linux/mm/migrate.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Memory Migration functionality - linux/mm/migrate.c
   4 *
   5 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   6 *
   7 * Page migration was first developed in the context of the memory hotplug
   8 * project. The main authors of the migration code are:
   9 *
  10 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  11 * Hirokazu Takahashi <taka@valinux.co.jp>
  12 * Dave Hansen <haveblue@us.ibm.com>
  13 * Christoph Lameter
  14 */
  15
  16#include <linux/migrate.h>
  17#include <linux/export.h>
  18#include <linux/swap.h>
  19#include <linux/swapops.h>
  20#include <linux/pagemap.h>
  21#include <linux/buffer_head.h>
  22#include <linux/mm_inline.h>
  23#include <linux/nsproxy.h>
  24#include <linux/pagevec.h>
  25#include <linux/ksm.h>
  26#include <linux/rmap.h>
  27#include <linux/topology.h>
  28#include <linux/cpu.h>
  29#include <linux/cpuset.h>
  30#include <linux/writeback.h>
  31#include <linux/mempolicy.h>
  32#include <linux/vmalloc.h>
  33#include <linux/security.h>
  34#include <linux/backing-dev.h>
  35#include <linux/compaction.h>
  36#include <linux/syscalls.h>
  37#include <linux/compat.h>
  38#include <linux/hugetlb.h>
  39#include <linux/hugetlb_cgroup.h>
  40#include <linux/gfp.h>
  41#include <linux/pfn_t.h>
  42#include <linux/memremap.h>
  43#include <linux/userfaultfd_k.h>
  44#include <linux/balloon_compaction.h>
  45#include <linux/mmu_notifier.h>
  46#include <linux/page_idle.h>
  47#include <linux/page_owner.h>
  48#include <linux/sched/mm.h>
  49#include <linux/ptrace.h>
  50
  51#include <asm/tlbflush.h>
  52
  53#define CREATE_TRACE_POINTS
  54#include <trace/events/migrate.h>
  55
  56#include "internal.h"
  57
  58/*
  59 * migrate_prep() needs to be called before we start compiling a list of pages
  60 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  61 * undesirable, use migrate_prep_local()
  62 */
  63int migrate_prep(void)
  64{
  65        /*
  66         * Clear the LRU lists so pages can be isolated.
  67         * Note that pages may be moved off the LRU after we have
  68         * drained them. Those pages will fail to migrate like other
  69         * pages that may be busy.
  70         */
  71        lru_add_drain_all();
  72
  73        return 0;
  74}
  75
  76/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  77int migrate_prep_local(void)
  78{
  79        lru_add_drain();
  80
  81        return 0;
  82}
  83
  84int isolate_movable_page(struct page *page, isolate_mode_t mode)
  85{
  86        struct address_space *mapping;
  87
  88        /*
  89         * Avoid burning cycles with pages that are yet under __free_pages(),
  90         * or just got freed under us.
  91         *
  92         * In case we 'win' a race for a movable page being freed under us and
  93         * raise its refcount preventing __free_pages() from doing its job
  94         * the put_page() at the end of this block will take care of
  95         * release this page, thus avoiding a nasty leakage.
  96         */
  97        if (unlikely(!get_page_unless_zero(page)))
  98                goto out;
  99
 100        /*
 101         * Check PageMovable before holding a PG_lock because page's owner
 102         * assumes anybody doesn't touch PG_lock of newly allocated page
 103         * so unconditionally grapping the lock ruins page's owner side.
 104         */
 105        if (unlikely(!__PageMovable(page)))
 106                goto out_putpage;
 107        /*
 108         * As movable pages are not isolated from LRU lists, concurrent
 109         * compaction threads can race against page migration functions
 110         * as well as race against the releasing a page.
 111         *
 112         * In order to avoid having an already isolated movable page
 113         * being (wrongly) re-isolated while it is under migration,
 114         * or to avoid attempting to isolate pages being released,
 115         * lets be sure we have the page lock
 116         * before proceeding with the movable page isolation steps.
 117         */
 118        if (unlikely(!trylock_page(page)))
 119                goto out_putpage;
 120
 121        if (!PageMovable(page) || PageIsolated(page))
 122                goto out_no_isolated;
 123
 124        mapping = page_mapping(page);
 125        VM_BUG_ON_PAGE(!mapping, page);
 126
 127        if (!mapping->a_ops->isolate_page(page, mode))
 128                goto out_no_isolated;
 129
 130        /* Driver shouldn't use PG_isolated bit of page->flags */
 131        WARN_ON_ONCE(PageIsolated(page));
 132        __SetPageIsolated(page);
 133        unlock_page(page);
 134
 135        return 0;
 136
 137out_no_isolated:
 138        unlock_page(page);
 139out_putpage:
 140        put_page(page);
 141out:
 142        return -EBUSY;
 143}
 144
 145/* It should be called on page which is PG_movable */
 146void putback_movable_page(struct page *page)
 147{
 148        struct address_space *mapping;
 149
 150        VM_BUG_ON_PAGE(!PageLocked(page), page);
 151        VM_BUG_ON_PAGE(!PageMovable(page), page);
 152        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 153
 154        mapping = page_mapping(page);
 155        mapping->a_ops->putback_page(page);
 156        __ClearPageIsolated(page);
 157}
 158
 159/*
 160 * Put previously isolated pages back onto the appropriate lists
 161 * from where they were once taken off for compaction/migration.
 162 *
 163 * This function shall be used whenever the isolated pageset has been
 164 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 165 * and isolate_huge_page().
 166 */
 167void putback_movable_pages(struct list_head *l)
 168{
 169        struct page *page;
 170        struct page *page2;
 171
 172        list_for_each_entry_safe(page, page2, l, lru) {
 173                if (unlikely(PageHuge(page))) {
 174                        putback_active_hugepage(page);
 175                        continue;
 176                }
 177                list_del(&page->lru);
 178                /*
 179                 * We isolated non-lru movable page so here we can use
 180                 * __PageMovable because LRU page's mapping cannot have
 181                 * PAGE_MAPPING_MOVABLE.
 182                 */
 183                if (unlikely(__PageMovable(page))) {
 184                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 185                        lock_page(page);
 186                        if (PageMovable(page))
 187                                putback_movable_page(page);
 188                        else
 189                                __ClearPageIsolated(page);
 190                        unlock_page(page);
 191                        put_page(page);
 192                } else {
 193                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
 194                                        page_is_file_cache(page), -hpage_nr_pages(page));
 195                        putback_lru_page(page);
 196                }
 197        }
 198}
 199
 200/*
 201 * Restore a potential migration pte to a working pte entry
 202 */
 203static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
 204                                 unsigned long addr, void *old)
 205{
 206        struct page_vma_mapped_walk pvmw = {
 207                .page = old,
 208                .vma = vma,
 209                .address = addr,
 210                .flags = PVMW_SYNC | PVMW_MIGRATION,
 211        };
 212        struct page *new;
 213        pte_t pte;
 214        swp_entry_t entry;
 215
 216        VM_BUG_ON_PAGE(PageTail(page), page);
 217        while (page_vma_mapped_walk(&pvmw)) {
 218                if (PageKsm(page))
 219                        new = page;
 220                else
 221                        new = page - pvmw.page->index +
 222                                linear_page_index(vma, pvmw.address);
 223
 224#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 225                /* PMD-mapped THP migration entry */
 226                if (!pvmw.pte) {
 227                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
 228                        remove_migration_pmd(&pvmw, new);
 229                        continue;
 230                }
 231#endif
 232
 233                get_page(new);
 234                pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 235                if (pte_swp_soft_dirty(*pvmw.pte))
 236                        pte = pte_mksoft_dirty(pte);
 237
 238                /*
 239                 * Recheck VMA as permissions can change since migration started
 240                 */
 241                entry = pte_to_swp_entry(*pvmw.pte);
 242                if (is_write_migration_entry(entry))
 243                        pte = maybe_mkwrite(pte, vma);
 244
 245                if (unlikely(is_zone_device_page(new))) {
 246                        if (is_device_private_page(new)) {
 247                                entry = make_device_private_entry(new, pte_write(pte));
 248                                pte = swp_entry_to_pte(entry);
 249                        } else if (is_device_public_page(new)) {
 250                                pte = pte_mkdevmap(pte);
 251                                flush_dcache_page(new);
 252                        }
 253                } else
 254                        flush_dcache_page(new);
 255
 256#ifdef CONFIG_HUGETLB_PAGE
 257                if (PageHuge(new)) {
 258                        pte = pte_mkhuge(pte);
 259                        pte = arch_make_huge_pte(pte, vma, new, 0);
 260                        set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 261                        if (PageAnon(new))
 262                                hugepage_add_anon_rmap(new, vma, pvmw.address);
 263                        else
 264                                page_dup_rmap(new, true);
 265                } else
 266#endif
 267                {
 268                        set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
 269
 270                        if (PageAnon(new))
 271                                page_add_anon_rmap(new, vma, pvmw.address, false);
 272                        else
 273                                page_add_file_rmap(new, false);
 274                }
 275                if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 276                        mlock_vma_page(new);
 277
 278                if (PageTransHuge(page) && PageMlocked(page))
 279                        clear_page_mlock(page);
 280
 281                /* No need to invalidate - it was non-present before */
 282                update_mmu_cache(vma, pvmw.address, pvmw.pte);
 283        }
 284
 285        return true;
 286}
 287
 288/*
 289 * Get rid of all migration entries and replace them by
 290 * references to the indicated page.
 291 */
 292void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 293{
 294        struct rmap_walk_control rwc = {
 295                .rmap_one = remove_migration_pte,
 296                .arg = old,
 297        };
 298
 299        if (locked)
 300                rmap_walk_locked(new, &rwc);
 301        else
 302                rmap_walk(new, &rwc);
 303}
 304
 305/*
 306 * Something used the pte of a page under migration. We need to
 307 * get to the page and wait until migration is finished.
 308 * When we return from this function the fault will be retried.
 309 */
 310void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 311                                spinlock_t *ptl)
 312{
 313        pte_t pte;
 314        swp_entry_t entry;
 315        struct page *page;
 316
 317        spin_lock(ptl);
 318        pte = *ptep;
 319        if (!is_swap_pte(pte))
 320                goto out;
 321
 322        entry = pte_to_swp_entry(pte);
 323        if (!is_migration_entry(entry))
 324                goto out;
 325
 326        page = migration_entry_to_page(entry);
 327
 328        /*
 329         * Once radix-tree replacement of page migration started, page_count
 330         * *must* be zero. And, we don't want to call wait_on_page_locked()
 331         * against a page without get_page().
 332         * So, we use get_page_unless_zero(), here. Even failed, page fault
 333         * will occur again.
 334         */
 335        if (!get_page_unless_zero(page))
 336                goto out;
 337        pte_unmap_unlock(ptep, ptl);
 338        wait_on_page_locked(page);
 339        put_page(page);
 340        return;
 341out:
 342        pte_unmap_unlock(ptep, ptl);
 343}
 344
 345void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 346                                unsigned long address)
 347{
 348        spinlock_t *ptl = pte_lockptr(mm, pmd);
 349        pte_t *ptep = pte_offset_map(pmd, address);
 350        __migration_entry_wait(mm, ptep, ptl);
 351}
 352
 353void migration_entry_wait_huge(struct vm_area_struct *vma,
 354                struct mm_struct *mm, pte_t *pte)
 355{
 356        spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 357        __migration_entry_wait(mm, pte, ptl);
 358}
 359
 360#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
 361void pmd_migration_entry_wait(struct mm_struct *mm, pmd_t *pmd)
 362{
 363        spinlock_t *ptl;
 364        struct page *page;
 365
 366        ptl = pmd_lock(mm, pmd);
 367        if (!is_pmd_migration_entry(*pmd))
 368                goto unlock;
 369        page = migration_entry_to_page(pmd_to_swp_entry(*pmd));
 370        if (!get_page_unless_zero(page))
 371                goto unlock;
 372        spin_unlock(ptl);
 373        wait_on_page_locked(page);
 374        put_page(page);
 375        return;
 376unlock:
 377        spin_unlock(ptl);
 378}
 379#endif
 380
 381#ifdef CONFIG_BLOCK
 382/* Returns true if all buffers are successfully locked */
 383static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 384                                                        enum migrate_mode mode)
 385{
 386        struct buffer_head *bh = head;
 387
 388        /* Simple case, sync compaction */
 389        if (mode != MIGRATE_ASYNC) {
 390                do {
 391                        get_bh(bh);
 392                        lock_buffer(bh);
 393                        bh = bh->b_this_page;
 394
 395                } while (bh != head);
 396
 397                return true;
 398        }
 399
 400        /* async case, we cannot block on lock_buffer so use trylock_buffer */
 401        do {
 402                get_bh(bh);
 403                if (!trylock_buffer(bh)) {
 404                        /*
 405                         * We failed to lock the buffer and cannot stall in
 406                         * async migration. Release the taken locks
 407                         */
 408                        struct buffer_head *failed_bh = bh;
 409                        put_bh(failed_bh);
 410                        bh = head;
 411                        while (bh != failed_bh) {
 412                                unlock_buffer(bh);
 413                                put_bh(bh);
 414                                bh = bh->b_this_page;
 415                        }
 416                        return false;
 417                }
 418
 419                bh = bh->b_this_page;
 420        } while (bh != head);
 421        return true;
 422}
 423#else
 424static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 425                                                        enum migrate_mode mode)
 426{
 427        return true;
 428}
 429#endif /* CONFIG_BLOCK */
 430
 431/*
 432 * Replace the page in the mapping.
