278        pgd = pgd_offset(vma->vm_mm, address);
 279        if (!pgd_present(*pgd))
 280                return 0;
 281        p4d = p4d_offset(pgd, address);
 282        if (!p4d_present(*p4d))
 283                return 0;
 284        pud = pud_offset(p4d, address);
 285        if (!pud_present(*pud))
 286                return 0;
 287        if (pud_devmap(*pud))
 288                return PUD_SHIFT;
 289        pmd = pmd_offset(pud, address);
 290        if (!pmd_present(*pmd))
 291                return 0;
 292        if (pmd_devmap(*pmd))
 293                return PMD_SHIFT;
 294        pte = pte_offset_map(pmd, address);
 295        if (!pte_present(*pte))
 296                return 0;
 297        if (pte_devmap(*pte))
 298                return PAGE_SHIFT;
 299        return 0;
 300}
 301
 302/*
 303 * Failure handling: if we can't find or can't kill a process there's
 304 * not much we can do.  We just print a message and ignore otherwise.
 305 */
 306
 307/*
 308 * Schedule a process for later kill.
 309 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
 310 * TBD would GFP_NOIO be enough?
 311 */
 312static void add_to_kill(struct task_struct *tsk, struct page *p,
 313                       struct vm_area_struct *vma,
 314                       struct list_head *to_kill,
 315                       struct to_kill **tkc)
 316{
 317        struct to_kill *tk;
 318
 319        if (*tkc) {
 320                tk = *tkc;
 321                *tkc = NULL;
 322        } else {
 323                tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
 324                if (!tk) {
 325                        pr_err("Memory failure: Out of memory while machine check handling\n");
 326                        return;
 327                }
 328        }
 329        tk->addr = page_address_in_vma(p, vma);
 330        tk->addr_valid = 1;
 331        if (is_zone_device_page(p))
 332                tk->size_shift = dev_pagemap_mapping_shift(p, vma);
 333        else
 334                tk->size_shift = compound_order(compound_head(p)) + PAGE_SHIFT;
 335
 336        /*
 337         * In theory we don't have to kill when the page was
 338         * munmaped. But it could be also a mremap. Since that's
 339         * likely very rare kill anyways just out of paranoia, but use
 340         * a SIGKILL because the error is not contained anymore.
 341         */
 342        if (tk->addr == -EFAULT || tk->size_shift == 0) {
 343                pr_info("Memory failure: Unable to find user space address %lx in %s\n",
 344                        page_to_pfn(p), tsk->comm);
 345                tk->addr_valid = 0;
 346        }
 347        get_task_struct(tsk);
 348        tk->tsk = tsk;
 349        list_add_tail(&tk->nd, to_kill);
 350}
 351
 352/*
 353 * Kill the processes that have been collected earlier.
 354 *
 355 * Only do anything when DOIT is set, otherwise just free the list
 356 * (this is used for clean pages which do not need killing)
 357 * Also when FAIL is set do a force kill because something went
 358 * wrong earlier.
 359 */
 360static void kill_procs(struct list_head *to_kill, int forcekill, bool fail,
 361                unsigned long pfn, int flags)
 362{
 363        struct to_kill *tk, *next;
 364
 365        list_for_each_entry_safe (tk, next, to_kill, nd) {
 366                if (forcekill) {
 367                        /*
 368                         * In case something went wrong with munmapping
 369                         * make sure the process doesn't catch the
 370                         * signal and then access the memory. Just kill it.
 371                         */
 372                        if (fail || tk->addr_valid == 0) {
 373                                pr_err("Memory failure: %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
 374                                       pfn, tk->tsk->comm, tk->tsk->pid);
 375                                force_sig(SIGKILL, tk->tsk);
 376                        }
 377
 378                        /*
 379                         * In theory the process could have mapped
 380                         * something else on the address in-between. We could
 381                         * check for that, but we need to tell the
 382                         * process anyways.
 383                         */
 384                        else if (kill_proc(tk, pfn, flags) < 0)
 385                                pr_err("Memory failure: %#lx: Cannot send advisory machine check signal to %s:%d\n",
 386                                       pfn, tk->tsk->comm, tk->tsk->pid);
 387                }
 388                put_task_struct(tk->tsk);
 389                kfree(tk);
 390        }
 391}
 392
 393/*
 394 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
 395 * on behalf of the thread group. Return task_struct of the (first found)
 396 * dedicated thread if found, and return NULL otherwise.
 397 *
 398 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
 399 * have to call rcu_read_lock/unlock() in this function.
 400 */
 401static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
 402{
 403        struct task_struct *t;
 404
 405        for_each_thread(tsk, t)
 406                if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
 407                        return t;
 408        return NULL;
 409}
 410
 411/*
 412 * Determine whether a given process is "early kill" process which expects
 413 * to be signaled when some page under the process is hwpoisoned.
 414 * Return task_struct of the dedicated thread (main thread unless explicitly
 415 * specified) if the process is "early kill," and otherwise returns NULL.
 416 */
 417static struct task_struct *task_early_kill(struct task_struct *tsk,
 418                                           int force_early)
 419{
 420        struct task_struct *t;
 421        if (!tsk->mm)
 422                return NULL;
 423        if (force_early)
 424                return tsk;
 425        t = find_early_kill_thread(tsk);
 426        if (t)
 427                return t;
 428        if (sysctl_memory_failure_early_kill)
 429                return tsk;
 430        return NULL;
 431}
 432
 433/*
 434 * Collect processes when the error hit an anonymous page.
 435 */
 436static void collect_procs_anon(struct page *page, struct list_head *to_kill,
 437                              struct to_kill **tkc, int force_early)
 438{
 439        struct vm_area_struct *vma;
 440        struct task_struct *tsk;
 441        struct anon_vma *av;
 442        pgoff_t pgoff;
 443
 444        av = page_lock_anon_vma_read(page);
 445        if (av == NULL) /* Not actually mapped anymore */
 446                return;
 447
 448        pgoff = page_to_pgoff(page);
 449        read_lock(&tasklist_lock);
 450        for_each_process (tsk) {
 451                struct anon_vma_chain *vmac;
 452                struct task_struct *t = task_early_kill(tsk, force_early);
 453
 454                if (!t)
 455                        continue;
 456                anon_vma_interval_tree_foreach(vmac, &av->rb_root,
 457                                               pgoff, pgoff) {
 458                        vma = vmac->vma;
 459                        if (!page_mapped_in_vma(page, vma))
 460                                continue;
 461                        if (vma->vm_mm == t->mm)
 462                                add_to_kill(t, page, vma, to_kill, tkc);
 463                }
 464        }
 465        read_unlock(&tasklist_lock);
 466        page_unlock_anon_vma_read(av);
 467}
 468
 469/*
 470 * Collect processes when the error hit a file mapped page.
 471 */
 472static void collect_procs_file(struct page *page, struct list_head *to_kill,
 473                              struct to_kill **tkc, int force_early)
 474{
 475        struct vm_area_struct *vma;
 476        struct task_struct *tsk;
 477        struct address_space *mapping = page->mapping;
 478
 479        i_mmap_lock_read(mapping);
 480        read_lock(&tasklist_lock);
 481        for_each_process(tsk) {
 482                pgoff_t pgoff = page_to_pgoff(page);
 483                struct task_struct *t = task_early_kill(tsk, force_early);
 484
 485                if (!t)
 486                        continue;
 487                vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
 488                                      pgoff) {
 489                        /*
 490                         * Send early kill signal to tasks where a vma covers
 491                         * the page but the corrupted page is not necessarily
 492                         * mapped it in its pte.
