linux/mm/memory.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/memory.c
   3 *
   4 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   5 */
   6
   7/*
   8 * demand-loading started 01.12.91 - seems it is high on the list of
   9 * things wanted, and it should be easy to implement. - Linus
  10 */
  11
  12/*
  13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
  14 * pages started 02.12.91, seems to work. - Linus.
  15 *
  16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
  17 * would have taken more than the 6M I have free, but it worked well as
  18 * far as I could see.
  19 *
  20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
  21 */
  22
  23/*
  24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
  25 * thought has to go into this. Oh, well..
  26 * 19.12.91  -  works, somewhat. Sometimes I get faults, don't know why.
  27 *              Found it. Everything seems to work now.
  28 * 20.12.91  -  Ok, making the swap-device changeable like the root.
  29 */
  30
  31/*
  32 * 05.04.94  -  Multi-page memory management added for v1.1.
  33 *              Idea by Alex Bligh (alex@cconcepts.co.uk)
  34 *
  35 * 16.07.99  -  Support of BIGMEM added by Gerhard Wichert, Siemens AG
  36 *              (Gerhard.Wichert@pdb.siemens.de)
  37 *
  38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
  39 */
  40
  41#include <linux/kernel_stat.h>
  42#include <linux/mm.h>
  43#include <linux/sched/mm.h>
  44#include <linux/sched/coredump.h>
  45#include <linux/sched/numa_balancing.h>
  46#include <linux/sched/task.h>
  47#include <linux/hugetlb.h>
  48#include <linux/mman.h>
  49#include <linux/swap.h>
  50#include <linux/highmem.h>
  51#include <linux/pagemap.h>
  52#include <linux/memremap.h>
  53#include <linux/ksm.h>
  54#include <linux/rmap.h>
  55#include <linux/export.h>
  56#include <linux/delayacct.h>
  57#include <linux/init.h>
  58#include <linux/pfn_t.h>
  59#include <linux/writeback.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/swapops.h>
  63#include <linux/elf.h>
  64#include <linux/gfp.h>
  65#include <linux/migrate.h>
  66#include <linux/string.h>
  67#include <linux/dma-debug.h>
  68#include <linux/debugfs.h>
  69#include <linux/userfaultfd_k.h>
  70#include <linux/dax.h>
  71#include <linux/oom.h>
  72
  73#include <asm/io.h>
  74#include <asm/mmu_context.h>
  75#include <asm/pgalloc.h>
  76#include <linux/uaccess.h>
  77#include <asm/tlb.h>
  78#include <asm/tlbflush.h>
  79#include <asm/pgtable.h>
  80
  81#include "internal.h"
  82
  83#if defined(LAST_CPUPID_NOT_IN_PAGE_FLAGS) && !defined(CONFIG_COMPILE_TEST)
  84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
  85#endif
  86
  87#ifndef CONFIG_NEED_MULTIPLE_NODES
  88/* use the per-pgdat data instead for discontigmem - mbligh */
  89unsigned long max_mapnr;
  90EXPORT_SYMBOL(max_mapnr);
  91
  92struct page *mem_map;
  93EXPORT_SYMBOL(mem_map);
  94#endif
  95
  96/*
  97 * A number of key systems in x86 including ioremap() rely on the assumption
  98 * that high_memory defines the upper bound on direct map memory, then end
  99 * of ZONE_NORMAL.  Under CONFIG_DISCONTIG this means that max_low_pfn and
 100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
 101 * and ZONE_HIGHMEM.
 102 */
 103void *high_memory;
 104EXPORT_SYMBOL(high_memory);
 105
 106/*
 107 * Randomize the address space (stacks, mmaps, brk, etc.).
 108 *
 109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
 110 *   as ancient (libc5 based) binaries can segfault. )
 111 */
 112int randomize_va_space __read_mostly =
 113#ifdef CONFIG_COMPAT_BRK
 114                                        1;
 115#else
 116                                        2;
 117#endif
 118
 119static int __init disable_randmaps(char *s)
 120{
 121        randomize_va_space = 0;
 122        return 1;
 123}
 124__setup("norandmaps", disable_randmaps);
 125
 126unsigned long zero_pfn __read_mostly;
 127EXPORT_SYMBOL(zero_pfn);
 128
 129unsigned long highest_memmap_pfn __read_mostly;
 130
 131/*
 132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
 133 */
 134static int __init init_zero_pfn(void)
 135{
 136        zero_pfn = page_to_pfn(ZERO_PAGE(0));
 137        return 0;
 138}
 139core_initcall(init_zero_pfn);
 140
 141
 142#if defined(SPLIT_RSS_COUNTING)
 143
 144void sync_mm_rss(struct mm_struct *mm)
 145{
 146        int i;
 147
 148        for (i = 0; i < NR_MM_COUNTERS; i++) {
 149                if (current->rss_stat.count[i]) {
 150                        add_mm_counter(mm, i, current->rss_stat.count[i]);
 151                        current->rss_stat.count[i] = 0;
 152                }
 153        }
 154        current->rss_stat.events = 0;
 155}
 156
 157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
 158{
 159        struct task_struct *task = current;
 160
 161        if (likely(task->mm == mm))
 162                task->rss_stat.count[member] += val;
 163        else
 164                add_mm_counter(mm, member, val);
 165}
 166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
 167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
 168
 169/* sync counter once per 64 page faults */
 170#define TASK_RSS_EVENTS_THRESH  (64)
 171static void check_sync_rss_stat(struct task_struct *task)
 172{
 173        if (unlikely(task != current))
 174                return;
 175        if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
 176                sync_mm_rss(task->mm);
 177}
 178#else /* SPLIT_RSS_COUNTING */
 179
 180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
 181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
 182
 183static void check_sync_rss_stat(struct task_struct *task)
 184{
 185}
 186
 187#endif /* SPLIT_RSS_COUNTING */
 188
 189#ifdef HAVE_GENERIC_MMU_GATHER
 190
 191static bool tlb_next_batch(struct mmu_gather *tlb)
 192{
 193        struct mmu_gather_batch *batch;
 194
 195        batch = tlb->active;
 196        if (batch->next) {
 197                tlb->active = batch->next;
 198                return true;
 199        }
 200
 201        if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
 202                return false;
 203
 204        batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
 205        if (!batch)
 206                return false;
 207
 208        tlb->batch_count++;
 209        batch->next = NULL;
 210        batch->nr   = 0;
 211        batch->max  = MAX_GATHER_BATCH;
 212
 213        tlb->active->next = batch;
 214        tlb->active = batch;
 215
 216        return true;
 217}
 218
 219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 220                                unsigned long start, unsigned long end)
 221{
 222        tlb->mm = mm;
 223
 224        /* Is it from 0 to ~0? */
 225        tlb->fullmm     = !(start | (end+1));
 226        tlb->need_flush_all = 0;
 227        tlb->local.next = NULL;
 228        tlb->local.nr   = 0;
 229        tlb->local.max  = ARRAY_SIZE(tlb->__pages);
 230        tlb->active     = &tlb->local;
 231        tlb->batch_count = 0;
 232
 233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 234        tlb->batch = NULL;
 235#endif
 236        tlb->page_size = 0;
 237
 238        __tlb_reset_range(tlb);
 239}
 240
 241static void tlb_flush_mmu_free(struct mmu_gather *tlb)
 242{
 243        struct mmu_gather_batch *batch;
 244
 245#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 246        tlb_table_flush(tlb);
 247#endif
 248        for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
 249                free_pages_and_swap_cache(batch->pages, batch->nr);
 250                batch->nr = 0;
 251        }
 252        tlb->active = &tlb->local;
 253}
 254
 255void tlb_flush_mmu(struct mmu_gather *tlb)
 256{
 257        tlb_flush_mmu_tlbonly(tlb);
 258        tlb_flush_mmu_free(tlb);
 259}
 260
 261/* tlb_finish_mmu
 262 *      Called at the end of the shootdown operation to free up any resources
 263 *      that were required.
 264 */
 265void arch_tlb_finish_mmu(struct mmu_gather *tlb,
 266                unsigned long start, unsigned long end, bool force)
 267{
 268        struct mmu_gather_batch *batch, *next;
 269
 270        if (force)
 271                __tlb_adjust_range(tlb, start, end - start);
 272
 273        tlb_flush_mmu(tlb);
 274
 275        /* keep the page table cache within bounds */
 276        check_pgt_cache();
 277
 278        for (batch = tlb->local.next; batch; batch = next) {
 279                next = batch->next;
 280                free_pages((unsigned long)batch, 0);
 281        }
 282        tlb->local.next = NULL;
 283}
 284
 285/* __tlb_remove_page
 286 *      Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
 287 *      handling the additional races in SMP caused by other CPUs caching valid
 288 *      mappings in their TLBs. Returns the number of free page slots left.
 289 *      When out of page slots we must call tlb_flush_mmu().
 290 *returns true if the caller should flush.
 291 */
 292bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
 293{
 294        struct mmu_gather_batch *batch;
 295
 296        VM_BUG_ON(!tlb->end);
 297        VM_WARN_ON(tlb->page_size != page_size);
 298
 299        batch = tlb->active;
 300        /*
 301         * Add the page and check if we are full. If so
 302         * force a flush.
 303         */
 304        batch->pages[batch->nr++] = page;
 305        if (batch->nr == batch->max) {
 306                if (!tlb_next_batch(tlb))
 307                        return true;
 308                batch = tlb->active;
 309        }
 310        VM_BUG_ON_PAGE(batch->nr > batch->max, page);
 311
 312        return false;
 313}
 314
 315#endif /* HAVE_GENERIC_MMU_GATHER */
 316
 317#ifdef CONFIG_HAVE_RCU_TABLE_FREE
 318
 319/*
 320 * See the comment near struct mmu_table_batch.
 321 */
 322
 323/*
 324 * If we want tlb_remove_table() to imply TLB invalidates.
 325 */
 326static inline void tlb_table_invalidate(struct mmu_gather *tlb)
 327{
 328#ifdef CONFIG_HAVE_RCU_TABLE_INVALIDATE
 329        /*
 330         * Invalidate page-table caches used by hardware walkers. Then we still
 331         * need to RCU-sched wait while freeing the pages because software
 332         * walkers can still be in-flight.
 333         */
 334        tlb_flush_mmu_tlbonly(tlb);
 335#endif
 336}
 337
 338static void tlb_remove_table_smp_sync(void *arg)
 339{
 340        /* Simply deliver the interrupt */
 341}
 342
 343static void tlb_remove_table_one(void *table)
 344{
 345        /*
 346         * This isn't an RCU grace period and hence the page-tables cannot be
 347         * assumed to be actually RCU-freed.
 348         *
 349         * It is however sufficient for software page-table walkers that rely on
 350         * IRQ disabling. See the comment near struct mmu_table_batch.
 351         */
 352        smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
 353        __tlb_remove_table(table);
 354}
 355
 356static void tlb_remove_table_rcu(struct rcu_head *head)
 357{
 358        struct mmu_table_batch *batch;
 359        int i;
 360
 361        batch = container_of(head, struct mmu_table_batch, rcu);
 362
 363        for (i = 0; i < batch->nr; i++)
 364                __tlb_remove_table(batch->tables[i]);
 365
 366        free_page((unsigned long)batch);
 367}
 368
 369void tlb_table_flush(struct mmu_gather *tlb)
 370{
 371        struct mmu_table_batch **batch = &tlb->batch;
 372
 373        if (*batch) {
 374                tlb_table_invalidate(tlb);
 375                call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
 376                *batch = NULL;
 377        }
 378}
 379
 380void tlb_remove_table(struct mmu_gather *tlb, void *table)
 381{
 382        struct mmu_table_batch **batch = &tlb->batch;
 383
 384        if (*batch == NULL) {
 385                *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
 386                if (*batch == NULL) {
 387                        tlb_table_invalidate(tlb);
 388                        tlb_remove_table_one(table);
 389                        return;
 390                }
 391                (*batch)->nr = 0;
 392        }
 393
 394        (*batch)->tables[(*batch)->nr++] = table;
 395        if ((*batch)->nr == MAX_TABLE_BATCH)
 396                tlb_table_flush(tlb);
 397}
 398
 399#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
 400
 401/**
 402 * tlb_gather_mmu - initialize an mmu_gather structure for page-table tear-down
 403 * @tlb: the mmu_gather structure to initialize
 404 * @mm: the mm_struct of the target address space
 405 * @start: start of the region that will be removed from the page-table
 406 * @end: end of the region that will be removed from the page-table
 407 *
 408 * Called to initialize an (on-stack) mmu_gather structure for page-table
 409 * tear-down from @mm. The @start and @end are set to 0 and -1
 410 * respectively when @mm is without users and we're going to destroy
 411 * the full address space (exit/execve).
 412 */
 413void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
 414                        unsigned long start, unsigned long end)
 415{
 416        arch_tlb_gather_mmu(tlb, mm, start, end);
 417        inc_tlb_flush_pending(tlb->mm);
 418}
 419
 420void tlb_finish_mmu(struct mmu_gather *tlb,
 421                unsigned long start, unsigned long end)
 422{
 423        /*
 424         * If there are parallel threads are doing PTE changes on same range
 425         * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
 426         * flush by batching, a thread has stable TLB entry can fail to flush
 427         * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
 428         * forcefully if we detect parallel PTE batching threads.
 429         */
 430        bool force = mm_tlb_flush_nested(tlb->mm);
 431
 432        arch_tlb_finish_mmu(tlb, start, end, force);
 433        dec_tlb_flush_pending(tlb->mm);
 434}
 435
 436/*
 437 * Note: this doesn't free the actual pages themselves. That
 438 * has been handled earlier when unmapping all the memory regions.
 439 */
 440static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
 441                           unsigned long addr)
 442{
 443        pgtable_t token = pmd_pgtable(*pmd);
 444        pmd_clear(pmd);
 445        pte_free_tlb(tlb, token, addr);
 446        mm_dec_nr_ptes(tlb->mm);
 447}
 448
 449static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
 450                                unsigned long addr, unsigned long end,
 451                                unsigned long floor, unsigned long ceiling)
 452{
 453        pmd_t *pmd;
 454        unsigned long next;
 455        unsigned long start;
 456
 457        start = addr;
 458        pmd = pmd_offset(pud, addr);
 459        do {
 460                next = pmd_addr_end(addr, end);
 461                if (pmd_none_or_clear_bad(pmd))
 462                        continue;
 463                free_pte_range(tlb, pmd, addr);
 464        } while (pmd++, addr = next, addr != end);
 465
 466        start &= PUD_MASK;
 467        if (start < floor)
 468                return;
 469        if (ceiling) {
 470                ceiling &= PUD_MASK;
 471                if (!ceiling)
 472                        return;
 473        }
 474        if (end - 1 > ceiling - 1)
 475                return;
 476
 477        pmd = pmd_offset(pud, start);
 478        pud_clear(pud);
 479        pmd_free_tlb(tlb, pmd, start);
 480        mm_dec_nr_pmds(tlb->mm);
 481}
 482
 483static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
 484                                unsigned long addr, unsigned long end,
 485                                unsigned long floor, unsigned long ceiling)
 486{
 487        pud_t *pud;
 488        unsigned long next;
 489        unsigned long start;
 490
 491        start = addr;
 492        pud = pud_offset(p4d, addr);
 493        do {
 494                next = pud_addr_end(addr, end);
 495                if (pud_none_or_clear_bad(pud))
 496                        continue;
 497                free_pmd_range(tlb, pud, addr, next, floor, ceiling);
 498        } while (pud++, addr = next, addr != end);
 499
 500        start &= P4D_MASK;
 501        if (start < floor)
 502                return;
 503        if (ceiling) {
 504                ceiling &= P4D_MASK;
 505                if (!ceiling)
 506                        return;
 507        }
 508        if (end - 1 > ceiling - 1)
 509                return;
 510
 511        pud = pud_offset(p4d, start);
 512        p4d_clear(p4d);
 513        pud_free_tlb(tlb, pud, start);
 514        mm_dec_nr_puds(tlb->mm);
 515}
 516
 517static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
 518                                unsigned long addr, unsigned long end,
 519                                unsigned long floor, unsigned long ceiling)
 520{
 521        p4d_t *p4d;
 522        unsigned long next;
 523        unsigned long start;
 524
 525        start = addr;
 526        p4d = p4d_offset(pgd, addr);
 527        do {
 528                next = p4d_addr_end(addr, end);
 529                if (p4d_none_or_clear_bad(p4d))
 530                        continue;
 531                free_pud_range(tlb, p4d, addr, next, floor, ceiling);
 532        } while (p4d++, addr = next, addr != end);
 533
 534        start &= PGDIR_MASK;
 535        if (start < floor)
 536                return;
 537        if (ceiling) {
 538                ceiling &= PGDIR_MASK;
 539                if (!ceiling)
 540                        return;
 541        }
 542        if (end - 1 > ceiling - 1)
 543                return;
 544
 545        p4d = p4d_offset(pgd, start);
 546        pgd_clear(pgd);
 547        p4d_free_tlb(tlb, p4d, start);
 548}
 549
 550/*
 551 * This function frees user-level page tables of a process.
 552 */
 553void free_pgd_range(struct mmu_gather *tlb,
 554                        unsigned long addr, unsigned long end,
 555                        unsigned long floor, unsigned long ceiling)
 556{
 557        pgd_t *pgd;
 558        unsigned long next;
 559
 560        /*
 561         * The next few lines have given us lots of grief...
 562         *
 563         * Why are we testing PMD* at this top level?  Because often
 564         * there will be no work to do at all, and we'd prefer not to
 565         * go all the way down to the bottom just to discover that.
 566         *
 567         * Why all these "- 1"s?  Because 0 represents both the bottom
 568         * of the address space and the top of it (using -1 for the
 569         * top wouldn't help much: the masks would do the wrong thing).
 570         * The rule is that addr 0 and floor 0 refer to the bottom of
 571         * the address space, but end 0 and ceiling 0 refer to the top
 572         * Comparisons need to use "end - 1" and "ceiling - 1" (though
 573         * that end 0 case should be mythical).
 574         *
 575         * Wherever addr is brought up or ceiling brought down, we must
 576         * be careful to reject "the opposite 0" before it confuses the
 577         * subsequent tests.  But what about where end is brought down
 578         * by PMD_SIZE below? no, end can't go down to 0 there.
 579         *
 580         * Whereas we round start (addr) and ceiling down, by different
 581         * masks at different levels, in order to test whether a table
 582         * now has no other vmas using it, so can be freed, we don't
 583         * bother to round floor or end up - the tests don't need that.
