linux/mm/rmap.c
<<
>>
Prefs
   1/*
   2 * mm/rmap.c - physical to virtual reverse mappings
   3 *
   4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
   5 * Released under the General Public License (GPL).
   6 *
   7 * Simple, low overhead reverse mapping scheme.
   8 * Please try to keep this thing as modular as possible.
   9 *
  10 * Provides methods for unmapping each kind of mapped page:
  11 * the anon methods track anonymous pages, and
  12 * the file methods track pages belonging to an inode.
  13 *
  14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
  15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
  16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
  17 * Contributions by Hugh Dickins 2003, 2004
  18 */
  19
  20/*
  21 * Lock ordering in mm:
  22 *
  23 * inode->i_mutex       (while writing or truncating, not reading or faulting)
  24 *   mm->mmap_sem
  25 *     page->flags PG_locked (lock_page)
  26 *       hugetlbfs_i_mmap_rwsem_key (in huge_pmd_share)
  27 *         mapping->i_mmap_rwsem
  28 *           anon_vma->rwsem
  29 *             mm->page_table_lock or pte_lock
  30 *               zone_lru_lock (in mark_page_accessed, isolate_lru_page)
  31 *               swap_lock (in swap_duplicate, swap_info_get)
  32 *                 mmlist_lock (in mmput, drain_mmlist and others)
  33 *                 mapping->private_lock (in __set_page_dirty_buffers)
  34 *                   mem_cgroup_{begin,end}_page_stat (memcg->move_lock)
  35 *                     i_pages lock (widely used)
  36 *                 inode->i_lock (in set_page_dirty's __mark_inode_dirty)
  37 *                 bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
  38 *                   sb_lock (within inode_lock in fs/fs-writeback.c)
  39 *                   i_pages lock (widely used, in set_page_dirty,
  40 *                             in arch-dependent flush_dcache_mmap_lock,
  41 *                             within bdi.wb->list_lock in __sync_single_inode)
  42 *
  43 * anon_vma->rwsem,mapping->i_mutex      (memory_failure, collect_procs_anon)
  44 *   ->tasklist_lock
  45 *     pte map lock
  46 */
  47
  48#include <linux/mm.h>
  49#include <linux/sched/mm.h>
  50#include <linux/sched/task.h>
  51#include <linux/pagemap.h>
  52#include <linux/swap.h>
  53#include <linux/swapops.h>
  54#include <linux/slab.h>
  55#include <linux/init.h>
  56#include <linux/ksm.h>
  57#include <linux/rmap.h>
  58#include <linux/rcupdate.h>
  59#include <linux/export.h>
  60#include <linux/memcontrol.h>
  61#include <linux/mmu_notifier.h>
  62#include <linux/migrate.h>
  63#include <linux/hugetlb.h>
  64#include <linux/backing-dev.h>
  65#include <linux/page_idle.h>
  66#include <linux/memremap.h>
  67#include <linux/userfaultfd_k.h>
  68
  69#include <asm/tlbflush.h>
  70
  71#include <trace/events/tlb.h>
  72
  73#include "internal.h"
  74
  75static struct kmem_cache *anon_vma_cachep;
  76static struct kmem_cache *anon_vma_chain_cachep;
  77
  78static inline struct anon_vma *anon_vma_alloc(void)
  79{
  80        struct anon_vma *anon_vma;
  81
  82        anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
  83        if (anon_vma) {
  84                atomic_set(&anon_vma->refcount, 1);
  85                anon_vma->degree = 1;   /* Reference for first vma */
  86                anon_vma->parent = anon_vma;
  87                /*
  88                 * Initialise the anon_vma root to point to itself. If called
  89                 * from fork, the root will be reset to the parents anon_vma.
  90                 */
  91                anon_vma->root = anon_vma;
  92        }
  93
  94        return anon_vma;
  95}
  96
  97static inline void anon_vma_free(struct anon_vma *anon_vma)
  98{
  99        VM_BUG_ON(atomic_read(&anon_vma->refcount));
 100
 101        /*
 102         * Synchronize against page_lock_anon_vma_read() such that
 103         * we can safely hold the lock without the anon_vma getting
 104         * freed.
 105         *
 106         * Relies on the full mb implied by the atomic_dec_and_test() from
 107         * put_anon_vma() against the acquire barrier implied by
 108         * down_read_trylock() from page_lock_anon_vma_read(). This orders:
 109         *
 110         * page_lock_anon_vma_read()    VS      put_anon_vma()
 111         *   down_read_trylock()                  atomic_dec_and_test()
 112         *   LOCK                                 MB
 113         *   atomic_read()                        rwsem_is_locked()
 114         *
 115         * LOCK should suffice since the actual taking of the lock must
 116         * happen _before_ what follows.
 117         */
 118        might_sleep();
 119        if (rwsem_is_locked(&anon_vma->root->rwsem)) {
 120                anon_vma_lock_write(anon_vma);
 121                anon_vma_unlock_write(anon_vma);
 122        }
 123
 124        kmem_cache_free(anon_vma_cachep, anon_vma);
 125}
 126
 127static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
 128{
 129        return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
 130}
 131
 132static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
 133{
 134        kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
 135}
 136
 137static void anon_vma_chain_link(struct vm_area_struct *vma,
 138                                struct anon_vma_chain *avc,
 139                                struct anon_vma *anon_vma)
 140{
 141        avc->vma = vma;
 142        avc->anon_vma = anon_vma;
 143        list_add(&avc->same_vma, &vma->anon_vma_chain);
 144        anon_vma_interval_tree_insert(avc, &anon_vma->rb_root);
 145}
 146
 147/**
 148 * __anon_vma_prepare - attach an anon_vma to a memory region
 149 * @vma: the memory region in question
 150 *
 151 * This makes sure the memory mapping described by 'vma' has
 152 * an 'anon_vma' attached to it, so that we can associate the
 153 * anonymous pages mapped into it with that anon_vma.
 154 *
 155 * The common case will be that we already have one, which
 156 * is handled inline by anon_vma_prepare(). But if
 157 * not we either need to find an adjacent mapping that we
 158 * can re-use the anon_vma from (very common when the only
 159 * reason for splitting a vma has been mprotect()), or we
 160 * allocate a new one.
 161 *
 162 * Anon-vma allocations are very subtle, because we may have
 163 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
 164 * and that may actually touch the spinlock even in the newly
 165 * allocated vma (it depends on RCU to make sure that the
 166 * anon_vma isn't actually destroyed).
 167 *
 168 * As a result, we need to do proper anon_vma locking even
 169 * for the new allocation. At the same time, we do not want
 170 * to do any locking for the common case of already having
 171 * an anon_vma.
 172 *
 173 * This must be called with the mmap_sem held for reading.
 174 */
 175int __anon_vma_prepare(struct vm_area_struct *vma)
 176{
 177        struct mm_struct *mm = vma->vm_mm;
 178        struct anon_vma *anon_vma, *allocated;
 179        struct anon_vma_chain *avc;
 180
 181        might_sleep();
 182
 183        avc = anon_vma_chain_alloc(GFP_KERNEL);
 184        if (!avc)
 185                goto out_enomem;
 186
 187        anon_vma = find_mergeable_anon_vma(vma);
 188        allocated = NULL;
 189        if (!anon_vma) {
 190                anon_vma = anon_vma_alloc();
 191                if (unlikely(!anon_vma))
 192                        goto out_enomem_free_avc;
 193                allocated = anon_vma;
 194        }
 195
 196        anon_vma_lock_write(anon_vma);
 197        /* page_table_lock to protect against threads */
 198        spin_lock(&mm->page_table_lock);
 199        if (likely(!vma->anon_vma)) {
 200                vma->anon_vma = anon_vma;
 201                anon_vma_chain_link(vma, avc, anon_vma);
 202                /* vma reference or self-parent link for new root */
 203                anon_vma->degree++;
 204                allocated = NULL;
 205                avc = NULL;
 206        }
 207        spin_unlock(&mm->page_table_lock);
 208        anon_vma_unlock_write(anon_vma);
 209
 210        if (unlikely(allocated))
 211                put_anon_vma(allocated);
 212        if (unlikely(avc))
 213                anon_vma_chain_free(avc);
 214
 215        return 0;
 216
 217 out_enomem_free_avc:
 218        anon_vma_chain_free(avc);
 219 out_enomem:
 220        return -ENOMEM;
 221}
 222
 223/*
 224 * This is a useful helper function for locking the anon_vma root as
 225 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
 226 * have the same vma.
 227 *
 228 * Such anon_vma's should have the same root, so you'd expect to see
 229 * just a single mutex_lock for the whole traversal.
