linux/mm/vmscan.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/mm/vmscan.c
   4 *
   5 *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
   6 *
   7 *  Swap reorganised 29.12.95, Stephen Tweedie.
   8 *  kswapd added: 7.1.96  sct
   9 *  Removed kswapd_ctl limits, and swap out as many pages as needed
  10 *  to bring the system back to freepages.high: 2.4.97, Rik van Riel.
  11 *  Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
  12 *  Multiqueue VM started 5.8.00, Rik van Riel.
  13 */
  14
  15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  16
  17#include <linux/mm.h>
  18#include <linux/sched/mm.h>
  19#include <linux/module.h>
  20#include <linux/gfp.h>
  21#include <linux/kernel_stat.h>
  22#include <linux/swap.h>
  23#include <linux/pagemap.h>
  24#include <linux/init.h>
  25#include <linux/highmem.h>
  26#include <linux/vmpressure.h>
  27#include <linux/vmstat.h>
  28#include <linux/file.h>
  29#include <linux/writeback.h>
  30#include <linux/blkdev.h>
  31#include <linux/buffer_head.h>  /* for try_to_release_page(),
  32                                        buffer_heads_over_limit */
  33#include <linux/mm_inline.h>
  34#include <linux/backing-dev.h>
  35#include <linux/rmap.h>
  36#include <linux/topology.h>
  37#include <linux/cpu.h>
  38#include <linux/cpuset.h>
  39#include <linux/compaction.h>
  40#include <linux/notifier.h>
  41#include <linux/rwsem.h>
  42#include <linux/delay.h>
  43#include <linux/kthread.h>
  44#include <linux/freezer.h>
  45#include <linux/memcontrol.h>
  46#include <linux/delayacct.h>
  47#include <linux/sysctl.h>
  48#include <linux/oom.h>
  49#include <linux/prefetch.h>
  50#include <linux/printk.h>
  51#include <linux/dax.h>
  52
  53#include <asm/tlbflush.h>
  54#include <asm/div64.h>
  55
  56#include <linux/swapops.h>
  57#include <linux/balloon_compaction.h>
  58
  59#include "internal.h"
  60
  61#define CREATE_TRACE_POINTS
  62#include <trace/events/vmscan.h>
  63
  64struct scan_control {
  65        /* How many pages shrink_list() should reclaim */
  66        unsigned long nr_to_reclaim;
  67
  68        /*
  69         * Nodemask of nodes allowed by the caller. If NULL, all nodes
  70         * are scanned.
  71         */
  72        nodemask_t      *nodemask;
  73
  74        /*
  75         * The memory cgroup that hit its limit and as a result is the
  76         * primary target of this reclaim invocation.
  77         */
  78        struct mem_cgroup *target_mem_cgroup;
  79
  80        /* Writepage batching in laptop mode; RECLAIM_WRITE */
  81        unsigned int may_writepage:1;
  82
  83        /* Can mapped pages be reclaimed? */
  84        unsigned int may_unmap:1;
  85
  86        /* Can pages be swapped as part of reclaim? */
  87        unsigned int may_swap:1;
  88
  89        /*
  90         * Cgroups are not reclaimed below their configured memory.low,
  91         * unless we threaten to OOM. If any cgroups are skipped due to
  92         * memory.low and nothing was reclaimed, go back for memory.low.
  93         */
  94        unsigned int memcg_low_reclaim:1;
  95        unsigned int memcg_low_skipped:1;
  96
  97        unsigned int hibernation_mode:1;
  98
  99        /* One of the zones is ready for compaction */
 100        unsigned int compaction_ready:1;
 101
 102        /* Allocation order */
 103        s8 order;
 104
 105        /* Scan (total_size >> priority) pages at once */
 106        s8 priority;
 107
 108        /* The highest zone to isolate pages for reclaim from */
 109        s8 reclaim_idx;
 110
 111        /* This context's GFP mask */
 112        gfp_t gfp_mask;
 113
 114        /* Incremented by the number of inactive pages that were scanned */
 115        unsigned long nr_scanned;
 116
 117        /* Number of pages freed so far during a call to shrink_zones() */
 118        unsigned long nr_reclaimed;
 119
 120        struct {
 121                unsigned int dirty;
 122                unsigned int unqueued_dirty;
 123                unsigned int congested;
 124                unsigned int writeback;
 125                unsigned int immediate;
 126                unsigned int file_taken;
 127                unsigned int taken;
 128        } nr;
 129};
 130
 131#ifdef ARCH_HAS_PREFETCH
 132#define prefetch_prev_lru_page(_page, _base, _field)                    \
 133        do {                                                            \
 134                if ((_page)->lru.prev != _base) {                       \
 135                        struct page *prev;                              \
 136                                                                        \
 137                        prev = lru_to_page(&(_page->lru));              \
 138                        prefetch(&prev->_field);                        \
 139                }                                                       \
 140        } while (0)
 141#else
 142#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
 143#endif
 144
 145#ifdef ARCH_HAS_PREFETCHW
 146#define prefetchw_prev_lru_page(_page, _base, _field)                   \
 147        do {                                                            \
 148                if ((_page)->lru.prev != _base) {                       \
 149                        struct page *prev;                              \
 150                                                                        \
 151                        prev = lru_to_page(&(_page->lru));              \
 152                        prefetchw(&prev->_field);                       \
 153                }                                                       \
 154        } while (0)
 155#else
 156#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
 157#endif
 158
 159/*
 160 * From 0 .. 100.  Higher means more swappy.
 161 */
 162int vm_swappiness = 60;
 163/*
 164 * The total number of pages which are beyond the high watermark within all
 165 * zones.
 166 */
 167unsigned long vm_total_pages;
 168
 169static LIST_HEAD(shrinker_list);
 170static DECLARE_RWSEM(shrinker_rwsem);
 171
 172#ifdef CONFIG_MEMCG_KMEM
 173
 174/*
 175 * We allow subsystems to populate their shrinker-related
 176 * LRU lists before register_shrinker_prepared() is called
 177 * for the shrinker, since we don't want to impose
 178 * restrictions on their internal registration order.
 179 * In this case shrink_slab_memcg() may find corresponding
 180 * bit is set in the shrinkers map.
 181 *
 182 * This value is used by the function to detect registering
 183 * shrinkers and to skip do_shrink_slab() calls for them.
 184 */
 185#define SHRINKER_REGISTERING ((struct shrinker *)~0UL)
 186
 187static DEFINE_IDR(shrinker_idr);
 188static int shrinker_nr_max;
 189
 190static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 191{
 192        int id, ret = -ENOMEM;
 193
 194        down_write(&shrinker_rwsem);
 195        /* This may call shrinker, so it must use down_read_trylock() */
 196        id = idr_alloc(&shrinker_idr, SHRINKER_REGISTERING, 0, 0, GFP_KERNEL);
 197        if (id < 0)
 198                goto unlock;
 199
 200        if (id >= shrinker_nr_max) {
 201                if (memcg_expand_shrinker_maps(id)) {
 202                        idr_remove(&shrinker_idr, id);
 203                        goto unlock;
 204                }
 205
 206                shrinker_nr_max = id + 1;
 207        }
 208        shrinker->id = id;
 209        ret = 0;
 210unlock:
 211        up_write(&shrinker_rwsem);
 212        return ret;
 213}
 214
 215static void unregister_memcg_shrinker(struct shrinker *shrinker)
 216{
 217        int id = shrinker->id;
 218
 219        BUG_ON(id < 0);
 220
 221        down_write(&shrinker_rwsem);
 222        idr_remove(&shrinker_idr, id);
 223        up_write(&shrinker_rwsem);
 224}
 225#else /* CONFIG_MEMCG_KMEM */
 226static int prealloc_memcg_shrinker(struct shrinker *shrinker)
 227{
 228        return 0;
 229}
 230
 231static void unregister_memcg_shrinker(struct shrinker *shrinker)
 232{
 233}
 234#endif /* CONFIG_MEMCG_KMEM */
 235
 236#ifdef CONFIG_MEMCG
 237static bool global_reclaim(struct scan_control *sc)
 238{
 239        return !sc->target_mem_cgroup;
 240}
 241
 242/**
 243 * sane_reclaim - is the usual dirty throttling mechanism operational?
 244 * @sc: scan_control in question
 245 *
 246 * The normal page dirty throttling mechanism in balance_dirty_pages() is
 247 * completely broken with the legacy memcg and direct stalling in
 248 * shrink_page_list() is used for throttling instead, which lacks all the
 249 * niceties such as fairness, adaptive pausing, bandwidth proportional
 250 * allocation and configurability.
 251 *
 252 * This function tests whether the vmscan currently in progress can assume
 253 * that the normal dirty throttling mechanism is operational.
 254 */
 255static bool sane_reclaim(struct scan_control *sc)
 256{
 257        struct mem_cgroup *memcg = sc->target_mem_cgroup;
 258
 259        if (!memcg)
 260                return true;
 261#ifdef CONFIG_CGROUP_WRITEBACK
 262        if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
 263                return true;
 264#endif
 265        return false;
 266}
 267
 268static void set_memcg_congestion(pg_data_t *pgdat,
 269                                struct mem_cgroup *memcg,
 270                                bool congested)
 271{
 272        struct mem_cgroup_per_node *mn;
 273
 274        if (!memcg)
 275                return;
 276
 277        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 278        WRITE_ONCE(mn->congested, congested);
 279}
 280
 281static bool memcg_congested(pg_data_t *pgdat,
 282                        struct mem_cgroup *memcg)
 283{
 284        struct mem_cgroup_per_node *mn;
 285
 286        mn = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
 287        return READ_ONCE(mn->congested);
 288
 289}
 290#else
 291static bool global_reclaim(struct scan_control *sc)
 292{
 293        return true;
 294}
 295
 296static bool sane_reclaim(struct scan_control *sc)
 297{
 298        return true;
 299}
 300
 301static inline void set_memcg_congestion(struct pglist_data *pgdat,
 302                                struct mem_cgroup *memcg, bool congested)
 303{
 304}
 305
 306static inline bool memcg_congested(struct pglist_data *pgdat,
 307                        struct mem_cgroup *memcg)
 308{
 309        return false;
 310
 311}
 312#endif
 313
 314/*
 315 * This misses isolated pages which are not accounted for to save counters.
 316 * As the data only determines if reclaim or compaction continues, it is
 317 * not expected that isolated pages will be a dominating factor.
 318 */
 319unsigned long zone_reclaimable_pages(struct zone *zone)
 320{
 321        unsigned long nr;
 322
 323        nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
 324                zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
 325        if (get_nr_swap_pages() > 0)
 326                nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
 327                        zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
 328
 329        return nr;
 330}
 331
 332/**
 333 * lruvec_lru_size -  Returns the number of pages on the given LRU list.
 334 * @lruvec: lru vector
 335 * @lru: lru to use
 336 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
 337 */
 338unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
 339{
 340        unsigned long lru_size;
 341        int zid;
 342
 343        if (!mem_cgroup_disabled())
 344                lru_size = mem_cgroup_get_lru_size(lruvec, lru);
 345        else
 346                lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
 347
 348        for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
 349                struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
 350                unsigned long size;
 351
 352                if (!managed_zone(zone))
 353                        continue;
 354
 355                if (!mem_cgroup_disabled())
 356                        size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
 357                else
 358                        size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
 359                                       NR_ZONE_LRU_BASE + lru);
 360                lru_size -= min(size, lru_size);
 361        }
 362
 363        return lru_size;
 364
 365}
 366
 367/*
 368 * Add a shrinker callback to be called from the vm.
 369 */
 370int prealloc_shrinker(struct shrinker *shrinker)
 371{
 372        size_t size = sizeof(*shrinker->nr_deferred);
 373
 374        if (shrinker->flags & SHRINKER_NUMA_AWARE)
 375                size *= nr_node_ids;
 376
 377        shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
 378        if (!shrinker->nr_deferred)
 379                return -ENOMEM;
 380
 381        if (shrinker->flags & SHRINKER_MEMCG_AWARE) {
 382                if (prealloc_memcg_shrinker(shrinker))
 383                        goto free_deferred;
 384        }
 385
 386        return 0;
 387
 388free_deferred:
 389        kfree(shrinker->nr_deferred);
 390        shrinker->nr_deferred = NULL;
 391        return -ENOMEM;
 392}
 393
 394void free_prealloced_shrinker(struct shrinker *shrinker)
 395{
 396        if (!shrinker->nr_deferred)
 397                return;
 398
 399        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 400                unregister_memcg_shrinker(shrinker);
 401
 402        kfree(shrinker->nr_deferred);
 403        shrinker->nr_deferred = NULL;
 404}
 405
 406void register_shrinker_prepared(struct shrinker *shrinker)
 407{
 408        down_write(&shrinker_rwsem);
 409        list_add_tail(&shrinker->list, &shrinker_list);
 410#ifdef CONFIG_MEMCG_KMEM
 411        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 412                idr_replace(&shrinker_idr, shrinker, shrinker->id);
 413#endif
 414        up_write(&shrinker_rwsem);
 415}
 416
 417int register_shrinker(struct shrinker *shrinker)
 418{
 419        int err = prealloc_shrinker(shrinker);
 420
 421        if (err)
 422                return err;
 423        register_shrinker_prepared(shrinker);
 424        return 0;
 425}
 426EXPORT_SYMBOL(register_shrinker);
 427
 428/*
 429 * Remove one
 430 */
 431void unregister_shrinker(struct shrinker *shrinker)
 432{
 433        if (!shrinker->nr_deferred)
 434                return;
 435        if (shrinker->flags & SHRINKER_MEMCG_AWARE)
 436                unregister_memcg_shrinker(shrinker);
 437        down_write(&shrinker_rwsem);
 438        list_del(&shrinker->list);
 439        up_write(&shrinker_rwsem);
 440        kfree(shrinker->nr_deferred);
 441        shrinker->nr_deferred = NULL;
 442}
 443EXPORT_SYMBOL(unregister_shrinker);
 444
 445#define SHRINK_BATCH 128
 446
 447static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
 448                                    struct shrinker *shrinker, int priority)
 449{
 450        unsigned long freed = 0;
 451        unsigned long long delta;
 452        long total_scan;
 453        long freeable;
 454        long nr;
 455        long new_nr;
 456        int nid = shrinkctl->nid;
 457        long batch_size = shrinker->batch ? shrinker->batch
 458                                          : SHRINK_BATCH;
 459        long scanned = 0, next_deferred;
 460
 461        if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
 462                nid = 0;
 463
 464        freeable = shrinker->count_objects(shrinker, shrinkctl);
 465        if (freeable == 0 || freeable == SHRINK_EMPTY)
 466                return freeable;
 467
 468        /*
 469         * copy the current shrinker scan count into a local variable
 470         * and zero it so that other concurrent shrinker invocations
 471         * don't also do this scanning work.
 472         */
 473        nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
 474
 475        total_scan = nr;
 476        delta = freeable >> priority;
 477        delta *= 4;
 478        do_div(delta, shrinker->seeks);
 479
 480        /*
 481         * Make sure we apply some minimal pressure on default priority
 482         * even on small cgroups. Stale objects are not only consuming memory
 483         * by themselves, but can also hold a reference to a dying cgroup,
 484         * preventing it from being reclaimed. A dying cgroup with all
 485         * corresponding structures like per-cpu stats and kmem caches
 486         * can be really big, so it may lead to a significant waste of memory.
 487         */
 488        delta = max_t(unsigned long long, delta, min(freeable, batch_size));
 489
 490        total_scan += delta;
 491        if (total_scan < 0) {
 492                pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
 493                       shrinker->scan_objects, total_scan);
 494                total_scan = freeable;
 495                next_deferred = nr;
 496        } else
 497                next_deferred = total_scan;
 498
 499        /*
 500         * We need to avoid excessive windup on filesystem shrinkers
 501         * due to large numbers of GFP_NOFS allocations causing the
 502         * shrinkers to return -1 all the time. This results in a large
 503         * nr being built up so when a shrink that can do some work
 504         * comes along it empties the entire cache due to nr >>>
 505         * freeable. This is bad for sustaining a working set in
 506         * memory.