 433 *
 434 * The number of remaining references must be:
 435 * 1 for anonymous pages without a mapping
 436 * 2 for pages with a mapping
 437 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 438 */
 439int migrate_page_move_mapping(struct address_space *mapping,
 440                struct page *newpage, struct page *page,
 441                struct buffer_head *head, enum migrate_mode mode,
 442                int extra_count)
 443{
 444        struct zone *oldzone, *newzone;
 445        int dirty;
 446        int expected_count = 1 + extra_count;
 447        void **pslot;
 448
 449        /*
 450         * Device public or private pages have an extra refcount as they are
 451         * ZONE_DEVICE pages.
 452         */
 453        expected_count += is_device_private_page(page);
 454        expected_count += is_device_public_page(page);
 455
 456        if (!mapping) {
 457                /* Anonymous page without mapping */
 458                if (page_count(page) != expected_count)
 459                        return -EAGAIN;
 460
 461                /* No turning back from here */
 462                newpage->index = page->index;
 463                newpage->mapping = page->mapping;
 464                if (PageSwapBacked(page))
 465                        __SetPageSwapBacked(newpage);
 466
 467                return MIGRATEPAGE_SUCCESS;
 468        }
 469
 470        oldzone = page_zone(page);
 471        newzone = page_zone(newpage);
 472
 473        xa_lock_irq(&mapping->i_pages);
 474
 475        pslot = radix_tree_lookup_slot(&mapping->i_pages,
 476                                        page_index(page));
 477
 478        expected_count += hpage_nr_pages(page) + page_has_private(page);
 479        if (page_count(page) != expected_count ||
 480                radix_tree_deref_slot_protected(pslot,
 481                                        &mapping->i_pages.xa_lock) != page) {
 482                xa_unlock_irq(&mapping->i_pages);
 483                return -EAGAIN;
 484        }
 485
 486        if (!page_ref_freeze(page, expected_count)) {
 487                xa_unlock_irq(&mapping->i_pages);
 488                return -EAGAIN;
 489        }
 490
 491        /*
 492         * In the async migration case of moving a page with buffers, lock the
 493         * buffers using trylock before the mapping is moved. If the mapping
 494         * was moved, we later failed to lock the buffers and could not move
 495         * the mapping back due to an elevated page count, we would have to
 496         * block waiting on other references to be dropped.
 497         */
 498        if (mode == MIGRATE_ASYNC && head &&
 499                        !buffer_migrate_lock_buffers(head, mode)) {
 500                page_ref_unfreeze(page, expected_count);
 501                xa_unlock_irq(&mapping->i_pages);
 502                return -EAGAIN;
 503        }
 504
 505        /*
 506         * Now we know that no one else is looking at the page:
 507         * no turning back from here.
 508         */
 509        newpage->index = page->index;
 510        newpage->mapping = page->mapping;
 511        page_ref_add(newpage, hpage_nr_pages(page)); /* add cache reference */
 512        if (PageSwapBacked(page)) {
 513                __SetPageSwapBacked(newpage);
 514                if (PageSwapCache(page)) {
 515                        SetPageSwapCache(newpage);
 516                        set_page_private(newpage, page_private(page));
 517                }
 518        } else {
 519                VM_BUG_ON_PAGE(PageSwapCache(page), page);
 520        }
 521
 522        /* Move dirty while page refs frozen and newpage not yet exposed */
 523        dirty = PageDirty(page);
 524        if (dirty) {
 525                ClearPageDirty(page);
 526                SetPageDirty(newpage);
 527        }
 528
 529        radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 530        if (PageTransHuge(page)) {
 531                int i;
 532                int index = page_index(page);
 533
 534                for (i = 1; i < HPAGE_PMD_NR; i++) {
 535                        pslot = radix_tree_lookup_slot(&mapping->i_pages,
 536                                                       index + i);
 537                        radix_tree_replace_slot(&mapping->i_pages, pslot,
 538                                                newpage + i);
 539                }
 540        }
 541
 542        /*
 543         * Drop cache reference from old page by unfreezing
 544         * to one less reference.
 545         * We know this isn't the last reference.
 546         */
 547        page_ref_unfreeze(page, expected_count - hpage_nr_pages(page));
 548
 549        xa_unlock(&mapping->i_pages);
 550        /* Leave irq disabled to prevent preemption while updating stats */
 551
 552        /*
 553         * If moved to a different zone then also account
 554         * the page for that zone. Other VM counters will be
 555         * taken care of when we establish references to the
 556         * new page and drop references to the old page.
 557         *
 558         * Note that anonymous pages are accounted for
 559         * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 560         * are mapped to swap space.
 561         */
 562        if (newzone != oldzone) {
 563                __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 564                __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 565                if (PageSwapBacked(page) && !PageSwapCache(page)) {
 566                        __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 567                        __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 568                }
 569                if (dirty && mapping_cap_account_dirty(mapping)) {
 570                        __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 571                        __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 572                        __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 573                        __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 574                }
 575        }
 576        local_irq_enable();
 577
 578        return MIGRATEPAGE_SUCCESS;
 579}
 580EXPORT_SYMBOL(migrate_page_move_mapping);
 581
 582/*
 583 * The expected number of remaining references is the same as that
 584 * of migrate_page_move_mapping().
 585 */
 586int migrate_huge_page_move_mapping(struct address_space *mapping,
 587                                   struct page *newpage, struct page *page)
 588{
 589        int expected_count;
 590        void **pslot;
 591
 592        xa_lock_irq(&mapping->i_pages);
 593
 594        pslot = radix_tree_lookup_slot(&mapping->i_pages, page_index(page));
 595
 596        expected_count = 2 + page_has_private(page);
 597        if (page_count(page) != expected_count ||
 598                radix_tree_deref_slot_protected(pslot, &mapping->i_pages.xa_lock) != page) {
 599                xa_unlock_irq(&mapping->i_pages);
 600                return -EAGAIN;
 601        }
 602
 603        if (!page_ref_freeze(page, expected_count)) {
 604                xa_unlock_irq(&mapping->i_pages);
 605                return -EAGAIN;
 606        }
 607
 608        newpage->index = page->index;
 609        newpage->mapping = page->mapping;
 610
 611        get_page(newpage);
 612
 613        radix_tree_replace_slot(&mapping->i_pages, pslot, newpage);
 614
 615        page_ref_unfreeze(page, expected_count - 1);
 616
 617        xa_unlock_irq(&mapping->i_pages);
 618
 619        return MIGRATEPAGE_SUCCESS;
 620}
 621
 622/*
 623 * Gigantic pages are so large that we do not guarantee that page++ pointer
 624 * arithmetic will work across the entire page.  We need something more
 625 * specialized.
 626 */
 627static void __copy_gigantic_page(struct page *dst, struct page *src,
 628                                int nr_pages)
 629{
 630        int i;
 631        struct page *dst_base = dst;
 632        struct page *src_base = src;
 633
 634        for (i = 0; i < nr_pages; ) {
 635                cond_resched();
 636                copy_highpage(dst, src);
 637
 638                i++;
 639                dst = mem_map_next(dst, dst_base, i);
 640                src = mem_map_next(src, src_base, i);
 641        }
 642}
 643
 644static void copy_huge_page(struct page *dst, struct page *src)
 645{
 646        int i;
 647        int nr_pages;
 648
 649        if (PageHuge(src)) {
 650                /* hugetlbfs page */
 651                struct hstate *h = page_hstate(src);
 652                nr_pages = pages_per_huge_page(h);
 653
 654                if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 655                        __copy_gigantic_page(dst, src, nr_pages);
 656                        return;
 657                }
 658        } else {
 659                /* thp page */
 660                BUG_ON(!PageTransHuge(src));
 661                nr_pages = hpage_nr_pages(src);
 662        }
 663
 664        for (i = 0; i < nr_pages; i++) {
 665                cond_resched();
 666                copy_highpage(dst + i, src + i);
 667        }
 668}
 669
 670/*
 671 * Copy the page to its new location
 672 */
 673void migrate_page_states(struct page *newpage, struct page *page)
 674{
 675        int cpupid;
 676
 677        if (PageError(page))
 678                SetPageError(newpage);
 679        if (PageReferenced(page))
 680                SetPageReferenced(newpage);
 681        if (PageUptodate(page))
 682                SetPageUptodate(newpage);
 683        if (TestClearPageActive(page)) {
 684                VM_BUG_ON_PAGE(PageUnevictable(page), page);
 685                SetPageActive(newpage);
 686        } else if (TestClearPageUnevictable(page))
 687                SetPageUnevictable(newpage);
 688        if (PageChecked(page))
 689                SetPageChecked(newpage);
 690        if (PageMappedToDisk(page))
 691                SetPageMappedToDisk(newpage);
 692
 693        /* Move dirty on pages not done by migrate_page_move_mapping() */
 694        if (PageDirty(page))
 695                SetPageDirty(newpage);
 696
 697        if (page_is_young(page))
 698                set_page_young(newpage);
 699        if (page_is_idle(page))
 700                set_page_idle(newpage);
 701
 702        /*
 703         * Copy NUMA information to the new page, to prevent over-eager
 704         * future migrations of this same page.
 705         */
 706        cpupid = page_cpupid_xchg_last(page, -1);
 707        page_cpupid_xchg_last(newpage, cpupid);
 708
 709        ksm_migrate_page(newpage, page);
 710        /*
 711         * Please do not reorder this without considering how mm/ksm.c's
 712         * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 713         */
 714        if (PageSwapCache(page))
 715                ClearPageSwapCache(page);
 716        ClearPagePrivate(page);
 717        set_page_private(page, 0);
 718
 719        /*
 720         * If any waiters have accumulated on the new page then
 721         * wake them up.
 722         */
 723        if (PageWriteback(newpage))
 724                end_page_writeback(newpage);
 725
 726        copy_page_owner(page, newpage);
 727
 728        mem_cgroup_migrate(page, newpage);
 729}
 730EXPORT_SYMBOL(migrate_page_states);
 731
 732void migrate_page_copy(struct page *newpage, struct page *page)
 733{
 734        if (PageHuge(page) || PageTransHuge(page))
 735                copy_huge_page(newpage, page);
 736        else
 737                copy_highpage(newpage, page);
 738
 739        migrate_page_states(newpage, page);
 740}
 741EXPORT_SYMBOL(migrate_page_copy);
 742
 743/************************************************************
 744 *                    Migration functions
 745 ***********************************************************/
 746
 747/*
 748 * Common logic to directly migrate a single LRU page suitable for
 749 * pages that do not use PagePrivate/PagePrivate2.
 750 *
 751 * Pages are locked upon entry and exit.