 230 */
 231static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
 232{
 233        struct anon_vma *new_root = anon_vma->root;
 234        if (new_root != root) {
 235                if (WARN_ON_ONCE(root))
 236                        up_write(&root->rwsem);
 237                root = new_root;
 238                down_write(&root->rwsem);
 239        }
 240        return root;
 241}
 242
 243static inline void unlock_anon_vma_root(struct anon_vma *root)
 244{
 245        if (root)
 246                up_write(&root->rwsem);
 247}
 248
 249/*
 250 * Attach the anon_vmas from src to dst.
 251 * Returns 0 on success, -ENOMEM on failure.
 252 *
 253 * If dst->anon_vma is NULL this function tries to find and reuse existing
 254 * anon_vma which has no vmas and only one child anon_vma. This prevents
 255 * degradation of anon_vma hierarchy to endless linear chain in case of
 256 * constantly forking task. On the other hand, an anon_vma with more than one
 257 * child isn't reused even if there was no alive vma, thus rmap walker has a
 258 * good chance of avoiding scanning the whole hierarchy when it searches where
 259 * page is mapped.
 260 */
 261int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
 262{
 263        struct anon_vma_chain *avc, *pavc;
 264        struct anon_vma *root = NULL;
 265
 266        list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
 267                struct anon_vma *anon_vma;
 268
 269                avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
 270                if (unlikely(!avc)) {
 271                        unlock_anon_vma_root(root);
 272                        root = NULL;
 273                        avc = anon_vma_chain_alloc(GFP_KERNEL);
 274                        if (!avc)
 275                                goto enomem_failure;
 276                }
 277                anon_vma = pavc->anon_vma;
 278                root = lock_anon_vma_root(root, anon_vma);
 279                anon_vma_chain_link(dst, avc, anon_vma);
 280
 281                /*
 282                 * Reuse existing anon_vma if its degree lower than two,
 283                 * that means it has no vma and only one anon_vma child.
 284                 *
 285                 * Do not chose parent anon_vma, otherwise first child
 286                 * will always reuse it. Root anon_vma is never reused:
 287                 * it has self-parent reference and at least one child.
 288                 */
 289                if (!dst->anon_vma && anon_vma != src->anon_vma &&
 290                                anon_vma->degree < 2)
 291                        dst->anon_vma = anon_vma;
 292        }
 293        if (dst->anon_vma)
 294                dst->anon_vma->degree++;
 295        unlock_anon_vma_root(root);
 296        return 0;
 297
 298 enomem_failure:
 299        /*
 300         * dst->anon_vma is dropped here otherwise its degree can be incorrectly
 301         * decremented in unlink_anon_vmas().
 302         * We can safely do this because callers of anon_vma_clone() don't care
 303         * about dst->anon_vma if anon_vma_clone() failed.
 304         */
 305        dst->anon_vma = NULL;
 306        unlink_anon_vmas(dst);
 307        return -ENOMEM;
 308}
 309
 310/*
 311 * Attach vma to its own anon_vma, as well as to the anon_vmas that
 312 * the corresponding VMA in the parent process is attached to.
 313 * Returns 0 on success, non-zero on failure.
 314 */
 315int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
 316{
 317        struct anon_vma_chain *avc;
 318        struct anon_vma *anon_vma;
 319        int error;
 320
 321        /* Don't bother if the parent process has no anon_vma here. */
 322        if (!pvma->anon_vma)
 323                return 0;
 324
 325        /* Drop inherited anon_vma, we'll reuse existing or allocate new. */
 326        vma->anon_vma = NULL;
 327
 328        /*
 329         * First, attach the new VMA to the parent VMA's anon_vmas,
 330         * so rmap can find non-COWed pages in child processes.
 331         */
 332        error = anon_vma_clone(vma, pvma);
 333        if (error)
 334                return error;
 335
 336        /* An existing anon_vma has been reused, all done then. */
 337        if (vma->anon_vma)
 338                return 0;
 339
 340        /* Then add our own anon_vma. */
 341        anon_vma = anon_vma_alloc();
 342        if (!anon_vma)
 343                goto out_error;
 344        avc = anon_vma_chain_alloc(GFP_KERNEL);
 345        if (!avc)
 346                goto out_error_free_anon_vma;
 347
 348        /*
 349         * The root anon_vma's spinlock is the lock actually used when we
 350         * lock any of the anon_vmas in this anon_vma tree.
 351         */
 352        anon_vma->root = pvma->anon_vma->root;
 353        anon_vma->parent = pvma->anon_vma;
 354        /*
 355         * With refcounts, an anon_vma can stay around longer than the
 356         * process it belongs to. The root anon_vma needs to be pinned until
 357         * this anon_vma is freed, because the lock lives in the root.
 358         */
 359        get_anon_vma(anon_vma->root);
 360        /* Mark this anon_vma as the one where our new (COWed) pages go. */
 361        vma->anon_vma = anon_vma;
 362        anon_vma_lock_write(anon_vma);
 363        anon_vma_chain_link(vma, avc, anon_vma);
 364        anon_vma->parent->degree++;
 365        anon_vma_unlock_write(anon_vma);
 366
 367        return 0;
 368
 369 out_error_free_anon_vma:
 370        put_anon_vma(anon_vma);
 371 out_error:
 372        unlink_anon_vmas(vma);
 373        return -ENOMEM;
 374}
 375
 376void unlink_anon_vmas(struct vm_area_struct *vma)
 377{
 378        struct anon_vma_chain *avc, *next;
 379        struct anon_vma *root = NULL;
 380
 381        /*
 382         * Unlink each anon_vma chained to the VMA.  This list is ordered
 383         * from newest to oldest, ensuring the root anon_vma gets freed last.
 384         */
 385        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 386                struct anon_vma *anon_vma = avc->anon_vma;
 387
 388                root = lock_anon_vma_root(root, anon_vma);
 389                anon_vma_interval_tree_remove(avc, &anon_vma->rb_root);
 390
 391                /*
 392                 * Leave empty anon_vmas on the list - we'll need
 393                 * to free them outside the lock.
 394                 */
 395                if (RB_EMPTY_ROOT(&anon_vma->rb_root.rb_root)) {
 396                        anon_vma->parent->degree--;
 397                        continue;
 398                }
 399
 400                list_del(&avc->same_vma);
 401                anon_vma_chain_free(avc);
 402        }
 403        if (vma->anon_vma)
 404                vma->anon_vma->degree--;
 405        unlock_anon_vma_root(root);
 406
 407        /*
 408         * Iterate the list once more, it now only contains empty and unlinked
 409         * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
 410         * needing to write-acquire the anon_vma->root->rwsem.
 411         */
 412        list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
 413                struct anon_vma *anon_vma = avc->anon_vma;
 414
 415                VM_WARN_ON(anon_vma->degree);
 416                put_anon_vma(anon_vma);
 417
 418                list_del(&avc->same_vma);
 419                anon_vma_chain_free(avc);
 420        }
 421}
 422
 423static void anon_vma_ctor(void *data)
 424{
 425        struct anon_vma *anon_vma = data;
 426
 427        init_rwsem(&anon_vma->rwsem);
 428        atomic_set(&anon_vma->refcount, 0);
 429        anon_vma->rb_root = RB_ROOT_CACHED;
 430}
 431
 432void __init anon_vma_init(void)
 433{
 434        anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
 435                        0, SLAB_TYPESAFE_BY_RCU|SLAB_PANIC|SLAB_ACCOUNT,
 436                        anon_vma_ctor);
 437        anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain,
 438                        SLAB_PANIC|SLAB_ACCOUNT);
 439}
 440
 441/*
 442 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
 443 *
 444 * Since there is no serialization what so ever against page_remove_rmap()
 445 * the best this function can do is return a locked anon_vma that might
 446 * have been relevant to this page.
 447 *
 448 * The page might have been remapped to a different anon_vma or the anon_vma
 449 * returned may already be freed (and even reused).
 450 *
 451 * In case it was remapped to a different anon_vma, the new anon_vma will be a
 452 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
 453 * ensure that any anon_vma obtained from the page will still be valid for as
 454 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
 455 *
 456 * All users of this function must be very careful when walking the anon_vma
 457 * chain and verify that the page in question is indeed mapped in it
 458 * [ something equivalent to page_mapped_in_vma() ].
 459 *
 460 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
 461 * that the anon_vma pointer from page->mapping is valid if there is a
 462 * mapcount, we can dereference the anon_vma after observing those.
 463 */
 464struct anon_vma *page_get_anon_vma(struct page *page)
 465{
 466        struct anon_vma *anon_vma = NULL;
 467        unsigned long anon_mapping;
 468
 469        rcu_read_lock();
 470        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 471        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 472                goto out;
 473        if (!page_mapped(page))
 474                goto out;
 475
 476        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 477        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 478                anon_vma = NULL;
 479                goto out;
 480        }
 481
 482        /*
 483         * If this page is still mapped, then its anon_vma cannot have been
 484         * freed.  But if it has been unmapped, we have no security against the
 485         * anon_vma structure being freed and reused (for another anon_vma:
 486         * SLAB_TYPESAFE_BY_RCU guarantees that - so the atomic_inc_not_zero()
 487         * above cannot corrupt).
