linux/mm/vmalloc.c
<<
>>
Prefs
   1/*
   2 *  linux/mm/vmalloc.c
   3 *
   4 *  Copyright (C) 1993  Linus Torvalds
   5 *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
   6 *  SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
   7 *  Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
   8 *  Numa awareness, Christoph Lameter, SGI, June 2005
   9 */
  10
  11#include <linux/vmalloc.h>
  12#include <linux/mm.h>
  13#include <linux/module.h>
  14#include <linux/highmem.h>
  15#include <linux/sched/signal.h>
  16#include <linux/slab.h>
  17#include <linux/spinlock.h>
  18#include <linux/interrupt.h>
  19#include <linux/proc_fs.h>
  20#include <linux/seq_file.h>
  21#include <linux/debugobjects.h>
  22#include <linux/kallsyms.h>
  23#include <linux/list.h>
  24#include <linux/notifier.h>
  25#include <linux/rbtree.h>
  26#include <linux/radix-tree.h>
  27#include <linux/rcupdate.h>
  28#include <linux/pfn.h>
  29#include <linux/kmemleak.h>
  30#include <linux/atomic.h>
  31#include <linux/compiler.h>
  32#include <linux/llist.h>
  33#include <linux/bitops.h>
  34
  35#include <linux/uaccess.h>
  36#include <asm/tlbflush.h>
  37#include <asm/shmparam.h>
  38
  39#include "internal.h"
  40
  41struct vfree_deferred {
  42        struct llist_head list;
  43        struct work_struct wq;
  44};
  45static DEFINE_PER_CPU(struct vfree_deferred, vfree_deferred);
  46
  47static void __vunmap(const void *, int);
  48
  49static void free_work(struct work_struct *w)
  50{
  51        struct vfree_deferred *p = container_of(w, struct vfree_deferred, wq);
  52        struct llist_node *t, *llnode;
  53
  54        llist_for_each_safe(llnode, t, llist_del_all(&p->list))
  55                __vunmap((void *)llnode, 1);
  56}
  57
  58/*** Page table manipulation functions ***/
  59
  60static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
  61{
  62        pte_t *pte;
  63
  64        pte = pte_offset_kernel(pmd, addr);
  65        do {
  66                pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
  67                WARN_ON(!pte_none(ptent) && !pte_present(ptent));
  68        } while (pte++, addr += PAGE_SIZE, addr != end);
  69}
  70
  71static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
  72{
  73        pmd_t *pmd;
  74        unsigned long next;
  75
  76        pmd = pmd_offset(pud, addr);
  77        do {
  78                next = pmd_addr_end(addr, end);
  79                if (pmd_clear_huge(pmd))
  80                        continue;
  81                if (pmd_none_or_clear_bad(pmd))
  82                        continue;
  83                vunmap_pte_range(pmd, addr, next);
  84        } while (pmd++, addr = next, addr != end);
  85}
  86
  87static void vunmap_pud_range(p4d_t *p4d, unsigned long addr, unsigned long end)
  88{
  89        pud_t *pud;
  90        unsigned long next;
  91
  92        pud = pud_offset(p4d, addr);
  93        do {
  94                next = pud_addr_end(addr, end);
  95                if (pud_clear_huge(pud))
  96                        continue;
  97                if (pud_none_or_clear_bad(pud))
  98                        continue;
  99                vunmap_pmd_range(pud, addr, next);
 100        } while (pud++, addr = next, addr != end);
 101}
 102
 103static void vunmap_p4d_range(pgd_t *pgd, unsigned long addr, unsigned long end)
 104{
 105        p4d_t *p4d;
 106        unsigned long next;
 107
 108        p4d = p4d_offset(pgd, addr);
 109        do {
 110                next = p4d_addr_end(addr, end);
 111                if (p4d_clear_huge(p4d))
 112                        continue;
 113                if (p4d_none_or_clear_bad(p4d))
 114                        continue;
 115                vunmap_pud_range(p4d, addr, next);
 116        } while (p4d++, addr = next, addr != end);
 117}
 118
 119static void vunmap_page_range(unsigned long addr, unsigned long end)
 120{
 121        pgd_t *pgd;
 122        unsigned long next;
 123
 124        BUG_ON(addr >= end);
 125        pgd = pgd_offset_k(addr);
 126        do {
 127                next = pgd_addr_end(addr, end);
 128                if (pgd_none_or_clear_bad(pgd))
 129                        continue;
 130                vunmap_p4d_range(pgd, addr, next);
 131        } while (pgd++, addr = next, addr != end);
 132}
 133
 134static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
 135                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 136{
 137        pte_t *pte;
 138
 139        /*
 140         * nr is a running index into the array which helps higher level
 141         * callers keep track of where we're up to.
 142         */
 143
 144        pte = pte_alloc_kernel(pmd, addr);
 145        if (!pte)
 146                return -ENOMEM;
 147        do {
 148                struct page *page = pages[*nr];
 149
 150                if (WARN_ON(!pte_none(*pte)))
 151                        return -EBUSY;
 152                if (WARN_ON(!page))
 153                        return -ENOMEM;
 154                set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
 155                (*nr)++;
 156        } while (pte++, addr += PAGE_SIZE, addr != end);
 157        return 0;
 158}
 159
 160static int vmap_pmd_range(pud_t *pud, unsigned long addr,
 161                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 162{
 163        pmd_t *pmd;
 164        unsigned long next;
 165
 166        pmd = pmd_alloc(&init_mm, pud, addr);
 167        if (!pmd)
 168                return -ENOMEM;
 169        do {
 170                next = pmd_addr_end(addr, end);
 171                if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
 172                        return -ENOMEM;
 173        } while (pmd++, addr = next, addr != end);
 174        return 0;
 175}
 176
 177static int vmap_pud_range(p4d_t *p4d, unsigned long addr,
 178                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 179{
 180        pud_t *pud;
 181        unsigned long next;
 182
 183        pud = pud_alloc(&init_mm, p4d, addr);
 184        if (!pud)
 185                return -ENOMEM;
 186        do {
 187                next = pud_addr_end(addr, end);
 188                if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
 189                        return -ENOMEM;
 190        } while (pud++, addr = next, addr != end);
 191        return 0;
 192}
 193
 194static int vmap_p4d_range(pgd_t *pgd, unsigned long addr,
 195                unsigned long end, pgprot_t prot, struct page **pages, int *nr)
 196{
 197        p4d_t *p4d;
 198        unsigned long next;
 199
 200        p4d = p4d_alloc(&init_mm, pgd, addr);
 201        if (!p4d)
 202                return -ENOMEM;
 203        do {
 204                next = p4d_addr_end(addr, end);
 205                if (vmap_pud_range(p4d, addr, next, prot, pages, nr))
 206                        return -ENOMEM;
 207        } while (p4d++, addr = next, addr != end);
 208        return 0;
 209}
 210
 211/*
 212 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
 213 * will have pfns corresponding to the "pages" array.
 214 *
 215 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
 216 */
 217static int vmap_page_range_noflush(unsigned long start, unsigned long end,
 218                                   pgprot_t prot, struct page **pages)
 219{
 220        pgd_t *pgd;
 221        unsigned long next;
 222        unsigned long addr = start;
 223        int err = 0;
 224        int nr = 0;
 225
 226        BUG_ON(addr >= end);
 227        pgd = pgd_offset_k(addr);
 228        do {
 229                next = pgd_addr_end(addr, end);
 230                err = vmap_p4d_range(pgd, addr, next, prot, pages, &nr);
 231                if (err)
 232                        return err;
 233        } while (pgd++, addr = next, addr != end);
 234
 235        return nr;
 236}
 237
 238static int vmap_page_range(unsigned long start, unsigned long end,
 239                           pgprot_t prot, struct page **pages)
 240{
 241        int ret;
 242
 243        ret = vmap_page_range_noflush(start, end, prot, pages);
 244        flush_cache_vmap(start, end);
 245        return ret;
 246}
 247
 248int is_vmalloc_or_module_addr(const void *x)
 249{
 250        /*
 251         * ARM, x86-64 and sparc64 put modules in a special place,
 252         * and fall back on vmalloc() if that fails. Others
 253         * just put it in the vmalloc space.
 254         */
 255#if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
 256        unsigned long addr = (unsigned long)x;
 257        if (addr >= MODULES_VADDR && addr < MODULES_END)
 258                return 1;
 259#endif
 260        return is_vmalloc_addr(x);
 261}
 262
 263/*
 264 * Walk a vmap address to the struct page it maps.
 265 */
 266struct page *vmalloc_to_page(const void *vmalloc_addr)
 267{
 268        unsigned long addr = (unsigned long) vmalloc_addr;
 269        struct page *page = NULL;
 270        pgd_t *pgd = pgd_offset_k(addr);
 271        p4d_t *p4d;
 272        pud_t *pud;
 273        pmd_t *pmd;
 274        pte_t *ptep, pte;
 275
 276        /*
 277         * XXX we might need to change this if we add VIRTUAL_BUG_ON for
 278         * architectures that do not vmalloc module space
 279         */
 280        VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
 281
 282        if (pgd_none(*pgd))
 283                return NULL;
 284        p4d = p4d_offset(pgd, addr);
 285        if (p4d_none(*p4d))
 286                return NULL;
 287        pud = pud_offset(p4d, addr);
 288
 289        /*
 290         * Don't dereference bad PUD or PMD (below) entries. This will also
 291         * identify huge mappings, which we may encounter on architectures
 292         * that define CONFIG_HAVE_ARCH_HUGE_VMAP=y. Such regions will be
 293         * identified as vmalloc addresses by is_vmalloc_addr(), but are
 294         * not [unambiguously] associated with a struct page, so there is
 295         * no correct value to return for them.
 296         */
 297        WARN_ON_ONCE(pud_bad(*pud));
 298        if (pud_none(*pud) || pud_bad(*pud))
 299                return NULL;
 300        pmd = pmd_offset(pud, addr);
 301        WARN_ON_ONCE(pmd_bad(*pmd));
 302        if (pmd_none(*pmd) || pmd_bad(*pmd))
 303                return NULL;
 304
 305        ptep = pte_offset_map(pmd, addr);
 306        pte = *ptep;
 307        if (pte_present(pte))
 308                page = pte_page(pte);
 309        pte_unmap(ptep);
 310        return page;
 311}
 312EXPORT_SYMBOL(vmalloc_to_page);
 313
 314/*
 315 * Map a vmalloc()-space virtual address to the physical page frame number.
 316 */
 317unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
 318{
 319        return page_to_pfn(vmalloc_to_page(vmalloc_addr));
 320}
 321EXPORT_SYMBOL(vmalloc_to_pfn);
 322
 323
 324/*** Global kva allocator ***/
 325
 326#define VM_LAZY_FREE    0x02
 327#define VM_VM_AREA      0x04
 328
 329static DEFINE_SPINLOCK(vmap_area_lock);
 330/* Export for kexec only */
 331LIST_HEAD(vmap_area_list);
 332static LLIST_HEAD(vmap_purge_list);
 333static struct rb_root vmap_area_root = RB_ROOT;
 334
 335/* The vmap cache globals are protected by vmap_area_lock */
 336static struct rb_node *free_vmap_cache;
 337static unsigned long cached_hole_size;
 338static unsigned long cached_vstart;
 339static unsigned long cached_align;
 340
 341static unsigned long vmap_area_pcpu_hole;
 342
 343static struct vmap_area *__find_vmap_area(unsigned long addr)
 344{
 345        struct rb_node *n = vmap_area_root.rb_node;
 346
 347        while (n) {
 348                struct vmap_area *va;
 349
 350                va = rb_entry(n, struct vmap_area, rb_node);
 351                if (addr < va->va_start)
 352                        n = n->rb_left;
 353                else if (addr >= va->va_end)
 354                        n = n->rb_right;
 355                else
 356                        return va;
 357        }
 358
 359        return NULL;
 360}
 361
 362static void __insert_vmap_area(struct vmap_area *va)
 363{
 364        struct rb_node **p = &vmap_area_root.rb_node;
 365        struct rb_node *parent = NULL;
 366        struct rb_node *tmp;
 367
 368        while (*p) {
 369                struct vmap_area *tmp_va;
 370
 371                parent = *p;
 372                tmp_va = rb_entry(parent, struct vmap_area, rb_node);
 373                if (va->va_start < tmp_va->va_end)
 374                        p = &(*p)->rb_left;
 375                else if (va->va_end > tmp_va->va_start)
 376                        p = &(*p)->rb_right;
 377                else
 378                        BUG();
 379        }
 380
 381        rb_link_node(&va->rb_node, parent, p);
 382        rb_insert_color(&va->rb_node, &vmap_area_root);
 383
 384        /* address-sort this list */
 385        tmp = rb_prev(&va->rb_node);
 386        if (tmp) {
 387                struct vmap_area *prev;
 388                prev = rb_entry(tmp, struct vmap_area, rb_node);
 389                list_add_rcu(&va->list, &prev->list);
 390        } else
 391                list_add_rcu(&va->list, &vmap_area_list);
 392}
 393
 394static void purge_vmap_area_lazy(void);
 395
 396static BLOCKING_NOTIFIER_HEAD(vmap_notify_list);
 397
 398/*
 399 * Allocate a region of KVA of the specified size and alignment, within the
 400 * vstart and vend.
