linux/mm/page_alloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/page_alloc.c
   3 *
   4 *  Manages the free list, the system allocates free pages here.
   5 *  Note that kmalloc() lives in slab.c
   6 *
   7 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   8 *  Swap reorganised 29.12.95, Stephen Tweedie
   9 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
  10 *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
  11 *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
  12 *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
  13 *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
  14 *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
  15 */
  16
  17#include <linux/stddef.h>
  18#include <linux/mm.h>
  19#include <linux/swap.h>
  20#include <linux/interrupt.h>
  21#include <linux/pagemap.h>
  22#include <linux/jiffies.h>
  23#include <linux/bootmem.h>
  24#include <linux/memblock.h>
  25#include <linux/compiler.h>
  26#include <linux/kernel.h>
  27#include <linux/kasan.h>
  28#include <linux/module.h>
  29#include <linux/suspend.h>
  30#include <linux/pagevec.h>
  31#include <linux/blkdev.h>
  32#include <linux/slab.h>
  33#include <linux/ratelimit.h>
  34#include <linux/oom.h>
  35#include <linux/topology.h>
  36#include <linux/sysctl.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/memory_hotplug.h>
  40#include <linux/nodemask.h>
  41#include <linux/vmalloc.h>
  42#include <linux/vmstat.h>
  43#include <linux/mempolicy.h>
  44#include <linux/memremap.h>
  45#include <linux/stop_machine.h>
  46#include <linux/sort.h>
  47#include <linux/pfn.h>
  48#include <linux/backing-dev.h>
  49#include <linux/fault-inject.h>
  50#include <linux/page-isolation.h>
  51#include <linux/page_ext.h>
  52#include <linux/debugobjects.h>
  53#include <linux/kmemleak.h>
  54#include <linux/compaction.h>
  55#include <trace/events/kmem.h>
  56#include <trace/events/oom.h>
  57#include <linux/prefetch.h>
  58#include <linux/mm_inline.h>
  59#include <linux/migrate.h>
  60#include <linux/hugetlb.h>
  61#include <linux/sched/rt.h>
  62#include <linux/sched/mm.h>
  63#include <linux/page_owner.h>
  64#include <linux/kthread.h>
  65#include <linux/memcontrol.h>
  66#include <linux/ftrace.h>
  67#include <linux/lockdep.h>
  68#include <linux/nmi.h>
  69
  70#include <asm/sections.h>
  71#include <asm/tlbflush.h>
  72#include <asm/div64.h>
  73#include "internal.h"
  74
  75/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
  76static DEFINE_MUTEX(pcp_batch_high_lock);
  77#define MIN_PERCPU_PAGELIST_FRACTION    (8)
  78
  79#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
  80DEFINE_PER_CPU(int, numa_node);
  81EXPORT_PER_CPU_SYMBOL(numa_node);
  82#endif
  83
  84DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
  85
  86#ifdef CONFIG_HAVE_MEMORYLESS_NODES
  87/*
  88 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
  89 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
  90 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
  91 * defined in <linux/topology.h>.
  92 */
  93DEFINE_PER_CPU(int, _numa_mem_);                /* Kernel "local memory" node */
  94EXPORT_PER_CPU_SYMBOL(_numa_mem_);
  95int _node_numa_mem_[MAX_NUMNODES];
  96#endif
  97
  98/* work_structs for global per-cpu drains */
  99DEFINE_MUTEX(pcpu_drain_mutex);
 100DEFINE_PER_CPU(struct work_struct, pcpu_drain);
 101
 102#ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
 103volatile unsigned long latent_entropy __latent_entropy;
 104EXPORT_SYMBOL(latent_entropy);
 105#endif
 106
 107/*
 108 * Array of node states.
 109 */
 110nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
 111        [N_POSSIBLE] = NODE_MASK_ALL,
 112        [N_ONLINE] = { { [0] = 1UL } },
 113#ifndef CONFIG_NUMA
 114        [N_NORMAL_MEMORY] = { { [0] = 1UL } },
 115#ifdef CONFIG_HIGHMEM
 116        [N_HIGH_MEMORY] = { { [0] = 1UL } },
 117#endif
 118        [N_MEMORY] = { { [0] = 1UL } },
 119        [N_CPU] = { { [0] = 1UL } },
 120#endif  /* NUMA */
 121};
 122EXPORT_SYMBOL(node_states);
 123
 124/* Protect totalram_pages and zone->managed_pages */
 125static DEFINE_SPINLOCK(managed_page_count_lock);
 126
 127unsigned long totalram_pages __read_mostly;
 128unsigned long totalreserve_pages __read_mostly;
 129unsigned long totalcma_pages __read_mostly;
 130
 131int percpu_pagelist_fraction;
 132gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
 133
 134/*
 135 * A cached value of the page's pageblock's migratetype, used when the page is
 136 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
 137 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
 138 * Also the migratetype set in the page does not necessarily match the pcplist
 139 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
 140 * other index - this ensures that it will be put on the correct CMA freelist.
 141 */
 142static inline int get_pcppage_migratetype(struct page *page)
 143{
 144        return page->index;
 145}
 146
 147static inline void set_pcppage_migratetype(struct page *page, int migratetype)
 148{
 149        page->index = migratetype;
 150}
 151
 152#ifdef CONFIG_PM_SLEEP
 153/*
 154 * The following functions are used by the suspend/hibernate code to temporarily
 155 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
 156 * while devices are suspended.  To avoid races with the suspend/hibernate code,
 157 * they should always be called with system_transition_mutex held
 158 * (gfp_allowed_mask also should only be modified with system_transition_mutex
 159 * held, unless the suspend/hibernate code is guaranteed not to run in parallel
 160 * with that modification).
 161 */
 162
 163static gfp_t saved_gfp_mask;
 164
 165void pm_restore_gfp_mask(void)
 166{
 167        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 168        if (saved_gfp_mask) {
 169                gfp_allowed_mask = saved_gfp_mask;
 170                saved_gfp_mask = 0;
 171        }
 172}
 173
 174void pm_restrict_gfp_mask(void)
 175{
 176        WARN_ON(!mutex_is_locked(&system_transition_mutex));
 177        WARN_ON(saved_gfp_mask);
 178        saved_gfp_mask = gfp_allowed_mask;
 179        gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
 180}
 181
 182bool pm_suspended_storage(void)
 183{
 184        if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
 185                return false;
 186        return true;
 187}
 188#endif /* CONFIG_PM_SLEEP */
 189
 190#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
 191unsigned int pageblock_order __read_mostly;
 192#endif
 193
 194static void __free_pages_ok(struct page *page, unsigned int order);
 195
 196/*
 197 * results with 256, 32 in the lowmem_reserve sysctl:
 198 *      1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
 199 *      1G machine -> (16M dma, 784M normal, 224M high)
 200 *      NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
 201 *      HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
 202 *      HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
 203 *
 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
 205 * don't need any ZONE_NORMAL reservation
 206 */
 207int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
 208#ifdef CONFIG_ZONE_DMA
 209        [ZONE_DMA] = 256,
 210#endif
 211#ifdef CONFIG_ZONE_DMA32
 212        [ZONE_DMA32] = 256,
 213#endif
 214        [ZONE_NORMAL] = 32,
 215#ifdef CONFIG_HIGHMEM
 216        [ZONE_HIGHMEM] = 0,
 217#endif
 218        [ZONE_MOVABLE] = 0,
 219};
 220
 221EXPORT_SYMBOL(totalram_pages);
 222
 223static char * const zone_names[MAX_NR_ZONES] = {
 224#ifdef CONFIG_ZONE_DMA
 225         "DMA",
 226#endif
 227#ifdef CONFIG_ZONE_DMA32
 228         "DMA32",
 229#endif
 230         "Normal",
 231#ifdef CONFIG_HIGHMEM
 232         "HighMem",
 233#endif
 234         "Movable",
 235#ifdef CONFIG_ZONE_DEVICE
 236         "Device",
 237#endif
 238};
 239
 240char * const migratetype_names[MIGRATE_TYPES] = {
 241        "Unmovable",
 242        "Movable",
 243        "Reclaimable",
 244        "HighAtomic",
 245#ifdef CONFIG_CMA
 246        "CMA",
 247#endif
 248#ifdef CONFIG_MEMORY_ISOLATION
 249        "Isolate",
 250#endif
 251};
 252
 253compound_page_dtor * const compound_page_dtors[] = {
 254        NULL,
 255        free_compound_page,
 256#ifdef CONFIG_HUGETLB_PAGE
 257        free_huge_page,
 258#endif
 259#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 260        free_transhuge_page,
 261#endif
 262};
 263
 264int min_free_kbytes = 1024;
 265int user_min_free_kbytes = -1;
 266int watermark_scale_factor = 10;
 267
 268static unsigned long nr_kernel_pages __meminitdata;
 269static unsigned long nr_all_pages __meminitdata;
 270static unsigned long dma_reserve __meminitdata;
 271
 272#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
 273static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 274static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __meminitdata;
 275static unsigned long required_kernelcore __initdata;
 276static unsigned long required_kernelcore_percent __initdata;
 277static unsigned long required_movablecore __initdata;
 278static unsigned long required_movablecore_percent __initdata;
 279static unsigned long zone_movable_pfn[MAX_NUMNODES] __meminitdata;
 280static bool mirrored_kernelcore __meminitdata;
 281
 282/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
 283int movable_zone;
 284EXPORT_SYMBOL(movable_zone);
 285#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
 286
 287#if MAX_NUMNODES > 1
 288int nr_node_ids __read_mostly = MAX_NUMNODES;
 289int nr_online_nodes __read_mostly = 1;
 290EXPORT_SYMBOL(nr_node_ids);
 291EXPORT_SYMBOL(nr_online_nodes);
 292#endif
 293
 294int page_group_by_mobility_disabled __read_mostly;
 295
 296#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
 297/* Returns true if the struct page for the pfn is uninitialised */
 298static inline bool __meminit early_page_uninitialised(unsigned long pfn)
 299{
 300        int nid = early_pfn_to_nid(pfn);
 301
 302        if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
 303                return true;
 304
 305        return false;
 306}
 307
 308/*
 309 * Returns false when the remaining initialisation should be deferred until
 310 * later in the boot cycle when it can be parallelised.
 311 */
 312static inline bool update_defer_init(pg_data_t *pgdat,
 313                                unsigned long pfn, unsigned long zone_end,
 314                                unsigned long *nr_initialised)
 315{
 316        /* Always populate low zones for address-constrained allocations */
 317        if (zone_end < pgdat_end_pfn(pgdat))
 318                return true;
 319        (*nr_initialised)++;
 320        if ((*nr_initialised > pgdat->static_init_pgcnt) &&
 321            (pfn & (PAGES_PER_SECTION - 1)) == 0) {
 322                pgdat->first_deferred_pfn = pfn;
 323                return false;
 324        }
 325
 326        return true;
 327}
 328#else
 329static inline bool early_page_uninitialised(unsigned long pfn)
 330{
 331        return false;
 332}
 333
 334static inline bool update_defer_init(pg_data_t *pgdat,
 335                                unsigned long pfn, unsigned long zone_end,
 336                                unsigned long *nr_initialised)
 337{
 338        return true;
 339}
 340#endif
 341
 342/* Return a pointer to the bitmap storing bits affecting a block of pages */
 343static inline unsigned long *get_pageblock_bitmap(struct page *page,
 344                                                        unsigned long pfn)
 345{
 346#ifdef CONFIG_SPARSEMEM
 347        return __pfn_to_section(pfn)->pageblock_flags;
 348#else
 349        return page_zone(page)->pageblock_flags;
 350#endif /* CONFIG_SPARSEMEM */
 351}
 352
 353static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
 354{
 355#ifdef CONFIG_SPARSEMEM
 356        pfn &= (PAGES_PER_SECTION-1);
 357        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 358#else
 359        pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
 360        return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
 361#endif /* CONFIG_SPARSEMEM */
 362}
 363
 364/**
 365 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
 366 * @page: The page within the block of interest
 367 * @pfn: The target page frame number
 368 * @end_bitidx: The last bit of interest to retrieve
 369 * @mask: mask of bits that the caller is interested in
 370 *
 371 * Return: pageblock_bits flags
 372 */
 373static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
 374                                        unsigned long pfn,
 375                                        unsigned long end_bitidx,
 376                                        unsigned long mask)
 377{
 378        unsigned long *bitmap;
 379        unsigned long bitidx, word_bitidx;
 380        unsigned long word;
 381
 382        bitmap = get_pageblock_bitmap(page, pfn);
 383        bitidx = pfn_to_bitidx(page, pfn);
 384        word_bitidx = bitidx / BITS_PER_LONG;
 385        bitidx &= (BITS_PER_LONG-1);
 386
 387        word = bitmap[word_bitidx];
 388        bitidx += end_bitidx;
 389        return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
 390}
 391
 392unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
 393                                        unsigned long end_bitidx,
 394                                        unsigned long mask)
 395{
 396        return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
 397}
 398
 399static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
 400{
 401        return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
 402}
 403
 404/**
 405 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
 406 * @page: The page within the block of interest
 407 * @flags: The flags to set
 408 * @pfn: The target page frame number
 409 * @end_bitidx: The last bit of interest
 410 * @mask: mask of bits that the caller is interested in
 411 */
 412void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
 413                                        unsigned long pfn,
 414                                        unsigned long end_bitidx,
 415                                        unsigned long mask)
 416{
 417        unsigned long *bitmap;
 418        unsigned long bitidx, word_bitidx;
 419        unsigned long old_word, word;
 420
 421        BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
 422
 423        bitmap = get_pageblock_bitmap(page, pfn);
 424        bitidx = pfn_to_bitidx(page, pfn);
 425        word_bitidx = bitidx / BITS_PER_LONG;
 426        bitidx &= (BITS_PER_LONG-1);
 427
 428        VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
 429
 430        bitidx += end_bitidx;
 431        mask <<= (BITS_PER_LONG - bitidx - 1);
 432        flags <<= (BITS_PER_LONG - bitidx - 1);
 433
 434        word = READ_ONCE(bitmap[word_bitidx]);
 435        for (;;) {
 436                old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
 437                if (word == old_word)
 438                        break;
 439                word = old_word;
 440        }
 441}
 442
 443void set_pageblock_migratetype(struct page *page, int migratetype)
 444{
 445        if (unlikely(page_group_by_mobility_disabled &&
 446                     migratetype < MIGRATE_PCPTYPES))
 447                migratetype = MIGRATE_UNMOVABLE;
 448
 449        set_pageblock_flags_group(page, (unsigned long)migratetype,
 450                                        PB_migrate, PB_migrate_end);
 451}
 452
 453#ifdef CONFIG_DEBUG_VM
 454static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
 455{
 456        int ret = 0;
 457        unsigned seq;
 458        unsigned long pfn = page_to_pfn(page);
 459        unsigned long sp, start_pfn;
 460
 461        do {
 462                seq = zone_span_seqbegin(zone);
 463                start_pfn = zone->zone_start_pfn;
 464                sp = zone->spanned_pages;
 465                if (!zone_spans_pfn(zone, pfn))
 466                        ret = 1;
 467        } while (zone_span_seqretry(zone, seq));
 468
 469        if (ret)
 470                pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
 471                        pfn, zone_to_nid(zone), zone->name,
 472                        start_pfn, start_pfn + sp);
 473
 474        return ret;
 475}
 476
 477static int page_is_consistent(struct zone *zone, struct page *page)
 478{
 479        if (!pfn_valid_within(page_to_pfn(page)))
 480                return 0;
 481        if (zone != page_zone(page))
 482                return 0;
 483
 484        return 1;
 485}
 486/*
 487 * Temporary debugging check for pages not lying within a given zone.
 488 */
 489static int __maybe_unused bad_range(struct zone *zone, struct page *page)
 490{
 491        if (page_outside_zone_boundaries(zone, page))
 492                return 1;
 493        if (!page_is_consistent(zone, page))
 494                return 1;
 495
 496        return 0;
 497}
 498#else
 499static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
 500{
 501        return 0;
 502}
 503#endif
 504
 505static void bad_page(struct page *page, const char *reason,
 506                unsigned long bad_flags)
 507{
 508        static unsigned long resume;
 509        static unsigned long nr_shown;
 510        static unsigned long nr_unshown;
 511
 512        /*
 513         * Allow a burst of 60 reports, then keep quiet for that minute;
 514         * or allow a steady drip of one report per second.
 515         */
 516        if (nr_shown == 60) {
 517                if (time_before(jiffies, resume)) {
 518                        nr_unshown++;
 519                        goto out;
 520                }
 521                if (nr_unshown) {
 522                        pr_alert(
 523                              "BUG: Bad page state: %lu messages suppressed\n",
 524                                nr_unshown);
 525                        nr_unshown = 0;
 526                }
 527                nr_shown = 0;
 528        }
 529        if (nr_shown++ == 0)
 530                resume = jiffies + 60 * HZ;
 531
 532        pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
 533                current->comm, page_to_pfn(page));
 534        __dump_page(page, reason);
 535        bad_flags &= page->flags;
 536        if (bad_flags)
 537                pr_alert("bad because of flags: %#lx(%pGp)\n",
 538                                                bad_flags, &bad_flags);
 539        dump_page_owner(page);
 540
 541        print_modules();
 542        dump_stack();
 543out:
 544        /* Leave bad fields for debug, except PageBuddy could make trouble */
 545        page_mapcount_reset(page); /* remove PageBuddy */
 546        add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
 547}
 548
 549/*
 550 * Higher-order pages are called "compound pages".  They are structured thusly:
 551 *
 552 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
 553 *
 554 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
 555 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
 556 *
 557 * The first tail page's ->compound_dtor holds the offset in array of compound
 558 * page destructors. See compound_page_dtors.
 559 *
 560 * The first tail page's ->compound_order holds the order of allocation.
 561 * This usage means that zero-order pages may not be compound.
 562 */
 563
 564void free_compound_page(struct page *page)
 565{
 566        __free_pages_ok(page, compound_order(page));
 567}
 568
 569void prep_compound_page(struct page *page, unsigned int order)
 570{
 571        int i;
 572        int nr_pages = 1 << order;
 573
 574        set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
 575        set_compound_order(page, order);
 576        __SetPageHead(page);
 577        for (i = 1; i < nr_pages; i++) {
 578                struct page *p = page + i;
 579                set_page_count(p, 0);
 580                p->mapping = TAIL_MAPPING;
 581                set_compound_head(p, page);
 582        }
 583        atomic_set(compound_mapcount_ptr(page), -1);
 584}
 585
 586#ifdef CONFIG_DEBUG_PAGEALLOC
 587unsigned int _debug_guardpage_minorder;
 588bool _debug_pagealloc_enabled __read_mostly
 589                        = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
 590EXPORT_SYMBOL(_debug_pagealloc_enabled);
 591bool _debug_guardpage_enabled __read_mostly;
 592
 593static int __init early_debug_pagealloc(char *buf)
 594{
 595        if (!buf)
 596                return -EINVAL;
 597        return kstrtobool(buf, &_debug_pagealloc_enabled);
 598}
 599early_param("debug_pagealloc", early_debug_pagealloc);
 600
 601static bool need_debug_guardpage(void)
 602{
 603        /* If we don't use debug_pagealloc, we don't need guard page */
 604        if (!debug_pagealloc_enabled())
 605                return false;
 606
 607        if (!debug_guardpage_minorder())
 608                return false;
 609
 610        return true;
 611}
 612
 613static void init_debug_guardpage(void)
 614{
 615        if (!debug_pagealloc_enabled())
 616                return;
 617
 618        if (!debug_guardpage_minorder())
 619                return;
 620
 621        _debug_guardpage_enabled = true;
 622}
 623
 624struct page_ext_operations debug_guardpage_ops = {
 625        .need = need_debug_guardpage,
 626        .init = init_debug_guardpage,
 627};
 628
 629static int __init debug_guardpage_minorder_setup(char *buf)
 630{
 631        unsigned long res;
 632
 633        if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
 634                pr_err("Bad debug_guardpage_minorder value\n");
 635                return 0;
 636        }
 637        _debug_guardpage_minorder = res;
 638        pr_info("Setting debug_guardpage_minorder to %lu\n", res);
 639        return 0;
 640}
 641early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
 642
 643static inline bool set_page_guard(struct zone *zone, struct page *page,
 644                                unsigned int order, int migratetype)
 645{
 646        struct page_ext *page_ext;
 647
 648        if (!debug_guardpage_enabled())
 649                return false;
 650
 651        if (order >= debug_guardpage_minorder())
 652                return false;
 653
 654        page_ext = lookup_page_ext(page);
 655        if (unlikely(!page_ext))
 656                return false;
 657
 658        __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 659
 660        INIT_LIST_HEAD(&page->lru);
 661        set_page_private(page, order);
 662        /* Guard pages are not available for any usage */
 663        __mod_zone_freepage_state(zone, -(1 << order), migratetype);
 664
 665        return true;
 666}
 667
 668static inline void clear_page_guard(struct zone *zone, struct page *page,
 669                                unsigned int order, int migratetype)
 670{
 671        struct page_ext *page_ext;
 672
 673        if (!debug_guardpage_enabled())
 674                return;
 675
 676        page_ext = lookup_page_ext(page);
 677        if (unlikely(!page_ext))
 678                return;
 679
 680        __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
 681
 682        set_page_private(page, 0);
 683        if (!is_migrate_isolate(migratetype))
 684                __mod_zone_freepage_state(zone, (1 << order), migratetype);
 685}
 686#else
 687struct page_ext_operations debug_guardpage_ops;
 688static inline bool set_page_guard(struct zone *zone, struct page *page,
 689                        unsigned int order, int migratetype) { return false; }
 690static inline void clear_page_guard(struct zone *zone, struct page *page,
 691                                unsigned int order, int migratetype) {}
 692#endif
 693
 694static inline void set_page_order(struct page *page, unsigned int order)
 695{
 696        set_page_private(page, order);
 697        __SetPageBuddy(page);
 698}
 699
 700static inline void rmv_page_order(struct page *page)
 701{
 702        __ClearPageBuddy(page);
 703        set_page_private(page, 0);
 704}
 705
 706/*
 707 * This function checks whether a page is free && is the buddy
 708 * we can coalesce a page and its buddy if
 709 * (a) the buddy is not in a hole (check before calling!) &&
 710 * (b) the buddy is in the buddy system &&
 711 * (c) a page and its buddy have the same order &&
 712 * (d) a page and its buddy are in the same zone.
 713 *
 714 * For recording whether a page is in the buddy system, we set PageBuddy.
 715 * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
 716 *
 717 * For recording page's order, we use page_private(page).
 718 */
 719static inline int page_is_buddy(struct page *page, struct page *buddy,
 720                                                        unsigned int order)
 721{
 722        if (page_is_guard(buddy) && page_order(buddy) == order) {
 723                if (page_zone_id(page) != page_zone_id(buddy))
 724                        return 0;
 725
 726                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 727
 728                return 1;
 729        }
 730
 731        if (PageBuddy(buddy) && page_order(buddy) == order) {
 732                /*
 733                 * zone check is done late to avoid uselessly
 734                 * calculating zone/node ids for pages that could
 735                 * never merge.
 736                 */
 737                if (page_zone_id(page) != page_zone_id(buddy))
 738                        return 0;
 739
 740                VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 741
 742                return 1;
 743        }
 744        return 0;
 745}
 746
 747/*
 748 * Freeing function for a buddy system allocator.
 749 *
 750 * The concept of a buddy system is to maintain direct-mapped table
 751 * (containing bit values) for memory blocks of various "orders".
 752 * The bottom level table contains the map for the smallest allocatable
 753 * units of memory (here, pages), and each level above it describes
 754 * pairs of units from the levels below, hence, "buddies".
 755 * At a high level, all that happens here is marking the table entry
 756 * at the bottom level available, and propagating the changes upward
 757 * as necessary, plus some accounting needed to play nicely with other
 758 * parts of the VM system.
 759 * At each level, we keep a list of pages, which are heads of continuous
 760 * free pages of length of (1 << order) and marked with PageBuddy.
 761 * Page's order is recorded in page_private(page) field.
 762 * So when we are allocating or freeing one, we can derive the state of the
 763 * other.  That is, if we allocate a small block, and both were
 764 * free, the remainder of the region must be split into blocks.
 765 * If a block is freed, and its buddy is also free, then this
 766 * triggers coalescing into a block of larger size.
 767 *
 768 * -- nyc
 769 */
 770
 771static inline void __free_one_page(struct page *page,
 772                unsigned long pfn,
 773                struct zone *zone, unsigned int order,
 774                int migratetype)
 775{
 776        unsigned long combined_pfn;
 777        unsigned long uninitialized_var(buddy_pfn);
 778        struct page *buddy;
 779        unsigned int max_order;
 780
 781        max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
 782
 783        VM_BUG_ON(!zone_is_initialized(zone));
 784        VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
 785
 786        VM_BUG_ON(migratetype == -1);
 787        if (likely(!is_migrate_isolate(migratetype)))
 788                __mod_zone_freepage_state(zone, 1 << order, migratetype);
 789
 790        VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
 791        VM_BUG_ON_PAGE(bad_range(zone, page), page);
 792
 793continue_merging:
 794        while (order < max_order - 1) {
 795                buddy_pfn = __find_buddy_pfn(pfn, order);
 796                buddy = page + (buddy_pfn - pfn);
 797
 798                if (!pfn_valid_within(buddy_pfn))
 799                        goto done_merging;
 800                if (!page_is_buddy(page, buddy, order))
 801                        goto done_merging;
 802                /*
 803                 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
 804                 * merge with it and move up one order.
 805                 */
 806                if (page_is_guard(buddy)) {
 807                        clear_page_guard(zone, buddy, order, migratetype);
 808                } else {
 809                        list_del(&buddy->lru);
 810                        zone->free_area[order].nr_free--;
 811                        rmv_page_order(buddy);
 812                }
 813                combined_pfn = buddy_pfn & pfn;
 814                page = page + (combined_pfn - pfn);
 815                pfn = combined_pfn;
 816                order++;
 817        }
 818        if (max_order < MAX_ORDER) {
 819                /* If we are here, it means order is >= pageblock_order.
 820                 * We want to prevent merge between freepages on isolate
 821                 * pageblock and normal pageblock. Without this, pageblock
 822                 * isolation could cause incorrect freepage or CMA accounting.
 823                 *
 824                 * We don't want to hit this code for the more frequent
 825                 * low-order merging.
 826                 */
 827                if (unlikely(has_isolate_pageblock(zone))) {
 828                        int buddy_mt;
 829
 830                        buddy_pfn = __find_buddy_pfn(pfn, order);
 831                        buddy = page + (buddy_pfn - pfn);
 832                        buddy_mt = get_pageblock_migratetype(buddy);
 833
 834                        if (migratetype != buddy_mt
 835                                        && (is_migrate_isolate(migratetype) ||
 836                                                is_migrate_isolate(buddy_mt)))
 837                                goto done_merging;
 838                }
 839                max_order++;
 840                goto continue_merging;
 841        }
 842
 843done_merging:
 844        set_page_order(page, order);
 845
 846        /*
 847         * If this is not the largest possible page, check if the buddy
 848         * of the next-highest order is free. If it is, it's possible
 849         * that pages are being freed that will coalesce soon. In case,
 850         * that is happening, add the free page to the tail of the list
 851         * so it's less likely to be used soon and more likely to be merged
 852         * as a higher order page
 853         */
 854        if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
 855                struct page *higher_page, *higher_buddy;
 856                combined_pfn = buddy_pfn & pfn;
 857                higher_page = page + (combined_pfn - pfn);
 858                buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
 859                higher_buddy = higher_page + (buddy_pfn - combined_pfn);
 860                if (pfn_valid_within(buddy_pfn) &&
 861                    page_is_buddy(higher_page, higher_buddy, order + 1)) {
 862                        list_add_tail(&page->lru,
 863                                &zone->free_area[order].free_list[migratetype]);
 864                        goto out;
 865                }
 866        }
 867
 868        list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
 869out:
 870        zone->free_area[order].nr_free++;
 871}
 872
 873/*
 874 * A bad page could be due to a number of fields. Instead of multiple branches,
 875 * try and check multiple fields with one check. The caller must do a detailed
 876 * check if necessary.
 877 */
 878static inline bool page_expected_state(struct page *page,
 879                                        unsigned long check_flags)
 880{
 881        if (unlikely(atomic_read(&page->_mapcount) != -1))
 882                return false;
 883
 884        if (unlikely((unsigned long)page->mapping |
 885                        page_ref_count(page) |
 886#ifdef CONFIG_MEMCG
 887                        (unsigned long)page->mem_cgroup |
 888#endif
 889                        (page->flags & check_flags)))
 890                return false;
 891
 892        return true;
 893}
 894
 895static void free_pages_check_bad(struct page *page)
 896{
 897        const char *bad_reason;
 898        unsigned long bad_flags;
 899
 900        bad_reason = NULL;
 901        bad_flags = 0;
 902
 903        if (unlikely(atomic_read(&page->_mapcount) != -1))
 904                bad_reason = "nonzero mapcount";
 905        if (unlikely(page->mapping != NULL))
 906                bad_reason = "non-NULL mapping";
 907        if (unlikely(page_ref_count(page) != 0))
 908                bad_reason = "nonzero _refcount";
 909        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
 910                bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
 911                bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
 912        }
 913#ifdef CONFIG_MEMCG
 914        if (unlikely(page->mem_cgroup))
 915                bad_reason = "page still charged to cgroup";
 916#endif
 917        bad_page(page, bad_reason, bad_flags);
 918}
 919
 920static inline int free_pages_check(struct page *page)
 921{
 922        if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
 923                return 0;
 924
 925        /* Something has gone sideways, find it */
 926        free_pages_check_bad(page);
 927        return 1;
 928}
 929
 930static int free_tail_pages_check(struct page *head_page, struct page *page)
 931{
 932        int ret = 1;
 933
 934        /*
 935         * We rely page->lru.next never has bit 0 set, unless the page
 936         * is PageTail(). Let's make sure that's true even for poisoned ->lru.
 937         */
 938        BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
 939
 940        if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
 941                ret = 0;
 942                goto out;
 943        }
 944        switch (page - head_page) {
 945        case 1:
 946                /* the first tail page: ->mapping may be compound_mapcount() */
 947                if (unlikely(compound_mapcount(page))) {
 948                        bad_page(page, "nonzero compound_mapcount", 0);
 949                        goto out;
 950                }
 951                break;
 952        case 2:
 953                /*
 954                 * the second tail page: ->mapping is
 955                 * deferred_list.next -- ignore value.
 956                 */
 957                break;
 958        default:
 959                if (page->mapping != TAIL_MAPPING) {
 960                        bad_page(page, "corrupted mapping in tail page", 0);
 961                        goto out;
 962                }
 963                break;
 964        }
 965        if (unlikely(!PageTail(page))) {
 966                bad_page(page, "PageTail not set", 0);
 967                goto out;
 968        }
 969        if (unlikely(compound_head(page) != head_page)) {
 970                bad_page(page, "compound_head not consistent", 0);
 971                goto out;
 972        }
 973        ret = 0;
 974out:
 975        page->mapping = NULL;
 976        clear_compound_head(page);
 977        return ret;
 978}
 979
 980static __always_inline bool free_pages_prepare(struct page *page,
 981                                        unsigned int order, bool check_free)
 982{
 983        int bad = 0;
 984
 985        VM_BUG_ON_PAGE(PageTail(page), page);
 986
 987        trace_mm_page_free(page, order);
 988
 989        /*
 990         * Check tail pages before head page information is cleared to
 991         * avoid checking PageCompound for order-0 pages.