 488         */
 489        if (!page_mapped(page)) {
 490                rcu_read_unlock();
 491                put_anon_vma(anon_vma);
 492                return NULL;
 493        }
 494out:
 495        rcu_read_unlock();
 496
 497        return anon_vma;
 498}
 499
 500/*
 501 * Similar to page_get_anon_vma() except it locks the anon_vma.
 502 *
 503 * Its a little more complex as it tries to keep the fast path to a single
 504 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
 505 * reference like with page_get_anon_vma() and then block on the mutex.
 506 */
 507struct anon_vma *page_lock_anon_vma_read(struct page *page)
 508{
 509        struct anon_vma *anon_vma = NULL;
 510        struct anon_vma *root_anon_vma;
 511        unsigned long anon_mapping;
 512
 513        rcu_read_lock();
 514        anon_mapping = (unsigned long)READ_ONCE(page->mapping);
 515        if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
 516                goto out;
 517        if (!page_mapped(page))
 518                goto out;
 519
 520        anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
 521        root_anon_vma = READ_ONCE(anon_vma->root);
 522        if (down_read_trylock(&root_anon_vma->rwsem)) {
 523                /*
 524                 * If the page is still mapped, then this anon_vma is still
 525                 * its anon_vma, and holding the mutex ensures that it will
 526                 * not go away, see anon_vma_free().
 527                 */
 528                if (!page_mapped(page)) {
 529                        up_read(&root_anon_vma->rwsem);
 530                        anon_vma = NULL;
 531                }
 532                goto out;
 533        }
 534
 535        /* trylock failed, we got to sleep */
 536        if (!atomic_inc_not_zero(&anon_vma->refcount)) {
 537                anon_vma = NULL;
 538                goto out;
 539        }
 540
 541        if (!page_mapped(page)) {
 542                rcu_read_unlock();
 543                put_anon_vma(anon_vma);
 544                return NULL;
 545        }
 546
 547        /* we pinned the anon_vma, its safe to sleep */
 548        rcu_read_unlock();
 549        anon_vma_lock_read(anon_vma);
 550
 551        if (atomic_dec_and_test(&anon_vma->refcount)) {
 552                /*
 553                 * Oops, we held the last refcount, release the lock
 554                 * and bail -- can't simply use put_anon_vma() because
 555                 * we'll deadlock on the anon_vma_lock_write() recursion.
 556                 */
 557                anon_vma_unlock_read(anon_vma);
 558                __put_anon_vma(anon_vma);
 559                anon_vma = NULL;
 560        }
 561
 562        return anon_vma;
 563
 564out:
 565        rcu_read_unlock();
 566        return anon_vma;
 567}
 568
 569void page_unlock_anon_vma_read(struct anon_vma *anon_vma)
 570{
 571        anon_vma_unlock_read(anon_vma);
 572}
 573
 574#ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
 575/*
 576 * Flush TLB entries for recently unmapped pages from remote CPUs. It is
 577 * important if a PTE was dirty when it was unmapped that it's flushed
 578 * before any IO is initiated on the page to prevent lost writes. Similarly,
 579 * it must be flushed before freeing to prevent data leakage.
 580 */
 581void try_to_unmap_flush(void)
 582{
 583        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 584
 585        if (!tlb_ubc->flush_required)
 586                return;
 587
 588        arch_tlbbatch_flush(&tlb_ubc->arch);
 589        tlb_ubc->flush_required = false;
 590        tlb_ubc->writable = false;
 591}
 592
 593/* Flush iff there are potentially writable TLB entries that can race with IO */
 594void try_to_unmap_flush_dirty(void)
 595{
 596        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 597
 598        if (tlb_ubc->writable)
 599                try_to_unmap_flush();
 600}
 601
 602static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 603{
 604        struct tlbflush_unmap_batch *tlb_ubc = &current->tlb_ubc;
 605
 606        arch_tlbbatch_add_mm(&tlb_ubc->arch, mm);
 607        tlb_ubc->flush_required = true;
 608
 609        /*
 610         * Ensure compiler does not re-order the setting of tlb_flush_batched
 611         * before the PTE is cleared.
 612         */
 613        barrier();
 614        mm->tlb_flush_batched = true;
 615
 616        /*
 617         * If the PTE was dirty then it's best to assume it's writable. The
 618         * caller must use try_to_unmap_flush_dirty() or try_to_unmap_flush()
 619         * before the page is queued for IO.
 620         */
 621        if (writable)
 622                tlb_ubc->writable = true;
 623}
 624
 625/*
 626 * Returns true if the TLB flush should be deferred to the end of a batch of
 627 * unmap operations to reduce IPIs.
 628 */
 629static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 630{
 631        bool should_defer = false;
 632
 633        if (!(flags & TTU_BATCH_FLUSH))
 634                return false;
 635
 636        /* If remote CPUs need to be flushed then defer batch the flush */
 637        if (cpumask_any_but(mm_cpumask(mm), get_cpu()) < nr_cpu_ids)
 638                should_defer = true;
 639        put_cpu();
 640
 641        return should_defer;
 642}
 643
 644/*
 645 * Reclaim unmaps pages under the PTL but do not flush the TLB prior to
 646 * releasing the PTL if TLB flushes are batched. It's possible for a parallel
 647 * operation such as mprotect or munmap to race between reclaim unmapping
 648 * the page and flushing the page. If this race occurs, it potentially allows
 649 * access to data via a stale TLB entry. Tracking all mm's that have TLB
 650 * batching in flight would be expensive during reclaim so instead track
 651 * whether TLB batching occurred in the past and if so then do a flush here
 652 * if required. This will cost one additional flush per reclaim cycle paid
 653 * by the first operation at risk such as mprotect and mumap.
 654 *
 655 * This must be called under the PTL so that an access to tlb_flush_batched
 656 * that is potentially a "reclaim vs mprotect/munmap/etc" race will synchronise
 657 * via the PTL.
 658 */
 659void flush_tlb_batched_pending(struct mm_struct *mm)
 660{
 661        if (mm->tlb_flush_batched) {
 662                flush_tlb_mm(mm);
 663
 664                /*
 665                 * Do not allow the compiler to re-order the clearing of
 666                 * tlb_flush_batched before the tlb is flushed.
 667                 */
 668                barrier();
 669                mm->tlb_flush_batched = false;
 670        }
 671}
 672#else
 673static void set_tlb_ubc_flush_pending(struct mm_struct *mm, bool writable)
 674{
 675}
 676
 677static bool should_defer_flush(struct mm_struct *mm, enum ttu_flags flags)
 678{
 679        return false;
 680}
 681#endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
 682
 683/*
 684 * At what user virtual address is page expected in vma?
 685 * Caller should check the page is actually part of the vma.
 686 */
 687unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
 688{
 689        unsigned long address;
 690        if (PageAnon(page)) {
 691                struct anon_vma *page__anon_vma = page_anon_vma(page);
 692                /*
 693                 * Note: swapoff's unuse_vma() is more efficient with this
 694                 * check, and needs it to match anon_vma when KSM is active.
 695                 */
 696                if (!vma->anon_vma || !page__anon_vma ||
 697                    vma->anon_vma->root != page__anon_vma->root)
 698                        return -EFAULT;
 699        } else if (page->mapping) {
 700                if (!vma->vm_file || vma->vm_file->f_mapping != page->mapping)
 701                        return -EFAULT;
 702        } else
 703                return -EFAULT;
 704        address = __vma_address(page, vma);
 705        if (unlikely(address < vma->vm_start || address >= vma->vm_end))
 706                return -EFAULT;
 707        return address;
 708}
 709
 710pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address)
 711{
 712        pgd_t *pgd;
 713        p4d_t *p4d;
 714        pud_t *pud;
 715        pmd_t *pmd = NULL;
 716        pmd_t pmde;
 717
 718        pgd = pgd_offset(mm, address);
 719        if (!pgd_present(*pgd))
 720                goto out;
 721
 722        p4d = p4d_offset(pgd, address);
 723        if (!p4d_present(*p4d))
 724                goto out;
 725
 726        pud = pud_offset(p4d, address);
 727        if (!pud_present(*pud))
 728                goto out;
 729
 730        pmd = pmd_offset(pud, address);
 731        /*
 732         * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
 733         * without holding anon_vma lock for write.  So when looking for a
 734         * genuine pmde (in which to find pte), test present and !THP together.
