linux/mm/shmem.c
<<
>>
Prefs
   1/*
   2 * Resizable virtual memory filesystem for Linux.
   3 *
   4 * Copyright (C) 2000 Linus Torvalds.
   5 *               2000 Transmeta Corp.
   6 *               2000-2001 Christoph Rohland
   7 *               2000-2001 SAP AG
   8 *               2002 Red Hat Inc.
   9 * Copyright (C) 2002-2011 Hugh Dickins.
  10 * Copyright (C) 2011 Google Inc.
  11 * Copyright (C) 2002-2005 VERITAS Software Corporation.
  12 * Copyright (C) 2004 Andi Kleen, SuSE Labs
  13 *
  14 * Extended attribute support for tmpfs:
  15 * Copyright (c) 2004, Luke Kenneth Casson Leighton <lkcl@lkcl.net>
  16 * Copyright (c) 2004 Red Hat, Inc., James Morris <jmorris@redhat.com>
  17 *
  18 * tiny-shmem:
  19 * Copyright (c) 2004, 2008 Matt Mackall <mpm@selenic.com>
  20 *
  21 * This file is released under the GPL.
  22 */
  23
  24#include <linux/fs.h>
  25#include <linux/init.h>
  26#include <linux/vfs.h>
  27#include <linux/mount.h>
  28#include <linux/ramfs.h>
  29#include <linux/pagemap.h>
  30#include <linux/file.h>
  31#include <linux/mm.h>
  32#include <linux/random.h>
  33#include <linux/sched/signal.h>
  34#include <linux/export.h>
  35#include <linux/swap.h>
  36#include <linux/uio.h>
  37#include <linux/khugepaged.h>
  38#include <linux/hugetlb.h>
  39
  40#include <asm/tlbflush.h> /* for arch/microblaze update_mmu_cache() */
  41
  42static struct vfsmount *shm_mnt;
  43
  44#ifdef CONFIG_SHMEM
  45/*
  46 * This virtual memory filesystem is heavily based on the ramfs. It
  47 * extends ramfs by the ability to use swap and honor resource limits
  48 * which makes it a completely usable filesystem.
  49 */
  50
  51#include <linux/xattr.h>
  52#include <linux/exportfs.h>
  53#include <linux/posix_acl.h>
  54#include <linux/posix_acl_xattr.h>
  55#include <linux/mman.h>
  56#include <linux/string.h>
  57#include <linux/slab.h>
  58#include <linux/backing-dev.h>
  59#include <linux/shmem_fs.h>
  60#include <linux/writeback.h>
  61#include <linux/blkdev.h>
  62#include <linux/pagevec.h>
  63#include <linux/percpu_counter.h>
  64#include <linux/falloc.h>
  65#include <linux/splice.h>
  66#include <linux/security.h>
  67#include <linux/swapops.h>
  68#include <linux/mempolicy.h>
  69#include <linux/namei.h>
  70#include <linux/ctype.h>
  71#include <linux/migrate.h>
  72#include <linux/highmem.h>
  73#include <linux/seq_file.h>
  74#include <linux/magic.h>
  75#include <linux/syscalls.h>
  76#include <linux/fcntl.h>
  77#include <uapi/linux/memfd.h>
  78#include <linux/userfaultfd_k.h>
  79#include <linux/rmap.h>
  80#include <linux/uuid.h>
  81
  82#include <linux/uaccess.h>
  83#include <asm/pgtable.h>
  84
  85#include "internal.h"
  86
  87#define BLOCKS_PER_PAGE  (PAGE_SIZE/512)
  88#define VM_ACCT(size)    (PAGE_ALIGN(size) >> PAGE_SHIFT)
  89
  90/* Pretend that each entry is of this size in directory's i_size */
  91#define BOGO_DIRENT_SIZE 20
  92
  93/* Symlink up to this size is kmalloc'ed instead of using a swappable page */
  94#define SHORT_SYMLINK_LEN 128
  95
  96/*
  97 * shmem_fallocate communicates with shmem_fault or shmem_writepage via
  98 * inode->i_private (with i_mutex making sure that it has only one user at
  99 * a time): we would prefer not to enlarge the shmem inode just for that.
 100 */
 101struct shmem_falloc {
 102        wait_queue_head_t *waitq; /* faults into hole wait for punch to end */
 103        pgoff_t start;          /* start of range currently being fallocated */
 104        pgoff_t next;           /* the next page offset to be fallocated */
 105        pgoff_t nr_falloced;    /* how many new pages have been fallocated */
 106        pgoff_t nr_unswapped;   /* how often writepage refused to swap out */
 107};
 108
 109#ifdef CONFIG_TMPFS
 110static unsigned long shmem_default_max_blocks(void)
 111{
 112        return totalram_pages / 2;
 113}
 114
 115static unsigned long shmem_default_max_inodes(void)
 116{
 117        return min(totalram_pages - totalhigh_pages, totalram_pages / 2);
 118}
 119#endif
 120
 121static bool shmem_should_replace_page(struct page *page, gfp_t gfp);
 122static int shmem_replace_page(struct page **pagep, gfp_t gfp,
 123                                struct shmem_inode_info *info, pgoff_t index);
 124static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
 125                struct page **pagep, enum sgp_type sgp,
 126                gfp_t gfp, struct vm_area_struct *vma,
 127                struct vm_fault *vmf, vm_fault_t *fault_type);
 128
 129int shmem_getpage(struct inode *inode, pgoff_t index,
 130                struct page **pagep, enum sgp_type sgp)
 131{
 132        return shmem_getpage_gfp(inode, index, pagep, sgp,
 133                mapping_gfp_mask(inode->i_mapping), NULL, NULL, NULL);
 134}
 135
 136static inline struct shmem_sb_info *SHMEM_SB(struct super_block *sb)
 137{
 138        return sb->s_fs_info;
 139}
 140
 141/*
 142 * shmem_file_setup pre-accounts the whole fixed size of a VM object,
 143 * for shared memory and for shared anonymous (/dev/zero) mappings
 144 * (unless MAP_NORESERVE and sysctl_overcommit_memory <= 1),
 145 * consistent with the pre-accounting of private mappings ...
 146 */
 147static inline int shmem_acct_size(unsigned long flags, loff_t size)
 148{
 149        return (flags & VM_NORESERVE) ?
 150                0 : security_vm_enough_memory_mm(current->mm, VM_ACCT(size));
 151}
 152
 153static inline void shmem_unacct_size(unsigned long flags, loff_t size)
 154{
 155        if (!(flags & VM_NORESERVE))
 156                vm_unacct_memory(VM_ACCT(size));
 157}
 158
 159static inline int shmem_reacct_size(unsigned long flags,
 160                loff_t oldsize, loff_t newsize)
 161{
 162        if (!(flags & VM_NORESERVE)) {
 163                if (VM_ACCT(newsize) > VM_ACCT(oldsize))
 164                        return security_vm_enough_memory_mm(current->mm,
 165                                        VM_ACCT(newsize) - VM_ACCT(oldsize));
 166                else if (VM_ACCT(newsize) < VM_ACCT(oldsize))
 167                        vm_unacct_memory(VM_ACCT(oldsize) - VM_ACCT(newsize));
 168        }
 169        return 0;
 170}
 171
 172/*
 173 * ... whereas tmpfs objects are accounted incrementally as
 174 * pages are allocated, in order to allow large sparse files.
 175 * shmem_getpage reports shmem_acct_block failure as -ENOSPC not -ENOMEM,
 176 * so that a failure on a sparse tmpfs mapping will give SIGBUS not OOM.
 177 */
 178static inline int shmem_acct_block(unsigned long flags, long pages)
 179{
 180        if (!(flags & VM_NORESERVE))
 181                return 0;
 182
 183        return security_vm_enough_memory_mm(current->mm,
 184                        pages * VM_ACCT(PAGE_SIZE));
 185}
 186
 187static inline void shmem_unacct_blocks(unsigned long flags, long pages)
 188{
 189        if (flags & VM_NORESERVE)
 190                vm_unacct_memory(pages * VM_ACCT(PAGE_SIZE));
 191}
 192
 193static inline bool shmem_inode_acct_block(struct inode *inode, long pages)
 194{
 195        struct shmem_inode_info *info = SHMEM_I(inode);
 196        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 197
 198        if (shmem_acct_block(info->flags, pages))
 199                return false;
 200
 201        if (sbinfo->max_blocks) {
 202                if (percpu_counter_compare(&sbinfo->used_blocks,
 203                                           sbinfo->max_blocks - pages) > 0)
 204                        goto unacct;
 205                percpu_counter_add(&sbinfo->used_blocks, pages);
 206        }
 207
 208        return true;
 209
 210unacct:
 211        shmem_unacct_blocks(info->flags, pages);
 212        return false;
 213}
 214
 215static inline void shmem_inode_unacct_blocks(struct inode *inode, long pages)
 216{
 217        struct shmem_inode_info *info = SHMEM_I(inode);
 218        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
 219
 220        if (sbinfo->max_blocks)
 221                percpu_counter_sub(&sbinfo->used_blocks, pages);
 222        shmem_unacct_blocks(info->flags, pages);
 223}
 224
 225static const struct super_operations shmem_ops;
 226static const struct address_space_operations shmem_aops;
 227static const struct file_operations shmem_file_operations;
 228static const struct inode_operations shmem_inode_operations;
 229static const struct inode_operations shmem_dir_inode_operations;
 230static const struct inode_operations shmem_special_inode_operations;
 231static const struct vm_operations_struct shmem_vm_ops;
 232static struct file_system_type shmem_fs_type;
 233
 234bool vma_is_shmem(struct vm_area_struct *vma)
 235{
 236        return vma->vm_ops == &shmem_vm_ops;
 237}
 238
 239static LIST_HEAD(shmem_swaplist);
 240static DEFINE_MUTEX(shmem_swaplist_mutex);
 241
 242static int shmem_reserve_inode(struct super_block *sb)
 243{
 244        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 245        if (sbinfo->max_inodes) {
 246                spin_lock(&sbinfo->stat_lock);
 247                if (!sbinfo->free_inodes) {
 248                        spin_unlock(&sbinfo->stat_lock);
 249                        return -ENOSPC;
 250                }
 251                sbinfo->free_inodes--;
 252                spin_unlock(&sbinfo->stat_lock);
 253        }
 254        return 0;
 255}
 256
 257static void shmem_free_inode(struct super_block *sb)
 258{
 259        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 260        if (sbinfo->max_inodes) {
 261                spin_lock(&sbinfo->stat_lock);
 262                sbinfo->free_inodes++;
 263                spin_unlock(&sbinfo->stat_lock);
 264        }
 265}
 266
 267/**
 268 * shmem_recalc_inode - recalculate the block usage of an inode
 269 * @inode: inode to recalc
 270 *
 271 * We have to calculate the free blocks since the mm can drop
 272 * undirtied hole pages behind our back.
 273 *
 274 * But normally   info->alloced == inode->i_mapping->nrpages + info->swapped
 275 * So mm freed is info->alloced - (inode->i_mapping->nrpages + info->swapped)
 276 *
 277 * It has to be called with the spinlock held.
 278 */
 279static void shmem_recalc_inode(struct inode *inode)
 280{
 281        struct shmem_inode_info *info = SHMEM_I(inode);
 282        long freed;
 283
 284        freed = info->alloced - info->swapped - inode->i_mapping->nrpages;
 285        if (freed > 0) {
 286                info->alloced -= freed;
 287                inode->i_blocks -= freed * BLOCKS_PER_PAGE;
 288                shmem_inode_unacct_blocks(inode, freed);
 289        }
 290}
 291
 292bool shmem_charge(struct inode *inode, long pages)
 293{
 294        struct shmem_inode_info *info = SHMEM_I(inode);
 295        unsigned long flags;
 296
 297        if (!shmem_inode_acct_block(inode, pages))
 298                return false;
 299
 300        spin_lock_irqsave(&info->lock, flags);
 301        info->alloced += pages;
 302        inode->i_blocks += pages * BLOCKS_PER_PAGE;
 303        shmem_recalc_inode(inode);
 304        spin_unlock_irqrestore(&info->lock, flags);
 305        inode->i_mapping->nrpages += pages;
 306
 307        return true;
 308}
 309
 310void shmem_uncharge(struct inode *inode, long pages)
 311{
 312        struct shmem_inode_info *info = SHMEM_I(inode);
 313        unsigned long flags;
 314
 315        spin_lock_irqsave(&info->lock, flags);
 316        info->alloced -= pages;
 317        inode->i_blocks -= pages * BLOCKS_PER_PAGE;
 318        shmem_recalc_inode(inode);
 319        spin_unlock_irqrestore(&info->lock, flags);
 320
 321        shmem_inode_unacct_blocks(inode, pages);
 322}
 323
 324/*
 325 * Replace item expected in radix tree by a new item, while holding tree lock.
 326 */
 327static int shmem_radix_tree_replace(struct address_space *mapping,
 328                        pgoff_t index, void *expected, void *replacement)
 329{
 330        struct radix_tree_node *node;
 331        void __rcu **pslot;
 332        void *item;
 333
 334        VM_BUG_ON(!expected);
 335        VM_BUG_ON(!replacement);
 336        item = __radix_tree_lookup(&mapping->i_pages, index, &node, &pslot);
 337        if (!item)
 338                return -ENOENT;
 339        if (item != expected)
 340                return -ENOENT;
 341        __radix_tree_replace(&mapping->i_pages, node, pslot,
 342                             replacement, NULL);
 343        return 0;
 344}
 345
 346/*
 347 * Sometimes, before we decide whether to proceed or to fail, we must check
 348 * that an entry was not already brought back from swap by a racing thread.
 349 *
 350 * Checking page is not enough: by the time a SwapCache page is locked, it
 351 * might be reused, and again be SwapCache, using the same swap as before.
 352 */
 353static bool shmem_confirm_swap(struct address_space *mapping,
 354                               pgoff_t index, swp_entry_t swap)
 355{
 356        void *item;
 357
 358        rcu_read_lock();
 359        item = radix_tree_lookup(&mapping->i_pages, index);
 360        rcu_read_unlock();
 361        return item == swp_to_radix_entry(swap);
 362}
 363
 364/*
 365 * Definitions for "huge tmpfs": tmpfs mounted with the huge= option
 366 *
 367 * SHMEM_HUGE_NEVER:
 368 *      disables huge pages for the mount;
 369 * SHMEM_HUGE_ALWAYS:
 370 *      enables huge pages for the mount;
 371 * SHMEM_HUGE_WITHIN_SIZE:
 372 *      only allocate huge pages if the page will be fully within i_size,
 373 *      also respect fadvise()/madvise() hints;
 374 * SHMEM_HUGE_ADVISE:
 375 *      only allocate huge pages if requested with fadvise()/madvise();
 376 */
 377
 378#define SHMEM_HUGE_NEVER        0
 379#define SHMEM_HUGE_ALWAYS       1
 380#define SHMEM_HUGE_WITHIN_SIZE  2
 381#define SHMEM_HUGE_ADVISE       3
 382
 383/*
 384 * Special values.
 385 * Only can be set via /sys/kernel/mm/transparent_hugepage/shmem_enabled:
 386 *
 387 * SHMEM_HUGE_DENY:
 388 *      disables huge on shm_mnt and all mounts, for emergency use;
 389 * SHMEM_HUGE_FORCE:
 390 *      enables huge on shm_mnt and all mounts, w/o needing option, for testing;
 391 *
 392 */
 393#define SHMEM_HUGE_DENY         (-1)
 394#define SHMEM_HUGE_FORCE        (-2)
 395
 396#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
 397/* ifdef here to avoid bloating shmem.o when not necessary */
 398
 399static int shmem_huge __read_mostly;
 400
 401#if defined(CONFIG_SYSFS) || defined(CONFIG_TMPFS)
 402static int shmem_parse_huge(const char *str)
 403{
 404        if (!strcmp(str, "never"))
 405                return SHMEM_HUGE_NEVER;
 406        if (!strcmp(str, "always"))
 407                return SHMEM_HUGE_ALWAYS;
 408        if (!strcmp(str, "within_size"))
 409                return SHMEM_HUGE_WITHIN_SIZE;
 410        if (!strcmp(str, "advise"))
 411                return SHMEM_HUGE_ADVISE;
 412        if (!strcmp(str, "deny"))
 413                return SHMEM_HUGE_DENY;
 414        if (!strcmp(str, "force"))
 415                return SHMEM_HUGE_FORCE;
 416        return -EINVAL;
 417}
 418
 419static const char *shmem_format_huge(int huge)
 420{
 421        switch (huge) {
 422        case SHMEM_HUGE_NEVER:
 423                return "never";
 424        case SHMEM_HUGE_ALWAYS:
 425                return "always";
 426        case SHMEM_HUGE_WITHIN_SIZE:
 427                return "within_size";
 428        case SHMEM_HUGE_ADVISE:
 429                return "advise";
 430        case SHMEM_HUGE_DENY:
 431                return "deny";
 432        case SHMEM_HUGE_FORCE:
 433                return "force";
 434        default:
 435                VM_BUG_ON(1);
 436                return "bad_val";
 437        }
 438}
 439#endif
 440
 441static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 442                struct shrink_control *sc, unsigned long nr_to_split)
 443{
 444        LIST_HEAD(list), *pos, *next;
 445        LIST_HEAD(to_remove);
 446        struct inode *inode;
 447        struct shmem_inode_info *info;
 448        struct page *page;
 449        unsigned long batch = sc ? sc->nr_to_scan : 128;
 450        int removed = 0, split = 0;
 451
 452        if (list_empty(&sbinfo->shrinklist))
 453                return SHRINK_STOP;
 454
 455        spin_lock(&sbinfo->shrinklist_lock);
 456        list_for_each_safe(pos, next, &sbinfo->shrinklist) {
 457                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 458
 459                /* pin the inode */
 460                inode = igrab(&info->vfs_inode);
 461
 462                /* inode is about to be evicted */
 463                if (!inode) {
 464                        list_del_init(&info->shrinklist);
 465                        removed++;
 466                        goto next;
 467                }
 468
 469                /* Check if there's anything to gain */
 470                if (round_up(inode->i_size, PAGE_SIZE) ==
 471                                round_up(inode->i_size, HPAGE_PMD_SIZE)) {
 472                        list_move(&info->shrinklist, &to_remove);
 473                        removed++;
 474                        goto next;
 475                }
 476
 477                list_move(&info->shrinklist, &list);
 478next:
 479                if (!--batch)
 480                        break;
 481        }
 482        spin_unlock(&sbinfo->shrinklist_lock);
 483
 484        list_for_each_safe(pos, next, &to_remove) {
 485                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 486                inode = &info->vfs_inode;
 487                list_del_init(&info->shrinklist);
 488                iput(inode);
 489        }
 490
 491        list_for_each_safe(pos, next, &list) {
 492                int ret;
 493
 494                info = list_entry(pos, struct shmem_inode_info, shrinklist);
 495                inode = &info->vfs_inode;
 496
 497                if (nr_to_split && split >= nr_to_split)
 498                        goto leave;
 499
 500                page = find_get_page(inode->i_mapping,
 501                                (inode->i_size & HPAGE_PMD_MASK) >> PAGE_SHIFT);
 502                if (!page)
 503                        goto drop;
 504
 505                /* No huge page at the end of the file: nothing to split */
 506                if (!PageTransHuge(page)) {
 507                        put_page(page);
 508                        goto drop;
 509                }
 510
 511                /*
 512                 * Leave the inode on the list if we failed to lock
 513                 * the page at this time.