 507         *
 508         * Hence only allow the shrinker to scan the entire cache when
 509         * a large delta change is calculated directly.
 510         */
 511        if (delta < freeable / 4)
 512                total_scan = min(total_scan, freeable / 2);
 513
 514        /*
 515         * Avoid risking looping forever due to too large nr value:
 516         * never try to free more than twice the estimate number of
 517         * freeable entries.
 518         */
 519        if (total_scan > freeable * 2)
 520                total_scan = freeable * 2;
 521
 522        trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
 523                                   freeable, delta, total_scan, priority);
 524
 525        /*
 526         * Normally, we should not scan less than batch_size objects in one
 527         * pass to avoid too frequent shrinker calls, but if the slab has less
 528         * than batch_size objects in total and we are really tight on memory,
 529         * we will try to reclaim all available objects, otherwise we can end
 530         * up failing allocations although there are plenty of reclaimable
 531         * objects spread over several slabs with usage less than the
 532         * batch_size.
 533         *
 534         * We detect the "tight on memory" situations by looking at the total
 535         * number of objects we want to scan (total_scan). If it is greater
 536         * than the total number of objects on slab (freeable), we must be
 537         * scanning at high prio and therefore should try to reclaim as much as
 538         * possible.
 539         */
 540        while (total_scan >= batch_size ||
 541               total_scan >= freeable) {
 542                unsigned long ret;
 543                unsigned long nr_to_scan = min(batch_size, total_scan);
 544
 545                shrinkctl->nr_to_scan = nr_to_scan;
 546                shrinkctl->nr_scanned = nr_to_scan;
 547                ret = shrinker->scan_objects(shrinker, shrinkctl);
 548                if (ret == SHRINK_STOP)
 549                        break;
 550                freed += ret;
 551
 552                count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
 553                total_scan -= shrinkctl->nr_scanned;
 554                scanned += shrinkctl->nr_scanned;
 555
 556                cond_resched();
 557        }
 558
 559        if (next_deferred >= scanned)
 560                next_deferred -= scanned;
 561        else
 562                next_deferred = 0;
 563        /*
 564         * move the unused scan count back into the shrinker in a
 565         * manner that handles concurrent updates. If we exhausted the
 566         * scan, there is no need to do an update.
 567         */
 568        if (next_deferred > 0)
 569                new_nr = atomic_long_add_return(next_deferred,
 570                                                &shrinker->nr_deferred[nid]);
 571        else
 572                new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
 573
 574        trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
 575        return freed;
 576}
 577
 578#ifdef CONFIG_MEMCG_KMEM
 579static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 580                        struct mem_cgroup *memcg, int priority)
 581{
 582        struct memcg_shrinker_map *map;
 583        unsigned long ret, freed = 0;
 584        int i;
 585
 586        if (!memcg_kmem_enabled() || !mem_cgroup_online(memcg))
 587                return 0;
 588
 589        if (!down_read_trylock(&shrinker_rwsem))
 590                return 0;
 591
 592        map = rcu_dereference_protected(memcg->nodeinfo[nid]->shrinker_map,
 593                                        true);
 594        if (unlikely(!map))
 595                goto unlock;
 596
 597        for_each_set_bit(i, map->map, shrinker_nr_max) {
 598                struct shrink_control sc = {
 599                        .gfp_mask = gfp_mask,
 600                        .nid = nid,
 601                        .memcg = memcg,
 602                };
 603                struct shrinker *shrinker;
 604
 605                shrinker = idr_find(&shrinker_idr, i);
 606                if (unlikely(!shrinker || shrinker == SHRINKER_REGISTERING)) {
 607                        if (!shrinker)
 608                                clear_bit(i, map->map);
 609                        continue;
 610                }
 611
 612                ret = do_shrink_slab(&sc, shrinker, priority);
 613                if (ret == SHRINK_EMPTY) {
 614                        clear_bit(i, map->map);
 615                        /*
 616                         * After the shrinker reported that it had no objects to
 617                         * free, but before we cleared the corresponding bit in
 618                         * the memcg shrinker map, a new object might have been
 619                         * added. To make sure, we have the bit set in this
 620                         * case, we invoke the shrinker one more time and reset
 621                         * the bit if it reports that it is not empty anymore.
 622                         * The memory barrier here pairs with the barrier in
 623                         * memcg_set_shrinker_bit():
 624                         *
 625                         * list_lru_add()     shrink_slab_memcg()
 626                         *   list_add_tail()    clear_bit()
 627                         *   <MB>               <MB>
 628                         *   set_bit()          do_shrink_slab()
 629                         */
 630                        smp_mb__after_atomic();
 631                        ret = do_shrink_slab(&sc, shrinker, priority);
 632                        if (ret == SHRINK_EMPTY)
 633                                ret = 0;
 634                        else
 635                                memcg_set_shrinker_bit(memcg, nid, i);
 636                }
 637                freed += ret;
 638
 639                if (rwsem_is_contended(&shrinker_rwsem)) {
 640                        freed = freed ? : 1;
 641                        break;
 642                }
 643        }
 644unlock:
 645        up_read(&shrinker_rwsem);
 646        return freed;
 647}
 648#else /* CONFIG_MEMCG_KMEM */
 649static unsigned long shrink_slab_memcg(gfp_t gfp_mask, int nid,
 650                        struct mem_cgroup *memcg, int priority)
 651{
 652        return 0;
 653}
 654#endif /* CONFIG_MEMCG_KMEM */
 655
 656/**
 657 * shrink_slab - shrink slab caches
 658 * @gfp_mask: allocation context
 659 * @nid: node whose slab caches to target
 660 * @memcg: memory cgroup whose slab caches to target
 661 * @priority: the reclaim priority
 662 *
 663 * Call the shrink functions to age shrinkable caches.
 664 *
 665 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
 666 * unaware shrinkers will receive a node id of 0 instead.
 667 *
 668 * @memcg specifies the memory cgroup to target. Unaware shrinkers
 669 * are called only if it is the root cgroup.
 670 *
 671 * @priority is sc->priority, we take the number of objects and >> by priority
 672 * in order to get the scan target.
 673 *
 674 * Returns the number of reclaimed slab objects.
 675 */
 676static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
 677                                 struct mem_cgroup *memcg,
 678                                 int priority)
 679{
 680        unsigned long ret, freed = 0;
 681        struct shrinker *shrinker;
 682
 683        if (!mem_cgroup_is_root(memcg))
 684                return shrink_slab_memcg(gfp_mask, nid, memcg, priority);
 685
 686        if (!down_read_trylock(&shrinker_rwsem))
 687                goto out;
 688
 689        list_for_each_entry(shrinker, &shrinker_list, list) {
 690                struct shrink_control sc = {
 691                        .gfp_mask = gfp_mask,
 692                        .nid = nid,
 693                        .memcg = memcg,
 694                };
 695
 696                ret = do_shrink_slab(&sc, shrinker, priority);
 697                if (ret == SHRINK_EMPTY)
 698                        ret = 0;
 699                freed += ret;
 700                /*
 701                 * Bail out if someone want to register a new shrinker to
 702                 * prevent the regsitration from being stalled for long periods
 703                 * by parallel ongoing shrinking.
 704                 */
 705                if (rwsem_is_contended(&shrinker_rwsem)) {
 706                        freed = freed ? : 1;
 707                        break;
 708                }
 709        }
 710
 711        up_read(&shrinker_rwsem);
 712out:
 713        cond_resched();
 714        return freed;
 715}
 716
 717void drop_slab_node(int nid)
 718{
 719        unsigned long freed;
 720
 721        do {
 722                struct mem_cgroup *memcg = NULL;
 723
 724                freed = 0;
 725                memcg = mem_cgroup_iter(NULL, NULL, NULL);
 726                do {
 727                        freed += shrink_slab(GFP_KERNEL, nid, memcg, 0);
 728                } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
 729        } while (freed > 10);
 730}
 731
 732void drop_slab(void)
 733{
 734        int nid;
 735
 736        for_each_online_node(nid)
 737                drop_slab_node(nid);
 738}
 739
 740static inline int is_page_cache_freeable(struct page *page)
 741{
 742        /*
 743         * A freeable page cache page is referenced only by the caller
 744         * that isolated the page, the page cache radix tree and
 745         * optional buffer heads at page->private.
 746         */
 747        int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
 748                HPAGE_PMD_NR : 1;
 749        return page_count(page) - page_has_private(page) == 1 + radix_pins;
 750}
 751
 752static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
 753{
 754        if (current->flags & PF_SWAPWRITE)
 755                return 1;
 756        if (!inode_write_congested(inode))
 757                return 1;
 758        if (inode_to_bdi(inode) == current->backing_dev_info)
 759                return 1;
 760        return 0;
 761}
 762
 763/*
 764 * We detected a synchronous write error writing a page out.  Probably
 765 * -ENOSPC.  We need to propagate that into the address_space for a subsequent
 766 * fsync(), msync() or close().
 767 *
 768 * The tricky part is that after writepage we cannot touch the mapping: nothing
 769 * prevents it from being freed up.  But we have a ref on the page and once
 770 * that page is locked, the mapping is pinned.
 771 *
 772 * We're allowed to run sleeping lock_page() here because we know the caller has
 773 * __GFP_FS.
 774 */
 775static void handle_write_error(struct address_space *mapping,
 776                                struct page *page, int error)
 777{
 778        lock_page(page);
 779        if (page_mapping(page) == mapping)
 780                mapping_set_error(mapping, error);
 781        unlock_page(page);
 782}
 783
 784/* possible outcome of pageout() */
 785typedef enum {
 786        /* failed to write page out, page is locked */
 787        PAGE_KEEP,
 788        /* move page to the active list, page is locked */
 789        PAGE_ACTIVATE,
 790        /* page has been sent to the disk successfully, page is unlocked */
 791        PAGE_SUCCESS,
 792        /* page is clean and locked */
 793        PAGE_CLEAN,
 794} pageout_t;
 795
 796/*
 797 * pageout is called by shrink_page_list() for each dirty page.
 798 * Calls ->writepage().
 799 */
 800static pageout_t pageout(struct page *page, struct address_space *mapping,
 801                         struct scan_control *sc)
 802{
 803        /*
 804         * If the page is dirty, only perform writeback if that write
 805         * will be non-blocking.  To prevent this allocation from being
 806         * stalled by pagecache activity.  But note that there may be
 807         * stalls if we need to run get_block().  We could test
 808         * PagePrivate for that.
 809         *
 810         * If this process is currently in __generic_file_write_iter() against
 811         * this page's queue, we can perform writeback even if that
 812         * will block.
 813         *
 814         * If the page is swapcache, write it back even if that would
 815         * block, for some throttling. This happens by accident, because
 816         * swap_backing_dev_info is bust: it doesn't reflect the
 817         * congestion state of the swapdevs.  Easy to fix, if needed.
 818         */
 819        if (!is_page_cache_freeable(page))
 820                return PAGE_KEEP;
 821        if (!mapping) {
 822                /*
 823                 * Some data journaling orphaned pages can have
 824                 * page->mapping == NULL while being dirty with clean buffers.
 825                 */
 826                if (page_has_private(page)) {
 827                        if (try_to_free_buffers(page)) {
 828                                ClearPageDirty(page);
 829                                pr_info("%s: orphaned page\n", __func__);
 830                                return PAGE_CLEAN;
 831                        }
 832                }
 833                return PAGE_KEEP;
 834        }
 835        if (mapping->a_ops->writepage == NULL)
 836                return PAGE_ACTIVATE;
 837        if (!may_write_to_inode(mapping->host, sc))
 838                return PAGE_KEEP;
 839
 840        if (clear_page_dirty_for_io(page)) {
 841                int res;
 842                struct writeback_control wbc = {
 843                        .sync_mode = WB_SYNC_NONE,
 844                        .nr_to_write = SWAP_CLUSTER_MAX,
 845                        .range_start = 0,
 846                        .range_end = LLONG_MAX,
 847                        .for_reclaim = 1,
 848                };
 849
 850                SetPageReclaim(page);
 851                res = mapping->a_ops->writepage(page, &wbc);
 852                if (res < 0)
 853                        handle_write_error(mapping, page, res);
 854                if (res == AOP_WRITEPAGE_ACTIVATE) {
 855                        ClearPageReclaim(page);
 856                        return PAGE_ACTIVATE;
 857                }
 858
 859                if (!PageWriteback(page)) {
 860                        /* synchronous write or broken a_ops? */
 861                        ClearPageReclaim(page);
 862                }
 863                trace_mm_vmscan_writepage(page);
 864                inc_node_page_state(page, NR_VMSCAN_WRITE);
 865                return PAGE_SUCCESS;
 866        }
 867
 868        return PAGE_CLEAN;
 869}
 870
 871/*
 872 * Same as remove_mapping, but if the page is removed from the mapping, it
 873 * gets returned with a refcount of 0.
 874 */
 875static int __remove_mapping(struct address_space *mapping, struct page *page,
 876                            bool reclaimed)
 877{
 878        unsigned long flags;
 879        int refcount;
 880
 881        BUG_ON(!PageLocked(page));
 882        BUG_ON(mapping != page_mapping(page));
 883
 884        xa_lock_irqsave(&mapping->i_pages, flags);
 885        /*
 886         * The non racy check for a busy page.
 887         *
 888         * Must be careful with the order of the tests. When someone has
 889         * a ref to the page, it may be possible that they dirty it then
 890         * drop the reference. So if PageDirty is tested before page_count
 891         * here, then the following race may occur:
 892         *
 893         * get_user_pages(&page);
 894         * [user mapping goes away]
 895         * write_to(page);
 896         *                              !PageDirty(page)    [good]
 897         * SetPageDirty(page);
 898         * put_page(page);
 899         *                              !page_count(page)   [good, discard it]
 900         *
 901         * [oops, our write_to data is lost]
 902         *
 903         * Reversing the order of the tests ensures such a situation cannot
 904         * escape unnoticed. The smp_rmb is needed to ensure the page->flags
 905         * load is not satisfied before that of page->_refcount.
 906         *
 907         * Note that if SetPageDirty is always performed via set_page_dirty,
 908         * and thus under the i_pages lock, then this ordering is not required.
 909         */
 910        if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
 911                refcount = 1 + HPAGE_PMD_NR;
 912        else
 913                refcount = 2;
 914        if (!page_ref_freeze(page, refcount))
 915                goto cannot_free;
 916        /* note: atomic_cmpxchg in page_ref_freeze provides the smp_rmb */
 917        if (unlikely(PageDirty(page))) {
 918                page_ref_unfreeze(page, refcount);
 919                goto cannot_free;
 920        }
 921
 922        if (PageSwapCache(page)) {
 923                swp_entry_t swap = { .val = page_private(page) };
 924                mem_cgroup_swapout(page, swap);
 925                __delete_from_swap_cache(page);
 926                xa_unlock_irqrestore(&mapping->i_pages, flags);
 927                put_swap_page(page, swap);
 928        } else {
 929                void (*freepage)(struct page *);
 930                void *shadow = NULL;
 931
 932                freepage = mapping->a_ops->freepage;
 933                /*
 934                 * Remember a shadow entry for reclaimed file cache in
 935                 * order to detect refaults, thus thrashing, later on.
 936                 *
 937                 * But don't store shadows in an address space that is
 938                 * already exiting.  This is not just an optizimation,
 939                 * inode reclaim needs to empty out the radix tree or
 940                 * the nodes are lost.  Don't plant shadows behind its
 941                 * back.
 942                 *
 943                 * We also don't store shadows for DAX mappings because the
 944                 * only page cache pages found in these are zero pages
 945                 * covering holes, and because we don't want to mix DAX
 946                 * exceptional entries and shadow exceptional entries in the
 947                 * same address_space.