 493                         * Assume applications who requested early kill want
 494                         * to be informed of all such data corruptions.
 495                         */
 496                        if (vma->vm_mm == t->mm)
 497                                add_to_kill(t, page, vma, to_kill, tkc);
 498                }
 499        }
 500        read_unlock(&tasklist_lock);
 501        i_mmap_unlock_read(mapping);
 502}
 503
 504/*
 505 * Collect the processes who have the corrupted page mapped to kill.
 506 * This is done in two steps for locking reasons.
 507 * First preallocate one tokill structure outside the spin locks,
 508 * so that we can kill at least one process reasonably reliable.
 509 */
 510static void collect_procs(struct page *page, struct list_head *tokill,
 511                                int force_early)
 512{
 513        struct to_kill *tk;
 514
 515        if (!page->mapping)
 516                return;
 517
 518        tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
 519        if (!tk)
 520                return;
 521        if (PageAnon(page))
 522                collect_procs_anon(page, tokill, &tk, force_early);
 523        else
 524                collect_procs_file(page, tokill, &tk, force_early);
 525        kfree(tk);
 526}
 527
 528static const char *action_name[] = {
 529        [MF_IGNORED] = "Ignored",
 530        [MF_FAILED] = "Failed",
 531        [MF_DELAYED] = "Delayed",
 532        [MF_RECOVERED] = "Recovered",
 533};
 534
 535static const char * const action_page_types[] = {
 536        [MF_MSG_KERNEL]                 = "reserved kernel page",
 537        [MF_MSG_KERNEL_HIGH_ORDER]      = "high-order kernel page",
 538        [MF_MSG_SLAB]                   = "kernel slab page",
 539        [MF_MSG_DIFFERENT_COMPOUND]     = "different compound page after locking",
 540        [MF_MSG_POISONED_HUGE]          = "huge page already hardware poisoned",
 541        [MF_MSG_HUGE]                   = "huge page",
 542        [MF_MSG_FREE_HUGE]              = "free huge page",
 543        [MF_MSG_NON_PMD_HUGE]           = "non-pmd-sized huge page",
 544        [MF_MSG_UNMAP_FAILED]           = "unmapping failed page",
 545        [MF_MSG_DIRTY_SWAPCACHE]        = "dirty swapcache page",
 546        [MF_MSG_CLEAN_SWAPCACHE]        = "clean swapcache page",
 547        [MF_MSG_DIRTY_MLOCKED_LRU]      = "dirty mlocked LRU page",
 548        [MF_MSG_CLEAN_MLOCKED_LRU]      = "clean mlocked LRU page",
 549        [MF_MSG_DIRTY_UNEVICTABLE_LRU]  = "dirty unevictable LRU page",
 550        [MF_MSG_CLEAN_UNEVICTABLE_LRU]  = "clean unevictable LRU page",
 551        [MF_MSG_DIRTY_LRU]              = "dirty LRU page",
 552        [MF_MSG_CLEAN_LRU]              = "clean LRU page",
 553        [MF_MSG_TRUNCATED_LRU]          = "already truncated LRU page",
 554        [MF_MSG_BUDDY]                  = "free buddy page",
 555        [MF_MSG_BUDDY_2ND]              = "free buddy page (2nd try)",
 556        [MF_MSG_DAX]                    = "dax page",
 557        [MF_MSG_UNKNOWN]                = "unknown page",
 558};
 559
 560/*
 561 * XXX: It is possible that a page is isolated from LRU cache,
 562 * and then kept in swap cache or failed to remove from page cache.
 563 * The page count will stop it from being freed by unpoison.
 564 * Stress tests should be aware of this memory leak problem.
 565 */
 566static int delete_from_lru_cache(struct page *p)
 567{
 568        if (!isolate_lru_page(p)) {
 569                /*
 570                 * Clear sensible page flags, so that the buddy system won't
 571                 * complain when the page is unpoison-and-freed.
 572                 */
 573                ClearPageActive(p);
 574                ClearPageUnevictable(p);
 575
 576                /*
 577                 * Poisoned page might never drop its ref count to 0 so we have
 578                 * to uncharge it manually from its memcg.
 579                 */
 580                mem_cgroup_uncharge(p);
 581
 582                /*
 583                 * drop the page count elevated by isolate_lru_page()
 584                 */
 585                put_page(p);
 586                return 0;
 587        }
 588        return -EIO;
 589}
 590
 591static int truncate_error_page(struct page *p, unsigned long pfn,
 592                                struct address_space *mapping)
 593{
 594        int ret = MF_FAILED;
 595
 596        if (mapping->a_ops->error_remove_page) {
 597                int err = mapping->a_ops->error_remove_page(mapping, p);
 598
 599                if (err != 0) {
 600                        pr_info("Memory failure: %#lx: Failed to punch page: %d\n",
 601                                pfn, err);
 602                } else if (page_has_private(p) &&
 603                           !try_to_release_page(p, GFP_NOIO)) {
 604                        pr_info("Memory failure: %#lx: failed to release buffers\n",
 605                                pfn);
 606                } else {
 607                        ret = MF_RECOVERED;
 608                }
 609        } else {
 610                /*
 611                 * If the file system doesn't support it just invalidate
 612                 * This fails on dirty or anything with private pages
 613                 */
 614                if (invalidate_inode_page(p))
 615                        ret = MF_RECOVERED;
 616                else
 617                        pr_info("Memory failure: %#lx: Failed to invalidate\n",
 618                                pfn);
 619        }
 620
 621        return ret;
 622}
 623
 624/*
 625 * Error hit kernel page.
 626 * Do nothing, try to be lucky and not touch this instead. For a few cases we
 627 * could be more sophisticated.
 628 */
 629static int me_kernel(struct page *p, unsigned long pfn)
 630{
 631        return MF_IGNORED;
 632}
 633
 634/*
 635 * Page in unknown state. Do nothing.
 636 */
 637static int me_unknown(struct page *p, unsigned long pfn)
 638{
 639        pr_err("Memory failure: %#lx: Unknown page state\n", pfn);
 640        return MF_FAILED;
 641}
 642
 643/*
 644 * Clean (or cleaned) page cache page.
 645 */
 646static int me_pagecache_clean(struct page *p, unsigned long pfn)
 647{
 648        struct address_space *mapping;
 649
 650        delete_from_lru_cache(p);
 651
 652        /*
 653         * For anonymous pages we're done the only reference left
 654         * should be the one m_f() holds.
 655         */
 656        if (PageAnon(p))
 657                return MF_RECOVERED;
 658
 659        /*
 660         * Now truncate the page in the page cache. This is really
 661         * more like a "temporary hole punch"
 662         * Don't do this for block devices when someone else
 663         * has a reference, because it could be file system metadata
 664         * and that's not safe to truncate.
 665         */
 666        mapping = page_mapping(p);
 667        if (!mapping) {
 668                /*
 669                 * Page has been teared down in the meanwhile
 670                 */
 671                return MF_FAILED;
 672        }
 673
 674        /*
 675         * Truncation is a bit tricky. Enable it per file system for now.
