linux/mm/readahead.c
<<
>>
Prefs
   1/*
   2 * mm/readahead.c - address_space-level file readahead.
   3 *
   4 * Copyright (C) 2002, Linus Torvalds
   5 *
   6 * 09Apr2002    Andrew Morton
   7 *              Initial version.
   8 */
   9
  10#include <linux/kernel.h>
  11#include <linux/dax.h>
  12#include <linux/gfp.h>
  13#include <linux/export.h>
  14#include <linux/blkdev.h>
  15#include <linux/backing-dev.h>
  16#include <linux/task_io_accounting_ops.h>
  17#include <linux/pagevec.h>
  18#include <linux/pagemap.h>
  19#include <linux/syscalls.h>
  20#include <linux/file.h>
  21#include <linux/mm_inline.h>
  22#include <linux/blk-cgroup.h>
  23#include <linux/fadvise.h>
  24
  25#include "internal.h"
  26
  27/*
  28 * Initialise a struct file's readahead state.  Assumes that the caller has
  29 * memset *ra to zero.
  30 */
  31void
  32file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
  33{
  34        ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
  35        ra->prev_pos = -1;
  36}
  37EXPORT_SYMBOL_GPL(file_ra_state_init);
  38
  39/*
  40 * see if a page needs releasing upon read_cache_pages() failure
  41 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
  42 *   before calling, such as the NFS fs marking pages that are cached locally
  43 *   on disk, thus we need to give the fs a chance to clean up in the event of
  44 *   an error
  45 */
  46static void read_cache_pages_invalidate_page(struct address_space *mapping,
  47                                             struct page *page)
  48{
  49        if (page_has_private(page)) {
  50                if (!trylock_page(page))
  51                        BUG();
  52                page->mapping = mapping;
  53                do_invalidatepage(page, 0, PAGE_SIZE);
  54                page->mapping = NULL;
  55                unlock_page(page);
  56        }
  57        put_page(page);
  58}
  59
  60/*
  61 * release a list of pages, invalidating them first if need be
  62 */
  63static void read_cache_pages_invalidate_pages(struct address_space *mapping,
  64                                              struct list_head *pages)
  65{
  66        struct page *victim;
  67
  68        while (!list_empty(pages)) {
  69                victim = lru_to_page(pages);
  70                list_del(&victim->lru);
  71                read_cache_pages_invalidate_page(mapping, victim);
  72        }
  73}
  74
  75/**
  76 * read_cache_pages - populate an address space with some pages & start reads against them
  77 * @mapping: the address_space
  78 * @pages: The address of a list_head which contains the target pages.  These
  79 *   pages have their ->index populated and are otherwise uninitialised.
  80 * @filler: callback routine for filling a single page.
  81 * @data: private data for the callback routine.
  82 *
  83 * Hides the details of the LRU cache etc from the filesystems.
  84 */
  85int read_cache_pages(struct address_space *mapping, struct list_head *pages,
  86                        int (*filler)(void *, struct page *), void *data)
  87{
  88        struct page *page;
  89        int ret = 0;
  90
  91        while (!list_empty(pages)) {
  92                page = lru_to_page(pages);
  93                list_del(&page->lru);
  94                if (add_to_page_cache_lru(page, mapping, page->index,
  95                                readahead_gfp_mask(mapping))) {
  96                        read_cache_pages_invalidate_page(mapping, page);
  97                        continue;
  98                }
  99                put_page(page);
 100
 101                ret = filler(data, page);
 102                if (unlikely(ret)) {
 103                        read_cache_pages_invalidate_pages(mapping, pages);
 104                        break;
 105                }
 106                task_io_account_read(PAGE_SIZE);
 107        }
 108        return ret;
 109}
 110
 111EXPORT_SYMBOL(read_cache_pages);
 112
 113static int read_pages(struct address_space *mapping, struct file *filp,
 114                struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
 115{
 116        struct blk_plug plug;
 117        unsigned page_idx;
 118        int ret;
 119
 120        blk_start_plug(&plug);
 121
 122        if (mapping->a_ops->readpages) {
 123                ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
 124                /* Clean up the remaining pages */
 125                put_pages_list(pages);
 126                goto out;
 127        }
 128
 129        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
 130                struct page *page = lru_to_page(pages);
 131                list_del(&page->lru);
 132                if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
 133                        mapping->a_ops->readpage(filp, page);
 134                put_page(page);
 135        }
 136        ret = 0;
 137
 138out:
 139        blk_finish_plug(&plug);
 140
 141        return ret;
 142}
 143
 144/*
 145 * __do_page_cache_readahead() actually reads a chunk of disk.  It allocates
 146 * the pages first, then submits them for I/O. This avoids the very bad
 147 * behaviour which would occur if page allocations are causing VM writeback.