 948                 */
 949                if (reclaimed && page_is_file_cache(page) &&
 950                    !mapping_exiting(mapping) && !dax_mapping(mapping))
 951                        shadow = workingset_eviction(mapping, page);
 952                __delete_from_page_cache(page, shadow);
 953                xa_unlock_irqrestore(&mapping->i_pages, flags);
 954
 955                if (freepage != NULL)
 956                        freepage(page);
 957        }
 958
 959        return 1;
 960
 961cannot_free:
 962        xa_unlock_irqrestore(&mapping->i_pages, flags);
 963        return 0;
 964}
 965
 966/*
 967 * Attempt to detach a locked page from its ->mapping.  If it is dirty or if
 968 * someone else has a ref on the page, abort and return 0.  If it was
 969 * successfully detached, return 1.  Assumes the caller has a single ref on
 970 * this page.
 971 */
 972int remove_mapping(struct address_space *mapping, struct page *page)
 973{
 974        if (__remove_mapping(mapping, page, false)) {
 975                /*
 976                 * Unfreezing the refcount with 1 rather than 2 effectively
 977                 * drops the pagecache ref for us without requiring another
 978                 * atomic operation.
 979                 */
 980                page_ref_unfreeze(page, 1);
 981                return 1;
 982        }
 983        return 0;
 984}
 985
 986/**
 987 * putback_lru_page - put previously isolated page onto appropriate LRU list
 988 * @page: page to be put back to appropriate lru list
 989 *
 990 * Add previously isolated @page to appropriate LRU list.
 991 * Page may still be unevictable for other reasons.
 992 *
 993 * lru_lock must not be held, interrupts must be enabled.
 994 */
 995void putback_lru_page(struct page *page)
 996{
 997        lru_cache_add(page);
 998        put_page(page);         /* drop ref from isolate */
 999}
1000
1001enum page_references {
1002        PAGEREF_RECLAIM,
1003        PAGEREF_RECLAIM_CLEAN,
1004        PAGEREF_KEEP,
1005        PAGEREF_ACTIVATE,
1006};
1007
1008static enum page_references page_check_references(struct page *page,
1009                                                  struct scan_control *sc)
1010{
1011        int referenced_ptes, referenced_page;
1012        unsigned long vm_flags;
1013
1014        referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
1015                                          &vm_flags);
1016        referenced_page = TestClearPageReferenced(page);
1017
1018        /*
1019         * Mlock lost the isolation race with us.  Let try_to_unmap()
1020         * move the page to the unevictable list.
1021         */
1022        if (vm_flags & VM_LOCKED)
1023                return PAGEREF_RECLAIM;
1024
1025        if (referenced_ptes) {
1026                if (PageSwapBacked(page))
1027                        return PAGEREF_ACTIVATE;
1028                /*
1029                 * All mapped pages start out with page table
1030                 * references from the instantiating fault, so we need
1031                 * to look twice if a mapped file page is used more
1032                 * than once.
1033                 *
1034                 * Mark it and spare it for another trip around the
1035                 * inactive list.  Another page table reference will
1036                 * lead to its activation.
1037                 *
1038                 * Note: the mark is set for activated pages as well
1039                 * so that recently deactivated but used pages are
1040                 * quickly recovered.
1041                 */
1042                SetPageReferenced(page);
1043
1044                if (referenced_page || referenced_ptes > 1)
1045                        return PAGEREF_ACTIVATE;
1046
1047                /*
1048                 * Activate file-backed executable pages after first usage.
1049                 */
1050                if (vm_flags & VM_EXEC)
1051                        return PAGEREF_ACTIVATE;
1052
1053                return PAGEREF_KEEP;
1054        }
1055
1056        /* Reclaim if clean, defer dirty pages to writeback */
1057        if (referenced_page && !PageSwapBacked(page))
1058                return PAGEREF_RECLAIM_CLEAN;
1059
1060        return PAGEREF_RECLAIM;
1061}
1062
1063/* Check if a page is dirty or under writeback */
1064static void page_check_dirty_writeback(struct page *page,
1065                                       bool *dirty, bool *writeback)
1066{
1067        struct address_space *mapping;
1068
1069        /*
1070         * Anonymous pages are not handled by flushers and must be written
1071         * from reclaim context. Do not stall reclaim based on them
1072         */
1073        if (!page_is_file_cache(page) ||
1074            (PageAnon(page) && !PageSwapBacked(page))) {
1075                *dirty = false;
1076                *writeback = false;
1077                return;
1078        }
1079
1080        /* By default assume that the page flags are accurate */
1081        *dirty = PageDirty(page);
1082        *writeback = PageWriteback(page);
1083
1084        /* Verify dirty/writeback state if the filesystem supports it */
1085        if (!page_has_private(page))
1086                return;
1087
1088        mapping = page_mapping(page);
1089        if (mapping && mapping->a_ops->is_dirty_writeback)
1090                mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
1091}
1092
1093/*
1094 * shrink_page_list() returns the number of reclaimed pages
1095 */
1096static unsigned long shrink_page_list(struct list_head *page_list,
1097                                      struct pglist_data *pgdat,
1098                                      struct scan_control *sc,
1099                                      enum ttu_flags ttu_flags,
1100                                      struct reclaim_stat *stat,
1101                                      bool force_reclaim)
1102{
1103        LIST_HEAD(ret_pages);
1104        LIST_HEAD(free_pages);
1105        int pgactivate = 0;
1106        unsigned nr_unqueued_dirty = 0;
1107        unsigned nr_dirty = 0;
1108        unsigned nr_congested = 0;
1109        unsigned nr_reclaimed = 0;
1110        unsigned nr_writeback = 0;
1111        unsigned nr_immediate = 0;
1112        unsigned nr_ref_keep = 0;
1113        unsigned nr_unmap_fail = 0;
1114
1115        cond_resched();
1116
1117        while (!list_empty(page_list)) {
1118                struct address_space *mapping;
1119                struct page *page;
1120                int may_enter_fs;
1121                enum page_references references = PAGEREF_RECLAIM_CLEAN;
1122                bool dirty, writeback;
1123
1124                cond_resched();
1125
1126                page = lru_to_page(page_list);
1127                list_del(&page->lru);
1128
1129                if (!trylock_page(page))
1130                        goto keep;
1131
1132                VM_BUG_ON_PAGE(PageActive(page), page);
1133
1134                sc->nr_scanned++;
1135
1136                if (unlikely(!page_evictable(page)))
1137                        goto activate_locked;
1138
1139                if (!sc->may_unmap && page_mapped(page))
1140                        goto keep_locked;
1141
1142                /* Double the slab pressure for mapped and swapcache pages */
1143                if ((page_mapped(page) || PageSwapCache(page)) &&
1144                    !(PageAnon(page) && !PageSwapBacked(page)))
1145                        sc->nr_scanned++;
1146
1147                may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1148                        (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1149
1150                /*
1151                 * The number of dirty pages determines if a node is marked
1152                 * reclaim_congested which affects wait_iff_congested. kswapd
1153                 * will stall and start writing pages if the tail of the LRU
1154                 * is all dirty unqueued pages.
1155                 */
1156                page_check_dirty_writeback(page, &dirty, &writeback);
1157                if (dirty || writeback)
1158                        nr_dirty++;
1159
1160                if (dirty && !writeback)
1161                        nr_unqueued_dirty++;
1162
1163                /*
1164                 * Treat this page as congested if the underlying BDI is or if
1165                 * pages are cycling through the LRU so quickly that the
1166                 * pages marked for immediate reclaim are making it to the
1167                 * end of the LRU a second time.
1168                 */
1169                mapping = page_mapping(page);
1170                if (((dirty || writeback) && mapping &&
1171                     inode_write_congested(mapping->host)) ||
1172                    (writeback && PageReclaim(page)))
1173                        nr_congested++;
1174
1175                /*
1176                 * If a page at the tail of the LRU is under writeback, there
1177                 * are three cases to consider.
1178                 *
1179                 * 1) If reclaim is encountering an excessive number of pages
1180                 *    under writeback and this page is both under writeback and
1181                 *    PageReclaim then it indicates that pages are being queued
1182                 *    for IO but are being recycled through the LRU before the
1183                 *    IO can complete. Waiting on the page itself risks an
1184                 *    indefinite stall if it is impossible to writeback the
1185                 *    page due to IO error or disconnected storage so instead
1186                 *    note that the LRU is being scanned too quickly and the
1187                 *    caller can stall after page list has been processed.
1188                 *
1189                 * 2) Global or new memcg reclaim encounters a page that is
1190                 *    not marked for immediate reclaim, or the caller does not
1191                 *    have __GFP_FS (or __GFP_IO if it's simply going to swap,
1192                 *    not to fs). In this case mark the page for immediate
1193                 *    reclaim and continue scanning.
1194                 *
1195                 *    Require may_enter_fs because we would wait on fs, which
1196                 *    may not have submitted IO yet. And the loop driver might
1197                 *    enter reclaim, and deadlock if it waits on a page for
1198                 *    which it is needed to do the write (loop masks off
1199                 *    __GFP_IO|__GFP_FS for this reason); but more thought
1200                 *    would probably show more reasons.
1201                 *
1202                 * 3) Legacy memcg encounters a page that is already marked
1203                 *    PageReclaim. memcg does not have any dirty pages
1204                 *    throttling so we could easily OOM just because too many
1205                 *    pages are in writeback and there is nothing else to
1206                 *    reclaim. Wait for the writeback to complete.
1207                 *
1208                 * In cases 1) and 2) we activate the pages to get them out of
1209                 * the way while we continue scanning for clean pages on the
1210                 * inactive list and refilling from the active list. The
1211                 * observation here is that waiting for disk writes is more
1212                 * expensive than potentially causing reloads down the line.
1213                 * Since they're marked for immediate reclaim, they won't put
1214                 * memory pressure on the cache working set any longer than it
1215                 * takes to write them to disk.
1216                 */
1217                if (PageWriteback(page)) {
1218                        /* Case 1 above */
1219                        if (current_is_kswapd() &&
1220                            PageReclaim(page) &&
1221                            test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1222                                nr_immediate++;
1223                                goto activate_locked;
1224
1225                        /* Case 2 above */
1226                        } else if (sane_reclaim(sc) ||
1227                            !PageReclaim(page) || !may_enter_fs) {
1228                                /*
1229                                 * This is slightly racy - end_page_writeback()
1230                                 * might have just cleared PageReclaim, then
1231                                 * setting PageReclaim here end up interpreted
1232                                 * as PageReadahead - but that does not matter
1233                                 * enough to care.  What we do want is for this
1234                                 * page to have PageReclaim set next time memcg
1235                                 * reclaim reaches the tests above, so it will
1236                                 * then wait_on_page_writeback() to avoid OOM;
1237                                 * and it's also appropriate in global reclaim.
1238                                 */
1239                                SetPageReclaim(page);
1240                                nr_writeback++;
1241                                goto activate_locked;
1242
1243                        /* Case 3 above */
1244                        } else {
1245                                unlock_page(page);
1246                                wait_on_page_writeback(page);
1247                                /* then go back and try same page again */
1248                                list_add_tail(&page->lru, page_list);
1249                                continue;
1250                        }
1251                }
1252
1253                if (!force_reclaim)
1254                        references = page_check_references(page, sc);
1255
1256                switch (references) {
1257                case PAGEREF_ACTIVATE:
1258                        goto activate_locked;
1259                case PAGEREF_KEEP:
1260                        nr_ref_keep++;
1261                        goto keep_locked;
1262                case PAGEREF_RECLAIM:
1263                case PAGEREF_RECLAIM_CLEAN:
1264                        ; /* try to reclaim the page below */
1265                }
1266
1267                /*
1268                 * Anonymous process memory has backing store?
1269                 * Try to allocate it some swap space here.
1270                 * Lazyfree page could be freed directly
1271                 */
1272                if (PageAnon(page) && PageSwapBacked(page)) {
1273                        if (!PageSwapCache(page)) {
1274                                if (!(sc->gfp_mask & __GFP_IO))
1275                                        goto keep_locked;
1276                                if (PageTransHuge(page)) {
1277                                        /* cannot split THP, skip it */
1278                                        if (!can_split_huge_page(page, NULL))
1279                                                goto activate_locked;
1280                                        /*
1281                                         * Split pages without a PMD map right
1282                                         * away. Chances are some or all of the
1283                                         * tail pages can be freed without IO.
1284                                         */
1285                                        if (!compound_mapcount(page) &&
1286                                            split_huge_page_to_list(page,
1287                                                                    page_list))
1288                                                goto activate_locked;
1289                                }
1290                                if (!add_to_swap(page)) {
1291                                        if (!PageTransHuge(page))
1292                                                goto activate_locked;
1293                                        /* Fallback to swap normal pages */
1294                                        if (split_huge_page_to_list(page,
1295                                                                    page_list))
1296                                                goto activate_locked;
1297#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1298                                        count_vm_event(THP_SWPOUT_FALLBACK);
1299#endif
1300                                        if (!add_to_swap(page))
1301                                                goto activate_locked;
1302                                }
1303
1304                                may_enter_fs = 1;
1305
1306                                /* Adding to swap updated mapping */
1307                                mapping = page_mapping(page);
1308                        }
1309                } else if (unlikely(PageTransHuge(page))) {
1310                        /* Split file THP */
1311                        if (split_huge_page_to_list(page, page_list))
1312                                goto keep_locked;
1313                }
1314
1315                /*
1316                 * The page is mapped into the page tables of one or more
1317                 * processes. Try to unmap it here.
1318                 */
1319                if (page_mapped(page)) {
1320                        enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1321
1322                        if (unlikely(PageTransHuge(page)))
1323                                flags |= TTU_SPLIT_HUGE_PMD;
1324                        if (!try_to_unmap(page, flags)) {
1325                                nr_unmap_fail++;
1326                                goto activate_locked;
1327                        }
1328                }
1329
1330                if (PageDirty(page)) {
1331                        /*
1332                         * Only kswapd can writeback filesystem pages
1333                         * to avoid risk of stack overflow. But avoid
1334                         * injecting inefficient single-page IO into
1335                         * flusher writeback as much as possible: only
1336                         * write pages when we've encountered many
1337                         * dirty pages, and when we've already scanned
1338                         * the rest of the LRU for clean pages and see
1339                         * the same dirty pages again (PageReclaim).
1340                         */
1341                        if (page_is_file_cache(page) &&
1342                            (!current_is_kswapd() || !PageReclaim(page) ||
1343                             !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1344                                /*
1345                                 * Immediately reclaim when written back.
1346                                 * Similar in principal to deactivate_page()
1347                                 * except we already have the page isolated
1348                                 * and know it's dirty
1349                                 */
1350                                inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1351                                SetPageReclaim(page);
1352
1353                                goto activate_locked;
1354                        }
1355
1356                        if (references == PAGEREF_RECLAIM_CLEAN)
1357                                goto keep_locked;
1358                        if (!may_enter_fs)
1359                                goto keep_locked;
1360                        if (!sc->may_writepage)
1361                                goto keep_locked;
1362
1363                        /*
1364                         * Page is dirty. Flush the TLB if a writable entry
1365                         * potentially exists to avoid CPU writes after IO
1366                         * starts and then write it out here.
1367                         */
1368                        try_to_unmap_flush_dirty();
1369                        switch (pageout(page, mapping, sc)) {
1370                        case PAGE_KEEP:
1371                                goto keep_locked;
1372                        case PAGE_ACTIVATE:
1373                                goto activate_locked;
1374                        case PAGE_SUCCESS:
1375                                if (PageWriteback(page))
1376                                        goto keep;
1377                                if (PageDirty(page))
1378                                        goto keep;
1379
1380                                /*
1381                                 * A synchronous write - probably a ramdisk.  Go
1382                                 * ahead and try to reclaim the page.
1383                                 */
1384                                if (!trylock_page(page))
1385                                        goto keep;
1386                                if (PageDirty(page) || PageWriteback(page))
1387                                        goto keep_locked;
1388                                mapping = page_mapping(page);
1389                        case PAGE_CLEAN:
1390                                ; /* try to free the page below */
1391                        }
1392                }
1393
1394                /*
1395                 * If the page has buffers, try to free the buffer mappings
1396                 * associated with this page. If we succeed we try to free
1397                 * the page as well.