 752 */
 753int migrate_page(struct address_space *mapping,
 754                struct page *newpage, struct page *page,
 755                enum migrate_mode mode)
 756{
 757        int rc;
 758
 759        BUG_ON(PageWriteback(page));    /* Writeback must be complete */
 760
 761        rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 762
 763        if (rc != MIGRATEPAGE_SUCCESS)
 764                return rc;
 765
 766        if (mode != MIGRATE_SYNC_NO_COPY)
 767                migrate_page_copy(newpage, page);
 768        else
 769                migrate_page_states(newpage, page);
 770        return MIGRATEPAGE_SUCCESS;
 771}
 772EXPORT_SYMBOL(migrate_page);
 773
 774#ifdef CONFIG_BLOCK
 775/*
 776 * Migration function for pages with buffers. This function can only be used
 777 * if the underlying filesystem guarantees that no other references to "page"
 778 * exist.
 779 */
 780int buffer_migrate_page(struct address_space *mapping,
 781                struct page *newpage, struct page *page, enum migrate_mode mode)
 782{
 783        struct buffer_head *bh, *head;
 784        int rc;
 785
 786        if (!page_has_buffers(page))
 787                return migrate_page(mapping, newpage, page, mode);
 788
 789        head = page_buffers(page);
 790
 791        rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 792
 793        if (rc != MIGRATEPAGE_SUCCESS)
 794                return rc;
 795
 796        /*
 797         * In the async case, migrate_page_move_mapping locked the buffers
 798         * with an IRQ-safe spinlock held. In the sync case, the buffers
 799         * need to be locked now
 800         */
 801        if (mode != MIGRATE_ASYNC)
 802                BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 803
 804        ClearPagePrivate(page);
 805        set_page_private(newpage, page_private(page));
 806        set_page_private(page, 0);
 807        put_page(page);
 808        get_page(newpage);
 809
 810        bh = head;
 811        do {
 812                set_bh_page(bh, newpage, bh_offset(bh));
 813                bh = bh->b_this_page;
 814
 815        } while (bh != head);
 816
 817        SetPagePrivate(newpage);
 818
 819        if (mode != MIGRATE_SYNC_NO_COPY)
 820                migrate_page_copy(newpage, page);
 821        else
 822                migrate_page_states(newpage, page);
 823
 824        bh = head;
 825        do {
 826                unlock_buffer(bh);
 827                put_bh(bh);
 828                bh = bh->b_this_page;
 829
 830        } while (bh != head);
 831
 832        return MIGRATEPAGE_SUCCESS;
 833}
 834EXPORT_SYMBOL(buffer_migrate_page);
 835#endif
 836
 837/*
 838 * Writeback a page to clean the dirty state
 839 */
 840static int writeout(struct address_space *mapping, struct page *page)
 841{
 842        struct writeback_control wbc = {
 843                .sync_mode = WB_SYNC_NONE,
 844                .nr_to_write = 1,
 845                .range_start = 0,
 846                .range_end = LLONG_MAX,
 847                .for_reclaim = 1
 848        };
 849        int rc;
 850
 851        if (!mapping->a_ops->writepage)
 852                /* No write method for the address space */
 853                return -EINVAL;
 854
 855        if (!clear_page_dirty_for_io(page))
 856                /* Someone else already triggered a write */
 857                return -EAGAIN;
 858
 859        /*
 860         * A dirty page may imply that the underlying filesystem has
 861         * the page on some queue. So the page must be clean for
 862         * migration. Writeout may mean we loose the lock and the
 863         * page state is no longer what we checked for earlier.
 864         * At this point we know that the migration attempt cannot
 865         * be successful.
 866         */
 867        remove_migration_ptes(page, page, false);
 868
 869        rc = mapping->a_ops->writepage(page, &wbc);
 870
 871        if (rc != AOP_WRITEPAGE_ACTIVATE)
 872                /* unlocked. Relock */
 873                lock_page(page);
 874
 875        return (rc < 0) ? -EIO : -EAGAIN;
 876}
 877
 878/*
 879 * Default handling if a filesystem does not provide a migration function.
 880 */
 881static int fallback_migrate_page(struct address_space *mapping,
 882        struct page *newpage, struct page *page, enum migrate_mode mode)
 883{
 884        if (PageDirty(page)) {
 885                /* Only writeback pages in full synchronous migration */
 886                switch (mode) {
 887                case MIGRATE_SYNC:
 888                case MIGRATE_SYNC_NO_COPY:
 889                        break;
 890                default:
 891                        return -EBUSY;
 892                }
 893                return writeout(mapping, page);
 894        }
 895
 896        /*
 897         * Buffers may be managed in a filesystem specific way.
 898         * We must have no buffers or drop them.
 899         */
 900        if (page_has_private(page) &&
 901            !try_to_release_page(page, GFP_KERNEL))
 902                return -EAGAIN;
 903
 904        return migrate_page(mapping, newpage, page, mode);
 905}
 906
 907/*
 908 * Move a page to a newly allocated page
 909 * The page is locked and all ptes have been successfully removed.
 910 *
 911 * The new page will have replaced the old page if this function
 912 * is successful.
 913 *
 914 * Return value:
 915 *   < 0 - error code
 916 *  MIGRATEPAGE_SUCCESS - success
 917 */
 918static int move_to_new_page(struct page *newpage, struct page *page,
 919                                enum migrate_mode mode)
 920{
 921        struct address_space *mapping;
 922        int rc = -EAGAIN;
 923        bool is_lru = !__PageMovable(page);
 924
 925        VM_BUG_ON_PAGE(!PageLocked(page), page);
 926        VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 927
 928        mapping = page_mapping(page);
 929
 930        if (likely(is_lru)) {
 931                if (!mapping)
 932                        rc = migrate_page(mapping, newpage, page, mode);
 933                else if (mapping->a_ops->migratepage)
 934                        /*
 935                         * Most pages have a mapping and most filesystems
 936                         * provide a migratepage callback. Anonymous pages
 937                         * are part of swap space which also has its own
 938                         * migratepage callback. This is the most common path
 939                         * for page migration.
 940                         */
 941                        rc = mapping->a_ops->migratepage(mapping, newpage,
 942                                                        page, mode);
 943                else
 944                        rc = fallback_migrate_page(mapping, newpage,
 945                                                        page, mode);
 946        } else {
 947                /*
 948                 * In case of non-lru page, it could be released after
 949                 * isolation step. In that case, we shouldn't try migration.
 950                 */
 951                VM_BUG_ON_PAGE(!PageIsolated(page), page);
 952                if (!PageMovable(page)) {
 953                        rc = MIGRATEPAGE_SUCCESS;
 954                        __ClearPageIsolated(page);
 955                        goto out;
 956                }
 957
 958                rc = mapping->a_ops->migratepage(mapping, newpage,
 959                                                page, mode);
 960                WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 961                        !PageIsolated(page));
 962        }
 963
 964        /*
 965         * When successful, old pagecache page->mapping must be cleared before
 966         * page is freed; but stats require that PageAnon be left as PageAnon.
 967         */
 968        if (rc == MIGRATEPAGE_SUCCESS) {
 969                if (__PageMovable(page)) {
 970                        VM_BUG_ON_PAGE(!PageIsolated(page), page);
 971
 972                        /*
 973                         * We clear PG_movable under page_lock so any compactor
 974                         * cannot try to migrate this page.
 975                         */
 976                        __ClearPageIsolated(page);
 977                }
 978
 979                /*
 980                 * Anonymous and movable page->mapping will be cleard by
 981                 * free_pages_prepare so don't reset it here for keeping
 982                 * the type to work PageAnon, for example.
 983                 */
 984                if (!PageMappingFlags(page))
 985                        page->mapping = NULL;
 986        }
 987out:
 988        return rc;
 989}
 990
 991static int __unmap_and_move(struct page *page, struct page *newpage,
 992                                int force, enum migrate_mode mode)
 993{
 994        int rc = -EAGAIN;
 995        int page_was_mapped = 0;
 996        struct anon_vma *anon_vma = NULL;
 997        bool is_lru = !__PageMovable(page);
 998
 999        if (!trylock_page(page)) {
1000                if (!force || mode == MIGRATE_ASYNC)
1001                        goto out;
1002
1003                /*
1004                 * It's not safe for direct compaction to call lock_page.
1005                 * For example, during page readahead pages are added locked
1006                 * to the LRU. Later, when the IO completes the pages are
1007                 * marked uptodate and unlocked. However, the queueing
1008                 * could be merging multiple pages for one bio (e.g.
1009                 * mpage_readpages). If an allocation happens for the
1010                 * second or third page, the process can end up locking
1011                 * the same page twice and deadlocking. Rather than
1012                 * trying to be clever about what pages can be locked,
1013                 * avoid the use of lock_page for direct compaction
1014                 * altogether.
1015                 */
1016                if (current->flags & PF_MEMALLOC)
1017                        goto out;
1018
1019                lock_page(page);
1020        }
1021
1022        if (PageWriteback(page)) {
1023                /*
1024                 * Only in the case of a full synchronous migration is it
1025                 * necessary to wait for PageWriteback. In the async case,
1026                 * the retry loop is too short and in the sync-light case,
1027                 * the overhead of stalling is too much
1028                 */
1029                switch (mode) {
1030                case MIGRATE_SYNC:
1031                case MIGRATE_SYNC_NO_COPY:
1032                        break;
1033                default:
1034                        rc = -EBUSY;
1035                        goto out_unlock;
1036                }
1037                if (!force)
1038                        goto out_unlock;
1039                wait_on_page_writeback(page);
1040        }
1041
1042        /*
1043         * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
1044         * we cannot notice that anon_vma is freed while we migrates a page.
1045         * This get_anon_vma() delays freeing anon_vma pointer until the end
1046         * of migration. File cache pages are no problem because of page_lock()
1047         * File Caches may use write_page() or lock_page() in migration, then,
1048         * just care Anon page here.
1049         *
1050         * Only page_get_anon_vma() understands the subtleties of
1051         * getting a hold on an anon_vma from outside one of its mms.
1052         * But if we cannot get anon_vma, then we won't need it anyway,
1053         * because that implies that the anon page is no longer mapped
1054         * (and cannot be remapped so long as we hold the page lock).
1055         */
1056        if (PageAnon(page) && !PageKsm(page))
1057                anon_vma = page_get_anon_vma(page);
1058
1059        /*
1060         * Block others from accessing the new page when we get around to
1061         * establishing additional references. We are usually the only one
1062         * holding a reference to newpage at this point. We used to have a BUG
1063         * here if trylock_page(newpage) fails, but would like to allow for
1064         * cases where there might be a race with the previous use of newpage.
1065         * This is much like races on refcount of oldpage: just don't BUG().
1066         */
1067        if (unlikely(!trylock_page(newpage)))
1068                goto out_unlock;
1069
1070        if (unlikely(!is_lru)) {
1071                rc = move_to_new_page(newpage, page, mode);
1072                goto out_unlock_both;
1073        }
1074
1075        /*
1076         * Corner case handling:
1077         * 1. When a new swap-cache page is read into, it is added to the LRU
1078         * and treated as swapcache but it has no rmap yet.
1079         * Calling try_to_unmap() against a page->mapping==NULL page will
1080         * trigger a BUG.  So handle it here.
1081         * 2. An orphaned page (see truncate_complete_page) might have
1082         * fs-private metadata. The page can be picked up due to memory
1083         * offlining.  Everywhere else except page reclaim, the page is
1084         * invisible to the vm, so the page can not be migrated.  So try to
1085         * free the metadata, so the page can be freed.
1086         */
1087        if (!page->mapping) {
1088                VM_BUG_ON_PAGE(PageAnon(page), page);
1089                if (page_has_private(page)) {
1090                        try_to_free_buffers(page);
1091                        goto out_unlock_both;
1092                }
1093        } else if (page_mapped(page)) {
1094                /* Establish migration ptes */
1095                VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1096                                page);
1097                try_to_unmap(page,
1098                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1099                page_was_mapped = 1;
1100        }
1101
1102        if (!page_mapped(page))
1103                rc = move_to_new_page(newpage, page, mode);
1104
1105        if (page_was_mapped)
1106                remove_migration_ptes(page,
1107                        rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1108
1109out_unlock_both:
1110        unlock_page(newpage);
1111out_unlock:
1112        /* Drop an anon_vma reference if we took one */
1113        if (anon_vma)
1114                put_anon_vma(anon_vma);
1115        unlock_page(page);
1116out:
1117        /*
1118         * If migration is successful, decrease refcount of the newpage
1119         * which will not free the page because new page owner increased
1120         * refcounter. As well, if it is LRU page, add the page to LRU
1121         * list in here.