 735         */
 736        pmde = *pmd;
 737        barrier();
 738        if (!pmd_present(pmde) || pmd_trans_huge(pmde))
 739                pmd = NULL;
 740out:
 741        return pmd;
 742}
 743
 744struct page_referenced_arg {
 745        int mapcount;
 746        int referenced;
 747        unsigned long vm_flags;
 748        struct mem_cgroup *memcg;
 749};
 750/*
 751 * arg: page_referenced_arg will be passed
 752 */
 753static bool page_referenced_one(struct page *page, struct vm_area_struct *vma,
 754                        unsigned long address, void *arg)
 755{
 756        struct page_referenced_arg *pra = arg;
 757        struct page_vma_mapped_walk pvmw = {
 758                .page = page,
 759                .vma = vma,
 760                .address = address,
 761        };
 762        int referenced = 0;
 763
 764        while (page_vma_mapped_walk(&pvmw)) {
 765                address = pvmw.address;
 766
 767                if (vma->vm_flags & VM_LOCKED) {
 768                        page_vma_mapped_walk_done(&pvmw);
 769                        pra->vm_flags |= VM_LOCKED;
 770                        return false; /* To break the loop */
 771                }
 772
 773                if (pvmw.pte) {
 774                        if (ptep_clear_flush_young_notify(vma, address,
 775                                                pvmw.pte)) {
 776                                /*
 777                                 * Don't treat a reference through
 778                                 * a sequentially read mapping as such.
 779                                 * If the page has been used in another mapping,
 780                                 * we will catch it; if this other mapping is
 781                                 * already gone, the unmap path will have set
 782                                 * PG_referenced or activated the page.
 783                                 */
 784                                if (likely(!(vma->vm_flags & VM_SEQ_READ)))
 785                                        referenced++;
 786                        }
 787                } else if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 788                        if (pmdp_clear_flush_young_notify(vma, address,
 789                                                pvmw.pmd))
 790                                referenced++;
 791                } else {
 792                        /* unexpected pmd-mapped page? */
 793                        WARN_ON_ONCE(1);
 794                }
 795
 796                pra->mapcount--;
 797        }
 798
 799        if (referenced)
 800                clear_page_idle(page);
 801        if (test_and_clear_page_young(page))
 802                referenced++;
 803
 804        if (referenced) {
 805                pra->referenced++;
 806                pra->vm_flags |= vma->vm_flags;
 807        }
 808
 809        if (!pra->mapcount)
 810                return false; /* To break the loop */
 811
 812        return true;
 813}
 814
 815static bool invalid_page_referenced_vma(struct vm_area_struct *vma, void *arg)
 816{
 817        struct page_referenced_arg *pra = arg;
 818        struct mem_cgroup *memcg = pra->memcg;
 819
 820        if (!mm_match_cgroup(vma->vm_mm, memcg))
 821                return true;
 822
 823        return false;
 824}
 825
 826/**
 827 * page_referenced - test if the page was referenced
 828 * @page: the page to test
 829 * @is_locked: caller holds lock on the page
 830 * @memcg: target memory cgroup
 831 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
 832 *
 833 * Quick test_and_clear_referenced for all mappings to a page,
 834 * returns the number of ptes which referenced the page.
 835 */
 836int page_referenced(struct page *page,
 837                    int is_locked,
 838                    struct mem_cgroup *memcg,
 839                    unsigned long *vm_flags)
 840{
 841        int we_locked = 0;
 842        struct page_referenced_arg pra = {
 843                .mapcount = total_mapcount(page),
 844                .memcg = memcg,
 845        };
 846        struct rmap_walk_control rwc = {
 847                .rmap_one = page_referenced_one,
 848                .arg = (void *)&pra,
 849                .anon_lock = page_lock_anon_vma_read,
 850        };
 851
 852        *vm_flags = 0;
 853        if (!page_mapped(page))
 854                return 0;
 855
 856        if (!page_rmapping(page))
 857                return 0;
 858
 859        if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
 860                we_locked = trylock_page(page);
 861                if (!we_locked)
 862                        return 1;
 863        }
 864
 865        /*
 866         * If we are reclaiming on behalf of a cgroup, skip
 867         * counting on behalf of references from different
 868         * cgroups
 869         */
 870        if (memcg) {
 871                rwc.invalid_vma = invalid_page_referenced_vma;
 872        }
 873
 874        rmap_walk(page, &rwc);
 875        *vm_flags = pra.vm_flags;
 876
 877        if (we_locked)
 878                unlock_page(page);
 879
 880        return pra.referenced;
 881}
 882
 883static bool page_mkclean_one(struct page *page, struct vm_area_struct *vma,
 884                            unsigned long address, void *arg)
 885{
 886        struct page_vma_mapped_walk pvmw = {
 887                .page = page,
 888                .vma = vma,
 889                .address = address,
 890                .flags = PVMW_SYNC,
 891        };
 892        unsigned long start = address, end;
 893        int *cleaned = arg;
 894
 895        /*
 896         * We have to assume the worse case ie pmd for invalidation. Note that
 897         * the page can not be free from this function.
 898         */
 899        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
 900        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
 901
 902        while (page_vma_mapped_walk(&pvmw)) {
 903                unsigned long cstart;
 904                int ret = 0;
 905
 906                cstart = address = pvmw.address;
 907                if (pvmw.pte) {
 908                        pte_t entry;
 909                        pte_t *pte = pvmw.pte;
 910
 911                        if (!pte_dirty(*pte) && !pte_write(*pte))
 912                                continue;
 913
 914                        flush_cache_page(vma, address, pte_pfn(*pte));
 915                        entry = ptep_clear_flush(vma, address, pte);
 916                        entry = pte_wrprotect(entry);
 917                        entry = pte_mkclean(entry);
 918                        set_pte_at(vma->vm_mm, address, pte, entry);
 919                        ret = 1;
 920                } else {
 921#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 922                        pmd_t *pmd = pvmw.pmd;
 923                        pmd_t entry;
 924
 925                        if (!pmd_dirty(*pmd) && !pmd_write(*pmd))
 926                                continue;
 927
 928                        flush_cache_page(vma, address, page_to_pfn(page));
 929                        entry = pmdp_huge_clear_flush(vma, address, pmd);
 930                        entry = pmd_wrprotect(entry);
 931                        entry = pmd_mkclean(entry);
 932                        set_pmd_at(vma->vm_mm, address, pmd, entry);
 933                        cstart &= PMD_MASK;
 934                        ret = 1;
 935#else
 936                        /* unexpected pmd-mapped page? */
 937                        WARN_ON_ONCE(1);
 938#endif
 939                }
 940
 941                /*
 942                 * No need to call mmu_notifier_invalidate_range() as we are
 943                 * downgrading page table protection not changing it to point
 944                 * to a new page.
 945                 *
 946                 * See Documentation/vm/mmu_notifier.rst
 947                 */
 948                if (ret)
 949                        (*cleaned)++;
 950        }
 951
 952        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
 953
 954        return true;
 955}
 956
 957static bool invalid_mkclean_vma(struct vm_area_struct *vma, void *arg)
 958{
 959        if (vma->vm_flags & VM_SHARED)
 960                return false;
 961
 962        return true;
 963}
 964
 965int page_mkclean(struct page *page)
 966{
 967        int cleaned = 0;
 968        struct address_space *mapping;
 969        struct rmap_walk_control rwc = {
 970                .arg = (void *)&cleaned,
 971                .rmap_one = page_mkclean_one,
 972                .invalid_vma = invalid_mkclean_vma,
 973        };
 974
 975        BUG_ON(!PageLocked(page));
 976
 977        if (!page_mapped(page))
 978                return 0;
 979
 980        mapping = page_mapping(page);
 981        if (!mapping)
 982                return 0;
 983
 984        rmap_walk(page, &rwc);
 985
 986        return cleaned;
 987}
 988EXPORT_SYMBOL_GPL(page_mkclean);
 989
 990/**
 991 * page_move_anon_rmap - move a page to our anon_vma
 992 * @page:       the page to move to our anon_vma
 993 * @vma:        the vma the page belongs to
 994 *
 995 * When a page belongs exclusively to one process after a COW event,
 996 * that page can be moved into the anon_vma that belongs to just that
 997 * process, so the rmap code will not search the parent or sibling
 998 * processes.
 999 */
1000void page_move_anon_rmap(struct page *page, struct vm_area_struct *vma)
1001{
1002        struct anon_vma *anon_vma = vma->anon_vma;
1003
1004        page = compound_head(page);
1005
1006        VM_BUG_ON_PAGE(!PageLocked(page), page);
1007        VM_BUG_ON_VMA(!anon_vma, vma);
1008
1009        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1010        /*
1011         * Ensure that anon_vma and the PAGE_MAPPING_ANON bit are written
1012         * simultaneously, so a concurrent reader (eg page_referenced()'s
1013         * PageAnon()) will not see one without the other.