1398                 *
1399                 * We do this even if the page is PageDirty().
1400                 * try_to_release_page() does not perform I/O, but it is
1401                 * possible for a page to have PageDirty set, but it is actually
1402                 * clean (all its buffers are clean).  This happens if the
1403                 * buffers were written out directly, with submit_bh(). ext3
1404                 * will do this, as well as the blockdev mapping.
1405                 * try_to_release_page() will discover that cleanness and will
1406                 * drop the buffers and mark the page clean - it can be freed.
1407                 *
1408                 * Rarely, pages can have buffers and no ->mapping.  These are
1409                 * the pages which were not successfully invalidated in
1410                 * truncate_complete_page().  We try to drop those buffers here
1411                 * and if that worked, and the page is no longer mapped into
1412                 * process address space (page_count == 1) it can be freed.
1413                 * Otherwise, leave the page on the LRU so it is swappable.
1414                 */
1415                if (page_has_private(page)) {
1416                        if (!try_to_release_page(page, sc->gfp_mask))
1417                                goto activate_locked;
1418                        if (!mapping && page_count(page) == 1) {
1419                                unlock_page(page);
1420                                if (put_page_testzero(page))
1421                                        goto free_it;
1422                                else {
1423                                        /*
1424                                         * rare race with speculative reference.
1425                                         * the speculative reference will free
1426                                         * this page shortly, so we may
1427                                         * increment nr_reclaimed here (and
1428                                         * leave it off the LRU).
1429                                         */
1430                                        nr_reclaimed++;
1431                                        continue;
1432                                }
1433                        }
1434                }
1435
1436                if (PageAnon(page) && !PageSwapBacked(page)) {
1437                        /* follow __remove_mapping for reference */
1438                        if (!page_ref_freeze(page, 1))
1439                                goto keep_locked;
1440                        if (PageDirty(page)) {
1441                                page_ref_unfreeze(page, 1);
1442                                goto keep_locked;
1443                        }
1444
1445                        count_vm_event(PGLAZYFREED);
1446                        count_memcg_page_event(page, PGLAZYFREED);
1447                } else if (!mapping || !__remove_mapping(mapping, page, true))
1448                        goto keep_locked;
1449                /*
1450                 * At this point, we have no other references and there is
1451                 * no way to pick any more up (removed from LRU, removed
1452                 * from pagecache). Can use non-atomic bitops now (and
1453                 * we obviously don't have to worry about waking up a process
1454                 * waiting on the page lock, because there are no references.
1455                 */
1456                __ClearPageLocked(page);
1457free_it:
1458                nr_reclaimed++;
1459
1460                /*
1461                 * Is there need to periodically free_page_list? It would
1462                 * appear not as the counts should be low
1463                 */
1464                if (unlikely(PageTransHuge(page))) {
1465                        mem_cgroup_uncharge(page);
1466                        (*get_compound_page_dtor(page))(page);
1467                } else
1468                        list_add(&page->lru, &free_pages);
1469                continue;
1470
1471activate_locked:
1472                /* Not a candidate for swapping, so reclaim swap space. */
1473                if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1474                                                PageMlocked(page)))
1475                        try_to_free_swap(page);
1476                VM_BUG_ON_PAGE(PageActive(page), page);
1477                if (!PageMlocked(page)) {
1478                        SetPageActive(page);
1479                        pgactivate++;
1480                        count_memcg_page_event(page, PGACTIVATE);
1481                }
1482keep_locked:
1483                unlock_page(page);
1484keep:
1485                list_add(&page->lru, &ret_pages);
1486                VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1487        }
1488
1489        mem_cgroup_uncharge_list(&free_pages);
1490        try_to_unmap_flush();
1491        free_unref_page_list(&free_pages);
1492
1493        list_splice(&ret_pages, page_list);
1494        count_vm_events(PGACTIVATE, pgactivate);
1495
1496        if (stat) {
1497                stat->nr_dirty = nr_dirty;
1498                stat->nr_congested = nr_congested;
1499                stat->nr_unqueued_dirty = nr_unqueued_dirty;
1500                stat->nr_writeback = nr_writeback;
1501                stat->nr_immediate = nr_immediate;
1502                stat->nr_activate = pgactivate;
1503                stat->nr_ref_keep = nr_ref_keep;
1504                stat->nr_unmap_fail = nr_unmap_fail;
1505        }
1506        return nr_reclaimed;
1507}
1508
1509unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1510                                            struct list_head *page_list)
1511{
1512        struct scan_control sc = {
1513                .gfp_mask = GFP_KERNEL,
1514                .priority = DEF_PRIORITY,
1515                .may_unmap = 1,
1516        };
1517        unsigned long ret;
1518        struct page *page, *next;
1519        LIST_HEAD(clean_pages);
1520
1521        list_for_each_entry_safe(page, next, page_list, lru) {
1522                if (page_is_file_cache(page) && !PageDirty(page) &&
1523                    !__PageMovable(page)) {
1524                        ClearPageActive(page);
1525                        list_move(&page->lru, &clean_pages);
1526                }
1527        }
1528
1529        ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1530                        TTU_IGNORE_ACCESS, NULL, true);
1531        list_splice(&clean_pages, page_list);
1532        mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1533        return ret;
1534}
1535
1536/*
1537 * Attempt to remove the specified page from its LRU.  Only take this page
1538 * if it is of the appropriate PageActive status.  Pages which are being
1539 * freed elsewhere are also ignored.
1540 *
1541 * page:        page to consider
1542 * mode:        one of the LRU isolation modes defined above
1543 *
1544 * returns 0 on success, -ve errno on failure.
1545 */
1546int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1547{
1548        int ret = -EINVAL;
1549
1550        /* Only take pages on the LRU. */
1551        if (!PageLRU(page))
1552                return ret;
1553
1554        /* Compaction should not handle unevictable pages but CMA can do so */
1555        if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1556                return ret;
1557
1558        ret = -EBUSY;
1559
1560        /*
1561         * To minimise LRU disruption, the caller can indicate that it only
1562         * wants to isolate pages it will be able to operate on without
1563         * blocking - clean pages for the most part.
1564         *
1565         * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1566         * that it is possible to migrate without blocking
1567         */
1568        if (mode & ISOLATE_ASYNC_MIGRATE) {
1569                /* All the caller can do on PageWriteback is block */
1570                if (PageWriteback(page))
1571                        return ret;
1572
1573                if (PageDirty(page)) {
1574                        struct address_space *mapping;
1575                        bool migrate_dirty;
1576
1577                        /*
1578                         * Only pages without mappings or that have a
1579                         * ->migratepage callback are possible to migrate
1580                         * without blocking. However, we can be racing with
1581                         * truncation so it's necessary to lock the page
1582                         * to stabilise the mapping as truncation holds
1583                         * the page lock until after the page is removed
1584                         * from the page cache.
1585                         */
1586                        if (!trylock_page(page))
1587                                return ret;
1588
1589                        mapping = page_mapping(page);
1590                        migrate_dirty = !mapping || mapping->a_ops->migratepage;
1591                        unlock_page(page);
1592                        if (!migrate_dirty)
1593                                return ret;
1594                }
1595        }
1596
1597        if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1598                return ret;
1599
1600        if (likely(get_page_unless_zero(page))) {
1601                /*
1602                 * Be careful not to clear PageLRU until after we're
1603                 * sure the page is not being freed elsewhere -- the
1604                 * page release code relies on it.
1605                 */
1606                ClearPageLRU(page);
1607                ret = 0;
1608        }
1609
1610        return ret;
1611}
1612
1613
1614/*
1615 * Update LRU sizes after isolating pages. The LRU size updates must
1616 * be complete before mem_cgroup_update_lru_size due to a santity check.
1617 */
1618static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1619                        enum lru_list lru, unsigned long *nr_zone_taken)
1620{
1621        int zid;
1622
1623        for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1624                if (!nr_zone_taken[zid])
1625                        continue;
1626
1627                __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1628#ifdef CONFIG_MEMCG
1629                mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1630#endif
1631        }
1632
1633}
1634
1635/*
1636 * zone_lru_lock is heavily contended.  Some of the functions that
1637 * shrink the lists perform better by taking out a batch of pages
1638 * and working on them outside the LRU lock.
1639 *
1640 * For pagecache intensive workloads, this function is the hottest
1641 * spot in the kernel (apart from copy_*_user functions).
1642 *
1643 * Appropriate locks must be held before calling this function.
1644 *
1645 * @nr_to_scan: The number of eligible pages to look through on the list.
1646 * @lruvec:     The LRU vector to pull pages from.
1647 * @dst:        The temp list to put pages on to.
1648 * @nr_scanned: The number of pages that were scanned.
1649 * @sc:         The scan_control struct for this reclaim session
1650 * @mode:       One of the LRU isolation modes
1651 * @lru:        LRU list id for isolating
1652 *
1653 * returns how many pages were moved onto *@dst.
1654 */
1655static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1656                struct lruvec *lruvec, struct list_head *dst,
1657                unsigned long *nr_scanned, struct scan_control *sc,
1658                isolate_mode_t mode, enum lru_list lru)
1659{
1660        struct list_head *src = &lruvec->lists[lru];
1661        unsigned long nr_taken = 0;
1662        unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1663        unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1664        unsigned long skipped = 0;
1665        unsigned long scan, total_scan, nr_pages;
1666        LIST_HEAD(pages_skipped);
1667
1668        scan = 0;
1669        for (total_scan = 0;
1670             scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1671             total_scan++) {
1672                struct page *page;
1673
1674                page = lru_to_page(src);
1675                prefetchw_prev_lru_page(page, src, flags);
1676
1677                VM_BUG_ON_PAGE(!PageLRU(page), page);
1678
1679                if (page_zonenum(page) > sc->reclaim_idx) {
1680                        list_move(&page->lru, &pages_skipped);
1681                        nr_skipped[page_zonenum(page)]++;
1682                        continue;
1683                }
1684
1685                /*
1686                 * Do not count skipped pages because that makes the function
1687                 * return with no isolated pages if the LRU mostly contains
1688                 * ineligible pages.  This causes the VM to not reclaim any
1689                 * pages, triggering a premature OOM.
1690                 */
1691                scan++;
1692                switch (__isolate_lru_page(page, mode)) {
1693                case 0:
1694                        nr_pages = hpage_nr_pages(page);
1695                        nr_taken += nr_pages;
1696                        nr_zone_taken[page_zonenum(page)] += nr_pages;
1697                        list_move(&page->lru, dst);
1698                        break;
1699
1700                case -EBUSY:
1701                        /* else it is being freed elsewhere */
1702                        list_move(&page->lru, src);
1703                        continue;
1704
1705                default:
1706                        BUG();
1707                }
1708        }
1709
1710        /*
1711         * Splice any skipped pages to the start of the LRU list. Note that
1712         * this disrupts the LRU order when reclaiming for lower zones but
1713         * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1714         * scanning would soon rescan the same pages to skip and put the
1715         * system at risk of premature OOM.
1716         */
1717        if (!list_empty(&pages_skipped)) {
1718                int zid;
1719
1720                list_splice(&pages_skipped, src);
1721                for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1722                        if (!nr_skipped[zid])
1723                                continue;
1724
1725                        __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1726                        skipped += nr_skipped[zid];
1727                }
1728        }
1729        *nr_scanned = total_scan;
1730        trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1731                                    total_scan, skipped, nr_taken, mode, lru);
1732        update_lru_sizes(lruvec, lru, nr_zone_taken);
1733        return nr_taken;
1734}
1735
1736/**
1737 * isolate_lru_page - tries to isolate a page from its LRU list
1738 * @page: page to isolate from its LRU list
1739 *
1740 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1741 * vmstat statistic corresponding to whatever LRU list the page was on.
1742 *
1743 * Returns 0 if the page was removed from an LRU list.
1744 * Returns -EBUSY if the page was not on an LRU list.
1745 *
1746 * The returned page will have PageLRU() cleared.  If it was found on
1747 * the active list, it will have PageActive set.  If it was found on
1748 * the unevictable list, it will have the PageUnevictable bit set. That flag
1749 * may need to be cleared by the caller before letting the page go.
1750 *
1751 * The vmstat statistic corresponding to the list on which the page was
1752 * found will be decremented.
1753 *
1754 * Restrictions:
1755 *
1756 * (1) Must be called with an elevated refcount on the page. This is a
1757 *     fundamentnal difference from isolate_lru_pages (which is called
1758 *     without a stable reference).
1759 * (2) the lru_lock must not be held.
1760 * (3) interrupts must be enabled.
1761 */
1762int isolate_lru_page(struct page *page)
1763{
1764        int ret = -EBUSY;
1765
1766        VM_BUG_ON_PAGE(!page_count(page), page);
1767        WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1768
1769        if (PageLRU(page)) {
1770                struct zone *zone = page_zone(page);
1771                struct lruvec *lruvec;
1772
1773                spin_lock_irq(zone_lru_lock(zone));
1774                lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1775                if (PageLRU(page)) {
1776                        int lru = page_lru(page);
1777                        get_page(page);
1778                        ClearPageLRU(page);
1779                        del_page_from_lru_list(page, lruvec, lru);
1780                        ret = 0;
1781                }
1782                spin_unlock_irq(zone_lru_lock(zone));
1783        }
1784        return ret;
1785}
1786
1787/*
1788 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1789 * then get resheduled. When there are massive number of tasks doing page
1790 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1791 * the LRU list will go small and be scanned faster than necessary, leading to
1792 * unnecessary swapping, thrashing and OOM.
1793 */
1794static int too_many_isolated(struct pglist_data *pgdat, int file,
1795                struct scan_control *sc)
1796{
1797        unsigned long inactive, isolated;
1798
1799        if (current_is_kswapd())
1800                return 0;
1801
1802        if (!sane_reclaim(sc))
1803                return 0;
1804
1805        if (file) {
1806                inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1807                isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1808        } else {
1809                inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1810                isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1811        }
1812
1813        /*
1814         * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1815         * won't get blocked by normal direct-reclaimers, forming a circular
1816         * deadlock.
1817         */
1818        if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1819                inactive >>= 3;
1820
1821        return isolated > inactive;
1822}
1823
1824static noinline_for_stack void
1825putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1826{
1827        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1828        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1829        LIST_HEAD(pages_to_free);
1830
1831        /*
1832         * Put back any unfreeable pages.
1833         */
1834        while (!list_empty(page_list)) {
1835                struct page *page = lru_to_page(page_list);
1836                int lru;
1837
1838                VM_BUG_ON_PAGE(PageLRU(page), page);
1839                list_del(&page->lru);
1840                if (unlikely(!page_evictable(page))) {
1841                        spin_unlock_irq(&pgdat->lru_lock);
1842                        putback_lru_page(page);
1843                        spin_lock_irq(&pgdat->lru_lock);
1844                        continue;
1845                }
1846
1847                lruvec = mem_cgroup_page_lruvec(page, pgdat);
1848
1849                SetPageLRU(page);
1850                lru = page_lru(page);
1851                add_page_to_lru_list(page, lruvec, lru);
1852
1853                if (is_active_lru(lru)) {
1854                        int file = is_file_lru(lru);
1855                        int numpages = hpage_nr_pages(page);
1856                        reclaim_stat->recent_rotated[file] += numpages;
1857                }
1858                if (put_page_testzero(page)) {
1859                        __ClearPageLRU(page);
1860                        __ClearPageActive(page);
1861                        del_page_from_lru_list(page, lruvec, lru);
1862
1863                        if (unlikely(PageCompound(page))) {
1864                                spin_unlock_irq(&pgdat->lru_lock);
1865                                mem_cgroup_uncharge(page);
1866                                (*get_compound_page_dtor(page))(page);
1867                                spin_lock_irq(&pgdat->lru_lock);
1868                        } else
1869                                list_add(&page->lru, &pages_to_free);
1870                }
1871        }
1872
1873        /*
1874         * To save our caller's stack, now use input list for pages to free.