 676         *
 677         * Open: to take i_mutex or not for this? Right now we don't.
 678         */
 679        return truncate_error_page(p, pfn, mapping);
 680}
 681
 682/*
 683 * Dirty pagecache page
 684 * Issues: when the error hit a hole page the error is not properly
 685 * propagated.
 686 */
 687static int me_pagecache_dirty(struct page *p, unsigned long pfn)
 688{
 689        struct address_space *mapping = page_mapping(p);
 690
 691        SetPageError(p);
 692        /* TBD: print more information about the file. */
 693        if (mapping) {
 694                /*
 695                 * IO error will be reported by write(), fsync(), etc.
 696                 * who check the mapping.
 697                 * This way the application knows that something went
 698                 * wrong with its dirty file data.
 699                 *
 700                 * There's one open issue:
 701                 *
 702                 * The EIO will be only reported on the next IO
 703                 * operation and then cleared through the IO map.
 704                 * Normally Linux has two mechanisms to pass IO error
 705                 * first through the AS_EIO flag in the address space
 706                 * and then through the PageError flag in the page.
 707                 * Since we drop pages on memory failure handling the
 708                 * only mechanism open to use is through AS_AIO.
 709                 *
 710                 * This has the disadvantage that it gets cleared on
 711                 * the first operation that returns an error, while
 712                 * the PageError bit is more sticky and only cleared
 713                 * when the page is reread or dropped.  If an
 714                 * application assumes it will always get error on
 715                 * fsync, but does other operations on the fd before
 716                 * and the page is dropped between then the error
 717                 * will not be properly reported.
 718                 *
 719                 * This can already happen even without hwpoisoned
 720                 * pages: first on metadata IO errors (which only
 721                 * report through AS_EIO) or when the page is dropped
 722                 * at the wrong time.
 723                 *
 724                 * So right now we assume that the application DTRT on
 725                 * the first EIO, but we're not worse than other parts
 726                 * of the kernel.
 727                 */
 728                mapping_set_error(mapping, -EIO);
 729        }
 730
 731        return me_pagecache_clean(p, pfn);
 732}
 733
 734/*
 735 * Clean and dirty swap cache.
 736 *
 737 * Dirty swap cache page is tricky to handle. The page could live both in page
 738 * cache and swap cache(ie. page is freshly swapped in). So it could be
 739 * referenced concurrently by 2 types of PTEs:
 740 * normal PTEs and swap PTEs. We try to handle them consistently by calling
 741 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
 742 * and then
 743 *      - clear dirty bit to prevent IO
 744 *      - remove from LRU
 745 *      - but keep in the swap cache, so that when we return to it on
 746 *        a later page fault, we know the application is accessing
 747 *        corrupted data and shall be killed (we installed simple
 748 *        interception code in do_swap_page to catch it).
 749 *
 750 * Clean swap cache pages can be directly isolated. A later page fault will
 751 * bring in the known good data from disk.
 752 */
 753static int me_swapcache_dirty(struct page *p, unsigned long pfn)
 754{
 755        ClearPageDirty(p);
 756        /* Trigger EIO in shmem: */
 757        ClearPageUptodate(p);
 758
 759        if (!delete_from_lru_cache(p))
 760                return MF_DELAYED;
 761        else
 762                return MF_FAILED;
 763}
 764
 765static int me_swapcache_clean(struct page *p, unsigned long pfn)
 766{
 767        delete_from_swap_cache(p);
 768
 769        if (!delete_from_lru_cache(p))
 770                return MF_RECOVERED;
 771        else
 772                return MF_FAILED;
 773}
 774
 775/*
 776 * Huge pages. Needs work.
 777 * Issues:
 778 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
 779 *   To narrow down kill region to one page, we need to break up pmd.
 780 */
 781static int me_huge_page(struct page *p, unsigned long pfn)
 782{
 783        int res = 0;
 784        struct page *hpage = compound_head(p);
 785        struct address_space *mapping;
 786
 787        if (!PageHuge(hpage))
 788                return MF_DELAYED;
 789
 790        mapping = page_mapping(hpage);
 791        if (mapping) {
 792                res = truncate_error_page(hpage, pfn, mapping);
 793        } else {
 794                unlock_page(hpage);
 795                /*
 796                 * migration entry prevents later access on error anonymous
 797                 * hugepage, so we can free and dissolve it into buddy to
 798                 * save healthy subpages.
 799                 */
 800                if (PageAnon(hpage))
 801                        put_page(hpage);
 802                dissolve_free_huge_page(p);
 803                res = MF_RECOVERED;
 804                lock_page(hpage);
 805        }
 806
 807        return res;
 808}
 809
 810/*
 811 * Various page states we can handle.
 812 *
 813 * A page state is defined by its current page->flags bits.
 814 * The table matches them in order and calls the right handler.
 815 *
 816 * This is quite tricky because we can access page at any time
 817 * in its live cycle, so all accesses have to be extremely careful.
 818 *
 819 * This is not complete. More states could be added.
 820 * For any missing state don't attempt recovery.
 821 */
 822
 823#define dirty           (1UL << PG_dirty)
 824#define sc              ((1UL << PG_swapcache) | (1UL << PG_swapbacked))
 825#define unevict         (1UL << PG_unevictable)
 826#define mlock           (1UL << PG_mlocked)
 827#define writeback       (1UL << PG_writeback)
 828#define lru             (1UL << PG_lru)
 829#define head            (1UL << PG_head)
 830#define slab            (1UL << PG_slab)
 831#define reserved        (1UL << PG_reserved)
 832
 833static struct page_state {
 834        unsigned long mask;
 835        unsigned long res;
 836        enum mf_action_page_type type;
 837        int (*action)(struct page *p, unsigned long pfn);
 838} error_states[] = {
 839        { reserved,     reserved,       MF_MSG_KERNEL,  me_kernel },
 840        /*
 841         * free pages are specially detected outside this table:
 842         * PG_buddy pages only make a small fraction of all free pages.
 843         */
 844
 845        /*
 846         * Could in theory check if slab page is free or if we can drop
 847         * currently unused objects without touching them. But just
 848         * treat it as standard kernel for now.
 849         */
 850        { slab,         slab,           MF_MSG_SLAB,    me_kernel },
 851
 852        { head,         head,           MF_MSG_HUGE,            me_huge_page },
 853
 854        { sc|dirty,     sc|dirty,       MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
 855        { sc|dirty,     sc,             MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
 856
 857        { mlock|dirty,  mlock|dirty,    MF_MSG_DIRTY_MLOCKED_LRU,       me_pagecache_dirty },
 858        { mlock|dirty,  mlock,          MF_MSG_CLEAN_MLOCKED_LRU,       me_pagecache_clean },
 859
 860        { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU,   me_pagecache_dirty },
 861        { unevict|dirty, unevict,       MF_MSG_CLEAN_UNEVICTABLE_LRU,   me_pagecache_clean },
 862
 863        { lru|dirty,    lru|dirty,      MF_MSG_DIRTY_LRU,       me_pagecache_dirty },
 864        { lru|dirty,    lru,            MF_MSG_CLEAN_LRU,       me_pagecache_clean },
 865
 866        /*
 867         * Catchall entry: must be at end.