 401 */
 402static struct vmap_area *alloc_vmap_area(unsigned long size,
 403                                unsigned long align,
 404                                unsigned long vstart, unsigned long vend,
 405                                int node, gfp_t gfp_mask)
 406{
 407        struct vmap_area *va;
 408        struct rb_node *n;
 409        unsigned long addr;
 410        int purged = 0;
 411        struct vmap_area *first;
 412
 413        BUG_ON(!size);
 414        BUG_ON(offset_in_page(size));
 415        BUG_ON(!is_power_of_2(align));
 416
 417        might_sleep();
 418
 419        va = kmalloc_node(sizeof(struct vmap_area),
 420                        gfp_mask & GFP_RECLAIM_MASK, node);
 421        if (unlikely(!va))
 422                return ERR_PTR(-ENOMEM);
 423
 424        /*
 425         * Only scan the relevant parts containing pointers to other objects
 426         * to avoid false negatives.
 427         */
 428        kmemleak_scan_area(&va->rb_node, SIZE_MAX, gfp_mask & GFP_RECLAIM_MASK);
 429
 430retry:
 431        spin_lock(&vmap_area_lock);
 432        /*
 433         * Invalidate cache if we have more permissive parameters.
 434         * cached_hole_size notes the largest hole noticed _below_
 435         * the vmap_area cached in free_vmap_cache: if size fits
 436         * into that hole, we want to scan from vstart to reuse
 437         * the hole instead of allocating above free_vmap_cache.
 438         * Note that __free_vmap_area may update free_vmap_cache
 439         * without updating cached_hole_size or cached_align.
 440         */
 441        if (!free_vmap_cache ||
 442                        size < cached_hole_size ||
 443                        vstart < cached_vstart ||
 444                        align < cached_align) {
 445nocache:
 446                cached_hole_size = 0;
 447                free_vmap_cache = NULL;
 448        }
 449        /* record if we encounter less permissive parameters */
 450        cached_vstart = vstart;
 451        cached_align = align;
 452
 453        /* find starting point for our search */
 454        if (free_vmap_cache) {
 455                first = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 456                addr = ALIGN(first->va_end, align);
 457                if (addr < vstart)
 458                        goto nocache;
 459                if (addr + size < addr)
 460                        goto overflow;
 461
 462        } else {
 463                addr = ALIGN(vstart, align);
 464                if (addr + size < addr)
 465                        goto overflow;
 466
 467                n = vmap_area_root.rb_node;
 468                first = NULL;
 469
 470                while (n) {
 471                        struct vmap_area *tmp;
 472                        tmp = rb_entry(n, struct vmap_area, rb_node);
 473                        if (tmp->va_end >= addr) {
 474                                first = tmp;
 475                                if (tmp->va_start <= addr)
 476                                        break;
 477                                n = n->rb_left;
 478                        } else
 479                                n = n->rb_right;
 480                }
 481
 482                if (!first)
 483                        goto found;
 484        }
 485
 486        /* from the starting point, walk areas until a suitable hole is found */
 487        while (addr + size > first->va_start && addr + size <= vend) {
 488                if (addr + cached_hole_size < first->va_start)
 489                        cached_hole_size = first->va_start - addr;
 490                addr = ALIGN(first->va_end, align);
 491                if (addr + size < addr)
 492                        goto overflow;
 493
 494                if (list_is_last(&first->list, &vmap_area_list))
 495                        goto found;
 496
 497                first = list_next_entry(first, list);
 498        }
 499
 500found:
 501        if (addr + size > vend)
 502                goto overflow;
 503
 504        va->va_start = addr;
 505        va->va_end = addr + size;
 506        va->flags = 0;
 507        __insert_vmap_area(va);
 508        free_vmap_cache = &va->rb_node;
 509        spin_unlock(&vmap_area_lock);
 510
 511        BUG_ON(!IS_ALIGNED(va->va_start, align));
 512        BUG_ON(va->va_start < vstart);
 513        BUG_ON(va->va_end > vend);
 514
 515        return va;
 516
 517overflow:
 518        spin_unlock(&vmap_area_lock);
 519        if (!purged) {
 520                purge_vmap_area_lazy();
 521                purged = 1;
 522                goto retry;
 523        }
 524
 525        if (gfpflags_allow_blocking(gfp_mask)) {
 526                unsigned long freed = 0;
 527                blocking_notifier_call_chain(&vmap_notify_list, 0, &freed);
 528                if (freed > 0) {
 529                        purged = 0;
 530                        goto retry;
 531                }
 532        }
 533
 534        if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit())
 535                pr_warn("vmap allocation for size %lu failed: use vmalloc=<size> to increase size\n",
 536                        size);
 537        kfree(va);
 538        return ERR_PTR(-EBUSY);
 539}
 540
 541int register_vmap_purge_notifier(struct notifier_block *nb)
 542{
 543        return blocking_notifier_chain_register(&vmap_notify_list, nb);
 544}
 545EXPORT_SYMBOL_GPL(register_vmap_purge_notifier);
 546
 547int unregister_vmap_purge_notifier(struct notifier_block *nb)
 548{
 549        return blocking_notifier_chain_unregister(&vmap_notify_list, nb);
 550}
 551EXPORT_SYMBOL_GPL(unregister_vmap_purge_notifier);
 552
 553static void __free_vmap_area(struct vmap_area *va)
 554{
 555        BUG_ON(RB_EMPTY_NODE(&va->rb_node));
 556
 557        if (free_vmap_cache) {
 558                if (va->va_end < cached_vstart) {
 559                        free_vmap_cache = NULL;
 560                } else {
 561                        struct vmap_area *cache;
 562                        cache = rb_entry(free_vmap_cache, struct vmap_area, rb_node);
 563                        if (va->va_start <= cache->va_start) {
 564                                free_vmap_cache = rb_prev(&va->rb_node);
 565                                /*
 566                                 * We don't try to update cached_hole_size or
 567                                 * cached_align, but it won't go very wrong.
 568                                 */
 569                        }
 570                }
 571        }
 572        rb_erase(&va->rb_node, &vmap_area_root);
 573        RB_CLEAR_NODE(&va->rb_node);
 574        list_del_rcu(&va->list);
 575
 576        /*
 577         * Track the highest possible candidate for pcpu area
 578         * allocation.  Areas outside of vmalloc area can be returned
 579         * here too, consider only end addresses which fall inside
 580         * vmalloc area proper.
 581         */
 582        if (va->va_end > VMALLOC_START && va->va_end <= VMALLOC_END)
 583                vmap_area_pcpu_hole = max(vmap_area_pcpu_hole, va->va_end);
 584
 585        kfree_rcu(va, rcu_head);
 586}
 587
 588/*
 589 * Free a region of KVA allocated by alloc_vmap_area
 590 */
 591static void free_vmap_area(struct vmap_area *va)
 592{
 593        spin_lock(&vmap_area_lock);
 594        __free_vmap_area(va);
 595        spin_unlock(&vmap_area_lock);
 596}
 597
 598/*
 599 * Clear the pagetable entries of a given vmap_area
 600 */
 601static void unmap_vmap_area(struct vmap_area *va)
 602{
 603        vunmap_page_range(va->va_start, va->va_end);
 604}
 605
 606/*
 607 * lazy_max_pages is the maximum amount of virtual address space we gather up
 608 * before attempting to purge with a TLB flush.
 609 *
 610 * There is a tradeoff here: a larger number will cover more kernel page tables
 611 * and take slightly longer to purge, but it will linearly reduce the number of
 612 * global TLB flushes that must be performed. It would seem natural to scale
 613 * this number up linearly with the number of CPUs (because vmapping activity
 614 * could also scale linearly with the number of CPUs), however it is likely
 615 * that in practice, workloads might be constrained in other ways that mean
 616 * vmap activity will not scale linearly with CPUs. Also, I want to be
 617 * conservative and not introduce a big latency on huge systems, so go with
 618 * a less aggressive log scale. It will still be an improvement over the old
 619 * code, and it will be simple to change the scale factor if we find that it
 620 * becomes a problem on bigger systems.
 621 */
 622static unsigned long lazy_max_pages(void)
 623{
 624        unsigned int log;
 625
 626        log = fls(num_online_cpus());
 627
 628        return log * (32UL * 1024 * 1024 / PAGE_SIZE);
 629}
 630
 631static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
 632
 633/*
 634 * Serialize vmap purging.  There is no actual criticial section protected
 635 * by this look, but we want to avoid concurrent calls for performance
 636 * reasons and to make the pcpu_get_vm_areas more deterministic.
 637 */
 638static DEFINE_MUTEX(vmap_purge_lock);
 639
 640/* for per-CPU blocks */
 641static void purge_fragmented_blocks_allcpus(void);
 642
 643/*
 644 * called before a call to iounmap() if the caller wants vm_area_struct's
 645 * immediately freed.
 646 */
 647void set_iounmap_nonlazy(void)
 648{
 649        atomic_set(&vmap_lazy_nr, lazy_max_pages()+1);
 650}
 651
 652/*
 653 * Purges all lazily-freed vmap areas.
 654 */
 655static bool __purge_vmap_area_lazy(unsigned long start, unsigned long end)
 656{
 657        struct llist_node *valist;
 658        struct vmap_area *va;
 659        struct vmap_area *n_va;
 660        bool do_free = false;
 661
 662        lockdep_assert_held(&vmap_purge_lock);
 663
 664        valist = llist_del_all(&vmap_purge_list);
 665        llist_for_each_entry(va, valist, purge_list) {
 666                if (va->va_start < start)
 667                        start = va->va_start;
 668                if (va->va_end > end)
 669                        end = va->va_end;
 670                do_free = true;
 671        }
 672
 673        if (!do_free)
 674                return false;
 675
 676        flush_tlb_kernel_range(start, end);
 677
 678        spin_lock(&vmap_area_lock);
 679        llist_for_each_entry_safe(va, n_va, valist, purge_list) {
 680                int nr = (va->va_end - va->va_start) >> PAGE_SHIFT;
 681
 682                __free_vmap_area(va);
 683                atomic_sub(nr, &vmap_lazy_nr);
 684                cond_resched_lock(&vmap_area_lock);
 685        }
 686        spin_unlock(&vmap_area_lock);
 687        return true;
 688}
 689
 690/*
 691 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
 692 * is already purging.
 693 */
 694static void try_purge_vmap_area_lazy(void)
 695{
 696        if (mutex_trylock(&vmap_purge_lock)) {
 697                __purge_vmap_area_lazy(ULONG_MAX, 0);
 698                mutex_unlock(&vmap_purge_lock);
 699        }
 700}
 701
 702/*
 703 * Kick off a purge of the outstanding lazy areas.