 514                 *
 515                 * Waiting for the lock may lead to deadlock in the
 516                 * reclaim path.
 517                 */
 518                if (!trylock_page(page)) {
 519                        put_page(page);
 520                        goto leave;
 521                }
 522
 523                ret = split_huge_page(page);
 524                unlock_page(page);
 525                put_page(page);
 526
 527                /* If split failed leave the inode on the list */
 528                if (ret)
 529                        goto leave;
 530
 531                split++;
 532drop:
 533                list_del_init(&info->shrinklist);
 534                removed++;
 535leave:
 536                iput(inode);
 537        }
 538
 539        spin_lock(&sbinfo->shrinklist_lock);
 540        list_splice_tail(&list, &sbinfo->shrinklist);
 541        sbinfo->shrinklist_len -= removed;
 542        spin_unlock(&sbinfo->shrinklist_lock);
 543
 544        return split;
 545}
 546
 547static long shmem_unused_huge_scan(struct super_block *sb,
 548                struct shrink_control *sc)
 549{
 550        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 551
 552        if (!READ_ONCE(sbinfo->shrinklist_len))
 553                return SHRINK_STOP;
 554
 555        return shmem_unused_huge_shrink(sbinfo, sc, 0);
 556}
 557
 558static long shmem_unused_huge_count(struct super_block *sb,
 559                struct shrink_control *sc)
 560{
 561        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
 562        return READ_ONCE(sbinfo->shrinklist_len);
 563}
 564#else /* !CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 565
 566#define shmem_huge SHMEM_HUGE_DENY
 567
 568static unsigned long shmem_unused_huge_shrink(struct shmem_sb_info *sbinfo,
 569                struct shrink_control *sc, unsigned long nr_to_split)
 570{
 571        return 0;
 572}
 573#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
 574
 575static inline bool is_huge_enabled(struct shmem_sb_info *sbinfo)
 576{
 577        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
 578            (shmem_huge == SHMEM_HUGE_FORCE || sbinfo->huge) &&
 579            shmem_huge != SHMEM_HUGE_DENY)
 580                return true;
 581        return false;
 582}
 583
 584/*
 585 * Like add_to_page_cache_locked, but error if expected item has gone.
 586 */
 587static int shmem_add_to_page_cache(struct page *page,
 588                                   struct address_space *mapping,
 589                                   pgoff_t index, void *expected)
 590{
 591        int error, nr = hpage_nr_pages(page);
 592
 593        VM_BUG_ON_PAGE(PageTail(page), page);
 594        VM_BUG_ON_PAGE(index != round_down(index, nr), page);
 595        VM_BUG_ON_PAGE(!PageLocked(page), page);
 596        VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
 597        VM_BUG_ON(expected && PageTransHuge(page));
 598
 599        page_ref_add(page, nr);
 600        page->mapping = mapping;
 601        page->index = index;
 602
 603        xa_lock_irq(&mapping->i_pages);
 604        if (PageTransHuge(page)) {
 605                void __rcu **results;
 606                pgoff_t idx;
 607                int i;
 608
 609                error = 0;
 610                if (radix_tree_gang_lookup_slot(&mapping->i_pages,
 611                                        &results, &idx, index, 1) &&
 612                                idx < index + HPAGE_PMD_NR) {
 613                        error = -EEXIST;
 614                }
 615
 616                if (!error) {
 617                        for (i = 0; i < HPAGE_PMD_NR; i++) {
 618                                error = radix_tree_insert(&mapping->i_pages,
 619                                                index + i, page + i);
 620                                VM_BUG_ON(error);
 621                        }
 622                        count_vm_event(THP_FILE_ALLOC);
 623                }
 624        } else if (!expected) {
 625                error = radix_tree_insert(&mapping->i_pages, index, page);
 626        } else {
 627                error = shmem_radix_tree_replace(mapping, index, expected,
 628                                                                 page);
 629        }
 630
 631        if (!error) {
 632                mapping->nrpages += nr;
 633                if (PageTransHuge(page))
 634                        __inc_node_page_state(page, NR_SHMEM_THPS);
 635                __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, nr);
 636                __mod_node_page_state(page_pgdat(page), NR_SHMEM, nr);
 637                xa_unlock_irq(&mapping->i_pages);
 638        } else {
 639                page->mapping = NULL;
 640                xa_unlock_irq(&mapping->i_pages);
 641                page_ref_sub(page, nr);
 642        }
 643        return error;
 644}
 645
 646/*
 647 * Like delete_from_page_cache, but substitutes swap for page.
 648 */
 649static void shmem_delete_from_page_cache(struct page *page, void *radswap)
 650{
 651        struct address_space *mapping = page->mapping;
 652        int error;
 653
 654        VM_BUG_ON_PAGE(PageCompound(page), page);
 655
 656        xa_lock_irq(&mapping->i_pages);
 657        error = shmem_radix_tree_replace(mapping, page->index, page, radswap);
 658        page->mapping = NULL;
 659        mapping->nrpages--;
 660        __dec_node_page_state(page, NR_FILE_PAGES);
 661        __dec_node_page_state(page, NR_SHMEM);
 662        xa_unlock_irq(&mapping->i_pages);
 663        put_page(page);
 664        BUG_ON(error);
 665}
 666
 667/*
 668 * Remove swap entry from radix tree, free the swap and its page cache.
 669 */
 670static int shmem_free_swap(struct address_space *mapping,
 671                           pgoff_t index, void *radswap)
 672{
 673        void *old;
 674
 675        xa_lock_irq(&mapping->i_pages);
 676        old = radix_tree_delete_item(&mapping->i_pages, index, radswap);
 677        xa_unlock_irq(&mapping->i_pages);
 678        if (old != radswap)
 679                return -ENOENT;
 680        free_swap_and_cache(radix_to_swp_entry(radswap));
 681        return 0;
 682}
 683
 684/*
 685 * Determine (in bytes) how many of the shmem object's pages mapped by the
 686 * given offsets are swapped out.
 687 *
 688 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 689 * as long as the inode doesn't go away and racy results are not a problem.
 690 */
 691unsigned long shmem_partial_swap_usage(struct address_space *mapping,
 692                                                pgoff_t start, pgoff_t end)
 693{
 694        struct radix_tree_iter iter;
 695        void __rcu **slot;
 696        struct page *page;
 697        unsigned long swapped = 0;
 698
 699        rcu_read_lock();
 700
 701        radix_tree_for_each_slot(slot, &mapping->i_pages, &iter, start) {
 702                if (iter.index >= end)
 703                        break;
 704
 705                page = radix_tree_deref_slot(slot);
 706
 707                if (radix_tree_deref_retry(page)) {
 708                        slot = radix_tree_iter_retry(&iter);
 709                        continue;
 710                }
 711
 712                if (radix_tree_exceptional_entry(page))
 713                        swapped++;
 714
 715                if (need_resched()) {
 716                        slot = radix_tree_iter_resume(slot, &iter);
 717                        cond_resched_rcu();
 718                }
 719        }
 720
 721        rcu_read_unlock();
 722
 723        return swapped << PAGE_SHIFT;
 724}
 725
 726/*
 727 * Determine (in bytes) how many of the shmem object's pages mapped by the
 728 * given vma is swapped out.
 729 *
 730 * This is safe to call without i_mutex or the i_pages lock thanks to RCU,
 731 * as long as the inode doesn't go away and racy results are not a problem.
 732 */
 733unsigned long shmem_swap_usage(struct vm_area_struct *vma)
 734{
 735        struct inode *inode = file_inode(vma->vm_file);
 736        struct shmem_inode_info *info = SHMEM_I(inode);
 737        struct address_space *mapping = inode->i_mapping;
 738        unsigned long swapped;
 739
 740        /* Be careful as we don't hold info->lock */
 741        swapped = READ_ONCE(info->swapped);
 742
 743        /*
 744         * The easier cases are when the shmem object has nothing in swap, or
 745         * the vma maps it whole. Then we can simply use the stats that we
 746         * already track.
 747         */
 748        if (!swapped)
 749                return 0;
 750
 751        if (!vma->vm_pgoff && vma->vm_end - vma->vm_start >= inode->i_size)
 752                return swapped << PAGE_SHIFT;
 753
 754        /* Here comes the more involved part */
 755        return shmem_partial_swap_usage(mapping,
 756                        linear_page_index(vma, vma->vm_start),
 757                        linear_page_index(vma, vma->vm_end));
 758}
 759
 760/*
 761 * SysV IPC SHM_UNLOCK restore Unevictable pages to their evictable lists.
 762 */
 763void shmem_unlock_mapping(struct address_space *mapping)
 764{
 765        struct pagevec pvec;
 766        pgoff_t indices[PAGEVEC_SIZE];
 767        pgoff_t index = 0;
 768
 769        pagevec_init(&pvec);
 770        /*
 771         * Minor point, but we might as well stop if someone else SHM_LOCKs it.
 772         */
 773        while (!mapping_unevictable(mapping)) {
 774                /*
 775                 * Avoid pagevec_lookup(): find_get_pages() returns 0 as if it
 776                 * has finished, if it hits a row of PAGEVEC_SIZE swap entries.
 777                 */
 778                pvec.nr = find_get_entries(mapping, index,
 779                                           PAGEVEC_SIZE, pvec.pages, indices);
 780                if (!pvec.nr)
 781                        break;
 782                index = indices[pvec.nr - 1] + 1;
 783                pagevec_remove_exceptionals(&pvec);
 784                check_move_unevictable_pages(pvec.pages, pvec.nr);
 785                pagevec_release(&pvec);
 786                cond_resched();
 787        }
 788}
 789
 790/*
 791 * Remove range of pages and swap entries from radix tree, and free them.
 792 * If !unfalloc, truncate or punch hole; if unfalloc, undo failed fallocate.
 793 */
 794static void shmem_undo_range(struct inode *inode, loff_t lstart, loff_t lend,
 795                                                                 bool unfalloc)
 796{
 797        struct address_space *mapping = inode->i_mapping;
 798        struct shmem_inode_info *info = SHMEM_I(inode);
 799        pgoff_t start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
 800        pgoff_t end = (lend + 1) >> PAGE_SHIFT;
 801        unsigned int partial_start = lstart & (PAGE_SIZE - 1);
 802        unsigned int partial_end = (lend + 1) & (PAGE_SIZE - 1);
 803        struct pagevec pvec;
 804        pgoff_t indices[PAGEVEC_SIZE];
 805        long nr_swaps_freed = 0;
 806        pgoff_t index;
 807        int i;
 808
 809        if (lend == -1)
 810                end = -1;       /* unsigned, so actually very big */
 811
 812        pagevec_init(&pvec);
 813        index = start;
 814        while (index < end) {
 815                pvec.nr = find_get_entries(mapping, index,
 816                        min(end - index, (pgoff_t)PAGEVEC_SIZE),
 817                        pvec.pages, indices);
 818                if (!pvec.nr)
 819                        break;
 820                for (i = 0; i < pagevec_count(&pvec); i++) {
 821                        struct page *page = pvec.pages[i];
 822
 823                        index = indices[i];
 824                        if (index >= end)
 825                                break;
 826
 827                        if (radix_tree_exceptional_entry(page)) {
 828                                if (unfalloc)
 829                                        continue;
 830                                nr_swaps_freed += !shmem_free_swap(mapping,
 831                                                                index, page);
 832                                continue;
 833                        }
 834
 835                        VM_BUG_ON_PAGE(page_to_pgoff(page) != index, page);
 836
 837                        if (!trylock_page(page))
 838                                continue;
 839
 840                        if (PageTransTail(page)) {
 841                                /* Middle of THP: zero out the page */
 842                                clear_highpage(page);
 843                                unlock_page(page);
 844                                continue;
 845                        } else if (PageTransHuge(page)) {
 846                                if (index == round_down(end, HPAGE_PMD_NR)) {
 847                                        /*
 848                                         * Range ends in the middle of THP:
 849                                         * zero out the page
 850                                         */
 851                                        clear_highpage(page);
 852                                        unlock_page(page);
 853                                        continue;
 854                                }
 855                                index += HPAGE_PMD_NR - 1;
 856                                i += HPAGE_PMD_NR - 1;
 857                        }
 858
 859                        if (!unfalloc || !PageUptodate(page)) {
 860                                VM_BUG_ON_PAGE(PageTail(page), page);
 861                                if (page_mapping(page) == mapping) {
 862                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 863                                        truncate_inode_page(mapping, page);
 864                                }
 865                        }
 866                        unlock_page(page);
 867                }
 868                pagevec_remove_exceptionals(&pvec);
 869                pagevec_release(&pvec);
 870                cond_resched();
 871                index++;
 872        }
 873
 874        if (partial_start) {
 875                struct page *page = NULL;
 876                shmem_getpage(inode, start - 1, &page, SGP_READ);
 877                if (page) {
 878                        unsigned int top = PAGE_SIZE;
 879                        if (start > end) {
 880                                top = partial_end;
 881                                partial_end = 0;
 882                        }
 883                        zero_user_segment(page, partial_start, top);
 884                        set_page_dirty(page);
 885                        unlock_page(page);
 886                        put_page(page);
 887                }
 888        }
 889        if (partial_end) {
 890                struct page *page = NULL;
 891                shmem_getpage(inode, end, &page, SGP_READ);
 892                if (page) {
 893                        zero_user_segment(page, 0, partial_end);
 894                        set_page_dirty(page);
 895                        unlock_page(page);
 896                        put_page(page);
 897                }
 898        }
 899        if (start >= end)
 900                return;
 901
 902        index = start;
 903        while (index < end) {
 904                cond_resched();
 905
 906                pvec.nr = find_get_entries(mapping, index,
 907                                min(end - index, (pgoff_t)PAGEVEC_SIZE),
 908                                pvec.pages, indices);
 909                if (!pvec.nr) {
 910                        /* If all gone or hole-punch or unfalloc, we're done */
 911                        if (index == start || end != -1)
 912                                break;
 913                        /* But if truncating, restart to make sure all gone */
 914                        index = start;
 915                        continue;
 916                }
 917                for (i = 0; i < pagevec_count(&pvec); i++) {
 918                        struct page *page = pvec.pages[i];
 919
 920                        index = indices[i];
 921                        if (index >= end)
 922                                break;
 923
 924                        if (radix_tree_exceptional_entry(page)) {
 925                                if (unfalloc)
 926                                        continue;
 927                                if (shmem_free_swap(mapping, index, page)) {
 928                                        /* Swap was replaced by page: retry */
 929                                        index--;
 930                                        break;
 931                                }
 932                                nr_swaps_freed++;
 933                                continue;
 934                        }
 935
 936                        lock_page(page);
 937
 938                        if (PageTransTail(page)) {
 939                                /* Middle of THP: zero out the page */
 940                                clear_highpage(page);
 941                                unlock_page(page);
 942                                /*
 943                                 * Partial thp truncate due 'start' in middle
 944                                 * of THP: don't need to look on these pages
 945                                 * again on !pvec.nr restart.
 946                                 */
 947                                if (index != round_down(end, HPAGE_PMD_NR))
 948                                        start++;
 949                                continue;
 950                        } else if (PageTransHuge(page)) {
 951                                if (index == round_down(end, HPAGE_PMD_NR)) {
 952                                        /*
 953                                         * Range ends in the middle of THP:
 954                                         * zero out the page
 955                                         */
 956                                        clear_highpage(page);
 957                                        unlock_page(page);
 958                                        continue;
 959                                }
 960                                index += HPAGE_PMD_NR - 1;
 961                                i += HPAGE_PMD_NR - 1;
 962                        }
 963
 964                        if (!unfalloc || !PageUptodate(page)) {
 965                                VM_BUG_ON_PAGE(PageTail(page), page);
 966                                if (page_mapping(page) == mapping) {
 967                                        VM_BUG_ON_PAGE(PageWriteback(page), page);
 968                                        truncate_inode_page(mapping, page);
 969                                } else {
 970                                        /* Page was replaced by swap: retry */
 971                                        unlock_page(page);
 972                                        index--;
 973                                        break;
 974                                }
 975                        }
 976                        unlock_page(page);
 977                }
 978                pagevec_remove_exceptionals(&pvec);
 979                pagevec_release(&pvec);
 980                index++;
 981        }
 982
 983        spin_lock_irq(&info->lock);
 984        info->swapped -= nr_swaps_freed;
 985        shmem_recalc_inode(inode);
 986        spin_unlock_irq(&info->lock);
 987}
 988
 989void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
 990{
 991        shmem_undo_range(inode, lstart, lend, false);
 992        inode->i_ctime = inode->i_mtime = current_time(inode);
 993}
 994EXPORT_SYMBOL_GPL(shmem_truncate_range);
 995
 996static int shmem_getattr(const struct path *path, struct kstat *stat,
 997                         u32 request_mask, unsigned int query_flags)
 998{
 999        struct inode *inode = path->dentry->d_inode;
1000        struct shmem_inode_info *info = SHMEM_I(inode);
1001        struct shmem_sb_info *sb_info = SHMEM_SB(inode->i_sb);
1002
1003        if (info->alloced - info->swapped != inode->i_mapping->nrpages) {
1004                spin_lock_irq(&info->lock);
1005                shmem_recalc_inode(inode);
1006                spin_unlock_irq(&info->lock);
1007        }
1008        generic_fillattr(inode, stat);
1009
1010        if (is_huge_enabled(sb_info))
1011                stat->blksize = HPAGE_PMD_SIZE;
1012
1013        return 0;
1014}
1015
1016static int shmem_setattr(struct dentry *dentry, struct iattr *attr)
1017{
1018        struct inode *inode = d_inode(dentry);
1019        struct shmem_inode_info *info = SHMEM_I(inode);
1020        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1021        int error;
1022
1023        error = setattr_prepare(dentry, attr);
1024        if (error)
1025                return error;
1026
1027        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
1028                loff_t oldsize = inode->i_size;
1029                loff_t newsize = attr->ia_size;
1030
1031                /* protected by i_mutex */
1032                if ((newsize < oldsize && (info->seals & F_SEAL_SHRINK)) ||
1033                    (newsize > oldsize && (info->seals & F_SEAL_GROW)))
1034                        return -EPERM;
1035
1036                if (newsize != oldsize) {
1037                        error = shmem_reacct_size(SHMEM_I(inode)->flags,
1038                                        oldsize, newsize);
1039                        if (error)
1040                                return error;
1041                        i_size_write(inode, newsize);
1042                        inode->i_ctime = inode->i_mtime = current_time(inode);
1043                }
1044                if (newsize <= oldsize) {
1045                        loff_t holebegin = round_up(newsize, PAGE_SIZE);
1046                        if (oldsize > holebegin)
1047                                unmap_mapping_range(inode->i_mapping,
1048                                                        holebegin, 0, 1);
1049                        if (info->alloced)
1050                                shmem_truncate_range(inode,
1051                                                        newsize, (loff_t)-1);
1052                        /* unmap again to remove racily COWed private pages */
1053                        if (oldsize > holebegin)
1054                                unmap_mapping_range(inode->i_mapping,
1055                                                        holebegin, 0, 1);
1056
1057                        /*
1058                         * Part of the huge page can be beyond i_size: subject
1059                         * to shrink under memory pressure.