 992         */
 993        if (unlikely(order)) {
 994                bool compound = PageCompound(page);
 995                int i;
 996
 997                VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
 998
 999                if (compound)
1000                        ClearPageDoubleMap(page);
1001                for (i = 1; i < (1 << order); i++) {
1002                        if (compound)
1003                                bad += free_tail_pages_check(page, page + i);
1004                        if (unlikely(free_pages_check(page + i))) {
1005                                bad++;
1006                                continue;
1007                        }
1008                        (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1009                }
1010        }
1011        if (PageMappingFlags(page))
1012                page->mapping = NULL;
1013        if (memcg_kmem_enabled() && PageKmemcg(page))
1014                memcg_kmem_uncharge(page, order);
1015        if (check_free)
1016                bad += free_pages_check(page);
1017        if (bad)
1018                return false;
1019
1020        page_cpupid_reset_last(page);
1021        page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1022        reset_page_owner(page, order);
1023
1024        if (!PageHighMem(page)) {
1025                debug_check_no_locks_freed(page_address(page),
1026                                           PAGE_SIZE << order);
1027                debug_check_no_obj_freed(page_address(page),
1028                                           PAGE_SIZE << order);
1029        }
1030        arch_free_page(page, order);
1031        kernel_poison_pages(page, 1 << order, 0);
1032        kernel_map_pages(page, 1 << order, 0);
1033        kasan_free_pages(page, order);
1034
1035        return true;
1036}
1037
1038#ifdef CONFIG_DEBUG_VM
1039static inline bool free_pcp_prepare(struct page *page)
1040{
1041        return free_pages_prepare(page, 0, true);
1042}
1043
1044static inline bool bulkfree_pcp_prepare(struct page *page)
1045{
1046        return false;
1047}
1048#else
1049static bool free_pcp_prepare(struct page *page)
1050{
1051        return free_pages_prepare(page, 0, false);
1052}
1053
1054static bool bulkfree_pcp_prepare(struct page *page)
1055{
1056        return free_pages_check(page);
1057}
1058#endif /* CONFIG_DEBUG_VM */
1059
1060static inline void prefetch_buddy(struct page *page)
1061{
1062        unsigned long pfn = page_to_pfn(page);
1063        unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1064        struct page *buddy = page + (buddy_pfn - pfn);
1065
1066        prefetch(buddy);
1067}
1068
1069/*
1070 * Frees a number of pages from the PCP lists
1071 * Assumes all pages on list are in same zone, and of same order.
1072 * count is the number of pages to free.
1073 *
1074 * If the zone was previously in an "all pages pinned" state then look to
1075 * see if this freeing clears that state.
1076 *
1077 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1078 * pinned" detection logic.
1079 */
1080static void free_pcppages_bulk(struct zone *zone, int count,
1081                                        struct per_cpu_pages *pcp)
1082{
1083        int migratetype = 0;
1084        int batch_free = 0;
1085        int prefetch_nr = 0;
1086        bool isolated_pageblocks;
1087        struct page *page, *tmp;
1088        LIST_HEAD(head);
1089
1090        while (count) {
1091                struct list_head *list;
1092
1093                /*
1094                 * Remove pages from lists in a round-robin fashion. A
1095                 * batch_free count is maintained that is incremented when an
1096                 * empty list is encountered.  This is so more pages are freed
1097                 * off fuller lists instead of spinning excessively around empty
1098                 * lists
1099                 */
1100                do {
1101                        batch_free++;
1102                        if (++migratetype == MIGRATE_PCPTYPES)
1103                                migratetype = 0;
1104                        list = &pcp->lists[migratetype];
1105                } while (list_empty(list));
1106
1107                /* This is the only non-empty list. Free them all. */
1108                if (batch_free == MIGRATE_PCPTYPES)
1109                        batch_free = count;
1110
1111                do {
1112                        page = list_last_entry(list, struct page, lru);
1113                        /* must delete to avoid corrupting pcp list */
1114                        list_del(&page->lru);
1115                        pcp->count--;
1116
1117                        if (bulkfree_pcp_prepare(page))
1118                                continue;
1119
1120                        list_add_tail(&page->lru, &head);
1121
1122                        /*
1123                         * We are going to put the page back to the global
1124                         * pool, prefetch its buddy to speed up later access
1125                         * under zone->lock. It is believed the overhead of
1126                         * an additional test and calculating buddy_pfn here
1127                         * can be offset by reduced memory latency later. To
1128                         * avoid excessive prefetching due to large count, only
1129                         * prefetch buddy for the first pcp->batch nr of pages.
1130                         */
1131                        if (prefetch_nr++ < pcp->batch)
1132                                prefetch_buddy(page);
1133                } while (--count && --batch_free && !list_empty(list));
1134        }
1135
1136        spin_lock(&zone->lock);
1137        isolated_pageblocks = has_isolate_pageblock(zone);
1138
1139        /*
1140         * Use safe version since after __free_one_page(),
1141         * page->lru.next will not point to original list.
1142         */
1143        list_for_each_entry_safe(page, tmp, &head, lru) {
1144                int mt = get_pcppage_migratetype(page);
1145                /* MIGRATE_ISOLATE page should not go to pcplists */
1146                VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1147                /* Pageblock could have been isolated meanwhile */
1148                if (unlikely(isolated_pageblocks))
1149                        mt = get_pageblock_migratetype(page);
1150
1151                __free_one_page(page, page_to_pfn(page), zone, 0, mt);
1152                trace_mm_page_pcpu_drain(page, 0, mt);
1153        }
1154        spin_unlock(&zone->lock);
1155}
1156
1157static void free_one_page(struct zone *zone,
1158                                struct page *page, unsigned long pfn,
1159                                unsigned int order,
1160                                int migratetype)
1161{
1162        spin_lock(&zone->lock);
1163        if (unlikely(has_isolate_pageblock(zone) ||
1164                is_migrate_isolate(migratetype))) {
1165                migratetype = get_pfnblock_migratetype(page, pfn);
1166        }
1167        __free_one_page(page, pfn, zone, order, migratetype);
1168        spin_unlock(&zone->lock);
1169}
1170
1171static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1172                                unsigned long zone, int nid)
1173{
1174        mm_zero_struct_page(page);
1175        set_page_links(page, zone, nid, pfn);
1176        init_page_count(page);
1177        page_mapcount_reset(page);
1178        page_cpupid_reset_last(page);
1179
1180        INIT_LIST_HEAD(&page->lru);
1181#ifdef WANT_PAGE_VIRTUAL
1182        /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1183        if (!is_highmem_idx(zone))
1184                set_page_address(page, __va(pfn << PAGE_SHIFT));
1185#endif
1186}
1187
1188#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1189static void __meminit init_reserved_page(unsigned long pfn)
1190{
1191        pg_data_t *pgdat;
1192        int nid, zid;
1193
1194        if (!early_page_uninitialised(pfn))
1195                return;
1196
1197        nid = early_pfn_to_nid(pfn);
1198        pgdat = NODE_DATA(nid);
1199
1200        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1201                struct zone *zone = &pgdat->node_zones[zid];
1202
1203                if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1204                        break;
1205        }
1206        __init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1207}
1208#else
1209static inline void init_reserved_page(unsigned long pfn)
1210{
1211}
1212#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1213
1214/*
1215 * Initialised pages do not have PageReserved set. This function is
1216 * called for each range allocated by the bootmem allocator and
1217 * marks the pages PageReserved. The remaining valid pages are later
1218 * sent to the buddy page allocator.
1219 */
1220void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1221{
1222        unsigned long start_pfn = PFN_DOWN(start);
1223        unsigned long end_pfn = PFN_UP(end);
1224
1225        for (; start_pfn < end_pfn; start_pfn++) {
1226                if (pfn_valid(start_pfn)) {
1227                        struct page *page = pfn_to_page(start_pfn);
1228
1229                        init_reserved_page(start_pfn);
1230
1231                        /* Avoid false-positive PageTail() */
1232                        INIT_LIST_HEAD(&page->lru);
1233
1234                        SetPageReserved(page);
1235                }
1236        }
1237}
1238
1239static void __free_pages_ok(struct page *page, unsigned int order)
1240{
1241        unsigned long flags;
1242        int migratetype;
1243        unsigned long pfn = page_to_pfn(page);
1244
1245        if (!free_pages_prepare(page, order, true))
1246                return;
1247
1248        migratetype = get_pfnblock_migratetype(page, pfn);
1249        local_irq_save(flags);
1250        __count_vm_events(PGFREE, 1 << order);
1251        free_one_page(page_zone(page), page, pfn, order, migratetype);
1252        local_irq_restore(flags);
1253}
1254
1255static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1256{
1257        unsigned int nr_pages = 1 << order;
1258        struct page *p = page;
1259        unsigned int loop;
1260
1261        prefetchw(p);
1262        for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1263                prefetchw(p + 1);
1264                __ClearPageReserved(p);
1265                set_page_count(p, 0);
1266        }
1267        __ClearPageReserved(p);
1268        set_page_count(p, 0);
1269
1270        page_zone(page)->managed_pages += nr_pages;
1271        set_page_refcounted(page);
1272        __free_pages(page, order);
1273}
1274
1275#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1276        defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1277
1278static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1279
1280int __meminit early_pfn_to_nid(unsigned long pfn)
1281{
1282        static DEFINE_SPINLOCK(early_pfn_lock);
1283        int nid;
1284
1285        spin_lock(&early_pfn_lock);
1286        nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1287        if (nid < 0)
1288                nid = first_online_node;
1289        spin_unlock(&early_pfn_lock);
1290
1291        return nid;
1292}
1293#endif
1294
1295#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1296static inline bool __meminit __maybe_unused
1297meminit_pfn_in_nid(unsigned long pfn, int node,
1298                   struct mminit_pfnnid_cache *state)
1299{
1300        int nid;
1301
1302        nid = __early_pfn_to_nid(pfn, state);
1303        if (nid >= 0 && nid != node)
1304                return false;
1305        return true;
1306}
1307
1308/* Only safe to use early in boot when initialisation is single-threaded */
1309static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310{
1311        return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312}
1313
1314#else
1315
1316static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317{
1318        return true;
1319}
1320static inline bool __meminit  __maybe_unused
1321meminit_pfn_in_nid(unsigned long pfn, int node,
1322                   struct mminit_pfnnid_cache *state)
1323{
1324        return true;
1325}
1326#endif
1327
1328
1329void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1330                                                        unsigned int order)
1331{
1332        if (early_page_uninitialised(pfn))
1333                return;
1334        return __free_pages_boot_core(page, order);
1335}
1336
1337/*
1338 * Check that the whole (or subset of) a pageblock given by the interval of
1339 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1340 * with the migration of free compaction scanner. The scanners then need to
1341 * use only pfn_valid_within() check for arches that allow holes within
1342 * pageblocks.
1343 *
1344 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1345 *
1346 * It's possible on some configurations to have a setup like node0 node1 node0
1347 * i.e. it's possible that all pages within a zones range of pages do not
1348 * belong to a single zone. We assume that a border between node0 and node1
1349 * can occur within a single pageblock, but not a node0 node1 node0
1350 * interleaving within a single pageblock. It is therefore sufficient to check
1351 * the first and last page of a pageblock and avoid checking each individual
1352 * page in a pageblock.
1353 */
1354struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1355                                     unsigned long end_pfn, struct zone *zone)
1356{
1357        struct page *start_page;
1358        struct page *end_page;
1359
1360        /* end_pfn is one past the range we are checking */
1361        end_pfn--;
1362
1363        if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1364                return NULL;
1365
1366        start_page = pfn_to_online_page(start_pfn);
1367        if (!start_page)
1368                return NULL;
1369
1370        if (page_zone(start_page) != zone)
1371                return NULL;
1372
1373        end_page = pfn_to_page(end_pfn);
1374
1375        /* This gives a shorter code than deriving page_zone(end_page) */
1376        if (page_zone_id(start_page) != page_zone_id(end_page))
1377                return NULL;
1378
1379        return start_page;
1380}
1381
1382void set_zone_contiguous(struct zone *zone)
1383{
1384        unsigned long block_start_pfn = zone->zone_start_pfn;
1385        unsigned long block_end_pfn;
1386
1387        block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1388        for (; block_start_pfn < zone_end_pfn(zone);
1389                        block_start_pfn = block_end_pfn,
1390                         block_end_pfn += pageblock_nr_pages) {
1391
1392                block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1393
1394                if (!__pageblock_pfn_to_page(block_start_pfn,
1395                                             block_end_pfn, zone))
1396                        return;
1397        }
1398
1399        /* We confirm that there is no hole */
1400        zone->contiguous = true;
1401}
1402
1403void clear_zone_contiguous(struct zone *zone)
1404{
1405        zone->contiguous = false;
1406}
1407
1408#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1409static void __init deferred_free_range(unsigned long pfn,
1410                                       unsigned long nr_pages)
1411{
1412        struct page *page;
1413        unsigned long i;
1414
1415        if (!nr_pages)
1416                return;
1417
1418        page = pfn_to_page(pfn);
1419
1420        /* Free a large naturally-aligned chunk if possible */
1421        if (nr_pages == pageblock_nr_pages &&
1422            (pfn & (pageblock_nr_pages - 1)) == 0) {
1423                set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1424                __free_pages_boot_core(page, pageblock_order);
1425                return;
1426        }
1427
1428        for (i = 0; i < nr_pages; i++, page++, pfn++) {
1429                if ((pfn & (pageblock_nr_pages - 1)) == 0)
1430                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1431                __free_pages_boot_core(page, 0);
1432        }
1433}
1434
1435/* Completion tracking for deferred_init_memmap() threads */
1436static atomic_t pgdat_init_n_undone __initdata;
1437static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1438
1439static inline void __init pgdat_init_report_one_done(void)
1440{
1441        if (atomic_dec_and_test(&pgdat_init_n_undone))
1442                complete(&pgdat_init_all_done_comp);
1443}
1444
1445/*
1446 * Returns true if page needs to be initialized or freed to buddy allocator.
1447 *
1448 * First we check if pfn is valid on architectures where it is possible to have
1449 * holes within pageblock_nr_pages. On systems where it is not possible, this
1450 * function is optimized out.
1451 *
1452 * Then, we check if a current large page is valid by only checking the validity
1453 * of the head pfn.
1454 *
1455 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1456 * within a node: a pfn is between start and end of a node, but does not belong
1457 * to this memory node.
1458 */
1459static inline bool __init
1460deferred_pfn_valid(int nid, unsigned long pfn,
1461                   struct mminit_pfnnid_cache *nid_init_state)
1462{
1463        if (!pfn_valid_within(pfn))
1464                return false;
1465        if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1466                return false;
1467        if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
1468                return false;
1469        return true;
1470}
1471
1472/*
1473 * Free pages to buddy allocator. Try to free aligned pages in
1474 * pageblock_nr_pages sizes.
1475 */
1476static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
1477                                       unsigned long end_pfn)
1478{
1479        struct mminit_pfnnid_cache nid_init_state = { };
1480        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1481        unsigned long nr_free = 0;
1482
1483        for (; pfn < end_pfn; pfn++) {
1484                if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1485                        deferred_free_range(pfn - nr_free, nr_free);
1486                        nr_free = 0;
1487                } else if (!(pfn & nr_pgmask)) {
1488                        deferred_free_range(pfn - nr_free, nr_free);
1489                        nr_free = 1;
1490                        touch_nmi_watchdog();
1491                } else {
1492                        nr_free++;
1493                }
1494        }
1495        /* Free the last block of pages to allocator */
1496        deferred_free_range(pfn - nr_free, nr_free);
1497}
1498
1499/*
1500 * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1501 * by performing it only once every pageblock_nr_pages.
1502 * Return number of pages initialized.
1503 */
1504static unsigned long  __init deferred_init_pages(int nid, int zid,
1505                                                 unsigned long pfn,
1506                                                 unsigned long end_pfn)
1507{
1508        struct mminit_pfnnid_cache nid_init_state = { };
1509        unsigned long nr_pgmask = pageblock_nr_pages - 1;
1510        unsigned long nr_pages = 0;
1511        struct page *page = NULL;
1512
1513        for (; pfn < end_pfn; pfn++) {
1514                if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
1515                        page = NULL;
1516                        continue;
1517                } else if (!page || !(pfn & nr_pgmask)) {
1518                        page = pfn_to_page(pfn);
1519                        touch_nmi_watchdog();
1520                } else {
1521                        page++;
1522                }
1523                __init_single_page(page, pfn, zid, nid);
1524                nr_pages++;
1525        }
1526        return (nr_pages);
1527}
1528
1529/* Initialise remaining memory on a node */
1530static int __init deferred_init_memmap(void *data)
1531{
1532        pg_data_t *pgdat = data;
1533        int nid = pgdat->node_id;
1534        unsigned long start = jiffies;
1535        unsigned long nr_pages = 0;
1536        unsigned long spfn, epfn, first_init_pfn, flags;
1537        phys_addr_t spa, epa;
1538        int zid;
1539        struct zone *zone;
1540        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1541        u64 i;
1542
1543        /* Bind memory initialisation thread to a local node if possible */
1544        if (!cpumask_empty(cpumask))
1545                set_cpus_allowed_ptr(current, cpumask);
1546
1547        pgdat_resize_lock(pgdat, &flags);
1548        first_init_pfn = pgdat->first_deferred_pfn;
1549        if (first_init_pfn == ULONG_MAX) {
1550                pgdat_resize_unlock(pgdat, &flags);
1551                pgdat_init_report_one_done();
1552                return 0;
1553        }
1554
1555        /* Sanity check boundaries */
1556        BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1557        BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1558        pgdat->first_deferred_pfn = ULONG_MAX;
1559
1560        /* Only the highest zone is deferred so find it */
1561        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1562                zone = pgdat->node_zones + zid;
1563                if (first_init_pfn < zone_end_pfn(zone))
1564                        break;
1565        }
1566        first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
1567
1568        /*
1569         * Initialize and free pages. We do it in two loops: first we initialize
1570         * struct page, than free to buddy allocator, because while we are
1571         * freeing pages we can access pages that are ahead (computing buddy
1572         * page in __free_one_page()).
1573         */
1574        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1575                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1576                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1577                nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
1578        }
1579        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1580                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1581                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1582                deferred_free_pages(nid, zid, spfn, epfn);
1583        }
1584        pgdat_resize_unlock(pgdat, &flags);
1585
1586        /* Sanity check that the next zone really is unpopulated */
1587        WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1588
1589        pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1590                                        jiffies_to_msecs(jiffies - start));
1591
1592        pgdat_init_report_one_done();
1593        return 0;
1594}
1595
1596/*
1597 * During boot we initialize deferred pages on-demand, as needed, but once
1598 * page_alloc_init_late() has finished, the deferred pages are all initialized,
1599 * and we can permanently disable that path.
1600 */
1601static DEFINE_STATIC_KEY_TRUE(deferred_pages);
1602
1603/*
1604 * If this zone has deferred pages, try to grow it by initializing enough
1605 * deferred pages to satisfy the allocation specified by order, rounded up to
1606 * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1607 * of SECTION_SIZE bytes by initializing struct pages in increments of
1608 * PAGES_PER_SECTION * sizeof(struct page) bytes.
1609 *
1610 * Return true when zone was grown, otherwise return false. We return true even
1611 * when we grow less than requested, to let the caller decide if there are
1612 * enough pages to satisfy the allocation.
1613 *
1614 * Note: We use noinline because this function is needed only during boot, and
1615 * it is called from a __ref function _deferred_grow_zone. This way we are
1616 * making sure that it is not inlined into permanent text section.
1617 */
1618static noinline bool __init
1619deferred_grow_zone(struct zone *zone, unsigned int order)
1620{
1621        int zid = zone_idx(zone);
1622        int nid = zone_to_nid(zone);
1623        pg_data_t *pgdat = NODE_DATA(nid);
1624        unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1625        unsigned long nr_pages = 0;
1626        unsigned long first_init_pfn, spfn, epfn, t, flags;
1627        unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1628        phys_addr_t spa, epa;
1629        u64 i;
1630
1631        /* Only the last zone may have deferred pages */
1632        if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1633                return false;
1634
1635        pgdat_resize_lock(pgdat, &flags);
1636
1637        /*
1638         * If deferred pages have been initialized while we were waiting for
1639         * the lock, return true, as the zone was grown.  The caller will retry
1640         * this zone.  We won't return to this function since the caller also
1641         * has this static branch.
1642         */
1643        if (!static_branch_unlikely(&deferred_pages)) {
1644                pgdat_resize_unlock(pgdat, &flags);
1645                return true;
1646        }
1647
1648        /*
1649         * If someone grew this zone while we were waiting for spinlock, return
1650         * true, as there might be enough pages already.
1651         */
1652        if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1653                pgdat_resize_unlock(pgdat, &flags);
1654                return true;
1655        }
1656
1657        first_init_pfn = max(zone->zone_start_pfn, first_deferred_pfn);
1658
1659        if (first_init_pfn >= pgdat_end_pfn(pgdat)) {
1660                pgdat_resize_unlock(pgdat, &flags);
1661                return false;
1662        }
1663
1664        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1665                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1666                epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
1667
1668                while (spfn < epfn && nr_pages < nr_pages_needed) {
1669                        t = ALIGN(spfn + PAGES_PER_SECTION, PAGES_PER_SECTION);
1670                        first_deferred_pfn = min(t, epfn);
1671                        nr_pages += deferred_init_pages(nid, zid, spfn,
1672                                                        first_deferred_pfn);
1673                        spfn = first_deferred_pfn;
1674                }
1675
1676                if (nr_pages >= nr_pages_needed)
1677                        break;
1678        }
1679
1680        for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
1681                spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
1682                epfn = min_t(unsigned long, first_deferred_pfn, PFN_DOWN(epa));
1683                deferred_free_pages(nid, zid, spfn, epfn);
1684
1685                if (first_deferred_pfn == epfn)
1686                        break;
1687        }
1688        pgdat->first_deferred_pfn = first_deferred_pfn;
1689        pgdat_resize_unlock(pgdat, &flags);
1690
1691        return nr_pages > 0;
1692}
1693
1694/*
1695 * deferred_grow_zone() is __init, but it is called from
1696 * get_page_from_freelist() during early boot until deferred_pages permanently
1697 * disables this call. This is why we have refdata wrapper to avoid warning,
1698 * and to ensure that the function body gets unloaded.
1699 */
1700static bool __ref
1701_deferred_grow_zone(struct zone *zone, unsigned int order)
1702{
1703        return deferred_grow_zone(zone, order);
1704}
1705
1706#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1707
1708void __init page_alloc_init_late(void)
1709{
1710        struct zone *zone;
1711
1712#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1713        int nid;
1714
1715        /* There will be num_node_state(N_MEMORY) threads */
1716        atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1717        for_each_node_state(nid, N_MEMORY) {
1718                kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1719        }
1720
1721        /* Block until all are initialised */
1722        wait_for_completion(&pgdat_init_all_done_comp);
1723
1724        /*
1725         * We initialized the rest of the deferred pages.  Permanently disable
1726         * on-demand struct page initialization.
1727         */
1728        static_branch_disable(&deferred_pages);
1729
1730        /* Reinit limits that are based on free pages after the kernel is up */
1731        files_maxfiles_init();
1732#endif
1733#ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1734        /* Discard memblock private memory */
1735        memblock_discard();
1736#endif
1737
1738        for_each_populated_zone(zone)
1739                set_zone_contiguous(zone);
1740}
1741
1742#ifdef CONFIG_CMA
1743/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1744void __init init_cma_reserved_pageblock(struct page *page)
1745{
1746        unsigned i = pageblock_nr_pages;
1747        struct page *p = page;
1748
1749        do {
1750                __ClearPageReserved(p);
1751                set_page_count(p, 0);
1752        } while (++p, --i);
1753
1754        set_pageblock_migratetype(page, MIGRATE_CMA);
1755
1756        if (pageblock_order >= MAX_ORDER) {
1757                i = pageblock_nr_pages;
1758                p = page;
1759                do {
1760                        set_page_refcounted(p);
1761                        __free_pages(p, MAX_ORDER - 1);
1762                        p += MAX_ORDER_NR_PAGES;
1763                } while (i -= MAX_ORDER_NR_PAGES);
1764        } else {
1765                set_page_refcounted(page);
1766                __free_pages(page, pageblock_order);
1767        }
1768
1769        adjust_managed_page_count(page, pageblock_nr_pages);
1770}
1771#endif
1772
1773/*
1774 * The order of subdivision here is critical for the IO subsystem.
1775 * Please do not alter this order without good reasons and regression
1776 * testing. Specifically, as large blocks of memory are subdivided,
1777 * the order in which smaller blocks are delivered depends on the order
1778 * they're subdivided in this function. This is the primary factor
1779 * influencing the order in which pages are delivered to the IO
1780 * subsystem according to empirical testing, and this is also justified
1781 * by considering the behavior of a buddy system containing a single
1782 * large block of memory acted on by a series of small allocations.
1783 * This behavior is a critical factor in sglist merging's success.
1784 *
1785 * -- nyc
1786 */
1787static inline void expand(struct zone *zone, struct page *page,
1788        int low, int high, struct free_area *area,
1789        int migratetype)
1790{
1791        unsigned long size = 1 << high;
1792
1793        while (high > low) {
1794                area--;
1795                high--;
1796                size >>= 1;
1797                VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1798
1799                /*
1800                 * Mark as guard pages (or page), that will allow to
1801                 * merge back to allocator when buddy will be freed.
1802                 * Corresponding page table entries will not be touched,
1803                 * pages will stay not present in virtual address space
1804                 */
1805                if (set_page_guard(zone, &page[size], high, migratetype))
1806                        continue;
1807
1808                list_add(&page[size].lru, &area->free_list[migratetype]);
1809                area->nr_free++;
1810                set_page_order(&page[size], high);
1811        }
1812}
1813
1814static void check_new_page_bad(struct page *page)
1815{
1816        const char *bad_reason = NULL;
1817        unsigned long bad_flags = 0;
1818
1819        if (unlikely(atomic_read(&page->_mapcount) != -1))
1820                bad_reason = "nonzero mapcount";
1821        if (unlikely(page->mapping != NULL))
1822                bad_reason = "non-NULL mapping";
1823        if (unlikely(page_ref_count(page) != 0))
1824                bad_reason = "nonzero _count";
1825        if (unlikely(page->flags & __PG_HWPOISON)) {
1826                bad_reason = "HWPoisoned (hardware-corrupted)";
1827                bad_flags = __PG_HWPOISON;
1828                /* Don't complain about hwpoisoned pages */
1829                page_mapcount_reset(page); /* remove PageBuddy */
1830                return;
1831        }
1832        if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1833                bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1834                bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1835        }
1836#ifdef CONFIG_MEMCG
1837        if (unlikely(page->mem_cgroup))
1838                bad_reason = "page still charged to cgroup";
1839#endif
1840        bad_page(page, bad_reason, bad_flags);
1841}
1842
1843/*
1844 * This page is about to be returned from the page allocator
1845 */
1846static inline int check_new_page(struct page *page)
1847{
1848        if (likely(page_expected_state(page,
1849                                PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1850                return 0;
1851
1852        check_new_page_bad(page);
1853        return 1;
1854}
1855
1856static inline bool free_pages_prezeroed(void)
1857{
1858        return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1859                page_poisoning_enabled();
1860}
1861
1862#ifdef CONFIG_DEBUG_VM
1863static bool check_pcp_refill(struct page *page)
1864{
1865        return false;
1866}
1867
1868static bool check_new_pcp(struct page *page)
1869{
1870        return check_new_page(page);
1871}
1872#else
1873static bool check_pcp_refill(struct page *page)
1874{
1875        return check_new_page(page);
1876}
1877static bool check_new_pcp(struct page *page)
1878{
1879        return false;
1880}
1881#endif /* CONFIG_DEBUG_VM */
1882
1883static bool check_new_pages(struct page *page, unsigned int order)
1884{
1885        int i;
1886        for (i = 0; i < (1 << order); i++) {
1887                struct page *p = page + i;
1888
1889                if (unlikely(check_new_page(p)))
1890                        return true;
1891        }
1892
1893        return false;
1894}
1895
1896inline void post_alloc_hook(struct page *page, unsigned int order,
1897                                gfp_t gfp_flags)
1898{
1899        set_page_private(page, 0);
1900        set_page_refcounted(page);
1901
1902        arch_alloc_page(page, order);
1903        kernel_map_pages(page, 1 << order, 1);
1904        kernel_poison_pages(page, 1 << order, 1);
1905        kasan_alloc_pages(page, order);
1906        set_page_owner(page, order, gfp_flags);
1907}
1908
1909static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1910                                                        unsigned int alloc_flags)
1911{
1912        int i;
1913
1914        post_alloc_hook(page, order, gfp_flags);
1915
1916        if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1917                for (i = 0; i < (1 << order); i++)
1918                        clear_highpage(page + i);
1919
1920        if (order && (gfp_flags & __GFP_COMP))
1921                prep_compound_page(page, order);
1922
1923        /*
1924         * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1925         * allocate the page. The expectation is that the caller is taking
1926         * steps that will free more memory. The caller should avoid the page
1927         * being used for !PFMEMALLOC purposes.
1928         */
1929        if (alloc_flags & ALLOC_NO_WATERMARKS)
1930                set_page_pfmemalloc(page);
1931        else
1932                clear_page_pfmemalloc(page);
1933}
1934
1935/*
1936 * Go through the free lists for the given migratetype and remove
1937 * the smallest available page from the freelists
1938 */
1939static __always_inline
1940struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1941                                                int migratetype)
1942{
1943        unsigned int current_order;
1944        struct free_area *area;
1945        struct page *page;
1946
1947        /* Find a page of the appropriate size in the preferred list */
1948        for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1949                area = &(zone->free_area[current_order]);
1950                page = list_first_entry_or_null(&area->free_list[migratetype],
1951                                                        struct page, lru);
1952                if (!page)
1953                        continue;
1954                list_del(&page->lru);
1955                rmv_page_order(page);
1956                area->nr_free--;
1957                expand(zone, page, order, current_order, area, migratetype);
1958                set_pcppage_migratetype(page, migratetype);
1959                return page;
1960        }
1961
1962        return NULL;
1963}
1964
1965
1966/*
1967 * This array describes the order lists are fallen back to when
1968 * the free lists for the desirable migrate type are depleted
1969 */
1970static int fallbacks[MIGRATE_TYPES][4] = {
1971        [MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1972        [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1973        [MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1974#ifdef CONFIG_CMA
1975        [MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1976#endif
1977#ifdef CONFIG_MEMORY_ISOLATION
1978        [MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1979#endif
1980};
1981
1982#ifdef CONFIG_CMA
1983static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1984                                        unsigned int order)
1985{
1986        return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1987}
1988#else
1989static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1990                                        unsigned int order) { return NULL; }
1991#endif
1992
1993/*
1994 * Move the free pages in a range to the free lists of the requested type.
1995 * Note that start_page and end_pages are not aligned on a pageblock
1996 * boundary. If alignment is required, use move_freepages_block()
1997 */
1998static int move_freepages(struct zone *zone,
1999                          struct page *start_page, struct page *end_page,
2000                          int migratetype, int *num_movable)
2001{
2002        struct page *page;
2003        unsigned int order;
2004        int pages_moved = 0;
2005
2006#ifndef CONFIG_HOLES_IN_ZONE
2007        /*
2008         * page_zone is not safe to call in this context when
2009         * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2010         * anyway as we check zone boundaries in move_freepages_block().
2011         * Remove at a later date when no bug reports exist related to
2012         * grouping pages by mobility
2013         */
2014        VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2015                  pfn_valid(page_to_pfn(end_page)) &&
2016                  page_zone(start_page) != page_zone(end_page));
2017#endif
2018
2019        if (num_movable)
2020                *num_movable = 0;
2021
2022        for (page = start_page; page <= end_page;) {
2023                if (!pfn_valid_within(page_to_pfn(page))) {
2024                        page++;
2025                        continue;
2026                }
2027
2028                /* Make sure we are not inadvertently changing nodes */
2029                VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2030
2031                if (!PageBuddy(page)) {
2032                        /*
2033                         * We assume that pages that could be isolated for
2034                         * migration are movable. But we don't actually try
2035                         * isolating, as that would be expensive.