 704 */
 705static void purge_vmap_area_lazy(void)
 706{
 707        mutex_lock(&vmap_purge_lock);
 708        purge_fragmented_blocks_allcpus();
 709        __purge_vmap_area_lazy(ULONG_MAX, 0);
 710        mutex_unlock(&vmap_purge_lock);
 711}
 712
 713/*
 714 * Free a vmap area, caller ensuring that the area has been unmapped
 715 * and flush_cache_vunmap had been called for the correct range
 716 * previously.
 717 */
 718static void free_vmap_area_noflush(struct vmap_area *va)
 719{
 720        int nr_lazy;
 721
 722        nr_lazy = atomic_add_return((va->va_end - va->va_start) >> PAGE_SHIFT,
 723                                    &vmap_lazy_nr);
 724
 725        /* After this point, we may free va at any time */
 726        llist_add(&va->purge_list, &vmap_purge_list);
 727
 728        if (unlikely(nr_lazy > lazy_max_pages()))
 729                try_purge_vmap_area_lazy();
 730}
 731
 732/*
 733 * Free and unmap a vmap area
 734 */
 735static void free_unmap_vmap_area(struct vmap_area *va)
 736{
 737        flush_cache_vunmap(va->va_start, va->va_end);
 738        unmap_vmap_area(va);
 739        if (debug_pagealloc_enabled())
 740                flush_tlb_kernel_range(va->va_start, va->va_end);
 741
 742        free_vmap_area_noflush(va);
 743}
 744
 745static struct vmap_area *find_vmap_area(unsigned long addr)
 746{
 747        struct vmap_area *va;
 748
 749        spin_lock(&vmap_area_lock);
 750        va = __find_vmap_area(addr);
 751        spin_unlock(&vmap_area_lock);
 752
 753        return va;
 754}
 755
 756/*** Per cpu kva allocator ***/
 757
 758/*
 759 * vmap space is limited especially on 32 bit architectures. Ensure there is
 760 * room for at least 16 percpu vmap blocks per CPU.
 761 */
 762/*
 763 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
 764 * to #define VMALLOC_SPACE             (VMALLOC_END-VMALLOC_START). Guess
 765 * instead (we just need a rough idea)
 766 */
 767#if BITS_PER_LONG == 32
 768#define VMALLOC_SPACE           (128UL*1024*1024)
 769#else
 770#define VMALLOC_SPACE           (128UL*1024*1024*1024)
 771#endif
 772
 773#define VMALLOC_PAGES           (VMALLOC_SPACE / PAGE_SIZE)
 774#define VMAP_MAX_ALLOC          BITS_PER_LONG   /* 256K with 4K pages */
 775#define VMAP_BBMAP_BITS_MAX     1024    /* 4MB with 4K pages */
 776#define VMAP_BBMAP_BITS_MIN     (VMAP_MAX_ALLOC*2)
 777#define VMAP_MIN(x, y)          ((x) < (y) ? (x) : (y)) /* can't use min() */
 778#define VMAP_MAX(x, y)          ((x) > (y) ? (x) : (y)) /* can't use max() */
 779#define VMAP_BBMAP_BITS         \
 780                VMAP_MIN(VMAP_BBMAP_BITS_MAX,   \
 781                VMAP_MAX(VMAP_BBMAP_BITS_MIN,   \
 782                        VMALLOC_PAGES / roundup_pow_of_two(NR_CPUS) / 16))
 783
 784#define VMAP_BLOCK_SIZE         (VMAP_BBMAP_BITS * PAGE_SIZE)
 785
 786static bool vmap_initialized __read_mostly = false;
 787
 788struct vmap_block_queue {
 789        spinlock_t lock;
 790        struct list_head free;
 791};
 792
 793struct vmap_block {
 794        spinlock_t lock;
 795        struct vmap_area *va;
 796        unsigned long free, dirty;
 797        unsigned long dirty_min, dirty_max; /*< dirty range */
 798        struct list_head free_list;
 799        struct rcu_head rcu_head;
 800        struct list_head purge;
 801};
 802
 803/* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
 804static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
 805
 806/*
 807 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
 808 * in the free path. Could get rid of this if we change the API to return a
 809 * "cookie" from alloc, to be passed to free. But no big deal yet.
 810 */
 811static DEFINE_SPINLOCK(vmap_block_tree_lock);
 812static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
 813
 814/*
 815 * We should probably have a fallback mechanism to allocate virtual memory
 816 * out of partially filled vmap blocks. However vmap block sizing should be
 817 * fairly reasonable according to the vmalloc size, so it shouldn't be a
 818 * big problem.
 819 */
 820
 821static unsigned long addr_to_vb_idx(unsigned long addr)
 822{
 823        addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
 824        addr /= VMAP_BLOCK_SIZE;
 825        return addr;
 826}
 827
 828static void *vmap_block_vaddr(unsigned long va_start, unsigned long pages_off)
 829{
 830        unsigned long addr;
 831
 832        addr = va_start + (pages_off << PAGE_SHIFT);
 833        BUG_ON(addr_to_vb_idx(addr) != addr_to_vb_idx(va_start));
 834        return (void *)addr;
 835}
 836
 837/**
 838 * new_vmap_block - allocates new vmap_block and occupies 2^order pages in this
 839 *                  block. Of course pages number can't exceed VMAP_BBMAP_BITS
 840 * @order:    how many 2^order pages should be occupied in newly allocated block
 841 * @gfp_mask: flags for the page level allocator
 842 *
 843 * Returns: virtual address in a newly allocated block or ERR_PTR(-errno)
 844 */
 845static void *new_vmap_block(unsigned int order, gfp_t gfp_mask)
 846{
 847        struct vmap_block_queue *vbq;
 848        struct vmap_block *vb;
 849        struct vmap_area *va;
 850        unsigned long vb_idx;
 851        int node, err;
 852        void *vaddr;
 853
 854        node = numa_node_id();
 855
 856        vb = kmalloc_node(sizeof(struct vmap_block),
 857                        gfp_mask & GFP_RECLAIM_MASK, node);
 858        if (unlikely(!vb))
 859                return ERR_PTR(-ENOMEM);
 860
 861        va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
 862                                        VMALLOC_START, VMALLOC_END,
 863                                        node, gfp_mask);
 864        if (IS_ERR(va)) {
 865                kfree(vb);
 866                return ERR_CAST(va);
 867        }
 868
 869        err = radix_tree_preload(gfp_mask);
 870        if (unlikely(err)) {
 871                kfree(vb);
 872                free_vmap_area(va);
 873                return ERR_PTR(err);
 874        }
 875
 876        vaddr = vmap_block_vaddr(va->va_start, 0);
 877        spin_lock_init(&vb->lock);
 878        vb->va = va;
 879        /* At least something should be left free */
 880        BUG_ON(VMAP_BBMAP_BITS <= (1UL << order));
 881        vb->free = VMAP_BBMAP_BITS - (1UL << order);
 882        vb->dirty = 0;
 883        vb->dirty_min = VMAP_BBMAP_BITS;
 884        vb->dirty_max = 0;
 885        INIT_LIST_HEAD(&vb->free_list);
 886
 887        vb_idx = addr_to_vb_idx(va->va_start);
 888        spin_lock(&vmap_block_tree_lock);
 889        err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
 890        spin_unlock(&vmap_block_tree_lock);
 891        BUG_ON(err);
 892        radix_tree_preload_end();
 893
 894        vbq = &get_cpu_var(vmap_block_queue);
 895        spin_lock(&vbq->lock);
 896        list_add_tail_rcu(&vb->free_list, &vbq->free);
 897        spin_unlock(&vbq->lock);
 898        put_cpu_var(vmap_block_queue);
 899
 900        return vaddr;
 901}
 902
 903static void free_vmap_block(struct vmap_block *vb)
 904{
 905        struct vmap_block *tmp;
 906        unsigned long vb_idx;
 907
 908        vb_idx = addr_to_vb_idx(vb->va->va_start);
 909        spin_lock(&vmap_block_tree_lock);
 910        tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
 911        spin_unlock(&vmap_block_tree_lock);
 912        BUG_ON(tmp != vb);
 913
 914        free_vmap_area_noflush(vb->va);
 915        kfree_rcu(vb, rcu_head);
 916}
 917
 918static void purge_fragmented_blocks(int cpu)
 919{
 920        LIST_HEAD(purge);
 921        struct vmap_block *vb;
 922        struct vmap_block *n_vb;
 923        struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
 924
 925        rcu_read_lock();
 926        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 927
 928                if (!(vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS))
 929                        continue;
 930
 931                spin_lock(&vb->lock);
 932                if (vb->free + vb->dirty == VMAP_BBMAP_BITS && vb->dirty != VMAP_BBMAP_BITS) {
 933                        vb->free = 0; /* prevent further allocs after releasing lock */
 934                        vb->dirty = VMAP_BBMAP_BITS; /* prevent purging it again */
 935                        vb->dirty_min = 0;
 936                        vb->dirty_max = VMAP_BBMAP_BITS;
 937                        spin_lock(&vbq->lock);
 938                        list_del_rcu(&vb->free_list);
 939                        spin_unlock(&vbq->lock);
 940                        spin_unlock(&vb->lock);
 941                        list_add_tail(&vb->purge, &purge);
 942                } else
 943                        spin_unlock(&vb->lock);
 944        }
 945        rcu_read_unlock();
 946
 947        list_for_each_entry_safe(vb, n_vb, &purge, purge) {
 948                list_del(&vb->purge);
 949                free_vmap_block(vb);
 950        }
 951}
 952
 953static void purge_fragmented_blocks_allcpus(void)
 954{
 955        int cpu;
 956
 957        for_each_possible_cpu(cpu)
 958                purge_fragmented_blocks(cpu);
 959}
 960
 961static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
 962{
 963        struct vmap_block_queue *vbq;
 964        struct vmap_block *vb;
 965        void *vaddr = NULL;
 966        unsigned int order;
 967
 968        BUG_ON(offset_in_page(size));
 969        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
 970        if (WARN_ON(size == 0)) {
 971                /*
 972                 * Allocating 0 bytes isn't what caller wants since
 973                 * get_order(0) returns funny result. Just warn and terminate
 974                 * early.
 975                 */
 976                return NULL;
 977        }
 978        order = get_order(size);
 979
 980        rcu_read_lock();
 981        vbq = &get_cpu_var(vmap_block_queue);
 982        list_for_each_entry_rcu(vb, &vbq->free, free_list) {
 983                unsigned long pages_off;
 984
 985                spin_lock(&vb->lock);
 986                if (vb->free < (1UL << order)) {
 987                        spin_unlock(&vb->lock);
 988                        continue;
 989                }
 990
 991                pages_off = VMAP_BBMAP_BITS - vb->free;
 992                vaddr = vmap_block_vaddr(vb->va->va_start, pages_off);
 993                vb->free -= 1UL << order;
 994                if (vb->free == 0) {
 995                        spin_lock(&vbq->lock);
 996                        list_del_rcu(&vb->free_list);
 997                        spin_unlock(&vbq->lock);
 998                }
 999
1000                spin_unlock(&vb->lock);
1001                break;
1002        }
1003
1004        put_cpu_var(vmap_block_queue);
1005        rcu_read_unlock();
1006
1007        /* Allocate new block if nothing was found */
1008        if (!vaddr)
1009                vaddr = new_vmap_block(order, gfp_mask);
1010
1011        return vaddr;
1012}
1013
1014static void vb_free(const void *addr, unsigned long size)
1015{
1016        unsigned long offset;
1017        unsigned long vb_idx;
1018        unsigned int order;
1019        struct vmap_block *vb;
1020
1021        BUG_ON(offset_in_page(size));
1022        BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
1023
1024        flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
1025
1026        order = get_order(size);
1027
1028        offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
1029        offset >>= PAGE_SHIFT;
1030
1031        vb_idx = addr_to_vb_idx((unsigned long)addr);
1032        rcu_read_lock();
1033        vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
1034        rcu_read_unlock();
1035        BUG_ON(!vb);
1036
1037        vunmap_page_range((unsigned long)addr, (unsigned long)addr + size);
1038
1039        if (debug_pagealloc_enabled())
1040                flush_tlb_kernel_range((unsigned long)addr,
1041                                        (unsigned long)addr + size);
1042
1043        spin_lock(&vb->lock);
1044
1045        /* Expand dirty range */
1046        vb->dirty_min = min(vb->dirty_min, offset);
1047        vb->dirty_max = max(vb->dirty_max, offset + (1UL << order));
1048
1049        vb->dirty += 1UL << order;
1050        if (vb->dirty == VMAP_BBMAP_BITS) {
1051                BUG_ON(vb->free);
1052                spin_unlock(&vb->lock);
1053                free_vmap_block(vb);
1054        } else
1055                spin_unlock(&vb->lock);
1056}
1057
1058/**
1059 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
1060 *
1061 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
1062 * to amortize TLB flushing overheads. What this means is that any page you
1063 * have now, may, in a former life, have been mapped into kernel virtual
1064 * address by the vmap layer and so there might be some CPUs with TLB entries
1065 * still referencing that page (additional to the regular 1:1 kernel mapping).
