linux/mm/page_ext.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include <linux/mm.h>
   3#include <linux/mmzone.h>
   4#include <linux/bootmem.h>
   5#include <linux/page_ext.h>
   6#include <linux/memory.h>
   7#include <linux/vmalloc.h>
   8#include <linux/kmemleak.h>
   9#include <linux/page_owner.h>
  10#include <linux/page_idle.h>
  11
  12/*
  13 * struct page extension
  14 *
  15 * This is the feature to manage memory for extended data per page.
  16 *
  17 * Until now, we must modify struct page itself to store extra data per page.
  18 * This requires rebuilding the kernel and it is really time consuming process.
  19 * And, sometimes, rebuild is impossible due to third party module dependency.
  20 * At last, enlarging struct page could cause un-wanted system behaviour change.
  21 *
  22 * This feature is intended to overcome above mentioned problems. This feature
  23 * allocates memory for extended data per page in certain place rather than
  24 * the struct page itself. This memory can be accessed by the accessor
  25 * functions provided by this code. During the boot process, it checks whether
  26 * allocation of huge chunk of memory is needed or not. If not, it avoids
  27 * allocating memory at all. With this advantage, we can include this feature
  28 * into the kernel in default and can avoid rebuild and solve related problems.
  29 *
  30 * To help these things to work well, there are two callbacks for clients. One
  31 * is the need callback which is mandatory if user wants to avoid useless
  32 * memory allocation at boot-time. The other is optional, init callback, which
  33 * is used to do proper initialization after memory is allocated.
  34 *
  35 * The need callback is used to decide whether extended memory allocation is
  36 * needed or not. Sometimes users want to deactivate some features in this
  37 * boot and extra memory would be unneccessary. In this case, to avoid
  38 * allocating huge chunk of memory, each clients represent their need of
  39 * extra memory through the need callback. If one of the need callbacks
  40 * returns true, it means that someone needs extra memory so that
  41 * page extension core should allocates memory for page extension. If
  42 * none of need callbacks return true, memory isn't needed at all in this boot
  43 * and page extension core can skip to allocate memory. As result,
  44 * none of memory is wasted.
  45 *
  46 * When need callback returns true, page_ext checks if there is a request for
  47 * extra memory through size in struct page_ext_operations. If it is non-zero,
  48 * extra space is allocated for each page_ext entry and offset is returned to
  49 * user through offset in struct page_ext_operations.
  50 *
  51 * The init callback is used to do proper initialization after page extension
  52 * is completely initialized. In sparse memory system, extra memory is
  53 * allocated some time later than memmap is allocated. In other words, lifetime
  54 * of memory for page extension isn't same with memmap for struct page.
  55 * Therefore, clients can't store extra data until page extension is
  56 * initialized, even if pages are allocated and used freely. This could
  57 * cause inadequate state of extra data per page, so, to prevent it, client
  58 * can utilize this callback to initialize the state of it correctly.
  59 */
  60
  61static struct page_ext_operations *page_ext_ops[] = {
  62#ifdef CONFIG_DEBUG_PAGEALLOC
  63        &debug_guardpage_ops,
  64#endif
  65#ifdef CONFIG_PAGE_OWNER
  66        &page_owner_ops,
  67#endif
  68#if defined(CONFIG_IDLE_PAGE_TRACKING) && !defined(CONFIG_64BIT)
  69        &page_idle_ops,
  70#endif
  71};
  72
  73static unsigned long total_usage;
  74static unsigned long extra_mem;
  75
  76static bool __init invoke_need_callbacks(void)
  77{
  78        int i;
  79        int entries = ARRAY_SIZE(page_ext_ops);
  80        bool need = false;
  81
  82        for (i = 0; i < entries; i++) {
  83                if (page_ext_ops[i]->need && page_ext_ops[i]->need()) {
  84                        page_ext_ops[i]->offset = sizeof(struct page_ext) +
  85                                                extra_mem;
  86                        extra_mem += page_ext_ops[i]->size;
  87                        need = true;
  88                }
  89        }
  90
  91        return need;
  92}
  93
  94static void __init invoke_init_callbacks(void)
  95{
  96        int i;
  97        int entries = ARRAY_SIZE(page_ext_ops);
  98
  99        for (i = 0; i < entries; i++) {
 100                if (page_ext_ops[i]->init)
 101                        page_ext_ops[i]->init();
 102        }
 103}
 104
 105static unsigned long get_entry_size(void)
 106{
 107        return sizeof(struct page_ext) + extra_mem;
 108}
 109
 110static inline struct page_ext *get_entry(void *base, unsigned long index)
 111{
 112        return base + get_entry_size() * index;
 113}
 114
 115#if !defined(CONFIG_SPARSEMEM)
 116
 117
 118void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 119{
 120        pgdat->node_page_ext = NULL;
 121}
 122
 123struct page_ext *lookup_page_ext(const struct page *page)
 124{
 125        unsigned long pfn = page_to_pfn(page);
 126        unsigned long index;
 127        struct page_ext *base;
 128
 129        base = NODE_DATA(page_to_nid(page))->node_page_ext;
 130        /*
 131         * The sanity checks the page allocator does upon freeing a
 132         * page can reach here before the page_ext arrays are
 133         * allocated when feeding a range of pages to the allocator
 134         * for the first time during bootup or memory hotplug.