 148 * We really don't want to intermingle reads and writes like that.
 149 *
 150 * Returns the number of pages requested, or the maximum amount of I/O allowed.
 151 */
 152unsigned int __do_page_cache_readahead(struct address_space *mapping,
 153                struct file *filp, pgoff_t offset, unsigned long nr_to_read,
 154                unsigned long lookahead_size)
 155{
 156        struct inode *inode = mapping->host;
 157        struct page *page;
 158        unsigned long end_index;        /* The last page we want to read */
 159        LIST_HEAD(page_pool);
 160        int page_idx;
 161        unsigned int nr_pages = 0;
 162        loff_t isize = i_size_read(inode);
 163        gfp_t gfp_mask = readahead_gfp_mask(mapping);
 164
 165        if (isize == 0)
 166                goto out;
 167
 168        end_index = ((isize - 1) >> PAGE_SHIFT);
 169
 170        /*
 171         * Preallocate as many pages as we will need.
 172         */
 173        for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
 174                pgoff_t page_offset = offset + page_idx;
 175
 176                if (page_offset > end_index)
 177                        break;
 178
 179                rcu_read_lock();
 180                page = radix_tree_lookup(&mapping->i_pages, page_offset);
 181                rcu_read_unlock();
 182                if (page && !radix_tree_exceptional_entry(page)) {
 183                        /*
 184                         * Page already present?  Kick off the current batch of
 185                         * contiguous pages before continuing with the next
 186                         * batch.
 187                         */
 188                        if (nr_pages)
 189                                read_pages(mapping, filp, &page_pool, nr_pages,
 190                                                gfp_mask);
 191                        nr_pages = 0;
 192                        continue;
 193                }
 194
 195                page = __page_cache_alloc(gfp_mask);
 196                if (!page)
 197                        break;
 198                page->index = page_offset;
 199                list_add(&page->lru, &page_pool);
 200                if (page_idx == nr_to_read - lookahead_size)
 201                        SetPageReadahead(page);
 202                nr_pages++;
 203        }
 204
 205        /*
 206         * Now start the IO.  We ignore I/O errors - if the page is not
 207         * uptodate then the caller will launch readpage again, and
 208         * will then handle the error.
 209         */
 210        if (nr_pages)
 211                read_pages(mapping, filp, &page_pool, nr_pages, gfp_mask);
 212        BUG_ON(!list_empty(&page_pool));
 213out:
 214        return nr_pages;
 215}
 216
 217/*
 218 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
 219 * memory at once.
 220 */
 221int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
 222                               pgoff_t offset, unsigned long nr_to_read)
 223{
 224        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 225        struct file_ra_state *ra = &filp->f_ra;
 226        unsigned long max_pages;
 227
 228        if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
 229                return -EINVAL;
 230
 231        /*
 232         * If the request exceeds the readahead window, allow the read to
 233         * be up to the optimal hardware IO size
 234         */
 235        max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
 236        nr_to_read = min(nr_to_read, max_pages);
 237        while (nr_to_read) {
 238                unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
 239
 240                if (this_chunk > nr_to_read)
 241                        this_chunk = nr_to_read;
 242                __do_page_cache_readahead(mapping, filp, offset, this_chunk, 0);
 243
 244                offset += this_chunk;
 245                nr_to_read -= this_chunk;
 246        }
 247        return 0;
 248}
 249
 250/*
 251 * Set the initial window size, round to next power of 2 and square
 252 * for small size, x 4 for medium, and x 2 for large
 253 * for 128k (32 page) max ra
 254 * 1-8 page = 32k initial, > 8 page = 128k initial
 255 */
 256static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
 257{
 258        unsigned long newsize = roundup_pow_of_two(size);
 259
 260        if (newsize <= max / 32)
 261                newsize = newsize * 4;
 262        else if (newsize <= max / 4)
 263                newsize = newsize * 2;
 264        else
 265                newsize = max;
 266
 267        return newsize;
 268}
 269
 270/*
 271 *  Get the previous window size, ramp it up, and
 272 *  return it as the new window size.