1066 *
1067 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
1068 * be sure that none of the pages we have control over will have any aliases
1069 * from the vmap layer.
1070 */
1071void vm_unmap_aliases(void)
1072{
1073        unsigned long start = ULONG_MAX, end = 0;
1074        int cpu;
1075        int flush = 0;
1076
1077        if (unlikely(!vmap_initialized))
1078                return;
1079
1080        might_sleep();
1081
1082        for_each_possible_cpu(cpu) {
1083                struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
1084                struct vmap_block *vb;
1085
1086                rcu_read_lock();
1087                list_for_each_entry_rcu(vb, &vbq->free, free_list) {
1088                        spin_lock(&vb->lock);
1089                        if (vb->dirty) {
1090                                unsigned long va_start = vb->va->va_start;
1091                                unsigned long s, e;
1092
1093                                s = va_start + (vb->dirty_min << PAGE_SHIFT);
1094                                e = va_start + (vb->dirty_max << PAGE_SHIFT);
1095
1096                                start = min(s, start);
1097                                end   = max(e, end);
1098
1099                                flush = 1;
1100                        }
1101                        spin_unlock(&vb->lock);
1102                }
1103                rcu_read_unlock();
1104        }
1105
1106        mutex_lock(&vmap_purge_lock);
1107        purge_fragmented_blocks_allcpus();
1108        if (!__purge_vmap_area_lazy(start, end) && flush)
1109                flush_tlb_kernel_range(start, end);
1110        mutex_unlock(&vmap_purge_lock);
1111}
1112EXPORT_SYMBOL_GPL(vm_unmap_aliases);
1113
1114/**
1115 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
1116 * @mem: the pointer returned by vm_map_ram
1117 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
1118 */
1119void vm_unmap_ram(const void *mem, unsigned int count)
1120{
1121        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1122        unsigned long addr = (unsigned long)mem;
1123        struct vmap_area *va;
1124
1125        might_sleep();
1126        BUG_ON(!addr);
1127        BUG_ON(addr < VMALLOC_START);
1128        BUG_ON(addr > VMALLOC_END);
1129        BUG_ON(!PAGE_ALIGNED(addr));
1130
1131        if (likely(count <= VMAP_MAX_ALLOC)) {
1132                debug_check_no_locks_freed(mem, size);
1133                vb_free(mem, size);
1134                return;
1135        }
1136
1137        va = find_vmap_area(addr);
1138        BUG_ON(!va);
1139        debug_check_no_locks_freed((void *)va->va_start,
1140                                    (va->va_end - va->va_start));
1141        free_unmap_vmap_area(va);
1142}
1143EXPORT_SYMBOL(vm_unmap_ram);
1144
1145/**
1146 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
1147 * @pages: an array of pointers to the pages to be mapped
1148 * @count: number of pages
1149 * @node: prefer to allocate data structures on this node
1150 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
1151 *
1152 * If you use this function for less than VMAP_MAX_ALLOC pages, it could be
1153 * faster than vmap so it's good.  But if you mix long-life and short-life
1154 * objects with vm_map_ram(), it could consume lots of address space through
1155 * fragmentation (especially on a 32bit machine).  You could see failures in
1156 * the end.  Please use this function for short-lived objects.
1157 *
1158 * Returns: a pointer to the address that has been mapped, or %NULL on failure
1159 */
1160void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
1161{
1162        unsigned long size = (unsigned long)count << PAGE_SHIFT;
1163        unsigned long addr;
1164        void *mem;
1165
1166        if (likely(count <= VMAP_MAX_ALLOC)) {
1167                mem = vb_alloc(size, GFP_KERNEL);
1168                if (IS_ERR(mem))
1169                        return NULL;
1170                addr = (unsigned long)mem;
1171        } else {
1172                struct vmap_area *va;
1173                va = alloc_vmap_area(size, PAGE_SIZE,
1174                                VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
1175                if (IS_ERR(va))
1176                        return NULL;
1177
1178                addr = va->va_start;
1179                mem = (void *)addr;
1180        }
1181        if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
1182                vm_unmap_ram(mem, count);
1183                return NULL;
1184        }
1185        return mem;
1186}
1187EXPORT_SYMBOL(vm_map_ram);
1188
1189static struct vm_struct *vmlist __initdata;
1190/**
1191 * vm_area_add_early - add vmap area early during boot
1192 * @vm: vm_struct to add
1193 *
1194 * This function is used to add fixed kernel vm area to vmlist before
1195 * vmalloc_init() is called.  @vm->addr, @vm->size, and @vm->flags
1196 * should contain proper values and the other fields should be zero.
1197 *
1198 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1199 */
1200void __init vm_area_add_early(struct vm_struct *vm)
1201{
1202        struct vm_struct *tmp, **p;
1203
1204        BUG_ON(vmap_initialized);
1205        for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1206                if (tmp->addr >= vm->addr) {
1207                        BUG_ON(tmp->addr < vm->addr + vm->size);
1208                        break;
1209                } else
1210                        BUG_ON(tmp->addr + tmp->size > vm->addr);
1211        }
1212        vm->next = *p;
1213        *p = vm;
1214}
1215
1216/**
1217 * vm_area_register_early - register vmap area early during boot
1218 * @vm: vm_struct to register
1219 * @align: requested alignment
1220 *
1221 * This function is used to register kernel vm area before
1222 * vmalloc_init() is called.  @vm->size and @vm->flags should contain
1223 * proper values on entry and other fields should be zero.  On return,
1224 * vm->addr contains the allocated address.
1225 *
1226 * DO NOT USE THIS FUNCTION UNLESS YOU KNOW WHAT YOU'RE DOING.
1227 */
1228void __init vm_area_register_early(struct vm_struct *vm, size_t align)
1229{
1230        static size_t vm_init_off __initdata;
1231        unsigned long addr;
1232
1233        addr = ALIGN(VMALLOC_START + vm_init_off, align);
1234        vm_init_off = PFN_ALIGN(addr + vm->size) - VMALLOC_START;
1235
1236        vm->addr = (void *)addr;
1237
1238        vm_area_add_early(vm);
1239}
1240
1241void __init vmalloc_init(void)
1242{
1243        struct vmap_area *va;
1244        struct vm_struct *tmp;
1245        int i;
1246
1247        for_each_possible_cpu(i) {
1248                struct vmap_block_queue *vbq;
1249                struct vfree_deferred *p;
1250
1251                vbq = &per_cpu(vmap_block_queue, i);
1252                spin_lock_init(&vbq->lock);
1253                INIT_LIST_HEAD(&vbq->free);
1254                p = &per_cpu(vfree_deferred, i);
1255                init_llist_head(&p->list);
1256                INIT_WORK(&p->wq, free_work);
1257        }
1258
1259        /* Import existing vmlist entries. */
1260        for (tmp = vmlist; tmp; tmp = tmp->next) {
1261                va = kzalloc(sizeof(struct vmap_area), GFP_NOWAIT);
1262                va->flags = VM_VM_AREA;
1263                va->va_start = (unsigned long)tmp->addr;
1264                va->va_end = va->va_start + tmp->size;
1265                va->vm = tmp;
1266                __insert_vmap_area(va);
1267        }
1268
1269        vmap_area_pcpu_hole = VMALLOC_END;
1270
1271        vmap_initialized = true;
1272}
1273
1274/**
1275 * map_kernel_range_noflush - map kernel VM area with the specified pages
1276 * @addr: start of the VM area to map
1277 * @size: size of the VM area to map
1278 * @prot: page protection flags to use
1279 * @pages: pages to map
1280 *
1281 * Map PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1282 * specify should have been allocated using get_vm_area() and its
1283 * friends.
1284 *
1285 * NOTE:
1286 * This function does NOT do any cache flushing.  The caller is
1287 * responsible for calling flush_cache_vmap() on to-be-mapped areas
1288 * before calling this function.
1289 *
1290 * RETURNS:
1291 * The number of pages mapped on success, -errno on failure.
1292 */
1293int map_kernel_range_noflush(unsigned long addr, unsigned long size,
1294                             pgprot_t prot, struct page **pages)
1295{
1296        return vmap_page_range_noflush(addr, addr + size, prot, pages);
1297}
1298
1299/**
1300 * unmap_kernel_range_noflush - unmap kernel VM area
1301 * @addr: start of the VM area to unmap
1302 * @size: size of the VM area to unmap
1303 *
1304 * Unmap PFN_UP(@size) pages at @addr.  The VM area @addr and @size
1305 * specify should have been allocated using get_vm_area() and its
1306 * friends.
1307 *
1308 * NOTE:
1309 * This function does NOT do any cache flushing.  The caller is
1310 * responsible for calling flush_cache_vunmap() on to-be-mapped areas
1311 * before calling this function and flush_tlb_kernel_range() after.
1312 */
1313void unmap_kernel_range_noflush(unsigned long addr, unsigned long size)
1314{
1315        vunmap_page_range(addr, addr + size);
1316}
1317EXPORT_SYMBOL_GPL(unmap_kernel_range_noflush);
1318
1319/**
1320 * unmap_kernel_range - unmap kernel VM area and flush cache and TLB
1321 * @addr: start of the VM area to unmap
1322 * @size: size of the VM area to unmap
1323 *
1324 * Similar to unmap_kernel_range_noflush() but flushes vcache before
1325 * the unmapping and tlb after.
1326 */
1327void unmap_kernel_range(unsigned long addr, unsigned long size)
1328{
1329        unsigned long end = addr + size;
1330
1331        flush_cache_vunmap(addr, end);
1332        vunmap_page_range(addr, end);
1333        flush_tlb_kernel_range(addr, end);
1334}
1335EXPORT_SYMBOL_GPL(unmap_kernel_range);
1336
1337int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page **pages)
1338{
1339        unsigned long addr = (unsigned long)area->addr;
1340        unsigned long end = addr + get_vm_area_size(area);
1341        int err;
1342
1343        err = vmap_page_range(addr, end, prot, pages);
1344
1345        return err > 0 ? 0 : err;
1346}
1347EXPORT_SYMBOL_GPL(map_vm_area);
1348
1349static void setup_vmalloc_vm(struct vm_struct *vm, struct vmap_area *va,
1350                              unsigned long flags, const void *caller)
1351{
1352        spin_lock(&vmap_area_lock);
1353        vm->flags = flags;
1354        vm->addr = (void *)va->va_start;
1355        vm->size = va->va_end - va->va_start;
1356        vm->caller = caller;
1357        va->vm = vm;
1358        va->flags |= VM_VM_AREA;
1359        spin_unlock(&vmap_area_lock);
1360}
1361
1362static void clear_vm_uninitialized_flag(struct vm_struct *vm)
1363{
1364        /*
1365         * Before removing VM_UNINITIALIZED,
1366         * we should make sure that vm has proper values.
1367         * Pair with smp_rmb() in show_numa_info().