 584         */
 585
 586        addr &= PMD_MASK;
 587        if (addr < floor) {
 588                addr += PMD_SIZE;
 589                if (!addr)
 590                        return;
 591        }
 592        if (ceiling) {
 593                ceiling &= PMD_MASK;
 594                if (!ceiling)
 595                        return;
 596        }
 597        if (end - 1 > ceiling - 1)
 598                end -= PMD_SIZE;
 599        if (addr > end - 1)
 600                return;
 601        /*
 602         * We add page table cache pages with PAGE_SIZE,
 603         * (see pte_free_tlb()), flush the tlb if we need
 604         */
 605        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
 606        pgd = pgd_offset(tlb->mm, addr);
 607        do {
 608                next = pgd_addr_end(addr, end);
 609                if (pgd_none_or_clear_bad(pgd))
 610                        continue;
 611                free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
 612        } while (pgd++, addr = next, addr != end);
 613}
 614
 615void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
 616                unsigned long floor, unsigned long ceiling)
 617{
 618        while (vma) {
 619                struct vm_area_struct *next = vma->vm_next;
 620                unsigned long addr = vma->vm_start;
 621
 622                /*
 623                 * Hide vma from rmap and truncate_pagecache before freeing
 624                 * pgtables
 625                 */
 626                unlink_anon_vmas(vma);
 627                unlink_file_vma(vma);
 628
 629                if (is_vm_hugetlb_page(vma)) {
 630                        hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
 631                                floor, next ? next->vm_start : ceiling);
 632                } else {
 633                        /*
 634                         * Optimization: gather nearby vmas into one call down
 635                         */
 636                        while (next && next->vm_start <= vma->vm_end + PMD_SIZE
 637                               && !is_vm_hugetlb_page(next)) {
 638                                vma = next;
 639                                next = vma->vm_next;
 640                                unlink_anon_vmas(vma);
 641                                unlink_file_vma(vma);
 642                        }
 643                        free_pgd_range(tlb, addr, vma->vm_end,
 644                                floor, next ? next->vm_start : ceiling);
 645                }
 646                vma = next;
 647        }
 648}
 649
 650int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
 651{
 652        spinlock_t *ptl;
 653        pgtable_t new = pte_alloc_one(mm, address);
 654        if (!new)
 655                return -ENOMEM;
 656
 657        /*
 658         * Ensure all pte setup (eg. pte page lock and page clearing) are
 659         * visible before the pte is made visible to other CPUs by being
 660         * put into page tables.
 661         *
 662         * The other side of the story is the pointer chasing in the page
 663         * table walking code (when walking the page table without locking;
 664         * ie. most of the time). Fortunately, these data accesses consist
 665         * of a chain of data-dependent loads, meaning most CPUs (alpha
 666         * being the notable exception) will already guarantee loads are
 667         * seen in-order. See the alpha page table accessors for the
 668         * smp_read_barrier_depends() barriers in page table walking code.
 669         */
 670        smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
 671
 672        ptl = pmd_lock(mm, pmd);
 673        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 674                mm_inc_nr_ptes(mm);
 675                pmd_populate(mm, pmd, new);
 676                new = NULL;
 677        }
 678        spin_unlock(ptl);
 679        if (new)
 680                pte_free(mm, new);
 681        return 0;
 682}
 683
 684int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
 685{
 686        pte_t *new = pte_alloc_one_kernel(&init_mm, address);
 687        if (!new)
 688                return -ENOMEM;
 689
 690        smp_wmb(); /* See comment in __pte_alloc */
 691
 692        spin_lock(&init_mm.page_table_lock);
 693        if (likely(pmd_none(*pmd))) {   /* Has another populated it ? */
 694                pmd_populate_kernel(&init_mm, pmd, new);
 695                new = NULL;
 696        }
 697        spin_unlock(&init_mm.page_table_lock);
 698        if (new)
 699                pte_free_kernel(&init_mm, new);
 700        return 0;
 701}
 702
 703static inline void init_rss_vec(int *rss)
 704{
 705        memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
 706}
 707
 708static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
 709{
 710        int i;
 711
 712        if (current->mm == mm)
 713                sync_mm_rss(mm);
 714        for (i = 0; i < NR_MM_COUNTERS; i++)
 715                if (rss[i])
 716                        add_mm_counter(mm, i, rss[i]);
 717}
 718
 719/*
 720 * This function is called to print an error when a bad pte
 721 * is found. For example, we might have a PFN-mapped pte in
 722 * a region that doesn't allow it.
 723 *
 724 * The calling function must still handle the error.
 725 */
 726static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
 727                          pte_t pte, struct page *page)
 728{
 729        pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
 730        p4d_t *p4d = p4d_offset(pgd, addr);
 731        pud_t *pud = pud_offset(p4d, addr);
 732        pmd_t *pmd = pmd_offset(pud, addr);
 733        struct address_space *mapping;
 734        pgoff_t index;
 735        static unsigned long resume;
 736        static unsigned long nr_shown;
 737        static unsigned long nr_unshown;
 738
 739        /*
 740         * Allow a burst of 60 reports, then keep quiet for that minute;
 741         * or allow a steady drip of one report per second.
 742         */
 743        if (nr_shown == 60) {
 744                if (time_before(jiffies, resume)) {
 745                        nr_unshown++;
 746                        return;
 747                }
 748                if (nr_unshown) {
 749                        pr_alert("BUG: Bad page map: %lu messages suppressed\n",
 750                                 nr_unshown);
 751                        nr_unshown = 0;
 752                }
 753                nr_shown = 0;
 754        }
 755        if (nr_shown++ == 0)
 756                resume = jiffies + 60 * HZ;
 757
 758        mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
 759        index = linear_page_index(vma, addr);
 760
 761        pr_alert("BUG: Bad page map in process %s  pte:%08llx pmd:%08llx\n",
 762                 current->comm,
 763                 (long long)pte_val(pte), (long long)pmd_val(*pmd));
 764        if (page)
 765                dump_page(page, "bad pte");
 766        pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
 767                 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
 768        pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
 769                 vma->vm_file,
 770                 vma->vm_ops ? vma->vm_ops->fault : NULL,
 771                 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
 772                 mapping ? mapping->a_ops->readpage : NULL);
 773        dump_stack();
 774        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 775}
 776
 777/*
 778 * vm_normal_page -- This function gets the "struct page" associated with a pte.
 779 *
 780 * "Special" mappings do not wish to be associated with a "struct page" (either
 781 * it doesn't exist, or it exists but they don't want to touch it). In this
 782 * case, NULL is returned here. "Normal" mappings do have a struct page.
 783 *
 784 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
 785 * pte bit, in which case this function is trivial. Secondly, an architecture
 786 * may not have a spare pte bit, which requires a more complicated scheme,
 787 * described below.
 788 *
 789 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
 790 * special mapping (even if there are underlying and valid "struct pages").
 791 * COWed pages of a VM_PFNMAP are always normal.
 792 *
 793 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
 794 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
 795 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
 796 * mapping will always honor the rule
 797 *
 798 *      pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
 799 *
 800 * And for normal mappings this is false.
 801 *
 802 * This restricts such mappings to be a linear translation from virtual address
 803 * to pfn. To get around this restriction, we allow arbitrary mappings so long
 804 * as the vma is not a COW mapping; in that case, we know that all ptes are
 805 * special (because none can have been COWed).
 806 *
 807 *
 808 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
 809 *
 810 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
 811 * page" backing, however the difference is that _all_ pages with a struct
 812 * page (that is, those where pfn_valid is true) are refcounted and considered
 813 * normal pages by the VM. The disadvantage is that pages are refcounted
 814 * (which can be slower and simply not an option for some PFNMAP users). The
 815 * advantage is that we don't have to follow the strict linearity rule of
 816 * PFNMAP mappings in order to support COWable mappings.
 817 *
 818 */
 819struct page *_vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
 820                             pte_t pte, bool with_public_device)
 821{
 822        unsigned long pfn = pte_pfn(pte);
 823
 824        if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL)) {
 825                if (likely(!pte_special(pte)))
 826                        goto check_pfn;
 827                if (vma->vm_ops && vma->vm_ops->find_special_page)
 828                        return vma->vm_ops->find_special_page(vma, addr);
 829                if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
 830                        return NULL;
 831                if (is_zero_pfn(pfn))
 832                        return NULL;
 833
 834                /*
 835                 * Device public pages are special pages (they are ZONE_DEVICE
 836                 * pages but different from persistent memory). They behave
 837                 * allmost like normal pages. The difference is that they are
 838                 * not on the lru and thus should never be involve with any-
 839                 * thing that involve lru manipulation (mlock, numa balancing,
 840                 * ...).
 841                 *
 842                 * This is why we still want to return NULL for such page from
 843                 * vm_normal_page() so that we do not have to special case all
 844                 * call site of vm_normal_page().
 845                 */
 846                if (likely(pfn <= highest_memmap_pfn)) {
 847                        struct page *page = pfn_to_page(pfn);
 848
 849                        if (is_device_public_page(page)) {
 850                                if (with_public_device)
 851                                        return page;
 852                                return NULL;
 853                        }
 854                }
 855
 856                if (pte_devmap(pte))
 857                        return NULL;
 858
 859                print_bad_pte(vma, addr, pte, NULL);
 860                return NULL;
 861        }
 862
 863        /* !CONFIG_ARCH_HAS_PTE_SPECIAL case follows: */
 864
 865        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 866                if (vma->vm_flags & VM_MIXEDMAP) {
 867                        if (!pfn_valid(pfn))
 868                                return NULL;
 869                        goto out;
 870                } else {
 871                        unsigned long off;
 872                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 873                        if (pfn == vma->vm_pgoff + off)
 874                                return NULL;
 875                        if (!is_cow_mapping(vma->vm_flags))
 876                                return NULL;
 877                }
 878        }
 879
 880        if (is_zero_pfn(pfn))
 881                return NULL;
 882
 883check_pfn:
 884        if (unlikely(pfn > highest_memmap_pfn)) {
 885                print_bad_pte(vma, addr, pte, NULL);
 886                return NULL;
 887        }
 888
 889        /*
 890         * NOTE! We still have PageReserved() pages in the page tables.
 891         * eg. VDSO mappings can cause them to exist.
 892         */
 893out:
 894        return pfn_to_page(pfn);
 895}
 896
 897#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 898struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
 899                                pmd_t pmd)
 900{
 901        unsigned long pfn = pmd_pfn(pmd);
 902
 903        /*
 904         * There is no pmd_special() but there may be special pmds, e.g.
 905         * in a direct-access (dax) mapping, so let's just replicate the
 906         * !CONFIG_ARCH_HAS_PTE_SPECIAL case from vm_normal_page() here.
 907         */
 908        if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
 909                if (vma->vm_flags & VM_MIXEDMAP) {
 910                        if (!pfn_valid(pfn))
 911                                return NULL;
 912                        goto out;
 913                } else {
 914                        unsigned long off;
 915                        off = (addr - vma->vm_start) >> PAGE_SHIFT;
 916                        if (pfn == vma->vm_pgoff + off)
 917                                return NULL;
 918                        if (!is_cow_mapping(vma->vm_flags))
 919                                return NULL;
 920                }
 921        }
 922
 923        if (pmd_devmap(pmd))
 924                return NULL;
 925        if (is_zero_pfn(pfn))
 926                return NULL;
 927        if (unlikely(pfn > highest_memmap_pfn))
 928                return NULL;
 929
 930        /*
 931         * NOTE! We still have PageReserved() pages in the page tables.
 932         * eg. VDSO mappings can cause them to exist.
 933         */
 934out:
 935        return pfn_to_page(pfn);
 936}
 937#endif
 938
 939/*
 940 * copy one vm_area from one task to the other. Assumes the page tables
 941 * already present in the new task to be cleared in the whole range
 942 * covered by this vma.
 943 */
 944
 945static inline unsigned long
 946copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 947                pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
 948                unsigned long addr, int *rss)
 949{
 950        unsigned long vm_flags = vma->vm_flags;
 951        pte_t pte = *src_pte;
 952        struct page *page;
 953
 954        /* pte contains position in swap or file, so copy. */
 955        if (unlikely(!pte_present(pte))) {
 956                swp_entry_t entry = pte_to_swp_entry(pte);
 957
 958                if (likely(!non_swap_entry(entry))) {
 959                        if (swap_duplicate(entry) < 0)
 960                                return entry.val;
 961
 962                        /* make sure dst_mm is on swapoff's mmlist. */
 963                        if (unlikely(list_empty(&dst_mm->mmlist))) {
 964                                spin_lock(&mmlist_lock);
 965                                if (list_empty(&dst_mm->mmlist))
 966                                        list_add(&dst_mm->mmlist,
 967                                                        &src_mm->mmlist);
 968                                spin_unlock(&mmlist_lock);
 969                        }
 970                        rss[MM_SWAPENTS]++;
 971                } else if (is_migration_entry(entry)) {
 972                        page = migration_entry_to_page(entry);
 973
 974                        rss[mm_counter(page)]++;
 975
 976                        if (is_write_migration_entry(entry) &&
 977                                        is_cow_mapping(vm_flags)) {
 978                                /*
 979                                 * COW mappings require pages in both
 980                                 * parent and child to be set to read.
 981                                 */
 982                                make_migration_entry_read(&entry);
 983                                pte = swp_entry_to_pte(entry);
 984                                if (pte_swp_soft_dirty(*src_pte))
 985                                        pte = pte_swp_mksoft_dirty(pte);
 986                                set_pte_at(src_mm, addr, src_pte, pte);
 987                        }
 988                } else if (is_device_private_entry(entry)) {
 989                        page = device_private_entry_to_page(entry);
 990
 991                        /*
 992                         * Update rss count even for unaddressable pages, as
 993                         * they should treated just like normal pages in this
 994                         * respect.
 995                         *
 996                         * We will likely want to have some new rss counters
 997                         * for unaddressable pages, at some point. But for now
 998                         * keep things as they are.
 999                         */
1000                        get_page(page);
1001                        rss[mm_counter(page)]++;
1002                        page_dup_rmap(page, false);
1003
1004                        /*
1005                         * We do not preserve soft-dirty information, because so
1006                         * far, checkpoint/restore is the only feature that
1007                         * requires that. And checkpoint/restore does not work
1008                         * when a device driver is involved (you cannot easily
1009                         * save and restore device driver state).
1010                         */
1011                        if (is_write_device_private_entry(entry) &&
1012                            is_cow_mapping(vm_flags)) {
1013                                make_device_private_entry_read(&entry);
1014                                pte = swp_entry_to_pte(entry);
1015                                set_pte_at(src_mm, addr, src_pte, pte);
1016                        }
1017                }
1018                goto out_set_pte;
1019        }
1020
1021        /*
1022         * If it's a COW mapping, write protect it both
1023         * in the parent and the child
1024         */
1025        if (is_cow_mapping(vm_flags) && pte_write(pte)) {
1026                ptep_set_wrprotect(src_mm, addr, src_pte);
1027                pte = pte_wrprotect(pte);
1028        }
1029
1030        /*
1031         * If it's a shared mapping, mark it clean in
1032         * the child
1033         */
1034        if (vm_flags & VM_SHARED)
1035                pte = pte_mkclean(pte);
1036        pte = pte_mkold(pte);
1037
1038        page = vm_normal_page(vma, addr, pte);
1039        if (page) {
1040                get_page(page);
1041                page_dup_rmap(page, false);
1042                rss[mm_counter(page)]++;
1043        } else if (pte_devmap(pte)) {
1044                page = pte_page(pte);
1045
1046                /*
1047                 * Cache coherent device memory behave like regular page and
1048                 * not like persistent memory page. For more informations see
1049                 * MEMORY_DEVICE_CACHE_COHERENT in memory_hotplug.h
1050                 */
1051                if (is_device_public_page(page)) {
1052                        get_page(page);
1053                        page_dup_rmap(page, false);
1054                        rss[mm_counter(page)]++;
1055                }
1056        }
1057
1058out_set_pte:
1059        set_pte_at(dst_mm, addr, dst_pte, pte);
1060        return 0;
1061}
1062
1063static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1064                   pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
1065                   unsigned long addr, unsigned long end)
1066{
1067        pte_t *orig_src_pte, *orig_dst_pte;
1068        pte_t *src_pte, *dst_pte;
1069        spinlock_t *src_ptl, *dst_ptl;
1070        int progress = 0;
1071        int rss[NR_MM_COUNTERS];
1072        swp_entry_t entry = (swp_entry_t){0};
1073
1074again:
1075        init_rss_vec(rss);
1076
1077        dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1078        if (!dst_pte)
1079                return -ENOMEM;
1080        src_pte = pte_offset_map(src_pmd, addr);
1081        src_ptl = pte_lockptr(src_mm, src_pmd);
1082        spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1083        orig_src_pte = src_pte;
1084        orig_dst_pte = dst_pte;
1085        arch_enter_lazy_mmu_mode();
1086
1087        do {
1088                /*
1089                 * We are holding two locks at this point - either of them
1090                 * could generate latencies in another task on another CPU.
1091                 */
1092                if (progress >= 32) {
1093                        progress = 0;
1094                        if (need_resched() ||
1095                            spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
1096                                break;
1097                }
1098                if (pte_none(*src_pte)) {
1099                        progress++;
1100                        continue;
1101                }
1102                entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1103                                                        vma, addr, rss);
1104                if (entry.val)
1105                        break;
1106                progress += 8;
1107        } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1108
1109        arch_leave_lazy_mmu_mode();
1110        spin_unlock(src_ptl);
1111        pte_unmap(orig_src_pte);
1112        add_mm_rss_vec(dst_mm, rss);
1113        pte_unmap_unlock(orig_dst_pte, dst_ptl);
1114        cond_resched();
1115
1116        if (entry.val) {
1117                if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1118                        return -ENOMEM;
1119                progress = 0;
1120        }
1121        if (addr != end)
1122                goto again;
1123        return 0;
1124}
1125
1126static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1127                pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1128                unsigned long addr, unsigned long end)
1129{
1130        pmd_t *src_pmd, *dst_pmd;
1131        unsigned long next;
1132
1133        dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1134        if (!dst_pmd)
1135                return -ENOMEM;
1136        src_pmd = pmd_offset(src_pud, addr);
1137        do {
1138                next = pmd_addr_end(addr, end);
1139                if (is_swap_pmd(*src_pmd) || pmd_trans_huge(*src_pmd)
1140                        || pmd_devmap(*src_pmd)) {
1141                        int err;
1142                        VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
1143                        err = copy_huge_pmd(dst_mm, src_mm,
1144                                            dst_pmd, src_pmd, addr, vma);
1145                        if (err == -ENOMEM)
1146                                return -ENOMEM;
1147                        if (!err)
1148                                continue;
1149                        /* fall through */
1150                }
1151                if (pmd_none_or_clear_bad(src_pmd))
1152                        continue;
1153                if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1154                                                vma, addr, next))
1155                        return -ENOMEM;
1156        } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1157        return 0;
1158}
1159
1160static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1161                p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1162                unsigned long addr, unsigned long end)
1163{
1164        pud_t *src_pud, *dst_pud;
1165        unsigned long next;
1166
1167        dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1168        if (!dst_pud)
1169                return -ENOMEM;
1170        src_pud = pud_offset(src_p4d, addr);
1171        do {
1172                next = pud_addr_end(addr, end);
1173                if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1174                        int err;
1175
1176                        VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1177                        err = copy_huge_pud(dst_mm, src_mm,
1178                                            dst_pud, src_pud, addr, vma);
1179                        if (err == -ENOMEM)
1180                                return -ENOMEM;
1181                        if (!err)
1182                                continue;
1183                        /* fall through */
1184                }
1185                if (pud_none_or_clear_bad(src_pud))
1186                        continue;
1187                if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1188                                                vma, addr, next))
1189                        return -ENOMEM;
1190        } while (dst_pud++, src_pud++, addr = next, addr != end);
1191        return 0;
1192}
1193
1194static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1195                pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1196                unsigned long addr, unsigned long end)
1197{
1198        p4d_t *src_p4d, *dst_p4d;
1199        unsigned long next;
1200
1201        dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1202        if (!dst_p4d)
1203                return -ENOMEM;
1204        src_p4d = p4d_offset(src_pgd, addr);
1205        do {
1206                next = p4d_addr_end(addr, end);
1207                if (p4d_none_or_clear_bad(src_p4d))
1208                        continue;
1209                if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1210                                                vma, addr, next))
1211                        return -ENOMEM;
1212        } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1213        return 0;
1214}
1215
1216int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1217                struct vm_area_struct *vma)
1218{
1219        pgd_t *src_pgd, *dst_pgd;
1220        unsigned long next;
1221        unsigned long addr = vma->vm_start;
1222        unsigned long end = vma->vm_end;
1223        unsigned long mmun_start;       /* For mmu_notifiers */
1224        unsigned long mmun_end;         /* For mmu_notifiers */
1225        bool is_cow;
1226        int ret;
1227
1228        /*
1229         * Don't copy ptes where a page fault will fill them correctly.