 868         */
 869        { 0,            0,              MF_MSG_UNKNOWN, me_unknown },
 870};
 871
 872#undef dirty
 873#undef sc
 874#undef unevict
 875#undef mlock
 876#undef writeback
 877#undef lru
 878#undef head
 879#undef slab
 880#undef reserved
 881
 882/*
 883 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
 884 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
 885 */
 886static void action_result(unsigned long pfn, enum mf_action_page_type type,
 887                          enum mf_result result)
 888{
 889        trace_memory_failure_event(pfn, type, result);
 890
 891        pr_err("Memory failure: %#lx: recovery action for %s: %s\n",
 892                pfn, action_page_types[type], action_name[result]);
 893}
 894
 895static int page_action(struct page_state *ps, struct page *p,
 896                        unsigned long pfn)
 897{
 898        int result;
 899        int count;
 900
 901        result = ps->action(p, pfn);
 902
 903        count = page_count(p) - 1;
 904        if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
 905                count--;
 906        if (count > 0) {
 907                pr_err("Memory failure: %#lx: %s still referenced by %d users\n",
 908                       pfn, action_page_types[ps->type], count);
 909                result = MF_FAILED;
 910        }
 911        action_result(pfn, ps->type, result);
 912
 913        /* Could do more checks here if page looks ok */
 914        /*
 915         * Could adjust zone counters here to correct for the missing page.
 916         */
 917
 918        return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
 919}
 920
 921/**
 922 * get_hwpoison_page() - Get refcount for memory error handling:
 923 * @page:       raw error page (hit by memory error)
 924 *
 925 * Return: return 0 if failed to grab the refcount, otherwise true (some
 926 * non-zero value.)
 927 */
 928int get_hwpoison_page(struct page *page)
 929{
 930        struct page *head = compound_head(page);
 931
 932        if (!PageHuge(head) && PageTransHuge(head)) {
 933                /*
 934                 * Non anonymous thp exists only in allocation/free time. We
 935                 * can't handle such a case correctly, so let's give it up.
 936                 * This should be better than triggering BUG_ON when kernel
 937                 * tries to touch the "partially handled" page.
 938                 */
 939                if (!PageAnon(head)) {
 940                        pr_err("Memory failure: %#lx: non anonymous thp\n",
 941                                page_to_pfn(page));
 942                        return 0;
 943                }
 944        }
 945
 946        if (get_page_unless_zero(head)) {
 947                if (head == compound_head(page))
 948                        return 1;
 949
 950                pr_info("Memory failure: %#lx cannot catch tail\n",
 951                        page_to_pfn(page));
 952                put_page(head);
 953        }
 954
 955        return 0;
 956}
 957EXPORT_SYMBOL_GPL(get_hwpoison_page);
 958
 959/*
 960 * Do all that is necessary to remove user space mappings. Unmap
 961 * the pages and send SIGBUS to the processes if the data was dirty.
 962 */
 963static bool hwpoison_user_mappings(struct page *p, unsigned long pfn,
 964                                  int flags, struct page **hpagep)
 965{
 966        enum ttu_flags ttu = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
 967        struct address_space *mapping;
 968        LIST_HEAD(tokill);
 969        bool unmap_success;
 970        int kill = 1, forcekill;
 971        struct page *hpage = *hpagep;
 972        bool mlocked = PageMlocked(hpage);
 973
 974        /*
 975         * Here we are interested only in user-mapped pages, so skip any
 976         * other types of pages.
 977         */
 978        if (PageReserved(p) || PageSlab(p))
 979                return true;
 980        if (!(PageLRU(hpage) || PageHuge(p)))
 981                return true;
 982
 983        /*
 984         * This check implies we don't kill processes if their pages
 985         * are in the swap cache early. Those are always late kills.
 986         */
 987        if (!page_mapped(hpage))
 988                return true;
 989
 990        if (PageKsm(p)) {
 991                pr_err("Memory failure: %#lx: can't handle KSM pages.\n", pfn);
 992                return false;
 993        }
 994
 995        if (PageSwapCache(p)) {
 996                pr_err("Memory failure: %#lx: keeping poisoned page in swap cache\n",
 997                        pfn);
 998                ttu |= TTU_IGNORE_HWPOISON;
 999        }
1000
1001        /*
1002         * Propagate the dirty bit from PTEs to struct page first, because we
1003         * need this to decide if we should kill or just drop the page.
1004         * XXX: the dirty test could be racy: set_page_dirty() may not always
1005         * be called inside page lock (it's recommended but not enforced).
1006         */
1007        mapping = page_mapping(hpage);
1008        if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
1009            mapping_cap_writeback_dirty(mapping)) {
1010                if (page_mkclean(hpage)) {
1011                        SetPageDirty(hpage);
1012                } else {
1013                        kill = 0;
1014                        ttu |= TTU_IGNORE_HWPOISON;
1015                        pr_info("Memory failure: %#lx: corrupted page was clean: dropped without side effects\n",
1016                                pfn);
1017                }
1018        }
1019
1020        /*
1021         * First collect all the processes that have the page
1022         * mapped in dirty form.  This has to be done before try_to_unmap,
1023         * because ttu takes the rmap data structures down.
1024         *
1025         * Error handling: We ignore errors here because
1026         * there's nothing that can be done.
1027         */
1028        if (kill)
1029                collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
1030
1031        unmap_success = try_to_unmap(hpage, ttu);
1032        if (!unmap_success)
1033                pr_err("Memory failure: %#lx: failed to unmap page (mapcount=%d)\n",
1034                       pfn, page_mapcount(hpage));
1035
1036        /*
1037         * try_to_unmap() might put mlocked page in lru cache, so call
1038         * shake_page() again to ensure that it's flushed.
1039         */
1040        if (mlocked)
1041                shake_page(hpage, 0);
1042
1043        /*
1044         * Now that the dirty bit has been propagated to the
1045         * struct page and all unmaps done we can decide if
1046         * killing is needed or not.  Only kill when the page
1047         * was dirty or the process is not restartable,
1048         * otherwise the tokill list is merely
1049         * freed.  When there was a problem unmapping earlier
1050         * use a more force-full uncatchable kill to prevent
1051         * any accesses to the poisoned memory.
1052         */
1053        forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
1054        kill_procs(&tokill, forcekill, !unmap_success, pfn, flags);
1055
1056        return unmap_success;
1057}
1058
1059static int identify_page_state(unsigned long pfn, struct page *p,
1060                                unsigned long page_flags)
1061{
1062        struct page_state *ps;
1063
1064        /*
1065         * The first check uses the current page flags which may not have any
1066         * relevant information. The second check with the saved page flags is
1067         * carried out only if the first check can't determine the page status.
1068         */
1069        for (ps = error_states;; ps++)
1070                if ((p->flags & ps->mask) == ps->res)
1071                        break;
1072
1073        page_flags |= (p->flags & (1UL << PG_dirty));
1074
1075        if (!ps->mask)
1076                for (ps = error_states;; ps++)
1077                        if ((page_flags & ps->mask) == ps->res)
1078                                break;
1079        return page_action(ps, p, pfn);
1080}
1081
1082static int memory_failure_hugetlb(unsigned long pfn, int flags)
1083{
1084        struct page *p = pfn_to_page(pfn);
1085        struct page *head = compound_head(p);
1086        int res;
1087        unsigned long page_flags;
1088
1089        if (TestSetPageHWPoison(head)) {
1090                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1091                       pfn);
1092                return 0;
1093        }
1094
1095        num_poisoned_pages_inc();
1096
1097        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1098                /*
1099                 * Check "filter hit" and "race with other subpage."