1122         */
1123        if (rc == MIGRATEPAGE_SUCCESS) {
1124                if (unlikely(__PageMovable(newpage)))
1125                        put_page(newpage);
1126                else
1127                        putback_lru_page(newpage);
1128        }
1129
1130        return rc;
1131}
1132
1133/*
1134 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1135 * around it.
1136 */
1137#if defined(CONFIG_ARM) && \
1138        defined(GCC_VERSION) && GCC_VERSION < 40900 && GCC_VERSION >= 40700
1139#define ICE_noinline noinline
1140#else
1141#define ICE_noinline
1142#endif
1143
1144/*
1145 * Obtain the lock on page, remove all ptes and migrate the page
1146 * to the newly allocated page in newpage.
1147 */
1148static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1149                                   free_page_t put_new_page,
1150                                   unsigned long private, struct page *page,
1151                                   int force, enum migrate_mode mode,
1152                                   enum migrate_reason reason)
1153{
1154        int rc = MIGRATEPAGE_SUCCESS;
1155        struct page *newpage;
1156
1157        if (!thp_migration_supported() && PageTransHuge(page))
1158                return -ENOMEM;
1159
1160        newpage = get_new_page(page, private);
1161        if (!newpage)
1162                return -ENOMEM;
1163
1164        if (page_count(page) == 1) {
1165                /* page was freed from under us. So we are done. */
1166                ClearPageActive(page);
1167                ClearPageUnevictable(page);
1168                if (unlikely(__PageMovable(page))) {
1169                        lock_page(page);
1170                        if (!PageMovable(page))
1171                                __ClearPageIsolated(page);
1172                        unlock_page(page);
1173                }
1174                if (put_new_page)
1175                        put_new_page(newpage, private);
1176                else
1177                        put_page(newpage);
1178                goto out;
1179        }
1180
1181        rc = __unmap_and_move(page, newpage, force, mode);
1182        if (rc == MIGRATEPAGE_SUCCESS)
1183                set_page_owner_migrate_reason(newpage, reason);
1184
1185out:
1186        if (rc != -EAGAIN) {
1187                /*
1188                 * A page that has been migrated has all references
1189                 * removed and will be freed. A page that has not been
1190                 * migrated will have kepts its references and be
1191                 * restored.
1192                 */
1193                list_del(&page->lru);
1194
1195                /*
1196                 * Compaction can migrate also non-LRU pages which are
1197                 * not accounted to NR_ISOLATED_*. They can be recognized
1198                 * as __PageMovable
1199                 */
1200                if (likely(!__PageMovable(page)))
1201                        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON +
1202                                        page_is_file_cache(page), -hpage_nr_pages(page));
1203        }
1204
1205        /*
1206         * If migration is successful, releases reference grabbed during
1207         * isolation. Otherwise, restore the page to right list unless
1208         * we want to retry.
1209         */
1210        if (rc == MIGRATEPAGE_SUCCESS) {
1211                put_page(page);
1212                if (reason == MR_MEMORY_FAILURE) {
1213                        /*
1214                         * Set PG_HWPoison on just freed page
1215                         * intentionally. Although it's rather weird,
1216                         * it's how HWPoison flag works at the moment.
1217                         */
1218                        if (set_hwpoison_free_buddy_page(page))
1219                                num_poisoned_pages_inc();
1220                }
1221        } else {
1222                if (rc != -EAGAIN) {
1223                        if (likely(!__PageMovable(page))) {
1224                                putback_lru_page(page);
1225                                goto put_new;
1226                        }
1227
1228                        lock_page(page);
1229                        if (PageMovable(page))
1230                                putback_movable_page(page);
1231                        else
1232                                __ClearPageIsolated(page);
1233                        unlock_page(page);
1234                        put_page(page);
1235                }
1236put_new:
1237                if (put_new_page)
1238                        put_new_page(newpage, private);
1239                else
1240                        put_page(newpage);
1241        }
1242
1243        return rc;
1244}
1245
1246/*
1247 * Counterpart of unmap_and_move_page() for hugepage migration.
1248 *
1249 * This function doesn't wait the completion of hugepage I/O
1250 * because there is no race between I/O and migration for hugepage.
1251 * Note that currently hugepage I/O occurs only in direct I/O
1252 * where no lock is held and PG_writeback is irrelevant,
1253 * and writeback status of all subpages are counted in the reference
1254 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1255 * under direct I/O, the reference of the head page is 512 and a bit more.)
1256 * This means that when we try to migrate hugepage whose subpages are
1257 * doing direct I/O, some references remain after try_to_unmap() and
1258 * hugepage migration fails without data corruption.
1259 *
1260 * There is also no race when direct I/O is issued on the page under migration,
1261 * because then pte is replaced with migration swap entry and direct I/O code
1262 * will wait in the page fault for migration to complete.
1263 */
1264static int unmap_and_move_huge_page(new_page_t get_new_page,
1265                                free_page_t put_new_page, unsigned long private,
1266                                struct page *hpage, int force,
1267                                enum migrate_mode mode, int reason)
1268{
1269        int rc = -EAGAIN;
1270        int page_was_mapped = 0;
1271        struct page *new_hpage;
1272        struct anon_vma *anon_vma = NULL;
1273
1274        /*
1275         * Movability of hugepages depends on architectures and hugepage size.
1276         * This check is necessary because some callers of hugepage migration
1277         * like soft offline and memory hotremove don't walk through page
1278         * tables or check whether the hugepage is pmd-based or not before
1279         * kicking migration.
1280         */
1281        if (!hugepage_migration_supported(page_hstate(hpage))) {
1282                putback_active_hugepage(hpage);
1283                return -ENOSYS;
1284        }
1285
1286        new_hpage = get_new_page(hpage, private);
1287        if (!new_hpage)
1288                return -ENOMEM;
1289
1290        if (!trylock_page(hpage)) {
1291                if (!force)
1292                        goto out;
1293                switch (mode) {
1294                case MIGRATE_SYNC:
1295                case MIGRATE_SYNC_NO_COPY:
1296                        break;
1297                default:
1298                        goto out;
1299                }
1300                lock_page(hpage);
1301        }
1302
1303        if (PageAnon(hpage))
1304                anon_vma = page_get_anon_vma(hpage);
1305
1306        if (unlikely(!trylock_page(new_hpage)))
1307                goto put_anon;
1308
1309        if (page_mapped(hpage)) {
1310                try_to_unmap(hpage,
1311                        TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1312                page_was_mapped = 1;
1313        }
1314
1315        if (!page_mapped(hpage))
1316                rc = move_to_new_page(new_hpage, hpage, mode);
1317
1318        if (page_was_mapped)
1319                remove_migration_ptes(hpage,
1320                        rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1321
1322        unlock_page(new_hpage);
1323
1324put_anon:
1325        if (anon_vma)
1326                put_anon_vma(anon_vma);
1327
1328        if (rc == MIGRATEPAGE_SUCCESS) {
1329                move_hugetlb_state(hpage, new_hpage, reason);
1330                put_new_page = NULL;
1331        }
1332
1333        unlock_page(hpage);
1334out:
1335        if (rc != -EAGAIN)
1336                putback_active_hugepage(hpage);
1337
1338        /*
1339         * If migration was not successful and there's a freeing callback, use
1340         * it.  Otherwise, put_page() will drop the reference grabbed during
1341         * isolation.
1342         */
1343        if (put_new_page)
1344                put_new_page(new_hpage, private);
1345        else
1346                putback_active_hugepage(new_hpage);
1347
1348        return rc;
1349}
1350
1351/*
1352 * migrate_pages - migrate the pages specified in a list, to the free pages
1353 *                 supplied as the target for the page migration
1354 *
1355 * @from:               The list of pages to be migrated.
1356 * @get_new_page:       The function used to allocate free pages to be used
1357 *                      as the target of the page migration.
1358 * @put_new_page:       The function used to free target pages if migration
1359 *                      fails, or NULL if no special handling is necessary.
1360 * @private:            Private data to be passed on to get_new_page()
1361 * @mode:               The migration mode that specifies the constraints for
1362 *                      page migration, if any.
1363 * @reason:             The reason for page migration.
1364 *
1365 * The function returns after 10 attempts or if no pages are movable any more
1366 * because the list has become empty or no retryable pages exist any more.
1367 * The caller should call putback_movable_pages() to return pages to the LRU
1368 * or free list only if ret != 0.
1369 *
1370 * Returns the number of pages that were not migrated, or an error code.
1371 */
1372int migrate_pages(struct list_head *from, new_page_t get_new_page,
1373                free_page_t put_new_page, unsigned long private,
1374                enum migrate_mode mode, int reason)
1375{
1376        int retry = 1;
1377        int nr_failed = 0;
1378        int nr_succeeded = 0;
1379        int pass = 0;
1380        struct page *page;
1381        struct page *page2;
1382        int swapwrite = current->flags & PF_SWAPWRITE;
1383        int rc;
1384
1385        if (!swapwrite)
1386                current->flags |= PF_SWAPWRITE;
1387
1388        for(pass = 0; pass < 10 && retry; pass++) {
1389                retry = 0;
1390
1391                list_for_each_entry_safe(page, page2, from, lru) {
1392retry:
1393                        cond_resched();
1394
1395                        if (PageHuge(page))
1396                                rc = unmap_and_move_huge_page(get_new_page,
1397                                                put_new_page, private, page,
1398                                                pass > 2, mode, reason);
1399                        else
1400                                rc = unmap_and_move(get_new_page, put_new_page,
1401                                                private, page, pass > 2, mode,
1402                                                reason);
1403
1404                        switch(rc) {
1405                        case -ENOMEM:
1406                                /*
1407                                 * THP migration might be unsupported or the
1408                                 * allocation could've failed so we should
1409                                 * retry on the same page with the THP split
1410                                 * to base pages.
1411                                 *
1412                                 * Head page is retried immediately and tail
1413                                 * pages are added to the tail of the list so
1414                                 * we encounter them after the rest of the list
1415                                 * is processed.
1416                                 */
1417                                if (PageTransHuge(page) && !PageHuge(page)) {
1418                                        lock_page(page);
1419                                        rc = split_huge_page_to_list(page, from);
1420                                        unlock_page(page);
1421                                        if (!rc) {
1422                                                list_safe_reset_next(page, page2, lru);
1423                                                goto retry;
1424                                        }
1425                                }
1426                                nr_failed++;
1427                                goto out;
1428                        case -EAGAIN:
1429                                retry++;
1430                                break;
1431                        case MIGRATEPAGE_SUCCESS:
1432                                nr_succeeded++;
1433                                break;
1434                        default:
1435                                /*
1436                                 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1437                                 * unlike -EAGAIN case, the failed page is
1438                                 * removed from migration page list and not
1439                                 * retried in the next outer loop.
1440                                 */
1441                                nr_failed++;
1442                                break;
1443                        }
1444                }
1445        }
1446        nr_failed += retry;
1447        rc = nr_failed;
1448out:
1449        if (nr_succeeded)
1450                count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1451        if (nr_failed)
1452                count_vm_events(PGMIGRATE_FAIL, nr_failed);
1453        trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1454
1455        if (!swapwrite)
1456                current->flags &= ~PF_SWAPWRITE;
1457
1458        return rc;
1459}
1460
1461#ifdef CONFIG_NUMA
1462
1463static int store_status(int __user *status, int start, int value, int nr)
1464{
1465        while (nr-- > 0) {
1466                if (put_user(value, status + start))
1467                        return -EFAULT;
1468                start++;
1469        }
1470
1471        return 0;
1472}
1473
1474static int do_move_pages_to_node(struct mm_struct *mm,
1475                struct list_head *pagelist, int node)
1476{
1477        int err;
1478
1479        if (list_empty(pagelist))
1480                return 0;
1481
1482        err = migrate_pages(pagelist, alloc_new_node_page, NULL, node,
1483                        MIGRATE_SYNC, MR_SYSCALL);
1484        if (err)
1485                putback_movable_pages(pagelist);
1486        return err;
1487}
1488
1489/*
1490 * Resolves the given address to a struct page, isolates it from the LRU and
1491 * puts it to the given pagelist.