1014         */
1015        WRITE_ONCE(page->mapping, (struct address_space *) anon_vma);
1016}
1017
1018/**
1019 * __page_set_anon_rmap - set up new anonymous rmap
1020 * @page:       Page to add to rmap     
1021 * @vma:        VM area to add page to.
1022 * @address:    User virtual address of the mapping     
1023 * @exclusive:  the page is exclusively owned by the current process
1024 */
1025static void __page_set_anon_rmap(struct page *page,
1026        struct vm_area_struct *vma, unsigned long address, int exclusive)
1027{
1028        struct anon_vma *anon_vma = vma->anon_vma;
1029
1030        BUG_ON(!anon_vma);
1031
1032        if (PageAnon(page))
1033                return;
1034
1035        /*
1036         * If the page isn't exclusively mapped into this vma,
1037         * we must use the _oldest_ possible anon_vma for the
1038         * page mapping!
1039         */
1040        if (!exclusive)
1041                anon_vma = anon_vma->root;
1042
1043        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1044        page->mapping = (struct address_space *) anon_vma;
1045        page->index = linear_page_index(vma, address);
1046}
1047
1048/**
1049 * __page_check_anon_rmap - sanity check anonymous rmap addition
1050 * @page:       the page to add the mapping to
1051 * @vma:        the vm area in which the mapping is added
1052 * @address:    the user virtual address mapped
1053 */
1054static void __page_check_anon_rmap(struct page *page,
1055        struct vm_area_struct *vma, unsigned long address)
1056{
1057#ifdef CONFIG_DEBUG_VM
1058        /*
1059         * The page's anon-rmap details (mapping and index) are guaranteed to
1060         * be set up correctly at this point.
1061         *
1062         * We have exclusion against page_add_anon_rmap because the caller
1063         * always holds the page locked, except if called from page_dup_rmap,
1064         * in which case the page is already known to be setup.
1065         *
1066         * We have exclusion against page_add_new_anon_rmap because those pages
1067         * are initially only visible via the pagetables, and the pte is locked
1068         * over the call to page_add_new_anon_rmap.
1069         */
1070        BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1071        BUG_ON(page_to_pgoff(page) != linear_page_index(vma, address));
1072#endif
1073}
1074
1075/**
1076 * page_add_anon_rmap - add pte mapping to an anonymous page
1077 * @page:       the page to add the mapping to
1078 * @vma:        the vm area in which the mapping is added
1079 * @address:    the user virtual address mapped
1080 * @compound:   charge the page as compound or small page
1081 *
1082 * The caller needs to hold the pte lock, and the page must be locked in
1083 * the anon_vma case: to serialize mapping,index checking after setting,
1084 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1085 * (but PageKsm is never downgraded to PageAnon).
1086 */
1087void page_add_anon_rmap(struct page *page,
1088        struct vm_area_struct *vma, unsigned long address, bool compound)
1089{
1090        do_page_add_anon_rmap(page, vma, address, compound ? RMAP_COMPOUND : 0);
1091}
1092
1093/*
1094 * Special version of the above for do_swap_page, which often runs
1095 * into pages that are exclusively owned by the current process.
1096 * Everybody else should continue to use page_add_anon_rmap above.
1097 */
1098void do_page_add_anon_rmap(struct page *page,
1099        struct vm_area_struct *vma, unsigned long address, int flags)
1100{
1101        bool compound = flags & RMAP_COMPOUND;
1102        bool first;
1103
1104        if (compound) {
1105                atomic_t *mapcount;
1106                VM_BUG_ON_PAGE(!PageLocked(page), page);
1107                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1108                mapcount = compound_mapcount_ptr(page);
1109                first = atomic_inc_and_test(mapcount);
1110        } else {
1111                first = atomic_inc_and_test(&page->_mapcount);
1112        }
1113
1114        if (first) {
1115                int nr = compound ? hpage_nr_pages(page) : 1;
1116                /*
1117                 * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1118                 * these counters are not modified in interrupt context, and
1119                 * pte lock(a spinlock) is held, which implies preemption
1120                 * disabled.
1121                 */
1122                if (compound)
1123                        __inc_node_page_state(page, NR_ANON_THPS);
1124                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1125        }
1126        if (unlikely(PageKsm(page)))
1127                return;
1128
1129        VM_BUG_ON_PAGE(!PageLocked(page), page);
1130
1131        /* address might be in next vma when migration races vma_adjust */
1132        if (first)
1133                __page_set_anon_rmap(page, vma, address,
1134                                flags & RMAP_EXCLUSIVE);
1135        else
1136                __page_check_anon_rmap(page, vma, address);
1137}
1138
1139/**
1140 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1141 * @page:       the page to add the mapping to
1142 * @vma:        the vm area in which the mapping is added
1143 * @address:    the user virtual address mapped
1144 * @compound:   charge the page as compound or small page
1145 *
1146 * Same as page_add_anon_rmap but must only be called on *new* pages.
1147 * This means the inc-and-test can be bypassed.
1148 * Page does not have to be locked.
1149 */
1150void page_add_new_anon_rmap(struct page *page,
1151        struct vm_area_struct *vma, unsigned long address, bool compound)
1152{
1153        int nr = compound ? hpage_nr_pages(page) : 1;
1154
1155        VM_BUG_ON_VMA(address < vma->vm_start || address >= vma->vm_end, vma);
1156        __SetPageSwapBacked(page);
1157        if (compound) {
1158                VM_BUG_ON_PAGE(!PageTransHuge(page), page);
1159                /* increment count (starts at -1) */
1160                atomic_set(compound_mapcount_ptr(page), 0);
1161                __inc_node_page_state(page, NR_ANON_THPS);
1162        } else {
1163                /* Anon THP always mapped first with PMD */
1164                VM_BUG_ON_PAGE(PageTransCompound(page), page);
1165                /* increment count (starts at -1) */
1166                atomic_set(&page->_mapcount, 0);
1167        }
1168        __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, nr);
1169        __page_set_anon_rmap(page, vma, address, 1);
1170}
1171
1172/**
1173 * page_add_file_rmap - add pte mapping to a file page
1174 * @page: the page to add the mapping to
1175 * @compound: charge the page as compound or small page
1176 *
1177 * The caller needs to hold the pte lock.
1178 */
1179void page_add_file_rmap(struct page *page, bool compound)
1180{
1181        int i, nr = 1;
1182
1183        VM_BUG_ON_PAGE(compound && !PageTransHuge(page), page);
1184        lock_page_memcg(page);
1185        if (compound && PageTransHuge(page)) {
1186                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1187                        if (atomic_inc_and_test(&page[i]._mapcount))
1188                                nr++;
1189                }
1190                if (!atomic_inc_and_test(compound_mapcount_ptr(page)))
1191                        goto out;
1192                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1193                __inc_node_page_state(page, NR_SHMEM_PMDMAPPED);
1194        } else {
1195                if (PageTransCompound(page) && page_mapping(page)) {
1196                        VM_WARN_ON_ONCE(!PageLocked(page));
1197
1198                        SetPageDoubleMap(compound_head(page));
1199                        if (PageMlocked(page))
1200                                clear_page_mlock(compound_head(page));
1201                }
1202                if (!atomic_inc_and_test(&page->_mapcount))
1203                        goto out;
1204        }
1205        __mod_lruvec_page_state(page, NR_FILE_MAPPED, nr);
1206out:
1207        unlock_page_memcg(page);
1208}
1209
1210static void page_remove_file_rmap(struct page *page, bool compound)
1211{
1212        int i, nr = 1;
1213
1214        VM_BUG_ON_PAGE(compound && !PageHead(page), page);
1215        lock_page_memcg(page);
1216
1217        /* Hugepages are not counted in NR_FILE_MAPPED for now. */
1218        if (unlikely(PageHuge(page))) {
1219                /* hugetlb pages are always mapped with pmds */
1220                atomic_dec(compound_mapcount_ptr(page));
1221                goto out;
1222        }
1223
1224        /* page still mapped by someone else? */
1225        if (compound && PageTransHuge(page)) {
1226                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1227                        if (atomic_add_negative(-1, &page[i]._mapcount))
1228                                nr++;
1229                }
1230                if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1231                        goto out;
1232                VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1233                __dec_node_page_state(page, NR_SHMEM_PMDMAPPED);
1234        } else {
1235                if (!atomic_add_negative(-1, &page->_mapcount))
1236                        goto out;
1237        }
1238
1239        /*
1240         * We use the irq-unsafe __{inc|mod}_lruvec_page_state because
1241         * these counters are not modified in interrupt context, and
1242         * pte lock(a spinlock) is held, which implies preemption disabled.