1100                 */
1101                lock_page(head);
1102                if (PageHWPoison(head)) {
1103                        if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1104                            || (p != head && TestSetPageHWPoison(head))) {
1105                                num_poisoned_pages_dec();
1106                                unlock_page(head);
1107                                return 0;
1108                        }
1109                }
1110                unlock_page(head);
1111                dissolve_free_huge_page(p);
1112                action_result(pfn, MF_MSG_FREE_HUGE, MF_DELAYED);
1113                return 0;
1114        }
1115
1116        lock_page(head);
1117        page_flags = head->flags;
1118
1119        if (!PageHWPoison(head)) {
1120                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1121                num_poisoned_pages_dec();
1122                unlock_page(head);
1123                put_hwpoison_page(head);
1124                return 0;
1125        }
1126
1127        /*
1128         * TODO: hwpoison for pud-sized hugetlb doesn't work right now, so
1129         * simply disable it. In order to make it work properly, we need
1130         * make sure that:
1131         *  - conversion of a pud that maps an error hugetlb into hwpoison
1132         *    entry properly works, and
1133         *  - other mm code walking over page table is aware of pud-aligned
1134         *    hwpoison entries.
1135         */
1136        if (huge_page_size(page_hstate(head)) > PMD_SIZE) {
1137                action_result(pfn, MF_MSG_NON_PMD_HUGE, MF_IGNORED);
1138                res = -EBUSY;
1139                goto out;
1140        }
1141
1142        if (!hwpoison_user_mappings(p, pfn, flags, &head)) {
1143                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1144                res = -EBUSY;
1145                goto out;
1146        }
1147
1148        res = identify_page_state(pfn, p, page_flags);
1149out:
1150        unlock_page(head);
1151        return res;
1152}
1153
1154static int memory_failure_dev_pagemap(unsigned long pfn, int flags,
1155                struct dev_pagemap *pgmap)
1156{
1157        struct page *page = pfn_to_page(pfn);
1158        const bool unmap_success = true;
1159        unsigned long size = 0;
1160        struct to_kill *tk;
1161        LIST_HEAD(tokill);
1162        int rc = -EBUSY;
1163        loff_t start;
1164
1165        /*
1166         * Prevent the inode from being freed while we are interrogating
1167         * the address_space, typically this would be handled by
1168         * lock_page(), but dax pages do not use the page lock. This
1169         * also prevents changes to the mapping of this pfn until
1170         * poison signaling is complete.
1171         */
1172        if (!dax_lock_mapping_entry(page))
1173                goto out;
1174
1175        if (hwpoison_filter(page)) {
1176                rc = 0;
1177                goto unlock;
1178        }
1179
1180        switch (pgmap->type) {
1181        case MEMORY_DEVICE_PRIVATE:
1182        case MEMORY_DEVICE_PUBLIC:
1183                /*
1184                 * TODO: Handle HMM pages which may need coordination
1185                 * with device-side memory.
1186                 */
1187                goto unlock;
1188        default:
1189                break;
1190        }
1191
1192        /*
1193         * Use this flag as an indication that the dax page has been
1194         * remapped UC to prevent speculative consumption of poison.
1195         */
1196        SetPageHWPoison(page);
1197
1198        /*
1199         * Unlike System-RAM there is no possibility to swap in a
1200         * different physical page at a given virtual address, so all
1201         * userspace consumption of ZONE_DEVICE memory necessitates
1202         * SIGBUS (i.e. MF_MUST_KILL)
1203         */
1204        flags |= MF_ACTION_REQUIRED | MF_MUST_KILL;
1205        collect_procs(page, &tokill, flags & MF_ACTION_REQUIRED);
1206
1207        list_for_each_entry(tk, &tokill, nd)
1208                if (tk->size_shift)
1209                        size = max(size, 1UL << tk->size_shift);
1210        if (size) {
1211                /*
1212                 * Unmap the largest mapping to avoid breaking up
1213                 * device-dax mappings which are constant size. The
1214                 * actual size of the mapping being torn down is
1215                 * communicated in siginfo, see kill_proc()
1216                 */
1217                start = (page->index << PAGE_SHIFT) & ~(size - 1);
1218                unmap_mapping_range(page->mapping, start, start + size, 0);
1219        }
1220        kill_procs(&tokill, flags & MF_MUST_KILL, !unmap_success, pfn, flags);
1221        rc = 0;
1222unlock:
1223        dax_unlock_mapping_entry(page);
1224out:
1225        /* drop pgmap ref acquired in caller */
1226        put_dev_pagemap(pgmap);
1227        action_result(pfn, MF_MSG_DAX, rc ? MF_FAILED : MF_RECOVERED);
1228        return rc;
1229}
1230
1231/**
1232 * memory_failure - Handle memory failure of a page.
1233 * @pfn: Page Number of the corrupted page
1234 * @flags: fine tune action taken
1235 *
1236 * This function is called by the low level machine check code
1237 * of an architecture when it detects hardware memory corruption
1238 * of a page. It tries its best to recover, which includes
1239 * dropping pages, killing processes etc.
1240 *
1241 * The function is primarily of use for corruptions that
1242 * happen outside the current execution context (e.g. when
1243 * detected by a background scrubber)
1244 *
1245 * Must run in process context (e.g. a work queue) with interrupts
1246 * enabled and no spinlocks hold.
1247 */
1248int memory_failure(unsigned long pfn, int flags)
1249{
1250        struct page *p;
1251        struct page *hpage;
1252        struct page *orig_head;
1253        struct dev_pagemap *pgmap;
1254        int res;
1255        unsigned long page_flags;
1256
1257        if (!sysctl_memory_failure_recovery)
1258                panic("Memory failure on page %lx", pfn);
1259
1260        if (!pfn_valid(pfn)) {
1261                pr_err("Memory failure: %#lx: memory outside kernel control\n",
1262                        pfn);
1263                return -ENXIO;
1264        }
1265
1266        pgmap = get_dev_pagemap(pfn, NULL);
1267        if (pgmap)
1268                return memory_failure_dev_pagemap(pfn, flags, pgmap);
1269
1270        p = pfn_to_page(pfn);
1271        if (PageHuge(p))
1272                return memory_failure_hugetlb(pfn, flags);
1273        if (TestSetPageHWPoison(p)) {
1274                pr_err("Memory failure: %#lx: already hardware poisoned\n",
1275                        pfn);
1276                return 0;
1277        }
1278
1279        orig_head = hpage = compound_head(p);
1280        num_poisoned_pages_inc();
1281
1282        /*
1283         * We need/can do nothing about count=0 pages.
1284         * 1) it's a free page, and therefore in safe hand:
1285         *    prep_new_page() will be the gate keeper.
1286         * 2) it's part of a non-compound high order page.
1287         *    Implies some kernel user: cannot stop them from
1288         *    R/W the page; let's pray that the page has been
1289         *    used and will be freed some time later.
1290         * In fact it's dangerous to directly bump up page count from 0,
1291         * that may make page_ref_freeze()/page_ref_unfreeze() mismatch.