1492 * Returns -errno if the page cannot be found/isolated or 0 when it has been
1493 * queued or the page doesn't need to be migrated because it is already on
1494 * the target node
1495 */
1496static int add_page_for_migration(struct mm_struct *mm, unsigned long addr,
1497                int node, struct list_head *pagelist, bool migrate_all)
1498{
1499        struct vm_area_struct *vma;
1500        struct page *page;
1501        unsigned int follflags;
1502        int err;
1503
1504        down_read(&mm->mmap_sem);
1505        err = -EFAULT;
1506        vma = find_vma(mm, addr);
1507        if (!vma || addr < vma->vm_start || !vma_migratable(vma))
1508                goto out;
1509
1510        /* FOLL_DUMP to ignore special (like zero) pages */
1511        follflags = FOLL_GET | FOLL_DUMP;
1512        page = follow_page(vma, addr, follflags);
1513
1514        err = PTR_ERR(page);
1515        if (IS_ERR(page))
1516                goto out;
1517
1518        err = -ENOENT;
1519        if (!page)
1520                goto out;
1521
1522        err = 0;
1523        if (page_to_nid(page) == node)
1524                goto out_putpage;
1525
1526        err = -EACCES;
1527        if (page_mapcount(page) > 1 && !migrate_all)
1528                goto out_putpage;
1529
1530        if (PageHuge(page)) {
1531                if (PageHead(page)) {
1532                        isolate_huge_page(page, pagelist);
1533                        err = 0;
1534                }
1535        } else {
1536                struct page *head;
1537
1538                head = compound_head(page);
1539                err = isolate_lru_page(head);
1540                if (err)
1541                        goto out_putpage;
1542
1543                err = 0;
1544                list_add_tail(&head->lru, pagelist);
1545                mod_node_page_state(page_pgdat(head),
1546                        NR_ISOLATED_ANON + page_is_file_cache(head),
1547                        hpage_nr_pages(head));
1548        }
1549out_putpage:
1550        /*
1551         * Either remove the duplicate refcount from
1552         * isolate_lru_page() or drop the page ref if it was
1553         * not isolated.
1554         */
1555        put_page(page);
1556out:
1557        up_read(&mm->mmap_sem);
1558        return err;
1559}
1560
1561/*
1562 * Migrate an array of page address onto an array of nodes and fill
1563 * the corresponding array of status.
1564 */
1565static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1566                         unsigned long nr_pages,
1567                         const void __user * __user *pages,
1568                         const int __user *nodes,
1569                         int __user *status, int flags)
1570{
1571        int current_node = NUMA_NO_NODE;
1572        LIST_HEAD(pagelist);
1573        int start, i;
1574        int err = 0, err1;
1575
1576        migrate_prep();
1577
1578        for (i = start = 0; i < nr_pages; i++) {
1579                const void __user *p;
1580                unsigned long addr;
1581                int node;
1582
1583                err = -EFAULT;
1584                if (get_user(p, pages + i))
1585                        goto out_flush;
1586                if (get_user(node, nodes + i))
1587                        goto out_flush;
1588                addr = (unsigned long)p;
1589
1590                err = -ENODEV;
1591                if (node < 0 || node >= MAX_NUMNODES)
1592                        goto out_flush;
1593                if (!node_state(node, N_MEMORY))
1594                        goto out_flush;
1595
1596                err = -EACCES;
1597                if (!node_isset(node, task_nodes))
1598                        goto out_flush;
1599
1600                if (current_node == NUMA_NO_NODE) {
1601                        current_node = node;
1602                        start = i;
1603                } else if (node != current_node) {
1604                        err = do_move_pages_to_node(mm, &pagelist, current_node);
1605                        if (err)
1606                                goto out;
1607                        err = store_status(status, start, current_node, i - start);
1608                        if (err)
1609                                goto out;
1610                        start = i;
1611                        current_node = node;
1612                }
1613
1614                /*
1615                 * Errors in the page lookup or isolation are not fatal and we simply
1616                 * report them via status
1617                 */
1618                err = add_page_for_migration(mm, addr, current_node,
1619                                &pagelist, flags & MPOL_MF_MOVE_ALL);
1620                if (!err)
1621                        continue;
1622
1623                err = store_status(status, i, err, 1);
1624                if (err)
1625                        goto out_flush;
1626
1627                err = do_move_pages_to_node(mm, &pagelist, current_node);
1628                if (err)
1629                        goto out;
1630                if (i > start) {
1631                        err = store_status(status, start, current_node, i - start);
1632                        if (err)
1633                                goto out;
1634                }
1635                current_node = NUMA_NO_NODE;
1636        }
1637out_flush:
1638        if (list_empty(&pagelist))
1639                return err;
1640
1641        /* Make sure we do not overwrite the existing error */
1642        err1 = do_move_pages_to_node(mm, &pagelist, current_node);
1643        if (!err1)
1644                err1 = store_status(status, start, current_node, i - start);
1645        if (!err)
1646                err = err1;
1647out:
1648        return err;
1649}
1650
1651/*
1652 * Determine the nodes of an array of pages and store it in an array of status.
1653 */
1654static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1655                                const void __user **pages, int *status)
1656{
1657        unsigned long i;
1658
1659        down_read(&mm->mmap_sem);
1660
1661        for (i = 0; i < nr_pages; i++) {
1662                unsigned long addr = (unsigned long)(*pages);
1663                struct vm_area_struct *vma;
1664                struct page *page;
1665                int err = -EFAULT;
1666
1667                vma = find_vma(mm, addr);
1668                if (!vma || addr < vma->vm_start)
1669                        goto set_status;
1670
1671                /* FOLL_DUMP to ignore special (like zero) pages */
1672                page = follow_page(vma, addr, FOLL_DUMP);
1673
1674                err = PTR_ERR(page);
1675                if (IS_ERR(page))
1676                        goto set_status;
1677
1678                err = page ? page_to_nid(page) : -ENOENT;
1679set_status:
1680                *status = err;
1681
1682                pages++;
1683                status++;
1684        }
1685
1686        up_read(&mm->mmap_sem);
1687}
1688
1689/*
1690 * Determine the nodes of a user array of pages and store it in
1691 * a user array of status.
1692 */
1693static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1694                         const void __user * __user *pages,
1695                         int __user *status)
1696{
1697#define DO_PAGES_STAT_CHUNK_NR 16
1698        const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1699        int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1700
1701        while (nr_pages) {
1702                unsigned long chunk_nr;
1703
1704                chunk_nr = nr_pages;
1705                if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1706                        chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1707
1708                if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1709                        break;
1710
1711                do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1712
1713                if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1714                        break;
1715
1716                pages += chunk_nr;
1717                status += chunk_nr;
1718                nr_pages -= chunk_nr;
1719        }
1720        return nr_pages ? -EFAULT : 0;
1721}
1722
1723/*
1724 * Move a list of pages in the address space of the currently executing
1725 * process.
1726 */
1727static int kernel_move_pages(pid_t pid, unsigned long nr_pages,
1728                             const void __user * __user *pages,
1729                             const int __user *nodes,
1730                             int __user *status, int flags)
1731{
1732        struct task_struct *task;
1733        struct mm_struct *mm;
1734        int err;
1735        nodemask_t task_nodes;
1736
1737        /* Check flags */
1738        if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1739                return -EINVAL;
1740
1741        if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1742                return -EPERM;
1743
1744        /* Find the mm_struct */
1745        rcu_read_lock();
1746        task = pid ? find_task_by_vpid(pid) : current;
1747        if (!task) {
1748                rcu_read_unlock();
1749                return -ESRCH;
1750        }
1751        get_task_struct(task);
1752
1753        /*
1754         * Check if this process has the right to modify the specified
1755         * process. Use the regular "ptrace_may_access()" checks.
1756         */
1757        if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
1758                rcu_read_unlock();
1759                err = -EPERM;
1760                goto out;
1761        }
1762        rcu_read_unlock();
1763
1764        err = security_task_movememory(task);
1765        if (err)
1766                goto out;
1767
1768        task_nodes = cpuset_mems_allowed(task);
1769        mm = get_task_mm(task);
1770        put_task_struct(task);
1771
1772        if (!mm)
1773                return -EINVAL;
1774
1775        if (nodes)
1776                err = do_pages_move(mm, task_nodes, nr_pages, pages,
1777                                    nodes, status, flags);
1778        else
1779                err = do_pages_stat(mm, nr_pages, pages, status);
1780
1781        mmput(mm);
1782        return err;
1783
1784out:
1785        put_task_struct(task);
1786        return err;
1787}
1788
1789SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1790                const void __user * __user *, pages,
1791                const int __user *, nodes,
1792                int __user *, status, int, flags)
1793{
1794        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1795}
1796
1797#ifdef CONFIG_COMPAT
1798COMPAT_SYSCALL_DEFINE6(move_pages, pid_t, pid, compat_ulong_t, nr_pages,
1799                       compat_uptr_t __user *, pages32,
1800                       const int __user *, nodes,
1801                       int __user *, status,
1802                       int, flags)
1803{
1804        const void __user * __user *pages;
1805        int i;
1806
1807        pages = compat_alloc_user_space(nr_pages * sizeof(void *));
1808        for (i = 0; i < nr_pages; i++) {
1809                compat_uptr_t p;
1810
1811                if (get_user(p, pages32 + i) ||
1812                        put_user(compat_ptr(p), pages + i))
1813                        return -EFAULT;
1814        }
1815        return kernel_move_pages(pid, nr_pages, pages, nodes, status, flags);
1816}
1817#endif /* CONFIG_COMPAT */
1818
1819#ifdef CONFIG_NUMA_BALANCING
1820/*
1821 * Returns true if this is a safe migration target node for misplaced NUMA
1822 * pages. Currently it only checks the watermarks which crude
1823 */
1824static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1825                                   unsigned long nr_migrate_pages)
1826{
1827        int z;
1828
1829        for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1830                struct zone *zone = pgdat->node_zones + z;
1831
1832                if (!populated_zone(zone))
1833                        continue;
1834
1835                /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1836                if (!zone_watermark_ok(zone, 0,
1837                                       high_wmark_pages(zone) +
1838                                       nr_migrate_pages,
1839                                       0, 0))
1840                        continue;
1841                return true;
1842        }
1843        return false;
1844}
1845
1846static struct page *alloc_misplaced_dst_page(struct page *page,
1847                                           unsigned long data)
1848{
1849        int nid = (int) data;
1850        struct page *newpage;
1851
1852        newpage = __alloc_pages_node(nid,
1853                                         (GFP_HIGHUSER_MOVABLE |
1854                                          __GFP_THISNODE | __GFP_NOMEMALLOC |
1855                                          __GFP_NORETRY | __GFP_NOWARN) &
1856                                         ~__GFP_RECLAIM, 0);
1857
1858        return newpage;
1859}
1860
1861static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1862{
1863        int page_lru;
1864
1865        VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1866
1867        /* Avoid migrating to a node that is nearly full */
1868        if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1869                return 0;
1870
1871        if (isolate_lru_page(page))
1872                return 0;
1873
1874        /*
1875         * migrate_misplaced_transhuge_page() skips page migration's usual
1876         * check on page_count(), so we must do it here, now that the page
1877         * has been isolated: a GUP pin, or any other pin, prevents migration.
1878         * The expected page count is 3: 1 for page's mapcount and 1 for the
1879         * caller's pin and 1 for the reference taken by isolate_lru_page().
1880         */
1881        if (PageTransHuge(page) && page_count(page) != 3) {
1882                putback_lru_page(page);
1883                return 0;
1884        }
1885
1886        page_lru = page_is_file_cache(page);
1887        mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1888                                hpage_nr_pages(page));
1889
1890        /*
1891         * Isolating the page has taken another reference, so the
1892         * caller's reference can be safely dropped without the page
1893         * disappearing underneath us during migration.
1894         */
1895        put_page(page);
1896        return 1;
1897}
1898
1899bool pmd_trans_migrating(pmd_t pmd)
1900{
1901        struct page *page = pmd_page(pmd);
1902        return PageLocked(page);
1903}
1904
1905/*
1906 * Attempt to migrate a misplaced page to the specified destination
1907 * node. Caller is expected to have an elevated reference count on
1908 * the page that will be dropped by this function before returning.