1243         */
1244        __mod_lruvec_page_state(page, NR_FILE_MAPPED, -nr);
1245
1246        if (unlikely(PageMlocked(page)))
1247                clear_page_mlock(page);
1248out:
1249        unlock_page_memcg(page);
1250}
1251
1252static void page_remove_anon_compound_rmap(struct page *page)
1253{
1254        int i, nr;
1255
1256        if (!atomic_add_negative(-1, compound_mapcount_ptr(page)))
1257                return;
1258
1259        /* Hugepages are not counted in NR_ANON_PAGES for now. */
1260        if (unlikely(PageHuge(page)))
1261                return;
1262
1263        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE))
1264                return;
1265
1266        __dec_node_page_state(page, NR_ANON_THPS);
1267
1268        if (TestClearPageDoubleMap(page)) {
1269                /*
1270                 * Subpages can be mapped with PTEs too. Check how many of
1271                 * themi are still mapped.
1272                 */
1273                for (i = 0, nr = 0; i < HPAGE_PMD_NR; i++) {
1274                        if (atomic_add_negative(-1, &page[i]._mapcount))
1275                                nr++;
1276                }
1277        } else {
1278                nr = HPAGE_PMD_NR;
1279        }
1280
1281        if (unlikely(PageMlocked(page)))
1282                clear_page_mlock(page);
1283
1284        if (nr) {
1285                __mod_node_page_state(page_pgdat(page), NR_ANON_MAPPED, -nr);
1286                deferred_split_huge_page(page);
1287        }
1288}
1289
1290/**
1291 * page_remove_rmap - take down pte mapping from a page
1292 * @page:       page to remove mapping from
1293 * @compound:   uncharge the page as compound or small page
1294 *
1295 * The caller needs to hold the pte lock.
1296 */
1297void page_remove_rmap(struct page *page, bool compound)
1298{
1299        if (!PageAnon(page))
1300                return page_remove_file_rmap(page, compound);
1301
1302        if (compound)
1303                return page_remove_anon_compound_rmap(page);
1304
1305        /* page still mapped by someone else? */
1306        if (!atomic_add_negative(-1, &page->_mapcount))
1307                return;
1308
1309        /*
1310         * We use the irq-unsafe __{inc|mod}_zone_page_stat because
1311         * these counters are not modified in interrupt context, and
1312         * pte lock(a spinlock) is held, which implies preemption disabled.
1313         */
1314        __dec_node_page_state(page, NR_ANON_MAPPED);
1315
1316        if (unlikely(PageMlocked(page)))
1317                clear_page_mlock(page);
1318
1319        if (PageTransCompound(page))
1320                deferred_split_huge_page(compound_head(page));
1321
1322        /*
1323         * It would be tidy to reset the PageAnon mapping here,
1324         * but that might overwrite a racing page_add_anon_rmap
1325         * which increments mapcount after us but sets mapping
1326         * before us: so leave the reset to free_unref_page,
1327         * and remember that it's only reliable while mapped.
1328         * Leaving it set also helps swapoff to reinstate ptes
1329         * faster for those pages still in swapcache.
1330         */
1331}
1332
1333/*
1334 * @arg: enum ttu_flags will be passed to this argument
1335 */
1336static bool try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1337                     unsigned long address, void *arg)
1338{
1339        struct mm_struct *mm = vma->vm_mm;
1340        struct page_vma_mapped_walk pvmw = {
1341                .page = page,
1342                .vma = vma,
1343                .address = address,
1344        };
1345        pte_t pteval;
1346        struct page *subpage;
1347        bool ret = true;
1348        unsigned long start = address, end;
1349        enum ttu_flags flags = (enum ttu_flags)arg;
1350
1351        /* munlock has nothing to gain from examining un-locked vmas */
1352        if ((flags & TTU_MUNLOCK) && !(vma->vm_flags & VM_LOCKED))
1353                return true;
1354
1355        if (IS_ENABLED(CONFIG_MIGRATION) && (flags & TTU_MIGRATION) &&
1356            is_zone_device_page(page) && !is_device_private_page(page))
1357                return true;
1358
1359        if (flags & TTU_SPLIT_HUGE_PMD) {
1360                split_huge_pmd_address(vma, address,
1361                                flags & TTU_SPLIT_FREEZE, page);
1362        }
1363
1364        /*
1365         * For THP, we have to assume the worse case ie pmd for invalidation.
1366         * For hugetlb, it could be much worse if we need to do pud
1367         * invalidation in the case of pmd sharing.
1368         *
1369         * Note that the page can not be free in this function as call of
1370         * try_to_unmap() must hold a reference on the page.
1371         */
1372        end = min(vma->vm_end, start + (PAGE_SIZE << compound_order(page)));
1373        if (PageHuge(page)) {
1374                /*
1375                 * If sharing is possible, start and end will be adjusted
1376                 * accordingly.
1377                 */
1378                adjust_range_if_pmd_sharing_possible(vma, &start, &end);
1379        }
1380        mmu_notifier_invalidate_range_start(vma->vm_mm, start, end);
1381
1382        while (page_vma_mapped_walk(&pvmw)) {
1383#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1384                /* PMD-mapped THP migration entry */
1385                if (!pvmw.pte && (flags & TTU_MIGRATION)) {
1386                        VM_BUG_ON_PAGE(PageHuge(page) || !PageTransCompound(page), page);
1387
1388                        set_pmd_migration_entry(&pvmw, page);
1389                        continue;
1390                }
1391#endif
1392
1393                /*
1394                 * If the page is mlock()d, we cannot swap it out.
1395                 * If it's recently referenced (perhaps page_referenced
1396                 * skipped over this mm) then we should reactivate it.
1397                 */
1398                if (!(flags & TTU_IGNORE_MLOCK)) {
1399                        if (vma->vm_flags & VM_LOCKED) {
1400                                /* PTE-mapped THP are never mlocked */
1401                                if (!PageTransCompound(page)) {
1402                                        /*
1403                                         * Holding pte lock, we do *not* need
1404                                         * mmap_sem here
1405                                         */
1406                                        mlock_vma_page(page);
1407                                }
1408                                ret = false;
1409                                page_vma_mapped_walk_done(&pvmw);
1410                                break;
1411                        }
1412                        if (flags & TTU_MUNLOCK)
1413                                continue;
1414                }
1415
1416                /* Unexpected PMD-mapped THP? */
1417                VM_BUG_ON_PAGE(!pvmw.pte, page);
1418
1419                subpage = page - page_to_pfn(page) + pte_pfn(*pvmw.pte);
1420                address = pvmw.address;
1421
1422                if (PageHuge(page)) {
1423                        if (huge_pmd_unshare(mm, &address, pvmw.pte)) {
1424                                /*
1425                                 * huge_pmd_unshare unmapped an entire PMD
1426                                 * page.  There is no way of knowing exactly
1427                                 * which PMDs may be cached for this mm, so
1428                                 * we must flush them all.  start/end were
1429                                 * already adjusted above to cover this range.
1430                                 */
1431                                flush_cache_range(vma, start, end);
1432                                flush_tlb_range(vma, start, end);
1433                                mmu_notifier_invalidate_range(mm, start, end);
1434
1435                                /*
1436                                 * The ref count of the PMD page was dropped
1437                                 * which is part of the way map counting
1438                                 * is done for shared PMDs.  Return 'true'
1439                                 * here.  When there is no other sharing,
1440                                 * huge_pmd_unshare returns false and we will
1441                                 * unmap the actual page and drop map count
1442                                 * to zero.
1443                                 */
1444                                page_vma_mapped_walk_done(&pvmw);
1445                                break;
1446                        }
1447                }
1448
1449                if (IS_ENABLED(CONFIG_MIGRATION) &&
1450                    (flags & TTU_MIGRATION) &&
1451                    is_zone_device_page(page)) {
1452                        swp_entry_t entry;
1453                        pte_t swp_pte;
1454
1455                        pteval = ptep_get_and_clear(mm, pvmw.address, pvmw.pte);
1456
1457                        /*
1458                         * Store the pfn of the page in a special migration
1459                         * pte. do_swap_page() will wait until the migration
1460                         * pte is removed and then restart fault handling.
1461                         */
1462                        entry = make_migration_entry(page, 0);
1463                        swp_pte = swp_entry_to_pte(entry);
1464                        if (pte_soft_dirty(pteval))
1465                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1466                        set_pte_at(mm, pvmw.address, pvmw.pte, swp_pte);
1467                        /*
1468                         * No need to invalidate here it will synchronize on
1469                         * against the special swap migration pte.
1470                         */
1471                        goto discard;
1472                }
1473
1474                if (!(flags & TTU_IGNORE_ACCESS)) {
1475                        if (ptep_clear_flush_young_notify(vma, address,
1476                                                pvmw.pte)) {
1477                                ret = false;
1478                                page_vma_mapped_walk_done(&pvmw);
1479                                break;
1480                        }
1481                }
1482
1483                /* Nuke the page table entry. */
1484                flush_cache_page(vma, address, pte_pfn(*pvmw.pte));
1485                if (should_defer_flush(mm, flags)) {
1486                        /*
1487                         * We clear the PTE but do not flush so potentially
1488                         * a remote CPU could still be writing to the page.