 273 */
 274static unsigned long get_next_ra_size(struct file_ra_state *ra,
 275                                                unsigned long max)
 276{
 277        unsigned long cur = ra->size;
 278        unsigned long newsize;
 279
 280        if (cur < max / 16)
 281                newsize = 4 * cur;
 282        else
 283                newsize = 2 * cur;
 284
 285        return min(newsize, max);
 286}
 287
 288/*
 289 * On-demand readahead design.
 290 *
 291 * The fields in struct file_ra_state represent the most-recently-executed
 292 * readahead attempt:
 293 *
 294 *                        |<----- async_size ---------|
 295 *     |------------------- size -------------------->|
 296 *     |==================#===========================|
 297 *     ^start             ^page marked with PG_readahead
 298 *
 299 * To overlap application thinking time and disk I/O time, we do
 300 * `readahead pipelining': Do not wait until the application consumed all
 301 * readahead pages and stalled on the missing page at readahead_index;
 302 * Instead, submit an asynchronous readahead I/O as soon as there are
 303 * only async_size pages left in the readahead window. Normally async_size
 304 * will be equal to size, for maximum pipelining.
 305 *
 306 * In interleaved sequential reads, concurrent streams on the same fd can
 307 * be invalidating each other's readahead state. So we flag the new readahead
 308 * page at (start+size-async_size) with PG_readahead, and use it as readahead
 309 * indicator. The flag won't be set on already cached pages, to avoid the
 310 * readahead-for-nothing fuss, saving pointless page cache lookups.
 311 *
 312 * prev_pos tracks the last visited byte in the _previous_ read request.
 313 * It should be maintained by the caller, and will be used for detecting
 314 * small random reads. Note that the readahead algorithm checks loosely
 315 * for sequential patterns. Hence interleaved reads might be served as
 316 * sequential ones.
 317 *
 318 * There is a special-case: if the first page which the application tries to
 319 * read happens to be the first page of the file, it is assumed that a linear
 320 * read is about to happen and the window is immediately set to the initial size
 321 * based on I/O request size and the max_readahead.
 322 *
 323 * The code ramps up the readahead size aggressively at first, but slow down as
 324 * it approaches max_readhead.
 325 */
 326
 327/*
 328 * Count contiguously cached pages from @offset-1 to @offset-@max,
 329 * this count is a conservative estimation of
 330 *      - length of the sequential read sequence, or
 331 *      - thrashing threshold in memory tight systems
 332 */
 333static pgoff_t count_history_pages(struct address_space *mapping,
 334                                   pgoff_t offset, unsigned long max)
 335{
 336        pgoff_t head;
 337
 338        rcu_read_lock();
 339        head = page_cache_prev_hole(mapping, offset - 1, max);
 340        rcu_read_unlock();
 341
 342        return offset - 1 - head;
 343}
 344
 345/*
 346 * page cache context based read-ahead
 347 */
 348static int try_context_readahead(struct address_space *mapping,
 349                                 struct file_ra_state *ra,
 350                                 pgoff_t offset,
 351                                 unsigned long req_size,
 352                                 unsigned long max)
 353{
 354        pgoff_t size;
 355
 356        size = count_history_pages(mapping, offset, max);
 357
 358        /*
 359         * not enough history pages:
 360         * it could be a random read
 361         */
 362        if (size <= req_size)
 363                return 0;
 364
 365        /*
 366         * starts from beginning of file:
 367         * it is a strong indication of long-run stream (or whole-file-read)
 368         */
 369        if (size >= offset)
 370                size *= 2;
 371
 372        ra->start = offset;
 373        ra->size = min(size + req_size, max);
 374        ra->async_size = 1;
 375
 376        return 1;
 377}
 378
 379/*
 380 * A minimal readahead algorithm for trivial sequential/random reads.