2036                         */
2037                        if (num_movable &&
2038                                        (PageLRU(page) || __PageMovable(page)))
2039                                (*num_movable)++;
2040
2041                        page++;
2042                        continue;
2043                }
2044
2045                order = page_order(page);
2046                list_move(&page->lru,
2047                          &zone->free_area[order].free_list[migratetype]);
2048                page += 1 << order;
2049                pages_moved += 1 << order;
2050        }
2051
2052        return pages_moved;
2053}
2054
2055int move_freepages_block(struct zone *zone, struct page *page,
2056                                int migratetype, int *num_movable)
2057{
2058        unsigned long start_pfn, end_pfn;
2059        struct page *start_page, *end_page;
2060
2061        start_pfn = page_to_pfn(page);
2062        start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2063        start_page = pfn_to_page(start_pfn);
2064        end_page = start_page + pageblock_nr_pages - 1;
2065        end_pfn = start_pfn + pageblock_nr_pages - 1;
2066
2067        /* Do not cross zone boundaries */
2068        if (!zone_spans_pfn(zone, start_pfn))
2069                start_page = page;
2070        if (!zone_spans_pfn(zone, end_pfn))
2071                return 0;
2072
2073        return move_freepages(zone, start_page, end_page, migratetype,
2074                                                                num_movable);
2075}
2076
2077static void change_pageblock_range(struct page *pageblock_page,
2078                                        int start_order, int migratetype)
2079{
2080        int nr_pageblocks = 1 << (start_order - pageblock_order);
2081
2082        while (nr_pageblocks--) {
2083                set_pageblock_migratetype(pageblock_page, migratetype);
2084                pageblock_page += pageblock_nr_pages;
2085        }
2086}
2087
2088/*
2089 * When we are falling back to another migratetype during allocation, try to
2090 * steal extra free pages from the same pageblocks to satisfy further
2091 * allocations, instead of polluting multiple pageblocks.
2092 *
2093 * If we are stealing a relatively large buddy page, it is likely there will
2094 * be more free pages in the pageblock, so try to steal them all. For
2095 * reclaimable and unmovable allocations, we steal regardless of page size,
2096 * as fragmentation caused by those allocations polluting movable pageblocks
2097 * is worse than movable allocations stealing from unmovable and reclaimable
2098 * pageblocks.
2099 */
2100static bool can_steal_fallback(unsigned int order, int start_mt)
2101{
2102        /*
2103         * Leaving this order check is intended, although there is
2104         * relaxed order check in next check. The reason is that
2105         * we can actually steal whole pageblock if this condition met,
2106         * but, below check doesn't guarantee it and that is just heuristic
2107         * so could be changed anytime.
2108         */
2109        if (order >= pageblock_order)
2110                return true;
2111
2112        if (order >= pageblock_order / 2 ||
2113                start_mt == MIGRATE_RECLAIMABLE ||
2114                start_mt == MIGRATE_UNMOVABLE ||
2115                page_group_by_mobility_disabled)
2116                return true;
2117
2118        return false;
2119}
2120
2121/*
2122 * This function implements actual steal behaviour. If order is large enough,
2123 * we can steal whole pageblock. If not, we first move freepages in this
2124 * pageblock to our migratetype and determine how many already-allocated pages
2125 * are there in the pageblock with a compatible migratetype. If at least half
2126 * of pages are free or compatible, we can change migratetype of the pageblock
2127 * itself, so pages freed in the future will be put on the correct free list.
2128 */
2129static void steal_suitable_fallback(struct zone *zone, struct page *page,
2130                                        int start_type, bool whole_block)
2131{
2132        unsigned int current_order = page_order(page);
2133        struct free_area *area;
2134        int free_pages, movable_pages, alike_pages;
2135        int old_block_type;
2136
2137        old_block_type = get_pageblock_migratetype(page);
2138
2139        /*
2140         * This can happen due to races and we want to prevent broken
2141         * highatomic accounting.
2142         */
2143        if (is_migrate_highatomic(old_block_type))
2144                goto single_page;
2145
2146        /* Take ownership for orders >= pageblock_order */
2147        if (current_order >= pageblock_order) {
2148                change_pageblock_range(page, current_order, start_type);
2149                goto single_page;
2150        }
2151
2152        /* We are not allowed to try stealing from the whole block */
2153        if (!whole_block)
2154                goto single_page;
2155
2156        free_pages = move_freepages_block(zone, page, start_type,
2157                                                &movable_pages);
2158        /*
2159         * Determine how many pages are compatible with our allocation.
2160         * For movable allocation, it's the number of movable pages which
2161         * we just obtained. For other types it's a bit more tricky.
2162         */
2163        if (start_type == MIGRATE_MOVABLE) {
2164                alike_pages = movable_pages;
2165        } else {
2166                /*
2167                 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2168                 * to MOVABLE pageblock, consider all non-movable pages as
2169                 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2170                 * vice versa, be conservative since we can't distinguish the
2171                 * exact migratetype of non-movable pages.
2172                 */
2173                if (old_block_type == MIGRATE_MOVABLE)
2174                        alike_pages = pageblock_nr_pages
2175                                                - (free_pages + movable_pages);
2176                else
2177                        alike_pages = 0;
2178        }
2179
2180        /* moving whole block can fail due to zone boundary conditions */
2181        if (!free_pages)
2182                goto single_page;
2183
2184        /*
2185         * If a sufficient number of pages in the block are either free or of
2186         * comparable migratability as our allocation, claim the whole block.
2187         */
2188        if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2189                        page_group_by_mobility_disabled)
2190                set_pageblock_migratetype(page, start_type);
2191
2192        return;
2193
2194single_page:
2195        area = &zone->free_area[current_order];
2196        list_move(&page->lru, &area->free_list[start_type]);
2197}
2198
2199/*
2200 * Check whether there is a suitable fallback freepage with requested order.
2201 * If only_stealable is true, this function returns fallback_mt only if
2202 * we can steal other freepages all together. This would help to reduce
2203 * fragmentation due to mixed migratetype pages in one pageblock.
2204 */
2205int find_suitable_fallback(struct free_area *area, unsigned int order,
2206                        int migratetype, bool only_stealable, bool *can_steal)
2207{
2208        int i;
2209        int fallback_mt;
2210
2211        if (area->nr_free == 0)
2212                return -1;
2213
2214        *can_steal = false;
2215        for (i = 0;; i++) {
2216                fallback_mt = fallbacks[migratetype][i];
2217                if (fallback_mt == MIGRATE_TYPES)
2218                        break;
2219
2220                if (list_empty(&area->free_list[fallback_mt]))
2221                        continue;
2222
2223                if (can_steal_fallback(order, migratetype))
2224                        *can_steal = true;
2225
2226                if (!only_stealable)
2227                        return fallback_mt;
2228
2229                if (*can_steal)
2230                        return fallback_mt;
2231        }
2232
2233        return -1;
2234}
2235
2236/*
2237 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2238 * there are no empty page blocks that contain a page with a suitable order
2239 */
2240static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2241                                unsigned int alloc_order)
2242{
2243        int mt;
2244        unsigned long max_managed, flags;
2245
2246        /*
2247         * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2248         * Check is race-prone but harmless.
2249         */
2250        max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2251        if (zone->nr_reserved_highatomic >= max_managed)
2252                return;
2253
2254        spin_lock_irqsave(&zone->lock, flags);
2255
2256        /* Recheck the nr_reserved_highatomic limit under the lock */
2257        if (zone->nr_reserved_highatomic >= max_managed)
2258                goto out_unlock;
2259
2260        /* Yoink! */
2261        mt = get_pageblock_migratetype(page);
2262        if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2263            && !is_migrate_cma(mt)) {
2264                zone->nr_reserved_highatomic += pageblock_nr_pages;
2265                set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2266                move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2267        }
2268
2269out_unlock:
2270        spin_unlock_irqrestore(&zone->lock, flags);
2271}
2272
2273/*
2274 * Used when an allocation is about to fail under memory pressure. This
2275 * potentially hurts the reliability of high-order allocations when under
2276 * intense memory pressure but failed atomic allocations should be easier
2277 * to recover from than an OOM.
2278 *
2279 * If @force is true, try to unreserve a pageblock even though highatomic
2280 * pageblock is exhausted.
2281 */
2282static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2283                                                bool force)
2284{
2285        struct zonelist *zonelist = ac->zonelist;
2286        unsigned long flags;
2287        struct zoneref *z;
2288        struct zone *zone;
2289        struct page *page;
2290        int order;
2291        bool ret;
2292
2293        for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2294                                                                ac->nodemask) {
2295                /*
2296                 * Preserve at least one pageblock unless memory pressure
2297                 * is really high.
2298                 */
2299                if (!force && zone->nr_reserved_highatomic <=
2300                                        pageblock_nr_pages)
2301                        continue;
2302
2303                spin_lock_irqsave(&zone->lock, flags);
2304                for (order = 0; order < MAX_ORDER; order++) {
2305                        struct free_area *area = &(zone->free_area[order]);
2306
2307                        page = list_first_entry_or_null(
2308                                        &area->free_list[MIGRATE_HIGHATOMIC],
2309                                        struct page, lru);
2310                        if (!page)
2311                                continue;
2312
2313                        /*
2314                         * In page freeing path, migratetype change is racy so
2315                         * we can counter several free pages in a pageblock
2316                         * in this loop althoug we changed the pageblock type
2317                         * from highatomic to ac->migratetype. So we should
2318                         * adjust the count once.
2319                         */
2320                        if (is_migrate_highatomic_page(page)) {
2321                                /*
2322                                 * It should never happen but changes to
2323                                 * locking could inadvertently allow a per-cpu
2324                                 * drain to add pages to MIGRATE_HIGHATOMIC
2325                                 * while unreserving so be safe and watch for
2326                                 * underflows.
2327                                 */
2328                                zone->nr_reserved_highatomic -= min(
2329                                                pageblock_nr_pages,
2330                                                zone->nr_reserved_highatomic);
2331                        }
2332
2333                        /*
2334                         * Convert to ac->migratetype and avoid the normal
2335                         * pageblock stealing heuristics. Minimally, the caller
2336                         * is doing the work and needs the pages. More
2337                         * importantly, if the block was always converted to
2338                         * MIGRATE_UNMOVABLE or another type then the number
2339                         * of pageblocks that cannot be completely freed
2340                         * may increase.
2341                         */
2342                        set_pageblock_migratetype(page, ac->migratetype);
2343                        ret = move_freepages_block(zone, page, ac->migratetype,
2344                                                                        NULL);
2345                        if (ret) {
2346                                spin_unlock_irqrestore(&zone->lock, flags);
2347                                return ret;
2348                        }
2349                }
2350                spin_unlock_irqrestore(&zone->lock, flags);
2351        }
2352
2353        return false;
2354}
2355
2356/*
2357 * Try finding a free buddy page on the fallback list and put it on the free
2358 * list of requested migratetype, possibly along with other pages from the same
2359 * block, depending on fragmentation avoidance heuristics. Returns true if
2360 * fallback was found so that __rmqueue_smallest() can grab it.
2361 *
2362 * The use of signed ints for order and current_order is a deliberate
2363 * deviation from the rest of this file, to make the for loop
2364 * condition simpler.
2365 */
2366static __always_inline bool
2367__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
2368{
2369        struct free_area *area;
2370        int current_order;
2371        struct page *page;
2372        int fallback_mt;
2373        bool can_steal;
2374
2375        /*
2376         * Find the largest available free page in the other list. This roughly
2377         * approximates finding the pageblock with the most free pages, which
2378         * would be too costly to do exactly.
2379         */
2380        for (current_order = MAX_ORDER - 1; current_order >= order;
2381                                --current_order) {
2382                area = &(zone->free_area[current_order]);
2383                fallback_mt = find_suitable_fallback(area, current_order,
2384                                start_migratetype, false, &can_steal);
2385                if (fallback_mt == -1)
2386                        continue;
2387
2388                /*
2389                 * We cannot steal all free pages from the pageblock and the
2390                 * requested migratetype is movable. In that case it's better to
2391                 * steal and split the smallest available page instead of the
2392                 * largest available page, because even if the next movable
2393                 * allocation falls back into a different pageblock than this
2394                 * one, it won't cause permanent fragmentation.
2395                 */
2396                if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2397                                        && current_order > order)
2398                        goto find_smallest;
2399
2400                goto do_steal;
2401        }
2402
2403        return false;
2404
2405find_smallest:
2406        for (current_order = order; current_order < MAX_ORDER;
2407                                                        current_order++) {
2408                area = &(zone->free_area[current_order]);
2409                fallback_mt = find_suitable_fallback(area, current_order,
2410                                start_migratetype, false, &can_steal);
2411                if (fallback_mt != -1)
2412                        break;
2413        }
2414
2415        /*
2416         * This should not happen - we already found a suitable fallback
2417         * when looking for the largest page.
2418         */
2419        VM_BUG_ON(current_order == MAX_ORDER);
2420
2421do_steal:
2422        page = list_first_entry(&area->free_list[fallback_mt],
2423                                                        struct page, lru);
2424
2425        steal_suitable_fallback(zone, page, start_migratetype, can_steal);
2426
2427        trace_mm_page_alloc_extfrag(page, order, current_order,
2428                start_migratetype, fallback_mt);
2429
2430        return true;
2431
2432}
2433
2434/*
2435 * Do the hard work of removing an element from the buddy allocator.
2436 * Call me with the zone->lock already held.
2437 */
2438static __always_inline struct page *
2439__rmqueue(struct zone *zone, unsigned int order, int migratetype)
2440{
2441        struct page *page;
2442
2443retry:
2444        page = __rmqueue_smallest(zone, order, migratetype);
2445        if (unlikely(!page)) {
2446                if (migratetype == MIGRATE_MOVABLE)
2447                        page = __rmqueue_cma_fallback(zone, order);
2448
2449                if (!page && __rmqueue_fallback(zone, order, migratetype))
2450                        goto retry;
2451        }
2452
2453        trace_mm_page_alloc_zone_locked(page, order, migratetype);
2454        return page;
2455}
2456
2457/*
2458 * Obtain a specified number of elements from the buddy allocator, all under
2459 * a single hold of the lock, for efficiency.  Add them to the supplied list.
2460 * Returns the number of new pages which were placed at *list.
2461 */
2462static int rmqueue_bulk(struct zone *zone, unsigned int order,
2463                        unsigned long count, struct list_head *list,
2464                        int migratetype)
2465{
2466        int i, alloced = 0;
2467
2468        spin_lock(&zone->lock);
2469        for (i = 0; i < count; ++i) {
2470                struct page *page = __rmqueue(zone, order, migratetype);
2471                if (unlikely(page == NULL))
2472                        break;
2473
2474                if (unlikely(check_pcp_refill(page)))
2475                        continue;
2476
2477                /*
2478                 * Split buddy pages returned by expand() are received here in
2479                 * physical page order. The page is added to the tail of
2480                 * caller's list. From the callers perspective, the linked list
2481                 * is ordered by page number under some conditions. This is
2482                 * useful for IO devices that can forward direction from the
2483                 * head, thus also in the physical page order. This is useful
2484                 * for IO devices that can merge IO requests if the physical
2485                 * pages are ordered properly.
2486                 */
2487                list_add_tail(&page->lru, list);
2488                alloced++;
2489                if (is_migrate_cma(get_pcppage_migratetype(page)))
2490                        __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2491                                              -(1 << order));
2492        }
2493
2494        /*
2495         * i pages were removed from the buddy list even if some leak due
2496         * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2497         * on i. Do not confuse with 'alloced' which is the number of
2498         * pages added to the pcp list.
2499         */
2500        __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2501        spin_unlock(&zone->lock);
2502        return alloced;
2503}
2504
2505#ifdef CONFIG_NUMA
2506/*
2507 * Called from the vmstat counter updater to drain pagesets of this
2508 * currently executing processor on remote nodes after they have
2509 * expired.
2510 *
2511 * Note that this function must be called with the thread pinned to
2512 * a single processor.
2513 */
2514void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2515{
2516        unsigned long flags;
2517        int to_drain, batch;
2518
2519        local_irq_save(flags);
2520        batch = READ_ONCE(pcp->batch);
2521        to_drain = min(pcp->count, batch);
2522        if (to_drain > 0)
2523                free_pcppages_bulk(zone, to_drain, pcp);
2524        local_irq_restore(flags);
2525}
2526#endif
2527
2528/*
2529 * Drain pcplists of the indicated processor and zone.
2530 *
2531 * The processor must either be the current processor and the
2532 * thread pinned to the current processor or a processor that
2533 * is not online.
2534 */
2535static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2536{
2537        unsigned long flags;
2538        struct per_cpu_pageset *pset;
2539        struct per_cpu_pages *pcp;
2540
2541        local_irq_save(flags);
2542        pset = per_cpu_ptr(zone->pageset, cpu);
2543
2544        pcp = &pset->pcp;
2545        if (pcp->count)
2546                free_pcppages_bulk(zone, pcp->count, pcp);
2547        local_irq_restore(flags);
2548}
2549
2550/*
2551 * Drain pcplists of all zones on the indicated processor.
2552 *
2553 * The processor must either be the current processor and the
2554 * thread pinned to the current processor or a processor that
2555 * is not online.
2556 */
2557static void drain_pages(unsigned int cpu)
2558{
2559        struct zone *zone;
2560
2561        for_each_populated_zone(zone) {
2562                drain_pages_zone(cpu, zone);
2563        }
2564}
2565
2566/*
2567 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2568 *
2569 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2570 * the single zone's pages.
2571 */
2572void drain_local_pages(struct zone *zone)
2573{
2574        int cpu = smp_processor_id();
2575
2576        if (zone)
2577                drain_pages_zone(cpu, zone);
2578        else
2579                drain_pages(cpu);
2580}
2581
2582static void drain_local_pages_wq(struct work_struct *work)
2583{
2584        /*
2585         * drain_all_pages doesn't use proper cpu hotplug protection so
2586         * we can race with cpu offline when the WQ can move this from
2587         * a cpu pinned worker to an unbound one. We can operate on a different
2588         * cpu which is allright but we also have to make sure to not move to
2589         * a different one.
2590         */
2591        preempt_disable();
2592        drain_local_pages(NULL);
2593        preempt_enable();
2594}
2595
2596/*
2597 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2598 *
2599 * When zone parameter is non-NULL, spill just the single zone's pages.
2600 *
2601 * Note that this can be extremely slow as the draining happens in a workqueue.
2602 */
2603void drain_all_pages(struct zone *zone)
2604{
2605        int cpu;
2606
2607        /*
2608         * Allocate in the BSS so we wont require allocation in
2609         * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2610         */
2611        static cpumask_t cpus_with_pcps;
2612
2613        /*
2614         * Make sure nobody triggers this path before mm_percpu_wq is fully
2615         * initialized.
2616         */
2617        if (WARN_ON_ONCE(!mm_percpu_wq))
2618                return;
2619
2620        /*
2621         * Do not drain if one is already in progress unless it's specific to
2622         * a zone. Such callers are primarily CMA and memory hotplug and need
2623         * the drain to be complete when the call returns.
2624         */
2625        if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2626                if (!zone)
2627                        return;
2628                mutex_lock(&pcpu_drain_mutex);
2629        }
2630
2631        /*
2632         * We don't care about racing with CPU hotplug event
2633         * as offline notification will cause the notified
2634         * cpu to drain that CPU pcps and on_each_cpu_mask
2635         * disables preemption as part of its processing
2636         */
2637        for_each_online_cpu(cpu) {
2638                struct per_cpu_pageset *pcp;
2639                struct zone *z;
2640                bool has_pcps = false;
2641
2642                if (zone) {
2643                        pcp = per_cpu_ptr(zone->pageset, cpu);
2644                        if (pcp->pcp.count)
2645                                has_pcps = true;
2646                } else {
2647                        for_each_populated_zone(z) {
2648                                pcp = per_cpu_ptr(z->pageset, cpu);
2649                                if (pcp->pcp.count) {
2650                                        has_pcps = true;
2651                                        break;
2652                                }
2653                        }
2654                }
2655
2656                if (has_pcps)
2657                        cpumask_set_cpu(cpu, &cpus_with_pcps);
2658                else
2659                        cpumask_clear_cpu(cpu, &cpus_with_pcps);
2660        }
2661
2662        for_each_cpu(cpu, &cpus_with_pcps) {
2663                struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2664                INIT_WORK(work, drain_local_pages_wq);
2665                queue_work_on(cpu, mm_percpu_wq, work);
2666        }
2667        for_each_cpu(cpu, &cpus_with_pcps)
2668                flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2669
2670        mutex_unlock(&pcpu_drain_mutex);
2671}
2672
2673#ifdef CONFIG_HIBERNATION
2674
2675/*
2676 * Touch the watchdog for every WD_PAGE_COUNT pages.
2677 */
2678#define WD_PAGE_COUNT   (128*1024)
2679
2680void mark_free_pages(struct zone *zone)
2681{
2682        unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2683        unsigned long flags;
2684        unsigned int order, t;
2685        struct page *page;
2686
2687        if (zone_is_empty(zone))
2688                return;
2689
2690        spin_lock_irqsave(&zone->lock, flags);
2691
2692        max_zone_pfn = zone_end_pfn(zone);
2693        for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2694                if (pfn_valid(pfn)) {
2695                        page = pfn_to_page(pfn);
2696
2697                        if (!--page_count) {
2698                                touch_nmi_watchdog();
2699                                page_count = WD_PAGE_COUNT;
2700                        }
2701
2702                        if (page_zone(page) != zone)
2703                                continue;
2704
2705                        if (!swsusp_page_is_forbidden(page))
2706                                swsusp_unset_page_free(page);
2707                }
2708
2709        for_each_migratetype_order(order, t) {
2710                list_for_each_entry(page,
2711                                &zone->free_area[order].free_list[t], lru) {
2712                        unsigned long i;
2713
2714                        pfn = page_to_pfn(page);
2715                        for (i = 0; i < (1UL << order); i++) {
2716                                if (!--page_count) {
2717                                        touch_nmi_watchdog();
2718                                        page_count = WD_PAGE_COUNT;
2719                                }
2720                                swsusp_set_page_free(pfn_to_page(pfn + i));
2721                        }
2722                }
2723        }
2724        spin_unlock_irqrestore(&zone->lock, flags);
2725}
2726#endif /* CONFIG_PM */
2727
2728static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2729{
2730        int migratetype;
2731
2732        if (!free_pcp_prepare(page))
2733                return false;
2734
2735        migratetype = get_pfnblock_migratetype(page, pfn);
2736        set_pcppage_migratetype(page, migratetype);
2737        return true;
2738}
2739
2740static void free_unref_page_commit(struct page *page, unsigned long pfn)
2741{
2742        struct zone *zone = page_zone(page);
2743        struct per_cpu_pages *pcp;
2744        int migratetype;
2745
2746        migratetype = get_pcppage_migratetype(page);
2747        __count_vm_event(PGFREE);
2748
2749        /*
2750         * We only track unmovable, reclaimable and movable on pcp lists.
2751         * Free ISOLATE pages back to the allocator because they are being
2752         * offlined but treat HIGHATOMIC as movable pages so we can get those
2753         * areas back if necessary. Otherwise, we may have to free
2754         * excessively into the page allocator
2755         */
2756        if (migratetype >= MIGRATE_PCPTYPES) {
2757                if (unlikely(is_migrate_isolate(migratetype))) {
2758                        free_one_page(zone, page, pfn, 0, migratetype);
2759                        return;
2760                }
2761                migratetype = MIGRATE_MOVABLE;
2762        }
2763
2764        pcp = &this_cpu_ptr(zone->pageset)->pcp;
2765        list_add(&page->lru, &pcp->lists[migratetype]);
2766        pcp->count++;
2767        if (pcp->count >= pcp->high) {
2768                unsigned long batch = READ_ONCE(pcp->batch);
2769                free_pcppages_bulk(zone, batch, pcp);
2770        }
2771}
2772
2773/*
2774 * Free a 0-order page
2775 */
2776void free_unref_page(struct page *page)
2777{
2778        unsigned long flags;
2779        unsigned long pfn = page_to_pfn(page);
2780
2781        if (!free_unref_page_prepare(page, pfn))
2782                return;
2783
2784        local_irq_save(flags);
2785        free_unref_page_commit(page, pfn);
2786        local_irq_restore(flags);
2787}
2788
2789/*
2790 * Free a list of 0-order pages
2791 */
2792void free_unref_page_list(struct list_head *list)
2793{
2794        struct page *page, *next;
2795        unsigned long flags, pfn;
2796        int batch_count = 0;
2797
2798        /* Prepare pages for freeing */
2799        list_for_each_entry_safe(page, next, list, lru) {
2800                pfn = page_to_pfn(page);
2801                if (!free_unref_page_prepare(page, pfn))
2802                        list_del(&page->lru);
2803                set_page_private(page, pfn);
2804        }
2805
2806        local_irq_save(flags);
2807        list_for_each_entry_safe(page, next, list, lru) {
2808                unsigned long pfn = page_private(page);
2809
2810                set_page_private(page, 0);
2811                trace_mm_page_free_batched(page);
2812                free_unref_page_commit(page, pfn);
2813
2814                /*
2815                 * Guard against excessive IRQ disabled times when we get
2816                 * a large list of pages to free.
2817                 */
2818                if (++batch_count == SWAP_CLUSTER_MAX) {
2819                        local_irq_restore(flags);
2820                        batch_count = 0;
2821                        local_irq_save(flags);
2822                }
2823        }
2824        local_irq_restore(flags);
2825}
2826
2827/*
2828 * split_page takes a non-compound higher-order page, and splits it into
2829 * n (1<<order) sub-pages: page[0..n]
2830 * Each sub-page must be freed individually.
2831 *
2832 * Note: this is probably too low level an operation for use in drivers.
2833 * Please consult with lkml before using this in your driver.
2834 */
2835void split_page(struct page *page, unsigned int order)
2836{
2837        int i;
2838
2839        VM_BUG_ON_PAGE(PageCompound(page), page);
2840        VM_BUG_ON_PAGE(!page_count(page), page);
2841
2842        for (i = 1; i < (1 << order); i++)
2843                set_page_refcounted(page + i);
2844        split_page_owner(page, order);
2845}
2846EXPORT_SYMBOL_GPL(split_page);
2847
2848int __isolate_free_page(struct page *page, unsigned int order)
2849{
2850        unsigned long watermark;
2851        struct zone *zone;
2852        int mt;
2853
2854        BUG_ON(!PageBuddy(page));
2855
2856        zone = page_zone(page);
2857        mt = get_pageblock_migratetype(page);
2858
2859        if (!is_migrate_isolate(mt)) {
2860                /*
2861                 * Obey watermarks as if the page was being allocated. We can
2862                 * emulate a high-order watermark check with a raised order-0
2863                 * watermark, because we already know our high-order page
2864                 * exists.
2865                 */
2866                watermark = min_wmark_pages(zone) + (1UL << order);
2867                if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2868                        return 0;
2869
2870                __mod_zone_freepage_state(zone, -(1UL << order), mt);
2871        }
2872
2873        /* Remove page from free list */
2874        list_del(&page->lru);
2875        zone->free_area[order].nr_free--;
2876        rmv_page_order(page);
2877
2878        /*
2879         * Set the pageblock if the isolated page is at least half of a
2880         * pageblock
2881         */
2882        if (order >= pageblock_order - 1) {
2883                struct page *endpage = page + (1 << order) - 1;
2884                for (; page < endpage; page += pageblock_nr_pages) {
2885                        int mt = get_pageblock_migratetype(page);
2886                        if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2887                            && !is_migrate_highatomic(mt))
2888                                set_pageblock_migratetype(page,
2889                                                          MIGRATE_MOVABLE);
2890                }
2891        }
2892
2893
2894        return 1UL << order;
2895}
2896
2897/*
2898 * Update NUMA hit/miss statistics
2899 *
2900 * Must be called with interrupts disabled.
2901 */
2902static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2903{
2904#ifdef CONFIG_NUMA
2905        enum numa_stat_item local_stat = NUMA_LOCAL;
2906
2907        /* skip numa counters update if numa stats is disabled */
2908        if (!static_branch_likely(&vm_numa_stat_key))
2909                return;
2910
2911        if (zone_to_nid(z) != numa_node_id())
2912                local_stat = NUMA_OTHER;
2913
2914        if (zone_to_nid(z) == zone_to_nid(preferred_zone))
2915                __inc_numa_state(z, NUMA_HIT);
2916        else {
2917                __inc_numa_state(z, NUMA_MISS);
2918                __inc_numa_state(preferred_zone, NUMA_FOREIGN);
2919        }
2920        __inc_numa_state(z, local_stat);
2921#endif
2922}
2923
2924/* Remove page from the per-cpu list, caller must protect the list */
2925static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2926                        struct per_cpu_pages *pcp,
2927                        struct list_head *list)
2928{
2929        struct page *page;
2930
2931        do {
2932                if (list_empty(list)) {
2933                        pcp->count += rmqueue_bulk(zone, 0,
2934                                        pcp->batch, list,
2935                                        migratetype);
2936                        if (unlikely(list_empty(list)))
2937                                return NULL;
2938                }
2939
2940                page = list_first_entry(list, struct page, lru);
2941                list_del(&page->lru);
2942                pcp->count--;
2943        } while (check_new_pcp(page));
2944
2945        return page;
2946}
2947
2948/* Lock and remove page from the per-cpu list */
2949static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2950                        struct zone *zone, unsigned int order,
2951                        gfp_t gfp_flags, int migratetype)
2952{
2953        struct per_cpu_pages *pcp;
2954        struct list_head *list;
2955        struct page *page;
2956        unsigned long flags;
2957
2958        local_irq_save(flags);
2959        pcp = &this_cpu_ptr(zone->pageset)->pcp;
2960        list = &pcp->lists[migratetype];
2961        page = __rmqueue_pcplist(zone,  migratetype, pcp, list);
2962        if (page) {
2963                __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2964                zone_statistics(preferred_zone, zone);
2965        }
2966        local_irq_restore(flags);
2967        return page;
2968}
2969
2970/*
2971 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2972 */
2973static inline
2974struct page *rmqueue(struct zone *preferred_zone,
2975                        struct zone *zone, unsigned int order,
2976                        gfp_t gfp_flags, unsigned int alloc_flags,
2977                        int migratetype)
2978{
2979        unsigned long flags;
2980        struct page *page;
2981
2982        if (likely(order == 0)) {
2983                page = rmqueue_pcplist(preferred_zone, zone, order,
2984                                gfp_flags, migratetype);
2985                goto out;
2986        }
2987
2988        /*
2989         * We most definitely don't want callers attempting to
2990         * allocate greater than order-1 page units with __GFP_NOFAIL.