1489                         * If the entry was previously clean then the
1490                         * architecture must guarantee that a clear->dirty
1491                         * transition on a cached TLB entry is written through
1492                         * and traps if the PTE is unmapped.
1493                         */
1494                        pteval = ptep_get_and_clear(mm, address, pvmw.pte);
1495
1496                        set_tlb_ubc_flush_pending(mm, pte_dirty(pteval));
1497                } else {
1498                        pteval = ptep_clear_flush(vma, address, pvmw.pte);
1499                }
1500
1501                /* Move the dirty bit to the page. Now the pte is gone. */
1502                if (pte_dirty(pteval))
1503                        set_page_dirty(page);
1504
1505                /* Update high watermark before we lower rss */
1506                update_hiwater_rss(mm);
1507
1508                if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1509                        pteval = swp_entry_to_pte(make_hwpoison_entry(subpage));
1510                        if (PageHuge(page)) {
1511                                int nr = 1 << compound_order(page);
1512                                hugetlb_count_sub(nr, mm);
1513                                set_huge_swap_pte_at(mm, address,
1514                                                     pvmw.pte, pteval,
1515                                                     vma_mmu_pagesize(vma));
1516                        } else {
1517                                dec_mm_counter(mm, mm_counter(page));
1518                                set_pte_at(mm, address, pvmw.pte, pteval);
1519                        }
1520
1521                } else if (pte_unused(pteval) && !userfaultfd_armed(vma)) {
1522                        /*
1523                         * The guest indicated that the page content is of no
1524                         * interest anymore. Simply discard the pte, vmscan
1525                         * will take care of the rest.
1526                         * A future reference will then fault in a new zero
1527                         * page. When userfaultfd is active, we must not drop
1528                         * this page though, as its main user (postcopy
1529                         * migration) will not expect userfaults on already
1530                         * copied pages.
1531                         */
1532                        dec_mm_counter(mm, mm_counter(page));
1533                        /* We have to invalidate as we cleared the pte */
1534                        mmu_notifier_invalidate_range(mm, address,
1535                                                      address + PAGE_SIZE);
1536                } else if (IS_ENABLED(CONFIG_MIGRATION) &&
1537                                (flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))) {
1538                        swp_entry_t entry;
1539                        pte_t swp_pte;
1540
1541                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1542                                set_pte_at(mm, address, pvmw.pte, pteval);
1543                                ret = false;
1544                                page_vma_mapped_walk_done(&pvmw);
1545                                break;
1546                        }
1547
1548                        /*
1549                         * Store the pfn of the page in a special migration
1550                         * pte. do_swap_page() will wait until the migration
1551                         * pte is removed and then restart fault handling.
1552                         */
1553                        entry = make_migration_entry(subpage,
1554                                        pte_write(pteval));
1555                        swp_pte = swp_entry_to_pte(entry);
1556                        if (pte_soft_dirty(pteval))
1557                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1558                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1559                        /*
1560                         * No need to invalidate here it will synchronize on
1561                         * against the special swap migration pte.
1562                         */
1563                } else if (PageAnon(page)) {
1564                        swp_entry_t entry = { .val = page_private(subpage) };
1565                        pte_t swp_pte;
1566                        /*
1567                         * Store the swap location in the pte.
1568                         * See handle_pte_fault() ...
1569                         */
1570                        if (unlikely(PageSwapBacked(page) != PageSwapCache(page))) {
1571                                WARN_ON_ONCE(1);
1572                                ret = false;
1573                                /* We have to invalidate as we cleared the pte */
1574                                mmu_notifier_invalidate_range(mm, address,
1575                                                        address + PAGE_SIZE);
1576                                page_vma_mapped_walk_done(&pvmw);
1577                                break;
1578                        }
1579
1580                        /* MADV_FREE page check */
1581                        if (!PageSwapBacked(page)) {
1582                                if (!PageDirty(page)) {
1583                                        /* Invalidate as we cleared the pte */
1584                                        mmu_notifier_invalidate_range(mm,
1585                                                address, address + PAGE_SIZE);
1586                                        dec_mm_counter(mm, MM_ANONPAGES);
1587                                        goto discard;
1588                                }
1589
1590                                /*
1591                                 * If the page was redirtied, it cannot be
1592                                 * discarded. Remap the page to page table.
1593                                 */
1594                                set_pte_at(mm, address, pvmw.pte, pteval);
1595                                SetPageSwapBacked(page);
1596                                ret = false;
1597                                page_vma_mapped_walk_done(&pvmw);
1598                                break;
1599                        }
1600
1601                        if (swap_duplicate(entry) < 0) {
1602                                set_pte_at(mm, address, pvmw.pte, pteval);
1603                                ret = false;
1604                                page_vma_mapped_walk_done(&pvmw);
1605                                break;
1606                        }
1607                        if (arch_unmap_one(mm, vma, address, pteval) < 0) {
1608                                set_pte_at(mm, address, pvmw.pte, pteval);
1609                                ret = false;
1610                                page_vma_mapped_walk_done(&pvmw);
1611                                break;
1612                        }
1613                        if (list_empty(&mm->mmlist)) {
1614                                spin_lock(&mmlist_lock);
1615                                if (list_empty(&mm->mmlist))
1616                                        list_add(&mm->mmlist, &init_mm.mmlist);
1617                                spin_unlock(&mmlist_lock);
1618                        }
1619                        dec_mm_counter(mm, MM_ANONPAGES);
1620                        inc_mm_counter(mm, MM_SWAPENTS);
1621                        swp_pte = swp_entry_to_pte(entry);
1622                        if (pte_soft_dirty(pteval))
1623                                swp_pte = pte_swp_mksoft_dirty(swp_pte);
1624                        set_pte_at(mm, address, pvmw.pte, swp_pte);
1625                        /* Invalidate as we cleared the pte */
1626                        mmu_notifier_invalidate_range(mm, address,
1627                                                      address + PAGE_SIZE);
1628                } else {
1629                        /*
1630                         * We should not need to notify here as we reach this
1631                         * case only from freeze_page() itself only call from
1632                         * split_huge_page_to_list() so everything below must
1633                         * be true:
1634                         *   - page is not anonymous
1635                         *   - page is locked
1636                         *
1637                         * So as it is a locked file back page thus it can not
1638                         * be remove from the page cache and replace by a new
1639                         * page before mmu_notifier_invalidate_range_end so no
1640                         * concurrent thread might update its page table to
1641                         * point at new page while a device still is using this
1642                         * page.
1643                         *
1644                         * See Documentation/vm/mmu_notifier.rst
1645                         */
1646                        dec_mm_counter(mm, mm_counter_file(page));
1647                }
1648discard:
1649                /*
1650                 * No need to call mmu_notifier_invalidate_range() it has be
1651                 * done above for all cases requiring it to happen under page
1652                 * table lock before mmu_notifier_invalidate_range_end()
1653                 *
1654                 * See Documentation/vm/mmu_notifier.rst
1655                 */
1656                page_remove_rmap(subpage, PageHuge(page));
1657                put_page(page);
1658        }
1659
1660        mmu_notifier_invalidate_range_end(vma->vm_mm, start, end);
1661
1662        return ret;
1663}
1664
1665bool is_vma_temporary_stack(struct vm_area_struct *vma)
1666{
1667        int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1668
1669        if (!maybe_stack)
1670                return false;
1671
1672        if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1673                                                VM_STACK_INCOMPLETE_SETUP)
1674                return true;
1675
1676        return false;
1677}
1678
1679static bool invalid_migration_vma(struct vm_area_struct *vma, void *arg)
1680{
1681        return is_vma_temporary_stack(vma);
1682}
1683
1684static int page_mapcount_is_zero(struct page *page)
1685{
1686        return !total_mapcount(page);
1687}
1688
1689/**
1690 * try_to_unmap - try to remove all page table mappings to a page
1691 * @page: the page to get unmapped
1692 * @flags: action and flags
1693 *
1694 * Tries to remove all the page table entries which are mapping this
1695 * page, used in the pageout path.  Caller must hold the page lock.
1696 *
1697 * If unmap is successful, return true. Otherwise, false.
1698 */
1699bool try_to_unmap(struct page *page, enum ttu_flags flags)
1700{
1701        struct rmap_walk_control rwc = {
1702                .rmap_one = try_to_unmap_one,
1703                .arg = (void *)flags,
1704                .done = page_mapcount_is_zero,
1705                .anon_lock = page_lock_anon_vma_read,
1706        };
1707
1708        /*
1709         * During exec, a temporary VMA is setup and later moved.