1060                         */
1061                        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
1062                                spin_lock(&sbinfo->shrinklist_lock);
1063                                /*
1064                                 * _careful to defend against unlocked access to
1065                                 * ->shrink_list in shmem_unused_huge_shrink()
1066                                 */
1067                                if (list_empty_careful(&info->shrinklist)) {
1068                                        list_add_tail(&info->shrinklist,
1069                                                        &sbinfo->shrinklist);
1070                                        sbinfo->shrinklist_len++;
1071                                }
1072                                spin_unlock(&sbinfo->shrinklist_lock);
1073                        }
1074                }
1075        }
1076
1077        setattr_copy(inode, attr);
1078        if (attr->ia_valid & ATTR_MODE)
1079                error = posix_acl_chmod(inode, inode->i_mode);
1080        return error;
1081}
1082
1083static void shmem_evict_inode(struct inode *inode)
1084{
1085        struct shmem_inode_info *info = SHMEM_I(inode);
1086        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
1087
1088        if (inode->i_mapping->a_ops == &shmem_aops) {
1089                shmem_unacct_size(info->flags, inode->i_size);
1090                inode->i_size = 0;
1091                shmem_truncate_range(inode, 0, (loff_t)-1);
1092                if (!list_empty(&info->shrinklist)) {
1093                        spin_lock(&sbinfo->shrinklist_lock);
1094                        if (!list_empty(&info->shrinklist)) {
1095                                list_del_init(&info->shrinklist);
1096                                sbinfo->shrinklist_len--;
1097                        }
1098                        spin_unlock(&sbinfo->shrinklist_lock);
1099                }
1100                if (!list_empty(&info->swaplist)) {
1101                        mutex_lock(&shmem_swaplist_mutex);
1102                        list_del_init(&info->swaplist);
1103                        mutex_unlock(&shmem_swaplist_mutex);
1104                }
1105        }
1106
1107        simple_xattrs_free(&info->xattrs);
1108        WARN_ON(inode->i_blocks);
1109        shmem_free_inode(inode->i_sb);
1110        clear_inode(inode);
1111}
1112
1113static unsigned long find_swap_entry(struct radix_tree_root *root, void *item)
1114{
1115        struct radix_tree_iter iter;
1116        void __rcu **slot;
1117        unsigned long found = -1;
1118        unsigned int checked = 0;
1119
1120        rcu_read_lock();
1121        radix_tree_for_each_slot(slot, root, &iter, 0) {
1122                void *entry = radix_tree_deref_slot(slot);
1123
1124                if (radix_tree_deref_retry(entry)) {
1125                        slot = radix_tree_iter_retry(&iter);
1126                        continue;
1127                }
1128                if (entry == item) {
1129                        found = iter.index;
1130                        break;
1131                }
1132                checked++;
1133                if ((checked % 4096) != 0)
1134                        continue;
1135                slot = radix_tree_iter_resume(slot, &iter);
1136                cond_resched_rcu();
1137        }
1138
1139        rcu_read_unlock();
1140        return found;
1141}
1142
1143/*
1144 * If swap found in inode, free it and move page from swapcache to filecache.
1145 */
1146static int shmem_unuse_inode(struct shmem_inode_info *info,
1147                             swp_entry_t swap, struct page **pagep)
1148{
1149        struct address_space *mapping = info->vfs_inode.i_mapping;
1150        void *radswap;
1151        pgoff_t index;
1152        gfp_t gfp;
1153        int error = 0;
1154
1155        radswap = swp_to_radix_entry(swap);
1156        index = find_swap_entry(&mapping->i_pages, radswap);
1157        if (index == -1)
1158                return -EAGAIN; /* tell shmem_unuse we found nothing */
1159
1160        /*
1161         * Move _head_ to start search for next from here.
1162         * But be careful: shmem_evict_inode checks list_empty without taking
1163         * mutex, and there's an instant in list_move_tail when info->swaplist
1164         * would appear empty, if it were the only one on shmem_swaplist.
1165         */
1166        if (shmem_swaplist.next != &info->swaplist)
1167                list_move_tail(&shmem_swaplist, &info->swaplist);
1168
1169        gfp = mapping_gfp_mask(mapping);
1170        if (shmem_should_replace_page(*pagep, gfp)) {
1171                mutex_unlock(&shmem_swaplist_mutex);
1172                error = shmem_replace_page(pagep, gfp, info, index);
1173                mutex_lock(&shmem_swaplist_mutex);
1174                /*
1175                 * We needed to drop mutex to make that restrictive page
1176                 * allocation, but the inode might have been freed while we
1177                 * dropped it: although a racing shmem_evict_inode() cannot
1178                 * complete without emptying the radix_tree, our page lock
1179                 * on this swapcache page is not enough to prevent that -
1180                 * free_swap_and_cache() of our swap entry will only
1181                 * trylock_page(), removing swap from radix_tree whatever.
1182                 *
1183                 * We must not proceed to shmem_add_to_page_cache() if the
1184                 * inode has been freed, but of course we cannot rely on
1185                 * inode or mapping or info to check that.  However, we can
1186                 * safely check if our swap entry is still in use (and here
1187                 * it can't have got reused for another page): if it's still
1188                 * in use, then the inode cannot have been freed yet, and we
1189                 * can safely proceed (if it's no longer in use, that tells
1190                 * nothing about the inode, but we don't need to unuse swap).
1191                 */
1192                if (!page_swapcount(*pagep))
1193                        error = -ENOENT;
1194        }
1195
1196        /*
1197         * We rely on shmem_swaplist_mutex, not only to protect the swaplist,
1198         * but also to hold up shmem_evict_inode(): so inode cannot be freed
1199         * beneath us (pagelock doesn't help until the page is in pagecache).
1200         */
1201        if (!error)
1202                error = shmem_add_to_page_cache(*pagep, mapping, index,
1203                                                radswap);
1204        if (error != -ENOMEM) {
1205                /*
1206                 * Truncation and eviction use free_swap_and_cache(), which
1207                 * only does trylock page: if we raced, best clean up here.
1208                 */
1209                delete_from_swap_cache(*pagep);
1210                set_page_dirty(*pagep);
1211                if (!error) {
1212                        spin_lock_irq(&info->lock);
1213                        info->swapped--;
1214                        spin_unlock_irq(&info->lock);
1215                        swap_free(swap);
1216                }
1217        }
1218        return error;
1219}
1220
1221/*
1222 * Search through swapped inodes to find and replace swap by page.
1223 */
1224int shmem_unuse(swp_entry_t swap, struct page *page)
1225{
1226        struct list_head *this, *next;
1227        struct shmem_inode_info *info;
1228        struct mem_cgroup *memcg;
1229        int error = 0;
1230
1231        /*
1232         * There's a faint possibility that swap page was replaced before
1233         * caller locked it: caller will come back later with the right page.
1234         */
1235        if (unlikely(!PageSwapCache(page) || page_private(page) != swap.val))
1236                goto out;
1237
1238        /*
1239         * Charge page using GFP_KERNEL while we can wait, before taking
1240         * the shmem_swaplist_mutex which might hold up shmem_writepage().
1241         * Charged back to the user (not to caller) when swap account is used.
1242         */
1243        error = mem_cgroup_try_charge_delay(page, current->mm, GFP_KERNEL,
1244                                            &memcg, false);
1245        if (error)
1246                goto out;
1247        /* No radix_tree_preload: swap entry keeps a place for page in tree */
1248        error = -EAGAIN;
1249
1250        mutex_lock(&shmem_swaplist_mutex);
1251        list_for_each_safe(this, next, &shmem_swaplist) {
1252                info = list_entry(this, struct shmem_inode_info, swaplist);
1253                if (info->swapped)
1254                        error = shmem_unuse_inode(info, swap, &page);
1255                else
1256                        list_del_init(&info->swaplist);
1257                cond_resched();
1258                if (error != -EAGAIN)
1259                        break;
1260                /* found nothing in this: move on to search the next */
1261        }
1262        mutex_unlock(&shmem_swaplist_mutex);
1263
1264        if (error) {
1265                if (error != -ENOMEM)
1266                        error = 0;
1267                mem_cgroup_cancel_charge(page, memcg, false);
1268        } else
1269                mem_cgroup_commit_charge(page, memcg, true, false);
1270out:
1271        unlock_page(page);
1272        put_page(page);
1273        return error;
1274}
1275
1276/*
1277 * Move the page from the page cache to the swap cache.
1278 */
1279static int shmem_writepage(struct page *page, struct writeback_control *wbc)
1280{
1281        struct shmem_inode_info *info;
1282        struct address_space *mapping;
1283        struct inode *inode;
1284        swp_entry_t swap;
1285        pgoff_t index;
1286
1287        VM_BUG_ON_PAGE(PageCompound(page), page);
1288        BUG_ON(!PageLocked(page));
1289        mapping = page->mapping;
1290        index = page->index;
1291        inode = mapping->host;
1292        info = SHMEM_I(inode);
1293        if (info->flags & VM_LOCKED)
1294                goto redirty;
1295        if (!total_swap_pages)
1296                goto redirty;
1297
1298        /*
1299         * Our capabilities prevent regular writeback or sync from ever calling
1300         * shmem_writepage; but a stacking filesystem might use ->writepage of
1301         * its underlying filesystem, in which case tmpfs should write out to
1302         * swap only in response to memory pressure, and not for the writeback
1303         * threads or sync.
1304         */
1305        if (!wbc->for_reclaim) {
1306                WARN_ON_ONCE(1);        /* Still happens? Tell us about it! */
1307                goto redirty;
1308        }
1309
1310        /*
1311         * This is somewhat ridiculous, but without plumbing a SWAP_MAP_FALLOC
1312         * value into swapfile.c, the only way we can correctly account for a
1313         * fallocated page arriving here is now to initialize it and write it.
1314         *
1315         * That's okay for a page already fallocated earlier, but if we have
1316         * not yet completed the fallocation, then (a) we want to keep track
1317         * of this page in case we have to undo it, and (b) it may not be a
1318         * good idea to continue anyway, once we're pushing into swap.  So
1319         * reactivate the page, and let shmem_fallocate() quit when too many.
1320         */
1321        if (!PageUptodate(page)) {
1322                if (inode->i_private) {
1323                        struct shmem_falloc *shmem_falloc;
1324                        spin_lock(&inode->i_lock);
1325                        shmem_falloc = inode->i_private;
1326                        if (shmem_falloc &&
1327                            !shmem_falloc->waitq &&
1328                            index >= shmem_falloc->start &&
1329                            index < shmem_falloc->next)
1330                                shmem_falloc->nr_unswapped++;
1331                        else
1332                                shmem_falloc = NULL;
1333                        spin_unlock(&inode->i_lock);
1334                        if (shmem_falloc)
1335                                goto redirty;
1336                }
1337                clear_highpage(page);
1338                flush_dcache_page(page);
1339                SetPageUptodate(page);
1340        }
1341
1342        swap = get_swap_page(page);
1343        if (!swap.val)
1344                goto redirty;
1345
1346        /*
1347         * Add inode to shmem_unuse()'s list of swapped-out inodes,
1348         * if it's not already there.  Do it now before the page is
1349         * moved to swap cache, when its pagelock no longer protects
1350         * the inode from eviction.  But don't unlock the mutex until
1351         * we've incremented swapped, because shmem_unuse_inode() will
1352         * prune a !swapped inode from the swaplist under this mutex.
1353         */
1354        mutex_lock(&shmem_swaplist_mutex);
1355        if (list_empty(&info->swaplist))
1356                list_add_tail(&info->swaplist, &shmem_swaplist);
1357
1358        if (add_to_swap_cache(page, swap, GFP_ATOMIC) == 0) {
1359                spin_lock_irq(&info->lock);
1360                shmem_recalc_inode(inode);
1361                info->swapped++;
1362                spin_unlock_irq(&info->lock);
1363
1364                swap_shmem_alloc(swap);
1365                shmem_delete_from_page_cache(page, swp_to_radix_entry(swap));
1366
1367                mutex_unlock(&shmem_swaplist_mutex);
1368                BUG_ON(page_mapped(page));
1369                swap_writepage(page, wbc);
1370                return 0;
1371        }
1372
1373        mutex_unlock(&shmem_swaplist_mutex);
1374        put_swap_page(page, swap);
1375redirty:
1376        set_page_dirty(page);
1377        if (wbc->for_reclaim)
1378                return AOP_WRITEPAGE_ACTIVATE;  /* Return with page locked */
1379        unlock_page(page);
1380        return 0;
1381}
1382
1383#if defined(CONFIG_NUMA) && defined(CONFIG_TMPFS)
1384static void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1385{
1386        char buffer[64];
1387
1388        if (!mpol || mpol->mode == MPOL_DEFAULT)
1389                return;         /* show nothing */
1390
1391        mpol_to_str(buffer, sizeof(buffer), mpol);
1392
1393        seq_printf(seq, ",mpol=%s", buffer);
1394}
1395
1396static struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1397{
1398        struct mempolicy *mpol = NULL;
1399        if (sbinfo->mpol) {
1400                spin_lock(&sbinfo->stat_lock);  /* prevent replace/use races */
1401                mpol = sbinfo->mpol;
1402                mpol_get(mpol);
1403                spin_unlock(&sbinfo->stat_lock);
1404        }
1405        return mpol;
1406}
1407#else /* !CONFIG_NUMA || !CONFIG_TMPFS */
1408static inline void shmem_show_mpol(struct seq_file *seq, struct mempolicy *mpol)
1409{
1410}
1411static inline struct mempolicy *shmem_get_sbmpol(struct shmem_sb_info *sbinfo)
1412{
1413        return NULL;
1414}
1415#endif /* CONFIG_NUMA && CONFIG_TMPFS */
1416#ifndef CONFIG_NUMA
1417#define vm_policy vm_private_data
1418#endif
1419
1420static void shmem_pseudo_vma_init(struct vm_area_struct *vma,
1421                struct shmem_inode_info *info, pgoff_t index)
1422{
1423        /* Create a pseudo vma that just contains the policy */
1424        vma_init(vma, NULL);
1425        /* Bias interleave by inode number to distribute better across nodes */
1426        vma->vm_pgoff = index + info->vfs_inode.i_ino;
1427        vma->vm_policy = mpol_shared_policy_lookup(&info->policy, index);
1428}
1429
1430static void shmem_pseudo_vma_destroy(struct vm_area_struct *vma)
1431{
1432        /* Drop reference taken by mpol_shared_policy_lookup() */
1433        mpol_cond_put(vma->vm_policy);
1434}
1435
1436static struct page *shmem_swapin(swp_entry_t swap, gfp_t gfp,
1437                        struct shmem_inode_info *info, pgoff_t index)
1438{
1439        struct vm_area_struct pvma;
1440        struct page *page;
1441        struct vm_fault vmf;
1442
1443        shmem_pseudo_vma_init(&pvma, info, index);
1444        vmf.vma = &pvma;
1445        vmf.address = 0;
1446        page = swap_cluster_readahead(swap, gfp, &vmf);
1447        shmem_pseudo_vma_destroy(&pvma);
1448
1449        return page;
1450}
1451
1452static struct page *shmem_alloc_hugepage(gfp_t gfp,
1453                struct shmem_inode_info *info, pgoff_t index)
1454{
1455        struct vm_area_struct pvma;
1456        struct inode *inode = &info->vfs_inode;
1457        struct address_space *mapping = inode->i_mapping;
1458        pgoff_t idx, hindex;
1459        void __rcu **results;
1460        struct page *page;
1461
1462        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1463                return NULL;
1464
1465        hindex = round_down(index, HPAGE_PMD_NR);
1466        rcu_read_lock();
1467        if (radix_tree_gang_lookup_slot(&mapping->i_pages, &results, &idx,
1468                                hindex, 1) && idx < hindex + HPAGE_PMD_NR) {
1469                rcu_read_unlock();
1470                return NULL;
1471        }
1472        rcu_read_unlock();
1473
1474        shmem_pseudo_vma_init(&pvma, info, hindex);
1475        page = alloc_pages_vma(gfp | __GFP_COMP | __GFP_NORETRY | __GFP_NOWARN,
1476                        HPAGE_PMD_ORDER, &pvma, 0, numa_node_id(), true);
1477        shmem_pseudo_vma_destroy(&pvma);
1478        if (page)
1479                prep_transhuge_page(page);
1480        return page;
1481}
1482
1483static struct page *shmem_alloc_page(gfp_t gfp,
1484                        struct shmem_inode_info *info, pgoff_t index)
1485{
1486        struct vm_area_struct pvma;
1487        struct page *page;
1488
1489        shmem_pseudo_vma_init(&pvma, info, index);
1490        page = alloc_page_vma(gfp, &pvma, 0);
1491        shmem_pseudo_vma_destroy(&pvma);
1492
1493        return page;
1494}
1495
1496static struct page *shmem_alloc_and_acct_page(gfp_t gfp,
1497                struct inode *inode,
1498                pgoff_t index, bool huge)
1499{
1500        struct shmem_inode_info *info = SHMEM_I(inode);
1501        struct page *page;
1502        int nr;
1503        int err = -ENOSPC;
1504
1505        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
1506                huge = false;
1507        nr = huge ? HPAGE_PMD_NR : 1;
1508
1509        if (!shmem_inode_acct_block(inode, nr))
1510                goto failed;
1511
1512        if (huge)
1513                page = shmem_alloc_hugepage(gfp, info, index);
1514        else
1515                page = shmem_alloc_page(gfp, info, index);
1516        if (page) {
1517                __SetPageLocked(page);
1518                __SetPageSwapBacked(page);
1519                return page;
1520        }
1521
1522        err = -ENOMEM;
1523        shmem_inode_unacct_blocks(inode, nr);
1524failed:
1525        return ERR_PTR(err);
1526}
1527
1528/*
1529 * When a page is moved from swapcache to shmem filecache (either by the
1530 * usual swapin of shmem_getpage_gfp(), or by the less common swapoff of
1531 * shmem_unuse_inode()), it may have been read in earlier from swap, in
1532 * ignorance of the mapping it belongs to.  If that mapping has special
1533 * constraints (like the gma500 GEM driver, which requires RAM below 4GB),
1534 * we may need to copy to a suitable page before moving to filecache.