1368         */
1369        smp_wmb();
1370        vm->flags &= ~VM_UNINITIALIZED;
1371}
1372
1373static struct vm_struct *__get_vm_area_node(unsigned long size,
1374                unsigned long align, unsigned long flags, unsigned long start,
1375                unsigned long end, int node, gfp_t gfp_mask, const void *caller)
1376{
1377        struct vmap_area *va;
1378        struct vm_struct *area;
1379
1380        BUG_ON(in_interrupt());
1381        size = PAGE_ALIGN(size);
1382        if (unlikely(!size))
1383                return NULL;
1384
1385        if (flags & VM_IOREMAP)
1386                align = 1ul << clamp_t(int, get_count_order_long(size),
1387                                       PAGE_SHIFT, IOREMAP_MAX_ORDER);
1388
1389        area = kzalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1390        if (unlikely(!area))
1391                return NULL;
1392
1393        if (!(flags & VM_NO_GUARD))
1394                size += PAGE_SIZE;
1395
1396        va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1397        if (IS_ERR(va)) {
1398                kfree(area);
1399                return NULL;
1400        }
1401
1402        setup_vmalloc_vm(area, va, flags, caller);
1403
1404        return area;
1405}
1406
1407struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1408                                unsigned long start, unsigned long end)
1409{
1410        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1411                                  GFP_KERNEL, __builtin_return_address(0));
1412}
1413EXPORT_SYMBOL_GPL(__get_vm_area);
1414
1415struct vm_struct *__get_vm_area_caller(unsigned long size, unsigned long flags,
1416                                       unsigned long start, unsigned long end,
1417                                       const void *caller)
1418{
1419        return __get_vm_area_node(size, 1, flags, start, end, NUMA_NO_NODE,
1420                                  GFP_KERNEL, caller);
1421}
1422
1423/**
1424 *      get_vm_area  -  reserve a contiguous kernel virtual area
1425 *      @size:          size of the area
1426 *      @flags:         %VM_IOREMAP for I/O mappings or VM_ALLOC
1427 *
1428 *      Search an area of @size in the kernel virtual mapping area,
1429 *      and reserved it for out purposes.  Returns the area descriptor
1430 *      on success or %NULL on failure.
1431 */
1432struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1433{
1434        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1435                                  NUMA_NO_NODE, GFP_KERNEL,
1436                                  __builtin_return_address(0));
1437}
1438
1439struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1440                                const void *caller)
1441{
1442        return __get_vm_area_node(size, 1, flags, VMALLOC_START, VMALLOC_END,
1443                                  NUMA_NO_NODE, GFP_KERNEL, caller);
1444}
1445
1446/**
1447 *      find_vm_area  -  find a continuous kernel virtual area
1448 *      @addr:          base address
1449 *
1450 *      Search for the kernel VM area starting at @addr, and return it.
1451 *      It is up to the caller to do all required locking to keep the returned
1452 *      pointer valid.
1453 */
1454struct vm_struct *find_vm_area(const void *addr)
1455{
1456        struct vmap_area *va;
1457
1458        va = find_vmap_area((unsigned long)addr);
1459        if (va && va->flags & VM_VM_AREA)
1460                return va->vm;
1461
1462        return NULL;
1463}
1464
1465/**
1466 *      remove_vm_area  -  find and remove a continuous kernel virtual area
1467 *      @addr:          base address
1468 *
1469 *      Search for the kernel VM area starting at @addr, and remove it.
1470 *      This function returns the found VM area, but using it is NOT safe
1471 *      on SMP machines, except for its size or flags.
1472 */
1473struct vm_struct *remove_vm_area(const void *addr)
1474{
1475        struct vmap_area *va;
1476
1477        might_sleep();
1478
1479        va = find_vmap_area((unsigned long)addr);
1480        if (va && va->flags & VM_VM_AREA) {
1481                struct vm_struct *vm = va->vm;
1482
1483                spin_lock(&vmap_area_lock);
1484                va->vm = NULL;
1485                va->flags &= ~VM_VM_AREA;
1486                va->flags |= VM_LAZY_FREE;
1487                spin_unlock(&vmap_area_lock);
1488
1489                kasan_free_shadow(vm);
1490                free_unmap_vmap_area(va);
1491
1492                return vm;
1493        }
1494        return NULL;
1495}
1496
1497static void __vunmap(const void *addr, int deallocate_pages)
1498{
1499        struct vm_struct *area;
1500
1501        if (!addr)
1502                return;
1503
1504        if (WARN(!PAGE_ALIGNED(addr), "Trying to vfree() bad address (%p)\n",
1505                        addr))
1506                return;
1507
1508        area = find_vmap_area((unsigned long)addr)->vm;
1509        if (unlikely(!area)) {
1510                WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1511                                addr);
1512                return;
1513        }
1514
1515        debug_check_no_locks_freed(area->addr, get_vm_area_size(area));
1516        debug_check_no_obj_freed(area->addr, get_vm_area_size(area));
1517
1518        remove_vm_area(addr);
1519        if (deallocate_pages) {
1520                int i;
1521
1522                for (i = 0; i < area->nr_pages; i++) {
1523                        struct page *page = area->pages[i];
1524
1525                        BUG_ON(!page);
1526                        __free_pages(page, 0);
1527                }
1528
1529                kvfree(area->pages);
1530        }
1531
1532        kfree(area);
1533        return;
1534}
1535
1536static inline void __vfree_deferred(const void *addr)
1537{
1538        /*
1539         * Use raw_cpu_ptr() because this can be called from preemptible
1540         * context. Preemption is absolutely fine here, because the llist_add()
1541         * implementation is lockless, so it works even if we are adding to
1542         * nother cpu's list.  schedule_work() should be fine with this too.
1543         */
1544        struct vfree_deferred *p = raw_cpu_ptr(&vfree_deferred);
1545
1546        if (llist_add((struct llist_node *)addr, &p->list))
1547                schedule_work(&p->wq);
1548}
1549
1550/**
1551 *      vfree_atomic  -  release memory allocated by vmalloc()
1552 *      @addr:          memory base address
1553 *
1554 *      This one is just like vfree() but can be called in any atomic context
1555 *      except NMIs.
1556 */
1557void vfree_atomic(const void *addr)
1558{
1559        BUG_ON(in_nmi());
1560
1561        kmemleak_free(addr);
1562
1563        if (!addr)
1564                return;
1565        __vfree_deferred(addr);
1566}
1567
1568/**
1569 *      vfree  -  release memory allocated by vmalloc()
1570 *      @addr:          memory base address
1571 *
1572 *      Free the virtually continuous memory area starting at @addr, as
1573 *      obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1574 *      NULL, no operation is performed.
1575 *
1576 *      Must not be called in NMI context (strictly speaking, only if we don't
1577 *      have CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG, but making the calling
1578 *      conventions for vfree() arch-depenedent would be a really bad idea)
1579 *
1580 *      NOTE: assumes that the object at @addr has a size >= sizeof(llist_node)
1581 */
1582void vfree(const void *addr)
1583{
1584        BUG_ON(in_nmi());
1585
1586        kmemleak_free(addr);
1587
1588        if (!addr)
1589                return;
1590        if (unlikely(in_interrupt()))
1591                __vfree_deferred(addr);
1592        else
1593                __vunmap(addr, 1);
1594}
1595EXPORT_SYMBOL(vfree);
1596
1597/**
1598 *      vunmap  -  release virtual mapping obtained by vmap()
1599 *      @addr:          memory base address
1600 *
1601 *      Free the virtually contiguous memory area starting at @addr,
1602 *      which was created from the page array passed to vmap().
1603 *
1604 *      Must not be called in interrupt context.
1605 */
1606void vunmap(const void *addr)
1607{
1608        BUG_ON(in_interrupt());
1609        might_sleep();
1610        if (addr)
1611                __vunmap(addr, 0);
1612}
1613EXPORT_SYMBOL(vunmap);
1614
1615/**
1616 *      vmap  -  map an array of pages into virtually contiguous space
1617 *      @pages:         array of page pointers
1618 *      @count:         number of pages to map
1619 *      @flags:         vm_area->flags
1620 *      @prot:          page protection for the mapping
1621 *
1622 *      Maps @count pages from @pages into contiguous kernel virtual
1623 *      space.
1624 */
1625void *vmap(struct page **pages, unsigned int count,
1626                unsigned long flags, pgprot_t prot)
1627{
1628        struct vm_struct *area;
1629        unsigned long size;             /* In bytes */
1630
1631        might_sleep();
1632
1633        if (count > totalram_pages)
1634                return NULL;
1635
1636        size = (unsigned long)count << PAGE_SHIFT;
1637        area = get_vm_area_caller(size, flags, __builtin_return_address(0));
1638        if (!area)
1639                return NULL;
1640
1641        if (map_vm_area(area, prot, pages)) {
1642                vunmap(area->addr);
1643                return NULL;
1644        }
1645
1646        return area->addr;
1647}
1648EXPORT_SYMBOL(vmap);
1649
1650static void *__vmalloc_node(unsigned long size, unsigned long align,
1651                            gfp_t gfp_mask, pgprot_t prot,
1652                            int node, const void *caller);
1653static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1654                                 pgprot_t prot, int node)
1655{
1656        struct page **pages;
1657        unsigned int nr_pages, array_size, i;
1658        const gfp_t nested_gfp = (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO;
1659        const gfp_t alloc_mask = gfp_mask | __GFP_NOWARN;
1660        const gfp_t highmem_mask = (gfp_mask & (GFP_DMA | GFP_DMA32)) ?
1661                                        0 :
1662                                        __GFP_HIGHMEM;
1663
1664        nr_pages = get_vm_area_size(area) >> PAGE_SHIFT;
1665        array_size = (nr_pages * sizeof(struct page *));
1666
1667        area->nr_pages = nr_pages;
1668        /* Please note that the recursion is strictly bounded. */
1669        if (array_size > PAGE_SIZE) {
1670                pages = __vmalloc_node(array_size, 1, nested_gfp|highmem_mask,
1671                                PAGE_KERNEL, node, area->caller);
1672        } else {
1673                pages = kmalloc_node(array_size, nested_gfp, node);
1674        }
1675        area->pages = pages;
1676        if (!area->pages) {
1677                remove_vm_area(area->addr);
1678                kfree(area);
1679                return NULL;
1680        }
1681
1682        for (i = 0; i < area->nr_pages; i++) {
1683                struct page *page;
1684
1685                if (node == NUMA_NO_NODE)
1686                        page = alloc_page(alloc_mask|highmem_mask);
1687                else
1688                        page = alloc_pages_node(node, alloc_mask|highmem_mask, 0);
1689
1690                if (unlikely(!page)) {
1691                        /* Successfully allocated i pages, free them in __vunmap() */
1692                        area->nr_pages = i;
1693                        goto fail;
1694                }
1695                area->pages[i] = page;
1696                if (gfpflags_allow_blocking(gfp_mask|highmem_mask))
1697                        cond_resched();
1698        }
1699
1700        if (map_vm_area(area, prot, pages))
1701                goto fail;
1702        return area->addr;
1703
1704fail:
1705        warn_alloc(gfp_mask, NULL,
1706                          "vmalloc: allocation failure, allocated %ld of %ld bytes",
1707                          (area->nr_pages*PAGE_SIZE), area->size);
1708        vfree(area->addr);
1709        return NULL;
1710}
1711
1712/**
1713 *      __vmalloc_node_range  -  allocate virtually contiguous memory
1714 *      @size:          allocation size
1715 *      @align:         desired alignment
1716 *      @start:         vm area range start
1717 *      @end:           vm area range end
1718 *      @gfp_mask:      flags for the page level allocator
1719 *      @prot:          protection mask for the allocated pages
1720 *      @vm_flags:      additional vm area flags (e.g. %VM_NO_GUARD)
1721 *      @node:          node to use for allocation or NUMA_NO_NODE
1722 *      @caller:        caller's return address
1723 *
1724 *      Allocate enough pages to cover @size from the page level
1725 *      allocator with @gfp_mask flags.  Map them into contiguous
1726 *      kernel virtual space, using a pagetable protection of @prot.