1230         * Fork becomes much lighter when there are big shared or private
1231         * readonly mappings. The tradeoff is that copy_page_range is more
1232         * efficient than faulting.
1233         */
1234        if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1235                        !vma->anon_vma)
1236                return 0;
1237
1238        if (is_vm_hugetlb_page(vma))
1239                return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1240
1241        if (unlikely(vma->vm_flags & VM_PFNMAP)) {
1242                /*
1243                 * We do not free on error cases below as remove_vma
1244                 * gets called on error from higher level routine
1245                 */
1246                ret = track_pfn_copy(vma);
1247                if (ret)
1248                        return ret;
1249        }
1250
1251        /*
1252         * We need to invalidate the secondary MMU mappings only when
1253         * there could be a permission downgrade on the ptes of the
1254         * parent mm. And a permission downgrade will only happen if
1255         * is_cow_mapping() returns true.
1256         */
1257        is_cow = is_cow_mapping(vma->vm_flags);
1258        mmun_start = addr;
1259        mmun_end   = end;
1260        if (is_cow)
1261                mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1262                                                    mmun_end);
1263
1264        ret = 0;
1265        dst_pgd = pgd_offset(dst_mm, addr);
1266        src_pgd = pgd_offset(src_mm, addr);
1267        do {
1268                next = pgd_addr_end(addr, end);
1269                if (pgd_none_or_clear_bad(src_pgd))
1270                        continue;
1271                if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
1272                                            vma, addr, next))) {
1273                        ret = -ENOMEM;
1274                        break;
1275                }
1276        } while (dst_pgd++, src_pgd++, addr = next, addr != end);
1277
1278        if (is_cow)
1279                mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
1280        return ret;
1281}
1282
1283static unsigned long zap_pte_range(struct mmu_gather *tlb,
1284                                struct vm_area_struct *vma, pmd_t *pmd,
1285                                unsigned long addr, unsigned long end,
1286                                struct zap_details *details)
1287{
1288        struct mm_struct *mm = tlb->mm;
1289        int force_flush = 0;
1290        int rss[NR_MM_COUNTERS];
1291        spinlock_t *ptl;
1292        pte_t *start_pte;
1293        pte_t *pte;
1294        swp_entry_t entry;
1295
1296        tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
1297again:
1298        init_rss_vec(rss);
1299        start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1300        pte = start_pte;
1301        flush_tlb_batched_pending(mm);
1302        arch_enter_lazy_mmu_mode();
1303        do {
1304                pte_t ptent = *pte;
1305                if (pte_none(ptent))
1306                        continue;
1307
1308                if (pte_present(ptent)) {
1309                        struct page *page;
1310
1311                        page = _vm_normal_page(vma, addr, ptent, true);
1312                        if (unlikely(details) && page) {
1313                                /*
1314                                 * unmap_shared_mapping_pages() wants to
1315                                 * invalidate cache without truncating:
1316                                 * unmap shared but keep private pages.
1317                                 */
1318                                if (details->check_mapping &&
1319                                    details->check_mapping != page_rmapping(page))
1320                                        continue;
1321                        }
1322                        ptent = ptep_get_and_clear_full(mm, addr, pte,
1323                                                        tlb->fullmm);
1324                        tlb_remove_tlb_entry(tlb, pte, addr);
1325                        if (unlikely(!page))
1326                                continue;
1327
1328                        if (!PageAnon(page)) {
1329                                if (pte_dirty(ptent)) {
1330                                        force_flush = 1;
1331                                        set_page_dirty(page);
1332                                }
1333                                if (pte_young(ptent) &&
1334                                    likely(!(vma->vm_flags & VM_SEQ_READ)))
1335                                        mark_page_accessed(page);
1336                        }
1337                        rss[mm_counter(page)]--;
1338                        page_remove_rmap(page, false);
1339                        if (unlikely(page_mapcount(page) < 0))
1340                                print_bad_pte(vma, addr, ptent, page);
1341                        if (unlikely(__tlb_remove_page(tlb, page))) {
1342                                force_flush = 1;
1343                                addr += PAGE_SIZE;
1344                                break;
1345                        }
1346                        continue;
1347                }
1348
1349                entry = pte_to_swp_entry(ptent);
1350                if (non_swap_entry(entry) && is_device_private_entry(entry)) {
1351                        struct page *page = device_private_entry_to_page(entry);
1352
1353                        if (unlikely(details && details->check_mapping)) {
1354                                /*
1355                                 * unmap_shared_mapping_pages() wants to
1356                                 * invalidate cache without truncating:
1357                                 * unmap shared but keep private pages.
1358                                 */
1359                                if (details->check_mapping !=
1360                                    page_rmapping(page))
1361                                        continue;
1362                        }
1363
1364                        pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1365                        rss[mm_counter(page)]--;
1366                        page_remove_rmap(page, false);
1367                        put_page(page);
1368                        continue;
1369                }
1370
1371                /* If details->check_mapping, we leave swap entries. */
1372                if (unlikely(details))
1373                        continue;
1374
1375                entry = pte_to_swp_entry(ptent);
1376                if (!non_swap_entry(entry))
1377                        rss[MM_SWAPENTS]--;
1378                else if (is_migration_entry(entry)) {
1379                        struct page *page;
1380
1381                        page = migration_entry_to_page(entry);
1382                        rss[mm_counter(page)]--;
1383                }
1384                if (unlikely(!free_swap_and_cache(entry)))
1385                        print_bad_pte(vma, addr, ptent, NULL);
1386                pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
1387        } while (pte++, addr += PAGE_SIZE, addr != end);
1388
1389        add_mm_rss_vec(mm, rss);
1390        arch_leave_lazy_mmu_mode();
1391
1392        /* Do the actual TLB flush before dropping ptl */
1393        if (force_flush)
1394                tlb_flush_mmu_tlbonly(tlb);
1395        pte_unmap_unlock(start_pte, ptl);
1396
1397        /*
1398         * If we forced a TLB flush (either due to running out of
1399         * batch buffers or because we needed to flush dirty TLB
1400         * entries before releasing the ptl), free the batched
1401         * memory too. Restart if we didn't do everything.
1402         */
1403        if (force_flush) {
1404                force_flush = 0;
1405                tlb_flush_mmu_free(tlb);
1406                if (addr != end)
1407                        goto again;
1408        }
1409
1410        return addr;
1411}
1412
1413static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
1414                                struct vm_area_struct *vma, pud_t *pud,
1415                                unsigned long addr, unsigned long end,
1416                                struct zap_details *details)
1417{
1418        pmd_t *pmd;
1419        unsigned long next;
1420
1421        pmd = pmd_offset(pud, addr);
1422        do {
1423                next = pmd_addr_end(addr, end);
1424                if (is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1425                        if (next - addr != HPAGE_PMD_SIZE)
1426                                __split_huge_pmd(vma, pmd, addr, false, NULL);
1427                        else if (zap_huge_pmd(tlb, vma, pmd, addr))
1428                                goto next;
1429                        /* fall through */
1430                }
1431                /*
1432                 * Here there can be other concurrent MADV_DONTNEED or
1433                 * trans huge page faults running, and if the pmd is
1434                 * none or trans huge it can change under us. This is
1435                 * because MADV_DONTNEED holds the mmap_sem in read
1436                 * mode.
1437                 */
1438                if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1439                        goto next;
1440                next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1441next:
1442                cond_resched();
1443        } while (pmd++, addr = next, addr != end);
1444
1445        return addr;
1446}
1447
1448static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
1449                                struct vm_area_struct *vma, p4d_t *p4d,
1450                                unsigned long addr, unsigned long end,
1451                                struct zap_details *details)
1452{
1453        pud_t *pud;
1454        unsigned long next;
1455
1456        pud = pud_offset(p4d, addr);
1457        do {
1458                next = pud_addr_end(addr, end);
1459                if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1460                        if (next - addr != HPAGE_PUD_SIZE) {
1461                                VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1462                                split_huge_pud(vma, pud, addr);
1463                        } else if (zap_huge_pud(tlb, vma, pud, addr))
1464                                goto next;
1465                        /* fall through */
1466                }
1467                if (pud_none_or_clear_bad(pud))
1468                        continue;
1469                next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1470next:
1471                cond_resched();
1472        } while (pud++, addr = next, addr != end);
1473
1474        return addr;
1475}
1476
1477static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1478                                struct vm_area_struct *vma, pgd_t *pgd,
1479                                unsigned long addr, unsigned long end,
1480                                struct zap_details *details)
1481{
1482        p4d_t *p4d;
1483        unsigned long next;
1484
1485        p4d = p4d_offset(pgd, addr);
1486        do {
1487                next = p4d_addr_end(addr, end);
1488                if (p4d_none_or_clear_bad(p4d))
1489                        continue;
1490                next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1491        } while (p4d++, addr = next, addr != end);
1492
1493        return addr;
1494}
1495
1496void unmap_page_range(struct mmu_gather *tlb,
1497                             struct vm_area_struct *vma,
1498                             unsigned long addr, unsigned long end,
1499                             struct zap_details *details)
1500{
1501        pgd_t *pgd;
1502        unsigned long next;
1503
1504        BUG_ON(addr >= end);
1505        tlb_start_vma(tlb, vma);
1506        pgd = pgd_offset(vma->vm_mm, addr);
1507        do {
1508                next = pgd_addr_end(addr, end);
1509                if (pgd_none_or_clear_bad(pgd))
1510                        continue;
1511                next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
1512        } while (pgd++, addr = next, addr != end);
1513        tlb_end_vma(tlb, vma);
1514}
1515
1516
1517static void unmap_single_vma(struct mmu_gather *tlb,
1518                struct vm_area_struct *vma, unsigned long start_addr,
1519                unsigned long end_addr,
1520                struct zap_details *details)
1521{
1522        unsigned long start = max(vma->vm_start, start_addr);
1523        unsigned long end;
1524
1525        if (start >= vma->vm_end)
1526                return;
1527        end = min(vma->vm_end, end_addr);
1528        if (end <= vma->vm_start)
1529                return;
1530
1531        if (vma->vm_file)
1532                uprobe_munmap(vma, start, end);
1533
1534        if (unlikely(vma->vm_flags & VM_PFNMAP))
1535                untrack_pfn(vma, 0, 0);
1536
1537        if (start != end) {
1538                if (unlikely(is_vm_hugetlb_page(vma))) {
1539                        /*
1540                         * It is undesirable to test vma->vm_file as it
1541                         * should be non-null for valid hugetlb area.
1542                         * However, vm_file will be NULL in the error
1543                         * cleanup path of mmap_region. When
1544                         * hugetlbfs ->mmap method fails,
1545                         * mmap_region() nullifies vma->vm_file
1546                         * before calling this function to clean up.
1547                         * Since no pte has actually been setup, it is
1548                         * safe to do nothing in this case.
1549                         */
1550                        if (vma->vm_file) {
1551                                i_mmap_lock_write(vma->vm_file->f_mapping);
1552                                __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
1553                                i_mmap_unlock_write(vma->vm_file->f_mapping);
1554                        }
1555                } else
1556                        unmap_page_range(tlb, vma, start, end, details);
1557        }
1558}
1559
1560/**
1561 * unmap_vmas - unmap a range of memory covered by a list of vma's
1562 * @tlb: address of the caller's struct mmu_gather
1563 * @vma: the starting vma
1564 * @start_addr: virtual address at which to start unmapping
1565 * @end_addr: virtual address at which to end unmapping
1566 *
1567 * Unmap all pages in the vma list.
1568 *
1569 * Only addresses between `start' and `end' will be unmapped.
1570 *
1571 * The VMA list must be sorted in ascending virtual address order.
1572 *
1573 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1574 * range after unmap_vmas() returns.  So the only responsibility here is to
1575 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1576 * drops the lock and schedules.
1577 */
1578void unmap_vmas(struct mmu_gather *tlb,
1579                struct vm_area_struct *vma, unsigned long start_addr,
1580                unsigned long end_addr)
1581{
1582        struct mm_struct *mm = vma->vm_mm;
1583
1584        mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1585        for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
1586                unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
1587        mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1588}
1589
1590/**
1591 * zap_page_range - remove user pages in a given range
1592 * @vma: vm_area_struct holding the applicable pages
1593 * @start: starting address of pages to zap
1594 * @size: number of bytes to zap
1595 *
1596 * Caller must protect the VMA list
1597 */
1598void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1599                unsigned long size)
1600{
1601        struct mm_struct *mm = vma->vm_mm;
1602        struct mmu_gather tlb;
1603        unsigned long end = start + size;
1604
1605        lru_add_drain();
1606        tlb_gather_mmu(&tlb, mm, start, end);
1607        update_hiwater_rss(mm);
1608        mmu_notifier_invalidate_range_start(mm, start, end);
1609        for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
1610                unmap_single_vma(&tlb, vma, start, end, NULL);
1611        mmu_notifier_invalidate_range_end(mm, start, end);
1612        tlb_finish_mmu(&tlb, start, end);
1613}
1614
1615/**
1616 * zap_page_range_single - remove user pages in a given range
1617 * @vma: vm_area_struct holding the applicable pages
1618 * @address: starting address of pages to zap
1619 * @size: number of bytes to zap
1620 * @details: details of shared cache invalidation
1621 *
1622 * The range must fit into one VMA.
1623 */
1624static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1625                unsigned long size, struct zap_details *details)
1626{
1627        struct mm_struct *mm = vma->vm_mm;
1628        struct mmu_gather tlb;
1629        unsigned long end = address + size;
1630
1631        lru_add_drain();
1632        tlb_gather_mmu(&tlb, mm, address, end);
1633        update_hiwater_rss(mm);
1634        mmu_notifier_invalidate_range_start(mm, address, end);
1635        unmap_single_vma(&tlb, vma, address, end, details);
1636        mmu_notifier_invalidate_range_end(mm, address, end);
1637        tlb_finish_mmu(&tlb, address, end);
1638}
1639
1640/**
1641 * zap_vma_ptes - remove ptes mapping the vma
1642 * @vma: vm_area_struct holding ptes to be zapped
1643 * @address: starting address of pages to zap
1644 * @size: number of bytes to zap
1645 *
1646 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1647 *
1648 * The entire address range must be fully contained within the vma.
1649 *
1650 */
1651void zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1652                unsigned long size)
1653{
1654        if (address < vma->vm_start || address + size > vma->vm_end ||
1655                        !(vma->vm_flags & VM_PFNMAP))
1656                return;
1657
1658        zap_page_range_single(vma, address, size, NULL);
1659}
1660EXPORT_SYMBOL_GPL(zap_vma_ptes);
1661
1662pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1663                        spinlock_t **ptl)
1664{
1665        pgd_t *pgd;
1666        p4d_t *p4d;
1667        pud_t *pud;
1668        pmd_t *pmd;
1669
1670        pgd = pgd_offset(mm, addr);
1671        p4d = p4d_alloc(mm, pgd, addr);
1672        if (!p4d)
1673                return NULL;
1674        pud = pud_alloc(mm, p4d, addr);
1675        if (!pud)
1676                return NULL;
1677        pmd = pmd_alloc(mm, pud, addr);
1678        if (!pmd)
1679                return NULL;
1680
1681        VM_BUG_ON(pmd_trans_huge(*pmd));
1682        return pte_alloc_map_lock(mm, pmd, addr, ptl);
1683}
1684
1685/*
1686 * This is the old fallback for page remapping.
1687 *
1688 * For historical reasons, it only allows reserved pages. Only
1689 * old drivers should use this, and they needed to mark their
1690 * pages reserved for the old functions anyway.
1691 */
1692static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1693                        struct page *page, pgprot_t prot)
1694{
1695        struct mm_struct *mm = vma->vm_mm;
1696        int retval;
1697        pte_t *pte;
1698        spinlock_t *ptl;
1699
1700        retval = -EINVAL;
1701        if (PageAnon(page))
1702                goto out;
1703        retval = -ENOMEM;
1704        flush_dcache_page(page);
1705        pte = get_locked_pte(mm, addr, &ptl);
1706        if (!pte)
1707                goto out;
1708        retval = -EBUSY;
1709        if (!pte_none(*pte))
1710                goto out_unlock;
1711
1712        /* Ok, finally just insert the thing.. */
1713        get_page(page);
1714        inc_mm_counter_fast(mm, mm_counter_file(page));
1715        page_add_file_rmap(page, false);
1716        set_pte_at(mm, addr, pte, mk_pte(page, prot));
1717
1718        retval = 0;
1719        pte_unmap_unlock(pte, ptl);
1720        return retval;
1721out_unlock:
1722        pte_unmap_unlock(pte, ptl);
1723out:
1724        return retval;
1725}
1726
1727/**
1728 * vm_insert_page - insert single page into user vma
1729 * @vma: user vma to map to
1730 * @addr: target user address of this page
1731 * @page: source kernel page
1732 *
1733 * This allows drivers to insert individual pages they've allocated
1734 * into a user vma.
1735 *
1736 * The page has to be a nice clean _individual_ kernel allocation.
1737 * If you allocate a compound page, you need to have marked it as
1738 * such (__GFP_COMP), or manually just split the page up yourself
1739 * (see split_page()).
1740 *
1741 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1742 * took an arbitrary page protection parameter. This doesn't allow
1743 * that. Your vma protection will have to be set up correctly, which
1744 * means that if you want a shared writable mapping, you'd better
1745 * ask for a shared writable mapping!
1746 *
1747 * The page does not need to be reserved.
1748 *
1749 * Usually this function is called from f_op->mmap() handler
1750 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1751 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1752 * function from other places, for example from page-fault handler.
1753 */
1754int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1755                        struct page *page)
1756{
1757        if (addr < vma->vm_start || addr >= vma->vm_end)
1758                return -EFAULT;
1759        if (!page_count(page))
1760                return -EINVAL;
1761        if (!(vma->vm_flags & VM_MIXEDMAP)) {
1762                BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1763                BUG_ON(vma->vm_flags & VM_PFNMAP);
1764                vma->vm_flags |= VM_MIXEDMAP;
1765        }
1766        return insert_page(vma, addr, page, vma->vm_page_prot);
1767}
1768EXPORT_SYMBOL(vm_insert_page);
1769
1770static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1771                        pfn_t pfn, pgprot_t prot, bool mkwrite)
1772{
1773        struct mm_struct *mm = vma->vm_mm;
1774        int retval;
1775        pte_t *pte, entry;
1776        spinlock_t *ptl;
1777
1778        retval = -ENOMEM;
1779        pte = get_locked_pte(mm, addr, &ptl);
1780        if (!pte)
1781                goto out;
1782        retval = -EBUSY;
1783        if (!pte_none(*pte)) {
1784                if (mkwrite) {
1785                        /*
1786                         * For read faults on private mappings the PFN passed
1787                         * in may not match the PFN we have mapped if the
1788                         * mapped PFN is a writeable COW page.  In the mkwrite
1789                         * case we are creating a writable PTE for a shared
1790                         * mapping and we expect the PFNs to match.