2991         */
2992        WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2993        spin_lock_irqsave(&zone->lock, flags);
2994
2995        do {
2996                page = NULL;
2997                if (alloc_flags & ALLOC_HARDER) {
2998                        page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2999                        if (page)
3000                                trace_mm_page_alloc_zone_locked(page, order, migratetype);
3001                }
3002                if (!page)
3003                        page = __rmqueue(zone, order, migratetype);
3004        } while (page && check_new_pages(page, order));
3005        spin_unlock(&zone->lock);
3006        if (!page)
3007                goto failed;
3008        __mod_zone_freepage_state(zone, -(1 << order),
3009                                  get_pcppage_migratetype(page));
3010
3011        __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3012        zone_statistics(preferred_zone, zone);
3013        local_irq_restore(flags);
3014
3015out:
3016        VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3017        return page;
3018
3019failed:
3020        local_irq_restore(flags);
3021        return NULL;
3022}
3023
3024#ifdef CONFIG_FAIL_PAGE_ALLOC
3025
3026static struct {
3027        struct fault_attr attr;
3028
3029        bool ignore_gfp_highmem;
3030        bool ignore_gfp_reclaim;
3031        u32 min_order;
3032} fail_page_alloc = {
3033        .attr = FAULT_ATTR_INITIALIZER,
3034        .ignore_gfp_reclaim = true,
3035        .ignore_gfp_highmem = true,
3036        .min_order = 1,
3037};
3038
3039static int __init setup_fail_page_alloc(char *str)
3040{
3041        return setup_fault_attr(&fail_page_alloc.attr, str);
3042}
3043__setup("fail_page_alloc=", setup_fail_page_alloc);
3044
3045static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3046{
3047        if (order < fail_page_alloc.min_order)
3048                return false;
3049        if (gfp_mask & __GFP_NOFAIL)
3050                return false;
3051        if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3052                return false;
3053        if (fail_page_alloc.ignore_gfp_reclaim &&
3054                        (gfp_mask & __GFP_DIRECT_RECLAIM))
3055                return false;
3056
3057        return should_fail(&fail_page_alloc.attr, 1 << order);
3058}
3059
3060#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3061
3062static int __init fail_page_alloc_debugfs(void)
3063{
3064        umode_t mode = S_IFREG | 0600;
3065        struct dentry *dir;
3066
3067        dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3068                                        &fail_page_alloc.attr);
3069        if (IS_ERR(dir))
3070                return PTR_ERR(dir);
3071
3072        if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
3073                                &fail_page_alloc.ignore_gfp_reclaim))
3074                goto fail;
3075        if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3076                                &fail_page_alloc.ignore_gfp_highmem))
3077                goto fail;
3078        if (!debugfs_create_u32("min-order", mode, dir,
3079                                &fail_page_alloc.min_order))
3080                goto fail;
3081
3082        return 0;
3083fail:
3084        debugfs_remove_recursive(dir);
3085
3086        return -ENOMEM;
3087}
3088
3089late_initcall(fail_page_alloc_debugfs);
3090
3091#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3092
3093#else /* CONFIG_FAIL_PAGE_ALLOC */
3094
3095static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3096{
3097        return false;
3098}
3099
3100#endif /* CONFIG_FAIL_PAGE_ALLOC */
3101
3102/*
3103 * Return true if free base pages are above 'mark'. For high-order checks it
3104 * will return true of the order-0 watermark is reached and there is at least
3105 * one free page of a suitable size. Checking now avoids taking the zone lock
3106 * to check in the allocation paths if no pages are free.
3107 */
3108bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3109                         int classzone_idx, unsigned int alloc_flags,
3110                         long free_pages)
3111{
3112        long min = mark;
3113        int o;
3114        const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3115
3116        /* free_pages may go negative - that's OK */
3117        free_pages -= (1 << order) - 1;
3118
3119        if (alloc_flags & ALLOC_HIGH)
3120                min -= min / 2;
3121
3122        /*
3123         * If the caller does not have rights to ALLOC_HARDER then subtract
3124         * the high-atomic reserves. This will over-estimate the size of the
3125         * atomic reserve but it avoids a search.
3126         */
3127        if (likely(!alloc_harder)) {
3128                free_pages -= z->nr_reserved_highatomic;
3129        } else {
3130                /*
3131                 * OOM victims can try even harder than normal ALLOC_HARDER
3132                 * users on the grounds that it's definitely going to be in
3133                 * the exit path shortly and free memory. Any allocation it
3134                 * makes during the free path will be small and short-lived.
3135                 */
3136                if (alloc_flags & ALLOC_OOM)
3137                        min -= min / 2;
3138                else
3139                        min -= min / 4;
3140        }
3141
3142
3143#ifdef CONFIG_CMA
3144        /* If allocation can't use CMA areas don't use free CMA pages */
3145        if (!(alloc_flags & ALLOC_CMA))
3146                free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3147#endif
3148
3149        /*
3150         * Check watermarks for an order-0 allocation request. If these
3151         * are not met, then a high-order request also cannot go ahead
3152         * even if a suitable page happened to be free.
3153         */
3154        if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3155                return false;
3156
3157        /* If this is an order-0 request then the watermark is fine */
3158        if (!order)
3159                return true;
3160
3161        /* For a high-order request, check at least one suitable page is free */
3162        for (o = order; o < MAX_ORDER; o++) {
3163                struct free_area *area = &z->free_area[o];
3164                int mt;
3165
3166                if (!area->nr_free)
3167                        continue;
3168
3169                for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3170                        if (!list_empty(&area->free_list[mt]))
3171                                return true;
3172                }
3173
3174#ifdef CONFIG_CMA
3175                if ((alloc_flags & ALLOC_CMA) &&
3176                    !list_empty(&area->free_list[MIGRATE_CMA])) {
3177                        return true;
3178                }
3179#endif
3180                if (alloc_harder &&
3181                        !list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3182                        return true;
3183        }
3184        return false;
3185}
3186
3187bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3188                      int classzone_idx, unsigned int alloc_flags)
3189{
3190        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3191                                        zone_page_state(z, NR_FREE_PAGES));
3192}
3193
3194static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3195                unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3196{
3197        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3198        long cma_pages = 0;
3199
3200#ifdef CONFIG_CMA
3201        /* If allocation can't use CMA areas don't use free CMA pages */
3202        if (!(alloc_flags & ALLOC_CMA))
3203                cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3204#endif
3205
3206        /*
3207         * Fast check for order-0 only. If this fails then the reserves
3208         * need to be calculated. There is a corner case where the check
3209         * passes but only the high-order atomic reserve are free. If
3210         * the caller is !atomic then it'll uselessly search the free
3211         * list. That corner case is then slower but it is harmless.
3212         */
3213        if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3214                return true;
3215
3216        return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3217                                        free_pages);
3218}
3219
3220bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3221                        unsigned long mark, int classzone_idx)
3222{
3223        long free_pages = zone_page_state(z, NR_FREE_PAGES);
3224
3225        if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3226                free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3227
3228        return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3229                                                                free_pages);
3230}
3231
3232#ifdef CONFIG_NUMA
3233static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3234{
3235        return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3236                                RECLAIM_DISTANCE;
3237}
3238#else   /* CONFIG_NUMA */
3239static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3240{
3241        return true;
3242}
3243#endif  /* CONFIG_NUMA */
3244
3245/*
3246 * get_page_from_freelist goes through the zonelist trying to allocate
3247 * a page.
3248 */
3249static struct page *
3250get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3251                                                const struct alloc_context *ac)
3252{
3253        struct zoneref *z = ac->preferred_zoneref;
3254        struct zone *zone;
3255        struct pglist_data *last_pgdat_dirty_limit = NULL;
3256
3257        /*
3258         * Scan zonelist, looking for a zone with enough free.
3259         * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3260         */
3261        for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3262                                                                ac->nodemask) {
3263                struct page *page;
3264                unsigned long mark;
3265
3266                if (cpusets_enabled() &&
3267                        (alloc_flags & ALLOC_CPUSET) &&
3268                        !__cpuset_zone_allowed(zone, gfp_mask))
3269                                continue;
3270                /*
3271                 * When allocating a page cache page for writing, we
3272                 * want to get it from a node that is within its dirty
3273                 * limit, such that no single node holds more than its
3274                 * proportional share of globally allowed dirty pages.
3275                 * The dirty limits take into account the node's
3276                 * lowmem reserves and high watermark so that kswapd
3277                 * should be able to balance it without having to
3278                 * write pages from its LRU list.
3279                 *
3280                 * XXX: For now, allow allocations to potentially
3281                 * exceed the per-node dirty limit in the slowpath
3282                 * (spread_dirty_pages unset) before going into reclaim,
3283                 * which is important when on a NUMA setup the allowed
3284                 * nodes are together not big enough to reach the
3285                 * global limit.  The proper fix for these situations
3286                 * will require awareness of nodes in the
3287                 * dirty-throttling and the flusher threads.
3288                 */
3289                if (ac->spread_dirty_pages) {
3290                        if (last_pgdat_dirty_limit == zone->zone_pgdat)
3291                                continue;
3292
3293                        if (!node_dirty_ok(zone->zone_pgdat)) {
3294                                last_pgdat_dirty_limit = zone->zone_pgdat;
3295                                continue;
3296                        }
3297                }
3298
3299                mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3300                if (!zone_watermark_fast(zone, order, mark,
3301                                       ac_classzone_idx(ac), alloc_flags)) {
3302                        int ret;
3303
3304#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3305                        /*
3306                         * Watermark failed for this zone, but see if we can
3307                         * grow this zone if it contains deferred pages.
3308                         */
3309                        if (static_branch_unlikely(&deferred_pages)) {
3310                                if (_deferred_grow_zone(zone, order))
3311                                        goto try_this_zone;
3312                        }
3313#endif
3314                        /* Checked here to keep the fast path fast */
3315                        BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3316                        if (alloc_flags & ALLOC_NO_WATERMARKS)
3317                                goto try_this_zone;
3318
3319                        if (node_reclaim_mode == 0 ||
3320                            !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3321                                continue;
3322
3323                        ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3324                        switch (ret) {
3325                        case NODE_RECLAIM_NOSCAN:
3326                                /* did not scan */
3327                                continue;
3328                        case NODE_RECLAIM_FULL:
3329                                /* scanned but unreclaimable */
3330                                continue;
3331                        default:
3332                                /* did we reclaim enough */
3333                                if (zone_watermark_ok(zone, order, mark,
3334                                                ac_classzone_idx(ac), alloc_flags))
3335                                        goto try_this_zone;
3336
3337                                continue;
3338                        }
3339                }
3340
3341try_this_zone:
3342                page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3343                                gfp_mask, alloc_flags, ac->migratetype);
3344                if (page) {
3345                        prep_new_page(page, order, gfp_mask, alloc_flags);
3346
3347                        /*
3348                         * If this is a high-order atomic allocation then check
3349                         * if the pageblock should be reserved for the future
3350                         */
3351                        if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3352                                reserve_highatomic_pageblock(page, zone, order);
3353
3354                        return page;
3355                } else {
3356#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3357                        /* Try again if zone has deferred pages */
3358                        if (static_branch_unlikely(&deferred_pages)) {
3359                                if (_deferred_grow_zone(zone, order))
3360                                        goto try_this_zone;
3361                        }
3362#endif
3363                }
3364        }
3365
3366        return NULL;
3367}
3368
3369/*
3370 * Large machines with many possible nodes should not always dump per-node
3371 * meminfo in irq context.
3372 */
3373static inline bool should_suppress_show_mem(void)
3374{
3375        bool ret = false;
3376
3377#if NODES_SHIFT > 8
3378        ret = in_interrupt();
3379#endif
3380        return ret;
3381}
3382
3383static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3384{
3385        unsigned int filter = SHOW_MEM_FILTER_NODES;
3386        static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3387
3388        if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3389                return;
3390
3391        /*
3392         * This documents exceptions given to allocations in certain
3393         * contexts that are allowed to allocate outside current's set
3394         * of allowed nodes.
3395         */
3396        if (!(gfp_mask & __GFP_NOMEMALLOC))
3397                if (tsk_is_oom_victim(current) ||
3398                    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3399                        filter &= ~SHOW_MEM_FILTER_NODES;
3400        if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3401                filter &= ~SHOW_MEM_FILTER_NODES;
3402
3403        show_mem(filter, nodemask);
3404}
3405
3406void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3407{
3408        struct va_format vaf;
3409        va_list args;
3410        static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3411                                      DEFAULT_RATELIMIT_BURST);
3412
3413        if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3414                return;
3415
3416        va_start(args, fmt);
3417        vaf.fmt = fmt;
3418        vaf.va = &args;
3419        pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3420                        current->comm, &vaf, gfp_mask, &gfp_mask,
3421                        nodemask_pr_args(nodemask));
3422        va_end(args);
3423
3424        cpuset_print_current_mems_allowed();
3425
3426        dump_stack();
3427        warn_alloc_show_mem(gfp_mask, nodemask);
3428}
3429
3430static inline struct page *
3431__alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3432                              unsigned int alloc_flags,
3433                              const struct alloc_context *ac)
3434{
3435        struct page *page;
3436
3437        page = get_page_from_freelist(gfp_mask, order,
3438                        alloc_flags|ALLOC_CPUSET, ac);
3439        /*
3440         * fallback to ignore cpuset restriction if our nodes
3441         * are depleted
3442         */
3443        if (!page)
3444                page = get_page_from_freelist(gfp_mask, order,
3445                                alloc_flags, ac);
3446
3447        return page;
3448}
3449
3450static inline struct page *
3451__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3452        const struct alloc_context *ac, unsigned long *did_some_progress)
3453{
3454        struct oom_control oc = {
3455                .zonelist = ac->zonelist,
3456                .nodemask = ac->nodemask,
3457                .memcg = NULL,
3458                .gfp_mask = gfp_mask,
3459                .order = order,
3460        };
3461        struct page *page;
3462
3463        *did_some_progress = 0;
3464
3465        /*
3466         * Acquire the oom lock.  If that fails, somebody else is
3467         * making progress for us.
3468         */
3469        if (!mutex_trylock(&oom_lock)) {
3470                *did_some_progress = 1;
3471                schedule_timeout_uninterruptible(1);
3472                return NULL;
3473        }
3474
3475        /*
3476         * Go through the zonelist yet one more time, keep very high watermark
3477         * here, this is only to catch a parallel oom killing, we must fail if
3478         * we're still under heavy pressure. But make sure that this reclaim
3479         * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3480         * allocation which will never fail due to oom_lock already held.
3481         */
3482        page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3483                                      ~__GFP_DIRECT_RECLAIM, order,
3484                                      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3485        if (page)
3486                goto out;
3487
3488        /* Coredumps can quickly deplete all memory reserves */
3489        if (current->flags & PF_DUMPCORE)
3490                goto out;
3491        /* The OOM killer will not help higher order allocs */
3492        if (order > PAGE_ALLOC_COSTLY_ORDER)
3493                goto out;
3494        /*
3495         * We have already exhausted all our reclaim opportunities without any
3496         * success so it is time to admit defeat. We will skip the OOM killer
3497         * because it is very likely that the caller has a more reasonable
3498         * fallback than shooting a random task.
3499         */
3500        if (gfp_mask & __GFP_RETRY_MAYFAIL)
3501                goto out;
3502        /* The OOM killer does not needlessly kill tasks for lowmem */
3503        if (ac->high_zoneidx < ZONE_NORMAL)
3504                goto out;
3505        if (pm_suspended_storage())
3506                goto out;
3507        /*
3508         * XXX: GFP_NOFS allocations should rather fail than rely on
3509         * other request to make a forward progress.
3510         * We are in an unfortunate situation where out_of_memory cannot
3511         * do much for this context but let's try it to at least get
3512         * access to memory reserved if the current task is killed (see
3513         * out_of_memory). Once filesystems are ready to handle allocation
3514         * failures more gracefully we should just bail out here.
3515         */
3516
3517        /* The OOM killer may not free memory on a specific node */
3518        if (gfp_mask & __GFP_THISNODE)
3519                goto out;
3520
3521        /* Exhausted what can be done so it's blame time */
3522        if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3523                *did_some_progress = 1;
3524
3525                /*
3526                 * Help non-failing allocations by giving them access to memory
3527                 * reserves
3528                 */
3529                if (gfp_mask & __GFP_NOFAIL)
3530                        page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3531                                        ALLOC_NO_WATERMARKS, ac);
3532        }
3533out:
3534        mutex_unlock(&oom_lock);
3535        return page;
3536}
3537
3538/*
3539 * Maximum number of compaction retries wit a progress before OOM
3540 * killer is consider as the only way to move forward.
3541 */
3542#define MAX_COMPACT_RETRIES 16
3543
3544#ifdef CONFIG_COMPACTION
3545/* Try memory compaction for high-order allocations before reclaim */
3546static struct page *
3547__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3548                unsigned int alloc_flags, const struct alloc_context *ac,
3549                enum compact_priority prio, enum compact_result *compact_result)
3550{
3551        struct page *page;
3552        unsigned int noreclaim_flag;
3553
3554        if (!order)
3555                return NULL;
3556
3557        noreclaim_flag = memalloc_noreclaim_save();
3558        *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3559                                                                        prio);
3560        memalloc_noreclaim_restore(noreclaim_flag);
3561
3562        if (*compact_result <= COMPACT_INACTIVE)
3563                return NULL;
3564
3565        /*
3566         * At least in one zone compaction wasn't deferred or skipped, so let's
3567         * count a compaction stall
3568         */
3569        count_vm_event(COMPACTSTALL);
3570
3571        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3572
3573        if (page) {
3574                struct zone *zone = page_zone(page);
3575
3576                zone->compact_blockskip_flush = false;
3577                compaction_defer_reset(zone, order, true);
3578                count_vm_event(COMPACTSUCCESS);
3579                return page;
3580        }
3581
3582        /*
3583         * It's bad if compaction run occurs and fails. The most likely reason
3584         * is that pages exist, but not enough to satisfy watermarks.
3585         */
3586        count_vm_event(COMPACTFAIL);
3587
3588        cond_resched();
3589
3590        return NULL;
3591}
3592
3593static inline bool
3594should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3595                     enum compact_result compact_result,
3596                     enum compact_priority *compact_priority,
3597                     int *compaction_retries)
3598{
3599        int max_retries = MAX_COMPACT_RETRIES;
3600        int min_priority;
3601        bool ret = false;
3602        int retries = *compaction_retries;
3603        enum compact_priority priority = *compact_priority;
3604
3605        if (!order)
3606                return false;
3607
3608        if (compaction_made_progress(compact_result))
3609                (*compaction_retries)++;
3610
3611        /*
3612         * compaction considers all the zone as desperately out of memory
3613         * so it doesn't really make much sense to retry except when the
3614         * failure could be caused by insufficient priority
3615         */
3616        if (compaction_failed(compact_result))
3617                goto check_priority;
3618
3619        /*
3620         * make sure the compaction wasn't deferred or didn't bail out early
3621         * due to locks contention before we declare that we should give up.
3622         * But do not retry if the given zonelist is not suitable for
3623         * compaction.
3624         */
3625        if (compaction_withdrawn(compact_result)) {
3626                ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3627                goto out;
3628        }
3629
3630        /*
3631         * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3632         * costly ones because they are de facto nofail and invoke OOM
3633         * killer to move on while costly can fail and users are ready
3634         * to cope with that. 1/4 retries is rather arbitrary but we
3635         * would need much more detailed feedback from compaction to
3636         * make a better decision.
3637         */
3638        if (order > PAGE_ALLOC_COSTLY_ORDER)
3639                max_retries /= 4;
3640        if (*compaction_retries <= max_retries) {
3641                ret = true;
3642                goto out;
3643        }
3644
3645        /*
3646         * Make sure there are attempts at the highest priority if we exhausted
3647         * all retries or failed at the lower priorities.
3648         */
3649check_priority:
3650        min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3651                        MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3652
3653        if (*compact_priority > min_priority) {
3654                (*compact_priority)--;
3655                *compaction_retries = 0;
3656                ret = true;
3657        }
3658out:
3659        trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3660        return ret;
3661}
3662#else
3663static inline struct page *
3664__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3665                unsigned int alloc_flags, const struct alloc_context *ac,
3666                enum compact_priority prio, enum compact_result *compact_result)
3667{
3668        *compact_result = COMPACT_SKIPPED;
3669        return NULL;
3670}
3671
3672static inline bool
3673should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3674                     enum compact_result compact_result,
3675                     enum compact_priority *compact_priority,
3676                     int *compaction_retries)
3677{
3678        struct zone *zone;
3679        struct zoneref *z;
3680
3681        if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3682                return false;
3683
3684        /*
3685         * There are setups with compaction disabled which would prefer to loop
3686         * inside the allocator rather than hit the oom killer prematurely.
3687         * Let's give them a good hope and keep retrying while the order-0
3688         * watermarks are OK.
3689         */
3690        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3691                                        ac->nodemask) {
3692                if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3693                                        ac_classzone_idx(ac), alloc_flags))
3694                        return true;
3695        }
3696        return false;
3697}
3698#endif /* CONFIG_COMPACTION */
3699
3700#ifdef CONFIG_LOCKDEP
3701static struct lockdep_map __fs_reclaim_map =
3702        STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3703
3704static bool __need_fs_reclaim(gfp_t gfp_mask)
3705{
3706        gfp_mask = current_gfp_context(gfp_mask);
3707
3708        /* no reclaim without waiting on it */
3709        if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3710                return false;
3711
3712        /* this guy won't enter reclaim */
3713        if (current->flags & PF_MEMALLOC)
3714                return false;
3715
3716        /* We're only interested __GFP_FS allocations for now */
3717        if (!(gfp_mask & __GFP_FS))
3718                return false;
3719
3720        if (gfp_mask & __GFP_NOLOCKDEP)
3721                return false;
3722
3723        return true;
3724}
3725
3726void __fs_reclaim_acquire(void)
3727{
3728        lock_map_acquire(&__fs_reclaim_map);
3729}
3730
3731void __fs_reclaim_release(void)
3732{
3733        lock_map_release(&__fs_reclaim_map);
3734}
3735
3736void fs_reclaim_acquire(gfp_t gfp_mask)
3737{
3738        if (__need_fs_reclaim(gfp_mask))
3739                __fs_reclaim_acquire();
3740}
3741EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
3742
3743void fs_reclaim_release(gfp_t gfp_mask)
3744{
3745        if (__need_fs_reclaim(gfp_mask))
3746                __fs_reclaim_release();
3747}
3748EXPORT_SYMBOL_GPL(fs_reclaim_release);
3749#endif
3750
3751/* Perform direct synchronous page reclaim */
3752static int
3753__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3754                                        const struct alloc_context *ac)
3755{
3756        struct reclaim_state reclaim_state;
3757        int progress;
3758        unsigned int noreclaim_flag;
3759
3760        cond_resched();
3761
3762        /* We now go into synchronous reclaim */
3763        cpuset_memory_pressure_bump();
3764        fs_reclaim_acquire(gfp_mask);
3765        noreclaim_flag = memalloc_noreclaim_save();
3766        reclaim_state.reclaimed_slab = 0;
3767        current->reclaim_state = &reclaim_state;
3768
3769        progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3770                                                                ac->nodemask);
3771
3772        current->reclaim_state = NULL;
3773        memalloc_noreclaim_restore(noreclaim_flag);
3774        fs_reclaim_release(gfp_mask);
3775
3776        cond_resched();
3777
3778        return progress;
3779}
3780
3781/* The really slow allocator path where we enter direct reclaim */
3782static inline struct page *
3783__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3784                unsigned int alloc_flags, const struct alloc_context *ac,
3785                unsigned long *did_some_progress)
3786{
3787        struct page *page = NULL;
3788        bool drained = false;
3789
3790        *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3791        if (unlikely(!(*did_some_progress)))
3792                return NULL;
3793
3794retry:
3795        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3796
3797        /*
3798         * If an allocation failed after direct reclaim, it could be because
3799         * pages are pinned on the per-cpu lists or in high alloc reserves.
3800         * Shrink them them and try again
3801         */
3802        if (!page && !drained) {
3803                unreserve_highatomic_pageblock(ac, false);
3804                drain_all_pages(NULL);
3805                drained = true;
3806                goto retry;
3807        }
3808
3809        return page;
3810}
3811
3812static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
3813                             const struct alloc_context *ac)
3814{
3815        struct zoneref *z;
3816        struct zone *zone;
3817        pg_data_t *last_pgdat = NULL;
3818        enum zone_type high_zoneidx = ac->high_zoneidx;
3819
3820        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
3821                                        ac->nodemask) {
3822                if (last_pgdat != zone->zone_pgdat)
3823                        wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
3824                last_pgdat = zone->zone_pgdat;
3825        }
3826}
3827
3828static inline unsigned int
3829gfp_to_alloc_flags(gfp_t gfp_mask)
3830{
3831        unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3832
3833        /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3834        BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3835
3836        /*
3837         * The caller may dip into page reserves a bit more if the caller
3838         * cannot run direct reclaim, or if the caller has realtime scheduling
3839         * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3840         * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3841         */
3842        alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3843
3844        if (gfp_mask & __GFP_ATOMIC) {
3845                /*
3846                 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3847                 * if it can't schedule.
3848                 */
3849                if (!(gfp_mask & __GFP_NOMEMALLOC))
3850                        alloc_flags |= ALLOC_HARDER;
3851                /*
3852                 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3853                 * comment for __cpuset_node_allowed().
3854                 */
3855                alloc_flags &= ~ALLOC_CPUSET;
3856        } else if (unlikely(rt_task(current)) && !in_interrupt())
3857                alloc_flags |= ALLOC_HARDER;
3858
3859#ifdef CONFIG_CMA
3860        if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3861                alloc_flags |= ALLOC_CMA;
3862#endif
3863        return alloc_flags;
3864}
3865
3866static bool oom_reserves_allowed(struct task_struct *tsk)
3867{
3868        if (!tsk_is_oom_victim(tsk))
3869                return false;
3870
3871        /*
3872         * !MMU doesn't have oom reaper so give access to memory reserves
3873         * only to the thread with TIF_MEMDIE set
3874         */
3875        if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
3876                return false;
3877
3878        return true;
3879}
3880
3881/*
3882 * Distinguish requests which really need access to full memory
3883 * reserves from oom victims which can live with a portion of it
3884 */
3885static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
3886{
3887        if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3888                return 0;
3889        if (gfp_mask & __GFP_MEMALLOC)
3890                return ALLOC_NO_WATERMARKS;
3891        if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3892                return ALLOC_NO_WATERMARKS;
3893        if (!in_interrupt()) {
3894                if (current->flags & PF_MEMALLOC)
3895                        return ALLOC_NO_WATERMARKS;
3896                else if (oom_reserves_allowed(current))
3897                        return ALLOC_OOM;
3898        }
3899
3900        return 0;
3901}
3902
3903bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3904{
3905        return !!__gfp_pfmemalloc_flags(gfp_mask);
3906}
3907
3908/*
3909 * Checks whether it makes sense to retry the reclaim to make a forward progress
3910 * for the given allocation request.
3911 *
3912 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3913 * without success, or when we couldn't even meet the watermark if we
3914 * reclaimed all remaining pages on the LRU lists.
3915 *
3916 * Returns true if a retry is viable or false to enter the oom path.
3917 */
3918static inline bool
3919should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3920                     struct alloc_context *ac, int alloc_flags,
3921                     bool did_some_progress, int *no_progress_loops)
3922{
3923        struct zone *zone;
3924        struct zoneref *z;
3925
3926        /*
3927         * Costly allocations might have made a progress but this doesn't mean
3928         * their order will become available due to high fragmentation so
3929         * always increment the no progress counter for them
3930         */
3931        if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3932                *no_progress_loops = 0;
3933        else
3934                (*no_progress_loops)++;
3935
3936        /*
3937         * Make sure we converge to OOM if we cannot make any progress
3938         * several times in the row.
3939         */
3940        if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3941                /* Before OOM, exhaust highatomic_reserve */
3942                return unreserve_highatomic_pageblock(ac, true);
3943        }
3944
3945        /*
3946         * Keep reclaiming pages while there is a chance this will lead
3947         * somewhere.  If none of the target zones can satisfy our allocation
3948         * request even if all reclaimable pages are considered then we are
3949         * screwed and have to go OOM.
3950         */
3951        for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3952                                        ac->nodemask) {
3953                unsigned long available;
3954                unsigned long reclaimable;
3955                unsigned long min_wmark = min_wmark_pages(zone);
3956                bool wmark;
3957
3958                available = reclaimable = zone_reclaimable_pages(zone);
3959                available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3960
3961                /*
3962                 * Would the allocation succeed if we reclaimed all
3963                 * reclaimable pages?
3964                 */
3965                wmark = __zone_watermark_ok(zone, order, min_wmark,
3966                                ac_classzone_idx(ac), alloc_flags, available);
3967                trace_reclaim_retry_zone(z, order, reclaimable,
3968                                available, min_wmark, *no_progress_loops, wmark);
3969                if (wmark) {
3970                        /*
3971                         * If we didn't make any progress and have a lot of
3972                         * dirty + writeback pages then we should wait for
3973                         * an IO to complete to slow down the reclaim and
3974                         * prevent from pre mature OOM
3975                         */
3976                        if (!did_some_progress) {
3977                                unsigned long write_pending;
3978
3979                                write_pending = zone_page_state_snapshot(zone,
3980                                                        NR_ZONE_WRITE_PENDING);
3981
3982                                if (2 * write_pending > reclaimable) {
3983                                        congestion_wait(BLK_RW_ASYNC, HZ/10);
3984                                        return true;
3985                                }
3986                        }
3987
3988                        /*
3989                         * Memory allocation/reclaim might be called from a WQ
3990                         * context and the current implementation of the WQ
3991                         * concurrency control doesn't recognize that
3992                         * a particular WQ is congested if the worker thread is
3993                         * looping without ever sleeping. Therefore we have to
3994                         * do a short sleep here rather than calling
3995                         * cond_resched().
3996                         */
3997                        if (current->flags & PF_WQ_WORKER)
3998                                schedule_timeout_uninterruptible(1);
3999                        else
4000                                cond_resched();
4001
4002                        return true;
4003                }
4004        }
4005
4006        return false;
4007}
4008
4009static inline bool
4010check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4011{
4012        /*
4013         * It's possible that cpuset's mems_allowed and the nodemask from
4014         * mempolicy don't intersect. This should be normally dealt with by
4015         * policy_nodemask(), but it's possible to race with cpuset update in
4016         * such a way the check therein was true, and then it became false
4017         * before we got our cpuset_mems_cookie here.
4018         * This assumes that for all allocations, ac->nodemask can come only
4019         * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4020         * when it does not intersect with the cpuset restrictions) or the
4021         * caller can deal with a violated nodemask.
4022         */
4023        if (cpusets_enabled() && ac->nodemask &&
4024                        !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4025                ac->nodemask = NULL;
4026                return true;
4027        }
4028
4029        /*
4030         * When updating a task's mems_allowed or mempolicy nodemask, it is
4031         * possible to race with parallel threads in such a way that our
4032         * allocation can fail while the mask is being updated. If we are about
4033         * to fail, check if the cpuset changed during allocation and if so,
4034         * retry.
4035         */
4036        if (read_mems_allowed_retry(cpuset_mems_cookie))
4037                return true;
4038
4039        return false;
4040}
4041
4042static inline struct page *
4043__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4044                                                struct alloc_context *ac)
4045{
4046        bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4047        const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4048        struct page *page = NULL;
4049        unsigned int alloc_flags;
4050        unsigned long did_some_progress;
4051        enum compact_priority compact_priority;
4052        enum compact_result compact_result;
4053        int compaction_retries;
4054        int no_progress_loops;
4055        unsigned int cpuset_mems_cookie;
4056        int reserve_flags;
4057
4058        /*
4059         * In the slowpath, we sanity check order to avoid ever trying to
4060         * reclaim >= MAX_ORDER areas which will never succeed. Callers may
4061         * be using allocators in order of preference for an area that is
4062         * too large.
4063         */
4064        if (order >= MAX_ORDER) {
4065                WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4066                return NULL;
4067        }
4068
4069        /*
4070         * We also sanity check to catch abuse of atomic reserves being used by
4071         * callers that are not in atomic context.
4072         */
4073        if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4074                                (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4075                gfp_mask &= ~__GFP_ATOMIC;
4076
4077retry_cpuset:
4078        compaction_retries = 0;
4079        no_progress_loops = 0;
4080        compact_priority = DEF_COMPACT_PRIORITY;
4081        cpuset_mems_cookie = read_mems_allowed_begin();
4082
4083        /*
4084         * The fast path uses conservative alloc_flags to succeed only until
4085         * kswapd needs to be woken up, and to avoid the cost of setting up
4086         * alloc_flags precisely. So we do that now.
4087         */
4088        alloc_flags = gfp_to_alloc_flags(gfp_mask);
4089
4090        /*
4091         * We need to recalculate the starting point for the zonelist iterator
4092         * because we might have used different nodemask in the fast path, or
4093         * there was a cpuset modification and we are retrying - otherwise we
4094         * could end up iterating over non-eligible zones endlessly.