1727 */
1728void *__vmalloc_node_range(unsigned long size, unsigned long align,
1729                        unsigned long start, unsigned long end, gfp_t gfp_mask,
1730                        pgprot_t prot, unsigned long vm_flags, int node,
1731                        const void *caller)
1732{
1733        struct vm_struct *area;
1734        void *addr;
1735        unsigned long real_size = size;
1736
1737        size = PAGE_ALIGN(size);
1738        if (!size || (size >> PAGE_SHIFT) > totalram_pages)
1739                goto fail;
1740
1741        area = __get_vm_area_node(size, align, VM_ALLOC | VM_UNINITIALIZED |
1742                                vm_flags, start, end, node, gfp_mask, caller);
1743        if (!area)
1744                goto fail;
1745
1746        addr = __vmalloc_area_node(area, gfp_mask, prot, node);
1747        if (!addr)
1748                return NULL;
1749
1750        /*
1751         * In this function, newly allocated vm_struct has VM_UNINITIALIZED
1752         * flag. It means that vm_struct is not fully initialized.
1753         * Now, it is fully initialized, so remove this flag here.
1754         */
1755        clear_vm_uninitialized_flag(area);
1756
1757        kmemleak_vmalloc(area, size, gfp_mask);
1758
1759        return addr;
1760
1761fail:
1762        warn_alloc(gfp_mask, NULL,
1763                          "vmalloc: allocation failure: %lu bytes", real_size);
1764        return NULL;
1765}
1766
1767/**
1768 *      __vmalloc_node  -  allocate virtually contiguous memory
1769 *      @size:          allocation size
1770 *      @align:         desired alignment
1771 *      @gfp_mask:      flags for the page level allocator
1772 *      @prot:          protection mask for the allocated pages
1773 *      @node:          node to use for allocation or NUMA_NO_NODE
1774 *      @caller:        caller's return address
1775 *
1776 *      Allocate enough pages to cover @size from the page level
1777 *      allocator with @gfp_mask flags.  Map them into contiguous
1778 *      kernel virtual space, using a pagetable protection of @prot.
1779 *
1780 *      Reclaim modifiers in @gfp_mask - __GFP_NORETRY, __GFP_RETRY_MAYFAIL
1781 *      and __GFP_NOFAIL are not supported
1782 *
1783 *      Any use of gfp flags outside of GFP_KERNEL should be consulted
1784 *      with mm people.
1785 *
1786 */
1787static void *__vmalloc_node(unsigned long size, unsigned long align,
1788                            gfp_t gfp_mask, pgprot_t prot,
1789                            int node, const void *caller)
1790{
1791        return __vmalloc_node_range(size, align, VMALLOC_START, VMALLOC_END,
1792                                gfp_mask, prot, 0, node, caller);
1793}
1794
1795void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1796{
1797        return __vmalloc_node(size, 1, gfp_mask, prot, NUMA_NO_NODE,
1798                                __builtin_return_address(0));
1799}
1800EXPORT_SYMBOL(__vmalloc);
1801
1802static inline void *__vmalloc_node_flags(unsigned long size,
1803                                        int node, gfp_t flags)
1804{
1805        return __vmalloc_node(size, 1, flags, PAGE_KERNEL,
1806                                        node, __builtin_return_address(0));
1807}
1808
1809
1810void *__vmalloc_node_flags_caller(unsigned long size, int node, gfp_t flags,
1811                                  void *caller)
1812{
1813        return __vmalloc_node(size, 1, flags, PAGE_KERNEL, node, caller);
1814}
1815
1816/**
1817 *      vmalloc  -  allocate virtually contiguous memory
1818 *      @size:          allocation size
1819 *      Allocate enough pages to cover @size from the page level
1820 *      allocator and map them into contiguous kernel virtual space.
1821 *
1822 *      For tight control over page level allocator and protection flags
1823 *      use __vmalloc() instead.
1824 */
1825void *vmalloc(unsigned long size)
1826{
1827        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1828                                    GFP_KERNEL);
1829}
1830EXPORT_SYMBOL(vmalloc);
1831
1832/**
1833 *      vzalloc - allocate virtually contiguous memory with zero fill
1834 *      @size:  allocation size
1835 *      Allocate enough pages to cover @size from the page level
1836 *      allocator and map them into contiguous kernel virtual space.
1837 *      The memory allocated is set to zero.
1838 *
1839 *      For tight control over page level allocator and protection flags
1840 *      use __vmalloc() instead.
1841 */
1842void *vzalloc(unsigned long size)
1843{
1844        return __vmalloc_node_flags(size, NUMA_NO_NODE,
1845                                GFP_KERNEL | __GFP_ZERO);
1846}
1847EXPORT_SYMBOL(vzalloc);
1848
1849/**
1850 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1851 * @size: allocation size
1852 *
1853 * The resulting memory area is zeroed so it can be mapped to userspace
1854 * without leaking data.
1855 */
1856void *vmalloc_user(unsigned long size)
1857{
1858        struct vm_struct *area;
1859        void *ret;
1860
1861        ret = __vmalloc_node(size, SHMLBA,
1862                             GFP_KERNEL | __GFP_ZERO,
1863                             PAGE_KERNEL, NUMA_NO_NODE,
1864                             __builtin_return_address(0));
1865        if (ret) {
1866                area = find_vm_area(ret);
1867                area->flags |= VM_USERMAP;
1868        }
1869        return ret;
1870}
1871EXPORT_SYMBOL(vmalloc_user);
1872
1873/**
1874 *      vmalloc_node  -  allocate memory on a specific node
1875 *      @size:          allocation size
1876 *      @node:          numa node
1877 *
1878 *      Allocate enough pages to cover @size from the page level
1879 *      allocator and map them into contiguous kernel virtual space.
1880 *
1881 *      For tight control over page level allocator and protection flags
1882 *      use __vmalloc() instead.
1883 */
1884void *vmalloc_node(unsigned long size, int node)
1885{
1886        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL,
1887                                        node, __builtin_return_address(0));
1888}
1889EXPORT_SYMBOL(vmalloc_node);
1890
1891/**
1892 * vzalloc_node - allocate memory on a specific node with zero fill
1893 * @size:       allocation size
1894 * @node:       numa node
1895 *
1896 * Allocate enough pages to cover @size from the page level
1897 * allocator and map them into contiguous kernel virtual space.
1898 * The memory allocated is set to zero.
1899 *
1900 * For tight control over page level allocator and protection flags
1901 * use __vmalloc_node() instead.
1902 */
1903void *vzalloc_node(unsigned long size, int node)
1904{
1905        return __vmalloc_node_flags(size, node,
1906                         GFP_KERNEL | __GFP_ZERO);
1907}
1908EXPORT_SYMBOL(vzalloc_node);
1909
1910/**
1911 *      vmalloc_exec  -  allocate virtually contiguous, executable memory
1912 *      @size:          allocation size
1913 *
1914 *      Kernel-internal function to allocate enough pages to cover @size
1915 *      the page level allocator and map them into contiguous and
1916 *      executable kernel virtual space.
1917 *
1918 *      For tight control over page level allocator and protection flags
1919 *      use __vmalloc() instead.
1920 */
1921
1922void *vmalloc_exec(unsigned long size)
1923{
1924        return __vmalloc_node(size, 1, GFP_KERNEL, PAGE_KERNEL_EXEC,
1925                              NUMA_NO_NODE, __builtin_return_address(0));
1926}
1927
1928#if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1929#define GFP_VMALLOC32 (GFP_DMA32 | GFP_KERNEL)
1930#elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1931#define GFP_VMALLOC32 (GFP_DMA | GFP_KERNEL)
1932#else
1933/*
1934 * 64b systems should always have either DMA or DMA32 zones. For others
1935 * GFP_DMA32 should do the right thing and use the normal zone.
1936 */
1937#define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1938#endif
1939
1940/**
1941 *      vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
1942 *      @size:          allocation size
1943 *
1944 *      Allocate enough 32bit PA addressable pages to cover @size from the
1945 *      page level allocator and map them into contiguous kernel virtual space.
1946 */
1947void *vmalloc_32(unsigned long size)
1948{
1949        return __vmalloc_node(size, 1, GFP_VMALLOC32, PAGE_KERNEL,
1950                              NUMA_NO_NODE, __builtin_return_address(0));
1951}
1952EXPORT_SYMBOL(vmalloc_32);
1953
1954/**
1955 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1956 *      @size:          allocation size
1957 *
1958 * The resulting memory area is 32bit addressable and zeroed so it can be
1959 * mapped to userspace without leaking data.
1960 */
1961void *vmalloc_32_user(unsigned long size)
1962{
1963        struct vm_struct *area;
1964        void *ret;
1965
1966        ret = __vmalloc_node(size, 1, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL,
1967                             NUMA_NO_NODE, __builtin_return_address(0));
1968        if (ret) {
1969                area = find_vm_area(ret);
1970                area->flags |= VM_USERMAP;
1971        }
1972        return ret;
1973}
1974EXPORT_SYMBOL(vmalloc_32_user);
1975
1976/*
1977 * small helper routine , copy contents to buf from addr.
1978 * If the page is not present, fill zero.
1979 */
1980
1981static int aligned_vread(char *buf, char *addr, unsigned long count)
1982{
1983        struct page *p;
1984        int copied = 0;
1985
1986        while (count) {
1987                unsigned long offset, length;
1988
1989                offset = offset_in_page(addr);
1990                length = PAGE_SIZE - offset;
1991                if (length > count)
1992                        length = count;
1993                p = vmalloc_to_page(addr);
1994                /*
1995                 * To do safe access to this _mapped_ area, we need
1996                 * lock. But adding lock here means that we need to add
1997                 * overhead of vmalloc()/vfree() calles for this _debug_
1998                 * interface, rarely used. Instead of that, we'll use
1999                 * kmap() and get small overhead in this access function.
2000                 */
2001                if (p) {
2002                        /*
2003                         * we can expect USER0 is not used (see vread/vwrite's
2004                         * function description)
2005                         */
2006                        void *map = kmap_atomic(p);
2007                        memcpy(buf, map + offset, length);
2008                        kunmap_atomic(map);
2009                } else
2010                        memset(buf, 0, length);
2011
2012                addr += length;
2013                buf += length;
2014                copied += length;
2015                count -= length;
2016        }
2017        return copied;
2018}
2019
2020static int aligned_vwrite(char *buf, char *addr, unsigned long count)
2021{
2022        struct page *p;
2023        int copied = 0;
2024
2025        while (count) {
2026                unsigned long offset, length;
2027
2028                offset = offset_in_page(addr);
2029                length = PAGE_SIZE - offset;
2030                if (length > count)
2031                        length = count;
2032                p = vmalloc_to_page(addr);
2033                /*
2034                 * To do safe access to this _mapped_ area, we need
2035                 * lock. But adding lock here means that we need to add
2036                 * overhead of vmalloc()/vfree() calles for this _debug_
2037                 * interface, rarely used. Instead of that, we'll use
2038                 * kmap() and get small overhead in this access function.
2039                 */
2040                if (p) {
2041                        /*
2042                         * we can expect USER0 is not used (see vread/vwrite's
2043                         * function description)
2044                         */
2045                        void *map = kmap_atomic(p);
2046                        memcpy(map + offset, buf, length);
2047                        kunmap_atomic(map);
2048                }
2049                addr += length;
2050                buf += length;
2051                copied += length;
2052                count -= length;
2053        }
2054        return copied;
2055}
2056
2057/**
2058 *      vread() -  read vmalloc area in a safe way.
2059 *      @buf:           buffer for reading data
2060 *      @addr:          vm address.
2061 *      @count:         number of bytes to be read.
2062 *
2063 *      Returns # of bytes which addr and buf should be increased.
2064 *      (same number to @count). Returns 0 if [addr...addr+count) doesn't
2065 *      includes any intersect with alive vmalloc area.