1791                         */
1792                        if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1793                                goto out_unlock;
1794                        entry = *pte;
1795                        goto out_mkwrite;
1796                } else
1797                        goto out_unlock;
1798        }
1799
1800        /* Ok, finally just insert the thing.. */
1801        if (pfn_t_devmap(pfn))
1802                entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1803        else
1804                entry = pte_mkspecial(pfn_t_pte(pfn, prot));
1805
1806out_mkwrite:
1807        if (mkwrite) {
1808                entry = pte_mkyoung(entry);
1809                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1810        }
1811
1812        set_pte_at(mm, addr, pte, entry);
1813        update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
1814
1815        retval = 0;
1816out_unlock:
1817        pte_unmap_unlock(pte, ptl);
1818out:
1819        return retval;
1820}
1821
1822/**
1823 * vm_insert_pfn - insert single pfn into user vma
1824 * @vma: user vma to map to
1825 * @addr: target user address of this page
1826 * @pfn: source kernel pfn
1827 *
1828 * Similar to vm_insert_page, this allows drivers to insert individual pages
1829 * they've allocated into a user vma. Same comments apply.
1830 *
1831 * This function should only be called from a vm_ops->fault handler, and
1832 * in that case the handler should return NULL.
1833 *
1834 * vma cannot be a COW mapping.
1835 *
1836 * As this is called only for pages that do not currently exist, we
1837 * do not need to flush old virtual caches or the TLB.
1838 */
1839int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1840                        unsigned long pfn)
1841{
1842        return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1843}
1844EXPORT_SYMBOL(vm_insert_pfn);
1845
1846/**
1847 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1848 * @vma: user vma to map to
1849 * @addr: target user address of this page
1850 * @pfn: source kernel pfn
1851 * @pgprot: pgprot flags for the inserted page
1852 *
1853 * This is exactly like vm_insert_pfn, except that it allows drivers to
1854 * to override pgprot on a per-page basis.
1855 *
1856 * This only makes sense for IO mappings, and it makes no sense for
1857 * cow mappings.  In general, using multiple vmas is preferable;
1858 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1859 * impractical.
1860 */
1861int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1862                        unsigned long pfn, pgprot_t pgprot)
1863{
1864        int ret;
1865        /*
1866         * Technically, architectures with pte_special can avoid all these
1867         * restrictions (same for remap_pfn_range).  However we would like
1868         * consistency in testing and feature parity among all, so we should
1869         * try to keep these invariants in place for everybody.
1870         */
1871        BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1872        BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1873                                                (VM_PFNMAP|VM_MIXEDMAP));
1874        BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1875        BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1876
1877        if (addr < vma->vm_start || addr >= vma->vm_end)
1878                return -EFAULT;
1879
1880        if (!pfn_modify_allowed(pfn, pgprot))
1881                return -EACCES;
1882
1883        track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
1884
1885        ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1886                        false);
1887
1888        return ret;
1889}
1890EXPORT_SYMBOL(vm_insert_pfn_prot);
1891
1892static bool vm_mixed_ok(struct vm_area_struct *vma, pfn_t pfn)
1893{
1894        /* these checks mirror the abort conditions in vm_normal_page */
1895        if (vma->vm_flags & VM_MIXEDMAP)
1896                return true;
1897        if (pfn_t_devmap(pfn))
1898                return true;
1899        if (pfn_t_special(pfn))
1900                return true;
1901        if (is_zero_pfn(pfn_t_to_pfn(pfn)))
1902                return true;
1903        return false;
1904}
1905
1906static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1907                        pfn_t pfn, bool mkwrite)
1908{
1909        pgprot_t pgprot = vma->vm_page_prot;
1910
1911        BUG_ON(!vm_mixed_ok(vma, pfn));
1912
1913        if (addr < vma->vm_start || addr >= vma->vm_end)
1914                return -EFAULT;
1915
1916        track_pfn_insert(vma, &pgprot, pfn);
1917
1918        if (!pfn_modify_allowed(pfn_t_to_pfn(pfn), pgprot))
1919                return -EACCES;
1920
1921        /*
1922         * If we don't have pte special, then we have to use the pfn_valid()
1923         * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1924         * refcount the page if pfn_valid is true (hence insert_page rather
1925         * than insert_pfn).  If a zero_pfn were inserted into a VM_MIXEDMAP
1926         * without pte special, it would there be refcounted as a normal page.
1927         */
1928        if (!IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) &&
1929            !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
1930                struct page *page;
1931
1932                /*
1933                 * At this point we are committed to insert_page()
1934                 * regardless of whether the caller specified flags that
1935                 * result in pfn_t_has_page() == false.
1936                 */
1937                page = pfn_to_page(pfn_t_to_pfn(pfn));
1938                return insert_page(vma, addr, page, pgprot);
1939        }
1940        return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1941}
1942
1943int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1944                        pfn_t pfn)
1945{
1946        return __vm_insert_mixed(vma, addr, pfn, false);
1947
1948}
1949EXPORT_SYMBOL(vm_insert_mixed);
1950
1951/*
1952 *  If the insertion of PTE failed because someone else already added a
1953 *  different entry in the mean time, we treat that as success as we assume
1954 *  the same entry was actually inserted.
1955 */
1956
1957vm_fault_t vmf_insert_mixed_mkwrite(struct vm_area_struct *vma,
1958                unsigned long addr, pfn_t pfn)
1959{
1960        int err;
1961
1962        err =  __vm_insert_mixed(vma, addr, pfn, true);
1963        if (err == -ENOMEM)
1964                return VM_FAULT_OOM;
1965        if (err < 0 && err != -EBUSY)
1966                return VM_FAULT_SIGBUS;
1967        return VM_FAULT_NOPAGE;
1968}
1969EXPORT_SYMBOL(vmf_insert_mixed_mkwrite);
1970
1971/*
1972 * maps a range of physical memory into the requested pages. the old
1973 * mappings are removed. any references to nonexistent pages results
1974 * in null mappings (currently treated as "copy-on-access")
1975 */
1976static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1977                        unsigned long addr, unsigned long end,
1978                        unsigned long pfn, pgprot_t prot)
1979{
1980        pte_t *pte;
1981        spinlock_t *ptl;
1982        int err = 0;
1983
1984        pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1985        if (!pte)
1986                return -ENOMEM;
1987        arch_enter_lazy_mmu_mode();
1988        do {
1989                BUG_ON(!pte_none(*pte));
1990                if (!pfn_modify_allowed(pfn, prot)) {
1991                        err = -EACCES;
1992                        break;
1993                }
1994                set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1995                pfn++;
1996        } while (pte++, addr += PAGE_SIZE, addr != end);
1997        arch_leave_lazy_mmu_mode();
1998        pte_unmap_unlock(pte - 1, ptl);
1999        return err;
2000}
2001
2002static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
2003                        unsigned long addr, unsigned long end,
2004                        unsigned long pfn, pgprot_t prot)
2005{
2006        pmd_t *pmd;
2007        unsigned long next;
2008        int err;
2009
2010        pfn -= addr >> PAGE_SHIFT;
2011        pmd = pmd_alloc(mm, pud, addr);
2012        if (!pmd)
2013                return -ENOMEM;
2014        VM_BUG_ON(pmd_trans_huge(*pmd));
2015        do {
2016                next = pmd_addr_end(addr, end);
2017                err = remap_pte_range(mm, pmd, addr, next,
2018                                pfn + (addr >> PAGE_SHIFT), prot);
2019                if (err)
2020                        return err;
2021        } while (pmd++, addr = next, addr != end);
2022        return 0;
2023}
2024
2025static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
2026                        unsigned long addr, unsigned long end,
2027                        unsigned long pfn, pgprot_t prot)
2028{
2029        pud_t *pud;
2030        unsigned long next;
2031        int err;
2032
2033        pfn -= addr >> PAGE_SHIFT;
2034        pud = pud_alloc(mm, p4d, addr);
2035        if (!pud)
2036                return -ENOMEM;
2037        do {
2038                next = pud_addr_end(addr, end);
2039                err = remap_pmd_range(mm, pud, addr, next,
2040                                pfn + (addr >> PAGE_SHIFT), prot);
2041                if (err)
2042                        return err;
2043        } while (pud++, addr = next, addr != end);
2044        return 0;
2045}
2046
2047static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2048                        unsigned long addr, unsigned long end,
2049                        unsigned long pfn, pgprot_t prot)
2050{
2051        p4d_t *p4d;
2052        unsigned long next;
2053        int err;
2054
2055        pfn -= addr >> PAGE_SHIFT;
2056        p4d = p4d_alloc(mm, pgd, addr);
2057        if (!p4d)
2058                return -ENOMEM;
2059        do {
2060                next = p4d_addr_end(addr, end);
2061                err = remap_pud_range(mm, p4d, addr, next,
2062                                pfn + (addr >> PAGE_SHIFT), prot);
2063                if (err)
2064                        return err;
2065        } while (p4d++, addr = next, addr != end);
2066        return 0;
2067}
2068
2069/**
2070 * remap_pfn_range - remap kernel memory to userspace
2071 * @vma: user vma to map to
2072 * @addr: target user address to start at
2073 * @pfn: physical address of kernel memory
2074 * @size: size of map area
2075 * @prot: page protection flags for this mapping
2076 *
2077 *  Note: this is only safe if the mm semaphore is held when called.
2078 */
2079int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
2080                    unsigned long pfn, unsigned long size, pgprot_t prot)
2081{
2082        pgd_t *pgd;
2083        unsigned long next;
2084        unsigned long end = addr + PAGE_ALIGN(size);
2085        struct mm_struct *mm = vma->vm_mm;
2086        unsigned long remap_pfn = pfn;
2087        int err;
2088
2089        /*
2090         * Physically remapped pages are special. Tell the
2091         * rest of the world about it:
2092         *   VM_IO tells people not to look at these pages
2093         *      (accesses can have side effects).
2094         *   VM_PFNMAP tells the core MM that the base pages are just
2095         *      raw PFN mappings, and do not have a "struct page" associated
2096         *      with them.
2097         *   VM_DONTEXPAND
2098         *      Disable vma merging and expanding with mremap().
2099         *   VM_DONTDUMP
2100         *      Omit vma from core dump, even when VM_IO turned off.
2101         *
2102         * There's a horrible special case to handle copy-on-write
2103         * behaviour that some programs depend on. We mark the "original"
2104         * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2105         * See vm_normal_page() for details.
2106         */
2107        if (is_cow_mapping(vma->vm_flags)) {
2108                if (addr != vma->vm_start || end != vma->vm_end)
2109                        return -EINVAL;
2110                vma->vm_pgoff = pfn;
2111        }
2112
2113        err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
2114        if (err)
2115                return -EINVAL;
2116
2117        vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
2118
2119        BUG_ON(addr >= end);
2120        pfn -= addr >> PAGE_SHIFT;
2121        pgd = pgd_offset(mm, addr);
2122        flush_cache_range(vma, addr, end);
2123        do {
2124                next = pgd_addr_end(addr, end);
2125                err = remap_p4d_range(mm, pgd, addr, next,
2126                                pfn + (addr >> PAGE_SHIFT), prot);
2127                if (err)
2128                        break;
2129        } while (pgd++, addr = next, addr != end);
2130
2131        if (err)
2132                untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2133
2134        return err;
2135}
2136EXPORT_SYMBOL(remap_pfn_range);
2137
2138/**
2139 * vm_iomap_memory - remap memory to userspace
2140 * @vma: user vma to map to
2141 * @start: start of area
2142 * @len: size of area
2143 *
2144 * This is a simplified io_remap_pfn_range() for common driver use. The
2145 * driver just needs to give us the physical memory range to be mapped,
2146 * we'll figure out the rest from the vma information.
2147 *
2148 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2149 * whatever write-combining details or similar.
2150 */
2151int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2152{
2153        unsigned long vm_len, pfn, pages;
2154
2155        /* Check that the physical memory area passed in looks valid */
2156        if (start + len < start)
2157                return -EINVAL;
2158        /*
2159         * You *really* shouldn't map things that aren't page-aligned,
2160         * but we've historically allowed it because IO memory might
2161         * just have smaller alignment.
2162         */
2163        len += start & ~PAGE_MASK;
2164        pfn = start >> PAGE_SHIFT;
2165        pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2166        if (pfn + pages < pfn)
2167                return -EINVAL;
2168
2169        /* We start the mapping 'vm_pgoff' pages into the area */
2170        if (vma->vm_pgoff > pages)
2171                return -EINVAL;
2172        pfn += vma->vm_pgoff;
2173        pages -= vma->vm_pgoff;
2174
2175        /* Can we fit all of the mapping? */
2176        vm_len = vma->vm_end - vma->vm_start;
2177        if (vm_len >> PAGE_SHIFT > pages)
2178                return -EINVAL;
2179
2180        /* Ok, let it rip */
2181        return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2182}
2183EXPORT_SYMBOL(vm_iomap_memory);
2184
2185static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2186                                     unsigned long addr, unsigned long end,
2187                                     pte_fn_t fn, void *data)
2188{
2189        pte_t *pte;
2190        int err;
2191        pgtable_t token;
2192        spinlock_t *uninitialized_var(ptl);
2193
2194        pte = (mm == &init_mm) ?
2195                pte_alloc_kernel(pmd, addr) :
2196                pte_alloc_map_lock(mm, pmd, addr, &ptl);
2197        if (!pte)
2198                return -ENOMEM;
2199
2200        BUG_ON(pmd_huge(*pmd));
2201
2202        arch_enter_lazy_mmu_mode();
2203
2204        token = pmd_pgtable(*pmd);
2205
2206        do {
2207                err = fn(pte++, token, addr, data);
2208                if (err)
2209                        break;
2210        } while (addr += PAGE_SIZE, addr != end);
2211
2212        arch_leave_lazy_mmu_mode();
2213
2214        if (mm != &init_mm)
2215                pte_unmap_unlock(pte-1, ptl);
2216        return err;
2217}
2218
2219static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2220                                     unsigned long addr, unsigned long end,
2221                                     pte_fn_t fn, void *data)
2222{
2223        pmd_t *pmd;
2224        unsigned long next;
2225        int err;
2226
2227        BUG_ON(pud_huge(*pud));
2228
2229        pmd = pmd_alloc(mm, pud, addr);
2230        if (!pmd)
2231                return -ENOMEM;
2232        do {
2233                next = pmd_addr_end(addr, end);
2234                err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2235                if (err)
2236                        break;
2237        } while (pmd++, addr = next, addr != end);
2238        return err;
2239}
2240
2241static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
2242                                     unsigned long addr, unsigned long end,
2243                                     pte_fn_t fn, void *data)
2244{
2245        pud_t *pud;
2246        unsigned long next;
2247        int err;
2248
2249        pud = pud_alloc(mm, p4d, addr);
2250        if (!pud)
2251                return -ENOMEM;
2252        do {
2253                next = pud_addr_end(addr, end);
2254                err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2255                if (err)
2256                        break;
2257        } while (pud++, addr = next, addr != end);
2258        return err;
2259}
2260
2261static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2262                                     unsigned long addr, unsigned long end,
2263                                     pte_fn_t fn, void *data)
2264{
2265        p4d_t *p4d;
2266        unsigned long next;
2267        int err;
2268
2269        p4d = p4d_alloc(mm, pgd, addr);
2270        if (!p4d)
2271                return -ENOMEM;
2272        do {
2273                next = p4d_addr_end(addr, end);
2274                err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2275                if (err)
2276                        break;
2277        } while (p4d++, addr = next, addr != end);
2278        return err;
2279}
2280
2281/*
2282 * Scan a region of virtual memory, filling in page tables as necessary
2283 * and calling a provided function on each leaf page table.
2284 */
2285int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2286                        unsigned long size, pte_fn_t fn, void *data)
2287{
2288        pgd_t *pgd;
2289        unsigned long next;
2290        unsigned long end = addr + size;
2291        int err;
2292
2293        if (WARN_ON(addr >= end))
2294                return -EINVAL;
2295
2296        pgd = pgd_offset(mm, addr);
2297        do {
2298                next = pgd_addr_end(addr, end);
2299                err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
2300                if (err)
2301                        break;
2302        } while (pgd++, addr = next, addr != end);
2303
2304        return err;
2305}
2306EXPORT_SYMBOL_GPL(apply_to_page_range);
2307
2308/*
2309 * handle_pte_fault chooses page fault handler according to an entry which was
2310 * read non-atomically.  Before making any commitment, on those architectures
2311 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2312 * parts, do_swap_page must check under lock before unmapping the pte and
2313 * proceeding (but do_wp_page is only called after already making such a check;
2314 * and do_anonymous_page can safely check later on).
2315 */
2316static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
2317                                pte_t *page_table, pte_t orig_pte)
2318{
2319        int same = 1;
2320#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2321        if (sizeof(pte_t) > sizeof(unsigned long)) {
2322                spinlock_t *ptl = pte_lockptr(mm, pmd);
2323                spin_lock(ptl);
2324                same = pte_same(*page_table, orig_pte);
2325                spin_unlock(ptl);
2326        }
2327#endif
2328        pte_unmap(page_table);
2329        return same;
2330}
2331
2332static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
2333{
2334        debug_dma_assert_idle(src);
2335
2336        /*
2337         * If the source page was a PFN mapping, we don't have
2338         * a "struct page" for it. We do a best-effort copy by
2339         * just copying from the original user address. If that
2340         * fails, we just zero-fill it. Live with it.
2341         */
2342        if (unlikely(!src)) {
2343                void *kaddr = kmap_atomic(dst);
2344                void __user *uaddr = (void __user *)(va & PAGE_MASK);
2345
2346                /*
2347                 * This really shouldn't fail, because the page is there
2348                 * in the page tables. But it might just be unreadable,
2349                 * in which case we just give up and fill the result with
2350                 * zeroes.
2351                 */
2352                if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
2353                        clear_page(kaddr);
2354                kunmap_atomic(kaddr);
2355                flush_dcache_page(dst);
2356        } else
2357                copy_user_highpage(dst, src, va, vma);
2358}
2359
2360static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2361{
2362        struct file *vm_file = vma->vm_file;
2363
2364        if (vm_file)
2365                return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2366
2367        /*
2368         * Special mappings (e.g. VDSO) do not have any file so fake
2369         * a default GFP_KERNEL for them.
2370         */
2371        return GFP_KERNEL;
2372}
2373
2374/*
2375 * Notify the address space that the page is about to become writable so that
2376 * it can prohibit this or wait for the page to get into an appropriate state.
2377 *
2378 * We do this without the lock held, so that it can sleep if it needs to.
2379 */
2380static vm_fault_t do_page_mkwrite(struct vm_fault *vmf)
2381{
2382        vm_fault_t ret;
2383        struct page *page = vmf->page;
2384        unsigned int old_flags = vmf->flags;
2385
2386        vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2387
2388        ret = vmf->vma->vm_ops->page_mkwrite(vmf);
2389        /* Restore original flags so that caller is not surprised */
2390        vmf->flags = old_flags;
2391        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2392                return ret;
2393        if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2394                lock_page(page);
2395                if (!page->mapping) {
2396                        unlock_page(page);
2397                        return 0; /* retry */
2398                }
2399                ret |= VM_FAULT_LOCKED;
2400        } else
2401                VM_BUG_ON_PAGE(!PageLocked(page), page);
2402        return ret;
2403}
2404
2405/*
2406 * Handle dirtying of a page in shared file mapping on a write fault.
2407 *
2408 * The function expects the page to be locked and unlocks it.