1535 *
1536 * In a future release, this may well be extended to respect cpuset and
1537 * NUMA mempolicy, and applied also to anonymous pages in do_swap_page();
1538 * but for now it is a simple matter of zone.
1539 */
1540static bool shmem_should_replace_page(struct page *page, gfp_t gfp)
1541{
1542        return page_zonenum(page) > gfp_zone(gfp);
1543}
1544
1545static int shmem_replace_page(struct page **pagep, gfp_t gfp,
1546                                struct shmem_inode_info *info, pgoff_t index)
1547{
1548        struct page *oldpage, *newpage;
1549        struct address_space *swap_mapping;
1550        pgoff_t swap_index;
1551        int error;
1552
1553        oldpage = *pagep;
1554        swap_index = page_private(oldpage);
1555        swap_mapping = page_mapping(oldpage);
1556
1557        /*
1558         * We have arrived here because our zones are constrained, so don't
1559         * limit chance of success by further cpuset and node constraints.
1560         */
1561        gfp &= ~GFP_CONSTRAINT_MASK;
1562        newpage = shmem_alloc_page(gfp, info, index);
1563        if (!newpage)
1564                return -ENOMEM;
1565
1566        get_page(newpage);
1567        copy_highpage(newpage, oldpage);
1568        flush_dcache_page(newpage);
1569
1570        __SetPageLocked(newpage);
1571        __SetPageSwapBacked(newpage);
1572        SetPageUptodate(newpage);
1573        set_page_private(newpage, swap_index);
1574        SetPageSwapCache(newpage);
1575
1576        /*
1577         * Our caller will very soon move newpage out of swapcache, but it's
1578         * a nice clean interface for us to replace oldpage by newpage there.
1579         */
1580        xa_lock_irq(&swap_mapping->i_pages);
1581        error = shmem_radix_tree_replace(swap_mapping, swap_index, oldpage,
1582                                                                   newpage);
1583        if (!error) {
1584                __inc_node_page_state(newpage, NR_FILE_PAGES);
1585                __dec_node_page_state(oldpage, NR_FILE_PAGES);
1586        }
1587        xa_unlock_irq(&swap_mapping->i_pages);
1588
1589        if (unlikely(error)) {
1590                /*
1591                 * Is this possible?  I think not, now that our callers check
1592                 * both PageSwapCache and page_private after getting page lock;
1593                 * but be defensive.  Reverse old to newpage for clear and free.
1594                 */
1595                oldpage = newpage;
1596        } else {
1597                mem_cgroup_migrate(oldpage, newpage);
1598                lru_cache_add_anon(newpage);
1599                *pagep = newpage;
1600        }
1601
1602        ClearPageSwapCache(oldpage);
1603        set_page_private(oldpage, 0);
1604
1605        unlock_page(oldpage);
1606        put_page(oldpage);
1607        put_page(oldpage);
1608        return error;
1609}
1610
1611/*
1612 * shmem_getpage_gfp - find page in cache, or get from swap, or allocate
1613 *
1614 * If we allocate a new one we do not mark it dirty. That's up to the
1615 * vm. If we swap it in we mark it dirty since we also free the swap
1616 * entry since a page cannot live in both the swap and page cache.
1617 *
1618 * fault_mm and fault_type are only supplied by shmem_fault:
1619 * otherwise they are NULL.
1620 */
1621static int shmem_getpage_gfp(struct inode *inode, pgoff_t index,
1622        struct page **pagep, enum sgp_type sgp, gfp_t gfp,
1623        struct vm_area_struct *vma, struct vm_fault *vmf,
1624                        vm_fault_t *fault_type)
1625{
1626        struct address_space *mapping = inode->i_mapping;
1627        struct shmem_inode_info *info = SHMEM_I(inode);
1628        struct shmem_sb_info *sbinfo;
1629        struct mm_struct *charge_mm;
1630        struct mem_cgroup *memcg;
1631        struct page *page;
1632        swp_entry_t swap;
1633        enum sgp_type sgp_huge = sgp;
1634        pgoff_t hindex = index;
1635        int error;
1636        int once = 0;
1637        int alloced = 0;
1638
1639        if (index > (MAX_LFS_FILESIZE >> PAGE_SHIFT))
1640                return -EFBIG;
1641        if (sgp == SGP_NOHUGE || sgp == SGP_HUGE)
1642                sgp = SGP_CACHE;
1643repeat:
1644        swap.val = 0;
1645        page = find_lock_entry(mapping, index);
1646        if (radix_tree_exceptional_entry(page)) {
1647                swap = radix_to_swp_entry(page);
1648                page = NULL;
1649        }
1650
1651        if (sgp <= SGP_CACHE &&
1652            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1653                error = -EINVAL;
1654                goto unlock;
1655        }
1656
1657        if (page && sgp == SGP_WRITE)
1658                mark_page_accessed(page);
1659
1660        /* fallocated page? */
1661        if (page && !PageUptodate(page)) {
1662                if (sgp != SGP_READ)
1663                        goto clear;
1664                unlock_page(page);
1665                put_page(page);
1666                page = NULL;
1667        }
1668        if (page || (sgp == SGP_READ && !swap.val)) {
1669                *pagep = page;
1670                return 0;
1671        }
1672
1673        /*
1674         * Fast cache lookup did not find it:
1675         * bring it back from swap or allocate.
1676         */
1677        sbinfo = SHMEM_SB(inode->i_sb);
1678        charge_mm = vma ? vma->vm_mm : current->mm;
1679
1680        if (swap.val) {
1681                /* Look it up and read it in.. */
1682                page = lookup_swap_cache(swap, NULL, 0);
1683                if (!page) {
1684                        /* Or update major stats only when swapin succeeds?? */
1685                        if (fault_type) {
1686                                *fault_type |= VM_FAULT_MAJOR;
1687                                count_vm_event(PGMAJFAULT);
1688                                count_memcg_event_mm(charge_mm, PGMAJFAULT);
1689                        }
1690                        /* Here we actually start the io */
1691                        page = shmem_swapin(swap, gfp, info, index);
1692                        if (!page) {
1693                                error = -ENOMEM;
1694                                goto failed;
1695                        }
1696                }
1697
1698                /* We have to do this with page locked to prevent races */
1699                lock_page(page);
1700                if (!PageSwapCache(page) || page_private(page) != swap.val ||
1701                    !shmem_confirm_swap(mapping, index, swap)) {
1702                        error = -EEXIST;        /* try again */
1703                        goto unlock;
1704                }
1705                if (!PageUptodate(page)) {
1706                        error = -EIO;
1707                        goto failed;
1708                }
1709                wait_on_page_writeback(page);
1710
1711                if (shmem_should_replace_page(page, gfp)) {
1712                        error = shmem_replace_page(&page, gfp, info, index);
1713                        if (error)
1714                                goto failed;
1715                }
1716
1717                error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1718                                false);
1719                if (!error) {
1720                        error = shmem_add_to_page_cache(page, mapping, index,
1721                                                swp_to_radix_entry(swap));
1722                        /*
1723                         * We already confirmed swap under page lock, and make
1724                         * no memory allocation here, so usually no possibility
1725                         * of error; but free_swap_and_cache() only trylocks a
1726                         * page, so it is just possible that the entry has been
1727                         * truncated or holepunched since swap was confirmed.
1728                         * shmem_undo_range() will have done some of the
1729                         * unaccounting, now delete_from_swap_cache() will do
1730                         * the rest.
1731                         * Reset swap.val? No, leave it so "failed" goes back to
1732                         * "repeat": reading a hole and writing should succeed.
1733                         */
1734                        if (error) {
1735                                mem_cgroup_cancel_charge(page, memcg, false);
1736                                delete_from_swap_cache(page);
1737                        }
1738                }
1739                if (error)
1740                        goto failed;
1741
1742                mem_cgroup_commit_charge(page, memcg, true, false);
1743
1744                spin_lock_irq(&info->lock);
1745                info->swapped--;
1746                shmem_recalc_inode(inode);
1747                spin_unlock_irq(&info->lock);
1748
1749                if (sgp == SGP_WRITE)
1750                        mark_page_accessed(page);
1751
1752                delete_from_swap_cache(page);
1753                set_page_dirty(page);
1754                swap_free(swap);
1755
1756        } else {
1757                if (vma && userfaultfd_missing(vma)) {
1758                        *fault_type = handle_userfault(vmf, VM_UFFD_MISSING);
1759                        return 0;
1760                }
1761
1762                /* shmem_symlink() */
1763                if (mapping->a_ops != &shmem_aops)
1764                        goto alloc_nohuge;
1765                if (shmem_huge == SHMEM_HUGE_DENY || sgp_huge == SGP_NOHUGE)
1766                        goto alloc_nohuge;
1767                if (shmem_huge == SHMEM_HUGE_FORCE)
1768                        goto alloc_huge;
1769                switch (sbinfo->huge) {
1770                        loff_t i_size;
1771                        pgoff_t off;
1772                case SHMEM_HUGE_NEVER:
1773                        goto alloc_nohuge;
1774                case SHMEM_HUGE_WITHIN_SIZE:
1775                        off = round_up(index, HPAGE_PMD_NR);
1776                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
1777                        if (i_size >= HPAGE_PMD_SIZE &&
1778                                        i_size >> PAGE_SHIFT >= off)
1779                                goto alloc_huge;
1780                        /* fallthrough */
1781                case SHMEM_HUGE_ADVISE:
1782                        if (sgp_huge == SGP_HUGE)
1783                                goto alloc_huge;
1784                        /* TODO: implement fadvise() hints */
1785                        goto alloc_nohuge;
1786                }
1787
1788alloc_huge:
1789                page = shmem_alloc_and_acct_page(gfp, inode, index, true);
1790                if (IS_ERR(page)) {
1791alloc_nohuge:           page = shmem_alloc_and_acct_page(gfp, inode,
1792                                        index, false);
1793                }
1794                if (IS_ERR(page)) {
1795                        int retry = 5;
1796                        error = PTR_ERR(page);
1797                        page = NULL;
1798                        if (error != -ENOSPC)
1799                                goto failed;
1800                        /*
1801                         * Try to reclaim some spece by splitting a huge page
1802                         * beyond i_size on the filesystem.
1803                         */
1804                        while (retry--) {
1805                                int ret;
1806                                ret = shmem_unused_huge_shrink(sbinfo, NULL, 1);
1807                                if (ret == SHRINK_STOP)
1808                                        break;
1809                                if (ret)
1810                                        goto alloc_nohuge;
1811                        }
1812                        goto failed;
1813                }
1814
1815                if (PageTransHuge(page))
1816                        hindex = round_down(index, HPAGE_PMD_NR);
1817                else
1818                        hindex = index;
1819
1820                if (sgp == SGP_WRITE)
1821                        __SetPageReferenced(page);
1822
1823                error = mem_cgroup_try_charge_delay(page, charge_mm, gfp, &memcg,
1824                                PageTransHuge(page));
1825                if (error)
1826                        goto unacct;
1827                error = radix_tree_maybe_preload_order(gfp & GFP_RECLAIM_MASK,
1828                                compound_order(page));
1829                if (!error) {
1830                        error = shmem_add_to_page_cache(page, mapping, hindex,
1831                                                        NULL);
1832                        radix_tree_preload_end();
1833                }
1834                if (error) {
1835                        mem_cgroup_cancel_charge(page, memcg,
1836                                        PageTransHuge(page));
1837                        goto unacct;
1838                }
1839                mem_cgroup_commit_charge(page, memcg, false,
1840                                PageTransHuge(page));
1841                lru_cache_add_anon(page);
1842
1843                spin_lock_irq(&info->lock);
1844                info->alloced += 1 << compound_order(page);
1845                inode->i_blocks += BLOCKS_PER_PAGE << compound_order(page);
1846                shmem_recalc_inode(inode);
1847                spin_unlock_irq(&info->lock);
1848                alloced = true;
1849
1850                if (PageTransHuge(page) &&
1851                                DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE) <
1852                                hindex + HPAGE_PMD_NR - 1) {
1853                        /*
1854                         * Part of the huge page is beyond i_size: subject
1855                         * to shrink under memory pressure.
1856                         */
1857                        spin_lock(&sbinfo->shrinklist_lock);
1858                        /*
1859                         * _careful to defend against unlocked access to
1860                         * ->shrink_list in shmem_unused_huge_shrink()
1861                         */
1862                        if (list_empty_careful(&info->shrinklist)) {
1863                                list_add_tail(&info->shrinklist,
1864                                                &sbinfo->shrinklist);
1865                                sbinfo->shrinklist_len++;
1866                        }
1867                        spin_unlock(&sbinfo->shrinklist_lock);
1868                }
1869
1870                /*
1871                 * Let SGP_FALLOC use the SGP_WRITE optimization on a new page.
1872                 */
1873                if (sgp == SGP_FALLOC)
1874                        sgp = SGP_WRITE;
1875clear:
1876                /*
1877                 * Let SGP_WRITE caller clear ends if write does not fill page;
1878                 * but SGP_FALLOC on a page fallocated earlier must initialize
1879                 * it now, lest undo on failure cancel our earlier guarantee.
1880                 */
1881                if (sgp != SGP_WRITE && !PageUptodate(page)) {
1882                        struct page *head = compound_head(page);
1883                        int i;
1884
1885                        for (i = 0; i < (1 << compound_order(head)); i++) {
1886                                clear_highpage(head + i);
1887                                flush_dcache_page(head + i);
1888                        }
1889                        SetPageUptodate(head);
1890                }
1891        }
1892
1893        /* Perhaps the file has been truncated since we checked */
1894        if (sgp <= SGP_CACHE &&
1895            ((loff_t)index << PAGE_SHIFT) >= i_size_read(inode)) {
1896                if (alloced) {
1897                        ClearPageDirty(page);
1898                        delete_from_page_cache(page);
1899                        spin_lock_irq(&info->lock);
1900                        shmem_recalc_inode(inode);
1901                        spin_unlock_irq(&info->lock);
1902                }
1903                error = -EINVAL;
1904                goto unlock;
1905        }
1906        *pagep = page + index - hindex;
1907        return 0;
1908
1909        /*
1910         * Error recovery.
1911         */
1912unacct:
1913        shmem_inode_unacct_blocks(inode, 1 << compound_order(page));
1914
1915        if (PageTransHuge(page)) {
1916                unlock_page(page);
1917                put_page(page);
1918                goto alloc_nohuge;
1919        }
1920failed:
1921        if (swap.val && !shmem_confirm_swap(mapping, index, swap))
1922                error = -EEXIST;
1923unlock:
1924        if (page) {
1925                unlock_page(page);
1926                put_page(page);
1927        }
1928        if (error == -ENOSPC && !once++) {
1929                spin_lock_irq(&info->lock);
1930                shmem_recalc_inode(inode);
1931                spin_unlock_irq(&info->lock);
1932                goto repeat;
1933        }
1934        if (error == -EEXIST)   /* from above or from radix_tree_insert */
1935                goto repeat;
1936        return error;
1937}
1938
1939/*
1940 * This is like autoremove_wake_function, but it removes the wait queue
1941 * entry unconditionally - even if something else had already woken the
1942 * target.
1943 */
1944static int synchronous_wake_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1945{
1946        int ret = default_wake_function(wait, mode, sync, key);
1947        list_del_init(&wait->entry);
1948        return ret;
1949}
1950
1951static vm_fault_t shmem_fault(struct vm_fault *vmf)
1952{
1953        struct vm_area_struct *vma = vmf->vma;
1954        struct inode *inode = file_inode(vma->vm_file);
1955        gfp_t gfp = mapping_gfp_mask(inode->i_mapping);
1956        enum sgp_type sgp;
1957        int err;
1958        vm_fault_t ret = VM_FAULT_LOCKED;
1959
1960        /*
1961         * Trinity finds that probing a hole which tmpfs is punching can
1962         * prevent the hole-punch from ever completing: which in turn
1963         * locks writers out with its hold on i_mutex.  So refrain from
1964         * faulting pages into the hole while it's being punched.  Although
1965         * shmem_undo_range() does remove the additions, it may be unable to
1966         * keep up, as each new page needs its own unmap_mapping_range() call,
1967         * and the i_mmap tree grows ever slower to scan if new vmas are added.
1968         *
1969         * It does not matter if we sometimes reach this check just before the
1970         * hole-punch begins, so that one fault then races with the punch:
1971         * we just need to make racing faults a rare case.
1972         *
1973         * The implementation below would be much simpler if we just used a
1974         * standard mutex or completion: but we cannot take i_mutex in fault,
1975         * and bloating every shmem inode for this unlikely case would be sad.
1976         */
1977        if (unlikely(inode->i_private)) {
1978                struct shmem_falloc *shmem_falloc;
1979
1980                spin_lock(&inode->i_lock);
1981                shmem_falloc = inode->i_private;
1982                if (shmem_falloc &&
1983                    shmem_falloc->waitq &&
1984                    vmf->pgoff >= shmem_falloc->start &&
1985                    vmf->pgoff < shmem_falloc->next) {
1986                        wait_queue_head_t *shmem_falloc_waitq;
1987                        DEFINE_WAIT_FUNC(shmem_fault_wait, synchronous_wake_function);
1988
1989                        ret = VM_FAULT_NOPAGE;
1990                        if ((vmf->flags & FAULT_FLAG_ALLOW_RETRY) &&
1991                           !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT)) {
1992                                /* It's polite to up mmap_sem if we can */
1993                                up_read(&vma->vm_mm->mmap_sem);
1994                                ret = VM_FAULT_RETRY;
1995                        }
1996
1997                        shmem_falloc_waitq = shmem_falloc->waitq;
1998                        prepare_to_wait(shmem_falloc_waitq, &shmem_fault_wait,
1999                                        TASK_UNINTERRUPTIBLE);
2000                        spin_unlock(&inode->i_lock);
2001                        schedule();
2002
2003                        /*
2004                         * shmem_falloc_waitq points into the shmem_fallocate()
2005                         * stack of the hole-punching task: shmem_falloc_waitq
2006                         * is usually invalid by the time we reach here, but
2007                         * finish_wait() does not dereference it in that case;
2008                         * though i_lock needed lest racing with wake_up_all().