1292         */
1293        if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
1294                if (is_free_buddy_page(p)) {
1295                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1296                        return 0;
1297                } else {
1298                        action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
1299                        return -EBUSY;
1300                }
1301        }
1302
1303        if (PageTransHuge(hpage)) {
1304                lock_page(p);
1305                if (!PageAnon(p) || unlikely(split_huge_page(p))) {
1306                        unlock_page(p);
1307                        if (!PageAnon(p))
1308                                pr_err("Memory failure: %#lx: non anonymous thp\n",
1309                                        pfn);
1310                        else
1311                                pr_err("Memory failure: %#lx: thp split failed\n",
1312                                        pfn);
1313                        if (TestClearPageHWPoison(p))
1314                                num_poisoned_pages_dec();
1315                        put_hwpoison_page(p);
1316                        return -EBUSY;
1317                }
1318                unlock_page(p);
1319                VM_BUG_ON_PAGE(!page_count(p), p);
1320                hpage = compound_head(p);
1321        }
1322
1323        /*
1324         * We ignore non-LRU pages for good reasons.
1325         * - PG_locked is only well defined for LRU pages and a few others
1326         * - to avoid races with __SetPageLocked()
1327         * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1328         * The check (unnecessarily) ignores LRU pages being isolated and
1329         * walked by the page reclaim code, however that's not a big loss.
1330         */
1331        shake_page(p, 0);
1332        /* shake_page could have turned it free. */
1333        if (!PageLRU(p) && is_free_buddy_page(p)) {
1334                if (flags & MF_COUNT_INCREASED)
1335                        action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
1336                else
1337                        action_result(pfn, MF_MSG_BUDDY_2ND, MF_DELAYED);
1338                return 0;
1339        }
1340
1341        lock_page(p);
1342
1343        /*
1344         * The page could have changed compound pages during the locking.
1345         * If this happens just bail out.
1346         */
1347        if (PageCompound(p) && compound_head(p) != orig_head) {
1348                action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
1349                res = -EBUSY;
1350                goto out;
1351        }
1352
1353        /*
1354         * We use page flags to determine what action should be taken, but
1355         * the flags can be modified by the error containment action.  One
1356         * example is an mlocked page, where PG_mlocked is cleared by
1357         * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1358         * correctly, we save a copy of the page flags at this time.
1359         */
1360        if (PageHuge(p))
1361                page_flags = hpage->flags;
1362        else
1363                page_flags = p->flags;
1364
1365        /*
1366         * unpoison always clear PG_hwpoison inside page lock
1367         */
1368        if (!PageHWPoison(p)) {
1369                pr_err("Memory failure: %#lx: just unpoisoned\n", pfn);
1370                num_poisoned_pages_dec();
1371                unlock_page(p);
1372                put_hwpoison_page(p);
1373                return 0;
1374        }
1375        if (hwpoison_filter(p)) {
1376                if (TestClearPageHWPoison(p))
1377                        num_poisoned_pages_dec();
1378                unlock_page(p);
1379                put_hwpoison_page(p);
1380                return 0;
1381        }
1382
1383        if (!PageTransTail(p) && !PageLRU(p))
1384                goto identify_page_state;
1385
1386        /*
1387         * It's very difficult to mess with pages currently under IO
1388         * and in many cases impossible, so we just avoid it here.
1389         */
1390        wait_on_page_writeback(p);
1391
1392        /*
1393         * Now take care of user space mappings.
1394         * Abort on fail: __delete_from_page_cache() assumes unmapped page.
1395         *
1396         * When the raw error page is thp tail page, hpage points to the raw
1397         * page after thp split.
1398         */
1399        if (!hwpoison_user_mappings(p, pfn, flags, &hpage)) {
1400                action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1401                res = -EBUSY;
1402                goto out;
1403        }
1404
1405        /*
1406         * Torn down by someone else?
1407         */
1408        if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1409                action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
1410                res = -EBUSY;
1411                goto out;
1412        }
1413
1414identify_page_state:
1415        res = identify_page_state(pfn, p, page_flags);
1416out:
1417        unlock_page(p);
1418        return res;
1419}
1420EXPORT_SYMBOL_GPL(memory_failure);
1421
1422#define MEMORY_FAILURE_FIFO_ORDER       4
1423#define MEMORY_FAILURE_FIFO_SIZE        (1 << MEMORY_FAILURE_FIFO_ORDER)
1424
1425struct memory_failure_entry {
1426        unsigned long pfn;
1427        int flags;
1428};
1429
1430struct memory_failure_cpu {
1431        DECLARE_KFIFO(fifo, struct memory_failure_entry,
1432                      MEMORY_FAILURE_FIFO_SIZE);
1433        spinlock_t lock;
1434        struct work_struct work;
1435};
1436
1437static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1438
1439/**
1440 * memory_failure_queue - Schedule handling memory failure of a page.
1441 * @pfn: Page Number of the corrupted page
1442 * @flags: Flags for memory failure handling
1443 *
1444 * This function is called by the low level hardware error handler
1445 * when it detects hardware memory corruption of a page. It schedules
1446 * the recovering of error page, including dropping pages, killing
1447 * processes etc.
1448 *
1449 * The function is primarily of use for corruptions that
1450 * happen outside the current execution context (e.g. when
1451 * detected by a background scrubber)
1452 *
1453 * Can run in IRQ context.
1454 */
1455void memory_failure_queue(unsigned long pfn, int flags)
1456{
1457        struct memory_failure_cpu *mf_cpu;
1458        unsigned long proc_flags;
1459        struct memory_failure_entry entry = {
1460                .pfn =          pfn,
1461                .flags =        flags,
1462        };
1463
1464        mf_cpu = &get_cpu_var(memory_failure_cpu);
1465        spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1466        if (kfifo_put(&mf_cpu->fifo, entry))
1467                schedule_work_on(smp_processor_id(), &mf_cpu->work);
1468        else
1469                pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
1470                       pfn);
1471        spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1472        put_cpu_var(memory_failure_cpu);
1473}
1474EXPORT_SYMBOL_GPL(memory_failure_queue);
1475
1476static void memory_failure_work_func(struct work_struct *work)
1477{
1478        struct memory_failure_cpu *mf_cpu;
1479        struct memory_failure_entry entry = { 0, };
1480        unsigned long proc_flags;
1481        int gotten;
1482
1483        mf_cpu = this_cpu_ptr(&memory_failure_cpu);
1484        for (;;) {
1485                spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1486                gotten = kfifo_get(&mf_cpu->fifo, &entry);
1487                spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1488                if (!gotten)
1489                        break;
1490                if (entry.flags & MF_SOFT_OFFLINE)
1491                        soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1492                else
1493                        memory_failure(entry.pfn, entry.flags);
1494        }
1495}
1496
1497static int __init memory_failure_init(void)
1498{
1499        struct memory_failure_cpu *mf_cpu;
1500        int cpu;
1501
1502        for_each_possible_cpu(cpu) {
1503                mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1504                spin_lock_init(&mf_cpu->lock);
1505                INIT_KFIFO(mf_cpu->fifo);
1506                INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1507        }
1508
1509        return 0;
1510}
1511core_initcall(memory_failure_init);
1512
1513#define unpoison_pr_info(fmt, pfn, rs)                  \
1514({                                                      \
1515        if (__ratelimit(rs))                            \
1516                pr_info(fmt, pfn);                      \
1517})
1518
1519/**
1520 * unpoison_memory - Unpoison a previously poisoned page
1521 * @pfn: Page number of the to be unpoisoned page
1522 *
1523 * Software-unpoison a page that has been poisoned by
1524 * memory_failure() earlier.