2409 */
2410static void fault_dirty_shared_page(struct vm_area_struct *vma,
2411                                    struct page *page)
2412{
2413        struct address_space *mapping;
2414        bool dirtied;
2415        bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2416
2417        dirtied = set_page_dirty(page);
2418        VM_BUG_ON_PAGE(PageAnon(page), page);
2419        /*
2420         * Take a local copy of the address_space - page.mapping may be zeroed
2421         * by truncate after unlock_page().   The address_space itself remains
2422         * pinned by vma->vm_file's reference.  We rely on unlock_page()'s
2423         * release semantics to prevent the compiler from undoing this copying.
2424         */
2425        mapping = page_rmapping(page);
2426        unlock_page(page);
2427
2428        if ((dirtied || page_mkwrite) && mapping) {
2429                /*
2430                 * Some device drivers do not set page.mapping
2431                 * but still dirty their pages
2432                 */
2433                balance_dirty_pages_ratelimited(mapping);
2434        }
2435
2436        if (!page_mkwrite)
2437                file_update_time(vma->vm_file);
2438}
2439
2440/*
2441 * Handle write page faults for pages that can be reused in the current vma
2442 *
2443 * This can happen either due to the mapping being with the VM_SHARED flag,
2444 * or due to us being the last reference standing to the page. In either
2445 * case, all we need to do here is to mark the page as writable and update
2446 * any related book-keeping.
2447 */
2448static inline void wp_page_reuse(struct vm_fault *vmf)
2449        __releases(vmf->ptl)
2450{
2451        struct vm_area_struct *vma = vmf->vma;
2452        struct page *page = vmf->page;
2453        pte_t entry;
2454        /*
2455         * Clear the pages cpupid information as the existing
2456         * information potentially belongs to a now completely
2457         * unrelated process.
2458         */
2459        if (page)
2460                page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2461
2462        flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2463        entry = pte_mkyoung(vmf->orig_pte);
2464        entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2465        if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2466                update_mmu_cache(vma, vmf->address, vmf->pte);
2467        pte_unmap_unlock(vmf->pte, vmf->ptl);
2468}
2469
2470/*
2471 * Handle the case of a page which we actually need to copy to a new page.
2472 *
2473 * Called with mmap_sem locked and the old page referenced, but
2474 * without the ptl held.
2475 *
2476 * High level logic flow:
2477 *
2478 * - Allocate a page, copy the content of the old page to the new one.
2479 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2480 * - Take the PTL. If the pte changed, bail out and release the allocated page
2481 * - If the pte is still the way we remember it, update the page table and all
2482 *   relevant references. This includes dropping the reference the page-table
2483 *   held to the old page, as well as updating the rmap.
2484 * - In any case, unlock the PTL and drop the reference we took to the old page.
2485 */
2486static vm_fault_t wp_page_copy(struct vm_fault *vmf)
2487{
2488        struct vm_area_struct *vma = vmf->vma;
2489        struct mm_struct *mm = vma->vm_mm;
2490        struct page *old_page = vmf->page;
2491        struct page *new_page = NULL;
2492        pte_t entry;
2493        int page_copied = 0;
2494        const unsigned long mmun_start = vmf->address & PAGE_MASK;
2495        const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2496        struct mem_cgroup *memcg;
2497
2498        if (unlikely(anon_vma_prepare(vma)))
2499                goto oom;
2500
2501        if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
2502                new_page = alloc_zeroed_user_highpage_movable(vma,
2503                                                              vmf->address);
2504                if (!new_page)
2505                        goto oom;
2506        } else {
2507                new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2508                                vmf->address);
2509                if (!new_page)
2510                        goto oom;
2511                cow_user_page(new_page, old_page, vmf->address, vma);
2512        }
2513
2514        if (mem_cgroup_try_charge_delay(new_page, mm, GFP_KERNEL, &memcg, false))
2515                goto oom_free_new;
2516
2517        __SetPageUptodate(new_page);
2518
2519        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2520
2521        /*
2522         * Re-check the pte - we dropped the lock
2523         */
2524        vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2525        if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2526                if (old_page) {
2527                        if (!PageAnon(old_page)) {
2528                                dec_mm_counter_fast(mm,
2529                                                mm_counter_file(old_page));
2530                                inc_mm_counter_fast(mm, MM_ANONPAGES);
2531                        }
2532                } else {
2533                        inc_mm_counter_fast(mm, MM_ANONPAGES);
2534                }
2535                flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2536                entry = mk_pte(new_page, vma->vm_page_prot);
2537                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2538                /*
2539                 * Clear the pte entry and flush it first, before updating the
2540                 * pte with the new entry. This will avoid a race condition
2541                 * seen in the presence of one thread doing SMC and another
2542                 * thread doing COW.
2543                 */
2544                ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2545                page_add_new_anon_rmap(new_page, vma, vmf->address, false);
2546                mem_cgroup_commit_charge(new_page, memcg, false, false);
2547                lru_cache_add_active_or_unevictable(new_page, vma);
2548                /*
2549                 * We call the notify macro here because, when using secondary
2550                 * mmu page tables (such as kvm shadow page tables), we want the
2551                 * new page to be mapped directly into the secondary page table.
2552                 */
2553                set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2554                update_mmu_cache(vma, vmf->address, vmf->pte);
2555                if (old_page) {
2556                        /*
2557                         * Only after switching the pte to the new page may
2558                         * we remove the mapcount here. Otherwise another
2559                         * process may come and find the rmap count decremented
2560                         * before the pte is switched to the new page, and
2561                         * "reuse" the old page writing into it while our pte
2562                         * here still points into it and can be read by other
2563                         * threads.
2564                         *
2565                         * The critical issue is to order this
2566                         * page_remove_rmap with the ptp_clear_flush above.
2567                         * Those stores are ordered by (if nothing else,)
2568                         * the barrier present in the atomic_add_negative
2569                         * in page_remove_rmap.
2570                         *
2571                         * Then the TLB flush in ptep_clear_flush ensures that
2572                         * no process can access the old page before the
2573                         * decremented mapcount is visible. And the old page
2574                         * cannot be reused until after the decremented
2575                         * mapcount is visible. So transitively, TLBs to
2576                         * old page will be flushed before it can be reused.
2577                         */
2578                        page_remove_rmap(old_page, false);
2579                }
2580
2581                /* Free the old page.. */
2582                new_page = old_page;
2583                page_copied = 1;
2584        } else {
2585                mem_cgroup_cancel_charge(new_page, memcg, false);
2586        }
2587
2588        if (new_page)
2589                put_page(new_page);
2590
2591        pte_unmap_unlock(vmf->pte, vmf->ptl);
2592        /*
2593         * No need to double call mmu_notifier->invalidate_range() callback as
2594         * the above ptep_clear_flush_notify() did already call it.
2595         */
2596        mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2597        if (old_page) {
2598                /*
2599                 * Don't let another task, with possibly unlocked vma,
2600                 * keep the mlocked page.
2601                 */
2602                if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2603                        lock_page(old_page);    /* LRU manipulation */
2604                        if (PageMlocked(old_page))
2605                                munlock_vma_page(old_page);
2606                        unlock_page(old_page);
2607                }
2608                put_page(old_page);
2609        }
2610        return page_copied ? VM_FAULT_WRITE : 0;
2611oom_free_new:
2612        put_page(new_page);
2613oom:
2614        if (old_page)
2615                put_page(old_page);
2616        return VM_FAULT_OOM;
2617}
2618
2619/**
2620 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2621 *                        writeable once the page is prepared
2622 *
2623 * @vmf: structure describing the fault
2624 *
2625 * This function handles all that is needed to finish a write page fault in a
2626 * shared mapping due to PTE being read-only once the mapped page is prepared.
2627 * It handles locking of PTE and modifying it. The function returns
2628 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2629 * lock.
2630 *
2631 * The function expects the page to be locked or other protection against
2632 * concurrent faults / writeback (such as DAX radix tree locks).
2633 */
2634vm_fault_t finish_mkwrite_fault(struct vm_fault *vmf)
2635{
2636        WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2637        vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2638                                       &vmf->ptl);
2639        /*
2640         * We might have raced with another page fault while we released the
2641         * pte_offset_map_lock.
2642         */
2643        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2644                pte_unmap_unlock(vmf->pte, vmf->ptl);
2645                return VM_FAULT_NOPAGE;
2646        }
2647        wp_page_reuse(vmf);
2648        return 0;
2649}
2650
2651/*
2652 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2653 * mapping
2654 */
2655static vm_fault_t wp_pfn_shared(struct vm_fault *vmf)
2656{
2657        struct vm_area_struct *vma = vmf->vma;
2658
2659        if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
2660                vm_fault_t ret;
2661
2662                pte_unmap_unlock(vmf->pte, vmf->ptl);
2663                vmf->flags |= FAULT_FLAG_MKWRITE;
2664                ret = vma->vm_ops->pfn_mkwrite(vmf);
2665                if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
2666                        return ret;
2667                return finish_mkwrite_fault(vmf);
2668        }
2669        wp_page_reuse(vmf);
2670        return VM_FAULT_WRITE;
2671}
2672
2673static vm_fault_t wp_page_shared(struct vm_fault *vmf)
2674        __releases(vmf->ptl)
2675{
2676        struct vm_area_struct *vma = vmf->vma;
2677
2678        get_page(vmf->page);
2679
2680        if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2681                vm_fault_t tmp;
2682
2683                pte_unmap_unlock(vmf->pte, vmf->ptl);
2684                tmp = do_page_mkwrite(vmf);
2685                if (unlikely(!tmp || (tmp &
2686                                      (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2687                        put_page(vmf->page);
2688                        return tmp;
2689                }
2690                tmp = finish_mkwrite_fault(vmf);
2691                if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
2692                        unlock_page(vmf->page);
2693                        put_page(vmf->page);
2694                        return tmp;
2695                }
2696        } else {
2697                wp_page_reuse(vmf);
2698                lock_page(vmf->page);
2699        }
2700        fault_dirty_shared_page(vma, vmf->page);
2701        put_page(vmf->page);
2702
2703        return VM_FAULT_WRITE;
2704}
2705
2706/*
2707 * This routine handles present pages, when users try to write
2708 * to a shared page. It is done by copying the page to a new address
2709 * and decrementing the shared-page counter for the old page.
2710 *
2711 * Note that this routine assumes that the protection checks have been
2712 * done by the caller (the low-level page fault routine in most cases).
2713 * Thus we can safely just mark it writable once we've done any necessary
2714 * COW.
2715 *
2716 * We also mark the page dirty at this point even though the page will
2717 * change only once the write actually happens. This avoids a few races,
2718 * and potentially makes it more efficient.
2719 *
2720 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2721 * but allow concurrent faults), with pte both mapped and locked.
2722 * We return with mmap_sem still held, but pte unmapped and unlocked.
2723 */
2724static vm_fault_t do_wp_page(struct vm_fault *vmf)
2725        __releases(vmf->ptl)
2726{
2727        struct vm_area_struct *vma = vmf->vma;
2728
2729        vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2730        if (!vmf->page) {
2731                /*
2732                 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2733                 * VM_PFNMAP VMA.
2734                 *
2735                 * We should not cow pages in a shared writeable mapping.
2736                 * Just mark the pages writable and/or call ops->pfn_mkwrite.
2737                 */
2738                if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2739                                     (VM_WRITE|VM_SHARED))
2740                        return wp_pfn_shared(vmf);
2741
2742                pte_unmap_unlock(vmf->pte, vmf->ptl);
2743                return wp_page_copy(vmf);
2744        }
2745
2746        /*
2747         * Take out anonymous pages first, anonymous shared vmas are
2748         * not dirty accountable.
2749         */
2750        if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
2751                int total_map_swapcount;
2752                if (!trylock_page(vmf->page)) {
2753                        get_page(vmf->page);
2754                        pte_unmap_unlock(vmf->pte, vmf->ptl);
2755                        lock_page(vmf->page);
2756                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2757                                        vmf->address, &vmf->ptl);
2758                        if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2759                                unlock_page(vmf->page);
2760                                pte_unmap_unlock(vmf->pte, vmf->ptl);
2761                                put_page(vmf->page);
2762                                return 0;
2763                        }
2764                        put_page(vmf->page);
2765                }
2766                if (reuse_swap_page(vmf->page, &total_map_swapcount)) {
2767                        if (total_map_swapcount == 1) {
2768                                /*
2769                                 * The page is all ours. Move it to
2770                                 * our anon_vma so the rmap code will
2771                                 * not search our parent or siblings.
2772                                 * Protected against the rmap code by
2773                                 * the page lock.
2774                                 */
2775                                page_move_anon_rmap(vmf->page, vma);
2776                        }
2777                        unlock_page(vmf->page);
2778                        wp_page_reuse(vmf);
2779                        return VM_FAULT_WRITE;
2780                }
2781                unlock_page(vmf->page);
2782        } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2783                                        (VM_WRITE|VM_SHARED))) {
2784                return wp_page_shared(vmf);
2785        }
2786
2787        /*
2788         * Ok, we need to copy. Oh, well..
2789         */
2790        get_page(vmf->page);
2791
2792        pte_unmap_unlock(vmf->pte, vmf->ptl);
2793        return wp_page_copy(vmf);
2794}
2795
2796static void unmap_mapping_range_vma(struct vm_area_struct *vma,
2797                unsigned long start_addr, unsigned long end_addr,
2798                struct zap_details *details)
2799{
2800        zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
2801}
2802
2803static inline void unmap_mapping_range_tree(struct rb_root_cached *root,
2804                                            struct zap_details *details)
2805{
2806        struct vm_area_struct *vma;
2807        pgoff_t vba, vea, zba, zea;
2808
2809        vma_interval_tree_foreach(vma, root,
2810                        details->first_index, details->last_index) {
2811
2812                vba = vma->vm_pgoff;
2813                vea = vba + vma_pages(vma) - 1;
2814                zba = details->first_index;
2815                if (zba < vba)
2816                        zba = vba;
2817                zea = details->last_index;
2818                if (zea > vea)
2819                        zea = vea;
2820
2821                unmap_mapping_range_vma(vma,
2822                        ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2823                        ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2824                                details);
2825        }
2826}
2827
2828/**
2829 * unmap_mapping_pages() - Unmap pages from processes.
2830 * @mapping: The address space containing pages to be unmapped.
2831 * @start: Index of first page to be unmapped.
2832 * @nr: Number of pages to be unmapped.  0 to unmap to end of file.
2833 * @even_cows: Whether to unmap even private COWed pages.
2834 *
2835 * Unmap the pages in this address space from any userspace process which
2836 * has them mmaped.  Generally, you want to remove COWed pages as well when
2837 * a file is being truncated, but not when invalidating pages from the page
2838 * cache.
2839 */
2840void unmap_mapping_pages(struct address_space *mapping, pgoff_t start,
2841                pgoff_t nr, bool even_cows)
2842{
2843        struct zap_details details = { };
2844
2845        details.check_mapping = even_cows ? NULL : mapping;
2846        details.first_index = start;
2847        details.last_index = start + nr - 1;
2848        if (details.last_index < details.first_index)
2849                details.last_index = ULONG_MAX;
2850
2851        i_mmap_lock_write(mapping);
2852        if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap.rb_root)))
2853                unmap_mapping_range_tree(&mapping->i_mmap, &details);
2854        i_mmap_unlock_write(mapping);
2855}
2856
2857/**
2858 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2859 * address_space corresponding to the specified byte range in the underlying
2860 * file.
2861 *
2862 * @mapping: the address space containing mmaps to be unmapped.
2863 * @holebegin: byte in first page to unmap, relative to the start of
2864 * the underlying file.  This will be rounded down to a PAGE_SIZE
2865 * boundary.  Note that this is different from truncate_pagecache(), which
2866 * must keep the partial page.  In contrast, we must get rid of
2867 * partial pages.
2868 * @holelen: size of prospective hole in bytes.  This will be rounded
2869 * up to a PAGE_SIZE boundary.  A holelen of zero truncates to the
2870 * end of the file.
2871 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2872 * but 0 when invalidating pagecache, don't throw away private data.
2873 */
2874void unmap_mapping_range(struct address_space *mapping,
2875                loff_t const holebegin, loff_t const holelen, int even_cows)
2876{
2877        pgoff_t hba = holebegin >> PAGE_SHIFT;
2878        pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2879
2880        /* Check for overflow. */
2881        if (sizeof(holelen) > sizeof(hlen)) {
2882                long long holeend =
2883                        (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2884                if (holeend & ~(long long)ULONG_MAX)
2885                        hlen = ULONG_MAX - hba + 1;
2886        }
2887
2888        unmap_mapping_pages(mapping, hba, hlen, even_cows);
2889}
2890EXPORT_SYMBOL(unmap_mapping_range);
2891
2892/*
2893 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2894 * but allow concurrent faults), and pte mapped but not yet locked.
2895 * We return with pte unmapped and unlocked.
2896 *
2897 * We return with the mmap_sem locked or unlocked in the same cases
2898 * as does filemap_fault().
2899 */
2900vm_fault_t do_swap_page(struct vm_fault *vmf)
2901{
2902        struct vm_area_struct *vma = vmf->vma;
2903        struct page *page = NULL, *swapcache;
2904        struct mem_cgroup *memcg;
2905        swp_entry_t entry;
2906        pte_t pte;
2907        int locked;
2908        int exclusive = 0;
2909        vm_fault_t ret = 0;
2910
2911        if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
2912                goto out;
2913
2914        entry = pte_to_swp_entry(vmf->orig_pte);
2915        if (unlikely(non_swap_entry(entry))) {
2916                if (is_migration_entry(entry)) {
2917                        migration_entry_wait(vma->vm_mm, vmf->pmd,
2918                                             vmf->address);
2919                } else if (is_device_private_entry(entry)) {
2920                        /*
2921                         * For un-addressable device memory we call the pgmap
2922                         * fault handler callback. The callback must migrate
2923                         * the page back to some CPU accessible page.
2924                         */
2925                        ret = device_private_entry_fault(vma, vmf->address, entry,
2926                                                 vmf->flags, vmf->pmd);
2927                } else if (is_hwpoison_entry(entry)) {
2928                        ret = VM_FAULT_HWPOISON;
2929                } else {
2930                        print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
2931                        ret = VM_FAULT_SIGBUS;
2932                }
2933                goto out;
2934        }
2935
2936
2937        delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2938        page = lookup_swap_cache(entry, vma, vmf->address);
2939        swapcache = page;
2940
2941        if (!page) {
2942                struct swap_info_struct *si = swp_swap_info(entry);
2943
2944                if (si->flags & SWP_SYNCHRONOUS_IO &&
2945                                __swap_count(si, entry) == 1) {
2946                        /* skip swapcache */
2947                        page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
2948                                                        vmf->address);
2949                        if (page) {
2950                                __SetPageLocked(page);
2951                                __SetPageSwapBacked(page);
2952                                set_page_private(page, entry.val);
2953                                lru_cache_add_anon(page);
2954                                swap_readpage(page, true);
2955                        }
2956                } else {
2957                        page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE,
2958                                                vmf);
2959                        swapcache = page;
2960                }
2961
2962                if (!page) {
2963                        /*
2964                         * Back out if somebody else faulted in this pte
2965                         * while we released the pte lock.