4095         */
4096        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4097                                        ac->high_zoneidx, ac->nodemask);
4098        if (!ac->preferred_zoneref->zone)
4099                goto nopage;
4100
4101        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4102                wake_all_kswapds(order, gfp_mask, ac);
4103
4104        /*
4105         * The adjusted alloc_flags might result in immediate success, so try
4106         * that first
4107         */
4108        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4109        if (page)
4110                goto got_pg;
4111
4112        /*
4113         * For costly allocations, try direct compaction first, as it's likely
4114         * that we have enough base pages and don't need to reclaim. For non-
4115         * movable high-order allocations, do that as well, as compaction will
4116         * try prevent permanent fragmentation by migrating from blocks of the
4117         * same migratetype.
4118         * Don't try this for allocations that are allowed to ignore
4119         * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4120         */
4121        if (can_direct_reclaim &&
4122                        (costly_order ||
4123                           (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4124                        && !gfp_pfmemalloc_allowed(gfp_mask)) {
4125                page = __alloc_pages_direct_compact(gfp_mask, order,
4126                                                alloc_flags, ac,
4127                                                INIT_COMPACT_PRIORITY,
4128                                                &compact_result);
4129                if (page)
4130                        goto got_pg;
4131
4132                /*
4133                 * Checks for costly allocations with __GFP_NORETRY, which
4134                 * includes THP page fault allocations
4135                 */
4136                if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4137                        /*
4138                         * If compaction is deferred for high-order allocations,
4139                         * it is because sync compaction recently failed. If
4140                         * this is the case and the caller requested a THP
4141                         * allocation, we do not want to heavily disrupt the
4142                         * system, so we fail the allocation instead of entering
4143                         * direct reclaim.
4144                         */
4145                        if (compact_result == COMPACT_DEFERRED)
4146                                goto nopage;
4147
4148                        /*
4149                         * Looks like reclaim/compaction is worth trying, but
4150                         * sync compaction could be very expensive, so keep
4151                         * using async compaction.
4152                         */
4153                        compact_priority = INIT_COMPACT_PRIORITY;
4154                }
4155        }
4156
4157retry:
4158        /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4159        if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4160                wake_all_kswapds(order, gfp_mask, ac);
4161
4162        reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4163        if (reserve_flags)
4164                alloc_flags = reserve_flags;
4165
4166        /*
4167         * Reset the nodemask and zonelist iterators if memory policies can be
4168         * ignored. These allocations are high priority and system rather than
4169         * user oriented.
4170         */
4171        if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4172                ac->nodemask = NULL;
4173                ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4174                                        ac->high_zoneidx, ac->nodemask);
4175        }
4176
4177        /* Attempt with potentially adjusted zonelist and alloc_flags */
4178        page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4179        if (page)
4180                goto got_pg;
4181
4182        /* Caller is not willing to reclaim, we can't balance anything */
4183        if (!can_direct_reclaim)
4184                goto nopage;
4185
4186        /* Avoid recursion of direct reclaim */
4187        if (current->flags & PF_MEMALLOC)
4188                goto nopage;
4189
4190        /* Try direct reclaim and then allocating */
4191        page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4192                                                        &did_some_progress);
4193        if (page)
4194                goto got_pg;
4195
4196        /* Try direct compaction and then allocating */
4197        page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4198                                        compact_priority, &compact_result);
4199        if (page)
4200                goto got_pg;
4201
4202        /* Do not loop if specifically requested */
4203        if (gfp_mask & __GFP_NORETRY)
4204                goto nopage;
4205
4206        /*
4207         * Do not retry costly high order allocations unless they are
4208         * __GFP_RETRY_MAYFAIL
4209         */
4210        if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4211                goto nopage;
4212
4213        if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4214                                 did_some_progress > 0, &no_progress_loops))
4215                goto retry;
4216
4217        /*
4218         * It doesn't make any sense to retry for the compaction if the order-0
4219         * reclaim is not able to make any progress because the current
4220         * implementation of the compaction depends on the sufficient amount
4221         * of free memory (see __compaction_suitable)
4222         */
4223        if (did_some_progress > 0 &&
4224                        should_compact_retry(ac, order, alloc_flags,
4225                                compact_result, &compact_priority,
4226                                &compaction_retries))
4227                goto retry;
4228
4229
4230        /* Deal with possible cpuset update races before we start OOM killing */
4231        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4232                goto retry_cpuset;
4233
4234        /* Reclaim has failed us, start killing things */
4235        page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4236        if (page)
4237                goto got_pg;
4238
4239        /* Avoid allocations with no watermarks from looping endlessly */
4240        if (tsk_is_oom_victim(current) &&
4241            (alloc_flags == ALLOC_OOM ||
4242             (gfp_mask & __GFP_NOMEMALLOC)))
4243                goto nopage;
4244
4245        /* Retry as long as the OOM killer is making progress */
4246        if (did_some_progress) {
4247                no_progress_loops = 0;
4248                goto retry;
4249        }
4250
4251nopage:
4252        /* Deal with possible cpuset update races before we fail */
4253        if (check_retry_cpuset(cpuset_mems_cookie, ac))
4254                goto retry_cpuset;
4255
4256        /*
4257         * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4258         * we always retry
4259         */
4260        if (gfp_mask & __GFP_NOFAIL) {
4261                /*
4262                 * All existing users of the __GFP_NOFAIL are blockable, so warn
4263                 * of any new users that actually require GFP_NOWAIT
4264                 */
4265                if (WARN_ON_ONCE(!can_direct_reclaim))
4266                        goto fail;
4267
4268                /*
4269                 * PF_MEMALLOC request from this context is rather bizarre
4270                 * because we cannot reclaim anything and only can loop waiting
4271                 * for somebody to do a work for us
4272                 */
4273                WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4274
4275                /*
4276                 * non failing costly orders are a hard requirement which we
4277                 * are not prepared for much so let's warn about these users
4278                 * so that we can identify them and convert them to something
4279                 * else.
4280                 */
4281                WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4282
4283                /*
4284                 * Help non-failing allocations by giving them access to memory
4285                 * reserves but do not use ALLOC_NO_WATERMARKS because this
4286                 * could deplete whole memory reserves which would just make
4287                 * the situation worse
4288                 */
4289                page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4290                if (page)
4291                        goto got_pg;
4292
4293                cond_resched();
4294                goto retry;
4295        }
4296fail:
4297        warn_alloc(gfp_mask, ac->nodemask,
4298                        "page allocation failure: order:%u", order);
4299got_pg:
4300        return page;
4301}
4302
4303static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4304                int preferred_nid, nodemask_t *nodemask,
4305                struct alloc_context *ac, gfp_t *alloc_mask,
4306                unsigned int *alloc_flags)
4307{
4308        ac->high_zoneidx = gfp_zone(gfp_mask);
4309        ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4310        ac->nodemask = nodemask;
4311        ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4312
4313        if (cpusets_enabled()) {
4314                *alloc_mask |= __GFP_HARDWALL;
4315                if (!ac->nodemask)
4316                        ac->nodemask = &cpuset_current_mems_allowed;
4317                else
4318                        *alloc_flags |= ALLOC_CPUSET;
4319        }
4320
4321        fs_reclaim_acquire(gfp_mask);
4322        fs_reclaim_release(gfp_mask);
4323
4324        might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4325
4326        if (should_fail_alloc_page(gfp_mask, order))
4327                return false;
4328
4329        if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4330                *alloc_flags |= ALLOC_CMA;
4331
4332        return true;
4333}
4334
4335/* Determine whether to spread dirty pages and what the first usable zone */
4336static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4337{
4338        /* Dirty zone balancing only done in the fast path */
4339        ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4340
4341        /*
4342         * The preferred zone is used for statistics but crucially it is
4343         * also used as the starting point for the zonelist iterator. It
4344         * may get reset for allocations that ignore memory policies.
4345         */
4346        ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4347                                        ac->high_zoneidx, ac->nodemask);
4348}
4349
4350/*
4351 * This is the 'heart' of the zoned buddy allocator.
4352 */
4353struct page *
4354__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4355                                                        nodemask_t *nodemask)
4356{
4357        struct page *page;
4358        unsigned int alloc_flags = ALLOC_WMARK_LOW;
4359        gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4360        struct alloc_context ac = { };
4361
4362        gfp_mask &= gfp_allowed_mask;
4363        alloc_mask = gfp_mask;
4364        if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4365                return NULL;
4366
4367        finalise_ac(gfp_mask, &ac);
4368
4369        /* First allocation attempt */
4370        page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4371        if (likely(page))
4372                goto out;
4373
4374        /*
4375         * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4376         * resp. GFP_NOIO which has to be inherited for all allocation requests
4377         * from a particular context which has been marked by
4378         * memalloc_no{fs,io}_{save,restore}.
4379         */
4380        alloc_mask = current_gfp_context(gfp_mask);
4381        ac.spread_dirty_pages = false;
4382
4383        /*
4384         * Restore the original nodemask if it was potentially replaced with
4385         * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4386         */
4387        if (unlikely(ac.nodemask != nodemask))
4388                ac.nodemask = nodemask;
4389
4390        page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4391
4392out:
4393        if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4394            unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4395                __free_pages(page, order);
4396                page = NULL;
4397        }
4398
4399        trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4400
4401        return page;
4402}
4403EXPORT_SYMBOL(__alloc_pages_nodemask);
4404
4405/*
4406 * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4407 * address cannot represent highmem pages. Use alloc_pages and then kmap if
4408 * you need to access high mem.
4409 */
4410unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4411{
4412        struct page *page;
4413
4414        page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4415        if (!page)
4416                return 0;
4417        return (unsigned long) page_address(page);
4418}
4419EXPORT_SYMBOL(__get_free_pages);
4420
4421unsigned long get_zeroed_page(gfp_t gfp_mask)
4422{
4423        return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4424}
4425EXPORT_SYMBOL(get_zeroed_page);
4426
4427void __free_pages(struct page *page, unsigned int order)
4428{
4429        if (put_page_testzero(page)) {
4430                if (order == 0)
4431                        free_unref_page(page);
4432                else
4433                        __free_pages_ok(page, order);
4434        }
4435}
4436
4437EXPORT_SYMBOL(__free_pages);
4438
4439void free_pages(unsigned long addr, unsigned int order)
4440{
4441        if (addr != 0) {
4442                VM_BUG_ON(!virt_addr_valid((void *)addr));
4443                __free_pages(virt_to_page((void *)addr), order);
4444        }
4445}
4446
4447EXPORT_SYMBOL(free_pages);
4448
4449/*
4450 * Page Fragment:
4451 *  An arbitrary-length arbitrary-offset area of memory which resides
4452 *  within a 0 or higher order page.  Multiple fragments within that page
4453 *  are individually refcounted, in the page's reference counter.
4454 *
4455 * The page_frag functions below provide a simple allocation framework for
4456 * page fragments.  This is used by the network stack and network device
4457 * drivers to provide a backing region of memory for use as either an
4458 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4459 */
4460static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4461                                             gfp_t gfp_mask)
4462{
4463        struct page *page = NULL;
4464        gfp_t gfp = gfp_mask;
4465
4466#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4467        gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4468                    __GFP_NOMEMALLOC;
4469        page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4470                                PAGE_FRAG_CACHE_MAX_ORDER);
4471        nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4472#endif
4473        if (unlikely(!page))
4474                page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4475
4476        nc->va = page ? page_address(page) : NULL;
4477
4478        return page;
4479}
4480
4481void __page_frag_cache_drain(struct page *page, unsigned int count)
4482{
4483        VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4484
4485        if (page_ref_sub_and_test(page, count)) {
4486                unsigned int order = compound_order(page);
4487
4488                if (order == 0)
4489                        free_unref_page(page);
4490                else
4491                        __free_pages_ok(page, order);
4492        }
4493}
4494EXPORT_SYMBOL(__page_frag_cache_drain);
4495
4496void *page_frag_alloc(struct page_frag_cache *nc,
4497                      unsigned int fragsz, gfp_t gfp_mask)
4498{
4499        unsigned int size = PAGE_SIZE;
4500        struct page *page;
4501        int offset;
4502
4503        if (unlikely(!nc->va)) {
4504refill:
4505                page = __page_frag_cache_refill(nc, gfp_mask);
4506                if (!page)
4507                        return NULL;
4508
4509#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4510                /* if size can vary use size else just use PAGE_SIZE */
4511                size = nc->size;
4512#endif
4513                /* Even if we own the page, we do not use atomic_set().
4514                 * This would break get_page_unless_zero() users.
4515                 */
4516                page_ref_add(page, size - 1);
4517
4518                /* reset page count bias and offset to start of new frag */
4519                nc->pfmemalloc = page_is_pfmemalloc(page);
4520                nc->pagecnt_bias = size;
4521                nc->offset = size;
4522        }
4523
4524        offset = nc->offset - fragsz;
4525        if (unlikely(offset < 0)) {
4526                page = virt_to_page(nc->va);
4527
4528                if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4529                        goto refill;
4530
4531#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4532                /* if size can vary use size else just use PAGE_SIZE */
4533                size = nc->size;
4534#endif
4535                /* OK, page count is 0, we can safely set it */
4536                set_page_count(page, size);
4537
4538                /* reset page count bias and offset to start of new frag */
4539                nc->pagecnt_bias = size;
4540                offset = size - fragsz;
4541        }
4542
4543        nc->pagecnt_bias--;
4544        nc->offset = offset;
4545
4546        return nc->va + offset;
4547}
4548EXPORT_SYMBOL(page_frag_alloc);
4549
4550/*
4551 * Frees a page fragment allocated out of either a compound or order 0 page.
4552 */
4553void page_frag_free(void *addr)
4554{
4555        struct page *page = virt_to_head_page(addr);
4556
4557        if (unlikely(put_page_testzero(page)))
4558                __free_pages_ok(page, compound_order(page));
4559}
4560EXPORT_SYMBOL(page_frag_free);
4561
4562static void *make_alloc_exact(unsigned long addr, unsigned int order,
4563                size_t size)
4564{
4565        if (addr) {
4566                unsigned long alloc_end = addr + (PAGE_SIZE << order);
4567                unsigned long used = addr + PAGE_ALIGN(size);
4568
4569                split_page(virt_to_page((void *)addr), order);
4570                while (used < alloc_end) {
4571                        free_page(used);
4572                        used += PAGE_SIZE;
4573                }
4574        }
4575        return (void *)addr;
4576}
4577
4578/**
4579 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4580 * @size: the number of bytes to allocate
4581 * @gfp_mask: GFP flags for the allocation
4582 *
4583 * This function is similar to alloc_pages(), except that it allocates the
4584 * minimum number of pages to satisfy the request.  alloc_pages() can only
4585 * allocate memory in power-of-two pages.
4586 *
4587 * This function is also limited by MAX_ORDER.
4588 *
4589 * Memory allocated by this function must be released by free_pages_exact().
4590 */
4591void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4592{
4593        unsigned int order = get_order(size);
4594        unsigned long addr;
4595
4596        addr = __get_free_pages(gfp_mask, order);
4597        return make_alloc_exact(addr, order, size);
4598}
4599EXPORT_SYMBOL(alloc_pages_exact);
4600
4601/**
4602 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4603 *                         pages on a node.
4604 * @nid: the preferred node ID where memory should be allocated
4605 * @size: the number of bytes to allocate
4606 * @gfp_mask: GFP flags for the allocation
4607 *
4608 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4609 * back.
4610 */
4611void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4612{
4613        unsigned int order = get_order(size);
4614        struct page *p = alloc_pages_node(nid, gfp_mask, order);
4615        if (!p)
4616                return NULL;
4617        return make_alloc_exact((unsigned long)page_address(p), order, size);
4618}
4619
4620/**
4621 * free_pages_exact - release memory allocated via alloc_pages_exact()
4622 * @virt: the value returned by alloc_pages_exact.
4623 * @size: size of allocation, same value as passed to alloc_pages_exact().
4624 *
4625 * Release the memory allocated by a previous call to alloc_pages_exact.
4626 */
4627void free_pages_exact(void *virt, size_t size)
4628{
4629        unsigned long addr = (unsigned long)virt;
4630        unsigned long end = addr + PAGE_ALIGN(size);
4631
4632        while (addr < end) {
4633                free_page(addr);
4634                addr += PAGE_SIZE;
4635        }
4636}
4637EXPORT_SYMBOL(free_pages_exact);
4638
4639/**
4640 * nr_free_zone_pages - count number of pages beyond high watermark
4641 * @offset: The zone index of the highest zone
4642 *
4643 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4644 * high watermark within all zones at or below a given zone index.  For each
4645 * zone, the number of pages is calculated as:
4646 *
4647 *     nr_free_zone_pages = managed_pages - high_pages
4648 */
4649static unsigned long nr_free_zone_pages(int offset)
4650{
4651        struct zoneref *z;
4652        struct zone *zone;
4653
4654        /* Just pick one node, since fallback list is circular */
4655        unsigned long sum = 0;
4656
4657        struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4658
4659        for_each_zone_zonelist(zone, z, zonelist, offset) {
4660                unsigned long size = zone->managed_pages;
4661                unsigned long high = high_wmark_pages(zone);
4662                if (size > high)
4663                        sum += size - high;
4664        }
4665
4666        return sum;
4667}
4668
4669/**
4670 * nr_free_buffer_pages - count number of pages beyond high watermark
4671 *
4672 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4673 * watermark within ZONE_DMA and ZONE_NORMAL.
4674 */
4675unsigned long nr_free_buffer_pages(void)
4676{
4677        return nr_free_zone_pages(gfp_zone(GFP_USER));
4678}
4679EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4680
4681/**
4682 * nr_free_pagecache_pages - count number of pages beyond high watermark
4683 *
4684 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4685 * high watermark within all zones.
4686 */
4687unsigned long nr_free_pagecache_pages(void)
4688{
4689        return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4690}
4691
4692static inline void show_node(struct zone *zone)
4693{
4694        if (IS_ENABLED(CONFIG_NUMA))
4695                printk("Node %d ", zone_to_nid(zone));
4696}
4697
4698long si_mem_available(void)
4699{
4700        long available;
4701        unsigned long pagecache;
4702        unsigned long wmark_low = 0;
4703        unsigned long pages[NR_LRU_LISTS];
4704        struct zone *zone;
4705        int lru;
4706
4707        for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4708                pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4709
4710        for_each_zone(zone)
4711                wmark_low += zone->watermark[WMARK_LOW];
4712
4713        /*
4714         * Estimate the amount of memory available for userspace allocations,
4715         * without causing swapping.
4716         */
4717        available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
4718
4719        /*
4720         * Not all the page cache can be freed, otherwise the system will
4721         * start swapping. Assume at least half of the page cache, or the
4722         * low watermark worth of cache, needs to stay.
4723         */
4724        pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4725        pagecache -= min(pagecache / 2, wmark_low);
4726        available += pagecache;
4727
4728        /*
4729         * Part of the reclaimable slab consists of items that are in use,
4730         * and cannot be freed. Cap this estimate at the low watermark.
4731         */
4732        available += global_node_page_state(NR_SLAB_RECLAIMABLE) -
4733                     min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2,
4734                         wmark_low);
4735
4736        /*
4737         * Part of the kernel memory, which can be released under memory
4738         * pressure.
4739         */
4740        available += global_node_page_state(NR_INDIRECTLY_RECLAIMABLE_BYTES) >>
4741                PAGE_SHIFT;
4742
4743        if (available < 0)
4744                available = 0;
4745        return available;
4746}
4747EXPORT_SYMBOL_GPL(si_mem_available);
4748
4749void si_meminfo(struct sysinfo *val)
4750{
4751        val->totalram = totalram_pages;
4752        val->sharedram = global_node_page_state(NR_SHMEM);
4753        val->freeram = global_zone_page_state(NR_FREE_PAGES);
4754        val->bufferram = nr_blockdev_pages();
4755        val->totalhigh = totalhigh_pages;
4756        val->freehigh = nr_free_highpages();
4757        val->mem_unit = PAGE_SIZE;
4758}
4759
4760EXPORT_SYMBOL(si_meminfo);
4761
4762#ifdef CONFIG_NUMA
4763void si_meminfo_node(struct sysinfo *val, int nid)
4764{
4765        int zone_type;          /* needs to be signed */
4766        unsigned long managed_pages = 0;
4767        unsigned long managed_highpages = 0;
4768        unsigned long free_highpages = 0;
4769        pg_data_t *pgdat = NODE_DATA(nid);
4770
4771        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4772                managed_pages += pgdat->node_zones[zone_type].managed_pages;
4773        val->totalram = managed_pages;
4774        val->sharedram = node_page_state(pgdat, NR_SHMEM);
4775        val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4776#ifdef CONFIG_HIGHMEM
4777        for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4778                struct zone *zone = &pgdat->node_zones[zone_type];
4779
4780                if (is_highmem(zone)) {
4781                        managed_highpages += zone->managed_pages;
4782                        free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4783                }
4784        }
4785        val->totalhigh = managed_highpages;
4786        val->freehigh = free_highpages;
4787#else
4788        val->totalhigh = managed_highpages;
4789        val->freehigh = free_highpages;
4790#endif
4791        val->mem_unit = PAGE_SIZE;
4792}
4793#endif
4794
4795/*
4796 * Determine whether the node should be displayed or not, depending on whether
4797 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4798 */
4799static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4800{
4801        if (!(flags & SHOW_MEM_FILTER_NODES))
4802                return false;
4803
4804        /*
4805         * no node mask - aka implicit memory numa policy. Do not bother with
4806         * the synchronization - read_mems_allowed_begin - because we do not
4807         * have to be precise here.
4808         */
4809        if (!nodemask)
4810                nodemask = &cpuset_current_mems_allowed;
4811
4812        return !node_isset(nid, *nodemask);
4813}
4814
4815#define K(x) ((x) << (PAGE_SHIFT-10))
4816
4817static void show_migration_types(unsigned char type)
4818{
4819        static const char types[MIGRATE_TYPES] = {
4820                [MIGRATE_UNMOVABLE]     = 'U',
4821                [MIGRATE_MOVABLE]       = 'M',
4822                [MIGRATE_RECLAIMABLE]   = 'E',
4823                [MIGRATE_HIGHATOMIC]    = 'H',
4824#ifdef CONFIG_CMA
4825                [MIGRATE_CMA]           = 'C',
4826#endif
4827#ifdef CONFIG_MEMORY_ISOLATION
4828                [MIGRATE_ISOLATE]       = 'I',
4829#endif
4830        };
4831        char tmp[MIGRATE_TYPES + 1];
4832        char *p = tmp;
4833        int i;
4834
4835        for (i = 0; i < MIGRATE_TYPES; i++) {
4836                if (type & (1 << i))
4837                        *p++ = types[i];
4838        }
4839
4840        *p = '\0';
4841        printk(KERN_CONT "(%s) ", tmp);
4842}
4843
4844/*
4845 * Show free area list (used inside shift_scroll-lock stuff)
4846 * We also calculate the percentage fragmentation. We do this by counting the
4847 * memory on each free list with the exception of the first item on the list.
4848 *
4849 * Bits in @filter:
4850 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4851 *   cpuset.
4852 */
4853void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4854{
4855        unsigned long free_pcp = 0;
4856        int cpu;
4857        struct zone *zone;
4858        pg_data_t *pgdat;
4859
4860        for_each_populated_zone(zone) {
4861                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4862                        continue;
4863
4864                for_each_online_cpu(cpu)
4865                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4866        }
4867
4868        printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4869                " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4870                " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4871                " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4872                " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4873                " free:%lu free_pcp:%lu free_cma:%lu\n",
4874                global_node_page_state(NR_ACTIVE_ANON),
4875                global_node_page_state(NR_INACTIVE_ANON),
4876                global_node_page_state(NR_ISOLATED_ANON),
4877                global_node_page_state(NR_ACTIVE_FILE),
4878                global_node_page_state(NR_INACTIVE_FILE),
4879                global_node_page_state(NR_ISOLATED_FILE),
4880                global_node_page_state(NR_UNEVICTABLE),
4881                global_node_page_state(NR_FILE_DIRTY),
4882                global_node_page_state(NR_WRITEBACK),
4883                global_node_page_state(NR_UNSTABLE_NFS),
4884                global_node_page_state(NR_SLAB_RECLAIMABLE),
4885                global_node_page_state(NR_SLAB_UNRECLAIMABLE),
4886                global_node_page_state(NR_FILE_MAPPED),
4887                global_node_page_state(NR_SHMEM),
4888                global_zone_page_state(NR_PAGETABLE),
4889                global_zone_page_state(NR_BOUNCE),
4890                global_zone_page_state(NR_FREE_PAGES),
4891                free_pcp,
4892                global_zone_page_state(NR_FREE_CMA_PAGES));
4893
4894        for_each_online_pgdat(pgdat) {
4895                if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4896                        continue;
4897
4898                printk("Node %d"
4899                        " active_anon:%lukB"
4900                        " inactive_anon:%lukB"
4901                        " active_file:%lukB"
4902                        " inactive_file:%lukB"
4903                        " unevictable:%lukB"
4904                        " isolated(anon):%lukB"
4905                        " isolated(file):%lukB"
4906                        " mapped:%lukB"
4907                        " dirty:%lukB"
4908                        " writeback:%lukB"
4909                        " shmem:%lukB"
4910#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4911                        " shmem_thp: %lukB"
4912                        " shmem_pmdmapped: %lukB"
4913                        " anon_thp: %lukB"
4914#endif
4915                        " writeback_tmp:%lukB"
4916                        " unstable:%lukB"
4917                        " all_unreclaimable? %s"
4918                        "\n",
4919                        pgdat->node_id,
4920                        K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4921                        K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4922                        K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4923                        K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4924                        K(node_page_state(pgdat, NR_UNEVICTABLE)),
4925                        K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4926                        K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4927                        K(node_page_state(pgdat, NR_FILE_MAPPED)),
4928                        K(node_page_state(pgdat, NR_FILE_DIRTY)),
4929                        K(node_page_state(pgdat, NR_WRITEBACK)),
4930                        K(node_page_state(pgdat, NR_SHMEM)),
4931#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4932                        K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4933                        K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4934                                        * HPAGE_PMD_NR),
4935                        K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4936#endif
4937                        K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4938                        K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4939                        pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4940                                "yes" : "no");
4941        }
4942
4943        for_each_populated_zone(zone) {
4944                int i;
4945
4946                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4947                        continue;
4948
4949                free_pcp = 0;
4950                for_each_online_cpu(cpu)
4951                        free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4952
4953                show_node(zone);
4954                printk(KERN_CONT
4955                        "%s"
4956                        " free:%lukB"
4957                        " min:%lukB"
4958                        " low:%lukB"
4959                        " high:%lukB"
4960                        " active_anon:%lukB"
4961                        " inactive_anon:%lukB"
4962                        " active_file:%lukB"
4963                        " inactive_file:%lukB"
4964                        " unevictable:%lukB"
4965                        " writepending:%lukB"
4966                        " present:%lukB"
4967                        " managed:%lukB"
4968                        " mlocked:%lukB"
4969                        " kernel_stack:%lukB"
4970                        " pagetables:%lukB"
4971                        " bounce:%lukB"
4972                        " free_pcp:%lukB"
4973                        " local_pcp:%ukB"
4974                        " free_cma:%lukB"
4975                        "\n",
4976                        zone->name,
4977                        K(zone_page_state(zone, NR_FREE_PAGES)),
4978                        K(min_wmark_pages(zone)),
4979                        K(low_wmark_pages(zone)),
4980                        K(high_wmark_pages(zone)),
4981                        K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4982                        K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4983                        K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4984                        K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4985                        K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4986                        K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4987                        K(zone->present_pages),
4988                        K(zone->managed_pages),
4989                        K(zone_page_state(zone, NR_MLOCK)),
4990                        zone_page_state(zone, NR_KERNEL_STACK_KB),
4991                        K(zone_page_state(zone, NR_PAGETABLE)),
4992                        K(zone_page_state(zone, NR_BOUNCE)),
4993                        K(free_pcp),
4994                        K(this_cpu_read(zone->pageset->pcp.count)),
4995                        K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4996                printk("lowmem_reserve[]:");
4997                for (i = 0; i < MAX_NR_ZONES; i++)
4998                        printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4999                printk(KERN_CONT "\n");
5000        }
5001
5002        for_each_populated_zone(zone) {
5003                unsigned int order;
5004                unsigned long nr[MAX_ORDER], flags, total = 0;
5005                unsigned char types[MAX_ORDER];
5006
5007                if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5008                        continue;
5009                show_node(zone);
5010                printk(KERN_CONT "%s: ", zone->name);
5011
5012                spin_lock_irqsave(&zone->lock, flags);
5013                for (order = 0; order < MAX_ORDER; order++) {
5014                        struct free_area *area = &zone->free_area[order];
5015                        int type;
5016
5017                        nr[order] = area->nr_free;
5018                        total += nr[order] << order;
5019
5020                        types[order] = 0;
5021                        for (type = 0; type < MIGRATE_TYPES; type++) {
5022                                if (!list_empty(&area->free_list[type]))
5023                                        types[order] |= 1 << type;
5024                        }
5025                }
5026                spin_unlock_irqrestore(&zone->lock, flags);
5027                for (order = 0; order < MAX_ORDER; order++) {
5028                        printk(KERN_CONT "%lu*%lukB ",
5029                               nr[order], K(1UL) << order);
5030                        if (nr[order])
5031                                show_migration_types(types[order]);
5032                }
5033                printk(KERN_CONT "= %lukB\n", K(total));
5034        }
5035
5036        hugetlb_show_meminfo();
5037
5038        printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5039
5040        show_swap_cache_info();
5041}
5042
5043static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5044{
5045        zoneref->zone = zone;
5046        zoneref->zone_idx = zone_idx(zone);
5047}
5048
5049/*
5050 * Builds allocation fallback zone lists.
5051 *
5052 * Add all populated zones of a node to the zonelist.
5053 */
5054static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5055{
5056        struct zone *zone;
5057        enum zone_type zone_type = MAX_NR_ZONES;
5058        int nr_zones = 0;
5059
5060        do {
5061                zone_type--;
5062                zone = pgdat->node_zones + zone_type;
5063                if (managed_zone(zone)) {
5064                        zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5065                        check_highest_zone(zone_type);
5066                }
5067        } while (zone_type);
5068
5069        return nr_zones;
5070}
5071
5072#ifdef CONFIG_NUMA
5073
5074static int __parse_numa_zonelist_order(char *s)
5075{
5076        /*
5077         * We used to support different zonlists modes but they turned
5078         * out to be just not useful. Let's keep the warning in place
5079         * if somebody still use the cmd line parameter so that we do
5080         * not fail it silently
5081         */
5082        if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5083                pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5084                return -EINVAL;
5085        }
5086        return 0;
5087}
5088
5089static __init int setup_numa_zonelist_order(char *s)
5090{
5091        if (!s)
5092                return 0;
5093
5094        return __parse_numa_zonelist_order(s);
5095}
5096early_param("numa_zonelist_order", setup_numa_zonelist_order);
5097
5098char numa_zonelist_order[] = "Node";
5099
5100/*
5101 * sysctl handler for numa_zonelist_order
5102 */
5103int numa_zonelist_order_handler(struct ctl_table *table, int write,
5104                void __user *buffer, size_t *length,
5105                loff_t *ppos)
5106{
5107        char *str;
5108        int ret;
5109
5110        if (!write)
5111                return proc_dostring(table, write, buffer, length, ppos);
5112        str = memdup_user_nul(buffer, 16);
5113        if (IS_ERR(str))
5114                return PTR_ERR(str);
5115
5116        ret = __parse_numa_zonelist_order(str);
5117        kfree(str);
5118        return ret;
5119}
5120
5121
5122#define MAX_NODE_LOAD (nr_online_nodes)
5123static int node_load[MAX_NUMNODES];
5124
5125/**
5126 * find_next_best_node - find the next node that should appear in a given node's fallback list
5127 * @node: node whose fallback list we're appending
5128 * @used_node_mask: nodemask_t of already used nodes
5129 *
5130 * We use a number of factors to determine which is the next node that should
5131 * appear on a given node's fallback list.  The node should not have appeared
5132 * already in @node's fallback list, and it should be the next closest node
5133 * according to the distance array (which contains arbitrary distance values
5134 * from each node to each node in the system), and should also prefer nodes
5135 * with no CPUs, since presumably they'll have very little allocation pressure
5136 * on them otherwise.