2066 *
2067 *      This function checks that addr is a valid vmalloc'ed area, and
2068 *      copy data from that area to a given buffer. If the given memory range
2069 *      of [addr...addr+count) includes some valid address, data is copied to
2070 *      proper area of @buf. If there are memory holes, they'll be zero-filled.
2071 *      IOREMAP area is treated as memory hole and no copy is done.
2072 *
2073 *      If [addr...addr+count) doesn't includes any intersects with alive
2074 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2075 *
2076 *      Note: In usual ops, vread() is never necessary because the caller
2077 *      should know vmalloc() area is valid and can use memcpy().
2078 *      This is for routines which have to access vmalloc area without
2079 *      any informaion, as /dev/kmem.
2080 *
2081 */
2082
2083long vread(char *buf, char *addr, unsigned long count)
2084{
2085        struct vmap_area *va;
2086        struct vm_struct *vm;
2087        char *vaddr, *buf_start = buf;
2088        unsigned long buflen = count;
2089        unsigned long n;
2090
2091        /* Don't allow overflow */
2092        if ((unsigned long) addr + count < count)
2093                count = -(unsigned long) addr;
2094
2095        spin_lock(&vmap_area_lock);
2096        list_for_each_entry(va, &vmap_area_list, list) {
2097                if (!count)
2098                        break;
2099
2100                if (!(va->flags & VM_VM_AREA))
2101                        continue;
2102
2103                vm = va->vm;
2104                vaddr = (char *) vm->addr;
2105                if (addr >= vaddr + get_vm_area_size(vm))
2106                        continue;
2107                while (addr < vaddr) {
2108                        if (count == 0)
2109                                goto finished;
2110                        *buf = '\0';
2111                        buf++;
2112                        addr++;
2113                        count--;
2114                }
2115                n = vaddr + get_vm_area_size(vm) - addr;
2116                if (n > count)
2117                        n = count;
2118                if (!(vm->flags & VM_IOREMAP))
2119                        aligned_vread(buf, addr, n);
2120                else /* IOREMAP area is treated as memory hole */
2121                        memset(buf, 0, n);
2122                buf += n;
2123                addr += n;
2124                count -= n;
2125        }
2126finished:
2127        spin_unlock(&vmap_area_lock);
2128
2129        if (buf == buf_start)
2130                return 0;
2131        /* zero-fill memory holes */
2132        if (buf != buf_start + buflen)
2133                memset(buf, 0, buflen - (buf - buf_start));
2134
2135        return buflen;
2136}
2137
2138/**
2139 *      vwrite() -  write vmalloc area in a safe way.
2140 *      @buf:           buffer for source data
2141 *      @addr:          vm address.
2142 *      @count:         number of bytes to be read.
2143 *
2144 *      Returns # of bytes which addr and buf should be incresed.
2145 *      (same number to @count).
2146 *      If [addr...addr+count) doesn't includes any intersect with valid
2147 *      vmalloc area, returns 0.
2148 *
2149 *      This function checks that addr is a valid vmalloc'ed area, and
2150 *      copy data from a buffer to the given addr. If specified range of
2151 *      [addr...addr+count) includes some valid address, data is copied from
2152 *      proper area of @buf. If there are memory holes, no copy to hole.
2153 *      IOREMAP area is treated as memory hole and no copy is done.
2154 *
2155 *      If [addr...addr+count) doesn't includes any intersects with alive
2156 *      vm_struct area, returns 0. @buf should be kernel's buffer.
2157 *
2158 *      Note: In usual ops, vwrite() is never necessary because the caller
2159 *      should know vmalloc() area is valid and can use memcpy().
2160 *      This is for routines which have to access vmalloc area without
2161 *      any informaion, as /dev/kmem.
2162 */
2163
2164long vwrite(char *buf, char *addr, unsigned long count)
2165{
2166        struct vmap_area *va;
2167        struct vm_struct *vm;
2168        char *vaddr;
2169        unsigned long n, buflen;
2170        int copied = 0;
2171
2172        /* Don't allow overflow */
2173        if ((unsigned long) addr + count < count)
2174                count = -(unsigned long) addr;
2175        buflen = count;
2176
2177        spin_lock(&vmap_area_lock);
2178        list_for_each_entry(va, &vmap_area_list, list) {
2179                if (!count)
2180                        break;
2181
2182                if (!(va->flags & VM_VM_AREA))
2183                        continue;
2184
2185                vm = va->vm;
2186                vaddr = (char *) vm->addr;
2187                if (addr >= vaddr + get_vm_area_size(vm))
2188                        continue;
2189                while (addr < vaddr) {
2190                        if (count == 0)
2191                                goto finished;
2192                        buf++;
2193                        addr++;
2194                        count--;
2195                }
2196                n = vaddr + get_vm_area_size(vm) - addr;
2197                if (n > count)
2198                        n = count;
2199                if (!(vm->flags & VM_IOREMAP)) {
2200                        aligned_vwrite(buf, addr, n);
2201                        copied++;
2202                }
2203                buf += n;
2204                addr += n;
2205                count -= n;
2206        }
2207finished:
2208        spin_unlock(&vmap_area_lock);
2209        if (!copied)
2210                return 0;
2211        return buflen;
2212}
2213
2214/**
2215 *      remap_vmalloc_range_partial  -  map vmalloc pages to userspace
2216 *      @vma:           vma to cover
2217 *      @uaddr:         target user address to start at
2218 *      @kaddr:         virtual address of vmalloc kernel memory
2219 *      @size:          size of map area
2220 *
2221 *      Returns:        0 for success, -Exxx on failure
2222 *
2223 *      This function checks that @kaddr is a valid vmalloc'ed area,
2224 *      and that it is big enough to cover the range starting at
2225 *      @uaddr in @vma. Will return failure if that criteria isn't
2226 *      met.
2227 *
2228 *      Similar to remap_pfn_range() (see mm/memory.c)
2229 */
2230int remap_vmalloc_range_partial(struct vm_area_struct *vma, unsigned long uaddr,
2231                                void *kaddr, unsigned long size)
2232{
2233        struct vm_struct *area;
2234
2235        size = PAGE_ALIGN(size);
2236
2237        if (!PAGE_ALIGNED(uaddr) || !PAGE_ALIGNED(kaddr))
2238                return -EINVAL;
2239
2240        area = find_vm_area(kaddr);
2241        if (!area)
2242                return -EINVAL;
2243
2244        if (!(area->flags & VM_USERMAP))
2245                return -EINVAL;
2246
2247        if (kaddr + size > area->addr + area->size)
2248                return -EINVAL;
2249
2250        do {
2251                struct page *page = vmalloc_to_page(kaddr);
2252                int ret;
2253
2254                ret = vm_insert_page(vma, uaddr, page);
2255                if (ret)
2256                        return ret;
2257
2258                uaddr += PAGE_SIZE;
2259                kaddr += PAGE_SIZE;
2260                size -= PAGE_SIZE;
2261        } while (size > 0);
2262
2263        vma->vm_flags |= VM_DONTEXPAND | VM_DONTDUMP;
2264
2265        return 0;
2266}
2267EXPORT_SYMBOL(remap_vmalloc_range_partial);
2268
2269/**
2270 *      remap_vmalloc_range  -  map vmalloc pages to userspace
2271 *      @vma:           vma to cover (map full range of vma)
2272 *      @addr:          vmalloc memory
2273 *      @pgoff:         number of pages into addr before first page to map
2274 *
2275 *      Returns:        0 for success, -Exxx on failure
2276 *
2277 *      This function checks that addr is a valid vmalloc'ed area, and
2278 *      that it is big enough to cover the vma. Will return failure if
2279 *      that criteria isn't met.
2280 *
2281 *      Similar to remap_pfn_range() (see mm/memory.c)
2282 */
2283int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
2284                                                unsigned long pgoff)
2285{
2286        return remap_vmalloc_range_partial(vma, vma->vm_start,
2287                                           addr + (pgoff << PAGE_SHIFT),
2288                                           vma->vm_end - vma->vm_start);
2289}
2290EXPORT_SYMBOL(remap_vmalloc_range);
2291
2292/*
2293 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
2294 * have one.
2295 */
2296void __weak vmalloc_sync_all(void)
2297{
2298}
2299
2300
2301static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
2302{
2303        pte_t ***p = data;
2304
2305        if (p) {
2306                *(*p) = pte;
2307                (*p)++;
2308        }
2309        return 0;
2310}
2311
2312/**
2313 *      alloc_vm_area - allocate a range of kernel address space
2314 *      @size:          size of the area
2315 *      @ptes:          returns the PTEs for the address space
2316 *
2317 *      Returns:        NULL on failure, vm_struct on success
2318 *
2319 *      This function reserves a range of kernel address space, and
2320 *      allocates pagetables to map that range.  No actual mappings
2321 *      are created.
2322 *
2323 *      If @ptes is non-NULL, pointers to the PTEs (in init_mm)
2324 *      allocated for the VM area are returned.
2325 */
2326struct vm_struct *alloc_vm_area(size_t size, pte_t **ptes)
2327{
2328        struct vm_struct *area;
2329
2330        area = get_vm_area_caller(size, VM_IOREMAP,
2331                                __builtin_return_address(0));
2332        if (area == NULL)
2333                return NULL;
2334
2335        /*
2336         * This ensures that page tables are constructed for this region
2337         * of kernel virtual address space and mapped into init_mm.
2338         */
2339        if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
2340                                size, f, ptes ? &ptes : NULL)) {
2341                free_vm_area(area);
2342                return NULL;
2343        }
2344
2345        return area;
2346}
2347EXPORT_SYMBOL_GPL(alloc_vm_area);
2348
2349void free_vm_area(struct vm_struct *area)
2350{
2351        struct vm_struct *ret;
2352        ret = remove_vm_area(area->addr);
2353        BUG_ON(ret != area);
2354        kfree(area);
2355}
2356EXPORT_SYMBOL_GPL(free_vm_area);
2357
2358#ifdef CONFIG_SMP
2359static struct vmap_area *node_to_va(struct rb_node *n)
2360{
2361        return rb_entry_safe(n, struct vmap_area, rb_node);
2362}
2363
2364/**
2365 * pvm_find_next_prev - find the next and prev vmap_area surrounding @end
2366 * @end: target address
2367 * @pnext: out arg for the next vmap_area
2368 * @pprev: out arg for the previous vmap_area
2369 *
2370 * Returns: %true if either or both of next and prev are found,
2371 *          %false if no vmap_area exists
2372 *
2373 * Find vmap_areas end addresses of which enclose @end.  ie. if not
2374 * NULL, *pnext->va_end > @end and *pprev->va_end <= @end.
2375 */
2376static bool pvm_find_next_prev(unsigned long end,
2377                               struct vmap_area **pnext,
2378                               struct vmap_area **pprev)
2379{
2380        struct rb_node *n = vmap_area_root.rb_node;
2381        struct vmap_area *va = NULL;
2382
2383        while (n) {
2384                va = rb_entry(n, struct vmap_area, rb_node);
2385                if (end < va->va_end)
2386                        n = n->rb_left;
2387                else if (end > va->va_end)
2388                        n = n->rb_right;
2389                else
2390                        break;
2391        }
2392
2393        if (!va)
2394                return false;
2395
2396        if (va->va_end > end) {
2397                *pnext = va;
2398                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2399        } else {
2400                *pprev = va;
2401                *pnext = node_to_va(rb_next(&(*pprev)->rb_node));
2402        }
2403        return true;
2404}
2405
2406/**
2407 * pvm_determine_end - find the highest aligned address between two vmap_areas
2408 * @pnext: in/out arg for the next vmap_area
2409 * @pprev: in/out arg for the previous vmap_area
2410 * @align: alignment
2411 *
2412 * Returns: determined end address
2413 *
2414 * Find the highest aligned address between *@pnext and *@pprev below
2415 * VMALLOC_END.  *@pnext and *@pprev are adjusted so that the aligned
2416 * down address is between the end addresses of the two vmap_areas.
2417 *
2418 * Please note that the address returned by this function may fall
2419 * inside *@pnext vmap_area.  The caller is responsible for checking
2420 * that.