2966                         */
2967                        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2968                                        vmf->address, &vmf->ptl);
2969                        if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
2970                                ret = VM_FAULT_OOM;
2971                        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2972                        goto unlock;
2973                }
2974
2975                /* Had to read the page from swap area: Major fault */
2976                ret = VM_FAULT_MAJOR;
2977                count_vm_event(PGMAJFAULT);
2978                count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
2979        } else if (PageHWPoison(page)) {
2980                /*
2981                 * hwpoisoned dirty swapcache pages are kept for killing
2982                 * owner processes (which may be unknown at hwpoison time)
2983                 */
2984                ret = VM_FAULT_HWPOISON;
2985                delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2986                goto out_release;
2987        }
2988
2989        locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
2990
2991        delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2992        if (!locked) {
2993                ret |= VM_FAULT_RETRY;
2994                goto out_release;
2995        }
2996
2997        /*
2998         * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2999         * release the swapcache from under us.  The page pin, and pte_same
3000         * test below, are not enough to exclude that.  Even if it is still
3001         * swapcache, we need to check that the page's swap has not changed.
3002         */
3003        if (unlikely((!PageSwapCache(page) ||
3004                        page_private(page) != entry.val)) && swapcache)
3005                goto out_page;
3006
3007        page = ksm_might_need_to_copy(page, vma, vmf->address);
3008        if (unlikely(!page)) {
3009                ret = VM_FAULT_OOM;
3010                page = swapcache;
3011                goto out_page;
3012        }
3013
3014        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL,
3015                                        &memcg, false)) {
3016                ret = VM_FAULT_OOM;
3017                goto out_page;
3018        }
3019
3020        /*
3021         * Back out if somebody else already faulted in this pte.
3022         */
3023        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3024                        &vmf->ptl);
3025        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
3026                goto out_nomap;
3027
3028        if (unlikely(!PageUptodate(page))) {
3029                ret = VM_FAULT_SIGBUS;
3030                goto out_nomap;
3031        }
3032
3033        /*
3034         * The page isn't present yet, go ahead with the fault.
3035         *
3036         * Be careful about the sequence of operations here.
3037         * To get its accounting right, reuse_swap_page() must be called
3038         * while the page is counted on swap but not yet in mapcount i.e.
3039         * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
3040         * must be called after the swap_free(), or it will never succeed.
3041         */
3042
3043        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3044        dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
3045        pte = mk_pte(page, vma->vm_page_prot);
3046        if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
3047                pte = maybe_mkwrite(pte_mkdirty(pte), vma);
3048                vmf->flags &= ~FAULT_FLAG_WRITE;
3049                ret |= VM_FAULT_WRITE;
3050                exclusive = RMAP_EXCLUSIVE;
3051        }
3052        flush_icache_page(vma, page);
3053        if (pte_swp_soft_dirty(vmf->orig_pte))
3054                pte = pte_mksoft_dirty(pte);
3055        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
3056        arch_do_swap_page(vma->vm_mm, vma, vmf->address, pte, vmf->orig_pte);
3057        vmf->orig_pte = pte;
3058
3059        /* ksm created a completely new copy */
3060        if (unlikely(page != swapcache && swapcache)) {
3061                page_add_new_anon_rmap(page, vma, vmf->address, false);
3062                mem_cgroup_commit_charge(page, memcg, false, false);
3063                lru_cache_add_active_or_unevictable(page, vma);
3064        } else {
3065                do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
3066                mem_cgroup_commit_charge(page, memcg, true, false);
3067                activate_page(page);
3068        }
3069
3070        swap_free(entry);
3071        if (mem_cgroup_swap_full(page) ||
3072            (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
3073                try_to_free_swap(page);
3074        unlock_page(page);
3075        if (page != swapcache && swapcache) {
3076                /*
3077                 * Hold the lock to avoid the swap entry to be reused
3078                 * until we take the PT lock for the pte_same() check
3079                 * (to avoid false positives from pte_same). For
3080                 * further safety release the lock after the swap_free
3081                 * so that the swap count won't change under a
3082                 * parallel locked swapcache.
3083                 */
3084                unlock_page(swapcache);
3085                put_page(swapcache);
3086        }
3087
3088        if (vmf->flags & FAULT_FLAG_WRITE) {
3089                ret |= do_wp_page(vmf);
3090                if (ret & VM_FAULT_ERROR)
3091                        ret &= VM_FAULT_ERROR;
3092                goto out;
3093        }
3094
3095        /* No need to invalidate - it was non-present before */
3096        update_mmu_cache(vma, vmf->address, vmf->pte);
3097unlock:
3098        pte_unmap_unlock(vmf->pte, vmf->ptl);
3099out:
3100        return ret;
3101out_nomap:
3102        mem_cgroup_cancel_charge(page, memcg, false);
3103        pte_unmap_unlock(vmf->pte, vmf->ptl);
3104out_page:
3105        unlock_page(page);
3106out_release:
3107        put_page(page);
3108        if (page != swapcache && swapcache) {
3109                unlock_page(swapcache);
3110                put_page(swapcache);
3111        }
3112        return ret;
3113}
3114
3115/*
3116 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3117 * but allow concurrent faults), and pte mapped but not yet locked.
3118 * We return with mmap_sem still held, but pte unmapped and unlocked.
3119 */
3120static vm_fault_t do_anonymous_page(struct vm_fault *vmf)
3121{
3122        struct vm_area_struct *vma = vmf->vma;
3123        struct mem_cgroup *memcg;
3124        struct page *page;
3125        vm_fault_t ret = 0;
3126        pte_t entry;
3127
3128        /* File mapping without ->vm_ops ? */
3129        if (vma->vm_flags & VM_SHARED)
3130                return VM_FAULT_SIGBUS;
3131
3132        /*
3133         * Use pte_alloc() instead of pte_alloc_map().  We can't run
3134         * pte_offset_map() on pmds where a huge pmd might be created
3135         * from a different thread.
3136         *
3137         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
3138         * parallel threads are excluded by other means.
3139         *
3140         * Here we only have down_read(mmap_sem).
3141         */
3142        if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
3143                return VM_FAULT_OOM;
3144
3145        /* See the comment in pte_alloc_one_map() */
3146        if (unlikely(pmd_trans_unstable(vmf->pmd)))
3147                return 0;
3148
3149        /* Use the zero-page for reads */
3150        if (!(vmf->flags & FAULT_FLAG_WRITE) &&
3151                        !mm_forbids_zeropage(vma->vm_mm)) {
3152                entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
3153                                                vma->vm_page_prot));
3154                vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
3155                                vmf->address, &vmf->ptl);
3156                if (!pte_none(*vmf->pte))
3157                        goto unlock;
3158                ret = check_stable_address_space(vma->vm_mm);
3159                if (ret)
3160                        goto unlock;
3161                /* Deliver the page fault to userland, check inside PT lock */
3162                if (userfaultfd_missing(vma)) {
3163                        pte_unmap_unlock(vmf->pte, vmf->ptl);
3164                        return handle_userfault(vmf, VM_UFFD_MISSING);
3165                }
3166                goto setpte;
3167        }
3168
3169        /* Allocate our own private page. */
3170        if (unlikely(anon_vma_prepare(vma)))
3171                goto oom;
3172        page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
3173        if (!page)
3174                goto oom;
3175
3176        if (mem_cgroup_try_charge_delay(page, vma->vm_mm, GFP_KERNEL, &memcg,
3177                                        false))
3178                goto oom_free_page;
3179
3180        /*
3181         * The memory barrier inside __SetPageUptodate makes sure that
3182         * preceeding stores to the page contents become visible before
3183         * the set_pte_at() write.
3184         */
3185        __SetPageUptodate(page);
3186
3187        entry = mk_pte(page, vma->vm_page_prot);
3188        if (vma->vm_flags & VM_WRITE)
3189                entry = pte_mkwrite(pte_mkdirty(entry));
3190
3191        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3192                        &vmf->ptl);
3193        if (!pte_none(*vmf->pte))
3194                goto release;
3195
3196        ret = check_stable_address_space(vma->vm_mm);
3197        if (ret)
3198                goto release;
3199
3200        /* Deliver the page fault to userland, check inside PT lock */
3201        if (userfaultfd_missing(vma)) {
3202                pte_unmap_unlock(vmf->pte, vmf->ptl);
3203                mem_cgroup_cancel_charge(page, memcg, false);
3204                put_page(page);
3205                return handle_userfault(vmf, VM_UFFD_MISSING);
3206        }
3207
3208        inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3209        page_add_new_anon_rmap(page, vma, vmf->address, false);
3210        mem_cgroup_commit_charge(page, memcg, false, false);
3211        lru_cache_add_active_or_unevictable(page, vma);
3212setpte:
3213        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3214
3215        /* No need to invalidate - it was non-present before */
3216        update_mmu_cache(vma, vmf->address, vmf->pte);
3217unlock:
3218        pte_unmap_unlock(vmf->pte, vmf->ptl);
3219        return ret;
3220release:
3221        mem_cgroup_cancel_charge(page, memcg, false);
3222        put_page(page);
3223        goto unlock;
3224oom_free_page:
3225        put_page(page);
3226oom:
3227        return VM_FAULT_OOM;
3228}
3229
3230/*
3231 * The mmap_sem must have been held on entry, and may have been
3232 * released depending on flags and vma->vm_ops->fault() return value.
3233 * See filemap_fault() and __lock_page_retry().
3234 */
3235static vm_fault_t __do_fault(struct vm_fault *vmf)
3236{
3237        struct vm_area_struct *vma = vmf->vma;
3238        vm_fault_t ret;
3239
3240        ret = vma->vm_ops->fault(vmf);
3241        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
3242                            VM_FAULT_DONE_COW)))
3243                return ret;
3244
3245        if (unlikely(PageHWPoison(vmf->page))) {
3246                if (ret & VM_FAULT_LOCKED)
3247                        unlock_page(vmf->page);
3248                put_page(vmf->page);
3249                vmf->page = NULL;
3250                return VM_FAULT_HWPOISON;
3251        }
3252
3253        if (unlikely(!(ret & VM_FAULT_LOCKED)))
3254                lock_page(vmf->page);
3255        else
3256                VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
3257
3258        return ret;
3259}
3260
3261/*
3262 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3263 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3264 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3265 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3266 */
3267static int pmd_devmap_trans_unstable(pmd_t *pmd)
3268{
3269        return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3270}
3271
3272static vm_fault_t pte_alloc_one_map(struct vm_fault *vmf)
3273{
3274        struct vm_area_struct *vma = vmf->vma;
3275
3276        if (!pmd_none(*vmf->pmd))
3277                goto map_pte;
3278        if (vmf->prealloc_pte) {
3279                vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3280                if (unlikely(!pmd_none(*vmf->pmd))) {
3281                        spin_unlock(vmf->ptl);
3282                        goto map_pte;
3283                }
3284
3285                mm_inc_nr_ptes(vma->vm_mm);
3286                pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3287                spin_unlock(vmf->ptl);
3288                vmf->prealloc_pte = NULL;
3289        } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
3290                return VM_FAULT_OOM;
3291        }
3292map_pte:
3293        /*
3294         * If a huge pmd materialized under us just retry later.  Use
3295         * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3296         * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3297         * under us and then back to pmd_none, as a result of MADV_DONTNEED
3298         * running immediately after a huge pmd fault in a different thread of
3299         * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3300         * All we have to ensure is that it is a regular pmd that we can walk
3301         * with pte_offset_map() and we can do that through an atomic read in
3302         * C, which is what pmd_trans_unstable() provides.
3303         */
3304        if (pmd_devmap_trans_unstable(vmf->pmd))
3305                return VM_FAULT_NOPAGE;
3306
3307        /*
3308         * At this point we know that our vmf->pmd points to a page of ptes
3309         * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3310         * for the duration of the fault.  If a racing MADV_DONTNEED runs and
3311         * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3312         * be valid and we will re-check to make sure the vmf->pte isn't
3313         * pte_none() under vmf->ptl protection when we return to
3314         * alloc_set_pte().
3315         */
3316        vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3317                        &vmf->ptl);
3318        return 0;
3319}
3320
3321#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3322
3323#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3324static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3325                unsigned long haddr)
3326{
3327        if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3328                        (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3329                return false;
3330        if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3331                return false;
3332        return true;
3333}
3334
3335static void deposit_prealloc_pte(struct vm_fault *vmf)
3336{
3337        struct vm_area_struct *vma = vmf->vma;
3338
3339        pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3340        /*
3341         * We are going to consume the prealloc table,
3342         * count that as nr_ptes.
3343         */
3344        mm_inc_nr_ptes(vma->vm_mm);
3345        vmf->prealloc_pte = NULL;
3346}
3347
3348static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3349{
3350        struct vm_area_struct *vma = vmf->vma;
3351        bool write = vmf->flags & FAULT_FLAG_WRITE;
3352        unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
3353        pmd_t entry;
3354        int i;
3355        vm_fault_t ret;
3356
3357        if (!transhuge_vma_suitable(vma, haddr))
3358                return VM_FAULT_FALLBACK;
3359
3360        ret = VM_FAULT_FALLBACK;
3361        page = compound_head(page);
3362
3363        /*
3364         * Archs like ppc64 need additonal space to store information
3365         * related to pte entry. Use the preallocated table for that.
3366         */
3367        if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3368                vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3369                if (!vmf->prealloc_pte)
3370                        return VM_FAULT_OOM;
3371                smp_wmb(); /* See comment in __pte_alloc() */
3372        }
3373
3374        vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3375        if (unlikely(!pmd_none(*vmf->pmd)))
3376                goto out;
3377
3378        for (i = 0; i < HPAGE_PMD_NR; i++)
3379                flush_icache_page(vma, page + i);
3380
3381        entry = mk_huge_pmd(page, vma->vm_page_prot);
3382        if (write)
3383                entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3384
3385        add_mm_counter(vma->vm_mm, mm_counter_file(page), HPAGE_PMD_NR);
3386        page_add_file_rmap(page, true);
3387        /*
3388         * deposit and withdraw with pmd lock held
3389         */
3390        if (arch_needs_pgtable_deposit())
3391                deposit_prealloc_pte(vmf);
3392
3393        set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
3394
3395        update_mmu_cache_pmd(vma, haddr, vmf->pmd);
3396
3397        /* fault is handled */
3398        ret = 0;
3399        count_vm_event(THP_FILE_MAPPED);
3400out:
3401        spin_unlock(vmf->ptl);
3402        return ret;
3403}
3404#else
3405static vm_fault_t do_set_pmd(struct vm_fault *vmf, struct page *page)
3406{
3407        BUILD_BUG();
3408        return 0;
3409}
3410#endif
3411
3412/**
3413 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3414 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
3415 *
3416 * @vmf: fault environment
3417 * @memcg: memcg to charge page (only for private mappings)
3418 * @page: page to map
3419 *
3420 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3421 * return.
3422 *
3423 * Target users are page handler itself and implementations of
3424 * vm_ops->map_pages.
3425 */
3426vm_fault_t alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
3427                struct page *page)
3428{
3429        struct vm_area_struct *vma = vmf->vma;
3430        bool write = vmf->flags & FAULT_FLAG_WRITE;
3431        pte_t entry;
3432        vm_fault_t ret;
3433
3434        if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
3435                        IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
3436                /* THP on COW? */
3437                VM_BUG_ON_PAGE(memcg, page);
3438
3439                ret = do_set_pmd(vmf, page);
3440                if (ret != VM_FAULT_FALLBACK)
3441                        return ret;
3442        }
3443
3444        if (!vmf->pte) {
3445                ret = pte_alloc_one_map(vmf);
3446                if (ret)
3447                        return ret;
3448        }
3449
3450        /* Re-check under ptl */
3451        if (unlikely(!pte_none(*vmf->pte)))
3452                return VM_FAULT_NOPAGE;
3453
3454        flush_icache_page(vma, page);
3455        entry = mk_pte(page, vma->vm_page_prot);
3456        if (write)
3457                entry = maybe_mkwrite(pte_mkdirty(entry), vma);
3458        /* copy-on-write page */
3459        if (write && !(vma->vm_flags & VM_SHARED)) {
3460                inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
3461                page_add_new_anon_rmap(page, vma, vmf->address, false);
3462                mem_cgroup_commit_charge(page, memcg, false, false);
3463                lru_cache_add_active_or_unevictable(page, vma);
3464        } else {
3465                inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
3466                page_add_file_rmap(page, false);
3467        }
3468        set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3469
3470        /* no need to invalidate: a not-present page won't be cached */
3471        update_mmu_cache(vma, vmf->address, vmf->pte);
3472
3473        return 0;
3474}
3475
3476
3477/**
3478 * finish_fault - finish page fault once we have prepared the page to fault
3479 *
3480 * @vmf: structure describing the fault
3481 *
3482 * This function handles all that is needed to finish a page fault once the
3483 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3484 * given page, adds reverse page mapping, handles memcg charges and LRU
3485 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3486 * error.
3487 *
3488 * The function expects the page to be locked and on success it consumes a
3489 * reference of a page being mapped (for the PTE which maps it).
3490 */
3491vm_fault_t finish_fault(struct vm_fault *vmf)
3492{
3493        struct page *page;
3494        vm_fault_t ret = 0;
3495
3496        /* Did we COW the page? */
3497        if ((vmf->flags & FAULT_FLAG_WRITE) &&
3498            !(vmf->vma->vm_flags & VM_SHARED))
3499                page = vmf->cow_page;
3500        else
3501                page = vmf->page;
3502
3503        /*
3504         * check even for read faults because we might have lost our CoWed
3505         * page
3506         */
3507        if (!(vmf->vma->vm_flags & VM_SHARED))
3508                ret = check_stable_address_space(vmf->vma->vm_mm);
3509        if (!ret)
3510                ret = alloc_set_pte(vmf, vmf->memcg, page);
3511        if (vmf->pte)
3512                pte_unmap_unlock(vmf->pte, vmf->ptl);
3513        return ret;
3514}
3515
3516static unsigned long fault_around_bytes __read_mostly =
3517        rounddown_pow_of_two(65536);
3518
3519#ifdef CONFIG_DEBUG_FS
3520static int fault_around_bytes_get(void *data, u64 *val)
3521{
3522        *val = fault_around_bytes;
3523        return 0;
3524}
3525
3526/*
3527 * fault_around_bytes must be rounded down to the nearest page order as it's
3528 * what do_fault_around() expects to see.
3529 */
3530static int fault_around_bytes_set(void *data, u64 val)
3531{
3532        if (val / PAGE_SIZE > PTRS_PER_PTE)
3533                return -EINVAL;
3534        if (val > PAGE_SIZE)
3535                fault_around_bytes = rounddown_pow_of_two(val);
3536        else
3537                fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
3538        return 0;
3539}
3540DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
3541                fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
3542
3543static int __init fault_around_debugfs(void)
3544{
3545        void *ret;
3546
3547        ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
3548                        &fault_around_bytes_fops);
3549        if (!ret)
3550                pr_warn("Failed to create fault_around_bytes in debugfs");
3551        return 0;
3552}
3553late_initcall(fault_around_debugfs);
3554#endif
3555
3556/*
3557 * do_fault_around() tries to map few pages around the fault address. The hope
3558 * is that the pages will be needed soon and this will lower the number of
3559 * faults to handle.
3560 *
3561 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3562 * not ready to be mapped: not up-to-date, locked, etc.
3563 *
3564 * This function is called with the page table lock taken. In the split ptlock
3565 * case the page table lock only protects only those entries which belong to
3566 * the page table corresponding to the fault address.
3567 *
3568 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3569 * only once.
3570 *
3571 * fault_around_bytes defines how many bytes we'll try to map.
3572 * do_fault_around() expects it to be set to a power of two less than or equal
3573 * to PTRS_PER_PTE.
3574 *
3575 * The virtual address of the area that we map is naturally aligned to
3576 * fault_around_bytes rounded down to the machine page size
3577 * (and therefore to page order).  This way it's easier to guarantee
3578 * that we don't cross page table boundaries.