1909 */
1910int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1911                           int node)
1912{
1913        pg_data_t *pgdat = NODE_DATA(node);
1914        int isolated;
1915        int nr_remaining;
1916        LIST_HEAD(migratepages);
1917
1918        /*
1919         * Don't migrate file pages that are mapped in multiple processes
1920         * with execute permissions as they are probably shared libraries.
1921         */
1922        if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1923            (vma->vm_flags & VM_EXEC))
1924                goto out;
1925
1926        /*
1927         * Also do not migrate dirty pages as not all filesystems can move
1928         * dirty pages in MIGRATE_ASYNC mode which is a waste of cycles.
1929         */
1930        if (page_is_file_cache(page) && PageDirty(page))
1931                goto out;
1932
1933        isolated = numamigrate_isolate_page(pgdat, page);
1934        if (!isolated)
1935                goto out;
1936
1937        list_add(&page->lru, &migratepages);
1938        nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1939                                     NULL, node, MIGRATE_ASYNC,
1940                                     MR_NUMA_MISPLACED);
1941        if (nr_remaining) {
1942                if (!list_empty(&migratepages)) {
1943                        list_del(&page->lru);
1944                        dec_node_page_state(page, NR_ISOLATED_ANON +
1945                                        page_is_file_cache(page));
1946                        putback_lru_page(page);
1947                }
1948                isolated = 0;
1949        } else
1950                count_vm_numa_event(NUMA_PAGE_MIGRATE);
1951        BUG_ON(!list_empty(&migratepages));
1952        return isolated;
1953
1954out:
1955        put_page(page);
1956        return 0;
1957}
1958#endif /* CONFIG_NUMA_BALANCING */
1959
1960#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1961/*
1962 * Migrates a THP to a given target node. page must be locked and is unlocked
1963 * before returning.
1964 */
1965int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1966                                struct vm_area_struct *vma,
1967                                pmd_t *pmd, pmd_t entry,
1968                                unsigned long address,
1969                                struct page *page, int node)
1970{
1971        spinlock_t *ptl;
1972        pg_data_t *pgdat = NODE_DATA(node);
1973        int isolated = 0;
1974        struct page *new_page = NULL;
1975        int page_lru = page_is_file_cache(page);
1976        unsigned long mmun_start = address & HPAGE_PMD_MASK;
1977        unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1978
1979        new_page = alloc_pages_node(node,
1980                (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1981                HPAGE_PMD_ORDER);
1982        if (!new_page)
1983                goto out_fail;
1984        prep_transhuge_page(new_page);
1985
1986        isolated = numamigrate_isolate_page(pgdat, page);
1987        if (!isolated) {
1988                put_page(new_page);
1989                goto out_fail;
1990        }
1991
1992        /* Prepare a page as a migration target */
1993        __SetPageLocked(new_page);
1994        if (PageSwapBacked(page))
1995                __SetPageSwapBacked(new_page);
1996
1997        /* anon mapping, we can simply copy page->mapping to the new page: */
1998        new_page->mapping = page->mapping;
1999        new_page->index = page->index;
2000        migrate_page_copy(new_page, page);
2001        WARN_ON(PageLRU(new_page));
2002
2003        /* Recheck the target PMD */
2004        mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2005        ptl = pmd_lock(mm, pmd);
2006        if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
2007                spin_unlock(ptl);
2008                mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2009
2010                /* Reverse changes made by migrate_page_copy() */
2011                if (TestClearPageActive(new_page))
2012                        SetPageActive(page);
2013                if (TestClearPageUnevictable(new_page))
2014                        SetPageUnevictable(page);
2015
2016                unlock_page(new_page);
2017                put_page(new_page);             /* Free it */
2018
2019                /* Retake the callers reference and putback on LRU */
2020                get_page(page);
2021                putback_lru_page(page);
2022                mod_node_page_state(page_pgdat(page),
2023                         NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
2024
2025                goto out_unlock;
2026        }
2027
2028        entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2029        entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2030
2031        /*
2032         * Clear the old entry under pagetable lock and establish the new PTE.
2033         * Any parallel GUP will either observe the old page blocking on the
2034         * page lock, block on the page table lock or observe the new page.
2035         * The SetPageUptodate on the new page and page_add_new_anon_rmap
2036         * guarantee the copy is visible before the pagetable update.
2037         */
2038        flush_cache_range(vma, mmun_start, mmun_end);
2039        page_add_anon_rmap(new_page, vma, mmun_start, true);
2040        pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2041        set_pmd_at(mm, mmun_start, pmd, entry);
2042        update_mmu_cache_pmd(vma, address, &entry);
2043
2044        page_ref_unfreeze(page, 2);
2045        mlock_migrate_page(new_page, page);
2046        page_remove_rmap(page, true);
2047        set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2048
2049        spin_unlock(ptl);
2050        /*
2051         * No need to double call mmu_notifier->invalidate_range() callback as
2052         * the above pmdp_huge_clear_flush_notify() did already call it.
2053         */
2054        mmu_notifier_invalidate_range_only_end(mm, mmun_start, mmun_end);
2055
2056        /* Take an "isolate" reference and put new page on the LRU. */
2057        get_page(new_page);
2058        putback_lru_page(new_page);
2059
2060        unlock_page(new_page);
2061        unlock_page(page);
2062        put_page(page);                 /* Drop the rmap reference */
2063        put_page(page);                 /* Drop the LRU isolation reference */
2064
2065        count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2066        count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2067
2068        mod_node_page_state(page_pgdat(page),
2069                        NR_ISOLATED_ANON + page_lru,
2070                        -HPAGE_PMD_NR);
2071        return isolated;
2072
2073out_fail:
2074        count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2075        ptl = pmd_lock(mm, pmd);
2076        if (pmd_same(*pmd, entry)) {
2077                entry = pmd_modify(entry, vma->vm_page_prot);
2078                set_pmd_at(mm, mmun_start, pmd, entry);
2079                update_mmu_cache_pmd(vma, address, &entry);
2080        }
2081        spin_unlock(ptl);
2082
2083out_unlock:
2084        unlock_page(page);
2085        put_page(page);
2086        return 0;
2087}
2088#endif /* CONFIG_NUMA_BALANCING */
2089
2090#endif /* CONFIG_NUMA */
2091
2092#if defined(CONFIG_MIGRATE_VMA_HELPER)
2093struct migrate_vma {
2094        struct vm_area_struct   *vma;
2095        unsigned long           *dst;
2096        unsigned long           *src;
2097        unsigned long           cpages;
2098        unsigned long           npages;
2099        unsigned long           start;
2100        unsigned long           end;
2101};
2102
2103static int migrate_vma_collect_hole(unsigned long start,
2104                                    unsigned long end,
2105                                    struct mm_walk *walk)
2106{
2107        struct migrate_vma *migrate = walk->private;
2108        unsigned long addr;
2109
2110        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2111                migrate->src[migrate->npages] = MIGRATE_PFN_MIGRATE;
2112                migrate->dst[migrate->npages] = 0;
2113                migrate->npages++;
2114                migrate->cpages++;
2115        }
2116
2117        return 0;
2118}
2119
2120static int migrate_vma_collect_skip(unsigned long start,
2121                                    unsigned long end,
2122                                    struct mm_walk *walk)
2123{
2124        struct migrate_vma *migrate = walk->private;
2125        unsigned long addr;
2126
2127        for (addr = start & PAGE_MASK; addr < end; addr += PAGE_SIZE) {
2128                migrate->dst[migrate->npages] = 0;
2129                migrate->src[migrate->npages++] = 0;
2130        }
2131
2132        return 0;
2133}
2134
2135static int migrate_vma_collect_pmd(pmd_t *pmdp,
2136                                   unsigned long start,
2137                                   unsigned long end,
2138                                   struct mm_walk *walk)
2139{
2140        struct migrate_vma *migrate = walk->private;
2141        struct vm_area_struct *vma = walk->vma;
2142        struct mm_struct *mm = vma->vm_mm;
2143        unsigned long addr = start, unmapped = 0;
2144        spinlock_t *ptl;
2145        pte_t *ptep;
2146
2147again:
2148        if (pmd_none(*pmdp))
2149                return migrate_vma_collect_hole(start, end, walk);
2150
2151        if (pmd_trans_huge(*pmdp)) {
2152                struct page *page;
2153
2154                ptl = pmd_lock(mm, pmdp);
2155                if (unlikely(!pmd_trans_huge(*pmdp))) {
2156                        spin_unlock(ptl);
2157                        goto again;
2158                }
2159
2160                page = pmd_page(*pmdp);
2161                if (is_huge_zero_page(page)) {
2162                        spin_unlock(ptl);
2163                        split_huge_pmd(vma, pmdp, addr);
2164                        if (pmd_trans_unstable(pmdp))
2165                                return migrate_vma_collect_skip(start, end,
2166                                                                walk);
2167                } else {
2168                        int ret;
2169
2170                        get_page(page);
2171                        spin_unlock(ptl);
2172                        if (unlikely(!trylock_page(page)))
2173                                return migrate_vma_collect_skip(start, end,
2174                                                                walk);
2175                        ret = split_huge_page(page);
2176                        unlock_page(page);
2177                        put_page(page);
2178                        if (ret)
2179                                return migrate_vma_collect_skip(start, end,
2180                                                                walk);
2181                        if (pmd_none(*pmdp))
2182                                return migrate_vma_collect_hole(start, end,
2183                                                                walk);
2184                }
2185        }
2186
2187        if (unlikely(pmd_bad(*pmdp)))
2188                return migrate_vma_collect_skip(start, end, walk);
2189
2190        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2191        arch_enter_lazy_mmu_mode();
2192
2193        for (; addr < end; addr += PAGE_SIZE, ptep++) {
2194                unsigned long mpfn, pfn;
2195                struct page *page;
2196                swp_entry_t entry;
2197                pte_t pte;
2198
2199                pte = *ptep;
2200                pfn = pte_pfn(pte);
2201
2202                if (pte_none(pte)) {
2203                        mpfn = MIGRATE_PFN_MIGRATE;
2204                        migrate->cpages++;
2205                        pfn = 0;
2206                        goto next;
2207                }
2208
2209                if (!pte_present(pte)) {
2210                        mpfn = pfn = 0;
2211
2212                        /*
2213                         * Only care about unaddressable device page special
2214                         * page table entry. Other special swap entries are not
2215                         * migratable, and we ignore regular swapped page.
2216                         */
2217                        entry = pte_to_swp_entry(pte);
2218                        if (!is_device_private_entry(entry))
2219                                goto next;
2220
2221                        page = device_private_entry_to_page(entry);
2222                        mpfn = migrate_pfn(page_to_pfn(page))|
2223                                MIGRATE_PFN_DEVICE | MIGRATE_PFN_MIGRATE;
2224                        if (is_write_device_private_entry(entry))
2225                                mpfn |= MIGRATE_PFN_WRITE;
2226                } else {
2227                        if (is_zero_pfn(pfn)) {
2228                                mpfn = MIGRATE_PFN_MIGRATE;
2229                                migrate->cpages++;
2230                                pfn = 0;
2231                                goto next;
2232                        }
2233                        page = _vm_normal_page(migrate->vma, addr, pte, true);
2234                        mpfn = migrate_pfn(pfn) | MIGRATE_PFN_MIGRATE;
2235                        mpfn |= pte_write(pte) ? MIGRATE_PFN_WRITE : 0;
2236                }
2237
2238                /* FIXME support THP */
2239                if (!page || !page->mapping || PageTransCompound(page)) {
2240                        mpfn = pfn = 0;
2241                        goto next;
2242                }
2243                pfn = page_to_pfn(page);
2244
2245                /*
2246                 * By getting a reference on the page we pin it and that blocks
2247                 * any kind of migration. Side effect is that it "freezes" the
2248                 * pte.
2249                 *
2250                 * We drop this reference after isolating the page from the lru
2251                 * for non device page (device page are not on the lru and thus
2252                 * can't be dropped from it).
2253                 */
2254                get_page(page);
2255                migrate->cpages++;
2256
2257                /*
2258                 * Optimize for the common case where page is only mapped once
2259                 * in one process. If we can lock the page, then we can safely
2260                 * set up a special migration page table entry now.