5137 * It returns -1 if no node is found.
5138 */
5139static int find_next_best_node(int node, nodemask_t *used_node_mask)
5140{
5141        int n, val;
5142        int min_val = INT_MAX;
5143        int best_node = NUMA_NO_NODE;
5144        const struct cpumask *tmp = cpumask_of_node(0);
5145
5146        /* Use the local node if we haven't already */
5147        if (!node_isset(node, *used_node_mask)) {
5148                node_set(node, *used_node_mask);
5149                return node;
5150        }
5151
5152        for_each_node_state(n, N_MEMORY) {
5153
5154                /* Don't want a node to appear more than once */
5155                if (node_isset(n, *used_node_mask))
5156                        continue;
5157
5158                /* Use the distance array to find the distance */
5159                val = node_distance(node, n);
5160
5161                /* Penalize nodes under us ("prefer the next node") */
5162                val += (n < node);
5163
5164                /* Give preference to headless and unused nodes */
5165                tmp = cpumask_of_node(n);
5166                if (!cpumask_empty(tmp))
5167                        val += PENALTY_FOR_NODE_WITH_CPUS;
5168
5169                /* Slight preference for less loaded node */
5170                val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5171                val += node_load[n];
5172
5173                if (val < min_val) {
5174                        min_val = val;
5175                        best_node = n;
5176                }
5177        }
5178
5179        if (best_node >= 0)
5180                node_set(best_node, *used_node_mask);
5181
5182        return best_node;
5183}
5184
5185
5186/*
5187 * Build zonelists ordered by node and zones within node.
5188 * This results in maximum locality--normal zone overflows into local
5189 * DMA zone, if any--but risks exhausting DMA zone.
5190 */
5191static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5192                unsigned nr_nodes)
5193{
5194        struct zoneref *zonerefs;
5195        int i;
5196
5197        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5198
5199        for (i = 0; i < nr_nodes; i++) {
5200                int nr_zones;
5201
5202                pg_data_t *node = NODE_DATA(node_order[i]);
5203
5204                nr_zones = build_zonerefs_node(node, zonerefs);
5205                zonerefs += nr_zones;
5206        }
5207        zonerefs->zone = NULL;
5208        zonerefs->zone_idx = 0;
5209}
5210
5211/*
5212 * Build gfp_thisnode zonelists
5213 */
5214static void build_thisnode_zonelists(pg_data_t *pgdat)
5215{
5216        struct zoneref *zonerefs;
5217        int nr_zones;
5218
5219        zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5220        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5221        zonerefs += nr_zones;
5222        zonerefs->zone = NULL;
5223        zonerefs->zone_idx = 0;
5224}
5225
5226/*
5227 * Build zonelists ordered by zone and nodes within zones.
5228 * This results in conserving DMA zone[s] until all Normal memory is
5229 * exhausted, but results in overflowing to remote node while memory
5230 * may still exist in local DMA zone.
5231 */
5232
5233static void build_zonelists(pg_data_t *pgdat)
5234{
5235        static int node_order[MAX_NUMNODES];
5236        int node, load, nr_nodes = 0;
5237        nodemask_t used_mask;
5238        int local_node, prev_node;
5239
5240        /* NUMA-aware ordering of nodes */
5241        local_node = pgdat->node_id;
5242        load = nr_online_nodes;
5243        prev_node = local_node;
5244        nodes_clear(used_mask);
5245
5246        memset(node_order, 0, sizeof(node_order));
5247        while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5248                /*
5249                 * We don't want to pressure a particular node.
5250                 * So adding penalty to the first node in same
5251                 * distance group to make it round-robin.
5252                 */
5253                if (node_distance(local_node, node) !=
5254                    node_distance(local_node, prev_node))
5255                        node_load[node] = load;
5256
5257                node_order[nr_nodes++] = node;
5258                prev_node = node;
5259                load--;
5260        }
5261
5262        build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5263        build_thisnode_zonelists(pgdat);
5264}
5265
5266#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5267/*
5268 * Return node id of node used for "local" allocations.
5269 * I.e., first node id of first zone in arg node's generic zonelist.
5270 * Used for initializing percpu 'numa_mem', which is used primarily
5271 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5272 */
5273int local_memory_node(int node)
5274{
5275        struct zoneref *z;
5276
5277        z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5278                                   gfp_zone(GFP_KERNEL),
5279                                   NULL);
5280        return zone_to_nid(z->zone);
5281}
5282#endif
5283
5284static void setup_min_unmapped_ratio(void);
5285static void setup_min_slab_ratio(void);
5286#else   /* CONFIG_NUMA */
5287
5288static void build_zonelists(pg_data_t *pgdat)
5289{
5290        int node, local_node;
5291        struct zoneref *zonerefs;
5292        int nr_zones;
5293
5294        local_node = pgdat->node_id;
5295
5296        zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5297        nr_zones = build_zonerefs_node(pgdat, zonerefs);
5298        zonerefs += nr_zones;
5299
5300        /*
5301         * Now we build the zonelist so that it contains the zones
5302         * of all the other nodes.
5303         * We don't want to pressure a particular node, so when
5304         * building the zones for node N, we make sure that the
5305         * zones coming right after the local ones are those from
5306         * node N+1 (modulo N)
5307         */
5308        for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5309                if (!node_online(node))
5310                        continue;
5311                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5312                zonerefs += nr_zones;
5313        }
5314        for (node = 0; node < local_node; node++) {
5315                if (!node_online(node))
5316                        continue;
5317                nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5318                zonerefs += nr_zones;
5319        }
5320
5321        zonerefs->zone = NULL;
5322        zonerefs->zone_idx = 0;
5323}
5324
5325#endif  /* CONFIG_NUMA */
5326
5327/*
5328 * Boot pageset table. One per cpu which is going to be used for all
5329 * zones and all nodes. The parameters will be set in such a way
5330 * that an item put on a list will immediately be handed over to
5331 * the buddy list. This is safe since pageset manipulation is done
5332 * with interrupts disabled.
5333 *
5334 * The boot_pagesets must be kept even after bootup is complete for
5335 * unused processors and/or zones. They do play a role for bootstrapping
5336 * hotplugged processors.
5337 *
5338 * zoneinfo_show() and maybe other functions do
5339 * not check if the processor is online before following the pageset pointer.
5340 * Other parts of the kernel may not check if the zone is available.
5341 */
5342static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5343static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5344static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5345
5346static void __build_all_zonelists(void *data)
5347{
5348        int nid;
5349        int __maybe_unused cpu;
5350        pg_data_t *self = data;
5351        static DEFINE_SPINLOCK(lock);
5352
5353        spin_lock(&lock);
5354
5355#ifdef CONFIG_NUMA
5356        memset(node_load, 0, sizeof(node_load));
5357#endif
5358
5359        /*
5360         * This node is hotadded and no memory is yet present.   So just
5361         * building zonelists is fine - no need to touch other nodes.
5362         */
5363        if (self && !node_online(self->node_id)) {
5364                build_zonelists(self);
5365        } else {
5366                for_each_online_node(nid) {
5367                        pg_data_t *pgdat = NODE_DATA(nid);
5368
5369                        build_zonelists(pgdat);
5370                }
5371
5372#ifdef CONFIG_HAVE_MEMORYLESS_NODES
5373                /*
5374                 * We now know the "local memory node" for each node--
5375                 * i.e., the node of the first zone in the generic zonelist.
5376                 * Set up numa_mem percpu variable for on-line cpus.  During
5377                 * boot, only the boot cpu should be on-line;  we'll init the
5378                 * secondary cpus' numa_mem as they come on-line.  During
5379                 * node/memory hotplug, we'll fixup all on-line cpus.
5380                 */
5381                for_each_online_cpu(cpu)
5382                        set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5383#endif
5384        }
5385
5386        spin_unlock(&lock);
5387}
5388
5389static noinline void __init
5390build_all_zonelists_init(void)
5391{
5392        int cpu;
5393
5394        __build_all_zonelists(NULL);
5395
5396        /*
5397         * Initialize the boot_pagesets that are going to be used
5398         * for bootstrapping processors. The real pagesets for
5399         * each zone will be allocated later when the per cpu
5400         * allocator is available.
5401         *
5402         * boot_pagesets are used also for bootstrapping offline
5403         * cpus if the system is already booted because the pagesets
5404         * are needed to initialize allocators on a specific cpu too.
5405         * F.e. the percpu allocator needs the page allocator which
5406         * needs the percpu allocator in order to allocate its pagesets
5407         * (a chicken-egg dilemma).
5408         */
5409        for_each_possible_cpu(cpu)
5410                setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5411
5412        mminit_verify_zonelist();
5413        cpuset_init_current_mems_allowed();
5414}
5415
5416/*
5417 * unless system_state == SYSTEM_BOOTING.
5418 *
5419 * __ref due to call of __init annotated helper build_all_zonelists_init
5420 * [protected by SYSTEM_BOOTING].
5421 */
5422void __ref build_all_zonelists(pg_data_t *pgdat)
5423{
5424        if (system_state == SYSTEM_BOOTING) {
5425                build_all_zonelists_init();
5426        } else {
5427                __build_all_zonelists(pgdat);
5428                /* cpuset refresh routine should be here */
5429        }
5430        vm_total_pages = nr_free_pagecache_pages();
5431        /*
5432         * Disable grouping by mobility if the number of pages in the
5433         * system is too low to allow the mechanism to work. It would be
5434         * more accurate, but expensive to check per-zone. This check is
5435         * made on memory-hotadd so a system can start with mobility
5436         * disabled and enable it later
5437         */
5438        if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5439                page_group_by_mobility_disabled = 1;
5440        else
5441                page_group_by_mobility_disabled = 0;
5442
5443        pr_info("Built %i zonelists, mobility grouping %s.  Total pages: %ld\n",
5444                nr_online_nodes,
5445                page_group_by_mobility_disabled ? "off" : "on",
5446                vm_total_pages);
5447#ifdef CONFIG_NUMA
5448        pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5449#endif
5450}
5451
5452/*
5453 * Initially all pages are reserved - free ones are freed
5454 * up by free_all_bootmem() once the early boot process is
5455 * done. Non-atomic initialization, single-pass.
5456 */
5457void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5458                unsigned long start_pfn, enum memmap_context context,
5459                struct vmem_altmap *altmap)
5460{
5461        unsigned long end_pfn = start_pfn + size;
5462        pg_data_t *pgdat = NODE_DATA(nid);
5463        unsigned long pfn;
5464        unsigned long nr_initialised = 0;
5465        struct page *page;
5466#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5467        struct memblock_region *r = NULL, *tmp;
5468#endif
5469
5470        if (highest_memmap_pfn < end_pfn - 1)
5471                highest_memmap_pfn = end_pfn - 1;
5472
5473        /*
5474         * Honor reservation requested by the driver for this ZONE_DEVICE
5475         * memory
5476         */
5477        if (altmap && start_pfn == altmap->base_pfn)
5478                start_pfn += altmap->reserve;
5479
5480        for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5481                /*
5482                 * There can be holes in boot-time mem_map[]s handed to this
5483                 * function.  They do not exist on hotplugged memory.
5484                 */
5485                if (context != MEMMAP_EARLY)
5486                        goto not_early;
5487
5488                if (!early_pfn_valid(pfn))
5489                        continue;
5490                if (!early_pfn_in_nid(pfn, nid))
5491                        continue;
5492                if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5493                        break;
5494
5495#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5496                /*
5497                 * Check given memblock attribute by firmware which can affect
5498                 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5499                 * mirrored, it's an overlapped memmap init. skip it.
5500                 */
5501                if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5502                        if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5503                                for_each_memblock(memory, tmp)
5504                                        if (pfn < memblock_region_memory_end_pfn(tmp))
5505                                                break;
5506                                r = tmp;
5507                        }
5508                        if (pfn >= memblock_region_memory_base_pfn(r) &&
5509                            memblock_is_mirror(r)) {
5510                                /* already initialized as NORMAL */
5511                                pfn = memblock_region_memory_end_pfn(r);
5512                                continue;
5513                        }
5514                }
5515#endif
5516
5517not_early:
5518                page = pfn_to_page(pfn);
5519                __init_single_page(page, pfn, zone, nid);
5520                if (context == MEMMAP_HOTPLUG)
5521                        SetPageReserved(page);
5522
5523                /*
5524                 * Mark the block movable so that blocks are reserved for
5525                 * movable at startup. This will force kernel allocations
5526                 * to reserve their blocks rather than leaking throughout
5527                 * the address space during boot when many long-lived
5528                 * kernel allocations are made.
5529                 *
5530                 * bitmap is created for zone's valid pfn range. but memmap
5531                 * can be created for invalid pages (for alignment)
5532                 * check here not to call set_pageblock_migratetype() against
5533                 * pfn out of zone.
5534                 *
5535                 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5536                 * because this is done early in sparse_add_one_section
5537                 */
5538                if (!(pfn & (pageblock_nr_pages - 1))) {
5539                        set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5540                        cond_resched();
5541                }
5542        }
5543}
5544
5545static void __meminit zone_init_free_lists(struct zone *zone)
5546{
5547        unsigned int order, t;
5548        for_each_migratetype_order(order, t) {
5549                INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5550                zone->free_area[order].nr_free = 0;
5551        }
5552}
5553
5554#ifndef __HAVE_ARCH_MEMMAP_INIT
5555#define memmap_init(size, nid, zone, start_pfn) \
5556        memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5557#endif
5558
5559static int zone_batchsize(struct zone *zone)
5560{
5561#ifdef CONFIG_MMU
5562        int batch;
5563
5564        /*
5565         * The per-cpu-pages pools are set to around 1000th of the
5566         * size of the zone.
5567         */
5568        batch = zone->managed_pages / 1024;
5569        /* But no more than a meg. */
5570        if (batch * PAGE_SIZE > 1024 * 1024)
5571                batch = (1024 * 1024) / PAGE_SIZE;
5572        batch /= 4;             /* We effectively *= 4 below */
5573        if (batch < 1)
5574                batch = 1;
5575
5576        /*
5577         * Clamp the batch to a 2^n - 1 value. Having a power
5578         * of 2 value was found to be more likely to have
5579         * suboptimal cache aliasing properties in some cases.
5580         *
5581         * For example if 2 tasks are alternately allocating
5582         * batches of pages, one task can end up with a lot
5583         * of pages of one half of the possible page colors
5584         * and the other with pages of the other colors.
5585         */
5586        batch = rounddown_pow_of_two(batch + batch/2) - 1;
5587
5588        return batch;
5589
5590#else
5591        /* The deferral and batching of frees should be suppressed under NOMMU
5592         * conditions.
5593         *
5594         * The problem is that NOMMU needs to be able to allocate large chunks
5595         * of contiguous memory as there's no hardware page translation to
5596         * assemble apparent contiguous memory from discontiguous pages.
5597         *
5598         * Queueing large contiguous runs of pages for batching, however,
5599         * causes the pages to actually be freed in smaller chunks.  As there
5600         * can be a significant delay between the individual batches being
5601         * recycled, this leads to the once large chunks of space being
5602         * fragmented and becoming unavailable for high-order allocations.
5603         */
5604        return 0;
5605#endif
5606}
5607
5608/*
5609 * pcp->high and pcp->batch values are related and dependent on one another:
5610 * ->batch must never be higher then ->high.
5611 * The following function updates them in a safe manner without read side
5612 * locking.
5613 *
5614 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5615 * those fields changing asynchronously (acording the the above rule).
5616 *
5617 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5618 * outside of boot time (or some other assurance that no concurrent updaters
5619 * exist).
5620 */
5621static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5622                unsigned long batch)
5623{
5624       /* start with a fail safe value for batch */
5625        pcp->batch = 1;
5626        smp_wmb();
5627
5628       /* Update high, then batch, in order */
5629        pcp->high = high;
5630        smp_wmb();
5631
5632        pcp->batch = batch;
5633}
5634
5635/* a companion to pageset_set_high() */
5636static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5637{
5638        pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5639}
5640
5641static void pageset_init(struct per_cpu_pageset *p)
5642{
5643        struct per_cpu_pages *pcp;
5644        int migratetype;
5645
5646        memset(p, 0, sizeof(*p));
5647
5648        pcp = &p->pcp;
5649        pcp->count = 0;
5650        for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5651                INIT_LIST_HEAD(&pcp->lists[migratetype]);
5652}
5653
5654static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5655{
5656        pageset_init(p);
5657        pageset_set_batch(p, batch);
5658}
5659
5660/*
5661 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5662 * to the value high for the pageset p.
5663 */
5664static void pageset_set_high(struct per_cpu_pageset *p,
5665                                unsigned long high)
5666{
5667        unsigned long batch = max(1UL, high / 4);
5668        if ((high / 4) > (PAGE_SHIFT * 8))
5669                batch = PAGE_SHIFT * 8;
5670
5671        pageset_update(&p->pcp, high, batch);
5672}
5673
5674static void pageset_set_high_and_batch(struct zone *zone,
5675                                       struct per_cpu_pageset *pcp)
5676{
5677        if (percpu_pagelist_fraction)
5678                pageset_set_high(pcp,
5679                        (zone->managed_pages /
5680                                percpu_pagelist_fraction));
5681        else
5682                pageset_set_batch(pcp, zone_batchsize(zone));
5683}
5684
5685static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5686{
5687        struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5688
5689        pageset_init(pcp);
5690        pageset_set_high_and_batch(zone, pcp);
5691}
5692
5693void __meminit setup_zone_pageset(struct zone *zone)
5694{
5695        int cpu;
5696        zone->pageset = alloc_percpu(struct per_cpu_pageset);
5697        for_each_possible_cpu(cpu)
5698                zone_pageset_init(zone, cpu);
5699}
5700
5701/*
5702 * Allocate per cpu pagesets and initialize them.
5703 * Before this call only boot pagesets were available.
5704 */
5705void __init setup_per_cpu_pageset(void)
5706{
5707        struct pglist_data *pgdat;
5708        struct zone *zone;
5709
5710        for_each_populated_zone(zone)
5711                setup_zone_pageset(zone);
5712
5713        for_each_online_pgdat(pgdat)
5714                pgdat->per_cpu_nodestats =
5715                        alloc_percpu(struct per_cpu_nodestat);
5716}
5717
5718static __meminit void zone_pcp_init(struct zone *zone)
5719{
5720        /*
5721         * per cpu subsystem is not up at this point. The following code
5722         * relies on the ability of the linker to provide the
5723         * offset of a (static) per cpu variable into the per cpu area.
5724         */
5725        zone->pageset = &boot_pageset;
5726
5727        if (populated_zone(zone))
5728                printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5729                        zone->name, zone->present_pages,
5730                                         zone_batchsize(zone));
5731}
5732
5733void __meminit init_currently_empty_zone(struct zone *zone,
5734                                        unsigned long zone_start_pfn,
5735                                        unsigned long size)
5736{
5737        struct pglist_data *pgdat = zone->zone_pgdat;
5738
5739        pgdat->nr_zones = zone_idx(zone) + 1;
5740
5741        zone->zone_start_pfn = zone_start_pfn;
5742
5743        mminit_dprintk(MMINIT_TRACE, "memmap_init",
5744                        "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5745                        pgdat->node_id,
5746                        (unsigned long)zone_idx(zone),
5747                        zone_start_pfn, (zone_start_pfn + size));
5748
5749        zone_init_free_lists(zone);
5750        zone->initialized = 1;
5751}
5752
5753#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5754#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5755
5756/*
5757 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5758 */
5759int __meminit __early_pfn_to_nid(unsigned long pfn,
5760                                        struct mminit_pfnnid_cache *state)
5761{
5762        unsigned long start_pfn, end_pfn;
5763        int nid;
5764
5765        if (state->last_start <= pfn && pfn < state->last_end)
5766                return state->last_nid;
5767
5768        nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5769        if (nid != -1) {
5770                state->last_start = start_pfn;
5771                state->last_end = end_pfn;
5772                state->last_nid = nid;
5773        }
5774
5775        return nid;
5776}
5777#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5778
5779/**
5780 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5781 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5782 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5783 *
5784 * If an architecture guarantees that all ranges registered contain no holes
5785 * and may be freed, this this function may be used instead of calling
5786 * memblock_free_early_nid() manually.
5787 */
5788void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5789{
5790        unsigned long start_pfn, end_pfn;
5791        int i, this_nid;
5792
5793        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5794                start_pfn = min(start_pfn, max_low_pfn);
5795                end_pfn = min(end_pfn, max_low_pfn);
5796
5797                if (start_pfn < end_pfn)
5798                        memblock_free_early_nid(PFN_PHYS(start_pfn),
5799                                        (end_pfn - start_pfn) << PAGE_SHIFT,
5800                                        this_nid);
5801        }
5802}
5803
5804/**
5805 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5806 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5807 *
5808 * If an architecture guarantees that all ranges registered contain no holes and may
5809 * be freed, this function may be used instead of calling memory_present() manually.
5810 */
5811void __init sparse_memory_present_with_active_regions(int nid)
5812{
5813        unsigned long start_pfn, end_pfn;
5814        int i, this_nid;
5815
5816        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5817                memory_present(this_nid, start_pfn, end_pfn);
5818}
5819
5820/**
5821 * get_pfn_range_for_nid - Return the start and end page frames for a node
5822 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5823 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5824 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5825 *
5826 * It returns the start and end page frame of a node based on information
5827 * provided by memblock_set_node(). If called for a node
5828 * with no available memory, a warning is printed and the start and end
5829 * PFNs will be 0.
5830 */
5831void __meminit get_pfn_range_for_nid(unsigned int nid,
5832                        unsigned long *start_pfn, unsigned long *end_pfn)
5833{
5834        unsigned long this_start_pfn, this_end_pfn;
5835        int i;
5836
5837        *start_pfn = -1UL;
5838        *end_pfn = 0;
5839
5840        for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5841                *start_pfn = min(*start_pfn, this_start_pfn);
5842                *end_pfn = max(*end_pfn, this_end_pfn);
5843        }
5844
5845        if (*start_pfn == -1UL)
5846                *start_pfn = 0;
5847}
5848
5849/*
5850 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5851 * assumption is made that zones within a node are ordered in monotonic
5852 * increasing memory addresses so that the "highest" populated zone is used
5853 */
5854static void __init find_usable_zone_for_movable(void)
5855{
5856        int zone_index;
5857        for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5858                if (zone_index == ZONE_MOVABLE)
5859                        continue;
5860
5861                if (arch_zone_highest_possible_pfn[zone_index] >
5862                                arch_zone_lowest_possible_pfn[zone_index])
5863                        break;
5864        }
5865
5866        VM_BUG_ON(zone_index == -1);
5867        movable_zone = zone_index;
5868}
5869
5870/*
5871 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5872 * because it is sized independent of architecture. Unlike the other zones,
5873 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5874 * in each node depending on the size of each node and how evenly kernelcore
5875 * is distributed. This helper function adjusts the zone ranges
5876 * provided by the architecture for a given node by using the end of the
5877 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5878 * zones within a node are in order of monotonic increases memory addresses
5879 */
5880static void __meminit adjust_zone_range_for_zone_movable(int nid,
5881                                        unsigned long zone_type,
5882                                        unsigned long node_start_pfn,
5883                                        unsigned long node_end_pfn,
5884                                        unsigned long *zone_start_pfn,
5885                                        unsigned long *zone_end_pfn)
5886{
5887        /* Only adjust if ZONE_MOVABLE is on this node */
5888        if (zone_movable_pfn[nid]) {
5889                /* Size ZONE_MOVABLE */
5890                if (zone_type == ZONE_MOVABLE) {
5891                        *zone_start_pfn = zone_movable_pfn[nid];
5892                        *zone_end_pfn = min(node_end_pfn,
5893                                arch_zone_highest_possible_pfn[movable_zone]);
5894
5895                /* Adjust for ZONE_MOVABLE starting within this range */
5896                } else if (!mirrored_kernelcore &&
5897                        *zone_start_pfn < zone_movable_pfn[nid] &&
5898                        *zone_end_pfn > zone_movable_pfn[nid]) {
5899                        *zone_end_pfn = zone_movable_pfn[nid];
5900
5901                /* Check if this whole range is within ZONE_MOVABLE */
5902                } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5903                        *zone_start_pfn = *zone_end_pfn;
5904        }
5905}
5906
5907/*
5908 * Return the number of pages a zone spans in a node, including holes
5909 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5910 */
5911static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5912                                        unsigned long zone_type,
5913                                        unsigned long node_start_pfn,
5914                                        unsigned long node_end_pfn,
5915                                        unsigned long *zone_start_pfn,
5916                                        unsigned long *zone_end_pfn,
5917                                        unsigned long *ignored)
5918{
5919        /* When hotadd a new node from cpu_up(), the node should be empty */
5920        if (!node_start_pfn && !node_end_pfn)
5921                return 0;
5922
5923        /* Get the start and end of the zone */
5924        *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5925        *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5926        adjust_zone_range_for_zone_movable(nid, zone_type,
5927                                node_start_pfn, node_end_pfn,
5928                                zone_start_pfn, zone_end_pfn);
5929
5930        /* Check that this node has pages within the zone's required range */
5931        if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5932                return 0;
5933
5934        /* Move the zone boundaries inside the node if necessary */
5935        *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5936        *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5937
5938        /* Return the spanned pages */
5939        return *zone_end_pfn - *zone_start_pfn;
5940}
5941
5942/*
5943 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5944 * then all holes in the requested range will be accounted for.
5945 */
5946unsigned long __meminit __absent_pages_in_range(int nid,
5947                                unsigned long range_start_pfn,
5948                                unsigned long range_end_pfn)
5949{
5950        unsigned long nr_absent = range_end_pfn - range_start_pfn;
5951        unsigned long start_pfn, end_pfn;
5952        int i;
5953
5954        for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5955                start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5956                end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5957                nr_absent -= end_pfn - start_pfn;
5958        }
5959        return nr_absent;
5960}
5961
5962/**
5963 * absent_pages_in_range - Return number of page frames in holes within a range
5964 * @start_pfn: The start PFN to start searching for holes
5965 * @end_pfn: The end PFN to stop searching for holes
5966 *
5967 * It returns the number of pages frames in memory holes within a range.
5968 */
5969unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5970                                                        unsigned long end_pfn)
5971{
5972        return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5973}
5974
5975/* Return the number of page frames in holes in a zone on a node */
5976static unsigned long __meminit zone_absent_pages_in_node(int nid,
5977                                        unsigned long zone_type,
5978                                        unsigned long node_start_pfn,
5979                                        unsigned long node_end_pfn,
5980                                        unsigned long *ignored)
5981{
5982        unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5983        unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5984        unsigned long zone_start_pfn, zone_end_pfn;
5985        unsigned long nr_absent;
5986
5987        /* When hotadd a new node from cpu_up(), the node should be empty */
5988        if (!node_start_pfn && !node_end_pfn)
5989                return 0;
5990
5991        zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5992        zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5993
5994        adjust_zone_range_for_zone_movable(nid, zone_type,
5995                        node_start_pfn, node_end_pfn,
5996                        &zone_start_pfn, &zone_end_pfn);
5997        nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5998
5999        /*
6000         * ZONE_MOVABLE handling.
6001         * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6002         * and vice versa.
6003         */
6004        if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6005                unsigned long start_pfn, end_pfn;
6006                struct memblock_region *r;
6007
6008                for_each_memblock(memory, r) {
6009                        start_pfn = clamp(memblock_region_memory_base_pfn(r),
6010                                          zone_start_pfn, zone_end_pfn);
6011                        end_pfn = clamp(memblock_region_memory_end_pfn(r),
6012                                        zone_start_pfn, zone_end_pfn);
6013
6014                        if (zone_type == ZONE_MOVABLE &&
6015                            memblock_is_mirror(r))
6016                                nr_absent += end_pfn - start_pfn;
6017
6018                        if (zone_type == ZONE_NORMAL &&
6019                            !memblock_is_mirror(r))
6020                                nr_absent += end_pfn - start_pfn;
6021                }
6022        }
6023
6024        return nr_absent;
6025}
6026
6027#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6028static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
6029                                        unsigned long zone_type,
6030                                        unsigned long node_start_pfn,
6031                                        unsigned long node_end_pfn,
6032                                        unsigned long *zone_start_pfn,
6033                                        unsigned long *zone_end_pfn,
6034                                        unsigned long *zones_size)
6035{
6036        unsigned int zone;
6037
6038        *zone_start_pfn = node_start_pfn;
6039        for (zone = 0; zone < zone_type; zone++)
6040                *zone_start_pfn += zones_size[zone];
6041
6042        *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6043
6044        return zones_size[zone_type];
6045}
6046
6047static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
6048                                                unsigned long zone_type,
6049                                                unsigned long node_start_pfn,
6050                                                unsigned long node_end_pfn,
6051                                                unsigned long *zholes_size)
6052{
6053        if (!zholes_size)
6054                return 0;
6055
6056        return zholes_size[zone_type];
6057}
6058
6059#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6060
6061static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
6062                                                unsigned long node_start_pfn,
6063                                                unsigned long node_end_pfn,
6064                                                unsigned long *zones_size,
6065                                                unsigned long *zholes_size)
6066{
6067        unsigned long realtotalpages = 0, totalpages = 0;
6068        enum zone_type i;
6069
6070        for (i = 0; i < MAX_NR_ZONES; i++) {
6071                struct zone *zone = pgdat->node_zones + i;
6072                unsigned long zone_start_pfn, zone_end_pfn;
6073                unsigned long size, real_size;
6074
6075                size = zone_spanned_pages_in_node(pgdat->node_id, i,
6076                                                  node_start_pfn,
6077                                                  node_end_pfn,
6078                                                  &zone_start_pfn,
6079                                                  &zone_end_pfn,
6080                                                  zones_size);
6081                real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6082                                                  node_start_pfn, node_end_pfn,
6083                                                  zholes_size);
6084                if (size)
6085                        zone->zone_start_pfn = zone_start_pfn;
6086                else
6087                        zone->zone_start_pfn = 0;
6088                zone->spanned_pages = size;
6089                zone->present_pages = real_size;
6090
6091                totalpages += size;
6092                realtotalpages += real_size;
6093        }
6094
6095        pgdat->node_spanned_pages = totalpages;
6096        pgdat->node_present_pages = realtotalpages;
6097        printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6098                                                        realtotalpages);
6099}
6100
6101#ifndef CONFIG_SPARSEMEM
6102/*
6103 * Calculate the size of the zone->blockflags rounded to an unsigned long
6104 * Start by making sure zonesize is a multiple of pageblock_order by rounding
6105 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6106 * round what is now in bits to nearest long in bits, then return it in
6107 * bytes.
6108 */
6109static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6110{
6111        unsigned long usemapsize;
6112
6113        zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6114        usemapsize = roundup(zonesize, pageblock_nr_pages);
6115        usemapsize = usemapsize >> pageblock_order;
6116        usemapsize *= NR_PAGEBLOCK_BITS;
6117        usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6118
6119        return usemapsize / 8;
6120}
6121
6122static void __ref setup_usemap(struct pglist_data *pgdat,
6123                                struct zone *zone,
6124                                unsigned long zone_start_pfn,
6125                                unsigned long zonesize)
6126{
6127        unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6128        zone->pageblock_flags = NULL;
6129        if (usemapsize)
6130                zone->pageblock_flags =
6131                        memblock_virt_alloc_node_nopanic(usemapsize,
6132                                                         pgdat->node_id);
6133}
6134#else
6135static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6136                                unsigned long zone_start_pfn, unsigned long zonesize) {}
6137#endif /* CONFIG_SPARSEMEM */
6138
6139#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6140
6141/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6142void __init set_pageblock_order(void)
6143{
6144        unsigned int order;
6145
6146        /* Check that pageblock_nr_pages has not already been setup */
6147        if (pageblock_order)
6148                return;
6149
6150        if (HPAGE_SHIFT > PAGE_SHIFT)
6151                order = HUGETLB_PAGE_ORDER;
6152        else
6153                order = MAX_ORDER - 1;
6154
6155        /*
6156         * Assume the largest contiguous order of interest is a huge page.