1710         * The VMA is moved under the anon_vma lock but not the
1711         * page tables leading to a race where migration cannot
1712         * find the migration ptes. Rather than increasing the
1713         * locking requirements of exec(), migration skips
1714         * temporary VMAs until after exec() completes.
1715         */
1716        if ((flags & (TTU_MIGRATION|TTU_SPLIT_FREEZE))
1717            && !PageKsm(page) && PageAnon(page))
1718                rwc.invalid_vma = invalid_migration_vma;
1719
1720        if (flags & TTU_RMAP_LOCKED)
1721                rmap_walk_locked(page, &rwc);
1722        else
1723                rmap_walk(page, &rwc);
1724
1725        return !page_mapcount(page) ? true : false;
1726}
1727
1728static int page_not_mapped(struct page *page)
1729{
1730        return !page_mapped(page);
1731};
1732
1733/**
1734 * try_to_munlock - try to munlock a page
1735 * @page: the page to be munlocked
1736 *
1737 * Called from munlock code.  Checks all of the VMAs mapping the page
1738 * to make sure nobody else has this page mlocked. The page will be
1739 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1740 */
1741
1742void try_to_munlock(struct page *page)
1743{
1744        struct rmap_walk_control rwc = {
1745                .rmap_one = try_to_unmap_one,
1746                .arg = (void *)TTU_MUNLOCK,
1747                .done = page_not_mapped,
1748                .anon_lock = page_lock_anon_vma_read,
1749
1750        };
1751
1752        VM_BUG_ON_PAGE(!PageLocked(page) || PageLRU(page), page);
1753        VM_BUG_ON_PAGE(PageCompound(page) && PageDoubleMap(page), page);
1754
1755        rmap_walk(page, &rwc);
1756}
1757
1758void __put_anon_vma(struct anon_vma *anon_vma)
1759{
1760        struct anon_vma *root = anon_vma->root;
1761
1762        anon_vma_free(anon_vma);
1763        if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1764                anon_vma_free(root);
1765}
1766
1767static struct anon_vma *rmap_walk_anon_lock(struct page *page,
1768                                        struct rmap_walk_control *rwc)
1769{
1770        struct anon_vma *anon_vma;
1771
1772        if (rwc->anon_lock)
1773                return rwc->anon_lock(page);
1774
1775        /*
1776         * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1777         * because that depends on page_mapped(); but not all its usages
1778         * are holding mmap_sem. Users without mmap_sem are required to
1779         * take a reference count to prevent the anon_vma disappearing
1780         */
1781        anon_vma = page_anon_vma(page);
1782        if (!anon_vma)
1783                return NULL;
1784
1785        anon_vma_lock_read(anon_vma);
1786        return anon_vma;
1787}
1788
1789/*
1790 * rmap_walk_anon - do something to anonymous page using the object-based
1791 * rmap method
1792 * @page: the page to be handled
1793 * @rwc: control variable according to each walk type
1794 *
1795 * Find all the mappings of a page using the mapping pointer and the vma chains
1796 * contained in the anon_vma struct it points to.
1797 *
1798 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1799 * where the page was found will be held for write.  So, we won't recheck
1800 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1801 * LOCKED.
1802 */
1803static void rmap_walk_anon(struct page *page, struct rmap_walk_control *rwc,
1804                bool locked)
1805{
1806        struct anon_vma *anon_vma;
1807        pgoff_t pgoff_start, pgoff_end;
1808        struct anon_vma_chain *avc;
1809
1810        if (locked) {
1811                anon_vma = page_anon_vma(page);
1812                /* anon_vma disappear under us? */
1813                VM_BUG_ON_PAGE(!anon_vma, page);
1814        } else {
1815                anon_vma = rmap_walk_anon_lock(page, rwc);
1816        }
1817        if (!anon_vma)
1818                return;
1819
1820        pgoff_start = page_to_pgoff(page);
1821        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1822        anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
1823                        pgoff_start, pgoff_end) {
1824                struct vm_area_struct *vma = avc->vma;
1825                unsigned long address = vma_address(page, vma);
1826
1827                cond_resched();
1828
1829                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1830                        continue;
1831
1832                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1833                        break;
1834                if (rwc->done && rwc->done(page))
1835                        break;
1836        }
1837
1838        if (!locked)
1839                anon_vma_unlock_read(anon_vma);
1840}
1841
1842/*
1843 * rmap_walk_file - do something to file page using the object-based rmap method
1844 * @page: the page to be handled
1845 * @rwc: control variable according to each walk type
1846 *
1847 * Find all the mappings of a page using the mapping pointer and the vma chains
1848 * contained in the address_space struct it points to.
1849 *
1850 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1851 * where the page was found will be held for write.  So, we won't recheck
1852 * vm_flags for that VMA.  That should be OK, because that vma shouldn't be
1853 * LOCKED.
1854 */
1855static void rmap_walk_file(struct page *page, struct rmap_walk_control *rwc,
1856                bool locked)
1857{
1858        struct address_space *mapping = page_mapping(page);
1859        pgoff_t pgoff_start, pgoff_end;
1860        struct vm_area_struct *vma;
1861
1862        /*
1863         * The page lock not only makes sure that page->mapping cannot
1864         * suddenly be NULLified by truncation, it makes sure that the
1865         * structure at mapping cannot be freed and reused yet,
1866         * so we can safely take mapping->i_mmap_rwsem.
1867         */
1868        VM_BUG_ON_PAGE(!PageLocked(page), page);
1869
1870        if (!mapping)
1871                return;
1872
1873        pgoff_start = page_to_pgoff(page);
1874        pgoff_end = pgoff_start + hpage_nr_pages(page) - 1;
1875        if (!locked)
1876                i_mmap_lock_read(mapping);
1877        vma_interval_tree_foreach(vma, &mapping->i_mmap,
1878                        pgoff_start, pgoff_end) {
1879                unsigned long address = vma_address(page, vma);
1880
1881                cond_resched();
1882
1883                if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
1884                        continue;
1885
1886                if (!rwc->rmap_one(page, vma, address, rwc->arg))
1887                        goto done;
1888                if (rwc->done && rwc->done(page))
1889                        goto done;
1890        }
1891
1892done:
1893        if (!locked)
1894                i_mmap_unlock_read(mapping);
1895}
1896
1897void rmap_walk(struct page *page, struct rmap_walk_control *rwc)
1898{
1899        if (unlikely(PageKsm(page)))
1900                rmap_walk_ksm(page, rwc);
1901        else if (PageAnon(page))
1902                rmap_walk_anon(page, rwc, false);
1903        else
1904                rmap_walk_file(page, rwc, false);
1905}
1906
1907/* Like rmap_walk, but caller holds relevant rmap lock */
1908void rmap_walk_locked(struct page *page, struct rmap_walk_control *rwc)
1909{
1910        /* no ksm support for now */
1911        VM_BUG_ON_PAGE(PageKsm(page), page);
1912        if (PageAnon(page))
1913                rmap_walk_anon(page, rwc, true);
1914        else
1915                rmap_walk_file(page, rwc, true);
1916}
1917
1918#ifdef CONFIG_HUGETLB_PAGE
1919/*
1920 * The following three functions are for anonymous (private mapped) hugepages.
1921 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1922 * and no lru code, because we handle hugepages differently from common pages.
1923 */
1924static void __hugepage_set_anon_rmap(struct page *page,
1925        struct vm_area_struct *vma, unsigned long address, int exclusive)
1926{
1927        struct anon_vma *anon_vma = vma->anon_vma;
1928
1929        BUG_ON(!anon_vma);
1930
1931        if (PageAnon(page))
1932                return;
1933        if (!exclusive)
1934                anon_vma = anon_vma->root;
1935
1936        anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1937        page->mapping = (struct address_space *) anon_vma;
1938        page->index = linear_page_index(vma, address);
1939}
1940
1941void hugepage_add_anon_rmap(struct page *page,
1942                            struct vm_area_struct *vma, unsigned long address)
1943{
1944        struct anon_vma *anon_vma = vma->anon_vma;
1945        int first;
1946
1947        BUG_ON(!PageLocked(page));
1948        BUG_ON(!anon_vma);
1949        /* address might be in next vma when migration races vma_adjust */
1950        first = atomic_inc_and_test(compound_mapcount_ptr(page));
1951        if (first)
1952                __hugepage_set_anon_rmap(page, vma, address, 0);
1953}
1954
1955void hugepage_add_new_anon_rmap(struct page *page,
1956                        struct vm_area_struct *vma, unsigned long address)
1957{
1958        BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1959        atomic_set(compound_mapcount_ptr(page), 0);
1960        __hugepage_set_anon_rmap(page, vma, address, 1);
1961}
1962#endif /* CONFIG_HUGETLB_PAGE */
1963