 135         */
 136        if (unlikely(!base))
 137                return NULL;
 138        index = pfn - round_down(node_start_pfn(page_to_nid(page)),
 139                                        MAX_ORDER_NR_PAGES);
 140        return get_entry(base, index);
 141}
 142
 143static int __init alloc_node_page_ext(int nid)
 144{
 145        struct page_ext *base;
 146        unsigned long table_size;
 147        unsigned long nr_pages;
 148
 149        nr_pages = NODE_DATA(nid)->node_spanned_pages;
 150        if (!nr_pages)
 151                return 0;
 152
 153        /*
 154         * Need extra space if node range is not aligned with
 155         * MAX_ORDER_NR_PAGES. When page allocator's buddy algorithm
 156         * checks buddy's status, range could be out of exact node range.
 157         */
 158        if (!IS_ALIGNED(node_start_pfn(nid), MAX_ORDER_NR_PAGES) ||
 159                !IS_ALIGNED(node_end_pfn(nid), MAX_ORDER_NR_PAGES))
 160                nr_pages += MAX_ORDER_NR_PAGES;
 161
 162        table_size = get_entry_size() * nr_pages;
 163
 164        base = memblock_virt_alloc_try_nid_nopanic(
 165                        table_size, PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
 166                        BOOTMEM_ALLOC_ACCESSIBLE, nid);
 167        if (!base)
 168                return -ENOMEM;
 169        NODE_DATA(nid)->node_page_ext = base;
 170        total_usage += table_size;
 171        return 0;
 172}
 173
 174void __init page_ext_init_flatmem(void)
 175{
 176
 177        int nid, fail;
 178
 179        if (!invoke_need_callbacks())
 180                return;
 181
 182        for_each_online_node(nid)  {
 183                fail = alloc_node_page_ext(nid);
 184                if (fail)
 185                        goto fail;
 186        }
 187        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 188        invoke_init_callbacks();
 189        return;
 190
 191fail:
 192        pr_crit("allocation of page_ext failed.\n");
 193        panic("Out of memory");
 194}
 195
 196#else /* CONFIG_FLAT_NODE_MEM_MAP */
 197
 198struct page_ext *lookup_page_ext(const struct page *page)
 199{
 200        unsigned long pfn = page_to_pfn(page);
 201        struct mem_section *section = __pfn_to_section(pfn);
 202        /*
 203         * The sanity checks the page allocator does upon freeing a
 204         * page can reach here before the page_ext arrays are
 205         * allocated when feeding a range of pages to the allocator
 206         * for the first time during bootup or memory hotplug.
 207         */
 208        if (!section->page_ext)
 209                return NULL;
 210        return get_entry(section->page_ext, pfn);
 211}
 212
 213static void *__meminit alloc_page_ext(size_t size, int nid)
 214{
 215        gfp_t flags = GFP_KERNEL | __GFP_ZERO | __GFP_NOWARN;
 216        void *addr = NULL;
 217
 218        addr = alloc_pages_exact_nid(nid, size, flags);
 219        if (addr) {
 220                kmemleak_alloc(addr, size, 1, flags);
 221                return addr;
 222        }
 223
 224        addr = vzalloc_node(size, nid);
 225
 226        return addr;
 227}
 228
 229static int __meminit init_section_page_ext(unsigned long pfn, int nid)
 230{
 231        struct mem_section *section;
 232        struct page_ext *base;
 233        unsigned long table_size;
 234
 235        section = __pfn_to_section(pfn);
 236
 237        if (section->page_ext)
 238                return 0;
 239
 240        table_size = get_entry_size() * PAGES_PER_SECTION;
 241        base = alloc_page_ext(table_size, nid);
 242
 243        /*
 244         * The value stored in section->page_ext is (base - pfn)
 245         * and it does not point to the memory block allocated above,
 246         * causing kmemleak false positives.
 247         */
 248        kmemleak_not_leak(base);
 249
 250        if (!base) {
 251                pr_err("page ext allocation failure\n");
 252                return -ENOMEM;
 253        }
 254
 255        /*
 256         * The passed "pfn" may not be aligned to SECTION.  For the calculation
 257         * we need to apply a mask.