6157         * This value may be variable depending on boot parameters on IA64 and
6158         * powerpc.
6159         */
6160        pageblock_order = order;
6161}
6162#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6163
6164/*
6165 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6166 * is unused as pageblock_order is set at compile-time. See
6167 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6168 * the kernel config
6169 */
6170void __init set_pageblock_order(void)
6171{
6172}
6173
6174#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6175
6176static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6177                                                unsigned long present_pages)
6178{
6179        unsigned long pages = spanned_pages;
6180
6181        /*
6182         * Provide a more accurate estimation if there are holes within
6183         * the zone and SPARSEMEM is in use. If there are holes within the
6184         * zone, each populated memory region may cost us one or two extra
6185         * memmap pages due to alignment because memmap pages for each
6186         * populated regions may not be naturally aligned on page boundary.
6187         * So the (present_pages >> 4) heuristic is a tradeoff for that.
6188         */
6189        if (spanned_pages > present_pages + (present_pages >> 4) &&
6190            IS_ENABLED(CONFIG_SPARSEMEM))
6191                pages = present_pages;
6192
6193        return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6194}
6195
6196#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6197static void pgdat_init_split_queue(struct pglist_data *pgdat)
6198{
6199        spin_lock_init(&pgdat->split_queue_lock);
6200        INIT_LIST_HEAD(&pgdat->split_queue);
6201        pgdat->split_queue_len = 0;
6202}
6203#else
6204static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6205#endif
6206
6207#ifdef CONFIG_COMPACTION
6208static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6209{
6210        init_waitqueue_head(&pgdat->kcompactd_wait);
6211}
6212#else
6213static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6214#endif
6215
6216static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6217{
6218        pgdat_resize_init(pgdat);
6219
6220        pgdat_init_split_queue(pgdat);
6221        pgdat_init_kcompactd(pgdat);
6222
6223        init_waitqueue_head(&pgdat->kswapd_wait);
6224        init_waitqueue_head(&pgdat->pfmemalloc_wait);
6225
6226        pgdat_page_ext_init(pgdat);
6227        spin_lock_init(&pgdat->lru_lock);
6228        lruvec_init(node_lruvec(pgdat));
6229}
6230
6231static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6232                                                        unsigned long remaining_pages)
6233{
6234        zone->managed_pages = remaining_pages;
6235        zone_set_nid(zone, nid);
6236        zone->name = zone_names[idx];
6237        zone->zone_pgdat = NODE_DATA(nid);
6238        spin_lock_init(&zone->lock);
6239        zone_seqlock_init(zone);
6240        zone_pcp_init(zone);
6241}
6242
6243/*
6244 * Set up the zone data structures
6245 * - init pgdat internals
6246 * - init all zones belonging to this node
6247 *
6248 * NOTE: this function is only called during memory hotplug
6249 */
6250#ifdef CONFIG_MEMORY_HOTPLUG
6251void __ref free_area_init_core_hotplug(int nid)
6252{
6253        enum zone_type z;
6254        pg_data_t *pgdat = NODE_DATA(nid);
6255
6256        pgdat_init_internals(pgdat);
6257        for (z = 0; z < MAX_NR_ZONES; z++)
6258                zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6259}
6260#endif
6261
6262/*
6263 * Set up the zone data structures:
6264 *   - mark all pages reserved
6265 *   - mark all memory queues empty
6266 *   - clear the memory bitmaps
6267 *
6268 * NOTE: pgdat should get zeroed by caller.
6269 * NOTE: this function is only called during early init.
6270 */
6271static void __init free_area_init_core(struct pglist_data *pgdat)
6272{
6273        enum zone_type j;
6274        int nid = pgdat->node_id;
6275
6276        pgdat_init_internals(pgdat);
6277        pgdat->per_cpu_nodestats = &boot_nodestats;
6278
6279        for (j = 0; j < MAX_NR_ZONES; j++) {
6280                struct zone *zone = pgdat->node_zones + j;
6281                unsigned long size, freesize, memmap_pages;
6282                unsigned long zone_start_pfn = zone->zone_start_pfn;
6283
6284                size = zone->spanned_pages;
6285                freesize = zone->present_pages;
6286
6287                /*
6288                 * Adjust freesize so that it accounts for how much memory
6289                 * is used by this zone for memmap. This affects the watermark
6290                 * and per-cpu initialisations
6291                 */
6292                memmap_pages = calc_memmap_size(size, freesize);
6293                if (!is_highmem_idx(j)) {
6294                        if (freesize >= memmap_pages) {
6295                                freesize -= memmap_pages;
6296                                if (memmap_pages)
6297                                        printk(KERN_DEBUG
6298                                               "  %s zone: %lu pages used for memmap\n",
6299                                               zone_names[j], memmap_pages);
6300                        } else
6301                                pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6302                                        zone_names[j], memmap_pages, freesize);
6303                }
6304
6305                /* Account for reserved pages */
6306                if (j == 0 && freesize > dma_reserve) {
6307                        freesize -= dma_reserve;
6308                        printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6309                                        zone_names[0], dma_reserve);
6310                }
6311
6312                if (!is_highmem_idx(j))
6313                        nr_kernel_pages += freesize;
6314                /* Charge for highmem memmap if there are enough kernel pages */
6315                else if (nr_kernel_pages > memmap_pages * 2)
6316                        nr_kernel_pages -= memmap_pages;
6317                nr_all_pages += freesize;
6318
6319                /*
6320                 * Set an approximate value for lowmem here, it will be adjusted
6321                 * when the bootmem allocator frees pages into the buddy system.
6322                 * And all highmem pages will be managed by the buddy system.
6323                 */
6324                zone_init_internals(zone, j, nid, freesize);
6325
6326                if (!size)
6327                        continue;
6328
6329                set_pageblock_order();
6330                setup_usemap(pgdat, zone, zone_start_pfn, size);
6331                init_currently_empty_zone(zone, zone_start_pfn, size);
6332                memmap_init(size, nid, j, zone_start_pfn);
6333        }
6334}
6335
6336#ifdef CONFIG_FLAT_NODE_MEM_MAP
6337static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6338{
6339        unsigned long __maybe_unused start = 0;
6340        unsigned long __maybe_unused offset = 0;
6341
6342        /* Skip empty nodes */
6343        if (!pgdat->node_spanned_pages)
6344                return;
6345
6346        start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6347        offset = pgdat->node_start_pfn - start;
6348        /* ia64 gets its own node_mem_map, before this, without bootmem */
6349        if (!pgdat->node_mem_map) {
6350                unsigned long size, end;
6351                struct page *map;
6352
6353                /*
6354                 * The zone's endpoints aren't required to be MAX_ORDER
6355                 * aligned but the node_mem_map endpoints must be in order
6356                 * for the buddy allocator to function correctly.
6357                 */
6358                end = pgdat_end_pfn(pgdat);
6359                end = ALIGN(end, MAX_ORDER_NR_PAGES);
6360                size =  (end - start) * sizeof(struct page);
6361                map = memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
6362                pgdat->node_mem_map = map + offset;
6363        }
6364        pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6365                                __func__, pgdat->node_id, (unsigned long)pgdat,
6366                                (unsigned long)pgdat->node_mem_map);
6367#ifndef CONFIG_NEED_MULTIPLE_NODES
6368        /*
6369         * With no DISCONTIG, the global mem_map is just set as node 0's
6370         */
6371        if (pgdat == NODE_DATA(0)) {
6372                mem_map = NODE_DATA(0)->node_mem_map;
6373#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6374                if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6375                        mem_map -= offset;
6376#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6377        }
6378#endif
6379}
6380#else
6381static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6382#endif /* CONFIG_FLAT_NODE_MEM_MAP */
6383
6384#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6385static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6386{
6387        /*
6388         * We start only with one section of pages, more pages are added as
6389         * needed until the rest of deferred pages are initialized.
6390         */
6391        pgdat->static_init_pgcnt = min_t(unsigned long, PAGES_PER_SECTION,
6392                                                pgdat->node_spanned_pages);
6393        pgdat->first_deferred_pfn = ULONG_MAX;
6394}
6395#else
6396static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6397#endif
6398
6399void __init free_area_init_node(int nid, unsigned long *zones_size,
6400                                   unsigned long node_start_pfn,
6401                                   unsigned long *zholes_size)
6402{
6403        pg_data_t *pgdat = NODE_DATA(nid);
6404        unsigned long start_pfn = 0;
6405        unsigned long end_pfn = 0;
6406
6407        /* pg_data_t should be reset to zero when it's allocated */
6408        WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6409
6410        pgdat->node_id = nid;
6411        pgdat->node_start_pfn = node_start_pfn;
6412        pgdat->per_cpu_nodestats = NULL;
6413#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6414        get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6415        pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6416                (u64)start_pfn << PAGE_SHIFT,
6417                end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6418#else
6419        start_pfn = node_start_pfn;
6420#endif
6421        calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6422                                  zones_size, zholes_size);
6423
6424        alloc_node_mem_map(pgdat);
6425        pgdat_set_deferred_range(pgdat);
6426
6427        free_area_init_core(pgdat);
6428}
6429
6430#if defined(CONFIG_HAVE_MEMBLOCK) && !defined(CONFIG_FLAT_NODE_MEM_MAP)
6431/*
6432 * Only struct pages that are backed by physical memory are zeroed and
6433 * initialized by going through __init_single_page(). But, there are some
6434 * struct pages which are reserved in memblock allocator and their fields
6435 * may be accessed (for example page_to_pfn() on some configuration accesses
6436 * flags). We must explicitly zero those struct pages.
6437 */
6438void __init zero_resv_unavail(void)
6439{
6440        phys_addr_t start, end;
6441        unsigned long pfn;
6442        u64 i, pgcnt;
6443
6444        /*
6445         * Loop through ranges that are reserved, but do not have reported
6446         * physical memory backing.
6447         */
6448        pgcnt = 0;
6449        for_each_resv_unavail_range(i, &start, &end) {
6450                for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) {
6451                        if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6452                                pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6453                                        + pageblock_nr_pages - 1;
6454                                continue;
6455                        }
6456                        mm_zero_struct_page(pfn_to_page(pfn));
6457                        pgcnt++;
6458                }
6459        }
6460
6461        /*
6462         * Struct pages that do not have backing memory. This could be because
6463         * firmware is using some of this memory, or for some other reasons.
6464         * Once memblock is changed so such behaviour is not allowed: i.e.
6465         * list of "reserved" memory must be a subset of list of "memory", then
6466         * this code can be removed.
6467         */
6468        if (pgcnt)
6469                pr_info("Reserved but unavailable: %lld pages", pgcnt);
6470}
6471#endif /* CONFIG_HAVE_MEMBLOCK && !CONFIG_FLAT_NODE_MEM_MAP */
6472
6473#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6474
6475#if MAX_NUMNODES > 1
6476/*
6477 * Figure out the number of possible node ids.
6478 */
6479void __init setup_nr_node_ids(void)
6480{
6481        unsigned int highest;
6482
6483        highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6484        nr_node_ids = highest + 1;
6485}
6486#endif
6487
6488/**
6489 * node_map_pfn_alignment - determine the maximum internode alignment
6490 *
6491 * This function should be called after node map is populated and sorted.
6492 * It calculates the maximum power of two alignment which can distinguish
6493 * all the nodes.
6494 *
6495 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6496 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6497 * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6498 * shifted, 1GiB is enough and this function will indicate so.
6499 *
6500 * This is used to test whether pfn -> nid mapping of the chosen memory
6501 * model has fine enough granularity to avoid incorrect mapping for the
6502 * populated node map.
6503 *
6504 * Returns the determined alignment in pfn's.  0 if there is no alignment
6505 * requirement (single node).
6506 */
6507unsigned long __init node_map_pfn_alignment(void)
6508{
6509        unsigned long accl_mask = 0, last_end = 0;
6510        unsigned long start, end, mask;
6511        int last_nid = -1;
6512        int i, nid;
6513
6514        for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6515                if (!start || last_nid < 0 || last_nid == nid) {
6516                        last_nid = nid;
6517                        last_end = end;
6518                        continue;
6519                }
6520
6521                /*
6522                 * Start with a mask granular enough to pin-point to the
6523                 * start pfn and tick off bits one-by-one until it becomes
6524                 * too coarse to separate the current node from the last.
6525                 */
6526                mask = ~((1 << __ffs(start)) - 1);
6527                while (mask && last_end <= (start & (mask << 1)))
6528                        mask <<= 1;
6529
6530                /* accumulate all internode masks */
6531                accl_mask |= mask;
6532        }
6533
6534        /* convert mask to number of pages */
6535        return ~accl_mask + 1;
6536}
6537
6538/* Find the lowest pfn for a node */
6539static unsigned long __init find_min_pfn_for_node(int nid)
6540{
6541        unsigned long min_pfn = ULONG_MAX;
6542        unsigned long start_pfn;
6543        int i;
6544
6545        for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6546                min_pfn = min(min_pfn, start_pfn);
6547
6548        if (min_pfn == ULONG_MAX) {
6549                pr_warn("Could not find start_pfn for node %d\n", nid);
6550                return 0;
6551        }
6552
6553        return min_pfn;
6554}
6555
6556/**
6557 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6558 *
6559 * It returns the minimum PFN based on information provided via
6560 * memblock_set_node().
6561 */
6562unsigned long __init find_min_pfn_with_active_regions(void)
6563{
6564        return find_min_pfn_for_node(MAX_NUMNODES);
6565}
6566
6567/*
6568 * early_calculate_totalpages()
6569 * Sum pages in active regions for movable zone.
6570 * Populate N_MEMORY for calculating usable_nodes.
6571 */
6572static unsigned long __init early_calculate_totalpages(void)
6573{
6574        unsigned long totalpages = 0;
6575        unsigned long start_pfn, end_pfn;
6576        int i, nid;
6577
6578        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6579                unsigned long pages = end_pfn - start_pfn;
6580
6581                totalpages += pages;
6582                if (pages)
6583                        node_set_state(nid, N_MEMORY);
6584        }
6585        return totalpages;
6586}
6587
6588/*
6589 * Find the PFN the Movable zone begins in each node. Kernel memory
6590 * is spread evenly between nodes as long as the nodes have enough
6591 * memory. When they don't, some nodes will have more kernelcore than
6592 * others
6593 */
6594static void __init find_zone_movable_pfns_for_nodes(void)
6595{
6596        int i, nid;
6597        unsigned long usable_startpfn;
6598        unsigned long kernelcore_node, kernelcore_remaining;
6599        /* save the state before borrow the nodemask */
6600        nodemask_t saved_node_state = node_states[N_MEMORY];
6601        unsigned long totalpages = early_calculate_totalpages();
6602        int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6603        struct memblock_region *r;
6604
6605        /* Need to find movable_zone earlier when movable_node is specified. */
6606        find_usable_zone_for_movable();
6607
6608        /*
6609         * If movable_node is specified, ignore kernelcore and movablecore
6610         * options.
6611         */
6612        if (movable_node_is_enabled()) {
6613                for_each_memblock(memory, r) {
6614                        if (!memblock_is_hotpluggable(r))
6615                                continue;
6616
6617                        nid = r->nid;
6618
6619                        usable_startpfn = PFN_DOWN(r->base);
6620                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6621                                min(usable_startpfn, zone_movable_pfn[nid]) :
6622                                usable_startpfn;
6623                }
6624
6625                goto out2;
6626        }
6627
6628        /*
6629         * If kernelcore=mirror is specified, ignore movablecore option
6630         */
6631        if (mirrored_kernelcore) {
6632                bool mem_below_4gb_not_mirrored = false;
6633
6634                for_each_memblock(memory, r) {
6635                        if (memblock_is_mirror(r))
6636                                continue;
6637
6638                        nid = r->nid;
6639
6640                        usable_startpfn = memblock_region_memory_base_pfn(r);
6641
6642                        if (usable_startpfn < 0x100000) {
6643                                mem_below_4gb_not_mirrored = true;
6644                                continue;
6645                        }
6646
6647                        zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6648                                min(usable_startpfn, zone_movable_pfn[nid]) :
6649                                usable_startpfn;
6650                }
6651
6652                if (mem_below_4gb_not_mirrored)
6653                        pr_warn("This configuration results in unmirrored kernel memory.");
6654
6655                goto out2;
6656        }
6657
6658        /*
6659         * If kernelcore=nn% or movablecore=nn% was specified, calculate the
6660         * amount of necessary memory.
6661         */
6662        if (required_kernelcore_percent)
6663                required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
6664                                       10000UL;
6665        if (required_movablecore_percent)
6666                required_movablecore = (totalpages * 100 * required_movablecore_percent) /
6667                                        10000UL;
6668
6669        /*
6670         * If movablecore= was specified, calculate what size of
6671         * kernelcore that corresponds so that memory usable for
6672         * any allocation type is evenly spread. If both kernelcore
6673         * and movablecore are specified, then the value of kernelcore
6674         * will be used for required_kernelcore if it's greater than
6675         * what movablecore would have allowed.
6676         */
6677        if (required_movablecore) {
6678                unsigned long corepages;
6679
6680                /*
6681                 * Round-up so that ZONE_MOVABLE is at least as large as what
6682                 * was requested by the user
6683                 */
6684                required_movablecore =
6685                        roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6686                required_movablecore = min(totalpages, required_movablecore);
6687                corepages = totalpages - required_movablecore;
6688
6689                required_kernelcore = max(required_kernelcore, corepages);
6690        }
6691
6692        /*
6693         * If kernelcore was not specified or kernelcore size is larger
6694         * than totalpages, there is no ZONE_MOVABLE.
6695         */
6696        if (!required_kernelcore || required_kernelcore >= totalpages)
6697                goto out;
6698
6699        /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6700        usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6701
6702restart:
6703        /* Spread kernelcore memory as evenly as possible throughout nodes */
6704        kernelcore_node = required_kernelcore / usable_nodes;
6705        for_each_node_state(nid, N_MEMORY) {
6706                unsigned long start_pfn, end_pfn;
6707
6708                /*
6709                 * Recalculate kernelcore_node if the division per node
6710                 * now exceeds what is necessary to satisfy the requested
6711                 * amount of memory for the kernel
6712                 */
6713                if (required_kernelcore < kernelcore_node)
6714                        kernelcore_node = required_kernelcore / usable_nodes;
6715
6716                /*
6717                 * As the map is walked, we track how much memory is usable
6718                 * by the kernel using kernelcore_remaining. When it is
6719                 * 0, the rest of the node is usable by ZONE_MOVABLE
6720                 */
6721                kernelcore_remaining = kernelcore_node;
6722
6723                /* Go through each range of PFNs within this node */
6724                for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6725                        unsigned long size_pages;
6726
6727                        start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6728                        if (start_pfn >= end_pfn)
6729                                continue;
6730
6731                        /* Account for what is only usable for kernelcore */
6732                        if (start_pfn < usable_startpfn) {
6733                                unsigned long kernel_pages;
6734                                kernel_pages = min(end_pfn, usable_startpfn)
6735                                                                - start_pfn;
6736
6737                                kernelcore_remaining -= min(kernel_pages,
6738                                                        kernelcore_remaining);
6739                                required_kernelcore -= min(kernel_pages,
6740                                                        required_kernelcore);
6741
6742                                /* Continue if range is now fully accounted */
6743                                if (end_pfn <= usable_startpfn) {
6744
6745                                        /*
6746                                         * Push zone_movable_pfn to the end so
6747                                         * that if we have to rebalance
6748                                         * kernelcore across nodes, we will
6749                                         * not double account here
6750                                         */
6751                                        zone_movable_pfn[nid] = end_pfn;
6752                                        continue;
6753                                }
6754                                start_pfn = usable_startpfn;
6755                        }
6756
6757                        /*
6758                         * The usable PFN range for ZONE_MOVABLE is from
6759                         * start_pfn->end_pfn. Calculate size_pages as the
6760                         * number of pages used as kernelcore
6761                         */
6762                        size_pages = end_pfn - start_pfn;
6763                        if (size_pages > kernelcore_remaining)
6764                                size_pages = kernelcore_remaining;
6765                        zone_movable_pfn[nid] = start_pfn + size_pages;
6766
6767                        /*
6768                         * Some kernelcore has been met, update counts and
6769                         * break if the kernelcore for this node has been
6770                         * satisfied
6771                         */
6772                        required_kernelcore -= min(required_kernelcore,
6773                                                                size_pages);
6774                        kernelcore_remaining -= size_pages;
6775                        if (!kernelcore_remaining)
6776                                break;
6777                }
6778        }
6779
6780        /*
6781         * If there is still required_kernelcore, we do another pass with one
6782         * less node in the count. This will push zone_movable_pfn[nid] further
6783         * along on the nodes that still have memory until kernelcore is
6784         * satisfied
6785         */
6786        usable_nodes--;
6787        if (usable_nodes && required_kernelcore > usable_nodes)
6788                goto restart;
6789
6790out2:
6791        /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6792        for (nid = 0; nid < MAX_NUMNODES; nid++)
6793                zone_movable_pfn[nid] =
6794                        roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6795
6796out:
6797        /* restore the node_state */
6798        node_states[N_MEMORY] = saved_node_state;
6799}
6800
6801/* Any regular or high memory on that node ? */
6802static void check_for_memory(pg_data_t *pgdat, int nid)
6803{
6804        enum zone_type zone_type;
6805
6806        if (N_MEMORY == N_NORMAL_MEMORY)
6807                return;
6808
6809        for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6810                struct zone *zone = &pgdat->node_zones[zone_type];
6811                if (populated_zone(zone)) {
6812                        node_set_state(nid, N_HIGH_MEMORY);
6813                        if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6814                            zone_type <= ZONE_NORMAL)
6815                                node_set_state(nid, N_NORMAL_MEMORY);
6816                        break;
6817                }
6818        }
6819}
6820
6821/**
6822 * free_area_init_nodes - Initialise all pg_data_t and zone data
6823 * @max_zone_pfn: an array of max PFNs for each zone
6824 *
6825 * This will call free_area_init_node() for each active node in the system.
6826 * Using the page ranges provided by memblock_set_node(), the size of each
6827 * zone in each node and their holes is calculated. If the maximum PFN
6828 * between two adjacent zones match, it is assumed that the zone is empty.
6829 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6830 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6831 * starts where the previous one ended. For example, ZONE_DMA32 starts
6832 * at arch_max_dma_pfn.
6833 */
6834void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6835{
6836        unsigned long start_pfn, end_pfn;
6837        int i, nid;
6838
6839        /* Record where the zone boundaries are */
6840        memset(arch_zone_lowest_possible_pfn, 0,
6841                                sizeof(arch_zone_lowest_possible_pfn));
6842        memset(arch_zone_highest_possible_pfn, 0,
6843                                sizeof(arch_zone_highest_possible_pfn));
6844
6845        start_pfn = find_min_pfn_with_active_regions();
6846
6847        for (i = 0; i < MAX_NR_ZONES; i++) {
6848                if (i == ZONE_MOVABLE)
6849                        continue;
6850
6851                end_pfn = max(max_zone_pfn[i], start_pfn);
6852                arch_zone_lowest_possible_pfn[i] = start_pfn;
6853                arch_zone_highest_possible_pfn[i] = end_pfn;
6854
6855                start_pfn = end_pfn;
6856        }
6857
6858        /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6859        memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6860        find_zone_movable_pfns_for_nodes();
6861
6862        /* Print out the zone ranges */
6863        pr_info("Zone ranges:\n");
6864        for (i = 0; i < MAX_NR_ZONES; i++) {
6865                if (i == ZONE_MOVABLE)
6866                        continue;
6867                pr_info("  %-8s ", zone_names[i]);
6868                if (arch_zone_lowest_possible_pfn[i] ==
6869                                arch_zone_highest_possible_pfn[i])
6870                        pr_cont("empty\n");
6871                else
6872                        pr_cont("[mem %#018Lx-%#018Lx]\n",
6873                                (u64)arch_zone_lowest_possible_pfn[i]
6874                                        << PAGE_SHIFT,
6875                                ((u64)arch_zone_highest_possible_pfn[i]
6876                                        << PAGE_SHIFT) - 1);
6877        }
6878
6879        /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6880        pr_info("Movable zone start for each node\n");
6881        for (i = 0; i < MAX_NUMNODES; i++) {
6882                if (zone_movable_pfn[i])
6883                        pr_info("  Node %d: %#018Lx\n", i,
6884                               (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6885        }
6886
6887        /* Print out the early node map */
6888        pr_info("Early memory node ranges\n");
6889        for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6890                pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6891                        (u64)start_pfn << PAGE_SHIFT,
6892                        ((u64)end_pfn << PAGE_SHIFT) - 1);
6893
6894        /* Initialise every node */
6895        mminit_verify_pageflags_layout();
6896        setup_nr_node_ids();
6897        zero_resv_unavail();
6898        for_each_online_node(nid) {
6899                pg_data_t *pgdat = NODE_DATA(nid);
6900                free_area_init_node(nid, NULL,
6901                                find_min_pfn_for_node(nid), NULL);
6902
6903                /* Any memory on that node */
6904                if (pgdat->node_present_pages)
6905                        node_set_state(nid, N_MEMORY);
6906                check_for_memory(pgdat, nid);
6907        }
6908}
6909
6910static int __init cmdline_parse_core(char *p, unsigned long *core,
6911                                     unsigned long *percent)
6912{
6913        unsigned long long coremem;
6914        char *endptr;
6915
6916        if (!p)
6917                return -EINVAL;
6918
6919        /* Value may be a percentage of total memory, otherwise bytes */
6920        coremem = simple_strtoull(p, &endptr, 0);
6921        if (*endptr == '%') {
6922                /* Paranoid check for percent values greater than 100 */
6923                WARN_ON(coremem > 100);
6924
6925                *percent = coremem;
6926        } else {
6927                coremem = memparse(p, &p);
6928                /* Paranoid check that UL is enough for the coremem value */
6929                WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6930
6931                *core = coremem >> PAGE_SHIFT;
6932                *percent = 0UL;
6933        }
6934        return 0;
6935}
6936
6937/*
6938 * kernelcore=size sets the amount of memory for use for allocations that
6939 * cannot be reclaimed or migrated.
6940 */
6941static int __init cmdline_parse_kernelcore(char *p)
6942{
6943        /* parse kernelcore=mirror */
6944        if (parse_option_str(p, "mirror")) {
6945                mirrored_kernelcore = true;
6946                return 0;
6947        }
6948
6949        return cmdline_parse_core(p, &required_kernelcore,
6950                                  &required_kernelcore_percent);
6951}
6952
6953/*
6954 * movablecore=size sets the amount of memory for use for allocations that
6955 * can be reclaimed or migrated.
6956 */
6957static int __init cmdline_parse_movablecore(char *p)
6958{
6959        return cmdline_parse_core(p, &required_movablecore,
6960                                  &required_movablecore_percent);
6961}
6962
6963early_param("kernelcore", cmdline_parse_kernelcore);
6964early_param("movablecore", cmdline_parse_movablecore);
6965
6966#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6967
6968void adjust_managed_page_count(struct page *page, long count)
6969{
6970        spin_lock(&managed_page_count_lock);
6971        page_zone(page)->managed_pages += count;
6972        totalram_pages += count;
6973#ifdef CONFIG_HIGHMEM
6974        if (PageHighMem(page))
6975                totalhigh_pages += count;
6976#endif
6977        spin_unlock(&managed_page_count_lock);
6978}
6979EXPORT_SYMBOL(adjust_managed_page_count);
6980
6981unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6982{
6983        void *pos;
6984        unsigned long pages = 0;
6985
6986        start = (void *)PAGE_ALIGN((unsigned long)start);
6987        end = (void *)((unsigned long)end & PAGE_MASK);
6988        for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6989                struct page *page = virt_to_page(pos);
6990                void *direct_map_addr;
6991
6992                /*
6993                 * 'direct_map_addr' might be different from 'pos'
6994                 * because some architectures' virt_to_page()
6995                 * work with aliases.  Getting the direct map
6996                 * address ensures that we get a _writeable_
6997                 * alias for the memset().
6998                 */
6999                direct_map_addr = page_address(page);
7000                if ((unsigned int)poison <= 0xFF)
7001                        memset(direct_map_addr, poison, PAGE_SIZE);
7002
7003                free_reserved_page(page);
7004        }
7005
7006        if (pages && s)
7007                pr_info("Freeing %s memory: %ldK\n",
7008                        s, pages << (PAGE_SHIFT - 10));
7009
7010        return pages;
7011}
7012EXPORT_SYMBOL(free_reserved_area);
7013
7014#ifdef  CONFIG_HIGHMEM
7015void free_highmem_page(struct page *page)
7016{
7017        __free_reserved_page(page);
7018        totalram_pages++;
7019        page_zone(page)->managed_pages++;
7020        totalhigh_pages++;
7021}
7022#endif
7023
7024
7025void __init mem_init_print_info(const char *str)
7026{
7027        unsigned long physpages, codesize, datasize, rosize, bss_size;
7028        unsigned long init_code_size, init_data_size;
7029
7030        physpages = get_num_physpages();
7031        codesize = _etext - _stext;
7032        datasize = _edata - _sdata;
7033        rosize = __end_rodata - __start_rodata;
7034        bss_size = __bss_stop - __bss_start;
7035        init_data_size = __init_end - __init_begin;
7036        init_code_size = _einittext - _sinittext;
7037
7038        /*
7039         * Detect special cases and adjust section sizes accordingly:
7040         * 1) .init.* may be embedded into .data sections
7041         * 2) .init.text.* may be out of [__init_begin, __init_end],
7042         *    please refer to arch/tile/kernel/vmlinux.lds.S.
7043         * 3) .rodata.* may be embedded into .text or .data sections.
7044         */
7045#define adj_init_size(start, end, size, pos, adj) \
7046        do { \
7047                if (start <= pos && pos < end && size > adj) \
7048                        size -= adj; \
7049        } while (0)
7050
7051        adj_init_size(__init_begin, __init_end, init_data_size,
7052                     _sinittext, init_code_size);
7053        adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7054        adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7055        adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7056        adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7057
7058#undef  adj_init_size
7059
7060        pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7061#ifdef  CONFIG_HIGHMEM
7062                ", %luK highmem"
7063#endif
7064                "%s%s)\n",
7065                nr_free_pages() << (PAGE_SHIFT - 10),
7066                physpages << (PAGE_SHIFT - 10),
7067                codesize >> 10, datasize >> 10, rosize >> 10,
7068                (init_data_size + init_code_size) >> 10, bss_size >> 10,
7069                (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
7070                totalcma_pages << (PAGE_SHIFT - 10),
7071#ifdef  CONFIG_HIGHMEM
7072                totalhigh_pages << (PAGE_SHIFT - 10),
7073#endif
7074                str ? ", " : "", str ? str : "");
7075}
7076
7077/**
7078 * set_dma_reserve - set the specified number of pages reserved in the first zone
7079 * @new_dma_reserve: The number of pages to mark reserved
7080 *
7081 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7082 * In the DMA zone, a significant percentage may be consumed by kernel image
7083 * and other unfreeable allocations which can skew the watermarks badly. This
7084 * function may optionally be used to account for unfreeable pages in the
7085 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7086 * smaller per-cpu batchsize.
7087 */
7088void __init set_dma_reserve(unsigned long new_dma_reserve)
7089{
7090        dma_reserve = new_dma_reserve;
7091}
7092
7093void __init free_area_init(unsigned long *zones_size)
7094{
7095        zero_resv_unavail();
7096        free_area_init_node(0, zones_size,
7097                        __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7098}
7099
7100static int page_alloc_cpu_dead(unsigned int cpu)
7101{
7102
7103        lru_add_drain_cpu(cpu);
7104        drain_pages(cpu);
7105
7106        /*
7107         * Spill the event counters of the dead processor
7108         * into the current processors event counters.