1525 *
1526 * This is only done on the software-level, so it only works
1527 * for linux injected failures, not real hardware failures
1528 *
1529 * Returns 0 for success, otherwise -errno.
1530 */
1531int unpoison_memory(unsigned long pfn)
1532{
1533        struct page *page;
1534        struct page *p;
1535        int freeit = 0;
1536        static DEFINE_RATELIMIT_STATE(unpoison_rs, DEFAULT_RATELIMIT_INTERVAL,
1537                                        DEFAULT_RATELIMIT_BURST);
1538
1539        if (!pfn_valid(pfn))
1540                return -ENXIO;
1541
1542        p = pfn_to_page(pfn);
1543        page = compound_head(p);
1544
1545        if (!PageHWPoison(p)) {
1546                unpoison_pr_info("Unpoison: Page was already unpoisoned %#lx\n",
1547                                 pfn, &unpoison_rs);
1548                return 0;
1549        }
1550
1551        if (page_count(page) > 1) {
1552                unpoison_pr_info("Unpoison: Someone grabs the hwpoison page %#lx\n",
1553                                 pfn, &unpoison_rs);
1554                return 0;
1555        }
1556
1557        if (page_mapped(page)) {
1558                unpoison_pr_info("Unpoison: Someone maps the hwpoison page %#lx\n",
1559                                 pfn, &unpoison_rs);
1560                return 0;
1561        }
1562
1563        if (page_mapping(page)) {
1564                unpoison_pr_info("Unpoison: the hwpoison page has non-NULL mapping %#lx\n",
1565                                 pfn, &unpoison_rs);
1566                return 0;
1567        }
1568
1569        /*
1570         * unpoison_memory() can encounter thp only when the thp is being
1571         * worked by memory_failure() and the page lock is not held yet.
1572         * In such case, we yield to memory_failure() and make unpoison fail.
1573         */
1574        if (!PageHuge(page) && PageTransHuge(page)) {
1575                unpoison_pr_info("Unpoison: Memory failure is now running on %#lx\n",
1576                                 pfn, &unpoison_rs);
1577                return 0;
1578        }
1579
1580        if (!get_hwpoison_page(p)) {
1581                if (TestClearPageHWPoison(p))
1582                        num_poisoned_pages_dec();
1583                unpoison_pr_info("Unpoison: Software-unpoisoned free page %#lx\n",
1584                                 pfn, &unpoison_rs);
1585                return 0;
1586        }
1587
1588        lock_page(page);
1589        /*
1590         * This test is racy because PG_hwpoison is set outside of page lock.
1591         * That's acceptable because that won't trigger kernel panic. Instead,
1592         * the PG_hwpoison page will be caught and isolated on the entrance to
1593         * the free buddy page pool.
1594         */
1595        if (TestClearPageHWPoison(page)) {
1596                unpoison_pr_info("Unpoison: Software-unpoisoned page %#lx\n",
1597                                 pfn, &unpoison_rs);
1598                num_poisoned_pages_dec();
1599                freeit = 1;
1600        }
1601        unlock_page(page);
1602
1603        put_hwpoison_page(page);
1604        if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
1605                put_hwpoison_page(page);
1606
1607        return 0;
1608}
1609EXPORT_SYMBOL(unpoison_memory);
1610
1611static struct page *new_page(struct page *p, unsigned long private)
1612{
1613        int nid = page_to_nid(p);
1614
1615        return new_page_nodemask(p, nid, &node_states[N_MEMORY]);
1616}
1617
1618/*
1619 * Safely get reference count of an arbitrary page.
1620 * Returns 0 for a free page, -EIO for a zero refcount page
1621 * that is not free, and 1 for any other page type.
1622 * For 1 the page is returned with increased page count, otherwise not.
1623 */
1624static int __get_any_page(struct page *p, unsigned long pfn, int flags)
1625{
1626        int ret;
1627
1628        if (flags & MF_COUNT_INCREASED)
1629                return 1;
1630
1631        /*
1632         * When the target page is a free hugepage, just remove it
1633         * from free hugepage list.
1634         */
1635        if (!get_hwpoison_page(p)) {
1636                if (PageHuge(p)) {
1637                        pr_info("%s: %#lx free huge page\n", __func__, pfn);
1638                        ret = 0;
1639                } else if (is_free_buddy_page(p)) {
1640                        pr_info("%s: %#lx free buddy page\n", __func__, pfn);
1641                        ret = 0;
1642                } else {
1643                        pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1644                                __func__, pfn, p->flags);
1645                        ret = -EIO;
1646                }
1647        } else {
1648                /* Not a free page */
1649                ret = 1;
1650        }
1651        return ret;
1652}
1653
1654static int get_any_page(struct page *page, unsigned long pfn, int flags)
1655{
1656        int ret = __get_any_page(page, pfn, flags);
1657
1658        if (ret == 1 && !PageHuge(page) &&
1659            !PageLRU(page) && !__PageMovable(page)) {
1660                /*
1661                 * Try to free it.
1662                 */
1663                put_hwpoison_page(page);
1664                shake_page(page, 1);
1665
1666                /*
1667                 * Did it turn free?
1668                 */
1669                ret = __get_any_page(page, pfn, 0);
1670                if (ret == 1 && !PageLRU(page)) {
1671                        /* Drop page reference which is from __get_any_page() */
1672                        put_hwpoison_page(page);
1673                        pr_info("soft_offline: %#lx: unknown non LRU page type %lx (%pGp)\n",
1674                                pfn, page->flags, &page->flags);
1675                        return -EIO;
1676                }
1677        }
1678        return ret;
1679}
1680
1681static int soft_offline_huge_page(struct page *page, int flags)
1682{
1683        int ret;
1684        unsigned long pfn = page_to_pfn(page);
1685        struct page *hpage = compound_head(page);
1686        LIST_HEAD(pagelist);
1687
1688        /*
1689         * This double-check of PageHWPoison is to avoid the race with
1690         * memory_failure(). See also comment in __soft_offline_page().
1691         */
1692        lock_page(hpage);
1693        if (PageHWPoison(hpage)) {
1694                unlock_page(hpage);
1695                put_hwpoison_page(hpage);
1696                pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
1697                return -EBUSY;
1698        }
1699        unlock_page(hpage);
1700
1701        ret = isolate_huge_page(hpage, &pagelist);
1702        /*
1703         * get_any_page() and isolate_huge_page() takes a refcount each,
1704         * so need to drop one here.
1705         */
1706        put_hwpoison_page(hpage);
1707        if (!ret) {
1708                pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1709                return -EBUSY;
1710        }
1711
1712        ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1713                                MIGRATE_SYNC, MR_MEMORY_FAILURE);
1714        if (ret) {
1715                pr_info("soft offline: %#lx: hugepage migration failed %d, type %lx (%pGp)\n",
1716                        pfn, ret, page->flags, &page->flags);
1717                if (!list_empty(&pagelist))
1718                        putback_movable_pages(&pagelist);
1719                if (ret > 0)
1720                        ret = -EIO;
1721        } else {
1722                /*
1723                 * We set PG_hwpoison only when the migration source hugepage
1724                 * was successfully dissolved, because otherwise hwpoisoned
1725                 * hugepage remains on free hugepage list, then userspace will
1726                 * find it as SIGBUS by allocation failure. That's not expected
1727                 * in soft-offlining.