1875         */
1876        list_splice(&pages_to_free, page_list);
1877}
1878
1879/*
1880 * If a kernel thread (such as nfsd for loop-back mounts) services
1881 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1882 * In that case we should only throttle if the backing device it is
1883 * writing to is congested.  In other cases it is safe to throttle.
1884 */
1885static int current_may_throttle(void)
1886{
1887        return !(current->flags & PF_LESS_THROTTLE) ||
1888                current->backing_dev_info == NULL ||
1889                bdi_write_congested(current->backing_dev_info);
1890}
1891
1892/*
1893 * shrink_inactive_list() is a helper for shrink_node().  It returns the number
1894 * of reclaimed pages
1895 */
1896static noinline_for_stack unsigned long
1897shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1898                     struct scan_control *sc, enum lru_list lru)
1899{
1900        LIST_HEAD(page_list);
1901        unsigned long nr_scanned;
1902        unsigned long nr_reclaimed = 0;
1903        unsigned long nr_taken;
1904        struct reclaim_stat stat = {};
1905        isolate_mode_t isolate_mode = 0;
1906        int file = is_file_lru(lru);
1907        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1908        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1909        bool stalled = false;
1910
1911        while (unlikely(too_many_isolated(pgdat, file, sc))) {
1912                if (stalled)
1913                        return 0;
1914
1915                /* wait a bit for the reclaimer. */
1916                msleep(100);
1917                stalled = true;
1918
1919                /* We are about to die and free our memory. Return now. */
1920                if (fatal_signal_pending(current))
1921                        return SWAP_CLUSTER_MAX;
1922        }
1923
1924        lru_add_drain();
1925
1926        if (!sc->may_unmap)
1927                isolate_mode |= ISOLATE_UNMAPPED;
1928
1929        spin_lock_irq(&pgdat->lru_lock);
1930
1931        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1932                                     &nr_scanned, sc, isolate_mode, lru);
1933
1934        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1935        reclaim_stat->recent_scanned[file] += nr_taken;
1936
1937        if (current_is_kswapd()) {
1938                if (global_reclaim(sc))
1939                        __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1940                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1941                                   nr_scanned);
1942        } else {
1943                if (global_reclaim(sc))
1944                        __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1945                count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1946                                   nr_scanned);
1947        }
1948        spin_unlock_irq(&pgdat->lru_lock);
1949
1950        if (nr_taken == 0)
1951                return 0;
1952
1953        nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1954                                &stat, false);
1955
1956        spin_lock_irq(&pgdat->lru_lock);
1957
1958        if (current_is_kswapd()) {
1959                if (global_reclaim(sc))
1960                        __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1961                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1962                                   nr_reclaimed);
1963        } else {
1964                if (global_reclaim(sc))
1965                        __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1966                count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1967                                   nr_reclaimed);
1968        }
1969
1970        putback_inactive_pages(lruvec, &page_list);
1971
1972        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1973
1974        spin_unlock_irq(&pgdat->lru_lock);
1975
1976        mem_cgroup_uncharge_list(&page_list);
1977        free_unref_page_list(&page_list);
1978
1979        /*
1980         * If dirty pages are scanned that are not queued for IO, it
1981         * implies that flushers are not doing their job. This can
1982         * happen when memory pressure pushes dirty pages to the end of
1983         * the LRU before the dirty limits are breached and the dirty
1984         * data has expired. It can also happen when the proportion of
1985         * dirty pages grows not through writes but through memory
1986         * pressure reclaiming all the clean cache. And in some cases,
1987         * the flushers simply cannot keep up with the allocation
1988         * rate. Nudge the flusher threads in case they are asleep.
1989         */
1990        if (stat.nr_unqueued_dirty == nr_taken)
1991                wakeup_flusher_threads(WB_REASON_VMSCAN);
1992
1993        sc->nr.dirty += stat.nr_dirty;
1994        sc->nr.congested += stat.nr_congested;
1995        sc->nr.unqueued_dirty += stat.nr_unqueued_dirty;
1996        sc->nr.writeback += stat.nr_writeback;
1997        sc->nr.immediate += stat.nr_immediate;
1998        sc->nr.taken += nr_taken;
1999        if (file)
2000                sc->nr.file_taken += nr_taken;
2001
2002        trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
2003                        nr_scanned, nr_reclaimed, &stat, sc->priority, file);
2004        return nr_reclaimed;
2005}
2006
2007/*
2008 * This moves pages from the active list to the inactive list.
2009 *
2010 * We move them the other way if the page is referenced by one or more
2011 * processes, from rmap.
2012 *
2013 * If the pages are mostly unmapped, the processing is fast and it is
2014 * appropriate to hold zone_lru_lock across the whole operation.  But if
2015 * the pages are mapped, the processing is slow (page_referenced()) so we
2016 * should drop zone_lru_lock around each page.  It's impossible to balance
2017 * this, so instead we remove the pages from the LRU while processing them.
2018 * It is safe to rely on PG_active against the non-LRU pages in here because
2019 * nobody will play with that bit on a non-LRU page.
2020 *
2021 * The downside is that we have to touch page->_refcount against each page.
2022 * But we had to alter page->flags anyway.
2023 *
2024 * Returns the number of pages moved to the given lru.
2025 */
2026
2027static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
2028                                     struct list_head *list,
2029                                     struct list_head *pages_to_free,
2030                                     enum lru_list lru)
2031{
2032        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2033        struct page *page;
2034        int nr_pages;
2035        int nr_moved = 0;
2036
2037        while (!list_empty(list)) {
2038                page = lru_to_page(list);
2039                lruvec = mem_cgroup_page_lruvec(page, pgdat);
2040
2041                VM_BUG_ON_PAGE(PageLRU(page), page);
2042                SetPageLRU(page);
2043
2044                nr_pages = hpage_nr_pages(page);
2045                update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2046                list_move(&page->lru, &lruvec->lists[lru]);
2047
2048                if (put_page_testzero(page)) {
2049                        __ClearPageLRU(page);
2050                        __ClearPageActive(page);
2051                        del_page_from_lru_list(page, lruvec, lru);
2052
2053                        if (unlikely(PageCompound(page))) {
2054                                spin_unlock_irq(&pgdat->lru_lock);
2055                                mem_cgroup_uncharge(page);
2056                                (*get_compound_page_dtor(page))(page);
2057                                spin_lock_irq(&pgdat->lru_lock);
2058                        } else
2059                                list_add(&page->lru, pages_to_free);
2060                } else {
2061                        nr_moved += nr_pages;
2062                }
2063        }
2064
2065        if (!is_active_lru(lru)) {
2066                __count_vm_events(PGDEACTIVATE, nr_moved);
2067                count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2068                                   nr_moved);
2069        }
2070
2071        return nr_moved;
2072}
2073
2074static void shrink_active_list(unsigned long nr_to_scan,
2075                               struct lruvec *lruvec,
2076                               struct scan_control *sc,
2077                               enum lru_list lru)
2078{
2079        unsigned long nr_taken;
2080        unsigned long nr_scanned;
2081        unsigned long vm_flags;
2082        LIST_HEAD(l_hold);      /* The pages which were snipped off */
2083        LIST_HEAD(l_active);
2084        LIST_HEAD(l_inactive);
2085        struct page *page;
2086        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2087        unsigned nr_deactivate, nr_activate;
2088        unsigned nr_rotated = 0;
2089        isolate_mode_t isolate_mode = 0;
2090        int file = is_file_lru(lru);
2091        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2092
2093        lru_add_drain();
2094
2095        if (!sc->may_unmap)
2096                isolate_mode |= ISOLATE_UNMAPPED;
2097
2098        spin_lock_irq(&pgdat->lru_lock);
2099
2100        nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2101                                     &nr_scanned, sc, isolate_mode, lru);
2102
2103        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2104        reclaim_stat->recent_scanned[file] += nr_taken;
2105
2106        __count_vm_events(PGREFILL, nr_scanned);
2107        count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2108
2109        spin_unlock_irq(&pgdat->lru_lock);
2110
2111        while (!list_empty(&l_hold)) {
2112                cond_resched();
2113                page = lru_to_page(&l_hold);
2114                list_del(&page->lru);
2115
2116                if (unlikely(!page_evictable(page))) {
2117                        putback_lru_page(page);
2118                        continue;
2119                }
2120
2121                if (unlikely(buffer_heads_over_limit)) {
2122                        if (page_has_private(page) && trylock_page(page)) {
2123                                if (page_has_private(page))
2124                                        try_to_release_page(page, 0);
2125                                unlock_page(page);
2126                        }
2127                }
2128
2129                if (page_referenced(page, 0, sc->target_mem_cgroup,
2130                                    &vm_flags)) {
2131                        nr_rotated += hpage_nr_pages(page);
2132                        /*
2133                         * Identify referenced, file-backed active pages and
2134                         * give them one more trip around the active list. So
2135                         * that executable code get better chances to stay in
2136                         * memory under moderate memory pressure.  Anon pages
2137                         * are not likely to be evicted by use-once streaming
2138                         * IO, plus JVM can create lots of anon VM_EXEC pages,
2139                         * so we ignore them here.
2140                         */
2141                        if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2142                                list_add(&page->lru, &l_active);
2143                                continue;
2144                        }
2145                }
2146
2147                ClearPageActive(page);  /* we are de-activating */
2148                list_add(&page->lru, &l_inactive);
2149        }
2150
2151        /*
2152         * Move pages back to the lru list.
2153         */
2154        spin_lock_irq(&pgdat->lru_lock);
2155        /*
2156         * Count referenced pages from currently used mappings as rotated,
2157         * even though only some of them are actually re-activated.  This
2158         * helps balance scan pressure between file and anonymous pages in
2159         * get_scan_count.
2160         */
2161        reclaim_stat->recent_rotated[file] += nr_rotated;
2162
2163        nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2164        nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2165        __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2166        spin_unlock_irq(&pgdat->lru_lock);
2167
2168        mem_cgroup_uncharge_list(&l_hold);
2169        free_unref_page_list(&l_hold);
2170        trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2171                        nr_deactivate, nr_rotated, sc->priority, file);
2172}
2173
2174/*
2175 * The inactive anon list should be small enough that the VM never has
2176 * to do too much work.
2177 *
2178 * The inactive file list should be small enough to leave most memory
2179 * to the established workingset on the scan-resistant active list,
2180 * but large enough to avoid thrashing the aggregate readahead window.
2181 *
2182 * Both inactive lists should also be large enough that each inactive
2183 * page has a chance to be referenced again before it is reclaimed.
2184 *
2185 * If that fails and refaulting is observed, the inactive list grows.
2186 *
2187 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2188 * on this LRU, maintained by the pageout code. An inactive_ratio
2189 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2190 *
2191 * total     target    max
2192 * memory    ratio     inactive
2193 * -------------------------------------
2194 *   10MB       1         5MB
2195 *  100MB       1        50MB
2196 *    1GB       3       250MB
2197 *   10GB      10       0.9GB
2198 *  100GB      31         3GB
2199 *    1TB     101        10GB
2200 *   10TB     320        32GB
2201 */
2202static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2203                                 struct mem_cgroup *memcg,
2204                                 struct scan_control *sc, bool actual_reclaim)
2205{
2206        enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2207        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2208        enum lru_list inactive_lru = file * LRU_FILE;
2209        unsigned long inactive, active;
2210        unsigned long inactive_ratio;
2211        unsigned long refaults;
2212        unsigned long gb;
2213
2214        /*
2215         * If we don't have swap space, anonymous page deactivation
2216         * is pointless.
2217         */
2218        if (!file && !total_swap_pages)
2219                return false;
2220
2221        inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2222        active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2223
2224        if (memcg)
2225                refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2226        else
2227                refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2228
2229        /*
2230         * When refaults are being observed, it means a new workingset
2231         * is being established. Disable active list protection to get
2232         * rid of the stale workingset quickly.
2233         */
2234        if (file && actual_reclaim && lruvec->refaults != refaults) {
2235                inactive_ratio = 0;
2236        } else {
2237                gb = (inactive + active) >> (30 - PAGE_SHIFT);
2238                if (gb)
2239                        inactive_ratio = int_sqrt(10 * gb);
2240                else
2241                        inactive_ratio = 1;
2242        }
2243
2244        if (actual_reclaim)
2245                trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2246                        lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2247                        lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2248                        inactive_ratio, file);
2249
2250        return inactive * inactive_ratio < active;
2251}
2252
2253static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2254                                 struct lruvec *lruvec, struct mem_cgroup *memcg,
2255                                 struct scan_control *sc)
2256{
2257        if (is_active_lru(lru)) {
2258                if (inactive_list_is_low(lruvec, is_file_lru(lru),
2259                                         memcg, sc, true))
2260                        shrink_active_list(nr_to_scan, lruvec, sc, lru);
2261                return 0;
2262        }
2263
2264        return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2265}
2266
2267enum scan_balance {
2268        SCAN_EQUAL,
2269        SCAN_FRACT,
2270        SCAN_ANON,
2271        SCAN_FILE,
2272};
2273
2274/*
2275 * Determine how aggressively the anon and file LRU lists should be
2276 * scanned.  The relative value of each set of LRU lists is determined
2277 * by looking at the fraction of the pages scanned we did rotate back
2278 * onto the active list instead of evict.
2279 *
2280 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2281 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2282 */
2283static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2284                           struct scan_control *sc, unsigned long *nr,
2285                           unsigned long *lru_pages)
2286{
2287        int swappiness = mem_cgroup_swappiness(memcg);
2288        struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2289        u64 fraction[2];
2290        u64 denominator = 0;    /* gcc */
2291        struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2292        unsigned long anon_prio, file_prio;
2293        enum scan_balance scan_balance;
2294        unsigned long anon, file;
2295        unsigned long ap, fp;
2296        enum lru_list lru;
2297
2298        /* If we have no swap space, do not bother scanning anon pages. */
2299        if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2300                scan_balance = SCAN_FILE;
2301                goto out;
2302        }
2303
2304        /*
2305         * Global reclaim will swap to prevent OOM even with no
2306         * swappiness, but memcg users want to use this knob to
2307         * disable swapping for individual groups completely when
2308         * using the memory controller's swap limit feature would be
2309         * too expensive.
2310         */
2311        if (!global_reclaim(sc) && !swappiness) {
2312                scan_balance = SCAN_FILE;
2313                goto out;
2314        }
2315
2316        /*
2317         * Do not apply any pressure balancing cleverness when the
2318         * system is close to OOM, scan both anon and file equally
2319         * (unless the swappiness setting disagrees with swapping).
2320         */
2321        if (!sc->priority && swappiness) {
2322                scan_balance = SCAN_EQUAL;
2323                goto out;
2324        }
2325
2326        /*
2327         * Prevent the reclaimer from falling into the cache trap: as
2328         * cache pages start out inactive, every cache fault will tip
2329         * the scan balance towards the file LRU.  And as the file LRU
2330         * shrinks, so does the window for rotation from references.
2331         * This means we have a runaway feedback loop where a tiny
2332         * thrashing file LRU becomes infinitely more attractive than
2333         * anon pages.  Try to detect this based on file LRU size.
2334         */
2335        if (global_reclaim(sc)) {
2336                unsigned long pgdatfile;
2337                unsigned long pgdatfree;
2338                int z;
2339                unsigned long total_high_wmark = 0;
2340
2341                pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2342                pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2343                           node_page_state(pgdat, NR_INACTIVE_FILE);
2344
2345                for (z = 0; z < MAX_NR_ZONES; z++) {
2346                        struct zone *zone = &pgdat->node_zones[z];
2347                        if (!managed_zone(zone))
2348                                continue;
2349
2350                        total_high_wmark += high_wmark_pages(zone);
2351                }
2352
2353                if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2354                        /*
2355                         * Force SCAN_ANON if there are enough inactive
2356                         * anonymous pages on the LRU in eligible zones.
2357                         * Otherwise, the small LRU gets thrashed.