2009                         */
2010                        spin_lock(&inode->i_lock);
2011                        finish_wait(shmem_falloc_waitq, &shmem_fault_wait);
2012                        spin_unlock(&inode->i_lock);
2013                        return ret;
2014                }
2015                spin_unlock(&inode->i_lock);
2016        }
2017
2018        sgp = SGP_CACHE;
2019
2020        if ((vma->vm_flags & VM_NOHUGEPAGE) ||
2021            test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
2022                sgp = SGP_NOHUGE;
2023        else if (vma->vm_flags & VM_HUGEPAGE)
2024                sgp = SGP_HUGE;
2025
2026        err = shmem_getpage_gfp(inode, vmf->pgoff, &vmf->page, sgp,
2027                                  gfp, vma, vmf, &ret);
2028        if (err)
2029                return vmf_error(err);
2030        return ret;
2031}
2032
2033unsigned long shmem_get_unmapped_area(struct file *file,
2034                                      unsigned long uaddr, unsigned long len,
2035                                      unsigned long pgoff, unsigned long flags)
2036{
2037        unsigned long (*get_area)(struct file *,
2038                unsigned long, unsigned long, unsigned long, unsigned long);
2039        unsigned long addr;
2040        unsigned long offset;
2041        unsigned long inflated_len;
2042        unsigned long inflated_addr;
2043        unsigned long inflated_offset;
2044
2045        if (len > TASK_SIZE)
2046                return -ENOMEM;
2047
2048        get_area = current->mm->get_unmapped_area;
2049        addr = get_area(file, uaddr, len, pgoff, flags);
2050
2051        if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
2052                return addr;
2053        if (IS_ERR_VALUE(addr))
2054                return addr;
2055        if (addr & ~PAGE_MASK)
2056                return addr;
2057        if (addr > TASK_SIZE - len)
2058                return addr;
2059
2060        if (shmem_huge == SHMEM_HUGE_DENY)
2061                return addr;
2062        if (len < HPAGE_PMD_SIZE)
2063                return addr;
2064        if (flags & MAP_FIXED)
2065                return addr;
2066        /*
2067         * Our priority is to support MAP_SHARED mapped hugely;
2068         * and support MAP_PRIVATE mapped hugely too, until it is COWed.
2069         * But if caller specified an address hint, respect that as before.
2070         */
2071        if (uaddr)
2072                return addr;
2073
2074        if (shmem_huge != SHMEM_HUGE_FORCE) {
2075                struct super_block *sb;
2076
2077                if (file) {
2078                        VM_BUG_ON(file->f_op != &shmem_file_operations);
2079                        sb = file_inode(file)->i_sb;
2080                } else {
2081                        /*
2082                         * Called directly from mm/mmap.c, or drivers/char/mem.c
2083                         * for "/dev/zero", to create a shared anonymous object.
2084                         */
2085                        if (IS_ERR(shm_mnt))
2086                                return addr;
2087                        sb = shm_mnt->mnt_sb;
2088                }
2089                if (SHMEM_SB(sb)->huge == SHMEM_HUGE_NEVER)
2090                        return addr;
2091        }
2092
2093        offset = (pgoff << PAGE_SHIFT) & (HPAGE_PMD_SIZE-1);
2094        if (offset && offset + len < 2 * HPAGE_PMD_SIZE)
2095                return addr;
2096        if ((addr & (HPAGE_PMD_SIZE-1)) == offset)
2097                return addr;
2098
2099        inflated_len = len + HPAGE_PMD_SIZE - PAGE_SIZE;
2100        if (inflated_len > TASK_SIZE)
2101                return addr;
2102        if (inflated_len < len)
2103                return addr;
2104
2105        inflated_addr = get_area(NULL, 0, inflated_len, 0, flags);
2106        if (IS_ERR_VALUE(inflated_addr))
2107                return addr;
2108        if (inflated_addr & ~PAGE_MASK)
2109                return addr;
2110
2111        inflated_offset = inflated_addr & (HPAGE_PMD_SIZE-1);
2112        inflated_addr += offset - inflated_offset;
2113        if (inflated_offset > offset)
2114                inflated_addr += HPAGE_PMD_SIZE;
2115
2116        if (inflated_addr > TASK_SIZE - len)
2117                return addr;
2118        return inflated_addr;
2119}
2120
2121#ifdef CONFIG_NUMA
2122static int shmem_set_policy(struct vm_area_struct *vma, struct mempolicy *mpol)
2123{
2124        struct inode *inode = file_inode(vma->vm_file);
2125        return mpol_set_shared_policy(&SHMEM_I(inode)->policy, vma, mpol);
2126}
2127
2128static struct mempolicy *shmem_get_policy(struct vm_area_struct *vma,
2129                                          unsigned long addr)
2130{
2131        struct inode *inode = file_inode(vma->vm_file);
2132        pgoff_t index;
2133
2134        index = ((addr - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2135        return mpol_shared_policy_lookup(&SHMEM_I(inode)->policy, index);
2136}
2137#endif
2138
2139int shmem_lock(struct file *file, int lock, struct user_struct *user)
2140{
2141        struct inode *inode = file_inode(file);
2142        struct shmem_inode_info *info = SHMEM_I(inode);
2143        int retval = -ENOMEM;
2144
2145        spin_lock_irq(&info->lock);
2146        if (lock && !(info->flags & VM_LOCKED)) {
2147                if (!user_shm_lock(inode->i_size, user))
2148                        goto out_nomem;
2149                info->flags |= VM_LOCKED;
2150                mapping_set_unevictable(file->f_mapping);
2151        }
2152        if (!lock && (info->flags & VM_LOCKED) && user) {
2153                user_shm_unlock(inode->i_size, user);
2154                info->flags &= ~VM_LOCKED;
2155                mapping_clear_unevictable(file->f_mapping);
2156        }
2157        retval = 0;
2158
2159out_nomem:
2160        spin_unlock_irq(&info->lock);
2161        return retval;
2162}
2163
2164static int shmem_mmap(struct file *file, struct vm_area_struct *vma)
2165{
2166        file_accessed(file);
2167        vma->vm_ops = &shmem_vm_ops;
2168        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
2169                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
2170                        (vma->vm_end & HPAGE_PMD_MASK)) {
2171                khugepaged_enter(vma, vma->vm_flags);
2172        }
2173        return 0;
2174}
2175
2176static struct inode *shmem_get_inode(struct super_block *sb, const struct inode *dir,
2177                                     umode_t mode, dev_t dev, unsigned long flags)
2178{
2179        struct inode *inode;
2180        struct shmem_inode_info *info;
2181        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
2182
2183        if (shmem_reserve_inode(sb))
2184                return NULL;
2185
2186        inode = new_inode(sb);
2187        if (inode) {
2188                inode->i_ino = get_next_ino();
2189                inode_init_owner(inode, dir, mode);
2190                inode->i_blocks = 0;
2191                inode->i_atime = inode->i_mtime = inode->i_ctime = current_time(inode);
2192                inode->i_generation = prandom_u32();
2193                info = SHMEM_I(inode);
2194                memset(info, 0, (char *)inode - (char *)info);
2195                spin_lock_init(&info->lock);
2196                info->seals = F_SEAL_SEAL;
2197                info->flags = flags & VM_NORESERVE;
2198                INIT_LIST_HEAD(&info->shrinklist);
2199                INIT_LIST_HEAD(&info->swaplist);
2200                simple_xattrs_init(&info->xattrs);
2201                cache_no_acl(inode);
2202
2203                switch (mode & S_IFMT) {
2204                default:
2205                        inode->i_op = &shmem_special_inode_operations;
2206                        init_special_inode(inode, mode, dev);
2207                        break;
2208                case S_IFREG:
2209                        inode->i_mapping->a_ops = &shmem_aops;
2210                        inode->i_op = &shmem_inode_operations;
2211                        inode->i_fop = &shmem_file_operations;
2212                        mpol_shared_policy_init(&info->policy,
2213                                                 shmem_get_sbmpol(sbinfo));
2214                        break;
2215                case S_IFDIR:
2216                        inc_nlink(inode);
2217                        /* Some things misbehave if size == 0 on a directory */
2218                        inode->i_size = 2 * BOGO_DIRENT_SIZE;
2219                        inode->i_op = &shmem_dir_inode_operations;
2220                        inode->i_fop = &simple_dir_operations;
2221                        break;
2222                case S_IFLNK:
2223                        /*
2224                         * Must not load anything in the rbtree,
2225                         * mpol_free_shared_policy will not be called.
2226                         */
2227                        mpol_shared_policy_init(&info->policy, NULL);
2228                        break;
2229                }
2230
2231                lockdep_annotate_inode_mutex_key(inode);
2232        } else
2233                shmem_free_inode(sb);
2234        return inode;
2235}
2236
2237bool shmem_mapping(struct address_space *mapping)
2238{
2239        return mapping->a_ops == &shmem_aops;
2240}
2241
2242static int shmem_mfill_atomic_pte(struct mm_struct *dst_mm,
2243                                  pmd_t *dst_pmd,
2244                                  struct vm_area_struct *dst_vma,
2245                                  unsigned long dst_addr,
2246                                  unsigned long src_addr,
2247                                  bool zeropage,
2248                                  struct page **pagep)
2249{
2250        struct inode *inode = file_inode(dst_vma->vm_file);
2251        struct shmem_inode_info *info = SHMEM_I(inode);
2252        struct address_space *mapping = inode->i_mapping;
2253        gfp_t gfp = mapping_gfp_mask(mapping);
2254        pgoff_t pgoff = linear_page_index(dst_vma, dst_addr);
2255        struct mem_cgroup *memcg;
2256        spinlock_t *ptl;
2257        void *page_kaddr;
2258        struct page *page;
2259        pte_t _dst_pte, *dst_pte;
2260        int ret;
2261
2262        ret = -ENOMEM;
2263        if (!shmem_inode_acct_block(inode, 1))
2264                goto out;
2265
2266        if (!*pagep) {
2267                page = shmem_alloc_page(gfp, info, pgoff);
2268                if (!page)
2269                        goto out_unacct_blocks;
2270
2271                if (!zeropage) {        /* mcopy_atomic */
2272                        page_kaddr = kmap_atomic(page);
2273                        ret = copy_from_user(page_kaddr,
2274                                             (const void __user *)src_addr,
2275                                             PAGE_SIZE);
2276                        kunmap_atomic(page_kaddr);
2277
2278                        /* fallback to copy_from_user outside mmap_sem */
2279                        if (unlikely(ret)) {
2280                                *pagep = page;
2281                                shmem_inode_unacct_blocks(inode, 1);
2282                                /* don't free the page */
2283                                return -EFAULT;
2284                        }
2285                } else {                /* mfill_zeropage_atomic */
2286                        clear_highpage(page);
2287                }
2288        } else {
2289                page = *pagep;
2290                *pagep = NULL;
2291        }
2292
2293        VM_BUG_ON(PageLocked(page) || PageSwapBacked(page));
2294        __SetPageLocked(page);
2295        __SetPageSwapBacked(page);
2296        __SetPageUptodate(page);
2297
2298        ret = mem_cgroup_try_charge_delay(page, dst_mm, gfp, &memcg, false);
2299        if (ret)
2300                goto out_release;
2301
2302        ret = radix_tree_maybe_preload(gfp & GFP_RECLAIM_MASK);
2303        if (!ret) {
2304                ret = shmem_add_to_page_cache(page, mapping, pgoff, NULL);
2305                radix_tree_preload_end();
2306        }
2307        if (ret)
2308                goto out_release_uncharge;
2309
2310        mem_cgroup_commit_charge(page, memcg, false, false);
2311
2312        _dst_pte = mk_pte(page, dst_vma->vm_page_prot);
2313        if (dst_vma->vm_flags & VM_WRITE)
2314                _dst_pte = pte_mkwrite(pte_mkdirty(_dst_pte));
2315
2316        ret = -EEXIST;
2317        dst_pte = pte_offset_map_lock(dst_mm, dst_pmd, dst_addr, &ptl);
2318        if (!pte_none(*dst_pte))
2319                goto out_release_uncharge_unlock;
2320
2321        lru_cache_add_anon(page);
2322
2323        spin_lock(&info->lock);
2324        info->alloced++;
2325        inode->i_blocks += BLOCKS_PER_PAGE;
2326        shmem_recalc_inode(inode);
2327        spin_unlock(&info->lock);
2328
2329        inc_mm_counter(dst_mm, mm_counter_file(page));
2330        page_add_file_rmap(page, false);
2331        set_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
2332
2333        /* No need to invalidate - it was non-present before */
2334        update_mmu_cache(dst_vma, dst_addr, dst_pte);
2335        unlock_page(page);
2336        pte_unmap_unlock(dst_pte, ptl);
2337        ret = 0;
2338out:
2339        return ret;
2340out_release_uncharge_unlock:
2341        pte_unmap_unlock(dst_pte, ptl);
2342out_release_uncharge:
2343        mem_cgroup_cancel_charge(page, memcg, false);
2344out_release:
2345        unlock_page(page);
2346        put_page(page);
2347out_unacct_blocks:
2348        shmem_inode_unacct_blocks(inode, 1);
2349        goto out;
2350}
2351
2352int shmem_mcopy_atomic_pte(struct mm_struct *dst_mm,
2353                           pmd_t *dst_pmd,
2354                           struct vm_area_struct *dst_vma,
2355                           unsigned long dst_addr,
2356                           unsigned long src_addr,
2357                           struct page **pagep)
2358{
2359        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2360                                      dst_addr, src_addr, false, pagep);
2361}
2362
2363int shmem_mfill_zeropage_pte(struct mm_struct *dst_mm,
2364                             pmd_t *dst_pmd,
2365                             struct vm_area_struct *dst_vma,
2366                             unsigned long dst_addr)
2367{
2368        struct page *page = NULL;
2369
2370        return shmem_mfill_atomic_pte(dst_mm, dst_pmd, dst_vma,
2371                                      dst_addr, 0, true, &page);
2372}
2373
2374#ifdef CONFIG_TMPFS
2375static const struct inode_operations shmem_symlink_inode_operations;
2376static const struct inode_operations shmem_short_symlink_operations;
2377
2378#ifdef CONFIG_TMPFS_XATTR
2379static int shmem_initxattrs(struct inode *, const struct xattr *, void *);
2380#else
2381#define shmem_initxattrs NULL
2382#endif
2383
2384static int
2385shmem_write_begin(struct file *file, struct address_space *mapping,
2386                        loff_t pos, unsigned len, unsigned flags,
2387                        struct page **pagep, void **fsdata)
2388{
2389        struct inode *inode = mapping->host;
2390        struct shmem_inode_info *info = SHMEM_I(inode);
2391        pgoff_t index = pos >> PAGE_SHIFT;
2392
2393        /* i_mutex is held by caller */
2394        if (unlikely(info->seals & (F_SEAL_WRITE | F_SEAL_GROW))) {
2395                if (info->seals & F_SEAL_WRITE)
2396                        return -EPERM;
2397                if ((info->seals & F_SEAL_GROW) && pos + len > inode->i_size)
2398                        return -EPERM;
2399        }
2400
2401        return shmem_getpage(inode, index, pagep, SGP_WRITE);
2402}
2403
2404static int
2405shmem_write_end(struct file *file, struct address_space *mapping,
2406                        loff_t pos, unsigned len, unsigned copied,
2407                        struct page *page, void *fsdata)
2408{
2409        struct inode *inode = mapping->host;
2410
2411        if (pos + copied > inode->i_size)
2412                i_size_write(inode, pos + copied);
2413
2414        if (!PageUptodate(page)) {
2415                struct page *head = compound_head(page);
2416                if (PageTransCompound(page)) {
2417                        int i;
2418
2419                        for (i = 0; i < HPAGE_PMD_NR; i++) {
2420                                if (head + i == page)
2421                                        continue;
2422                                clear_highpage(head + i);
2423                                flush_dcache_page(head + i);
2424                        }
2425                }
2426                if (copied < PAGE_SIZE) {
2427                        unsigned from = pos & (PAGE_SIZE - 1);
2428                        zero_user_segments(page, 0, from,
2429                                        from + copied, PAGE_SIZE);
2430                }
2431                SetPageUptodate(head);
2432        }
2433        set_page_dirty(page);
2434        unlock_page(page);
2435        put_page(page);
2436
2437        return copied;
2438}
2439
2440static ssize_t shmem_file_read_iter(struct kiocb *iocb, struct iov_iter *to)
2441{
2442        struct file *file = iocb->ki_filp;
2443        struct inode *inode = file_inode(file);
2444        struct address_space *mapping = inode->i_mapping;
2445        pgoff_t index;
2446        unsigned long offset;
2447        enum sgp_type sgp = SGP_READ;
2448        int error = 0;
2449        ssize_t retval = 0;
2450        loff_t *ppos = &iocb->ki_pos;
2451
2452        /*
2453         * Might this read be for a stacking filesystem?  Then when reading
2454         * holes of a sparse file, we actually need to allocate those pages,
2455         * and even mark them dirty, so it cannot exceed the max_blocks limit.
2456         */
2457        if (!iter_is_iovec(to))
2458                sgp = SGP_CACHE;
2459
2460        index = *ppos >> PAGE_SHIFT;
2461        offset = *ppos & ~PAGE_MASK;
2462
2463        for (;;) {
2464                struct page *page = NULL;
2465                pgoff_t end_index;
2466                unsigned long nr, ret;
2467                loff_t i_size = i_size_read(inode);
2468
2469                end_index = i_size >> PAGE_SHIFT;
2470                if (index > end_index)
2471                        break;
2472                if (index == end_index) {
2473                        nr = i_size & ~PAGE_MASK;
2474                        if (nr <= offset)
2475                                break;
2476                }
2477
2478                error = shmem_getpage(inode, index, &page, sgp);
2479                if (error) {
2480                        if (error == -EINVAL)
2481                                error = 0;
2482                        break;
2483                }
2484                if (page) {
2485                        if (sgp == SGP_CACHE)
2486                                set_page_dirty(page);
2487                        unlock_page(page);
2488                }
2489
2490                /*
2491                 * We must evaluate after, since reads (unlike writes)
2492                 * are called without i_mutex protection against truncate
2493                 */
2494                nr = PAGE_SIZE;
2495                i_size = i_size_read(inode);
2496                end_index = i_size >> PAGE_SHIFT;
2497                if (index == end_index) {
2498                        nr = i_size & ~PAGE_MASK;
2499                        if (nr <= offset) {
2500                                if (page)
2501                                        put_page(page);
2502                                break;
2503                        }
2504                }
2505                nr -= offset;
2506
2507                if (page) {
2508                        /*
2509                         * If users can be writing to this page using arbitrary
2510                         * virtual addresses, take care about potential aliasing
2511                         * before reading the page on the kernel side.
2512                         */
2513                        if (mapping_writably_mapped(mapping))
2514                                flush_dcache_page(page);
2515                        /*
2516                         * Mark the page accessed if we read the beginning.
2517                         */
2518                        if (!offset)
2519                                mark_page_accessed(page);
2520                } else {
2521                        page = ZERO_PAGE(0);
2522                        get_page(page);
2523                }
2524
2525                /*
2526                 * Ok, we have the page, and it's up-to-date, so
2527                 * now we can copy it to user space...