3579 */
3580static vm_fault_t do_fault_around(struct vm_fault *vmf)
3581{
3582        unsigned long address = vmf->address, nr_pages, mask;
3583        pgoff_t start_pgoff = vmf->pgoff;
3584        pgoff_t end_pgoff;
3585        int off;
3586        vm_fault_t ret = 0;
3587
3588        nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
3589        mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3590
3591        vmf->address = max(address & mask, vmf->vma->vm_start);
3592        off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
3593        start_pgoff -= off;
3594
3595        /*
3596         *  end_pgoff is either the end of the page table, the end of
3597         *  the vma or nr_pages from start_pgoff, depending what is nearest.
3598         */
3599        end_pgoff = start_pgoff -
3600                ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
3601                PTRS_PER_PTE - 1;
3602        end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
3603                        start_pgoff + nr_pages - 1);
3604
3605        if (pmd_none(*vmf->pmd)) {
3606                vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3607                                                  vmf->address);
3608                if (!vmf->prealloc_pte)
3609                        goto out;
3610                smp_wmb(); /* See comment in __pte_alloc() */
3611        }
3612
3613        vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
3614
3615        /* Huge page is mapped? Page fault is solved */
3616        if (pmd_trans_huge(*vmf->pmd)) {
3617                ret = VM_FAULT_NOPAGE;
3618                goto out;
3619        }
3620
3621        /* ->map_pages() haven't done anything useful. Cold page cache? */
3622        if (!vmf->pte)
3623                goto out;
3624
3625        /* check if the page fault is solved */
3626        vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3627        if (!pte_none(*vmf->pte))
3628                ret = VM_FAULT_NOPAGE;
3629        pte_unmap_unlock(vmf->pte, vmf->ptl);
3630out:
3631        vmf->address = address;
3632        vmf->pte = NULL;
3633        return ret;
3634}
3635
3636static vm_fault_t do_read_fault(struct vm_fault *vmf)
3637{
3638        struct vm_area_struct *vma = vmf->vma;
3639        vm_fault_t ret = 0;
3640
3641        /*
3642         * Let's call ->map_pages() first and use ->fault() as fallback
3643         * if page by the offset is not ready to be mapped (cold cache or
3644         * something).
3645         */
3646        if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
3647                ret = do_fault_around(vmf);
3648                if (ret)
3649                        return ret;
3650        }
3651
3652        ret = __do_fault(vmf);
3653        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3654                return ret;
3655
3656        ret |= finish_fault(vmf);
3657        unlock_page(vmf->page);
3658        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3659                put_page(vmf->page);
3660        return ret;
3661}
3662
3663static vm_fault_t do_cow_fault(struct vm_fault *vmf)
3664{
3665        struct vm_area_struct *vma = vmf->vma;
3666        vm_fault_t ret;
3667
3668        if (unlikely(anon_vma_prepare(vma)))
3669                return VM_FAULT_OOM;
3670
3671        vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3672        if (!vmf->cow_page)
3673                return VM_FAULT_OOM;
3674
3675        if (mem_cgroup_try_charge_delay(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3676                                &vmf->memcg, false)) {
3677                put_page(vmf->cow_page);
3678                return VM_FAULT_OOM;
3679        }
3680
3681        ret = __do_fault(vmf);
3682        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3683                goto uncharge_out;
3684        if (ret & VM_FAULT_DONE_COW)
3685                return ret;
3686
3687        copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
3688        __SetPageUptodate(vmf->cow_page);
3689
3690        ret |= finish_fault(vmf);
3691        unlock_page(vmf->page);
3692        put_page(vmf->page);
3693        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3694                goto uncharge_out;
3695        return ret;
3696uncharge_out:
3697        mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
3698        put_page(vmf->cow_page);
3699        return ret;
3700}
3701
3702static vm_fault_t do_shared_fault(struct vm_fault *vmf)
3703{
3704        struct vm_area_struct *vma = vmf->vma;
3705        vm_fault_t ret, tmp;
3706
3707        ret = __do_fault(vmf);
3708        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3709                return ret;
3710
3711        /*
3712         * Check if the backing address space wants to know that the page is
3713         * about to become writable
3714         */
3715        if (vma->vm_ops->page_mkwrite) {
3716                unlock_page(vmf->page);
3717                tmp = do_page_mkwrite(vmf);
3718                if (unlikely(!tmp ||
3719                                (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
3720                        put_page(vmf->page);
3721                        return tmp;
3722                }
3723        }
3724
3725        ret |= finish_fault(vmf);
3726        if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3727                                        VM_FAULT_RETRY))) {
3728                unlock_page(vmf->page);
3729                put_page(vmf->page);
3730                return ret;
3731        }
3732
3733        fault_dirty_shared_page(vma, vmf->page);
3734        return ret;
3735}
3736
3737/*
3738 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3739 * but allow concurrent faults).
3740 * The mmap_sem may have been released depending on flags and our
3741 * return value.  See filemap_fault() and __lock_page_or_retry().
3742 */
3743static vm_fault_t do_fault(struct vm_fault *vmf)
3744{
3745        struct vm_area_struct *vma = vmf->vma;
3746        vm_fault_t ret;
3747
3748        /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3749        if (!vma->vm_ops->fault)
3750                ret = VM_FAULT_SIGBUS;
3751        else if (!(vmf->flags & FAULT_FLAG_WRITE))
3752                ret = do_read_fault(vmf);
3753        else if (!(vma->vm_flags & VM_SHARED))
3754                ret = do_cow_fault(vmf);
3755        else
3756                ret = do_shared_fault(vmf);
3757
3758        /* preallocated pagetable is unused: free it */
3759        if (vmf->prealloc_pte) {
3760                pte_free(vma->vm_mm, vmf->prealloc_pte);
3761                vmf->prealloc_pte = NULL;
3762        }
3763        return ret;
3764}
3765
3766static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
3767                                unsigned long addr, int page_nid,
3768                                int *flags)
3769{
3770        get_page(page);
3771
3772        count_vm_numa_event(NUMA_HINT_FAULTS);
3773        if (page_nid == numa_node_id()) {
3774                count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
3775                *flags |= TNF_FAULT_LOCAL;
3776        }
3777
3778        return mpol_misplaced(page, vma, addr);
3779}
3780
3781static vm_fault_t do_numa_page(struct vm_fault *vmf)
3782{
3783        struct vm_area_struct *vma = vmf->vma;
3784        struct page *page = NULL;
3785        int page_nid = -1;
3786        int last_cpupid;
3787        int target_nid;
3788        bool migrated = false;
3789        pte_t pte;
3790        bool was_writable = pte_savedwrite(vmf->orig_pte);
3791        int flags = 0;
3792
3793        /*
3794         * The "pte" at this point cannot be used safely without
3795         * validation through pte_unmap_same(). It's of NUMA type but
3796         * the pfn may be screwed if the read is non atomic.
3797         */
3798        vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3799        spin_lock(vmf->ptl);
3800        if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
3801                pte_unmap_unlock(vmf->pte, vmf->ptl);
3802                goto out;
3803        }
3804
3805        /*
3806         * Make it present again, Depending on how arch implementes non
3807         * accessible ptes, some can allow access by kernel mode.
3808         */
3809        pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
3810        pte = pte_modify(pte, vma->vm_page_prot);
3811        pte = pte_mkyoung(pte);
3812        if (was_writable)
3813                pte = pte_mkwrite(pte);
3814        ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
3815        update_mmu_cache(vma, vmf->address, vmf->pte);
3816
3817        page = vm_normal_page(vma, vmf->address, pte);
3818        if (!page) {
3819                pte_unmap_unlock(vmf->pte, vmf->ptl);
3820                return 0;
3821        }
3822
3823        /* TODO: handle PTE-mapped THP */
3824        if (PageCompound(page)) {
3825                pte_unmap_unlock(vmf->pte, vmf->ptl);
3826                return 0;
3827        }
3828
3829        /*
3830         * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3831         * much anyway since they can be in shared cache state. This misses
3832         * the case where a mapping is writable but the process never writes
3833         * to it but pte_write gets cleared during protection updates and
3834         * pte_dirty has unpredictable behaviour between PTE scan updates,
3835         * background writeback, dirty balancing and application behaviour.
3836         */
3837        if (!pte_write(pte))
3838                flags |= TNF_NO_GROUP;
3839
3840        /*
3841         * Flag if the page is shared between multiple address spaces. This
3842         * is later used when determining whether to group tasks together
3843         */
3844        if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3845                flags |= TNF_SHARED;
3846
3847        last_cpupid = page_cpupid_last(page);
3848        page_nid = page_to_nid(page);
3849        target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
3850                        &flags);
3851        pte_unmap_unlock(vmf->pte, vmf->ptl);
3852        if (target_nid == -1) {
3853                put_page(page);
3854                goto out;
3855        }
3856
3857        /* Migrate to the requested node */
3858        migrated = migrate_misplaced_page(page, vma, target_nid);
3859        if (migrated) {
3860                page_nid = target_nid;
3861                flags |= TNF_MIGRATED;
3862        } else
3863                flags |= TNF_MIGRATE_FAIL;
3864
3865out:
3866        if (page_nid != -1)
3867                task_numa_fault(last_cpupid, page_nid, 1, flags);
3868        return 0;
3869}
3870
3871static inline vm_fault_t create_huge_pmd(struct vm_fault *vmf)
3872{
3873        if (vma_is_anonymous(vmf->vma))
3874                return do_huge_pmd_anonymous_page(vmf);
3875        if (vmf->vma->vm_ops->huge_fault)
3876                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3877        return VM_FAULT_FALLBACK;
3878}
3879
3880/* `inline' is required to avoid gcc 4.1.2 build error */
3881static inline vm_fault_t wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
3882{
3883        if (vma_is_anonymous(vmf->vma))
3884                return do_huge_pmd_wp_page(vmf, orig_pmd);
3885        if (vmf->vma->vm_ops->huge_fault)
3886                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
3887
3888        /* COW handled on pte level: split pmd */
3889        VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3890        __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
3891
3892        return VM_FAULT_FALLBACK;
3893}
3894
3895static inline bool vma_is_accessible(struct vm_area_struct *vma)
3896{
3897        return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3898}
3899
3900static vm_fault_t create_huge_pud(struct vm_fault *vmf)
3901{
3902#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3903        /* No support for anonymous transparent PUD pages yet */
3904        if (vma_is_anonymous(vmf->vma))
3905                return VM_FAULT_FALLBACK;
3906        if (vmf->vma->vm_ops->huge_fault)
3907                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3908#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3909        return VM_FAULT_FALLBACK;
3910}
3911
3912static vm_fault_t wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3913{
3914#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3915        /* No support for anonymous transparent PUD pages yet */
3916        if (vma_is_anonymous(vmf->vma))
3917                return VM_FAULT_FALLBACK;
3918        if (vmf->vma->vm_ops->huge_fault)
3919                return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
3920#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3921        return VM_FAULT_FALLBACK;
3922}
3923
3924/*
3925 * These routines also need to handle stuff like marking pages dirty
3926 * and/or accessed for architectures that don't do it in hardware (most
3927 * RISC architectures).  The early dirtying is also good on the i386.
3928 *
3929 * There is also a hook called "update_mmu_cache()" that architectures
3930 * with external mmu caches can use to update those (ie the Sparc or
3931 * PowerPC hashed page tables that act as extended TLBs).
3932 *
3933 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3934 * concurrent faults).
3935 *
3936 * The mmap_sem may have been released depending on flags and our return value.
3937 * See filemap_fault() and __lock_page_or_retry().
3938 */
3939static vm_fault_t handle_pte_fault(struct vm_fault *vmf)
3940{
3941        pte_t entry;
3942
3943        if (unlikely(pmd_none(*vmf->pmd))) {
3944                /*
3945                 * Leave __pte_alloc() until later: because vm_ops->fault may
3946                 * want to allocate huge page, and if we expose page table
3947                 * for an instant, it will be difficult to retract from
3948                 * concurrent faults and from rmap lookups.
3949                 */
3950                vmf->pte = NULL;
3951        } else {
3952                /* See comment in pte_alloc_one_map() */
3953                if (pmd_devmap_trans_unstable(vmf->pmd))
3954                        return 0;
3955                /*
3956                 * A regular pmd is established and it can't morph into a huge
3957                 * pmd from under us anymore at this point because we hold the
3958                 * mmap_sem read mode and khugepaged takes it in write mode.
3959                 * So now it's safe to run pte_offset_map().
3960                 */
3961                vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
3962                vmf->orig_pte = *vmf->pte;
3963
3964                /*
3965                 * some architectures can have larger ptes than wordsize,
3966                 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3967                 * CONFIG_32BIT=y, so READ_ONCE cannot guarantee atomic
3968                 * accesses.  The code below just needs a consistent view
3969                 * for the ifs and we later double check anyway with the
3970                 * ptl lock held. So here a barrier will do.
3971                 */
3972                barrier();
3973                if (pte_none(vmf->orig_pte)) {
3974                        pte_unmap(vmf->pte);
3975                        vmf->pte = NULL;
3976                }
3977        }
3978
3979        if (!vmf->pte) {
3980                if (vma_is_anonymous(vmf->vma))
3981                        return do_anonymous_page(vmf);
3982                else
3983                        return do_fault(vmf);
3984        }
3985
3986        if (!pte_present(vmf->orig_pte))
3987                return do_swap_page(vmf);
3988
3989        if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3990                return do_numa_page(vmf);
3991
3992        vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3993        spin_lock(vmf->ptl);
3994        entry = vmf->orig_pte;
3995        if (unlikely(!pte_same(*vmf->pte, entry)))
3996                goto unlock;
3997        if (vmf->flags & FAULT_FLAG_WRITE) {
3998                if (!pte_write(entry))
3999                        return do_wp_page(vmf);
4000                entry = pte_mkdirty(entry);
4001        }
4002        entry = pte_mkyoung(entry);
4003        if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
4004                                vmf->flags & FAULT_FLAG_WRITE)) {
4005                update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
4006        } else {
4007                /*
4008                 * This is needed only for protection faults but the arch code
4009                 * is not yet telling us if this is a protection fault or not.
4010                 * This still avoids useless tlb flushes for .text page faults
4011                 * with threads.
4012                 */
4013                if (vmf->flags & FAULT_FLAG_WRITE)
4014                        flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
4015        }
4016unlock:
4017        pte_unmap_unlock(vmf->pte, vmf->ptl);
4018        return 0;
4019}
4020
4021/*
4022 * By the time we get here, we already hold the mm semaphore
4023 *
4024 * The mmap_sem may have been released depending on flags and our
4025 * return value.  See filemap_fault() and __lock_page_or_retry().
4026 */
4027static vm_fault_t __handle_mm_fault(struct vm_area_struct *vma,
4028                unsigned long address, unsigned int flags)
4029{
4030        struct vm_fault vmf = {
4031                .vma = vma,
4032                .address = address & PAGE_MASK,
4033                .flags = flags,
4034                .pgoff = linear_page_index(vma, address),
4035                .gfp_mask = __get_fault_gfp_mask(vma),
4036        };
4037        unsigned int dirty = flags & FAULT_FLAG_WRITE;
4038        struct mm_struct *mm = vma->vm_mm;
4039        pgd_t *pgd;
4040        p4d_t *p4d;
4041        vm_fault_t ret;
4042
4043        pgd = pgd_offset(mm, address);
4044        p4d = p4d_alloc(mm, pgd, address);
4045        if (!p4d)
4046                return VM_FAULT_OOM;
4047
4048        vmf.pud = pud_alloc(mm, p4d, address);
4049        if (!vmf.pud)
4050                return VM_FAULT_OOM;
4051        if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
4052                ret = create_huge_pud(&vmf);
4053                if (!(ret & VM_FAULT_FALLBACK))
4054                        return ret;
4055        } else {
4056                pud_t orig_pud = *vmf.pud;
4057
4058                barrier();
4059                if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
4060
4061                        /* NUMA case for anonymous PUDs would go here */
4062
4063                        if (dirty && !pud_write(orig_pud)) {
4064                                ret = wp_huge_pud(&vmf, orig_pud);
4065                                if (!(ret & VM_FAULT_FALLBACK))
4066                                        return ret;
4067                        } else {
4068                                huge_pud_set_accessed(&vmf, orig_pud);
4069                                return 0;
4070                        }
4071                }
4072        }
4073
4074        vmf.pmd = pmd_alloc(mm, vmf.pud, address);
4075        if (!vmf.pmd)
4076                return VM_FAULT_OOM;
4077        if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
4078                ret = create_huge_pmd(&vmf);
4079                if (!(ret & VM_FAULT_FALLBACK))
4080                        return ret;
4081        } else {
4082                pmd_t orig_pmd = *vmf.pmd;
4083
4084                barrier();
4085                if (unlikely(is_swap_pmd(orig_pmd))) {
4086                        VM_BUG_ON(thp_migration_supported() &&
4087                                          !is_pmd_migration_entry(orig_pmd));
4088                        if (is_pmd_migration_entry(orig_pmd))
4089                                pmd_migration_entry_wait(mm, vmf.pmd);
4090                        return 0;
4091                }
4092                if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
4093                        if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
4094                                return do_huge_pmd_numa_page(&vmf, orig_pmd);
4095
4096                        if (dirty && !pmd_write(orig_pmd)) {
4097                                ret = wp_huge_pmd(&vmf, orig_pmd);
4098                                if (!(ret & VM_FAULT_FALLBACK))
4099                                        return ret;
4100                        } else {
4101                                huge_pmd_set_accessed(&vmf, orig_pmd);
4102                                return 0;
4103                        }
4104                }
4105        }
4106
4107        return handle_pte_fault(&vmf);
4108}
4109
4110/*
4111 * By the time we get here, we already hold the mm semaphore
4112 *
4113 * The mmap_sem may have been released depending on flags and our
4114 * return value.  See filemap_fault() and __lock_page_or_retry().
4115 */
4116vm_fault_t handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
4117                unsigned int flags)
4118{
4119        vm_fault_t ret;
4120
4121        __set_current_state(TASK_RUNNING);
4122
4123        count_vm_event(PGFAULT);
4124        count_memcg_event_mm(vma->vm_mm, PGFAULT);
4125
4126        /* do counter updates before entering really critical section. */
4127        check_sync_rss_stat(current);
4128
4129        if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
4130                                            flags & FAULT_FLAG_INSTRUCTION,
4131                                            flags & FAULT_FLAG_REMOTE))
4132                return VM_FAULT_SIGSEGV;
4133
4134        /*
4135         * Enable the memcg OOM handling for faults triggered in user
4136         * space.  Kernel faults are handled more gracefully.
4137         */
4138        if (flags & FAULT_FLAG_USER)
4139                mem_cgroup_enter_user_fault();
4140
4141        if (unlikely(is_vm_hugetlb_page(vma)))
4142                ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
4143        else
4144                ret = __handle_mm_fault(vma, address, flags);
4145
4146        if (flags & FAULT_FLAG_USER) {
4147                mem_cgroup_exit_user_fault();
4148                /*
4149                 * The task may have entered a memcg OOM situation but
4150                 * if the allocation error was handled gracefully (no
4151                 * VM_FAULT_OOM), there is no need to kill anything.
4152                 * Just clean up the OOM state peacefully.
4153                 */
4154                if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
4155                        mem_cgroup_oom_synchronize(false);
4156        }
4157
4158        return ret;
4159}
4160EXPORT_SYMBOL_GPL(handle_mm_fault);
4161
4162#ifndef __PAGETABLE_P4D_FOLDED
4163/*
4164 * Allocate p4d page table.