2358                         */
2359                        if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2360                            lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2361                                        >> sc->priority) {
2362                                scan_balance = SCAN_ANON;
2363                                goto out;
2364                        }
2365                }
2366        }
2367
2368        /*
2369         * If there is enough inactive page cache, i.e. if the size of the
2370         * inactive list is greater than that of the active list *and* the
2371         * inactive list actually has some pages to scan on this priority, we
2372         * do not reclaim anything from the anonymous working set right now.
2373         * Without the second condition we could end up never scanning an
2374         * lruvec even if it has plenty of old anonymous pages unless the
2375         * system is under heavy pressure.
2376         */
2377        if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2378            lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2379                scan_balance = SCAN_FILE;
2380                goto out;
2381        }
2382
2383        scan_balance = SCAN_FRACT;
2384
2385        /*
2386         * With swappiness at 100, anonymous and file have the same priority.
2387         * This scanning priority is essentially the inverse of IO cost.
2388         */
2389        anon_prio = swappiness;
2390        file_prio = 200 - anon_prio;
2391
2392        /*
2393         * OK, so we have swap space and a fair amount of page cache
2394         * pages.  We use the recently rotated / recently scanned
2395         * ratios to determine how valuable each cache is.
2396         *
2397         * Because workloads change over time (and to avoid overflow)
2398         * we keep these statistics as a floating average, which ends
2399         * up weighing recent references more than old ones.
2400         *
2401         * anon in [0], file in [1]
2402         */
2403
2404        anon  = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2405                lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2406        file  = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2407                lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2408
2409        spin_lock_irq(&pgdat->lru_lock);
2410        if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2411                reclaim_stat->recent_scanned[0] /= 2;
2412                reclaim_stat->recent_rotated[0] /= 2;
2413        }
2414
2415        if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2416                reclaim_stat->recent_scanned[1] /= 2;
2417                reclaim_stat->recent_rotated[1] /= 2;
2418        }
2419
2420        /*
2421         * The amount of pressure on anon vs file pages is inversely
2422         * proportional to the fraction of recently scanned pages on
2423         * each list that were recently referenced and in active use.
2424         */
2425        ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2426        ap /= reclaim_stat->recent_rotated[0] + 1;
2427
2428        fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2429        fp /= reclaim_stat->recent_rotated[1] + 1;
2430        spin_unlock_irq(&pgdat->lru_lock);
2431
2432        fraction[0] = ap;
2433        fraction[1] = fp;
2434        denominator = ap + fp + 1;
2435out:
2436        *lru_pages = 0;
2437        for_each_evictable_lru(lru) {
2438                int file = is_file_lru(lru);
2439                unsigned long size;
2440                unsigned long scan;
2441
2442                size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2443                scan = size >> sc->priority;
2444                /*
2445                 * If the cgroup's already been deleted, make sure to
2446                 * scrape out the remaining cache.
2447                 */
2448                if (!scan && !mem_cgroup_online(memcg))
2449                        scan = min(size, SWAP_CLUSTER_MAX);
2450
2451                switch (scan_balance) {
2452                case SCAN_EQUAL:
2453                        /* Scan lists relative to size */
2454                        break;
2455                case SCAN_FRACT:
2456                        /*
2457                         * Scan types proportional to swappiness and
2458                         * their relative recent reclaim efficiency.
2459                         */
2460                        scan = div64_u64(scan * fraction[file],
2461                                         denominator);
2462                        break;
2463                case SCAN_FILE:
2464                case SCAN_ANON:
2465                        /* Scan one type exclusively */
2466                        if ((scan_balance == SCAN_FILE) != file) {
2467                                size = 0;
2468                                scan = 0;
2469                        }
2470                        break;
2471                default:
2472                        /* Look ma, no brain */
2473                        BUG();
2474                }
2475
2476                *lru_pages += size;
2477                nr[lru] = scan;
2478        }
2479}
2480
2481/*
2482 * This is a basic per-node page freer.  Used by both kswapd and direct reclaim.
2483 */
2484static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2485                              struct scan_control *sc, unsigned long *lru_pages)
2486{
2487        struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2488        unsigned long nr[NR_LRU_LISTS];
2489        unsigned long targets[NR_LRU_LISTS];
2490        unsigned long nr_to_scan;
2491        enum lru_list lru;
2492        unsigned long nr_reclaimed = 0;
2493        unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2494        struct blk_plug plug;
2495        bool scan_adjusted;
2496
2497        get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2498
2499        /* Record the original scan target for proportional adjustments later */
2500        memcpy(targets, nr, sizeof(nr));
2501
2502        /*
2503         * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2504         * event that can occur when there is little memory pressure e.g.
2505         * multiple streaming readers/writers. Hence, we do not abort scanning
2506         * when the requested number of pages are reclaimed when scanning at
2507         * DEF_PRIORITY on the assumption that the fact we are direct
2508         * reclaiming implies that kswapd is not keeping up and it is best to
2509         * do a batch of work at once. For memcg reclaim one check is made to
2510         * abort proportional reclaim if either the file or anon lru has already
2511         * dropped to zero at the first pass.
2512         */
2513        scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2514                         sc->priority == DEF_PRIORITY);
2515
2516        blk_start_plug(&plug);
2517        while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2518                                        nr[LRU_INACTIVE_FILE]) {
2519                unsigned long nr_anon, nr_file, percentage;
2520                unsigned long nr_scanned;
2521
2522                for_each_evictable_lru(lru) {
2523                        if (nr[lru]) {
2524                                nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2525                                nr[lru] -= nr_to_scan;
2526
2527                                nr_reclaimed += shrink_list(lru, nr_to_scan,
2528                                                            lruvec, memcg, sc);
2529                        }
2530                }
2531
2532                cond_resched();
2533
2534                if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2535                        continue;
2536
2537                /*
2538                 * For kswapd and memcg, reclaim at least the number of pages
2539                 * requested. Ensure that the anon and file LRUs are scanned
2540                 * proportionally what was requested by get_scan_count(). We
2541                 * stop reclaiming one LRU and reduce the amount scanning
2542                 * proportional to the original scan target.
2543                 */
2544                nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2545                nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2546
2547                /*
2548                 * It's just vindictive to attack the larger once the smaller
2549                 * has gone to zero.  And given the way we stop scanning the
2550                 * smaller below, this makes sure that we only make one nudge
2551                 * towards proportionality once we've got nr_to_reclaim.
2552                 */
2553                if (!nr_file || !nr_anon)
2554                        break;
2555
2556                if (nr_file > nr_anon) {
2557                        unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2558                                                targets[LRU_ACTIVE_ANON] + 1;
2559                        lru = LRU_BASE;
2560                        percentage = nr_anon * 100 / scan_target;
2561                } else {
2562                        unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2563                                                targets[LRU_ACTIVE_FILE] + 1;
2564                        lru = LRU_FILE;
2565                        percentage = nr_file * 100 / scan_target;
2566                }
2567
2568                /* Stop scanning the smaller of the LRU */
2569                nr[lru] = 0;
2570                nr[lru + LRU_ACTIVE] = 0;
2571
2572                /*
2573                 * Recalculate the other LRU scan count based on its original
2574                 * scan target and the percentage scanning already complete
2575                 */
2576                lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2577                nr_scanned = targets[lru] - nr[lru];
2578                nr[lru] = targets[lru] * (100 - percentage) / 100;
2579                nr[lru] -= min(nr[lru], nr_scanned);
2580
2581                lru += LRU_ACTIVE;
2582                nr_scanned = targets[lru] - nr[lru];
2583                nr[lru] = targets[lru] * (100 - percentage) / 100;
2584                nr[lru] -= min(nr[lru], nr_scanned);
2585
2586                scan_adjusted = true;
2587        }
2588        blk_finish_plug(&plug);
2589        sc->nr_reclaimed += nr_reclaimed;
2590
2591        /*
2592         * Even if we did not try to evict anon pages at all, we want to
2593         * rebalance the anon lru active/inactive ratio.
2594         */
2595        if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2596                shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2597                                   sc, LRU_ACTIVE_ANON);
2598}
2599
2600/* Use reclaim/compaction for costly allocs or under memory pressure */
2601static bool in_reclaim_compaction(struct scan_control *sc)
2602{
2603        if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2604                        (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2605                         sc->priority < DEF_PRIORITY - 2))
2606                return true;
2607
2608        return false;
2609}
2610
2611/*
2612 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2613 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2614 * true if more pages should be reclaimed such that when the page allocator
2615 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2616 * It will give up earlier than that if there is difficulty reclaiming pages.
2617 */
2618static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2619                                        unsigned long nr_reclaimed,
2620                                        unsigned long nr_scanned,
2621                                        struct scan_control *sc)
2622{
2623        unsigned long pages_for_compaction;
2624        unsigned long inactive_lru_pages;
2625        int z;
2626
2627        /* If not in reclaim/compaction mode, stop */
2628        if (!in_reclaim_compaction(sc))
2629                return false;
2630
2631        /* Consider stopping depending on scan and reclaim activity */
2632        if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2633                /*
2634                 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2635                 * full LRU list has been scanned and we are still failing
2636                 * to reclaim pages. This full LRU scan is potentially
2637                 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2638                 */
2639                if (!nr_reclaimed && !nr_scanned)
2640                        return false;
2641        } else {
2642                /*
2643                 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2644                 * fail without consequence, stop if we failed to reclaim
2645                 * any pages from the last SWAP_CLUSTER_MAX number of
2646                 * pages that were scanned. This will return to the
2647                 * caller faster at the risk reclaim/compaction and
2648                 * the resulting allocation attempt fails
2649                 */
2650                if (!nr_reclaimed)
2651                        return false;
2652        }
2653
2654        /*
2655         * If we have not reclaimed enough pages for compaction and the
2656         * inactive lists are large enough, continue reclaiming
2657         */
2658        pages_for_compaction = compact_gap(sc->order);
2659        inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2660        if (get_nr_swap_pages() > 0)
2661                inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2662        if (sc->nr_reclaimed < pages_for_compaction &&
2663                        inactive_lru_pages > pages_for_compaction)
2664                return true;
2665
2666        /* If compaction would go ahead or the allocation would succeed, stop */
2667        for (z = 0; z <= sc->reclaim_idx; z++) {
2668                struct zone *zone = &pgdat->node_zones[z];
2669                if (!managed_zone(zone))
2670                        continue;
2671
2672                switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2673                case COMPACT_SUCCESS:
2674                case COMPACT_CONTINUE:
2675                        return false;
2676                default:
2677                        /* check next zone */
2678                        ;
2679                }
2680        }
2681        return true;
2682}
2683
2684static bool pgdat_memcg_congested(pg_data_t *pgdat, struct mem_cgroup *memcg)
2685{
2686        return test_bit(PGDAT_CONGESTED, &pgdat->flags) ||
2687                (memcg && memcg_congested(pgdat, memcg));
2688}
2689
2690static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2691{
2692        struct reclaim_state *reclaim_state = current->reclaim_state;
2693        unsigned long nr_reclaimed, nr_scanned;
2694        bool reclaimable = false;
2695
2696        do {
2697                struct mem_cgroup *root = sc->target_mem_cgroup;
2698                struct mem_cgroup_reclaim_cookie reclaim = {
2699                        .pgdat = pgdat,
2700                        .priority = sc->priority,
2701                };
2702                unsigned long node_lru_pages = 0;
2703                struct mem_cgroup *memcg;
2704
2705                memset(&sc->nr, 0, sizeof(sc->nr));
2706
2707                nr_reclaimed = sc->nr_reclaimed;
2708                nr_scanned = sc->nr_scanned;
2709
2710                memcg = mem_cgroup_iter(root, NULL, &reclaim);
2711                do {
2712                        unsigned long lru_pages;
2713                        unsigned long reclaimed;
2714                        unsigned long scanned;
2715
2716                        switch (mem_cgroup_protected(root, memcg)) {
2717                        case MEMCG_PROT_MIN:
2718                                /*
2719                                 * Hard protection.
2720                                 * If there is no reclaimable memory, OOM.
2721                                 */
2722                                continue;
2723                        case MEMCG_PROT_LOW:
2724                                /*
2725                                 * Soft protection.
2726                                 * Respect the protection only as long as
2727                                 * there is an unprotected supply
2728                                 * of reclaimable memory from other cgroups.
2729                                 */
2730                                if (!sc->memcg_low_reclaim) {
2731                                        sc->memcg_low_skipped = 1;
2732                                        continue;
2733                                }
2734                                memcg_memory_event(memcg, MEMCG_LOW);
2735                                break;
2736                        case MEMCG_PROT_NONE:
2737                                break;
2738                        }
2739
2740                        reclaimed = sc->nr_reclaimed;
2741                        scanned = sc->nr_scanned;
2742                        shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2743                        node_lru_pages += lru_pages;
2744
2745                        shrink_slab(sc->gfp_mask, pgdat->node_id,
2746                                    memcg, sc->priority);
2747
2748                        /* Record the group's reclaim efficiency */
2749                        vmpressure(sc->gfp_mask, memcg, false,
2750                                   sc->nr_scanned - scanned,
2751                                   sc->nr_reclaimed - reclaimed);
2752
2753                        /*
2754                         * Direct reclaim and kswapd have to scan all memory
2755                         * cgroups to fulfill the overall scan target for the
2756                         * node.
2757                         *
2758                         * Limit reclaim, on the other hand, only cares about
2759                         * nr_to_reclaim pages to be reclaimed and it will
2760                         * retry with decreasing priority if one round over the
2761                         * whole hierarchy is not sufficient.
2762                         */
2763                        if (!global_reclaim(sc) &&
2764                                        sc->nr_reclaimed >= sc->nr_to_reclaim) {
2765                                mem_cgroup_iter_break(root, memcg);
2766                                break;
2767                        }
2768                } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2769
2770                if (reclaim_state) {
2771                        sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2772                        reclaim_state->reclaimed_slab = 0;
2773                }
2774
2775                /* Record the subtree's reclaim efficiency */
2776                vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2777                           sc->nr_scanned - nr_scanned,
2778                           sc->nr_reclaimed - nr_reclaimed);
2779
2780                if (sc->nr_reclaimed - nr_reclaimed)
2781                        reclaimable = true;
2782
2783                if (current_is_kswapd()) {
2784                        /*
2785                         * If reclaim is isolating dirty pages under writeback,
2786                         * it implies that the long-lived page allocation rate
2787                         * is exceeding the page laundering rate. Either the
2788                         * global limits are not being effective at throttling
2789                         * processes due to the page distribution throughout
2790                         * zones or there is heavy usage of a slow backing
2791                         * device. The only option is to throttle from reclaim
2792                         * context which is not ideal as there is no guarantee
2793                         * the dirtying process is throttled in the same way
2794                         * balance_dirty_pages() manages.
2795                         *
2796                         * Once a node is flagged PGDAT_WRITEBACK, kswapd will
2797                         * count the number of pages under pages flagged for
2798                         * immediate reclaim and stall if any are encountered
2799                         * in the nr_immediate check below.
2800                         */
2801                        if (sc->nr.writeback && sc->nr.writeback == sc->nr.taken)
2802                                set_bit(PGDAT_WRITEBACK, &pgdat->flags);
2803
2804                        /*
2805                         * Tag a node as congested if all the dirty pages
2806                         * scanned were backed by a congested BDI and
2807                         * wait_iff_congested will stall.
2808                         */
2809                        if (sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2810                                set_bit(PGDAT_CONGESTED, &pgdat->flags);
2811
2812                        /* Allow kswapd to start writing pages during reclaim.*/
2813                        if (sc->nr.unqueued_dirty == sc->nr.file_taken)
2814                                set_bit(PGDAT_DIRTY, &pgdat->flags);
2815
2816                        /*
2817                         * If kswapd scans pages marked marked for immediate
2818                         * reclaim and under writeback (nr_immediate), it
2819                         * implies that pages are cycling through the LRU
2820                         * faster than they are written so also forcibly stall.
2821                         */
2822                        if (sc->nr.immediate)
2823                                congestion_wait(BLK_RW_ASYNC, HZ/10);
2824                }
2825
2826                /*
2827                 * Legacy memcg will stall in page writeback so avoid forcibly
2828                 * stalling in wait_iff_congested().