2528                 */
2529                ret = copy_page_to_iter(page, offset, nr, to);
2530                retval += ret;
2531                offset += ret;
2532                index += offset >> PAGE_SHIFT;
2533                offset &= ~PAGE_MASK;
2534
2535                put_page(page);
2536                if (!iov_iter_count(to))
2537                        break;
2538                if (ret < nr) {
2539                        error = -EFAULT;
2540                        break;
2541                }
2542                cond_resched();
2543        }
2544
2545        *ppos = ((loff_t) index << PAGE_SHIFT) + offset;
2546        file_accessed(file);
2547        return retval ? retval : error;
2548}
2549
2550/*
2551 * llseek SEEK_DATA or SEEK_HOLE through the radix_tree.
2552 */
2553static pgoff_t shmem_seek_hole_data(struct address_space *mapping,
2554                                    pgoff_t index, pgoff_t end, int whence)
2555{
2556        struct page *page;
2557        struct pagevec pvec;
2558        pgoff_t indices[PAGEVEC_SIZE];
2559        bool done = false;
2560        int i;
2561
2562        pagevec_init(&pvec);
2563        pvec.nr = 1;            /* start small: we may be there already */
2564        while (!done) {
2565                pvec.nr = find_get_entries(mapping, index,
2566                                        pvec.nr, pvec.pages, indices);
2567                if (!pvec.nr) {
2568                        if (whence == SEEK_DATA)
2569                                index = end;
2570                        break;
2571                }
2572                for (i = 0; i < pvec.nr; i++, index++) {
2573                        if (index < indices[i]) {
2574                                if (whence == SEEK_HOLE) {
2575                                        done = true;
2576                                        break;
2577                                }
2578                                index = indices[i];
2579                        }
2580                        page = pvec.pages[i];
2581                        if (page && !radix_tree_exceptional_entry(page)) {
2582                                if (!PageUptodate(page))
2583                                        page = NULL;
2584                        }
2585                        if (index >= end ||
2586                            (page && whence == SEEK_DATA) ||
2587                            (!page && whence == SEEK_HOLE)) {
2588                                done = true;
2589                                break;
2590                        }
2591                }
2592                pagevec_remove_exceptionals(&pvec);
2593                pagevec_release(&pvec);
2594                pvec.nr = PAGEVEC_SIZE;
2595                cond_resched();
2596        }
2597        return index;
2598}
2599
2600static loff_t shmem_file_llseek(struct file *file, loff_t offset, int whence)
2601{
2602        struct address_space *mapping = file->f_mapping;
2603        struct inode *inode = mapping->host;
2604        pgoff_t start, end;
2605        loff_t new_offset;
2606
2607        if (whence != SEEK_DATA && whence != SEEK_HOLE)
2608                return generic_file_llseek_size(file, offset, whence,
2609                                        MAX_LFS_FILESIZE, i_size_read(inode));
2610        inode_lock(inode);
2611        /* We're holding i_mutex so we can access i_size directly */
2612
2613        if (offset < 0)
2614                offset = -EINVAL;
2615        else if (offset >= inode->i_size)
2616                offset = -ENXIO;
2617        else {
2618                start = offset >> PAGE_SHIFT;
2619                end = (inode->i_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2620                new_offset = shmem_seek_hole_data(mapping, start, end, whence);
2621                new_offset <<= PAGE_SHIFT;
2622                if (new_offset > offset) {
2623                        if (new_offset < inode->i_size)
2624                                offset = new_offset;
2625                        else if (whence == SEEK_DATA)
2626                                offset = -ENXIO;
2627                        else
2628                                offset = inode->i_size;
2629                }
2630        }
2631
2632        if (offset >= 0)
2633                offset = vfs_setpos(file, offset, MAX_LFS_FILESIZE);
2634        inode_unlock(inode);
2635        return offset;
2636}
2637
2638static long shmem_fallocate(struct file *file, int mode, loff_t offset,
2639                                                         loff_t len)
2640{
2641        struct inode *inode = file_inode(file);
2642        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
2643        struct shmem_inode_info *info = SHMEM_I(inode);
2644        struct shmem_falloc shmem_falloc;
2645        pgoff_t start, index, end;
2646        int error;
2647
2648        if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE))
2649                return -EOPNOTSUPP;
2650
2651        inode_lock(inode);
2652
2653        if (mode & FALLOC_FL_PUNCH_HOLE) {
2654                struct address_space *mapping = file->f_mapping;
2655                loff_t unmap_start = round_up(offset, PAGE_SIZE);
2656                loff_t unmap_end = round_down(offset + len, PAGE_SIZE) - 1;
2657                DECLARE_WAIT_QUEUE_HEAD_ONSTACK(shmem_falloc_waitq);
2658
2659                /* protected by i_mutex */
2660                if (info->seals & F_SEAL_WRITE) {
2661                        error = -EPERM;
2662                        goto out;
2663                }
2664
2665                shmem_falloc.waitq = &shmem_falloc_waitq;
2666                shmem_falloc.start = unmap_start >> PAGE_SHIFT;
2667                shmem_falloc.next = (unmap_end + 1) >> PAGE_SHIFT;
2668                spin_lock(&inode->i_lock);
2669                inode->i_private = &shmem_falloc;
2670                spin_unlock(&inode->i_lock);
2671
2672                if ((u64)unmap_end > (u64)unmap_start)
2673                        unmap_mapping_range(mapping, unmap_start,
2674                                            1 + unmap_end - unmap_start, 0);
2675                shmem_truncate_range(inode, offset, offset + len - 1);
2676                /* No need to unmap again: hole-punching leaves COWed pages */
2677
2678                spin_lock(&inode->i_lock);
2679                inode->i_private = NULL;
2680                wake_up_all(&shmem_falloc_waitq);
2681                WARN_ON_ONCE(!list_empty(&shmem_falloc_waitq.head));
2682                spin_unlock(&inode->i_lock);
2683                error = 0;
2684                goto out;
2685        }
2686
2687        /* We need to check rlimit even when FALLOC_FL_KEEP_SIZE */
2688        error = inode_newsize_ok(inode, offset + len);
2689        if (error)
2690                goto out;
2691
2692        if ((info->seals & F_SEAL_GROW) && offset + len > inode->i_size) {
2693                error = -EPERM;
2694                goto out;
2695        }
2696
2697        start = offset >> PAGE_SHIFT;
2698        end = (offset + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
2699        /* Try to avoid a swapstorm if len is impossible to satisfy */
2700        if (sbinfo->max_blocks && end - start > sbinfo->max_blocks) {
2701                error = -ENOSPC;
2702                goto out;
2703        }
2704
2705        shmem_falloc.waitq = NULL;
2706        shmem_falloc.start = start;
2707        shmem_falloc.next  = start;
2708        shmem_falloc.nr_falloced = 0;
2709        shmem_falloc.nr_unswapped = 0;
2710        spin_lock(&inode->i_lock);
2711        inode->i_private = &shmem_falloc;
2712        spin_unlock(&inode->i_lock);
2713
2714        for (index = start; index < end; index++) {
2715                struct page *page;
2716
2717                /*
2718                 * Good, the fallocate(2) manpage permits EINTR: we may have
2719                 * been interrupted because we are using up too much memory.
2720                 */
2721                if (signal_pending(current))
2722                        error = -EINTR;
2723                else if (shmem_falloc.nr_unswapped > shmem_falloc.nr_falloced)
2724                        error = -ENOMEM;
2725                else
2726                        error = shmem_getpage(inode, index, &page, SGP_FALLOC);
2727                if (error) {
2728                        /* Remove the !PageUptodate pages we added */
2729                        if (index > start) {
2730                                shmem_undo_range(inode,
2731                                    (loff_t)start << PAGE_SHIFT,
2732                                    ((loff_t)index << PAGE_SHIFT) - 1, true);
2733                        }
2734                        goto undone;
2735                }
2736
2737                /*
2738                 * Inform shmem_writepage() how far we have reached.
2739                 * No need for lock or barrier: we have the page lock.
2740                 */
2741                shmem_falloc.next++;
2742                if (!PageUptodate(page))
2743                        shmem_falloc.nr_falloced++;
2744
2745                /*
2746                 * If !PageUptodate, leave it that way so that freeable pages
2747                 * can be recognized if we need to rollback on error later.
2748                 * But set_page_dirty so that memory pressure will swap rather
2749                 * than free the pages we are allocating (and SGP_CACHE pages
2750                 * might still be clean: we now need to mark those dirty too).
2751                 */
2752                set_page_dirty(page);
2753                unlock_page(page);
2754                put_page(page);
2755                cond_resched();
2756        }
2757
2758        if (!(mode & FALLOC_FL_KEEP_SIZE) && offset + len > inode->i_size)
2759                i_size_write(inode, offset + len);
2760        inode->i_ctime = current_time(inode);
2761undone:
2762        spin_lock(&inode->i_lock);
2763        inode->i_private = NULL;
2764        spin_unlock(&inode->i_lock);
2765out:
2766        inode_unlock(inode);
2767        return error;
2768}
2769
2770static int shmem_statfs(struct dentry *dentry, struct kstatfs *buf)
2771{
2772        struct shmem_sb_info *sbinfo = SHMEM_SB(dentry->d_sb);
2773
2774        buf->f_type = TMPFS_MAGIC;
2775        buf->f_bsize = PAGE_SIZE;
2776        buf->f_namelen = NAME_MAX;
2777        if (sbinfo->max_blocks) {
2778                buf->f_blocks = sbinfo->max_blocks;
2779                buf->f_bavail =
2780                buf->f_bfree  = sbinfo->max_blocks -
2781                                percpu_counter_sum(&sbinfo->used_blocks);
2782        }
2783        if (sbinfo->max_inodes) {
2784                buf->f_files = sbinfo->max_inodes;
2785                buf->f_ffree = sbinfo->free_inodes;
2786        }
2787        /* else leave those fields 0 like simple_statfs */
2788        return 0;
2789}
2790
2791/*
2792 * File creation. Allocate an inode, and we're done..
2793 */
2794static int
2795shmem_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2796{
2797        struct inode *inode;
2798        int error = -ENOSPC;
2799
2800        inode = shmem_get_inode(dir->i_sb, dir, mode, dev, VM_NORESERVE);
2801        if (inode) {
2802                error = simple_acl_create(dir, inode);
2803                if (error)
2804                        goto out_iput;
2805                error = security_inode_init_security(inode, dir,
2806                                                     &dentry->d_name,
2807                                                     shmem_initxattrs, NULL);
2808                if (error && error != -EOPNOTSUPP)
2809                        goto out_iput;
2810
2811                error = 0;
2812                dir->i_size += BOGO_DIRENT_SIZE;
2813                dir->i_ctime = dir->i_mtime = current_time(dir);
2814                d_instantiate(dentry, inode);
2815                dget(dentry); /* Extra count - pin the dentry in core */
2816        }
2817        return error;
2818out_iput:
2819        iput(inode);
2820        return error;
2821}
2822
2823static int
2824shmem_tmpfile(struct inode *dir, struct dentry *dentry, umode_t mode)
2825{
2826        struct inode *inode;
2827        int error = -ENOSPC;
2828
2829        inode = shmem_get_inode(dir->i_sb, dir, mode, 0, VM_NORESERVE);
2830        if (inode) {
2831                error = security_inode_init_security(inode, dir,
2832                                                     NULL,
2833                                                     shmem_initxattrs, NULL);
2834                if (error && error != -EOPNOTSUPP)
2835                        goto out_iput;
2836                error = simple_acl_create(dir, inode);
2837                if (error)
2838                        goto out_iput;
2839                d_tmpfile(dentry, inode);
2840        }
2841        return error;
2842out_iput:
2843        iput(inode);
2844        return error;
2845}
2846
2847static int shmem_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2848{
2849        int error;
2850
2851        if ((error = shmem_mknod(dir, dentry, mode | S_IFDIR, 0)))
2852                return error;
2853        inc_nlink(dir);
2854        return 0;
2855}
2856
2857static int shmem_create(struct inode *dir, struct dentry *dentry, umode_t mode,
2858                bool excl)
2859{
2860        return shmem_mknod(dir, dentry, mode | S_IFREG, 0);
2861}
2862
2863/*
2864 * Link a file..
2865 */
2866static int shmem_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2867{
2868        struct inode *inode = d_inode(old_dentry);
2869        int ret;
2870
2871        /*
2872         * No ordinary (disk based) filesystem counts links as inodes;
2873         * but each new link needs a new dentry, pinning lowmem, and
2874         * tmpfs dentries cannot be pruned until they are unlinked.
2875         */
2876        ret = shmem_reserve_inode(inode->i_sb);
2877        if (ret)
2878                goto out;
2879
2880        dir->i_size += BOGO_DIRENT_SIZE;
2881        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2882        inc_nlink(inode);
2883        ihold(inode);   /* New dentry reference */
2884        dget(dentry);           /* Extra pinning count for the created dentry */
2885        d_instantiate(dentry, inode);
2886out:
2887        return ret;
2888}
2889
2890static int shmem_unlink(struct inode *dir, struct dentry *dentry)
2891{
2892        struct inode *inode = d_inode(dentry);
2893
2894        if (inode->i_nlink > 1 && !S_ISDIR(inode->i_mode))
2895                shmem_free_inode(inode->i_sb);
2896
2897        dir->i_size -= BOGO_DIRENT_SIZE;
2898        inode->i_ctime = dir->i_ctime = dir->i_mtime = current_time(inode);
2899        drop_nlink(inode);
2900        dput(dentry);   /* Undo the count from "create" - this does all the work */
2901        return 0;
2902}
2903
2904static int shmem_rmdir(struct inode *dir, struct dentry *dentry)
2905{
2906        if (!simple_empty(dentry))
2907                return -ENOTEMPTY;
2908
2909        drop_nlink(d_inode(dentry));
2910        drop_nlink(dir);
2911        return shmem_unlink(dir, dentry);
2912}
2913
2914static int shmem_exchange(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry)
2915{
2916        bool old_is_dir = d_is_dir(old_dentry);
2917        bool new_is_dir = d_is_dir(new_dentry);
2918
2919        if (old_dir != new_dir && old_is_dir != new_is_dir) {
2920                if (old_is_dir) {
2921                        drop_nlink(old_dir);
2922                        inc_nlink(new_dir);
2923                } else {
2924                        drop_nlink(new_dir);
2925                        inc_nlink(old_dir);
2926                }
2927        }
2928        old_dir->i_ctime = old_dir->i_mtime =
2929        new_dir->i_ctime = new_dir->i_mtime =
2930        d_inode(old_dentry)->i_ctime =
2931        d_inode(new_dentry)->i_ctime = current_time(old_dir);
2932
2933        return 0;
2934}
2935
2936static int shmem_whiteout(struct inode *old_dir, struct dentry *old_dentry)
2937{
2938        struct dentry *whiteout;
2939        int error;
2940
2941        whiteout = d_alloc(old_dentry->d_parent, &old_dentry->d_name);
2942        if (!whiteout)
2943                return -ENOMEM;
2944
2945        error = shmem_mknod(old_dir, whiteout,
2946                            S_IFCHR | WHITEOUT_MODE, WHITEOUT_DEV);
2947        dput(whiteout);
2948        if (error)
2949                return error;
2950
2951        /*
2952         * Cheat and hash the whiteout while the old dentry is still in
2953         * place, instead of playing games with FS_RENAME_DOES_D_MOVE.
2954         *
2955         * d_lookup() will consistently find one of them at this point,
2956         * not sure which one, but that isn't even important.
2957         */
2958        d_rehash(whiteout);
2959        return 0;
2960}
2961
2962/*
2963 * The VFS layer already does all the dentry stuff for rename,
2964 * we just have to decrement the usage count for the target if
2965 * it exists so that the VFS layer correctly free's it when it
2966 * gets overwritten.
2967 */
2968static int shmem_rename2(struct inode *old_dir, struct dentry *old_dentry, struct inode *new_dir, struct dentry *new_dentry, unsigned int flags)
2969{
2970        struct inode *inode = d_inode(old_dentry);
2971        int they_are_dirs = S_ISDIR(inode->i_mode);
2972
2973        if (flags & ~(RENAME_NOREPLACE | RENAME_EXCHANGE | RENAME_WHITEOUT))
2974                return -EINVAL;
2975
2976        if (flags & RENAME_EXCHANGE)
2977                return shmem_exchange(old_dir, old_dentry, new_dir, new_dentry);
2978
2979        if (!simple_empty(new_dentry))
2980                return -ENOTEMPTY;
2981
2982        if (flags & RENAME_WHITEOUT) {
2983                int error;
2984
2985                error = shmem_whiteout(old_dir, old_dentry);
2986                if (error)
2987                        return error;
2988        }
2989
2990        if (d_really_is_positive(new_dentry)) {
2991                (void) shmem_unlink(new_dir, new_dentry);
2992                if (they_are_dirs) {
2993                        drop_nlink(d_inode(new_dentry));
2994                        drop_nlink(old_dir);
2995                }
2996        } else if (they_are_dirs) {
2997                drop_nlink(old_dir);
2998                inc_nlink(new_dir);
2999        }
3000
3001        old_dir->i_size -= BOGO_DIRENT_SIZE;
3002        new_dir->i_size += BOGO_DIRENT_SIZE;
3003        old_dir->i_ctime = old_dir->i_mtime =
3004        new_dir->i_ctime = new_dir->i_mtime =
3005        inode->i_ctime = current_time(old_dir);
3006        return 0;
3007}
3008
3009static int shmem_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
3010{
3011        int error;
3012        int len;
3013        struct inode *inode;
3014        struct page *page;
3015
3016        len = strlen(symname) + 1;
3017        if (len > PAGE_SIZE)
3018                return -ENAMETOOLONG;
3019
3020        inode = shmem_get_inode(dir->i_sb, dir, S_IFLNK | 0777, 0,
3021                                VM_NORESERVE);
3022        if (!inode)
3023                return -ENOSPC;
3024
3025        error = security_inode_init_security(inode, dir, &dentry->d_name,
3026                                             shmem_initxattrs, NULL);
3027        if (error) {
3028                if (error != -EOPNOTSUPP) {
3029                        iput(inode);
3030                        return error;
3031                }
3032                error = 0;
3033        }
3034
3035        inode->i_size = len-1;
3036        if (len <= SHORT_SYMLINK_LEN) {
3037                inode->i_link = kmemdup(symname, len, GFP_KERNEL);
3038                if (!inode->i_link) {
3039                        iput(inode);
3040                        return -ENOMEM;
3041                }
3042                inode->i_op = &shmem_short_symlink_operations;
3043        } else {
3044                inode_nohighmem(inode);
3045                error = shmem_getpage(inode, 0, &page, SGP_WRITE);
3046                if (error) {
3047                        iput(inode);
3048                        return error;
3049                }
3050                inode->i_mapping->a_ops = &shmem_aops;
3051                inode->i_op = &shmem_symlink_inode_operations;
3052                memcpy(page_address(page), symname, len);
3053                SetPageUptodate(page);
3054                set_page_dirty(page);
3055                unlock_page(page);
3056                put_page(page);
3057        }
3058        dir->i_size += BOGO_DIRENT_SIZE;
3059        dir->i_ctime = dir->i_mtime = current_time(dir);
3060        d_instantiate(dentry, inode);
3061        dget(dentry);
3062        return 0;
3063}
3064
3065static void shmem_put_link(void *arg)
3066{
3067        mark_page_accessed(arg);
3068        put_page(arg);
3069}
3070
3071static const char *shmem_get_link(struct dentry *dentry,
3072                                  struct inode *inode,
3073                                  struct delayed_call *done)
3074{
3075        struct page *page = NULL;
3076        int error;
3077        if (!dentry) {
3078                page = find_get_page(inode->i_mapping, 0);
3079                if (!page)
3080                        return ERR_PTR(-ECHILD);
3081                if (!PageUptodate(page)) {
3082                        put_page(page);
3083                        return ERR_PTR(-ECHILD);
3084                }
3085        } else {
3086                error = shmem_getpage(inode, 0, &page, SGP_READ);
3087                if (error)
3088                        return ERR_PTR(error);
3089                unlock_page(page);
3090        }
3091        set_delayed_call(done, shmem_put_link, page);
3092        return page_address(page);
3093}
3094
3095#ifdef CONFIG_TMPFS_XATTR
3096/*
3097 * Superblocks without xattr inode operations may get some security.* xattr
3098 * support from the LSM "for free". As soon as we have any other xattrs
3099 * like ACLs, we also need to implement the security.* handlers at
3100 * filesystem level, though.