2261                 */
2262                if (trylock_page(page)) {
2263                        pte_t swp_pte;
2264
2265                        mpfn |= MIGRATE_PFN_LOCKED;
2266                        ptep_get_and_clear(mm, addr, ptep);
2267
2268                        /* Setup special migration page table entry */
2269                        entry = make_migration_entry(page, mpfn &
2270                                                     MIGRATE_PFN_WRITE);
2271                        swp_pte = swp_entry_to_pte(entry);
2272                        if (pte_soft_dirty(pte))
2273                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
2274                        set_pte_at(mm, addr, ptep, swp_pte);
2275
2276                        /*
2277                         * This is like regular unmap: we remove the rmap and
2278                         * drop page refcount. Page won't be freed, as we took
2279                         * a reference just above.
2280                         */
2281                        page_remove_rmap(page, false);
2282                        put_page(page);
2283
2284                        if (pte_present(pte))
2285                                unmapped++;
2286                }
2287
2288next:
2289                migrate->dst[migrate->npages] = 0;
2290                migrate->src[migrate->npages++] = mpfn;
2291        }
2292        arch_leave_lazy_mmu_mode();
2293        pte_unmap_unlock(ptep - 1, ptl);
2294
2295        /* Only flush the TLB if we actually modified any entries */
2296        if (unmapped)
2297                flush_tlb_range(walk->vma, start, end);
2298
2299        return 0;
2300}
2301
2302/*
2303 * migrate_vma_collect() - collect pages over a range of virtual addresses
2304 * @migrate: migrate struct containing all migration information
2305 *
2306 * This will walk the CPU page table. For each virtual address backed by a
2307 * valid page, it updates the src array and takes a reference on the page, in
2308 * order to pin the page until we lock it and unmap it.
2309 */
2310static void migrate_vma_collect(struct migrate_vma *migrate)
2311{
2312        struct mm_walk mm_walk;
2313
2314        mm_walk.pmd_entry = migrate_vma_collect_pmd;
2315        mm_walk.pte_entry = NULL;
2316        mm_walk.pte_hole = migrate_vma_collect_hole;
2317        mm_walk.hugetlb_entry = NULL;
2318        mm_walk.test_walk = NULL;
2319        mm_walk.vma = migrate->vma;
2320        mm_walk.mm = migrate->vma->vm_mm;
2321        mm_walk.private = migrate;
2322
2323        mmu_notifier_invalidate_range_start(mm_walk.mm,
2324                                            migrate->start,
2325                                            migrate->end);
2326        walk_page_range(migrate->start, migrate->end, &mm_walk);
2327        mmu_notifier_invalidate_range_end(mm_walk.mm,
2328                                          migrate->start,
2329                                          migrate->end);
2330
2331        migrate->end = migrate->start + (migrate->npages << PAGE_SHIFT);
2332}
2333
2334/*
2335 * migrate_vma_check_page() - check if page is pinned or not
2336 * @page: struct page to check
2337 *
2338 * Pinned pages cannot be migrated. This is the same test as in
2339 * migrate_page_move_mapping(), except that here we allow migration of a
2340 * ZONE_DEVICE page.
2341 */
2342static bool migrate_vma_check_page(struct page *page)
2343{
2344        /*
2345         * One extra ref because caller holds an extra reference, either from
2346         * isolate_lru_page() for a regular page, or migrate_vma_collect() for
2347         * a device page.
2348         */
2349        int extra = 1;
2350
2351        /*
2352         * FIXME support THP (transparent huge page), it is bit more complex to
2353         * check them than regular pages, because they can be mapped with a pmd
2354         * or with a pte (split pte mapping).
2355         */
2356        if (PageCompound(page))
2357                return false;
2358
2359        /* Page from ZONE_DEVICE have one extra reference */
2360        if (is_zone_device_page(page)) {
2361                /*
2362                 * Private page can never be pin as they have no valid pte and
2363                 * GUP will fail for those. Yet if there is a pending migration
2364                 * a thread might try to wait on the pte migration entry and
2365                 * will bump the page reference count. Sadly there is no way to
2366                 * differentiate a regular pin from migration wait. Hence to
2367                 * avoid 2 racing thread trying to migrate back to CPU to enter
2368                 * infinite loop (one stoping migration because the other is
2369                 * waiting on pte migration entry). We always return true here.
2370                 *
2371                 * FIXME proper solution is to rework migration_entry_wait() so
2372                 * it does not need to take a reference on page.
2373                 */
2374                if (is_device_private_page(page))
2375                        return true;
2376
2377                /*
2378                 * Only allow device public page to be migrated and account for
2379                 * the extra reference count imply by ZONE_DEVICE pages.
2380                 */
2381                if (!is_device_public_page(page))
2382                        return false;
2383                extra++;
2384        }
2385
2386        /* For file back page */
2387        if (page_mapping(page))
2388                extra += 1 + page_has_private(page);
2389
2390        if ((page_count(page) - extra) > page_mapcount(page))
2391                return false;
2392
2393        return true;
2394}
2395
2396/*
2397 * migrate_vma_prepare() - lock pages and isolate them from the lru
2398 * @migrate: migrate struct containing all migration information
2399 *
2400 * This locks pages that have been collected by migrate_vma_collect(). Once each
2401 * page is locked it is isolated from the lru (for non-device pages). Finally,
2402 * the ref taken by migrate_vma_collect() is dropped, as locked pages cannot be
2403 * migrated by concurrent kernel threads.
2404 */
2405static void migrate_vma_prepare(struct migrate_vma *migrate)
2406{
2407        const unsigned long npages = migrate->npages;
2408        const unsigned long start = migrate->start;
2409        unsigned long addr, i, restore = 0;
2410        bool allow_drain = true;
2411
2412        lru_add_drain();
2413
2414        for (i = 0; (i < npages) && migrate->cpages; i++) {
2415                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2416                bool remap = true;
2417
2418                if (!page)
2419                        continue;
2420
2421                if (!(migrate->src[i] & MIGRATE_PFN_LOCKED)) {
2422                        /*
2423                         * Because we are migrating several pages there can be
2424                         * a deadlock between 2 concurrent migration where each
2425                         * are waiting on each other page lock.
2426                         *
2427                         * Make migrate_vma() a best effort thing and backoff
2428                         * for any page we can not lock right away.
2429                         */
2430                        if (!trylock_page(page)) {
2431                                migrate->src[i] = 0;
2432                                migrate->cpages--;
2433                                put_page(page);
2434                                continue;
2435                        }
2436                        remap = false;
2437                        migrate->src[i] |= MIGRATE_PFN_LOCKED;
2438                }
2439
2440                /* ZONE_DEVICE pages are not on LRU */
2441                if (!is_zone_device_page(page)) {
2442                        if (!PageLRU(page) && allow_drain) {
2443                                /* Drain CPU's pagevec */
2444                                lru_add_drain_all();
2445                                allow_drain = false;
2446                        }
2447
2448                        if (isolate_lru_page(page)) {
2449                                if (remap) {
2450                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2451                                        migrate->cpages--;
2452                                        restore++;
2453                                } else {
2454                                        migrate->src[i] = 0;
2455                                        unlock_page(page);
2456                                        migrate->cpages--;
2457                                        put_page(page);
2458                                }
2459                                continue;
2460                        }
2461
2462                        /* Drop the reference we took in collect */
2463                        put_page(page);
2464                }
2465
2466                if (!migrate_vma_check_page(page)) {
2467                        if (remap) {
2468                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2469                                migrate->cpages--;
2470                                restore++;
2471
2472                                if (!is_zone_device_page(page)) {
2473                                        get_page(page);
2474                                        putback_lru_page(page);
2475                                }
2476                        } else {
2477                                migrate->src[i] = 0;
2478                                unlock_page(page);
2479                                migrate->cpages--;
2480
2481                                if (!is_zone_device_page(page))
2482                                        putback_lru_page(page);
2483                                else
2484                                        put_page(page);
2485                        }
2486                }
2487        }
2488
2489        for (i = 0, addr = start; i < npages && restore; i++, addr += PAGE_SIZE) {
2490                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2491
2492                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2493                        continue;
2494
2495                remove_migration_pte(page, migrate->vma, addr, page);
2496
2497                migrate->src[i] = 0;
2498                unlock_page(page);
2499                put_page(page);
2500                restore--;
2501        }
2502}
2503
2504/*
2505 * migrate_vma_unmap() - replace page mapping with special migration pte entry
2506 * @migrate: migrate struct containing all migration information
2507 *
2508 * Replace page mapping (CPU page table pte) with a special migration pte entry
2509 * and check again if it has been pinned. Pinned pages are restored because we
2510 * cannot migrate them.
2511 *
2512 * This is the last step before we call the device driver callback to allocate
2513 * destination memory and copy contents of original page over to new page.
2514 */
2515static void migrate_vma_unmap(struct migrate_vma *migrate)
2516{
2517        int flags = TTU_MIGRATION | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
2518        const unsigned long npages = migrate->npages;
2519        const unsigned long start = migrate->start;
2520        unsigned long addr, i, restore = 0;
2521
2522        for (i = 0; i < npages; i++) {
2523                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2524
2525                if (!page || !(migrate->src[i] & MIGRATE_PFN_MIGRATE))
2526                        continue;
2527
2528                if (page_mapped(page)) {
2529                        try_to_unmap(page, flags);
2530                        if (page_mapped(page))
2531                                goto restore;
2532                }
2533
2534                if (migrate_vma_check_page(page))
2535                        continue;
2536
2537restore:
2538                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2539                migrate->cpages--;
2540                restore++;
2541        }
2542
2543        for (addr = start, i = 0; i < npages && restore; addr += PAGE_SIZE, i++) {
2544                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2545
2546                if (!page || (migrate->src[i] & MIGRATE_PFN_MIGRATE))
2547                        continue;
2548
2549                remove_migration_ptes(page, page, false);
2550
2551                migrate->src[i] = 0;
2552                unlock_page(page);
2553                restore--;
2554
2555                if (is_zone_device_page(page))
2556                        put_page(page);
2557                else
2558                        putback_lru_page(page);
2559        }
2560}
2561
2562static void migrate_vma_insert_page(struct migrate_vma *migrate,
2563                                    unsigned long addr,
2564                                    struct page *page,
2565                                    unsigned long *src,
2566                                    unsigned long *dst)
2567{
2568        struct vm_area_struct *vma = migrate->vma;
2569        struct mm_struct *mm = vma->vm_mm;
2570        struct mem_cgroup *memcg;
2571        bool flush = false;
2572        spinlock_t *ptl;
2573        pte_t entry;
2574        pgd_t *pgdp;
2575        p4d_t *p4dp;
2576        pud_t *pudp;
2577        pmd_t *pmdp;
2578        pte_t *ptep;
2579
2580        /* Only allow populating anonymous memory */
2581        if (!vma_is_anonymous(vma))
2582                goto abort;
2583
2584        pgdp = pgd_offset(mm, addr);
2585        p4dp = p4d_alloc(mm, pgdp, addr);
2586        if (!p4dp)
2587                goto abort;
2588        pudp = pud_alloc(mm, p4dp, addr);
2589        if (!pudp)
2590                goto abort;
2591        pmdp = pmd_alloc(mm, pudp, addr);
2592        if (!pmdp)
2593                goto abort;
2594
2595        if (pmd_trans_huge(*pmdp) || pmd_devmap(*pmdp))
2596                goto abort;
2597
2598        /*
2599         * Use pte_alloc() instead of pte_alloc_map().  We can't run
2600         * pte_offset_map() on pmds where a huge pmd might be created
2601         * from a different thread.
2602         *
2603         * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2604         * parallel threads are excluded by other means.
2605         *
2606         * Here we only have down_read(mmap_sem).
2607         */
2608        if (pte_alloc(mm, pmdp, addr))
2609                goto abort;
2610
2611        /* See the comment in pte_alloc_one_map() */
2612        if (unlikely(pmd_trans_unstable(pmdp)))
2613                goto abort;
2614
2615        if (unlikely(anon_vma_prepare(vma)))
2616                goto abort;
2617        if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
2618                goto abort;
2619
2620        /*
2621         * The memory barrier inside __SetPageUptodate makes sure that
2622         * preceding stores to the page contents become visible before
2623         * the set_pte_at() write.