2829                 */
2830                if (!global_reclaim(sc) && sane_reclaim(sc) &&
2831                    sc->nr.dirty && sc->nr.dirty == sc->nr.congested)
2832                        set_memcg_congestion(pgdat, root, true);
2833
2834                /*
2835                 * Stall direct reclaim for IO completions if underlying BDIs
2836                 * and node is congested. Allow kswapd to continue until it
2837                 * starts encountering unqueued dirty pages or cycling through
2838                 * the LRU too quickly.
2839                 */
2840                if (!sc->hibernation_mode && !current_is_kswapd() &&
2841                   current_may_throttle() && pgdat_memcg_congested(pgdat, root))
2842                        wait_iff_congested(BLK_RW_ASYNC, HZ/10);
2843
2844        } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2845                                         sc->nr_scanned - nr_scanned, sc));
2846
2847        /*
2848         * Kswapd gives up on balancing particular nodes after too
2849         * many failures to reclaim anything from them and goes to
2850         * sleep. On reclaim progress, reset the failure counter. A
2851         * successful direct reclaim run will revive a dormant kswapd.
2852         */
2853        if (reclaimable)
2854                pgdat->kswapd_failures = 0;
2855
2856        return reclaimable;
2857}
2858
2859/*
2860 * Returns true if compaction should go ahead for a costly-order request, or
2861 * the allocation would already succeed without compaction. Return false if we
2862 * should reclaim first.
2863 */
2864static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2865{
2866        unsigned long watermark;
2867        enum compact_result suitable;
2868
2869        suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2870        if (suitable == COMPACT_SUCCESS)
2871                /* Allocation should succeed already. Don't reclaim. */
2872                return true;
2873        if (suitable == COMPACT_SKIPPED)
2874                /* Compaction cannot yet proceed. Do reclaim. */
2875                return false;
2876
2877        /*
2878         * Compaction is already possible, but it takes time to run and there
2879         * are potentially other callers using the pages just freed. So proceed
2880         * with reclaim to make a buffer of free pages available to give
2881         * compaction a reasonable chance of completing and allocating the page.
2882         * Note that we won't actually reclaim the whole buffer in one attempt
2883         * as the target watermark in should_continue_reclaim() is lower. But if
2884         * we are already above the high+gap watermark, don't reclaim at all.
2885         */
2886        watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2887
2888        return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2889}
2890
2891/*
2892 * This is the direct reclaim path, for page-allocating processes.  We only
2893 * try to reclaim pages from zones which will satisfy the caller's allocation
2894 * request.
2895 *
2896 * If a zone is deemed to be full of pinned pages then just give it a light
2897 * scan then give up on it.
2898 */
2899static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2900{
2901        struct zoneref *z;
2902        struct zone *zone;
2903        unsigned long nr_soft_reclaimed;
2904        unsigned long nr_soft_scanned;
2905        gfp_t orig_mask;
2906        pg_data_t *last_pgdat = NULL;
2907
2908        /*
2909         * If the number of buffer_heads in the machine exceeds the maximum
2910         * allowed level, force direct reclaim to scan the highmem zone as
2911         * highmem pages could be pinning lowmem pages storing buffer_heads
2912         */
2913        orig_mask = sc->gfp_mask;
2914        if (buffer_heads_over_limit) {
2915                sc->gfp_mask |= __GFP_HIGHMEM;
2916                sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2917        }
2918
2919        for_each_zone_zonelist_nodemask(zone, z, zonelist,
2920                                        sc->reclaim_idx, sc->nodemask) {
2921                /*
2922                 * Take care memory controller reclaiming has small influence
2923                 * to global LRU.
2924                 */
2925                if (global_reclaim(sc)) {
2926                        if (!cpuset_zone_allowed(zone,
2927                                                 GFP_KERNEL | __GFP_HARDWALL))
2928                                continue;
2929
2930                        /*
2931                         * If we already have plenty of memory free for
2932                         * compaction in this zone, don't free any more.
2933                         * Even though compaction is invoked for any
2934                         * non-zero order, only frequent costly order
2935                         * reclamation is disruptive enough to become a
2936                         * noticeable problem, like transparent huge
2937                         * page allocations.
2938                         */
2939                        if (IS_ENABLED(CONFIG_COMPACTION) &&
2940                            sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2941                            compaction_ready(zone, sc)) {
2942                                sc->compaction_ready = true;
2943                                continue;
2944                        }
2945
2946                        /*
2947                         * Shrink each node in the zonelist once. If the
2948                         * zonelist is ordered by zone (not the default) then a
2949                         * node may be shrunk multiple times but in that case
2950                         * the user prefers lower zones being preserved.
2951                         */
2952                        if (zone->zone_pgdat == last_pgdat)
2953                                continue;
2954
2955                        /*
2956                         * This steals pages from memory cgroups over softlimit
2957                         * and returns the number of reclaimed pages and
2958                         * scanned pages. This works for global memory pressure
2959                         * and balancing, not for a memcg's limit.
2960                         */
2961                        nr_soft_scanned = 0;
2962                        nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2963                                                sc->order, sc->gfp_mask,
2964                                                &nr_soft_scanned);
2965                        sc->nr_reclaimed += nr_soft_reclaimed;
2966                        sc->nr_scanned += nr_soft_scanned;
2967                        /* need some check for avoid more shrink_zone() */
2968                }
2969
2970                /* See comment about same check for global reclaim above */
2971                if (zone->zone_pgdat == last_pgdat)
2972                        continue;
2973                last_pgdat = zone->zone_pgdat;
2974                shrink_node(zone->zone_pgdat, sc);
2975        }
2976
2977        /*
2978         * Restore to original mask to avoid the impact on the caller if we
2979         * promoted it to __GFP_HIGHMEM.
2980         */
2981        sc->gfp_mask = orig_mask;
2982}
2983
2984static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2985{
2986        struct mem_cgroup *memcg;
2987
2988        memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2989        do {
2990                unsigned long refaults;
2991                struct lruvec *lruvec;
2992
2993                if (memcg)
2994                        refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2995                else
2996                        refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2997
2998                lruvec = mem_cgroup_lruvec(pgdat, memcg);
2999                lruvec->refaults = refaults;
3000        } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
3001}
3002
3003/*
3004 * This is the main entry point to direct page reclaim.
3005 *
3006 * If a full scan of the inactive list fails to free enough memory then we
3007 * are "out of memory" and something needs to be killed.
3008 *
3009 * If the caller is !__GFP_FS then the probability of a failure is reasonably
3010 * high - the zone may be full of dirty or under-writeback pages, which this
3011 * caller can't do much about.  We kick the writeback threads and take explicit
3012 * naps in the hope that some of these pages can be written.  But if the
3013 * allocating task holds filesystem locks which prevent writeout this might not
3014 * work, and the allocation attempt will fail.
3015 *
3016 * returns:     0, if no pages reclaimed
3017 *              else, the number of pages reclaimed
3018 */
3019static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3020                                          struct scan_control *sc)
3021{
3022        int initial_priority = sc->priority;
3023        pg_data_t *last_pgdat;
3024        struct zoneref *z;
3025        struct zone *zone;
3026retry:
3027        delayacct_freepages_start();
3028
3029        if (global_reclaim(sc))
3030                __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
3031
3032        do {
3033                vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
3034                                sc->priority);
3035                sc->nr_scanned = 0;
3036                shrink_zones(zonelist, sc);
3037
3038                if (sc->nr_reclaimed >= sc->nr_to_reclaim)
3039                        break;
3040
3041                if (sc->compaction_ready)
3042                        break;
3043
3044                /*
3045                 * If we're getting trouble reclaiming, start doing
3046                 * writepage even in laptop mode.
3047                 */
3048                if (sc->priority < DEF_PRIORITY - 2)
3049                        sc->may_writepage = 1;
3050        } while (--sc->priority >= 0);
3051
3052        last_pgdat = NULL;
3053        for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
3054                                        sc->nodemask) {
3055                if (zone->zone_pgdat == last_pgdat)
3056                        continue;
3057                last_pgdat = zone->zone_pgdat;
3058                snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
3059                set_memcg_congestion(last_pgdat, sc->target_mem_cgroup, false);
3060        }
3061
3062        delayacct_freepages_end();
3063
3064        if (sc->nr_reclaimed)
3065                return sc->nr_reclaimed;
3066
3067        /* Aborted reclaim to try compaction? don't OOM, then */
3068        if (sc->compaction_ready)
3069                return 1;
3070
3071        /* Untapped cgroup reserves?  Don't OOM, retry. */
3072        if (sc->memcg_low_skipped) {
3073                sc->priority = initial_priority;
3074                sc->memcg_low_reclaim = 1;
3075                sc->memcg_low_skipped = 0;
3076                goto retry;
3077        }
3078
3079        return 0;
3080}
3081
3082static bool allow_direct_reclaim(pg_data_t *pgdat)
3083{
3084        struct zone *zone;
3085        unsigned long pfmemalloc_reserve = 0;
3086        unsigned long free_pages = 0;
3087        int i;
3088        bool wmark_ok;
3089
3090        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3091                return true;
3092
3093        for (i = 0; i <= ZONE_NORMAL; i++) {
3094                zone = &pgdat->node_zones[i];
3095                if (!managed_zone(zone))
3096                        continue;
3097
3098                if (!zone_reclaimable_pages(zone))
3099                        continue;
3100
3101                pfmemalloc_reserve += min_wmark_pages(zone);
3102                free_pages += zone_page_state(zone, NR_FREE_PAGES);
3103        }
3104
3105        /* If there are no reserves (unexpected config) then do not throttle */
3106        if (!pfmemalloc_reserve)
3107                return true;
3108
3109        wmark_ok = free_pages > pfmemalloc_reserve / 2;
3110
3111        /* kswapd must be awake if processes are being throttled */
3112        if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3113                pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3114                                                (enum zone_type)ZONE_NORMAL);
3115                wake_up_interruptible(&pgdat->kswapd_wait);
3116        }
3117
3118        return wmark_ok;
3119}
3120
3121/*
3122 * Throttle direct reclaimers if backing storage is backed by the network
3123 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3124 * depleted. kswapd will continue to make progress and wake the processes
3125 * when the low watermark is reached.
3126 *
3127 * Returns true if a fatal signal was delivered during throttling. If this
3128 * happens, the page allocator should not consider triggering the OOM killer.
3129 */
3130static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3131                                        nodemask_t *nodemask)
3132{
3133        struct zoneref *z;
3134        struct zone *zone;
3135        pg_data_t *pgdat = NULL;
3136
3137        /*
3138         * Kernel threads should not be throttled as they may be indirectly
3139         * responsible for cleaning pages necessary for reclaim to make forward
3140         * progress. kjournald for example may enter direct reclaim while
3141         * committing a transaction where throttling it could forcing other
3142         * processes to block on log_wait_commit().
3143         */
3144        if (current->flags & PF_KTHREAD)
3145                goto out;
3146
3147        /*
3148         * If a fatal signal is pending, this process should not throttle.
3149         * It should return quickly so it can exit and free its memory
3150         */
3151        if (fatal_signal_pending(current))
3152                goto out;
3153
3154        /*
3155         * Check if the pfmemalloc reserves are ok by finding the first node
3156         * with a usable ZONE_NORMAL or lower zone. The expectation is that
3157         * GFP_KERNEL will be required for allocating network buffers when
3158         * swapping over the network so ZONE_HIGHMEM is unusable.
3159         *
3160         * Throttling is based on the first usable node and throttled processes
3161         * wait on a queue until kswapd makes progress and wakes them. There
3162         * is an affinity then between processes waking up and where reclaim
3163         * progress has been made assuming the process wakes on the same node.
3164         * More importantly, processes running on remote nodes will not compete
3165         * for remote pfmemalloc reserves and processes on different nodes
3166         * should make reasonable progress.
3167         */
3168        for_each_zone_zonelist_nodemask(zone, z, zonelist,
3169                                        gfp_zone(gfp_mask), nodemask) {
3170                if (zone_idx(zone) > ZONE_NORMAL)
3171                        continue;
3172
3173                /* Throttle based on the first usable node */
3174                pgdat = zone->zone_pgdat;
3175                if (allow_direct_reclaim(pgdat))
3176                        goto out;
3177                break;
3178        }
3179
3180        /* If no zone was usable by the allocation flags then do not throttle */
3181        if (!pgdat)
3182                goto out;
3183
3184        /* Account for the throttling */
3185        count_vm_event(PGSCAN_DIRECT_THROTTLE);
3186
3187        /*
3188         * If the caller cannot enter the filesystem, it's possible that it
3189         * is due to the caller holding an FS lock or performing a journal
3190         * transaction in the case of a filesystem like ext[3|4]. In this case,
3191         * it is not safe to block on pfmemalloc_wait as kswapd could be
3192         * blocked waiting on the same lock. Instead, throttle for up to a
3193         * second before continuing.
3194         */
3195        if (!(gfp_mask & __GFP_FS)) {
3196                wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3197                        allow_direct_reclaim(pgdat), HZ);
3198
3199                goto check_pending;
3200        }
3201
3202        /* Throttle until kswapd wakes the process */
3203        wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3204                allow_direct_reclaim(pgdat));
3205
3206check_pending:
3207        if (fatal_signal_pending(current))
3208                return true;
3209
3210out:
3211        return false;
3212}
3213
3214unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3215                                gfp_t gfp_mask, nodemask_t *nodemask)
3216{
3217        unsigned long nr_reclaimed;
3218        struct scan_control sc = {
3219                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3220                .gfp_mask = current_gfp_context(gfp_mask),
3221                .reclaim_idx = gfp_zone(gfp_mask),
3222                .order = order,
3223                .nodemask = nodemask,
3224                .priority = DEF_PRIORITY,
3225                .may_writepage = !laptop_mode,
3226                .may_unmap = 1,
3227                .may_swap = 1,
3228        };
3229
3230        /*
3231         * scan_control uses s8 fields for order, priority, and reclaim_idx.
3232         * Confirm they are large enough for max values.
3233         */
3234        BUILD_BUG_ON(MAX_ORDER > S8_MAX);
3235        BUILD_BUG_ON(DEF_PRIORITY > S8_MAX);
3236        BUILD_BUG_ON(MAX_NR_ZONES > S8_MAX);
3237
3238        /*
3239         * Do not enter reclaim if fatal signal was delivered while throttled.
3240         * 1 is returned so that the page allocator does not OOM kill at this
3241         * point.
3242         */
3243        if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3244                return 1;
3245
3246        trace_mm_vmscan_direct_reclaim_begin(order,
3247                                sc.may_writepage,
3248                                sc.gfp_mask,
3249                                sc.reclaim_idx);
3250
3251        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3252
3253        trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3254
3255        return nr_reclaimed;
3256}
3257
3258#ifdef CONFIG_MEMCG
3259
3260unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3261                                                gfp_t gfp_mask, bool noswap,
3262                                                pg_data_t *pgdat,
3263                                                unsigned long *nr_scanned)
3264{
3265        struct scan_control sc = {
3266                .nr_to_reclaim = SWAP_CLUSTER_MAX,
3267                .target_mem_cgroup = memcg,
3268                .may_writepage = !laptop_mode,
3269                .may_unmap = 1,
3270                .reclaim_idx = MAX_NR_ZONES - 1,
3271                .may_swap = !noswap,
3272        };
3273        unsigned long lru_pages;
3274
3275        sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3276                        (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3277
3278        trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3279                                                      sc.may_writepage,
3280                                                      sc.gfp_mask,
3281                                                      sc.reclaim_idx);
3282
3283        /*
3284         * NOTE: Although we can get the priority field, using it
3285         * here is not a good idea, since it limits the pages we can scan.
3286         * if we don't reclaim here, the shrink_node from balance_pgdat
3287         * will pick up pages from other mem cgroup's as well. We hack
3288         * the priority and make it zero.