2421 */
2422static unsigned long pvm_determine_end(struct vmap_area **pnext,
2423                                       struct vmap_area **pprev,
2424                                       unsigned long align)
2425{
2426        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2427        unsigned long addr;
2428
2429        if (*pnext)
2430                addr = min((*pnext)->va_start & ~(align - 1), vmalloc_end);
2431        else
2432                addr = vmalloc_end;
2433
2434        while (*pprev && (*pprev)->va_end > addr) {
2435                *pnext = *pprev;
2436                *pprev = node_to_va(rb_prev(&(*pnext)->rb_node));
2437        }
2438
2439        return addr;
2440}
2441
2442/**
2443 * pcpu_get_vm_areas - allocate vmalloc areas for percpu allocator
2444 * @offsets: array containing offset of each area
2445 * @sizes: array containing size of each area
2446 * @nr_vms: the number of areas to allocate
2447 * @align: alignment, all entries in @offsets and @sizes must be aligned to this
2448 *
2449 * Returns: kmalloc'd vm_struct pointer array pointing to allocated
2450 *          vm_structs on success, %NULL on failure
2451 *
2452 * Percpu allocator wants to use congruent vm areas so that it can
2453 * maintain the offsets among percpu areas.  This function allocates
2454 * congruent vmalloc areas for it with GFP_KERNEL.  These areas tend to
2455 * be scattered pretty far, distance between two areas easily going up
2456 * to gigabytes.  To avoid interacting with regular vmallocs, these
2457 * areas are allocated from top.
2458 *
2459 * Despite its complicated look, this allocator is rather simple.  It
2460 * does everything top-down and scans areas from the end looking for
2461 * matching slot.  While scanning, if any of the areas overlaps with
2462 * existing vmap_area, the base address is pulled down to fit the
2463 * area.  Scanning is repeated till all the areas fit and then all
2464 * necessary data structures are inserted and the result is returned.
2465 */
2466struct vm_struct **pcpu_get_vm_areas(const unsigned long *offsets,
2467                                     const size_t *sizes, int nr_vms,
2468                                     size_t align)
2469{
2470        const unsigned long vmalloc_start = ALIGN(VMALLOC_START, align);
2471        const unsigned long vmalloc_end = VMALLOC_END & ~(align - 1);
2472        struct vmap_area **vas, *prev, *next;
2473        struct vm_struct **vms;
2474        int area, area2, last_area, term_area;
2475        unsigned long base, start, end, last_end;
2476        bool purged = false;
2477
2478        /* verify parameters and allocate data structures */
2479        BUG_ON(offset_in_page(align) || !is_power_of_2(align));
2480        for (last_area = 0, area = 0; area < nr_vms; area++) {
2481                start = offsets[area];
2482                end = start + sizes[area];
2483
2484                /* is everything aligned properly? */
2485                BUG_ON(!IS_ALIGNED(offsets[area], align));
2486                BUG_ON(!IS_ALIGNED(sizes[area], align));
2487
2488                /* detect the area with the highest address */
2489                if (start > offsets[last_area])
2490                        last_area = area;
2491
2492                for (area2 = area + 1; area2 < nr_vms; area2++) {
2493                        unsigned long start2 = offsets[area2];
2494                        unsigned long end2 = start2 + sizes[area2];
2495
2496                        BUG_ON(start2 < end && start < end2);
2497                }
2498        }
2499        last_end = offsets[last_area] + sizes[last_area];
2500
2501        if (vmalloc_end - vmalloc_start < last_end) {
2502                WARN_ON(true);
2503                return NULL;
2504        }
2505
2506        vms = kcalloc(nr_vms, sizeof(vms[0]), GFP_KERNEL);
2507        vas = kcalloc(nr_vms, sizeof(vas[0]), GFP_KERNEL);
2508        if (!vas || !vms)
2509                goto err_free2;
2510
2511        for (area = 0; area < nr_vms; area++) {
2512                vas[area] = kzalloc(sizeof(struct vmap_area), GFP_KERNEL);
2513                vms[area] = kzalloc(sizeof(struct vm_struct), GFP_KERNEL);
2514                if (!vas[area] || !vms[area])
2515                        goto err_free;
2516        }
2517retry:
2518        spin_lock(&vmap_area_lock);
2519
2520        /* start scanning - we scan from the top, begin with the last area */
2521        area = term_area = last_area;
2522        start = offsets[area];
2523        end = start + sizes[area];
2524
2525        if (!pvm_find_next_prev(vmap_area_pcpu_hole, &next, &prev)) {
2526                base = vmalloc_end - last_end;
2527                goto found;
2528        }
2529        base = pvm_determine_end(&next, &prev, align) - end;
2530
2531        while (true) {
2532                BUG_ON(next && next->va_end <= base + end);
2533                BUG_ON(prev && prev->va_end > base + end);
2534
2535                /*
2536                 * base might have underflowed, add last_end before
2537                 * comparing.
2538                 */
2539                if (base + last_end < vmalloc_start + last_end) {
2540                        spin_unlock(&vmap_area_lock);
2541                        if (!purged) {
2542                                purge_vmap_area_lazy();
2543                                purged = true;
2544                                goto retry;
2545                        }
2546                        goto err_free;
2547                }
2548
2549                /*
2550                 * If next overlaps, move base downwards so that it's
2551                 * right below next and then recheck.
2552                 */
2553                if (next && next->va_start < base + end) {
2554                        base = pvm_determine_end(&next, &prev, align) - end;
2555                        term_area = area;
2556                        continue;
2557                }
2558
2559                /*
2560                 * If prev overlaps, shift down next and prev and move
2561                 * base so that it's right below new next and then
2562                 * recheck.
2563                 */
2564                if (prev && prev->va_end > base + start)  {
2565                        next = prev;
2566                        prev = node_to_va(rb_prev(&next->rb_node));
2567                        base = pvm_determine_end(&next, &prev, align) - end;
2568                        term_area = area;
2569                        continue;
2570                }
2571
2572                /*
2573                 * This area fits, move on to the previous one.  If
2574                 * the previous one is the terminal one, we're done.
2575                 */
2576                area = (area + nr_vms - 1) % nr_vms;
2577                if (area == term_area)
2578                        break;
2579                start = offsets[area];
2580                end = start + sizes[area];
2581                pvm_find_next_prev(base + end, &next, &prev);
2582        }
2583found:
2584        /* we've found a fitting base, insert all va's */
2585        for (area = 0; area < nr_vms; area++) {
2586                struct vmap_area *va = vas[area];
2587
2588                va->va_start = base + offsets[area];
2589                va->va_end = va->va_start + sizes[area];
2590                __insert_vmap_area(va);
2591        }
2592
2593        vmap_area_pcpu_hole = base + offsets[last_area];
2594
2595        spin_unlock(&vmap_area_lock);
2596
2597        /* insert all vm's */
2598        for (area = 0; area < nr_vms; area++)
2599                setup_vmalloc_vm(vms[area], vas[area], VM_ALLOC,
2600                                 pcpu_get_vm_areas);
2601
2602        kfree(vas);
2603        return vms;
2604
2605err_free:
2606        for (area = 0; area < nr_vms; area++) {
2607                kfree(vas[area]);
2608                kfree(vms[area]);
2609        }
2610err_free2:
2611        kfree(vas);
2612        kfree(vms);
2613        return NULL;
2614}
2615
2616/**
2617 * pcpu_free_vm_areas - free vmalloc areas for percpu allocator
2618 * @vms: vm_struct pointer array returned by pcpu_get_vm_areas()
2619 * @nr_vms: the number of allocated areas
2620 *
2621 * Free vm_structs and the array allocated by pcpu_get_vm_areas().
2622 */
2623void pcpu_free_vm_areas(struct vm_struct **vms, int nr_vms)
2624{
2625        int i;
2626
2627        for (i = 0; i < nr_vms; i++)
2628                free_vm_area(vms[i]);
2629        kfree(vms);
2630}
2631#endif  /* CONFIG_SMP */
2632
2633#ifdef CONFIG_PROC_FS
2634static void *s_start(struct seq_file *m, loff_t *pos)
2635        __acquires(&vmap_area_lock)
2636{
2637        spin_lock(&vmap_area_lock);
2638        return seq_list_start(&vmap_area_list, *pos);
2639}
2640
2641static void *s_next(struct seq_file *m, void *p, loff_t *pos)
2642{
2643        return seq_list_next(p, &vmap_area_list, pos);
2644}
2645
2646static void s_stop(struct seq_file *m, void *p)
2647        __releases(&vmap_area_lock)
2648{
2649        spin_unlock(&vmap_area_lock);
2650}
2651
2652static void show_numa_info(struct seq_file *m, struct vm_struct *v)
2653{
2654        if (IS_ENABLED(CONFIG_NUMA)) {
2655                unsigned int nr, *counters = m->private;
2656
2657                if (!counters)
2658                        return;
2659
2660                if (v->flags & VM_UNINITIALIZED)
2661                        return;
2662                /* Pair with smp_wmb() in clear_vm_uninitialized_flag() */
2663                smp_rmb();
2664
2665                memset(counters, 0, nr_node_ids * sizeof(unsigned int));
2666
2667                for (nr = 0; nr < v->nr_pages; nr++)
2668                        counters[page_to_nid(v->pages[nr])]++;
2669
2670                for_each_node_state(nr, N_HIGH_MEMORY)
2671                        if (counters[nr])
2672                                seq_printf(m, " N%u=%u", nr, counters[nr]);
2673        }
2674}
2675
2676static int s_show(struct seq_file *m, void *p)
2677{
2678        struct vmap_area *va;
2679        struct vm_struct *v;
2680
2681        va = list_entry(p, struct vmap_area, list);
2682
2683        /*
2684         * s_show can encounter race with remove_vm_area, !VM_VM_AREA on
2685         * behalf of vmap area is being tear down or vm_map_ram allocation.
2686         */
2687        if (!(va->flags & VM_VM_AREA)) {
2688                seq_printf(m, "0x%pK-0x%pK %7ld %s\n",
2689                        (void *)va->va_start, (void *)va->va_end,
2690                        va->va_end - va->va_start,
2691                        va->flags & VM_LAZY_FREE ? "unpurged vm_area" : "vm_map_ram");
2692
2693                return 0;
2694        }
2695
2696        v = va->vm;
2697
2698        seq_printf(m, "0x%pK-0x%pK %7ld",
2699                v->addr, v->addr + v->size, v->size);
2700
2701        if (v->caller)
2702                seq_printf(m, " %pS", v->caller);
2703
2704        if (v->nr_pages)
2705                seq_printf(m, " pages=%d", v->nr_pages);
2706
2707        if (v->phys_addr)
2708                seq_printf(m, " phys=%pa", &v->phys_addr);
2709
2710        if (v->flags & VM_IOREMAP)
2711                seq_puts(m, " ioremap");
2712
2713        if (v->flags & VM_ALLOC)
2714                seq_puts(m, " vmalloc");
2715
2716        if (v->flags & VM_MAP)
2717                seq_puts(m, " vmap");
2718
2719        if (v->flags & VM_USERMAP)
2720                seq_puts(m, " user");
2721
2722        if (is_vmalloc_addr(v->pages))
2723                seq_puts(m, " vpages");
2724
2725        show_numa_info(m, v);
2726        seq_putc(m, '\n');
2727        return 0;
2728}
2729
2730static const struct seq_operations vmalloc_op = {
2731        .start = s_start,
2732        .next = s_next,
2733        .stop = s_stop,
2734        .show = s_show,
2735};
2736
2737static int __init proc_vmalloc_init(void)
2738{
2739        if (IS_ENABLED(CONFIG_NUMA))
2740                proc_create_seq_private("vmallocinfo", 0400, NULL,
2741                                &vmalloc_op,
2742                                nr_node_ids * sizeof(unsigned int), NULL);
2743        else
2744                proc_create_seq("vmallocinfo", 0400, NULL, &vmalloc_op);
2745        return 0;
2746}
2747module_init(proc_vmalloc_init);
2748
2749#endif
2750
2751