3101 */
3102
3103/*
3104 * Callback for security_inode_init_security() for acquiring xattrs.
3105 */
3106static int shmem_initxattrs(struct inode *inode,
3107                            const struct xattr *xattr_array,
3108                            void *fs_info)
3109{
3110        struct shmem_inode_info *info = SHMEM_I(inode);
3111        const struct xattr *xattr;
3112        struct simple_xattr *new_xattr;
3113        size_t len;
3114
3115        for (xattr = xattr_array; xattr->name != NULL; xattr++) {
3116                new_xattr = simple_xattr_alloc(xattr->value, xattr->value_len);
3117                if (!new_xattr)
3118                        return -ENOMEM;
3119
3120                len = strlen(xattr->name) + 1;
3121                new_xattr->name = kmalloc(XATTR_SECURITY_PREFIX_LEN + len,
3122                                          GFP_KERNEL);
3123                if (!new_xattr->name) {
3124                        kfree(new_xattr);
3125                        return -ENOMEM;
3126                }
3127
3128                memcpy(new_xattr->name, XATTR_SECURITY_PREFIX,
3129                       XATTR_SECURITY_PREFIX_LEN);
3130                memcpy(new_xattr->name + XATTR_SECURITY_PREFIX_LEN,
3131                       xattr->name, len);
3132
3133                simple_xattr_list_add(&info->xattrs, new_xattr);
3134        }
3135
3136        return 0;
3137}
3138
3139static int shmem_xattr_handler_get(const struct xattr_handler *handler,
3140                                   struct dentry *unused, struct inode *inode,
3141                                   const char *name, void *buffer, size_t size)
3142{
3143        struct shmem_inode_info *info = SHMEM_I(inode);
3144
3145        name = xattr_full_name(handler, name);
3146        return simple_xattr_get(&info->xattrs, name, buffer, size);
3147}
3148
3149static int shmem_xattr_handler_set(const struct xattr_handler *handler,
3150                                   struct dentry *unused, struct inode *inode,
3151                                   const char *name, const void *value,
3152                                   size_t size, int flags)
3153{
3154        struct shmem_inode_info *info = SHMEM_I(inode);
3155
3156        name = xattr_full_name(handler, name);
3157        return simple_xattr_set(&info->xattrs, name, value, size, flags);
3158}
3159
3160static const struct xattr_handler shmem_security_xattr_handler = {
3161        .prefix = XATTR_SECURITY_PREFIX,
3162        .get = shmem_xattr_handler_get,
3163        .set = shmem_xattr_handler_set,
3164};
3165
3166static const struct xattr_handler shmem_trusted_xattr_handler = {
3167        .prefix = XATTR_TRUSTED_PREFIX,
3168        .get = shmem_xattr_handler_get,
3169        .set = shmem_xattr_handler_set,
3170};
3171
3172static const struct xattr_handler *shmem_xattr_handlers[] = {
3173#ifdef CONFIG_TMPFS_POSIX_ACL
3174        &posix_acl_access_xattr_handler,
3175        &posix_acl_default_xattr_handler,
3176#endif
3177        &shmem_security_xattr_handler,
3178        &shmem_trusted_xattr_handler,
3179        NULL
3180};
3181
3182static ssize_t shmem_listxattr(struct dentry *dentry, char *buffer, size_t size)
3183{
3184        struct shmem_inode_info *info = SHMEM_I(d_inode(dentry));
3185        return simple_xattr_list(d_inode(dentry), &info->xattrs, buffer, size);
3186}
3187#endif /* CONFIG_TMPFS_XATTR */
3188
3189static const struct inode_operations shmem_short_symlink_operations = {
3190        .get_link       = simple_get_link,
3191#ifdef CONFIG_TMPFS_XATTR
3192        .listxattr      = shmem_listxattr,
3193#endif
3194};
3195
3196static const struct inode_operations shmem_symlink_inode_operations = {
3197        .get_link       = shmem_get_link,
3198#ifdef CONFIG_TMPFS_XATTR
3199        .listxattr      = shmem_listxattr,
3200#endif
3201};
3202
3203static struct dentry *shmem_get_parent(struct dentry *child)
3204{
3205        return ERR_PTR(-ESTALE);
3206}
3207
3208static int shmem_match(struct inode *ino, void *vfh)
3209{
3210        __u32 *fh = vfh;
3211        __u64 inum = fh[2];
3212        inum = (inum << 32) | fh[1];
3213        return ino->i_ino == inum && fh[0] == ino->i_generation;
3214}
3215
3216/* Find any alias of inode, but prefer a hashed alias */
3217static struct dentry *shmem_find_alias(struct inode *inode)
3218{
3219        struct dentry *alias = d_find_alias(inode);
3220
3221        return alias ?: d_find_any_alias(inode);
3222}
3223
3224
3225static struct dentry *shmem_fh_to_dentry(struct super_block *sb,
3226                struct fid *fid, int fh_len, int fh_type)
3227{
3228        struct inode *inode;
3229        struct dentry *dentry = NULL;
3230        u64 inum;
3231
3232        if (fh_len < 3)
3233                return NULL;
3234
3235        inum = fid->raw[2];
3236        inum = (inum << 32) | fid->raw[1];
3237
3238        inode = ilookup5(sb, (unsigned long)(inum + fid->raw[0]),
3239                        shmem_match, fid->raw);
3240        if (inode) {
3241                dentry = shmem_find_alias(inode);
3242                iput(inode);
3243        }
3244
3245        return dentry;
3246}
3247
3248static int shmem_encode_fh(struct inode *inode, __u32 *fh, int *len,
3249                                struct inode *parent)
3250{
3251        if (*len < 3) {
3252                *len = 3;
3253                return FILEID_INVALID;
3254        }
3255
3256        if (inode_unhashed(inode)) {
3257                /* Unfortunately insert_inode_hash is not idempotent,
3258                 * so as we hash inodes here rather than at creation
3259                 * time, we need a lock to ensure we only try
3260                 * to do it once
3261                 */
3262                static DEFINE_SPINLOCK(lock);
3263                spin_lock(&lock);
3264                if (inode_unhashed(inode))
3265                        __insert_inode_hash(inode,
3266                                            inode->i_ino + inode->i_generation);
3267                spin_unlock(&lock);
3268        }
3269
3270        fh[0] = inode->i_generation;
3271        fh[1] = inode->i_ino;
3272        fh[2] = ((__u64)inode->i_ino) >> 32;
3273
3274        *len = 3;
3275        return 1;
3276}
3277
3278static const struct export_operations shmem_export_ops = {
3279        .get_parent     = shmem_get_parent,
3280        .encode_fh      = shmem_encode_fh,
3281        .fh_to_dentry   = shmem_fh_to_dentry,
3282};
3283
3284static int shmem_parse_options(char *options, struct shmem_sb_info *sbinfo,
3285                               bool remount)
3286{
3287        char *this_char, *value, *rest;
3288        struct mempolicy *mpol = NULL;
3289        uid_t uid;
3290        gid_t gid;
3291
3292        while (options != NULL) {
3293                this_char = options;
3294                for (;;) {
3295                        /*
3296                         * NUL-terminate this option: unfortunately,
3297                         * mount options form a comma-separated list,
3298                         * but mpol's nodelist may also contain commas.
3299                         */
3300                        options = strchr(options, ',');
3301                        if (options == NULL)
3302                                break;
3303                        options++;
3304                        if (!isdigit(*options)) {
3305                                options[-1] = '\0';
3306                                break;
3307                        }
3308                }
3309                if (!*this_char)
3310                        continue;
3311                if ((value = strchr(this_char,'=')) != NULL) {
3312                        *value++ = 0;
3313                } else {
3314                        pr_err("tmpfs: No value for mount option '%s'\n",
3315                               this_char);
3316                        goto error;
3317                }
3318
3319                if (!strcmp(this_char,"size")) {
3320                        unsigned long long size;
3321                        size = memparse(value,&rest);
3322                        if (*rest == '%') {
3323                                size <<= PAGE_SHIFT;
3324                                size *= totalram_pages;
3325                                do_div(size, 100);
3326                                rest++;
3327                        }
3328                        if (*rest)
3329                                goto bad_val;
3330                        sbinfo->max_blocks =
3331                                DIV_ROUND_UP(size, PAGE_SIZE);
3332                } else if (!strcmp(this_char,"nr_blocks")) {
3333                        sbinfo->max_blocks = memparse(value, &rest);
3334                        if (*rest)
3335                                goto bad_val;
3336                } else if (!strcmp(this_char,"nr_inodes")) {
3337                        sbinfo->max_inodes = memparse(value, &rest);
3338                        if (*rest)
3339                                goto bad_val;
3340                } else if (!strcmp(this_char,"mode")) {
3341                        if (remount)
3342                                continue;
3343                        sbinfo->mode = simple_strtoul(value, &rest, 8) & 07777;
3344                        if (*rest)
3345                                goto bad_val;
3346                } else if (!strcmp(this_char,"uid")) {
3347                        if (remount)
3348                                continue;
3349                        uid = simple_strtoul(value, &rest, 0);
3350                        if (*rest)
3351                                goto bad_val;
3352                        sbinfo->uid = make_kuid(current_user_ns(), uid);
3353                        if (!uid_valid(sbinfo->uid))
3354                                goto bad_val;
3355                } else if (!strcmp(this_char,"gid")) {
3356                        if (remount)
3357                                continue;
3358                        gid = simple_strtoul(value, &rest, 0);
3359                        if (*rest)
3360                                goto bad_val;
3361                        sbinfo->gid = make_kgid(current_user_ns(), gid);
3362                        if (!gid_valid(sbinfo->gid))
3363                                goto bad_val;
3364#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3365                } else if (!strcmp(this_char, "huge")) {
3366                        int huge;
3367                        huge = shmem_parse_huge(value);
3368                        if (huge < 0)
3369                                goto bad_val;
3370                        if (!has_transparent_hugepage() &&
3371                                        huge != SHMEM_HUGE_NEVER)
3372                                goto bad_val;
3373                        sbinfo->huge = huge;
3374#endif
3375#ifdef CONFIG_NUMA
3376                } else if (!strcmp(this_char,"mpol")) {
3377                        mpol_put(mpol);
3378                        mpol = NULL;
3379                        if (mpol_parse_str(value, &mpol))
3380                                goto bad_val;
3381#endif
3382                } else {
3383                        pr_err("tmpfs: Bad mount option %s\n", this_char);
3384                        goto error;
3385                }
3386        }
3387        sbinfo->mpol = mpol;
3388        return 0;
3389
3390bad_val:
3391        pr_err("tmpfs: Bad value '%s' for mount option '%s'\n",
3392               value, this_char);
3393error:
3394        mpol_put(mpol);
3395        return 1;
3396
3397}
3398
3399static int shmem_remount_fs(struct super_block *sb, int *flags, char *data)
3400{
3401        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3402        struct shmem_sb_info config = *sbinfo;
3403        unsigned long inodes;
3404        int error = -EINVAL;
3405
3406        config.mpol = NULL;
3407        if (shmem_parse_options(data, &config, true))
3408                return error;
3409
3410        spin_lock(&sbinfo->stat_lock);
3411        inodes = sbinfo->max_inodes - sbinfo->free_inodes;
3412        if (percpu_counter_compare(&sbinfo->used_blocks, config.max_blocks) > 0)
3413                goto out;
3414        if (config.max_inodes < inodes)
3415                goto out;
3416        /*
3417         * Those tests disallow limited->unlimited while any are in use;
3418         * but we must separately disallow unlimited->limited, because
3419         * in that case we have no record of how much is already in use.
3420         */
3421        if (config.max_blocks && !sbinfo->max_blocks)
3422                goto out;
3423        if (config.max_inodes && !sbinfo->max_inodes)
3424                goto out;
3425
3426        error = 0;
3427        sbinfo->huge = config.huge;
3428        sbinfo->max_blocks  = config.max_blocks;
3429        sbinfo->max_inodes  = config.max_inodes;
3430        sbinfo->free_inodes = config.max_inodes - inodes;
3431
3432        /*
3433         * Preserve previous mempolicy unless mpol remount option was specified.
3434         */
3435        if (config.mpol) {
3436                mpol_put(sbinfo->mpol);
3437                sbinfo->mpol = config.mpol;     /* transfers initial ref */
3438        }
3439out:
3440        spin_unlock(&sbinfo->stat_lock);
3441        return error;
3442}
3443
3444static int shmem_show_options(struct seq_file *seq, struct dentry *root)
3445{
3446        struct shmem_sb_info *sbinfo = SHMEM_SB(root->d_sb);
3447
3448        if (sbinfo->max_blocks != shmem_default_max_blocks())
3449                seq_printf(seq, ",size=%luk",
3450                        sbinfo->max_blocks << (PAGE_SHIFT - 10));
3451        if (sbinfo->max_inodes != shmem_default_max_inodes())
3452                seq_printf(seq, ",nr_inodes=%lu", sbinfo->max_inodes);
3453        if (sbinfo->mode != (0777 | S_ISVTX))
3454                seq_printf(seq, ",mode=%03ho", sbinfo->mode);
3455        if (!uid_eq(sbinfo->uid, GLOBAL_ROOT_UID))
3456                seq_printf(seq, ",uid=%u",
3457                                from_kuid_munged(&init_user_ns, sbinfo->uid));
3458        if (!gid_eq(sbinfo->gid, GLOBAL_ROOT_GID))
3459                seq_printf(seq, ",gid=%u",
3460                                from_kgid_munged(&init_user_ns, sbinfo->gid));
3461#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3462        /* Rightly or wrongly, show huge mount option unmasked by shmem_huge */
3463        if (sbinfo->huge)
3464                seq_printf(seq, ",huge=%s", shmem_format_huge(sbinfo->huge));
3465#endif
3466        shmem_show_mpol(seq, sbinfo->mpol);
3467        return 0;
3468}
3469
3470#endif /* CONFIG_TMPFS */
3471
3472static void shmem_put_super(struct super_block *sb)
3473{
3474        struct shmem_sb_info *sbinfo = SHMEM_SB(sb);
3475
3476        percpu_counter_destroy(&sbinfo->used_blocks);
3477        mpol_put(sbinfo->mpol);
3478        kfree(sbinfo);
3479        sb->s_fs_info = NULL;
3480}
3481
3482int shmem_fill_super(struct super_block *sb, void *data, int silent)
3483{
3484        struct inode *inode;
3485        struct shmem_sb_info *sbinfo;
3486        int err = -ENOMEM;
3487
3488        /* Round up to L1_CACHE_BYTES to resist false sharing */
3489        sbinfo = kzalloc(max((int)sizeof(struct shmem_sb_info),
3490                                L1_CACHE_BYTES), GFP_KERNEL);
3491        if (!sbinfo)
3492                return -ENOMEM;
3493
3494        sbinfo->mode = 0777 | S_ISVTX;
3495        sbinfo->uid = current_fsuid();
3496        sbinfo->gid = current_fsgid();
3497        sb->s_fs_info = sbinfo;
3498
3499#ifdef CONFIG_TMPFS
3500        /*
3501         * Per default we only allow half of the physical ram per
3502         * tmpfs instance, limiting inodes to one per page of lowmem;
3503         * but the internal instance is left unlimited.