2624         */
2625        __SetPageUptodate(page);
2626
2627        if (is_zone_device_page(page)) {
2628                if (is_device_private_page(page)) {
2629                        swp_entry_t swp_entry;
2630
2631                        swp_entry = make_device_private_entry(page, vma->vm_flags & VM_WRITE);
2632                        entry = swp_entry_to_pte(swp_entry);
2633                } else if (is_device_public_page(page)) {
2634                        entry = pte_mkold(mk_pte(page, READ_ONCE(vma->vm_page_prot)));
2635                        if (vma->vm_flags & VM_WRITE)
2636                                entry = pte_mkwrite(pte_mkdirty(entry));
2637                        entry = pte_mkdevmap(entry);
2638                }
2639        } else {
2640                entry = mk_pte(page, vma->vm_page_prot);
2641                if (vma->vm_flags & VM_WRITE)
2642                        entry = pte_mkwrite(pte_mkdirty(entry));
2643        }
2644
2645        ptep = pte_offset_map_lock(mm, pmdp, addr, &ptl);
2646
2647        if (pte_present(*ptep)) {
2648                unsigned long pfn = pte_pfn(*ptep);
2649
2650                if (!is_zero_pfn(pfn)) {
2651                        pte_unmap_unlock(ptep, ptl);
2652                        mem_cgroup_cancel_charge(page, memcg, false);
2653                        goto abort;
2654                }
2655                flush = true;
2656        } else if (!pte_none(*ptep)) {
2657                pte_unmap_unlock(ptep, ptl);
2658                mem_cgroup_cancel_charge(page, memcg, false);
2659                goto abort;
2660        }
2661
2662        /*
2663         * Check for usefaultfd but do not deliver the fault. Instead,
2664         * just back off.
2665         */
2666        if (userfaultfd_missing(vma)) {
2667                pte_unmap_unlock(ptep, ptl);
2668                mem_cgroup_cancel_charge(page, memcg, false);
2669                goto abort;
2670        }
2671
2672        inc_mm_counter(mm, MM_ANONPAGES);
2673        page_add_new_anon_rmap(page, vma, addr, false);
2674        mem_cgroup_commit_charge(page, memcg, false, false);
2675        if (!is_zone_device_page(page))
2676                lru_cache_add_active_or_unevictable(page, vma);
2677        get_page(page);
2678
2679        if (flush) {
2680                flush_cache_page(vma, addr, pte_pfn(*ptep));
2681                ptep_clear_flush_notify(vma, addr, ptep);
2682                set_pte_at_notify(mm, addr, ptep, entry);
2683                update_mmu_cache(vma, addr, ptep);
2684        } else {
2685                /* No need to invalidate - it was non-present before */
2686                set_pte_at(mm, addr, ptep, entry);
2687                update_mmu_cache(vma, addr, ptep);
2688        }
2689
2690        pte_unmap_unlock(ptep, ptl);
2691        *src = MIGRATE_PFN_MIGRATE;
2692        return;
2693
2694abort:
2695        *src &= ~MIGRATE_PFN_MIGRATE;
2696}
2697
2698/*
2699 * migrate_vma_pages() - migrate meta-data from src page to dst page
2700 * @migrate: migrate struct containing all migration information
2701 *
2702 * This migrates struct page meta-data from source struct page to destination
2703 * struct page. This effectively finishes the migration from source page to the
2704 * destination page.
2705 */
2706static void migrate_vma_pages(struct migrate_vma *migrate)
2707{
2708        const unsigned long npages = migrate->npages;
2709        const unsigned long start = migrate->start;
2710        struct vm_area_struct *vma = migrate->vma;
2711        struct mm_struct *mm = vma->vm_mm;
2712        unsigned long addr, i, mmu_start;
2713        bool notified = false;
2714
2715        for (i = 0, addr = start; i < npages; addr += PAGE_SIZE, i++) {
2716                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2717                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2718                struct address_space *mapping;
2719                int r;
2720
2721                if (!newpage) {
2722                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2723                        continue;
2724                }
2725
2726                if (!page) {
2727                        if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE)) {
2728                                continue;
2729                        }
2730                        if (!notified) {
2731                                mmu_start = addr;
2732                                notified = true;
2733                                mmu_notifier_invalidate_range_start(mm,
2734                                                                mmu_start,
2735                                                                migrate->end);
2736                        }
2737                        migrate_vma_insert_page(migrate, addr, newpage,
2738                                                &migrate->src[i],
2739                                                &migrate->dst[i]);
2740                        continue;
2741                }
2742
2743                mapping = page_mapping(page);
2744
2745                if (is_zone_device_page(newpage)) {
2746                        if (is_device_private_page(newpage)) {
2747                                /*
2748                                 * For now only support private anonymous when
2749                                 * migrating to un-addressable device memory.
2750                                 */
2751                                if (mapping) {
2752                                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2753                                        continue;
2754                                }
2755                        } else if (!is_device_public_page(newpage)) {
2756                                /*
2757                                 * Other types of ZONE_DEVICE page are not
2758                                 * supported.
2759                                 */
2760                                migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2761                                continue;
2762                        }
2763                }
2764
2765                r = migrate_page(mapping, newpage, page, MIGRATE_SYNC_NO_COPY);
2766                if (r != MIGRATEPAGE_SUCCESS)
2767                        migrate->src[i] &= ~MIGRATE_PFN_MIGRATE;
2768        }
2769
2770        /*
2771         * No need to double call mmu_notifier->invalidate_range() callback as
2772         * the above ptep_clear_flush_notify() inside migrate_vma_insert_page()
2773         * did already call it.
2774         */
2775        if (notified)
2776                mmu_notifier_invalidate_range_only_end(mm, mmu_start,
2777                                                       migrate->end);
2778}
2779
2780/*
2781 * migrate_vma_finalize() - restore CPU page table entry
2782 * @migrate: migrate struct containing all migration information
2783 *
2784 * This replaces the special migration pte entry with either a mapping to the
2785 * new page if migration was successful for that page, or to the original page
2786 * otherwise.
2787 *
2788 * This also unlocks the pages and puts them back on the lru, or drops the extra
2789 * refcount, for device pages.
2790 */
2791static void migrate_vma_finalize(struct migrate_vma *migrate)
2792{
2793        const unsigned long npages = migrate->npages;
2794        unsigned long i;
2795
2796        for (i = 0; i < npages; i++) {
2797                struct page *newpage = migrate_pfn_to_page(migrate->dst[i]);
2798                struct page *page = migrate_pfn_to_page(migrate->src[i]);
2799
2800                if (!page) {
2801                        if (newpage) {
2802                                unlock_page(newpage);
2803                                put_page(newpage);
2804                        }
2805                        continue;
2806                }
2807
2808                if (!(migrate->src[i] & MIGRATE_PFN_MIGRATE) || !newpage) {
2809                        if (newpage) {
2810                                unlock_page(newpage);
2811                                put_page(newpage);
2812                        }
2813                        newpage = page;
2814                }
2815
2816                remove_migration_ptes(page, newpage, false);
2817                unlock_page(page);
2818                migrate->cpages--;
2819
2820                if (is_zone_device_page(page))
2821                        put_page(page);
2822                else
2823                        putback_lru_page(page);
2824
2825                if (newpage != page) {
2826                        unlock_page(newpage);
2827                        if (is_zone_device_page(newpage))
2828                                put_page(newpage);
2829                        else
2830                                putback_lru_page(newpage);
2831                }
2832        }
2833}
2834
2835/*
2836 * migrate_vma() - migrate a range of memory inside vma
2837 *
2838 * @ops: migration callback for allocating destination memory and copying
2839 * @vma: virtual memory area containing the range to be migrated
2840 * @start: start address of the range to migrate (inclusive)
2841 * @end: end address of the range to migrate (exclusive)
2842 * @src: array of hmm_pfn_t containing source pfns
2843 * @dst: array of hmm_pfn_t containing destination pfns
2844 * @private: pointer passed back to each of the callback
2845 * Returns: 0 on success, error code otherwise
2846 *
2847 * This function tries to migrate a range of memory virtual address range, using
2848 * callbacks to allocate and copy memory from source to destination. First it
2849 * collects all the pages backing each virtual address in the range, saving this
2850 * inside the src array. Then it locks those pages and unmaps them. Once the pages
2851 * are locked and unmapped, it checks whether each page is pinned or not. Pages
2852 * that aren't pinned have the MIGRATE_PFN_MIGRATE flag set (by this function)
2853 * in the corresponding src array entry. It then restores any pages that are
2854 * pinned, by remapping and unlocking those pages.
2855 *
2856 * At this point it calls the alloc_and_copy() callback. For documentation on
2857 * what is expected from that callback, see struct migrate_vma_ops comments in
2858 * include/linux/migrate.h
2859 *
2860 * After the alloc_and_copy() callback, this function goes over each entry in
2861 * the src array that has the MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag
2862 * set. If the corresponding entry in dst array has MIGRATE_PFN_VALID flag set,
2863 * then the function tries to migrate struct page information from the source
2864 * struct page to the destination struct page. If it fails to migrate the struct
2865 * page information, then it clears the MIGRATE_PFN_MIGRATE flag in the src
2866 * array.
2867 *
2868 * At this point all successfully migrated pages have an entry in the src
2869 * array with MIGRATE_PFN_VALID and MIGRATE_PFN_MIGRATE flag set and the dst
2870 * array entry with MIGRATE_PFN_VALID flag set.
2871 *
2872 * It then calls the finalize_and_map() callback. See comments for "struct
2873 * migrate_vma_ops", in include/linux/migrate.h for details about
2874 * finalize_and_map() behavior.
2875 *
2876 * After the finalize_and_map() callback, for successfully migrated pages, this
2877 * function updates the CPU page table to point to new pages, otherwise it
2878 * restores the CPU page table to point to the original source pages.
2879 *
2880 * Function returns 0 after the above steps, even if no pages were migrated
2881 * (The function only returns an error if any of the arguments are invalid.)
2882 *
2883 * Both src and dst array must be big enough for (end - start) >> PAGE_SHIFT
2884 * unsigned long entries.
2885 */
2886int migrate_vma(const struct migrate_vma_ops *ops,
2887                struct vm_area_struct *vma,
2888                unsigned long start,
2889                unsigned long end,
2890                unsigned long *src,
2891                unsigned long *dst,
2892                void *private)
2893{
2894        struct migrate_vma migrate;
2895
2896        /* Sanity check the arguments */
2897        start &= PAGE_MASK;
2898        end &= PAGE_MASK;
2899        if (!vma || is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_SPECIAL) ||
2900                        vma_is_dax(vma))
2901                return -EINVAL;
2902        if (start < vma->vm_start || start >= vma->vm_end)
2903                return -EINVAL;
2904        if (end <= vma->vm_start || end > vma->vm_end)
2905                return -EINVAL;
2906        if (!ops || !src || !dst || start >= end)
2907                return -EINVAL;
2908
2909        memset(src, 0, sizeof(*src) * ((end - start) >> PAGE_SHIFT));
2910        migrate.src = src;
2911        migrate.dst = dst;
2912        migrate.start = start;
2913        migrate.npages = 0;
2914        migrate.cpages = 0;
2915        migrate.end = end;
2916        migrate.vma = vma;
2917
2918        /* Collect, and try to unmap source pages */
2919        migrate_vma_collect(&migrate);
2920        if (!migrate.cpages)
2921                return 0;
2922
2923        /* Lock and isolate page */
2924        migrate_vma_prepare(&migrate);
2925        if (!migrate.cpages)
2926                return 0;
2927
2928        /* Unmap pages */
2929        migrate_vma_unmap(&migrate);
2930        if (!migrate.cpages)
2931                return 0;
2932
2933        /*
2934         * At this point pages are locked and unmapped, and thus they have
2935         * stable content and can safely be copied to destination memory that
2936         * is allocated by the callback.
2937         *
2938         * Note that migration can fail in migrate_vma_struct_page() for each
2939         * individual page.
2940         */
2941        ops->alloc_and_copy(vma, src, dst, start, end, private);
2942
2943        /* This does the real migration of struct page */
2944        migrate_vma_pages(&migrate);
2945
2946        ops->finalize_and_map(vma, src, dst, start, end, private);
2947
2948        /* Unlock and remap pages */
2949        migrate_vma_finalize(&migrate);
2950
2951        return 0;
2952}
2953EXPORT_SYMBOL(migrate_vma);
2954#endif /* defined(MIGRATE_VMA_HELPER) */
2955