 381 */
 382static unsigned long
 383ondemand_readahead(struct address_space *mapping,
 384                   struct file_ra_state *ra, struct file *filp,
 385                   bool hit_readahead_marker, pgoff_t offset,
 386                   unsigned long req_size)
 387{
 388        struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
 389        unsigned long max_pages = ra->ra_pages;
 390        unsigned long add_pages;
 391        pgoff_t prev_offset;
 392
 393        /*
 394         * If the request exceeds the readahead window, allow the read to
 395         * be up to the optimal hardware IO size
 396         */
 397        if (req_size > max_pages && bdi->io_pages > max_pages)
 398                max_pages = min(req_size, bdi->io_pages);
 399
 400        /*
 401         * start of file
 402         */
 403        if (!offset)
 404                goto initial_readahead;
 405
 406        /*
 407         * It's the expected callback offset, assume sequential access.
 408         * Ramp up sizes, and push forward the readahead window.
 409         */
 410        if ((offset == (ra->start + ra->size - ra->async_size) ||
 411             offset == (ra->start + ra->size))) {
 412                ra->start += ra->size;
 413                ra->size = get_next_ra_size(ra, max_pages);
 414                ra->async_size = ra->size;
 415                goto readit;
 416        }
 417
 418        /*
 419         * Hit a marked page without valid readahead state.
 420         * E.g. interleaved reads.
 421         * Query the pagecache for async_size, which normally equals to
 422         * readahead size. Ramp it up and use it as the new readahead size.
 423         */
 424        if (hit_readahead_marker) {
 425                pgoff_t start;
 426
 427                rcu_read_lock();
 428                start = page_cache_next_hole(mapping, offset + 1, max_pages);
 429                rcu_read_unlock();
 430
 431                if (!start || start - offset > max_pages)
 432                        return 0;
 433
 434                ra->start = start;
 435                ra->size = start - offset;      /* old async_size */
 436                ra->size += req_size;
 437                ra->size = get_next_ra_size(ra, max_pages);
 438                ra->async_size = ra->size;
 439                goto readit;
 440        }
 441
 442        /*
 443         * oversize read
 444         */
 445        if (req_size > max_pages)
 446                goto initial_readahead;
 447
 448        /*
 449         * sequential cache miss
 450         * trivial case: (offset - prev_offset) == 1
 451         * unaligned reads: (offset - prev_offset) == 0
 452         */
 453        prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
 454        if (offset - prev_offset <= 1UL)
 455                goto initial_readahead;
 456
 457        /*
 458         * Query the page cache and look for the traces(cached history pages)
 459         * that a sequential stream would leave behind.
 460         */
 461        if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
 462                goto readit;
 463
 464        /*
 465         * standalone, small random read
 466         * Read as is, and do not pollute the readahead state.
 467         */
 468        return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
 469
 470initial_readahead:
 471        ra->start = offset;
 472        ra->size = get_init_ra_size(req_size, max_pages);
 473        ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
 474
 475readit:
 476        /*
 477         * Will this read hit the readahead marker made by itself?
 478         * If so, trigger the readahead marker hit now, and merge
 479         * the resulted next readahead window into the current one.
 480         * Take care of maximum IO pages as above.