 258         */
 259        pfn &= PAGE_SECTION_MASK;
 260        section->page_ext = (void *)base - get_entry_size() * pfn;
 261        total_usage += table_size;
 262        return 0;
 263}
 264#ifdef CONFIG_MEMORY_HOTPLUG
 265static void free_page_ext(void *addr)
 266{
 267        if (is_vmalloc_addr(addr)) {
 268                vfree(addr);
 269        } else {
 270                struct page *page = virt_to_page(addr);
 271                size_t table_size;
 272
 273                table_size = get_entry_size() * PAGES_PER_SECTION;
 274
 275                BUG_ON(PageReserved(page));
 276                free_pages_exact(addr, table_size);
 277        }
 278}
 279
 280static void __free_page_ext(unsigned long pfn)
 281{
 282        struct mem_section *ms;
 283        struct page_ext *base;
 284
 285        ms = __pfn_to_section(pfn);
 286        if (!ms || !ms->page_ext)
 287                return;
 288        base = get_entry(ms->page_ext, pfn);
 289        free_page_ext(base);
 290        ms->page_ext = NULL;
 291}
 292
 293static int __meminit online_page_ext(unsigned long start_pfn,
 294                                unsigned long nr_pages,
 295                                int nid)
 296{
 297        unsigned long start, end, pfn;
 298        int fail = 0;
 299
 300        start = SECTION_ALIGN_DOWN(start_pfn);
 301        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 302
 303        if (nid == -1) {
 304                /*
 305                 * In this case, "nid" already exists and contains valid memory.
 306                 * "start_pfn" passed to us is a pfn which is an arg for
 307                 * online__pages(), and start_pfn should exist.
 308                 */
 309                nid = pfn_to_nid(start_pfn);
 310                VM_BUG_ON(!node_state(nid, N_ONLINE));
 311        }
 312
 313        for (pfn = start; !fail && pfn < end; pfn += PAGES_PER_SECTION) {
 314                if (!pfn_present(pfn))
 315                        continue;
 316                fail = init_section_page_ext(pfn, nid);
 317        }
 318        if (!fail)
 319                return 0;
 320
 321        /* rollback */
 322        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 323                __free_page_ext(pfn);
 324
 325        return -ENOMEM;
 326}
 327
 328static int __meminit offline_page_ext(unsigned long start_pfn,
 329                                unsigned long nr_pages, int nid)
 330{
 331        unsigned long start, end, pfn;
 332
 333        start = SECTION_ALIGN_DOWN(start_pfn);
 334        end = SECTION_ALIGN_UP(start_pfn + nr_pages);
 335
 336        for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION)
 337                __free_page_ext(pfn);
 338        return 0;
 339
 340}
 341
 342static int __meminit page_ext_callback(struct notifier_block *self,
 343                               unsigned long action, void *arg)
 344{
 345        struct memory_notify *mn = arg;
 346        int ret = 0;
 347
 348        switch (action) {
 349        case MEM_GOING_ONLINE:
 350                ret = online_page_ext(mn->start_pfn,
 351                                   mn->nr_pages, mn->status_change_nid);
 352                break;
 353        case MEM_OFFLINE:
 354                offline_page_ext(mn->start_pfn,
 355                                mn->nr_pages, mn->status_change_nid);
 356                break;
 357        case MEM_CANCEL_ONLINE:
 358                offline_page_ext(mn->start_pfn,
 359                                mn->nr_pages, mn->status_change_nid);
 360                break;
 361        case MEM_GOING_OFFLINE:
 362                break;
 363        case MEM_ONLINE:
 364        case MEM_CANCEL_OFFLINE:
 365                break;
 366        }
 367
 368        return notifier_from_errno(ret);
 369}
 370
 371#endif
 372
 373void __init page_ext_init(void)
 374{
 375        unsigned long pfn;
 376        int nid;
 377
 378        if (!invoke_need_callbacks())
 379                return;
 380
 381        for_each_node_state(nid, N_MEMORY) {
 382                unsigned long start_pfn, end_pfn;
 383
 384                start_pfn = node_start_pfn(nid);
 385                end_pfn = node_end_pfn(nid);
 386                /*
 387                 * start_pfn and end_pfn may not be aligned to SECTION and the
 388                 * page->flags of out of node pages are not initialized.  So we
 389                 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
 390                 */
 391                for (pfn = start_pfn; pfn < end_pfn;
 392                        pfn = ALIGN(pfn + 1, PAGES_PER_SECTION)) {
 393
 394                        if (!pfn_valid(pfn))
 395                                continue;
 396                        /*
 397                         * Nodes's pfns can be overlapping.
 398                         * We know some arch can have a nodes layout such as
 399                         * -------------pfn-------------->
 400                         * N0 | N1 | N2 | N0 | N1 | N2|....
 401                         *
 402                         * Take into account DEFERRED_STRUCT_PAGE_INIT.
 403                         */
 404                        if (early_pfn_to_nid(pfn) != nid)
 405                                continue;
 406                        if (init_section_page_ext(pfn, nid))
 407                                goto oom;
 408                        cond_resched();
 409                }
 410        }
 411        hotplug_memory_notifier(page_ext_callback, 0);
 412        pr_info("allocated %ld bytes of page_ext\n", total_usage);
 413        invoke_init_callbacks();
 414        return;
 415
 416oom:
 417        panic("Out of memory");
 418}
 419
 420void __meminit pgdat_page_ext_init(struct pglist_data *pgdat)
 421{
 422}
 423
 424#endif
 425