4165 * We've already handled the fast-path in-line.
4166 */
4167int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
4168{
4169        p4d_t *new = p4d_alloc_one(mm, address);
4170        if (!new)
4171                return -ENOMEM;
4172
4173        smp_wmb(); /* See comment in __pte_alloc */
4174
4175        spin_lock(&mm->page_table_lock);
4176        if (pgd_present(*pgd))          /* Another has populated it */
4177                p4d_free(mm, new);
4178        else
4179                pgd_populate(mm, pgd, new);
4180        spin_unlock(&mm->page_table_lock);
4181        return 0;
4182}
4183#endif /* __PAGETABLE_P4D_FOLDED */
4184
4185#ifndef __PAGETABLE_PUD_FOLDED
4186/*
4187 * Allocate page upper directory.
4188 * We've already handled the fast-path in-line.
4189 */
4190int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
4191{
4192        pud_t *new = pud_alloc_one(mm, address);
4193        if (!new)
4194                return -ENOMEM;
4195
4196        smp_wmb(); /* See comment in __pte_alloc */
4197
4198        spin_lock(&mm->page_table_lock);
4199#ifndef __ARCH_HAS_5LEVEL_HACK
4200        if (!p4d_present(*p4d)) {
4201                mm_inc_nr_puds(mm);
4202                p4d_populate(mm, p4d, new);
4203        } else  /* Another has populated it */
4204                pud_free(mm, new);
4205#else
4206        if (!pgd_present(*p4d)) {
4207                mm_inc_nr_puds(mm);
4208                pgd_populate(mm, p4d, new);
4209        } else  /* Another has populated it */
4210                pud_free(mm, new);
4211#endif /* __ARCH_HAS_5LEVEL_HACK */
4212        spin_unlock(&mm->page_table_lock);
4213        return 0;
4214}
4215#endif /* __PAGETABLE_PUD_FOLDED */
4216
4217#ifndef __PAGETABLE_PMD_FOLDED
4218/*
4219 * Allocate page middle directory.
4220 * We've already handled the fast-path in-line.
4221 */
4222int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
4223{
4224        spinlock_t *ptl;
4225        pmd_t *new = pmd_alloc_one(mm, address);
4226        if (!new)
4227                return -ENOMEM;
4228
4229        smp_wmb(); /* See comment in __pte_alloc */
4230
4231        ptl = pud_lock(mm, pud);
4232#ifndef __ARCH_HAS_4LEVEL_HACK
4233        if (!pud_present(*pud)) {
4234                mm_inc_nr_pmds(mm);
4235                pud_populate(mm, pud, new);
4236        } else  /* Another has populated it */
4237                pmd_free(mm, new);
4238#else
4239        if (!pgd_present(*pud)) {
4240                mm_inc_nr_pmds(mm);
4241                pgd_populate(mm, pud, new);
4242        } else /* Another has populated it */
4243                pmd_free(mm, new);
4244#endif /* __ARCH_HAS_4LEVEL_HACK */
4245        spin_unlock(ptl);
4246        return 0;
4247}
4248#endif /* __PAGETABLE_PMD_FOLDED */
4249
4250static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4251                            unsigned long *start, unsigned long *end,
4252                            pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4253{
4254        pgd_t *pgd;
4255        p4d_t *p4d;
4256        pud_t *pud;
4257        pmd_t *pmd;
4258        pte_t *ptep;
4259
4260        pgd = pgd_offset(mm, address);
4261        if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4262                goto out;
4263
4264        p4d = p4d_offset(pgd, address);
4265        if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4266                goto out;
4267
4268        pud = pud_offset(p4d, address);
4269        if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4270                goto out;
4271
4272        pmd = pmd_offset(pud, address);
4273        VM_BUG_ON(pmd_trans_huge(*pmd));
4274
4275        if (pmd_huge(*pmd)) {
4276                if (!pmdpp)
4277                        goto out;
4278
4279                if (start && end) {
4280                        *start = address & PMD_MASK;
4281                        *end = *start + PMD_SIZE;
4282                        mmu_notifier_invalidate_range_start(mm, *start, *end);
4283                }
4284                *ptlp = pmd_lock(mm, pmd);
4285                if (pmd_huge(*pmd)) {
4286                        *pmdpp = pmd;
4287                        return 0;
4288                }
4289                spin_unlock(*ptlp);
4290                if (start && end)
4291                        mmu_notifier_invalidate_range_end(mm, *start, *end);
4292        }
4293
4294        if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
4295                goto out;
4296
4297        if (start && end) {
4298                *start = address & PAGE_MASK;
4299                *end = *start + PAGE_SIZE;
4300                mmu_notifier_invalidate_range_start(mm, *start, *end);
4301        }
4302        ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
4303        if (!pte_present(*ptep))
4304                goto unlock;
4305        *ptepp = ptep;
4306        return 0;
4307unlock:
4308        pte_unmap_unlock(ptep, *ptlp);
4309        if (start && end)
4310                mmu_notifier_invalidate_range_end(mm, *start, *end);
4311out:
4312        return -EINVAL;
4313}
4314
4315static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4316                             pte_t **ptepp, spinlock_t **ptlp)
4317{
4318        int res;
4319
4320        /* (void) is needed to make gcc happy */
4321        (void) __cond_lock(*ptlp,
4322                           !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4323                                                    ptepp, NULL, ptlp)));
4324        return res;
4325}
4326
4327int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
4328                             unsigned long *start, unsigned long *end,
4329                             pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4330{
4331        int res;
4332
4333        /* (void) is needed to make gcc happy */
4334        (void) __cond_lock(*ptlp,
4335                           !(res = __follow_pte_pmd(mm, address, start, end,
4336                                                    ptepp, pmdpp, ptlp)));
4337        return res;
4338}
4339EXPORT_SYMBOL(follow_pte_pmd);
4340
4341/**
4342 * follow_pfn - look up PFN at a user virtual address
4343 * @vma: memory mapping
4344 * @address: user virtual address
4345 * @pfn: location to store found PFN
4346 *
4347 * Only IO mappings and raw PFN mappings are allowed.
4348 *
4349 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4350 */
4351int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4352        unsigned long *pfn)
4353{
4354        int ret = -EINVAL;
4355        spinlock_t *ptl;
4356        pte_t *ptep;
4357
4358        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4359                return ret;
4360
4361        ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4362        if (ret)
4363                return ret;
4364        *pfn = pte_pfn(*ptep);
4365        pte_unmap_unlock(ptep, ptl);
4366        return 0;
4367}
4368EXPORT_SYMBOL(follow_pfn);
4369
4370#ifdef CONFIG_HAVE_IOREMAP_PROT
4371int follow_phys(struct vm_area_struct *vma,
4372                unsigned long address, unsigned int flags,
4373                unsigned long *prot, resource_size_t *phys)
4374{
4375        int ret = -EINVAL;
4376        pte_t *ptep, pte;
4377        spinlock_t *ptl;
4378
4379        if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4380                goto out;
4381
4382        if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
4383                goto out;
4384        pte = *ptep;
4385
4386        if ((flags & FOLL_WRITE) && !pte_write(pte))
4387                goto unlock;
4388
4389        *prot = pgprot_val(pte_pgprot(pte));
4390        *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
4391
4392        ret = 0;
4393unlock:
4394        pte_unmap_unlock(ptep, ptl);
4395out:
4396        return ret;
4397}
4398
4399int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4400                        void *buf, int len, int write)
4401{
4402        resource_size_t phys_addr;
4403        unsigned long prot = 0;
4404        void __iomem *maddr;
4405        int offset = addr & (PAGE_SIZE-1);
4406
4407        if (follow_phys(vma, addr, write, &prot, &phys_addr))
4408                return -EINVAL;
4409
4410        maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
4411        if (!maddr)
4412                return -ENOMEM;
4413
4414        if (write)
4415                memcpy_toio(maddr + offset, buf, len);
4416        else
4417                memcpy_fromio(buf, maddr + offset, len);
4418        iounmap(maddr);
4419
4420        return len;
4421}
4422EXPORT_SYMBOL_GPL(generic_access_phys);
4423#endif
4424
4425/*
4426 * Access another process' address space as given in mm.  If non-NULL, use the
4427 * given task for page fault accounting.
4428 */
4429int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
4430                unsigned long addr, void *buf, int len, unsigned int gup_flags)
4431{
4432        struct vm_area_struct *vma;
4433        void *old_buf = buf;
4434        int write = gup_flags & FOLL_WRITE;
4435
4436        down_read(&mm->mmap_sem);
4437        /* ignore errors, just check how much was successfully transferred */
4438        while (len) {
4439                int bytes, ret, offset;
4440                void *maddr;
4441                struct page *page = NULL;
4442
4443                ret = get_user_pages_remote(tsk, mm, addr, 1,
4444                                gup_flags, &page, &vma, NULL);
4445                if (ret <= 0) {
4446#ifndef CONFIG_HAVE_IOREMAP_PROT
4447                        break;
4448#else
4449                        /*
4450                         * Check if this is a VM_IO | VM_PFNMAP VMA, which
4451                         * we can access using slightly different code.
4452                         */
4453                        vma = find_vma(mm, addr);
4454                        if (!vma || vma->vm_start > addr)
4455                                break;
4456                        if (vma->vm_ops && vma->vm_ops->access)
4457                                ret = vma->vm_ops->access(vma, addr, buf,
4458                                                          len, write);
4459                        if (ret <= 0)
4460                                break;
4461                        bytes = ret;
4462#endif
4463                } else {
4464                        bytes = len;
4465                        offset = addr & (PAGE_SIZE-1);
4466                        if (bytes > PAGE_SIZE-offset)
4467                                bytes = PAGE_SIZE-offset;
4468
4469                        maddr = kmap(page);
4470                        if (write) {
4471                                copy_to_user_page(vma, page, addr,
4472                                                  maddr + offset, buf, bytes);
4473                                set_page_dirty_lock(page);
4474                        } else {
4475                                copy_from_user_page(vma, page, addr,
4476                                                    buf, maddr + offset, bytes);
4477                        }
4478                        kunmap(page);
4479                        put_page(page);
4480                }
4481                len -= bytes;
4482                buf += bytes;
4483                addr += bytes;
4484        }
4485        up_read(&mm->mmap_sem);
4486
4487        return buf - old_buf;
4488}
4489
4490/**
4491 * access_remote_vm - access another process' address space
4492 * @mm:         the mm_struct of the target address space
4493 * @addr:       start address to access
4494 * @buf:        source or destination buffer
4495 * @len:        number of bytes to transfer
4496 * @gup_flags:  flags modifying lookup behaviour
4497 *
4498 * The caller must hold a reference on @mm.
4499 */
4500int access_remote_vm(struct mm_struct *mm, unsigned long addr,
4501                void *buf, int len, unsigned int gup_flags)
4502{
4503        return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
4504}
4505
4506/*
4507 * Access another process' address space.
4508 * Source/target buffer must be kernel space,
4509 * Do not walk the page table directly, use get_user_pages
4510 */
4511int access_process_vm(struct task_struct *tsk, unsigned long addr,
4512                void *buf, int len, unsigned int gup_flags)
4513{
4514        struct mm_struct *mm;
4515        int ret;
4516
4517        mm = get_task_mm(tsk);
4518        if (!mm)
4519                return 0;
4520
4521        ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
4522
4523        mmput(mm);
4524
4525        return ret;
4526}
4527EXPORT_SYMBOL_GPL(access_process_vm);
4528
4529/*
4530 * Print the name of a VMA.
4531 */
4532void print_vma_addr(char *prefix, unsigned long ip)
4533{
4534        struct mm_struct *mm = current->mm;
4535        struct vm_area_struct *vma;
4536
4537        /*
4538         * we might be running from an atomic context so we cannot sleep
4539         */
4540        if (!down_read_trylock(&mm->mmap_sem))
4541                return;
4542
4543        vma = find_vma(mm, ip);
4544        if (vma && vma->vm_file) {
4545                struct file *f = vma->vm_file;
4546                char *buf = (char *)__get_free_page(GFP_NOWAIT);
4547                if (buf) {
4548                        char *p;
4549
4550                        p = file_path(f, buf, PAGE_SIZE);
4551                        if (IS_ERR(p))
4552                                p = "?";
4553                        printk("%s%s[%lx+%lx]", prefix, kbasename(p),
4554                                        vma->vm_start,
4555                                        vma->vm_end - vma->vm_start);
4556                        free_page((unsigned long)buf);
4557                }
4558        }
4559        up_read(&mm->mmap_sem);
4560}
4561
4562#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4563void __might_fault(const char *file, int line)
4564{
4565        /*
4566         * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4567         * holding the mmap_sem, this is safe because kernel memory doesn't
4568         * get paged out, therefore we'll never actually fault, and the
4569         * below annotations will generate false positives.
4570         */
4571        if (uaccess_kernel())
4572                return;
4573        if (pagefault_disabled())
4574                return;
4575        __might_sleep(file, line, 0);
4576#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
4577        if (current->mm)
4578                might_lock_read(&current->mm->mmap_sem);
4579#endif
4580}
4581EXPORT_SYMBOL(__might_fault);
4582#endif
4583
4584#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4585/*
4586 * Process all subpages of the specified huge page with the specified
4587 * operation.  The target subpage will be processed last to keep its
4588 * cache lines hot.
4589 */
4590static inline void process_huge_page(
4591        unsigned long addr_hint, unsigned int pages_per_huge_page,
4592        void (*process_subpage)(unsigned long addr, int idx, void *arg),
4593        void *arg)
4594{
4595        int i, n, base, l;
4596        unsigned long addr = addr_hint &
4597                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4598
4599        /* Process target subpage last to keep its cache lines hot */
4600        might_sleep();
4601        n = (addr_hint - addr) / PAGE_SIZE;
4602        if (2 * n <= pages_per_huge_page) {
4603                /* If target subpage in first half of huge page */
4604                base = 0;
4605                l = n;
4606                /* Process subpages at the end of huge page */
4607                for (i = pages_per_huge_page - 1; i >= 2 * n; i--) {
4608                        cond_resched();
4609                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4610                }
4611        } else {
4612                /* If target subpage in second half of huge page */
4613                base = pages_per_huge_page - 2 * (pages_per_huge_page - n);
4614                l = pages_per_huge_page - n;
4615                /* Process subpages at the begin of huge page */
4616                for (i = 0; i < base; i++) {
4617                        cond_resched();
4618                        process_subpage(addr + i * PAGE_SIZE, i, arg);
4619                }
4620        }
4621        /*
4622         * Process remaining subpages in left-right-left-right pattern
4623         * towards the target subpage
4624         */
4625        for (i = 0; i < l; i++) {
4626                int left_idx = base + i;
4627                int right_idx = base + 2 * l - 1 - i;
4628
4629                cond_resched();
4630                process_subpage(addr + left_idx * PAGE_SIZE, left_idx, arg);
4631                cond_resched();
4632                process_subpage(addr + right_idx * PAGE_SIZE, right_idx, arg);
4633        }
4634}
4635
4636static void clear_gigantic_page(struct page *page,
4637                                unsigned long addr,
4638                                unsigned int pages_per_huge_page)
4639{
4640        int i;
4641        struct page *p = page;
4642
4643        might_sleep();
4644        for (i = 0; i < pages_per_huge_page;
4645             i++, p = mem_map_next(p, page, i)) {
4646                cond_resched();
4647                clear_user_highpage(p, addr + i * PAGE_SIZE);
4648        }
4649}
4650
4651static void clear_subpage(unsigned long addr, int idx, void *arg)
4652{
4653        struct page *page = arg;
4654
4655        clear_user_highpage(page + idx, addr);
4656}
4657
4658void clear_huge_page(struct page *page,
4659                     unsigned long addr_hint, unsigned int pages_per_huge_page)
4660{
4661        unsigned long addr = addr_hint &
4662                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4663
4664        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4665                clear_gigantic_page(page, addr, pages_per_huge_page);
4666                return;
4667        }
4668
4669        process_huge_page(addr_hint, pages_per_huge_page, clear_subpage, page);
4670}
4671
4672static void copy_user_gigantic_page(struct page *dst, struct page *src,
4673                                    unsigned long addr,
4674                                    struct vm_area_struct *vma,
4675                                    unsigned int pages_per_huge_page)
4676{
4677        int i;
4678        struct page *dst_base = dst;
4679        struct page *src_base = src;
4680
4681        for (i = 0; i < pages_per_huge_page; ) {
4682                cond_resched();
4683                copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4684
4685                i++;
4686                dst = mem_map_next(dst, dst_base, i);
4687                src = mem_map_next(src, src_base, i);
4688        }
4689}
4690
4691struct copy_subpage_arg {
4692        struct page *dst;
4693        struct page *src;
4694        struct vm_area_struct *vma;
4695};
4696
4697static void copy_subpage(unsigned long addr, int idx, void *arg)
4698{
4699        struct copy_subpage_arg *copy_arg = arg;
4700
4701        copy_user_highpage(copy_arg->dst + idx, copy_arg->src + idx,
4702                           addr, copy_arg->vma);
4703}
4704
4705void copy_user_huge_page(struct page *dst, struct page *src,
4706                         unsigned long addr_hint, struct vm_area_struct *vma,
4707                         unsigned int pages_per_huge_page)
4708{
4709        unsigned long addr = addr_hint &
4710                ~(((unsigned long)pages_per_huge_page << PAGE_SHIFT) - 1);
4711        struct copy_subpage_arg arg = {
4712                .dst = dst,
4713                .src = src,
4714                .vma = vma,
4715        };
4716
4717        if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4718                copy_user_gigantic_page(dst, src, addr, vma,
4719                                        pages_per_huge_page);
4720                return;
4721        }
4722
4723        process_huge_page(addr_hint, pages_per_huge_page, copy_subpage, &arg);
4724}
4725
4726long copy_huge_page_from_user(struct page *dst_page,
4727                                const void __user *usr_src,
4728                                unsigned int pages_per_huge_page,
4729                                bool allow_pagefault)
4730{
4731        void *src = (void *)usr_src;
4732        void *page_kaddr;
4733        unsigned long i, rc = 0;
4734        unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4735
4736        for (i = 0; i < pages_per_huge_page; i++) {
4737                if (allow_pagefault)
4738                        page_kaddr = kmap(dst_page + i);
4739                else
4740                        page_kaddr = kmap_atomic(dst_page + i);
4741                rc = copy_from_user(page_kaddr,
4742                                (const void __user *)(src + i * PAGE_SIZE),
4743                                PAGE_SIZE);
4744                if (allow_pagefault)
4745                        kunmap(dst_page + i);
4746                else
4747                        kunmap_atomic(page_kaddr);
4748
4749                ret_val -= (PAGE_SIZE - rc);
4750                if (rc)
4751                        break;
4752
4753                cond_resched();
4754        }
4755        return ret_val;
4756}
4757#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
4758
4759#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
4760
4761static struct kmem_cache *page_ptl_cachep;
4762
4763void __init ptlock_cache_init(void)
4764{
4765        page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4766                        SLAB_PANIC, NULL);
4767}
4768
4769bool ptlock_alloc(struct page *page)
4770{
4771        spinlock_t *ptl;
4772
4773        ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
4774        if (!ptl)
4775                return false;
4776        page->ptl = ptl;
4777        return true;
4778}
4779
4780void ptlock_free(struct page *page)
4781{
4782        kmem_cache_free(page_ptl_cachep, page->ptl);
4783}
4784#endif
4785