3504         */
3505        if (!(sb->s_flags & SB_KERNMOUNT)) {
3506                sbinfo->max_blocks = shmem_default_max_blocks();
3507                sbinfo->max_inodes = shmem_default_max_inodes();
3508                if (shmem_parse_options(data, sbinfo, false)) {
3509                        err = -EINVAL;
3510                        goto failed;
3511                }
3512        } else {
3513                sb->s_flags |= SB_NOUSER;
3514        }
3515        sb->s_export_op = &shmem_export_ops;
3516        sb->s_flags |= SB_NOSEC;
3517#else
3518        sb->s_flags |= SB_NOUSER;
3519#endif
3520
3521        spin_lock_init(&sbinfo->stat_lock);
3522        if (percpu_counter_init(&sbinfo->used_blocks, 0, GFP_KERNEL))
3523                goto failed;
3524        sbinfo->free_inodes = sbinfo->max_inodes;
3525        spin_lock_init(&sbinfo->shrinklist_lock);
3526        INIT_LIST_HEAD(&sbinfo->shrinklist);
3527
3528        sb->s_maxbytes = MAX_LFS_FILESIZE;
3529        sb->s_blocksize = PAGE_SIZE;
3530        sb->s_blocksize_bits = PAGE_SHIFT;
3531        sb->s_magic = TMPFS_MAGIC;
3532        sb->s_op = &shmem_ops;
3533        sb->s_time_gran = 1;
3534#ifdef CONFIG_TMPFS_XATTR
3535        sb->s_xattr = shmem_xattr_handlers;
3536#endif
3537#ifdef CONFIG_TMPFS_POSIX_ACL
3538        sb->s_flags |= SB_POSIXACL;
3539#endif
3540        uuid_gen(&sb->s_uuid);
3541
3542        inode = shmem_get_inode(sb, NULL, S_IFDIR | sbinfo->mode, 0, VM_NORESERVE);
3543        if (!inode)
3544                goto failed;
3545        inode->i_uid = sbinfo->uid;
3546        inode->i_gid = sbinfo->gid;
3547        sb->s_root = d_make_root(inode);
3548        if (!sb->s_root)
3549                goto failed;
3550        return 0;
3551
3552failed:
3553        shmem_put_super(sb);
3554        return err;
3555}
3556
3557static struct kmem_cache *shmem_inode_cachep;
3558
3559static struct inode *shmem_alloc_inode(struct super_block *sb)
3560{
3561        struct shmem_inode_info *info;
3562        info = kmem_cache_alloc(shmem_inode_cachep, GFP_KERNEL);
3563        if (!info)
3564                return NULL;
3565        return &info->vfs_inode;
3566}
3567
3568static void shmem_destroy_callback(struct rcu_head *head)
3569{
3570        struct inode *inode = container_of(head, struct inode, i_rcu);
3571        if (S_ISLNK(inode->i_mode))
3572                kfree(inode->i_link);
3573        kmem_cache_free(shmem_inode_cachep, SHMEM_I(inode));
3574}
3575
3576static void shmem_destroy_inode(struct inode *inode)
3577{
3578        if (S_ISREG(inode->i_mode))
3579                mpol_free_shared_policy(&SHMEM_I(inode)->policy);
3580        call_rcu(&inode->i_rcu, shmem_destroy_callback);
3581}
3582
3583static void shmem_init_inode(void *foo)
3584{
3585        struct shmem_inode_info *info = foo;
3586        inode_init_once(&info->vfs_inode);
3587}
3588
3589static void shmem_init_inodecache(void)
3590{
3591        shmem_inode_cachep = kmem_cache_create("shmem_inode_cache",
3592                                sizeof(struct shmem_inode_info),
3593                                0, SLAB_PANIC|SLAB_ACCOUNT, shmem_init_inode);
3594}
3595
3596static void shmem_destroy_inodecache(void)
3597{
3598        kmem_cache_destroy(shmem_inode_cachep);
3599}
3600
3601static const struct address_space_operations shmem_aops = {
3602        .writepage      = shmem_writepage,
3603        .set_page_dirty = __set_page_dirty_no_writeback,
3604#ifdef CONFIG_TMPFS
3605        .write_begin    = shmem_write_begin,
3606        .write_end      = shmem_write_end,
3607#endif
3608#ifdef CONFIG_MIGRATION
3609        .migratepage    = migrate_page,
3610#endif
3611        .error_remove_page = generic_error_remove_page,
3612};
3613
3614static const struct file_operations shmem_file_operations = {
3615        .mmap           = shmem_mmap,
3616        .get_unmapped_area = shmem_get_unmapped_area,
3617#ifdef CONFIG_TMPFS
3618        .llseek         = shmem_file_llseek,
3619        .read_iter      = shmem_file_read_iter,
3620        .write_iter     = generic_file_write_iter,
3621        .fsync          = noop_fsync,
3622        .splice_read    = generic_file_splice_read,
3623        .splice_write   = iter_file_splice_write,
3624        .fallocate      = shmem_fallocate,
3625#endif
3626};
3627
3628static const struct inode_operations shmem_inode_operations = {
3629        .getattr        = shmem_getattr,
3630        .setattr        = shmem_setattr,
3631#ifdef CONFIG_TMPFS_XATTR
3632        .listxattr      = shmem_listxattr,
3633        .set_acl        = simple_set_acl,
3634#endif
3635};
3636
3637static const struct inode_operations shmem_dir_inode_operations = {
3638#ifdef CONFIG_TMPFS
3639        .create         = shmem_create,
3640        .lookup         = simple_lookup,
3641        .link           = shmem_link,
3642        .unlink         = shmem_unlink,
3643        .symlink        = shmem_symlink,
3644        .mkdir          = shmem_mkdir,
3645        .rmdir          = shmem_rmdir,
3646        .mknod          = shmem_mknod,
3647        .rename         = shmem_rename2,
3648        .tmpfile        = shmem_tmpfile,
3649#endif
3650#ifdef CONFIG_TMPFS_XATTR
3651        .listxattr      = shmem_listxattr,
3652#endif
3653#ifdef CONFIG_TMPFS_POSIX_ACL
3654        .setattr        = shmem_setattr,
3655        .set_acl        = simple_set_acl,
3656#endif
3657};
3658
3659static const struct inode_operations shmem_special_inode_operations = {
3660#ifdef CONFIG_TMPFS_XATTR
3661        .listxattr      = shmem_listxattr,
3662#endif
3663#ifdef CONFIG_TMPFS_POSIX_ACL
3664        .setattr        = shmem_setattr,
3665        .set_acl        = simple_set_acl,
3666#endif
3667};
3668
3669static const struct super_operations shmem_ops = {
3670        .alloc_inode    = shmem_alloc_inode,
3671        .destroy_inode  = shmem_destroy_inode,
3672#ifdef CONFIG_TMPFS
3673        .statfs         = shmem_statfs,
3674        .remount_fs     = shmem_remount_fs,
3675        .show_options   = shmem_show_options,
3676#endif
3677        .evict_inode    = shmem_evict_inode,
3678        .drop_inode     = generic_delete_inode,
3679        .put_super      = shmem_put_super,
3680#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3681        .nr_cached_objects      = shmem_unused_huge_count,
3682        .free_cached_objects    = shmem_unused_huge_scan,
3683#endif
3684};
3685
3686static const struct vm_operations_struct shmem_vm_ops = {
3687        .fault          = shmem_fault,
3688        .map_pages      = filemap_map_pages,
3689#ifdef CONFIG_NUMA
3690        .set_policy     = shmem_set_policy,
3691        .get_policy     = shmem_get_policy,
3692#endif
3693};
3694
3695static struct dentry *shmem_mount(struct file_system_type *fs_type,
3696        int flags, const char *dev_name, void *data)
3697{
3698        return mount_nodev(fs_type, flags, data, shmem_fill_super);
3699}
3700
3701static struct file_system_type shmem_fs_type = {
3702        .owner          = THIS_MODULE,
3703        .name           = "tmpfs",
3704        .mount          = shmem_mount,
3705        .kill_sb        = kill_litter_super,
3706        .fs_flags       = FS_USERNS_MOUNT,
3707};
3708
3709int __init shmem_init(void)
3710{
3711        int error;
3712
3713        /* If rootfs called this, don't re-init */
3714        if (shmem_inode_cachep)
3715                return 0;
3716
3717        shmem_init_inodecache();
3718
3719        error = register_filesystem(&shmem_fs_type);
3720        if (error) {
3721                pr_err("Could not register tmpfs\n");
3722                goto out2;
3723        }
3724
3725        shm_mnt = kern_mount(&shmem_fs_type);
3726        if (IS_ERR(shm_mnt)) {
3727                error = PTR_ERR(shm_mnt);
3728                pr_err("Could not kern_mount tmpfs\n");
3729                goto out1;
3730        }
3731
3732#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3733        if (has_transparent_hugepage() && shmem_huge > SHMEM_HUGE_DENY)
3734                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3735        else
3736                shmem_huge = 0; /* just in case it was patched */
3737#endif
3738        return 0;
3739
3740out1:
3741        unregister_filesystem(&shmem_fs_type);
3742out2:
3743        shmem_destroy_inodecache();
3744        shm_mnt = ERR_PTR(error);
3745        return error;
3746}
3747
3748#if defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE) && defined(CONFIG_SYSFS)
3749static ssize_t shmem_enabled_show(struct kobject *kobj,
3750                struct kobj_attribute *attr, char *buf)
3751{
3752        int values[] = {
3753                SHMEM_HUGE_ALWAYS,
3754                SHMEM_HUGE_WITHIN_SIZE,
3755                SHMEM_HUGE_ADVISE,
3756                SHMEM_HUGE_NEVER,
3757                SHMEM_HUGE_DENY,
3758                SHMEM_HUGE_FORCE,
3759        };
3760        int i, count;
3761
3762        for (i = 0, count = 0; i < ARRAY_SIZE(values); i++) {
3763                const char *fmt = shmem_huge == values[i] ? "[%s] " : "%s ";
3764
3765                count += sprintf(buf + count, fmt,
3766                                shmem_format_huge(values[i]));
3767        }
3768        buf[count - 1] = '\n';
3769        return count;
3770}
3771
3772static ssize_t shmem_enabled_store(struct kobject *kobj,
3773                struct kobj_attribute *attr, const char *buf, size_t count)
3774{
3775        char tmp[16];
3776        int huge;
3777
3778        if (count + 1 > sizeof(tmp))
3779                return -EINVAL;
3780        memcpy(tmp, buf, count);
3781        tmp[count] = '\0';
3782        if (count && tmp[count - 1] == '\n')
3783                tmp[count - 1] = '\0';
3784
3785        huge = shmem_parse_huge(tmp);
3786        if (huge == -EINVAL)
3787                return -EINVAL;
3788        if (!has_transparent_hugepage() &&
3789                        huge != SHMEM_HUGE_NEVER && huge != SHMEM_HUGE_DENY)
3790                return -EINVAL;
3791
3792        shmem_huge = huge;
3793        if (shmem_huge > SHMEM_HUGE_DENY)
3794                SHMEM_SB(shm_mnt->mnt_sb)->huge = shmem_huge;
3795        return count;
3796}
3797
3798struct kobj_attribute shmem_enabled_attr =
3799        __ATTR(shmem_enabled, 0644, shmem_enabled_show, shmem_enabled_store);
3800#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE && CONFIG_SYSFS */
3801
3802#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
3803bool shmem_huge_enabled(struct vm_area_struct *vma)
3804{
3805        struct inode *inode = file_inode(vma->vm_file);
3806        struct shmem_sb_info *sbinfo = SHMEM_SB(inode->i_sb);
3807        loff_t i_size;
3808        pgoff_t off;
3809
3810        if (shmem_huge == SHMEM_HUGE_FORCE)
3811                return true;
3812        if (shmem_huge == SHMEM_HUGE_DENY)
3813                return false;
3814        switch (sbinfo->huge) {
3815                case SHMEM_HUGE_NEVER:
3816                        return false;
3817                case SHMEM_HUGE_ALWAYS:
3818                        return true;
3819                case SHMEM_HUGE_WITHIN_SIZE:
3820                        off = round_up(vma->vm_pgoff, HPAGE_PMD_NR);
3821                        i_size = round_up(i_size_read(inode), PAGE_SIZE);
3822                        if (i_size >= HPAGE_PMD_SIZE &&
3823                                        i_size >> PAGE_SHIFT >= off)
3824                                return true;
3825                        /* fall through */
3826                case SHMEM_HUGE_ADVISE:
3827                        /* TODO: implement fadvise() hints */
3828                        return (vma->vm_flags & VM_HUGEPAGE);
3829                default:
3830                        VM_BUG_ON(1);
3831                        return false;
3832        }
3833}
3834#endif /* CONFIG_TRANSPARENT_HUGE_PAGECACHE */
3835
3836#else /* !CONFIG_SHMEM */
3837
3838/*
3839 * tiny-shmem: simple shmemfs and tmpfs using ramfs code
3840 *
3841 * This is intended for small system where the benefits of the full
3842 * shmem code (swap-backed and resource-limited) are outweighed by
3843 * their complexity. On systems without swap this code should be
3844 * effectively equivalent, but much lighter weight.
3845 */
3846
3847static struct file_system_type shmem_fs_type = {
3848        .name           = "tmpfs",
3849        .mount          = ramfs_mount,
3850        .kill_sb        = kill_litter_super,
3851        .fs_flags       = FS_USERNS_MOUNT,
3852};
3853
3854int __init shmem_init(void)
3855{
3856        BUG_ON(register_filesystem(&shmem_fs_type) != 0);
3857
3858        shm_mnt = kern_mount(&shmem_fs_type);
3859        BUG_ON(IS_ERR(shm_mnt));
3860
3861        return 0;
3862}
3863
3864int shmem_unuse(swp_entry_t swap, struct page *page)
3865{
3866        return 0;
3867}
3868
3869int shmem_lock(struct file *file, int lock, struct user_struct *user)
3870{
3871        return 0;
3872}
3873
3874void shmem_unlock_mapping(struct address_space *mapping)
3875{
3876}
3877
3878#ifdef CONFIG_MMU
3879unsigned long shmem_get_unmapped_area(struct file *file,
3880                                      unsigned long addr, unsigned long len,
3881                                      unsigned long pgoff, unsigned long flags)
3882{
3883        return current->mm->get_unmapped_area(file, addr, len, pgoff, flags);
3884}
3885#endif
3886
3887void shmem_truncate_range(struct inode *inode, loff_t lstart, loff_t lend)
3888{
3889        truncate_inode_pages_range(inode->i_mapping, lstart, lend);
3890}
3891EXPORT_SYMBOL_GPL(shmem_truncate_range);
3892
3893#define shmem_vm_ops                            generic_file_vm_ops
3894#define shmem_file_operations                   ramfs_file_operations
3895#define shmem_get_inode(sb, dir, mode, dev, flags)      ramfs_get_inode(sb, dir, mode, dev)
3896#define shmem_acct_size(flags, size)            0
3897#define shmem_unacct_size(flags, size)          do {} while (0)
3898
3899#endif /* CONFIG_SHMEM */
3900
3901/* common code */
3902
3903static struct file *__shmem_file_setup(struct vfsmount *mnt, const char *name, loff_t size,
3904                                       unsigned long flags, unsigned int i_flags)
3905{
3906        struct inode *inode;
3907        struct file *res;
3908
3909        if (IS_ERR(mnt))
3910                return ERR_CAST(mnt);
3911
3912        if (size < 0 || size > MAX_LFS_FILESIZE)
3913                return ERR_PTR(-EINVAL);
3914
3915        if (shmem_acct_size(flags, size))
3916                return ERR_PTR(-ENOMEM);
3917
3918        inode = shmem_get_inode(mnt->mnt_sb, NULL, S_IFREG | S_IRWXUGO, 0,
3919                                flags);
3920        if (unlikely(!inode)) {
3921                shmem_unacct_size(flags, size);
3922                return ERR_PTR(-ENOSPC);
3923        }
3924        inode->i_flags |= i_flags;
3925        inode->i_size = size;
3926        clear_nlink(inode);     /* It is unlinked */
3927        res = ERR_PTR(ramfs_nommu_expand_for_mapping(inode, size));
3928        if (!IS_ERR(res))
3929                res = alloc_file_pseudo(inode, mnt, name, O_RDWR,
3930                                &shmem_file_operations);
3931        if (IS_ERR(res))
3932                iput(inode);
3933        return res;
3934}
3935
3936/**
3937 * shmem_kernel_file_setup - get an unlinked file living in tmpfs which must be
3938 *      kernel internal.  There will be NO LSM permission checks against the
3939 *      underlying inode.  So users of this interface must do LSM checks at a
3940 *      higher layer.  The users are the big_key and shm implementations.  LSM
3941 *      checks are provided at the key or shm level rather than the inode.
3942 * @name: name for dentry (to be seen in /proc/<pid>/maps
3943 * @size: size to be set for the file
3944 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3945 */
3946struct file *shmem_kernel_file_setup(const char *name, loff_t size, unsigned long flags)
3947{
3948        return __shmem_file_setup(shm_mnt, name, size, flags, S_PRIVATE);
3949}
3950
3951/**
3952 * shmem_file_setup - get an unlinked file living in tmpfs
3953 * @name: name for dentry (to be seen in /proc/<pid>/maps
3954 * @size: size to be set for the file
3955 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3956 */
3957struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags)
3958{
3959        return __shmem_file_setup(shm_mnt, name, size, flags, 0);
3960}
3961EXPORT_SYMBOL_GPL(shmem_file_setup);
3962
3963/**
3964 * shmem_file_setup_with_mnt - get an unlinked file living in tmpfs
3965 * @mnt: the tmpfs mount where the file will be created
3966 * @name: name for dentry (to be seen in /proc/<pid>/maps
3967 * @size: size to be set for the file
3968 * @flags: VM_NORESERVE suppresses pre-accounting of the entire object size
3969 */
3970struct file *shmem_file_setup_with_mnt(struct vfsmount *mnt, const char *name,
3971                                       loff_t size, unsigned long flags)
3972{
3973        return __shmem_file_setup(mnt, name, size, flags, 0);
3974}
3975EXPORT_SYMBOL_GPL(shmem_file_setup_with_mnt);
3976
3977/**
3978 * shmem_zero_setup - setup a shared anonymous mapping
3979 * @vma: the vma to be mmapped is prepared by do_mmap_pgoff
3980 */
3981int shmem_zero_setup(struct vm_area_struct *vma)
3982{
3983        struct file *file;
3984        loff_t size = vma->vm_end - vma->vm_start;
3985
3986        /*
3987         * Cloning a new file under mmap_sem leads to a lock ordering conflict
3988         * between XFS directory reading and selinux: since this file is only
3989         * accessible to the user through its mapping, use S_PRIVATE flag to
3990         * bypass file security, in the same way as shmem_kernel_file_setup().
3991         */
3992        file = shmem_kernel_file_setup("dev/zero", size, vma->vm_flags);
3993        if (IS_ERR(file))
3994                return PTR_ERR(file);
3995
3996        if (vma->vm_file)
3997                fput(vma->vm_file);
3998        vma->vm_file = file;
3999        vma->vm_ops = &shmem_vm_ops;
4000
4001        if (IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE) &&
4002                        ((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
4003                        (vma->vm_end & HPAGE_PMD_MASK)) {
4004                khugepaged_enter(vma, vma->vm_flags);
4005        }
4006
4007        return 0;
4008}
4009
4010/**
4011 * shmem_read_mapping_page_gfp - read into page cache, using specified page allocation flags.
4012 * @mapping:    the page's address_space
4013 * @index:      the page index
4014 * @gfp:        the page allocator flags to use if allocating
4015 *
4016 * This behaves as a tmpfs "read_cache_page_gfp(mapping, index, gfp)",
4017 * with any new page allocations done using the specified allocation flags.
4018 * But read_cache_page_gfp() uses the ->readpage() method: which does not
4019 * suit tmpfs, since it may have pages in swapcache, and needs to find those
4020 * for itself; although drivers/gpu/drm i915 and ttm rely upon this support.
4021 *
4022 * i915_gem_object_get_pages_gtt() mixes __GFP_NORETRY | __GFP_NOWARN in
4023 * with the mapping_gfp_mask(), to avoid OOMing the machine unnecessarily.
4024 */
4025struct page *shmem_read_mapping_page_gfp(struct address_space *mapping,
4026                                         pgoff_t index, gfp_t gfp)
4027{
4028#ifdef CONFIG_SHMEM
4029        struct inode *inode = mapping->host;
4030        struct page *page;
4031        int error;
4032
4033        BUG_ON(mapping->a_ops != &shmem_aops);
4034        error = shmem_getpage_gfp(inode, index, &page, SGP_CACHE,
4035                                  gfp, NULL, NULL, NULL);
4036        if (error)
4037                page = ERR_PTR(error);
4038        else
4039                unlock_page(page);
4040        return page;
4041#else
4042        /*
4043         * The tiny !SHMEM case uses ramfs without swap
4044         */
4045        return read_cache_page_gfp(mapping, index, gfp);
4046#endif
4047}
4048EXPORT_SYMBOL_GPL(shmem_read_mapping_page_gfp);
4049