1728                 */
1729                ret = dissolve_free_huge_page(page);
1730                if (!ret) {
1731                        if (set_hwpoison_free_buddy_page(page))
1732                                num_poisoned_pages_inc();
1733                }
1734        }
1735        return ret;
1736}
1737
1738static int __soft_offline_page(struct page *page, int flags)
1739{
1740        int ret;
1741        unsigned long pfn = page_to_pfn(page);
1742
1743        /*
1744         * Check PageHWPoison again inside page lock because PageHWPoison
1745         * is set by memory_failure() outside page lock. Note that
1746         * memory_failure() also double-checks PageHWPoison inside page lock,
1747         * so there's no race between soft_offline_page() and memory_failure().
1748         */
1749        lock_page(page);
1750        wait_on_page_writeback(page);
1751        if (PageHWPoison(page)) {
1752                unlock_page(page);
1753                put_hwpoison_page(page);
1754                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1755                return -EBUSY;
1756        }
1757        /*
1758         * Try to invalidate first. This should work for
1759         * non dirty unmapped page cache pages.
1760         */
1761        ret = invalidate_inode_page(page);
1762        unlock_page(page);
1763        /*
1764         * RED-PEN would be better to keep it isolated here, but we
1765         * would need to fix isolation locking first.
1766         */
1767        if (ret == 1) {
1768                put_hwpoison_page(page);
1769                pr_info("soft_offline: %#lx: invalidated\n", pfn);
1770                SetPageHWPoison(page);
1771                num_poisoned_pages_inc();
1772                return 0;
1773        }
1774
1775        /*
1776         * Simple invalidation didn't work.
1777         * Try to migrate to a new page instead. migrate.c
1778         * handles a large number of cases for us.
1779         */
1780        if (PageLRU(page))
1781                ret = isolate_lru_page(page);
1782        else
1783                ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1784        /*
1785         * Drop page reference which is came from get_any_page()
1786         * successful isolate_lru_page() already took another one.
1787         */
1788        put_hwpoison_page(page);
1789        if (!ret) {
1790                LIST_HEAD(pagelist);
1791                /*
1792                 * After isolated lru page, the PageLRU will be cleared,
1793                 * so use !__PageMovable instead for LRU page's mapping
1794                 * cannot have PAGE_MAPPING_MOVABLE.
1795                 */
1796                if (!__PageMovable(page))
1797                        inc_node_page_state(page, NR_ISOLATED_ANON +
1798                                                page_is_file_cache(page));
1799                list_add(&page->lru, &pagelist);
1800                ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
1801                                        MIGRATE_SYNC, MR_MEMORY_FAILURE);
1802                if (ret) {
1803                        if (!list_empty(&pagelist))
1804                                putback_movable_pages(&pagelist);
1805
1806                        pr_info("soft offline: %#lx: migration failed %d, type %lx (%pGp)\n",
1807                                pfn, ret, page->flags, &page->flags);
1808                        if (ret > 0)
1809                                ret = -EIO;
1810                }
1811        } else {
1812                pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx (%pGp)\n",
1813                        pfn, ret, page_count(page), page->flags, &page->flags);
1814        }
1815        return ret;
1816}
1817
1818static int soft_offline_in_use_page(struct page *page, int flags)
1819{
1820        int ret;
1821        int mt;
1822        struct page *hpage = compound_head(page);
1823
1824        if (!PageHuge(page) && PageTransHuge(hpage)) {
1825                lock_page(hpage);
1826                if (!PageAnon(hpage) || unlikely(split_huge_page(hpage))) {
1827                        unlock_page(hpage);
1828                        if (!PageAnon(hpage))
1829                                pr_info("soft offline: %#lx: non anonymous thp\n", page_to_pfn(page));
1830                        else
1831                                pr_info("soft offline: %#lx: thp split failed\n", page_to_pfn(page));
1832                        put_hwpoison_page(hpage);
1833                        return -EBUSY;
1834                }
1835                unlock_page(hpage);
1836                get_hwpoison_page(page);
1837                put_hwpoison_page(hpage);
1838        }
1839
1840        /*
1841         * Setting MIGRATE_ISOLATE here ensures that the page will be linked
1842         * to free list immediately (not via pcplist) when released after
1843         * successful page migration. Otherwise we can't guarantee that the
1844         * page is really free after put_page() returns, so
1845         * set_hwpoison_free_buddy_page() highly likely fails.
1846         */
1847        mt = get_pageblock_migratetype(page);
1848        set_pageblock_migratetype(page, MIGRATE_ISOLATE);
1849        if (PageHuge(page))
1850                ret = soft_offline_huge_page(page, flags);
1851        else
1852                ret = __soft_offline_page(page, flags);
1853        set_pageblock_migratetype(page, mt);
1854        return ret;
1855}
1856
1857static int soft_offline_free_page(struct page *page)
1858{
1859        int rc = 0;
1860        struct page *head = compound_head(page);
1861
1862        if (PageHuge(head))
1863                rc = dissolve_free_huge_page(page);
1864        if (!rc) {
1865                if (set_hwpoison_free_buddy_page(page))
1866                        num_poisoned_pages_inc();
1867                else
1868                        rc = -EBUSY;
1869        }
1870        return rc;
1871}
1872
1873/**
1874 * soft_offline_page - Soft offline a page.
1875 * @page: page to offline
1876 * @flags: flags. Same as memory_failure().
1877 *
1878 * Returns 0 on success, otherwise negated errno.
1879 *
1880 * Soft offline a page, by migration or invalidation,
1881 * without killing anything. This is for the case when
1882 * a page is not corrupted yet (so it's still valid to access),
1883 * but has had a number of corrected errors and is better taken
1884 * out.
1885 *
1886 * The actual policy on when to do that is maintained by
1887 * user space.
1888 *
1889 * This should never impact any application or cause data loss,
1890 * however it might take some time.
1891 *
1892 * This is not a 100% solution for all memory, but tries to be
1893 * ``good enough'' for the majority of memory.
1894 */
1895int soft_offline_page(struct page *page, int flags)
1896{
1897        int ret;
1898        unsigned long pfn = page_to_pfn(page);
1899
1900        if (is_zone_device_page(page)) {
1901                pr_debug_ratelimited("soft_offline: %#lx page is device page\n",
1902                                pfn);
1903                if (flags & MF_COUNT_INCREASED)
1904                        put_page(page);
1905                return -EIO;
1906        }
1907
1908        if (PageHWPoison(page)) {
1909                pr_info("soft offline: %#lx page already poisoned\n", pfn);
1910                if (flags & MF_COUNT_INCREASED)
1911                        put_hwpoison_page(page);
1912                return -EBUSY;
1913        }
1914
1915        get_online_mems();
1916        ret = get_any_page(page, pfn, flags);
1917        put_online_mems();
1918
1919        if (ret > 0)
1920                ret = soft_offline_in_use_page(page, flags);
1921        else if (ret == 0)
1922                ret = soft_offline_free_page(page);
1923
1924        return ret;
1925}
1926