7109         * This artificially elevates the count of the current
7110         * processor.
7111         */
7112        vm_events_fold_cpu(cpu);
7113
7114        /*
7115         * Zero the differential counters of the dead processor
7116         * so that the vm statistics are consistent.
7117         *
7118         * This is only okay since the processor is dead and cannot
7119         * race with what we are doing.
7120         */
7121        cpu_vm_stats_fold(cpu);
7122        return 0;
7123}
7124
7125void __init page_alloc_init(void)
7126{
7127        int ret;
7128
7129        ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7130                                        "mm/page_alloc:dead", NULL,
7131                                        page_alloc_cpu_dead);
7132        WARN_ON(ret < 0);
7133}
7134
7135/*
7136 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7137 *      or min_free_kbytes changes.
7138 */
7139static void calculate_totalreserve_pages(void)
7140{
7141        struct pglist_data *pgdat;
7142        unsigned long reserve_pages = 0;
7143        enum zone_type i, j;
7144
7145        for_each_online_pgdat(pgdat) {
7146
7147                pgdat->totalreserve_pages = 0;
7148
7149                for (i = 0; i < MAX_NR_ZONES; i++) {
7150                        struct zone *zone = pgdat->node_zones + i;
7151                        long max = 0;
7152
7153                        /* Find valid and maximum lowmem_reserve in the zone */
7154                        for (j = i; j < MAX_NR_ZONES; j++) {
7155                                if (zone->lowmem_reserve[j] > max)
7156                                        max = zone->lowmem_reserve[j];
7157                        }
7158
7159                        /* we treat the high watermark as reserved pages. */
7160                        max += high_wmark_pages(zone);
7161
7162                        if (max > zone->managed_pages)
7163                                max = zone->managed_pages;
7164
7165                        pgdat->totalreserve_pages += max;
7166
7167                        reserve_pages += max;
7168                }
7169        }
7170        totalreserve_pages = reserve_pages;
7171}
7172
7173/*
7174 * setup_per_zone_lowmem_reserve - called whenever
7175 *      sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7176 *      has a correct pages reserved value, so an adequate number of
7177 *      pages are left in the zone after a successful __alloc_pages().
7178 */
7179static void setup_per_zone_lowmem_reserve(void)
7180{
7181        struct pglist_data *pgdat;
7182        enum zone_type j, idx;
7183
7184        for_each_online_pgdat(pgdat) {
7185                for (j = 0; j < MAX_NR_ZONES; j++) {
7186                        struct zone *zone = pgdat->node_zones + j;
7187                        unsigned long managed_pages = zone->managed_pages;
7188
7189                        zone->lowmem_reserve[j] = 0;
7190
7191                        idx = j;
7192                        while (idx) {
7193                                struct zone *lower_zone;
7194
7195                                idx--;
7196                                lower_zone = pgdat->node_zones + idx;
7197
7198                                if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7199                                        sysctl_lowmem_reserve_ratio[idx] = 0;
7200                                        lower_zone->lowmem_reserve[j] = 0;
7201                                } else {
7202                                        lower_zone->lowmem_reserve[j] =
7203                                                managed_pages / sysctl_lowmem_reserve_ratio[idx];
7204                                }
7205                                managed_pages += lower_zone->managed_pages;
7206                        }
7207                }
7208        }
7209
7210        /* update totalreserve_pages */
7211        calculate_totalreserve_pages();
7212}
7213
7214static void __setup_per_zone_wmarks(void)
7215{
7216        unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7217        unsigned long lowmem_pages = 0;
7218        struct zone *zone;
7219        unsigned long flags;
7220
7221        /* Calculate total number of !ZONE_HIGHMEM pages */
7222        for_each_zone(zone) {
7223                if (!is_highmem(zone))
7224                        lowmem_pages += zone->managed_pages;
7225        }
7226
7227        for_each_zone(zone) {
7228                u64 tmp;
7229
7230                spin_lock_irqsave(&zone->lock, flags);
7231                tmp = (u64)pages_min * zone->managed_pages;
7232                do_div(tmp, lowmem_pages);
7233                if (is_highmem(zone)) {
7234                        /*
7235                         * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7236                         * need highmem pages, so cap pages_min to a small
7237                         * value here.
7238                         *
7239                         * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7240                         * deltas control asynch page reclaim, and so should
7241                         * not be capped for highmem.
7242                         */
7243                        unsigned long min_pages;
7244
7245                        min_pages = zone->managed_pages / 1024;
7246                        min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7247                        zone->watermark[WMARK_MIN] = min_pages;
7248                } else {
7249                        /*
7250                         * If it's a lowmem zone, reserve a number of pages
7251                         * proportionate to the zone's size.
7252                         */
7253                        zone->watermark[WMARK_MIN] = tmp;
7254                }
7255
7256                /*
7257                 * Set the kswapd watermarks distance according to the
7258                 * scale factor in proportion to available memory, but
7259                 * ensure a minimum size on small systems.
7260                 */
7261                tmp = max_t(u64, tmp >> 2,
7262                            mult_frac(zone->managed_pages,
7263                                      watermark_scale_factor, 10000));
7264
7265                zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7266                zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7267
7268                spin_unlock_irqrestore(&zone->lock, flags);
7269        }
7270
7271        /* update totalreserve_pages */
7272        calculate_totalreserve_pages();
7273}
7274
7275/**
7276 * setup_per_zone_wmarks - called when min_free_kbytes changes
7277 * or when memory is hot-{added|removed}
7278 *
7279 * Ensures that the watermark[min,low,high] values for each zone are set
7280 * correctly with respect to min_free_kbytes.
7281 */
7282void setup_per_zone_wmarks(void)
7283{
7284        static DEFINE_SPINLOCK(lock);
7285
7286        spin_lock(&lock);
7287        __setup_per_zone_wmarks();
7288        spin_unlock(&lock);
7289}
7290
7291/*
7292 * Initialise min_free_kbytes.
7293 *
7294 * For small machines we want it small (128k min).  For large machines
7295 * we want it large (64MB max).  But it is not linear, because network
7296 * bandwidth does not increase linearly with machine size.  We use
7297 *
7298 *      min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7299 *      min_free_kbytes = sqrt(lowmem_kbytes * 16)
7300 *
7301 * which yields
7302 *
7303 * 16MB:        512k
7304 * 32MB:        724k
7305 * 64MB:        1024k
7306 * 128MB:       1448k
7307 * 256MB:       2048k
7308 * 512MB:       2896k
7309 * 1024MB:      4096k
7310 * 2048MB:      5792k
7311 * 4096MB:      8192k
7312 * 8192MB:      11584k
7313 * 16384MB:     16384k
7314 */
7315int __meminit init_per_zone_wmark_min(void)
7316{
7317        unsigned long lowmem_kbytes;
7318        int new_min_free_kbytes;
7319
7320        lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7321        new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7322
7323        if (new_min_free_kbytes > user_min_free_kbytes) {
7324                min_free_kbytes = new_min_free_kbytes;
7325                if (min_free_kbytes < 128)
7326                        min_free_kbytes = 128;
7327                if (min_free_kbytes > 65536)
7328                        min_free_kbytes = 65536;
7329        } else {
7330                pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7331                                new_min_free_kbytes, user_min_free_kbytes);
7332        }
7333        setup_per_zone_wmarks();
7334        refresh_zone_stat_thresholds();
7335        setup_per_zone_lowmem_reserve();
7336
7337#ifdef CONFIG_NUMA
7338        setup_min_unmapped_ratio();
7339        setup_min_slab_ratio();
7340#endif
7341
7342        return 0;
7343}
7344core_initcall(init_per_zone_wmark_min)
7345
7346/*
7347 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7348 *      that we can call two helper functions whenever min_free_kbytes
7349 *      changes.
7350 */
7351int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7352        void __user *buffer, size_t *length, loff_t *ppos)
7353{
7354        int rc;
7355
7356        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7357        if (rc)
7358                return rc;
7359
7360        if (write) {
7361                user_min_free_kbytes = min_free_kbytes;
7362                setup_per_zone_wmarks();
7363        }
7364        return 0;
7365}
7366
7367int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7368        void __user *buffer, size_t *length, loff_t *ppos)
7369{
7370        int rc;
7371
7372        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7373        if (rc)
7374                return rc;
7375
7376        if (write)
7377                setup_per_zone_wmarks();
7378
7379        return 0;
7380}
7381
7382#ifdef CONFIG_NUMA
7383static void setup_min_unmapped_ratio(void)
7384{
7385        pg_data_t *pgdat;
7386        struct zone *zone;
7387
7388        for_each_online_pgdat(pgdat)
7389                pgdat->min_unmapped_pages = 0;
7390
7391        for_each_zone(zone)
7392                zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7393                                sysctl_min_unmapped_ratio) / 100;
7394}
7395
7396
7397int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7398        void __user *buffer, size_t *length, loff_t *ppos)
7399{
7400        int rc;
7401
7402        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7403        if (rc)
7404                return rc;
7405
7406        setup_min_unmapped_ratio();
7407
7408        return 0;
7409}
7410
7411static void setup_min_slab_ratio(void)
7412{
7413        pg_data_t *pgdat;
7414        struct zone *zone;
7415
7416        for_each_online_pgdat(pgdat)
7417                pgdat->min_slab_pages = 0;
7418
7419        for_each_zone(zone)
7420                zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7421                                sysctl_min_slab_ratio) / 100;
7422}
7423
7424int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7425        void __user *buffer, size_t *length, loff_t *ppos)
7426{
7427        int rc;
7428
7429        rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7430        if (rc)
7431                return rc;
7432
7433        setup_min_slab_ratio();
7434
7435        return 0;
7436}
7437#endif
7438
7439/*
7440 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7441 *      proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7442 *      whenever sysctl_lowmem_reserve_ratio changes.
7443 *
7444 * The reserve ratio obviously has absolutely no relation with the
7445 * minimum watermarks. The lowmem reserve ratio can only make sense
7446 * if in function of the boot time zone sizes.
7447 */
7448int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7449        void __user *buffer, size_t *length, loff_t *ppos)
7450{
7451        proc_dointvec_minmax(table, write, buffer, length, ppos);
7452        setup_per_zone_lowmem_reserve();
7453        return 0;
7454}
7455
7456/*
7457 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7458 * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7459 * pagelist can have before it gets flushed back to buddy allocator.
7460 */
7461int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7462        void __user *buffer, size_t *length, loff_t *ppos)
7463{
7464        struct zone *zone;
7465        int old_percpu_pagelist_fraction;
7466        int ret;
7467
7468        mutex_lock(&pcp_batch_high_lock);
7469        old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7470
7471        ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7472        if (!write || ret < 0)
7473                goto out;
7474
7475        /* Sanity checking to avoid pcp imbalance */
7476        if (percpu_pagelist_fraction &&
7477            percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7478                percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7479                ret = -EINVAL;
7480                goto out;
7481        }
7482
7483        /* No change? */
7484        if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7485                goto out;
7486
7487        for_each_populated_zone(zone) {
7488                unsigned int cpu;
7489
7490                for_each_possible_cpu(cpu)
7491                        pageset_set_high_and_batch(zone,
7492                                        per_cpu_ptr(zone->pageset, cpu));
7493        }
7494out:
7495        mutex_unlock(&pcp_batch_high_lock);
7496        return ret;
7497}
7498
7499#ifdef CONFIG_NUMA
7500int hashdist = HASHDIST_DEFAULT;
7501
7502static int __init set_hashdist(char *str)
7503{
7504        if (!str)
7505                return 0;
7506        hashdist = simple_strtoul(str, &str, 0);
7507        return 1;
7508}
7509__setup("hashdist=", set_hashdist);
7510#endif
7511
7512#ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7513/*
7514 * Returns the number of pages that arch has reserved but
7515 * is not known to alloc_large_system_hash().
7516 */
7517static unsigned long __init arch_reserved_kernel_pages(void)
7518{
7519        return 0;
7520}
7521#endif
7522
7523/*
7524 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7525 * machines. As memory size is increased the scale is also increased but at
7526 * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7527 * quadruples the scale is increased by one, which means the size of hash table
7528 * only doubles, instead of quadrupling as well.
7529 * Because 32-bit systems cannot have large physical memory, where this scaling
7530 * makes sense, it is disabled on such platforms.
7531 */
7532#if __BITS_PER_LONG > 32
7533#define ADAPT_SCALE_BASE        (64ul << 30)
7534#define ADAPT_SCALE_SHIFT       2
7535#define ADAPT_SCALE_NPAGES      (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7536#endif
7537
7538/*
7539 * allocate a large system hash table from bootmem
7540 * - it is assumed that the hash table must contain an exact power-of-2
7541 *   quantity of entries
7542 * - limit is the number of hash buckets, not the total allocation size
7543 */
7544void *__init alloc_large_system_hash(const char *tablename,
7545                                     unsigned long bucketsize,
7546                                     unsigned long numentries,
7547                                     int scale,
7548                                     int flags,
7549                                     unsigned int *_hash_shift,
7550                                     unsigned int *_hash_mask,
7551                                     unsigned long low_limit,
7552                                     unsigned long high_limit)
7553{
7554        unsigned long long max = high_limit;
7555        unsigned long log2qty, size;
7556        void *table = NULL;
7557        gfp_t gfp_flags;
7558
7559        /* allow the kernel cmdline to have a say */
7560        if (!numentries) {
7561                /* round applicable memory size up to nearest megabyte */
7562                numentries = nr_kernel_pages;
7563                numentries -= arch_reserved_kernel_pages();
7564
7565                /* It isn't necessary when PAGE_SIZE >= 1MB */
7566                if (PAGE_SHIFT < 20)
7567                        numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7568
7569#if __BITS_PER_LONG > 32
7570                if (!high_limit) {
7571                        unsigned long adapt;
7572
7573                        for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7574                             adapt <<= ADAPT_SCALE_SHIFT)
7575                                scale++;
7576                }
7577#endif
7578
7579                /* limit to 1 bucket per 2^scale bytes of low memory */
7580                if (scale > PAGE_SHIFT)
7581                        numentries >>= (scale - PAGE_SHIFT);
7582                else
7583                        numentries <<= (PAGE_SHIFT - scale);
7584
7585                /* Make sure we've got at least a 0-order allocation.. */
7586                if (unlikely(flags & HASH_SMALL)) {
7587                        /* Makes no sense without HASH_EARLY */
7588                        WARN_ON(!(flags & HASH_EARLY));
7589                        if (!(numentries >> *_hash_shift)) {
7590                                numentries = 1UL << *_hash_shift;
7591                                BUG_ON(!numentries);
7592                        }
7593                } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7594                        numentries = PAGE_SIZE / bucketsize;
7595        }
7596        numentries = roundup_pow_of_two(numentries);
7597
7598        /* limit allocation size to 1/16 total memory by default */
7599        if (max == 0) {
7600                max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7601                do_div(max, bucketsize);
7602        }
7603        max = min(max, 0x80000000ULL);
7604
7605        if (numentries < low_limit)
7606                numentries = low_limit;
7607        if (numentries > max)
7608                numentries = max;
7609
7610        log2qty = ilog2(numentries);
7611
7612        gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
7613        do {
7614                size = bucketsize << log2qty;
7615                if (flags & HASH_EARLY) {
7616                        if (flags & HASH_ZERO)
7617                                table = memblock_virt_alloc_nopanic(size, 0);
7618                        else
7619                                table = memblock_virt_alloc_raw(size, 0);
7620                } else if (hashdist) {
7621                        table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
7622                } else {
7623                        /*
7624                         * If bucketsize is not a power-of-two, we may free
7625                         * some pages at the end of hash table which
7626                         * alloc_pages_exact() automatically does
7627                         */
7628                        if (get_order(size) < MAX_ORDER) {
7629                                table = alloc_pages_exact(size, gfp_flags);
7630                                kmemleak_alloc(table, size, 1, gfp_flags);
7631                        }
7632                }
7633        } while (!table && size > PAGE_SIZE && --log2qty);
7634
7635        if (!table)
7636                panic("Failed to allocate %s hash table\n", tablename);
7637
7638        pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7639                tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7640
7641        if (_hash_shift)
7642                *_hash_shift = log2qty;
7643        if (_hash_mask)
7644                *_hash_mask = (1 << log2qty) - 1;
7645
7646        return table;
7647}
7648
7649/*
7650 * This function checks whether pageblock includes unmovable pages or not.
7651 * If @count is not zero, it is okay to include less @count unmovable pages
7652 *
7653 * PageLRU check without isolation or lru_lock could race so that
7654 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7655 * check without lock_page also may miss some movable non-lru pages at
7656 * race condition. So you can't expect this function should be exact.
7657 */
7658bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7659                         int migratetype,
7660                         bool skip_hwpoisoned_pages)
7661{
7662        unsigned long pfn, iter, found;
7663
7664        /*
7665         * TODO we could make this much more efficient by not checking every
7666         * page in the range if we know all of them are in MOVABLE_ZONE and
7667         * that the movable zone guarantees that pages are migratable but
7668         * the later is not the case right now unfortunatelly. E.g. movablecore
7669         * can still lead to having bootmem allocations in zone_movable.
7670         */
7671
7672        /*
7673         * CMA allocations (alloc_contig_range) really need to mark isolate
7674         * CMA pageblocks even when they are not movable in fact so consider
7675         * them movable here.
7676         */
7677        if (is_migrate_cma(migratetype) &&
7678                        is_migrate_cma(get_pageblock_migratetype(page)))
7679                return false;
7680
7681        pfn = page_to_pfn(page);
7682        for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7683                unsigned long check = pfn + iter;
7684
7685                if (!pfn_valid_within(check))
7686                        continue;
7687
7688                page = pfn_to_page(check);
7689
7690                if (PageReserved(page))
7691                        goto unmovable;
7692
7693                /*
7694                 * Hugepages are not in LRU lists, but they're movable.
7695                 * We need not scan over tail pages bacause we don't
7696                 * handle each tail page individually in migration.
7697                 */
7698                if (PageHuge(page)) {
7699
7700                        if (!hugepage_migration_supported(page_hstate(page)))
7701                                goto unmovable;
7702
7703                        iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7704                        continue;
7705                }
7706
7707                /*
7708                 * We can't use page_count without pin a page
7709                 * because another CPU can free compound page.
7710                 * This check already skips compound tails of THP
7711                 * because their page->_refcount is zero at all time.
7712                 */
7713                if (!page_ref_count(page)) {
7714                        if (PageBuddy(page))
7715                                iter += (1 << page_order(page)) - 1;
7716                        continue;
7717                }
7718
7719                /*
7720                 * The HWPoisoned page may be not in buddy system, and
7721                 * page_count() is not 0.
7722                 */
7723                if (skip_hwpoisoned_pages && PageHWPoison(page))
7724                        continue;
7725
7726                if (__PageMovable(page))
7727                        continue;
7728
7729                if (!PageLRU(page))
7730                        found++;
7731                /*
7732                 * If there are RECLAIMABLE pages, we need to check
7733                 * it.  But now, memory offline itself doesn't call
7734                 * shrink_node_slabs() and it still to be fixed.
7735                 */
7736                /*
7737                 * If the page is not RAM, page_count()should be 0.
7738                 * we don't need more check. This is an _used_ not-movable page.
7739                 *
7740                 * The problematic thing here is PG_reserved pages. PG_reserved
7741                 * is set to both of a memory hole page and a _used_ kernel
7742                 * page at boot.
7743                 */
7744                if (found > count)
7745                        goto unmovable;
7746        }
7747        return false;
7748unmovable:
7749        WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
7750        return true;
7751}
7752
7753#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7754
7755static unsigned long pfn_max_align_down(unsigned long pfn)
7756{
7757        return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7758                             pageblock_nr_pages) - 1);
7759}
7760
7761static unsigned long pfn_max_align_up(unsigned long pfn)
7762{
7763        return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7764                                pageblock_nr_pages));
7765}
7766
7767/* [start, end) must belong to a single zone. */
7768static int __alloc_contig_migrate_range(struct compact_control *cc,
7769                                        unsigned long start, unsigned long end)
7770{
7771        /* This function is based on compact_zone() from compaction.c. */
7772        unsigned long nr_reclaimed;
7773        unsigned long pfn = start;
7774        unsigned int tries = 0;
7775        int ret = 0;
7776
7777        migrate_prep();
7778
7779        while (pfn < end || !list_empty(&cc->migratepages)) {
7780                if (fatal_signal_pending(current)) {
7781                        ret = -EINTR;
7782                        break;
7783                }
7784
7785                if (list_empty(&cc->migratepages)) {
7786                        cc->nr_migratepages = 0;
7787                        pfn = isolate_migratepages_range(cc, pfn, end);
7788                        if (!pfn) {
7789                                ret = -EINTR;
7790                                break;
7791                        }
7792                        tries = 0;
7793                } else if (++tries == 5) {
7794                        ret = ret < 0 ? ret : -EBUSY;
7795                        break;
7796                }
7797
7798                nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7799                                                        &cc->migratepages);
7800                cc->nr_migratepages -= nr_reclaimed;
7801
7802                ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7803                                    NULL, 0, cc->mode, MR_CONTIG_RANGE);
7804        }
7805        if (ret < 0) {
7806                putback_movable_pages(&cc->migratepages);
7807                return ret;
7808        }
7809        return 0;
7810}
7811
7812/**
7813 * alloc_contig_range() -- tries to allocate given range of pages
7814 * @start:      start PFN to allocate
7815 * @end:        one-past-the-last PFN to allocate
7816 * @migratetype:        migratetype of the underlaying pageblocks (either
7817 *                      #MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7818 *                      in range must have the same migratetype and it must
7819 *                      be either of the two.
7820 * @gfp_mask:   GFP mask to use during compaction
7821 *
7822 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7823 * aligned.  The PFN range must belong to a single zone.
7824 *
7825 * The first thing this routine does is attempt to MIGRATE_ISOLATE all
7826 * pageblocks in the range.  Once isolated, the pageblocks should not
7827 * be modified by others.
7828 *
7829 * Returns zero on success or negative error code.  On success all
7830 * pages which PFN is in [start, end) are allocated for the caller and
7831 * need to be freed with free_contig_range().
7832 */
7833int alloc_contig_range(unsigned long start, unsigned long end,
7834                       unsigned migratetype, gfp_t gfp_mask)
7835{
7836        unsigned long outer_start, outer_end;
7837        unsigned int order;
7838        int ret = 0;
7839
7840        struct compact_control cc = {
7841                .nr_migratepages = 0,
7842                .order = -1,
7843                .zone = page_zone(pfn_to_page(start)),
7844                .mode = MIGRATE_SYNC,
7845                .ignore_skip_hint = true,
7846                .no_set_skip_hint = true,
7847                .gfp_mask = current_gfp_context(gfp_mask),
7848        };
7849        INIT_LIST_HEAD(&cc.migratepages);
7850
7851        /*
7852         * What we do here is we mark all pageblocks in range as
7853         * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7854         * have different sizes, and due to the way page allocator
7855         * work, we align the range to biggest of the two pages so
7856         * that page allocator won't try to merge buddies from
7857         * different pageblocks and change MIGRATE_ISOLATE to some
7858         * other migration type.
7859         *
7860         * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7861         * migrate the pages from an unaligned range (ie. pages that
7862         * we are interested in).  This will put all the pages in
7863         * range back to page allocator as MIGRATE_ISOLATE.
7864         *
7865         * When this is done, we take the pages in range from page
7866         * allocator removing them from the buddy system.  This way
7867         * page allocator will never consider using them.
7868         *
7869         * This lets us mark the pageblocks back as
7870         * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7871         * aligned range but not in the unaligned, original range are
7872         * put back to page allocator so that buddy can use them.
7873         */
7874
7875        ret = start_isolate_page_range(pfn_max_align_down(start),
7876                                       pfn_max_align_up(end), migratetype,
7877                                       false);
7878        if (ret)
7879                return ret;
7880
7881        /*
7882         * In case of -EBUSY, we'd like to know which page causes problem.
7883         * So, just fall through. test_pages_isolated() has a tracepoint
7884         * which will report the busy page.
7885         *
7886         * It is possible that busy pages could become available before
7887         * the call to test_pages_isolated, and the range will actually be
7888         * allocated.  So, if we fall through be sure to clear ret so that
7889         * -EBUSY is not accidentally used or returned to caller.
7890         */
7891        ret = __alloc_contig_migrate_range(&cc, start, end);
7892        if (ret && ret != -EBUSY)
7893                goto done;
7894        ret =0;
7895
7896        /*
7897         * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7898         * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7899         * more, all pages in [start, end) are free in page allocator.
7900         * What we are going to do is to allocate all pages from
7901         * [start, end) (that is remove them from page allocator).
7902         *
7903         * The only problem is that pages at the beginning and at the
7904         * end of interesting range may be not aligned with pages that
7905         * page allocator holds, ie. they can be part of higher order
7906         * pages.  Because of this, we reserve the bigger range and
7907         * once this is done free the pages we are not interested in.
7908         *
7909         * We don't have to hold zone->lock here because the pages are
7910         * isolated thus they won't get removed from buddy.
7911         */
7912
7913        lru_add_drain_all();
7914        drain_all_pages(cc.zone);
7915
7916        order = 0;
7917        outer_start = start;
7918        while (!PageBuddy(pfn_to_page(outer_start))) {
7919                if (++order >= MAX_ORDER) {
7920                        outer_start = start;
7921                        break;
7922                }
7923                outer_start &= ~0UL << order;
7924        }
7925
7926        if (outer_start != start) {
7927                order = page_order(pfn_to_page(outer_start));
7928
7929                /*
7930                 * outer_start page could be small order buddy page and
7931                 * it doesn't include start page. Adjust outer_start
7932                 * in this case to report failed page properly
7933                 * on tracepoint in test_pages_isolated()
7934                 */
7935                if (outer_start + (1UL << order) <= start)
7936                        outer_start = start;
7937        }
7938
7939        /* Make sure the range is really isolated. */
7940        if (test_pages_isolated(outer_start, end, false)) {
7941                pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7942                        __func__, outer_start, end);
7943                ret = -EBUSY;
7944                goto done;
7945        }
7946
7947        /* Grab isolated pages from freelists. */
7948        outer_end = isolate_freepages_range(&cc, outer_start, end);
7949        if (!outer_end) {
7950                ret = -EBUSY;
7951                goto done;
7952        }
7953
7954        /* Free head and tail (if any) */
7955        if (start != outer_start)
7956                free_contig_range(outer_start, start - outer_start);
7957        if (end != outer_end)
7958                free_contig_range(end, outer_end - end);
7959
7960done:
7961        undo_isolate_page_range(pfn_max_align_down(start),
7962                                pfn_max_align_up(end), migratetype);
7963        return ret;
7964}
7965
7966void free_contig_range(unsigned long pfn, unsigned nr_pages)
7967{
7968        unsigned int count = 0;
7969
7970        for (; nr_pages--; pfn++) {
7971                struct page *page = pfn_to_page(pfn);
7972
7973                count += page_count(page) != 1;
7974                __free_page(page);
7975        }
7976        WARN(count != 0, "%d pages are still in use!\n", count);
7977}
7978#endif
7979
7980#ifdef CONFIG_MEMORY_HOTPLUG
7981/*
7982 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7983 * page high values need to be recalulated.
7984 */
7985void __meminit zone_pcp_update(struct zone *zone)
7986{
7987        unsigned cpu;
7988        mutex_lock(&pcp_batch_high_lock);
7989        for_each_possible_cpu(cpu)
7990                pageset_set_high_and_batch(zone,
7991                                per_cpu_ptr(zone->pageset, cpu));
7992        mutex_unlock(&pcp_batch_high_lock);
7993}
7994#endif
7995
7996void zone_pcp_reset(struct zone *zone)
7997{
7998        unsigned long flags;
7999        int cpu;
8000        struct per_cpu_pageset *pset;
8001
8002        /* avoid races with drain_pages()  */
8003        local_irq_save(flags);
8004        if (zone->pageset != &boot_pageset) {
8005                for_each_online_cpu(cpu) {
8006                        pset = per_cpu_ptr(zone->pageset, cpu);
8007                        drain_zonestat(zone, pset);
8008                }
8009                free_percpu(zone->pageset);
8010                zone->pageset = &boot_pageset;
8011        }
8012        local_irq_restore(flags);
8013}
8014
8015#ifdef CONFIG_MEMORY_HOTREMOVE
8016/*
8017 * All pages in the range must be in a single zone and isolated
8018 * before calling this.
8019 */
8020void
8021__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8022{
8023        struct page *page;
8024        struct zone *zone;
8025        unsigned int order, i;
8026        unsigned long pfn;
8027        unsigned long flags;
8028        /* find the first valid pfn */
8029        for (pfn = start_pfn; pfn < end_pfn; pfn++)
8030                if (pfn_valid(pfn))
8031                        break;
8032        if (pfn == end_pfn)
8033                return;
8034        offline_mem_sections(pfn, end_pfn);
8035        zone = page_zone(pfn_to_page(pfn));
8036        spin_lock_irqsave(&zone->lock, flags);
8037        pfn = start_pfn;
8038        while (pfn < end_pfn) {
8039                if (!pfn_valid(pfn)) {
8040                        pfn++;
8041                        continue;
8042                }
8043                page = pfn_to_page(pfn);
8044                /*
8045                 * The HWPoisoned page may be not in buddy system, and
8046                 * page_count() is not 0.
8047                 */
8048                if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8049                        pfn++;
8050                        SetPageReserved(page);
8051                        continue;
8052                }
8053
8054                BUG_ON(page_count(page));
8055                BUG_ON(!PageBuddy(page));
8056                order = page_order(page);
8057#ifdef CONFIG_DEBUG_VM
8058                pr_info("remove from free list %lx %d %lx\n",
8059                        pfn, 1 << order, end_pfn);
8060#endif
8061                list_del(&page->lru);
8062                rmv_page_order(page);
8063                zone->free_area[order].nr_free--;
8064                for (i = 0; i < (1 << order); i++)
8065                        SetPageReserved((page+i));
8066                pfn += (1 << order);
8067        }
8068        spin_unlock_irqrestore(&zone->lock, flags);
8069}
8070#endif
8071
8072bool is_free_buddy_page(struct page *page)
8073{
8074        struct zone *zone = page_zone(page);
8075        unsigned long pfn = page_to_pfn(page);
8076        unsigned long flags;
8077        unsigned int order;
8078
8079        spin_lock_irqsave(&zone->lock, flags);
8080        for (order = 0; order < MAX_ORDER; order++) {
8081                struct page *page_head = page - (pfn & ((1 << order) - 1));
8082
8083                if (PageBuddy(page_head) && page_order(page_head) >= order)
8084                        break;
8085        }
8086        spin_unlock_irqrestore(&zone->lock, flags);
8087
8088        return order < MAX_ORDER;
8089}
8090
8091#ifdef CONFIG_MEMORY_FAILURE
8092/*
8093 * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8094 * test is performed under the zone lock to prevent a race against page
8095 * allocation.
8096 */
8097bool set_hwpoison_free_buddy_page(struct page *page)
8098{
8099        struct zone *zone = page_zone(page);
8100        unsigned long pfn = page_to_pfn(page);
8101        unsigned long flags;
8102        unsigned int order;
8103        bool hwpoisoned = false;
8104
8105        spin_lock_irqsave(&zone->lock, flags);
8106        for (order = 0; order < MAX_ORDER; order++) {
8107                struct page *page_head = page - (pfn & ((1 << order) - 1));
8108
8109                if (PageBuddy(page_head) && page_order(page_head) >= order) {
8110                        if (!TestSetPageHWPoison(page))
8111                                hwpoisoned = true;
8112                        break;
8113                }
8114        }
8115        spin_unlock_irqrestore(&zone->lock, flags);
8116
8117        return hwpoisoned;
8118}
8119#endif
8120