 481         */
 482        if (offset == ra->start && ra->size == ra->async_size) {
 483                add_pages = get_next_ra_size(ra, max_pages);
 484                if (ra->size + add_pages <= max_pages) {
 485                        ra->async_size = add_pages;
 486                        ra->size += add_pages;
 487                } else {
 488                        ra->size = max_pages;
 489                        ra->async_size = max_pages >> 1;
 490                }
 491        }
 492
 493        return ra_submit(ra, mapping, filp);
 494}
 495
 496/**
 497 * page_cache_sync_readahead - generic file readahead
 498 * @mapping: address_space which holds the pagecache and I/O vectors
 499 * @ra: file_ra_state which holds the readahead state
 500 * @filp: passed on to ->readpage() and ->readpages()
 501 * @offset: start offset into @mapping, in pagecache page-sized units
 502 * @req_size: hint: total size of the read which the caller is performing in
 503 *            pagecache pages
 504 *
 505 * page_cache_sync_readahead() should be called when a cache miss happened:
 506 * it will submit the read.  The readahead logic may decide to piggyback more
 507 * pages onto the read request if access patterns suggest it will improve
 508 * performance.
 509 */
 510void page_cache_sync_readahead(struct address_space *mapping,
 511                               struct file_ra_state *ra, struct file *filp,
 512                               pgoff_t offset, unsigned long req_size)
 513{
 514        /* no read-ahead */
 515        if (!ra->ra_pages)
 516                return;
 517
 518        if (blk_cgroup_congested())
 519                return;
 520
 521        /* be dumb */
 522        if (filp && (filp->f_mode & FMODE_RANDOM)) {
 523                force_page_cache_readahead(mapping, filp, offset, req_size);
 524                return;
 525        }
 526
 527        /* do read-ahead */
 528        ondemand_readahead(mapping, ra, filp, false, offset, req_size);
 529}
 530EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
 531
 532/**
 533 * page_cache_async_readahead - file readahead for marked pages
 534 * @mapping: address_space which holds the pagecache and I/O vectors
 535 * @ra: file_ra_state which holds the readahead state
 536 * @filp: passed on to ->readpage() and ->readpages()
 537 * @page: the page at @offset which has the PG_readahead flag set
 538 * @offset: start offset into @mapping, in pagecache page-sized units
 539 * @req_size: hint: total size of the read which the caller is performing in
 540 *            pagecache pages
 541 *
 542 * page_cache_async_readahead() should be called when a page is used which
 543 * has the PG_readahead flag; this is a marker to suggest that the application
 544 * has used up enough of the readahead window that we should start pulling in
 545 * more pages.
 546 */
 547void
 548page_cache_async_readahead(struct address_space *mapping,
 549                           struct file_ra_state *ra, struct file *filp,
 550                           struct page *page, pgoff_t offset,
 551                           unsigned long req_size)
 552{
 553        /* no read-ahead */
 554        if (!ra->ra_pages)
 555                return;
 556
 557        /*
 558         * Same bit is used for PG_readahead and PG_reclaim.
 559         */
 560        if (PageWriteback(page))
 561                return;
 562
 563        ClearPageReadahead(page);
 564
 565        /*
 566         * Defer asynchronous read-ahead on IO congestion.
 567         */
 568        if (inode_read_congested(mapping->host))
 569                return;
 570
 571        if (blk_cgroup_congested())
 572                return;
 573
 574        /* do read-ahead */
 575        ondemand_readahead(mapping, ra, filp, true, offset, req_size);
 576}
 577EXPORT_SYMBOL_GPL(page_cache_async_readahead);
 578
 579ssize_t ksys_readahead(int fd, loff_t offset, size_t count)
 580{
 581        ssize_t ret;
 582        struct fd f;
 583
 584        ret = -EBADF;
 585        f = fdget(fd);
 586        if (!f.file || !(f.file->f_mode & FMODE_READ))
 587                goto out;
 588
 589        /*
 590         * The readahead() syscall is intended to run only on files
 591         * that can execute readahead. If readahead is not possible
 592         * on this file, then we must return -EINVAL.
 593         */
 594        ret = -EINVAL;
 595        if (!f.file->f_mapping || !f.file->f_mapping->a_ops ||
 596            !S_ISREG(file_inode(f.file)->i_mode))
 597                goto out;
 598
 599        ret = vfs_fadvise(f.file, offset, count, POSIX_FADV_WILLNEED);
 600out:
 601        fdput(f);
 602        return ret;
 603}
 604
 605SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
 606{
 607        return ksys_readahead(fd, offset, count);
 608}
 609