3289         */
3290        shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3291
3292        trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3293
3294        *nr_scanned = sc.nr_scanned;
3295        return sc.nr_reclaimed;
3296}
3297
3298unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3299                                           unsigned long nr_pages,
3300                                           gfp_t gfp_mask,
3301                                           bool may_swap)
3302{
3303        struct zonelist *zonelist;
3304        unsigned long nr_reclaimed;
3305        int nid;
3306        unsigned int noreclaim_flag;
3307        struct scan_control sc = {
3308                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3309                .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3310                                (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3311                .reclaim_idx = MAX_NR_ZONES - 1,
3312                .target_mem_cgroup = memcg,
3313                .priority = DEF_PRIORITY,
3314                .may_writepage = !laptop_mode,
3315                .may_unmap = 1,
3316                .may_swap = may_swap,
3317        };
3318
3319        /*
3320         * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3321         * take care of from where we get pages. So the node where we start the
3322         * scan does not need to be the current node.
3323         */
3324        nid = mem_cgroup_select_victim_node(memcg);
3325
3326        zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3327
3328        trace_mm_vmscan_memcg_reclaim_begin(0,
3329                                            sc.may_writepage,
3330                                            sc.gfp_mask,
3331                                            sc.reclaim_idx);
3332
3333        noreclaim_flag = memalloc_noreclaim_save();
3334        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3335        memalloc_noreclaim_restore(noreclaim_flag);
3336
3337        trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3338
3339        return nr_reclaimed;
3340}
3341#endif
3342
3343static void age_active_anon(struct pglist_data *pgdat,
3344                                struct scan_control *sc)
3345{
3346        struct mem_cgroup *memcg;
3347
3348        if (!total_swap_pages)
3349                return;
3350
3351        memcg = mem_cgroup_iter(NULL, NULL, NULL);
3352        do {
3353                struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3354
3355                if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3356                        shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3357                                           sc, LRU_ACTIVE_ANON);
3358
3359                memcg = mem_cgroup_iter(NULL, memcg, NULL);
3360        } while (memcg);
3361}
3362
3363/*
3364 * Returns true if there is an eligible zone balanced for the request order
3365 * and classzone_idx
3366 */
3367static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3368{
3369        int i;
3370        unsigned long mark = -1;
3371        struct zone *zone;
3372
3373        for (i = 0; i <= classzone_idx; i++) {
3374                zone = pgdat->node_zones + i;
3375
3376                if (!managed_zone(zone))
3377                        continue;
3378
3379                mark = high_wmark_pages(zone);
3380                if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3381                        return true;
3382        }
3383
3384        /*
3385         * If a node has no populated zone within classzone_idx, it does not
3386         * need balancing by definition. This can happen if a zone-restricted
3387         * allocation tries to wake a remote kswapd.
3388         */
3389        if (mark == -1)
3390                return true;
3391
3392        return false;
3393}
3394
3395/* Clear pgdat state for congested, dirty or under writeback. */
3396static void clear_pgdat_congested(pg_data_t *pgdat)
3397{
3398        clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3399        clear_bit(PGDAT_DIRTY, &pgdat->flags);
3400        clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3401}
3402
3403/*
3404 * Prepare kswapd for sleeping. This verifies that there are no processes
3405 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3406 *
3407 * Returns true if kswapd is ready to sleep
3408 */
3409static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3410{
3411        /*
3412         * The throttled processes are normally woken up in balance_pgdat() as
3413         * soon as allow_direct_reclaim() is true. But there is a potential
3414         * race between when kswapd checks the watermarks and a process gets
3415         * throttled. There is also a potential race if processes get
3416         * throttled, kswapd wakes, a large process exits thereby balancing the
3417         * zones, which causes kswapd to exit balance_pgdat() before reaching
3418         * the wake up checks. If kswapd is going to sleep, no process should
3419         * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3420         * the wake up is premature, processes will wake kswapd and get
3421         * throttled again. The difference from wake ups in balance_pgdat() is
3422         * that here we are under prepare_to_wait().
3423         */
3424        if (waitqueue_active(&pgdat->pfmemalloc_wait))
3425                wake_up_all(&pgdat->pfmemalloc_wait);
3426
3427        /* Hopeless node, leave it to direct reclaim */
3428        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3429                return true;
3430
3431        if (pgdat_balanced(pgdat, order, classzone_idx)) {
3432                clear_pgdat_congested(pgdat);
3433                return true;
3434        }
3435
3436        return false;
3437}
3438
3439/*
3440 * kswapd shrinks a node of pages that are at or below the highest usable
3441 * zone that is currently unbalanced.
3442 *
3443 * Returns true if kswapd scanned at least the requested number of pages to
3444 * reclaim or if the lack of progress was due to pages under writeback.
3445 * This is used to determine if the scanning priority needs to be raised.
3446 */
3447static bool kswapd_shrink_node(pg_data_t *pgdat,
3448                               struct scan_control *sc)
3449{
3450        struct zone *zone;
3451        int z;
3452
3453        /* Reclaim a number of pages proportional to the number of zones */
3454        sc->nr_to_reclaim = 0;
3455        for (z = 0; z <= sc->reclaim_idx; z++) {
3456                zone = pgdat->node_zones + z;
3457                if (!managed_zone(zone))
3458                        continue;
3459
3460                sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3461        }
3462
3463        /*
3464         * Historically care was taken to put equal pressure on all zones but
3465         * now pressure is applied based on node LRU order.
3466         */
3467        shrink_node(pgdat, sc);
3468
3469        /*
3470         * Fragmentation may mean that the system cannot be rebalanced for
3471         * high-order allocations. If twice the allocation size has been
3472         * reclaimed then recheck watermarks only at order-0 to prevent
3473         * excessive reclaim. Assume that a process requested a high-order
3474         * can direct reclaim/compact.
3475         */
3476        if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3477                sc->order = 0;
3478
3479        return sc->nr_scanned >= sc->nr_to_reclaim;
3480}
3481
3482/*
3483 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3484 * that are eligible for use by the caller until at least one zone is
3485 * balanced.
3486 *
3487 * Returns the order kswapd finished reclaiming at.
3488 *
3489 * kswapd scans the zones in the highmem->normal->dma direction.  It skips
3490 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3491 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3492 * or lower is eligible for reclaim until at least one usable zone is
3493 * balanced.
3494 */
3495static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3496{
3497        int i;
3498        unsigned long nr_soft_reclaimed;
3499        unsigned long nr_soft_scanned;
3500        struct zone *zone;
3501        struct scan_control sc = {
3502                .gfp_mask = GFP_KERNEL,
3503                .order = order,
3504                .priority = DEF_PRIORITY,
3505                .may_writepage = !laptop_mode,
3506                .may_unmap = 1,
3507                .may_swap = 1,
3508        };
3509
3510        __fs_reclaim_acquire();
3511
3512        count_vm_event(PAGEOUTRUN);
3513
3514        do {
3515                unsigned long nr_reclaimed = sc.nr_reclaimed;
3516                bool raise_priority = true;
3517                bool ret;
3518
3519                sc.reclaim_idx = classzone_idx;
3520
3521                /*
3522                 * If the number of buffer_heads exceeds the maximum allowed
3523                 * then consider reclaiming from all zones. This has a dual
3524                 * purpose -- on 64-bit systems it is expected that
3525                 * buffer_heads are stripped during active rotation. On 32-bit
3526                 * systems, highmem pages can pin lowmem memory and shrinking
3527                 * buffers can relieve lowmem pressure. Reclaim may still not
3528                 * go ahead if all eligible zones for the original allocation
3529                 * request are balanced to avoid excessive reclaim from kswapd.
3530                 */
3531                if (buffer_heads_over_limit) {
3532                        for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3533                                zone = pgdat->node_zones + i;
3534                                if (!managed_zone(zone))
3535                                        continue;
3536
3537                                sc.reclaim_idx = i;
3538                                break;
3539                        }
3540                }
3541
3542                /*
3543                 * Only reclaim if there are no eligible zones. Note that
3544                 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3545                 * have adjusted it.
3546                 */
3547                if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3548                        goto out;
3549
3550                /*
3551                 * Do some background aging of the anon list, to give
3552                 * pages a chance to be referenced before reclaiming. All
3553                 * pages are rotated regardless of classzone as this is
3554                 * about consistent aging.
3555                 */
3556                age_active_anon(pgdat, &sc);
3557
3558                /*
3559                 * If we're getting trouble reclaiming, start doing writepage
3560                 * even in laptop mode.
3561                 */
3562                if (sc.priority < DEF_PRIORITY - 2)
3563                        sc.may_writepage = 1;
3564
3565                /* Call soft limit reclaim before calling shrink_node. */
3566                sc.nr_scanned = 0;
3567                nr_soft_scanned = 0;
3568                nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3569                                                sc.gfp_mask, &nr_soft_scanned);
3570                sc.nr_reclaimed += nr_soft_reclaimed;
3571
3572                /*
3573                 * There should be no need to raise the scanning priority if
3574                 * enough pages are already being scanned that that high
3575                 * watermark would be met at 100% efficiency.
3576                 */
3577                if (kswapd_shrink_node(pgdat, &sc))
3578                        raise_priority = false;
3579
3580                /*
3581                 * If the low watermark is met there is no need for processes
3582                 * to be throttled on pfmemalloc_wait as they should not be
3583                 * able to safely make forward progress. Wake them
3584                 */
3585                if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3586                                allow_direct_reclaim(pgdat))
3587                        wake_up_all(&pgdat->pfmemalloc_wait);
3588
3589                /* Check if kswapd should be suspending */
3590                __fs_reclaim_release();
3591                ret = try_to_freeze();
3592                __fs_reclaim_acquire();
3593                if (ret || kthread_should_stop())
3594                        break;
3595
3596                /*
3597                 * Raise priority if scanning rate is too low or there was no
3598                 * progress in reclaiming pages
3599                 */
3600                nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3601                if (raise_priority || !nr_reclaimed)
3602                        sc.priority--;
3603        } while (sc.priority >= 1);
3604
3605        if (!sc.nr_reclaimed)
3606                pgdat->kswapd_failures++;
3607
3608out:
3609        snapshot_refaults(NULL, pgdat);
3610        __fs_reclaim_release();
3611        /*
3612         * Return the order kswapd stopped reclaiming at as
3613         * prepare_kswapd_sleep() takes it into account. If another caller
3614         * entered the allocator slow path while kswapd was awake, order will
3615         * remain at the higher level.
3616         */
3617        return sc.order;
3618}
3619
3620/*
3621 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3622 * allocation request woke kswapd for. When kswapd has not woken recently,
3623 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3624 * given classzone and returns it or the highest classzone index kswapd
3625 * was recently woke for.
3626 */
3627static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3628                                           enum zone_type classzone_idx)
3629{
3630        if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3631                return classzone_idx;
3632
3633        return max(pgdat->kswapd_classzone_idx, classzone_idx);
3634}
3635
3636static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3637                                unsigned int classzone_idx)
3638{
3639        long remaining = 0;
3640        DEFINE_WAIT(wait);
3641
3642        if (freezing(current) || kthread_should_stop())
3643                return;
3644
3645        prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3646
3647        /*
3648         * Try to sleep for a short interval. Note that kcompactd will only be
3649         * woken if it is possible to sleep for a short interval. This is
3650         * deliberate on the assumption that if reclaim cannot keep an
3651         * eligible zone balanced that it's also unlikely that compaction will
3652         * succeed.
3653         */
3654        if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3655                /*
3656                 * Compaction records what page blocks it recently failed to
3657                 * isolate pages from and skips them in the future scanning.
3658                 * When kswapd is going to sleep, it is reasonable to assume
3659                 * that pages and compaction may succeed so reset the cache.
3660                 */
3661                reset_isolation_suitable(pgdat);
3662
3663                /*
3664                 * We have freed the memory, now we should compact it to make
3665                 * allocation of the requested order possible.
3666                 */
3667                wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3668
3669                remaining = schedule_timeout(HZ/10);
3670
3671                /*
3672                 * If woken prematurely then reset kswapd_classzone_idx and
3673                 * order. The values will either be from a wakeup request or
3674                 * the previous request that slept prematurely.
3675                 */
3676                if (remaining) {
3677                        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3678                        pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3679                }
3680
3681                finish_wait(&pgdat->kswapd_wait, &wait);
3682                prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3683        }
3684
3685        /*
3686         * After a short sleep, check if it was a premature sleep. If not, then
3687         * go fully to sleep until explicitly woken up.
3688         */
3689        if (!remaining &&
3690            prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3691                trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3692
3693                /*
3694                 * vmstat counters are not perfectly accurate and the estimated
3695                 * value for counters such as NR_FREE_PAGES can deviate from the
3696                 * true value by nr_online_cpus * threshold. To avoid the zone
3697                 * watermarks being breached while under pressure, we reduce the
3698                 * per-cpu vmstat threshold while kswapd is awake and restore
3699                 * them before going back to sleep.
3700                 */
3701                set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3702
3703                if (!kthread_should_stop())
3704                        schedule();
3705
3706                set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3707        } else {
3708                if (remaining)
3709                        count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3710                else
3711                        count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3712        }
3713        finish_wait(&pgdat->kswapd_wait, &wait);
3714}
3715
3716/*
3717 * The background pageout daemon, started as a kernel thread
3718 * from the init process.
3719 *
3720 * This basically trickles out pages so that we have _some_
3721 * free memory available even if there is no other activity
3722 * that frees anything up. This is needed for things like routing
3723 * etc, where we otherwise might have all activity going on in
3724 * asynchronous contexts that cannot page things out.
3725 *
3726 * If there are applications that are active memory-allocators
3727 * (most normal use), this basically shouldn't matter.
3728 */
3729static int kswapd(void *p)
3730{
3731        unsigned int alloc_order, reclaim_order;
3732        unsigned int classzone_idx = MAX_NR_ZONES - 1;
3733        pg_data_t *pgdat = (pg_data_t*)p;
3734        struct task_struct *tsk = current;
3735
3736        struct reclaim_state reclaim_state = {
3737                .reclaimed_slab = 0,
3738        };
3739        const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3740
3741        if (!cpumask_empty(cpumask))
3742                set_cpus_allowed_ptr(tsk, cpumask);
3743        current->reclaim_state = &reclaim_state;
3744
3745        /*
3746         * Tell the memory management that we're a "memory allocator",
3747         * and that if we need more memory we should get access to it
3748         * regardless (see "__alloc_pages()"). "kswapd" should
3749         * never get caught in the normal page freeing logic.
3750         *
3751         * (Kswapd normally doesn't need memory anyway, but sometimes
3752         * you need a small amount of memory in order to be able to
3753         * page out something else, and this flag essentially protects
3754         * us from recursively trying to free more memory as we're
3755         * trying to free the first piece of memory in the first place).
3756         */
3757        tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3758        set_freezable();
3759
3760        pgdat->kswapd_order = 0;
3761        pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3762        for ( ; ; ) {
3763                bool ret;
3764
3765                alloc_order = reclaim_order = pgdat->kswapd_order;
3766                classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3767
3768kswapd_try_sleep:
3769                kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3770                                        classzone_idx);
3771
3772                /* Read the new order and classzone_idx */
3773                alloc_order = reclaim_order = pgdat->kswapd_order;
3774                classzone_idx = kswapd_classzone_idx(pgdat, 0);
3775                pgdat->kswapd_order = 0;
3776                pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3777
3778                ret = try_to_freeze();
3779                if (kthread_should_stop())
3780                        break;
3781
3782                /*
3783                 * We can speed up thawing tasks if we don't call balance_pgdat
3784                 * after returning from the refrigerator
3785                 */
3786                if (ret)
3787                        continue;
3788
3789                /*
3790                 * Reclaim begins at the requested order but if a high-order
3791                 * reclaim fails then kswapd falls back to reclaiming for
3792                 * order-0. If that happens, kswapd will consider sleeping
3793                 * for the order it finished reclaiming at (reclaim_order)
3794                 * but kcompactd is woken to compact for the original
3795                 * request (alloc_order).
3796                 */
3797                trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3798                                                alloc_order);
3799                reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3800                if (reclaim_order < alloc_order)
3801                        goto kswapd_try_sleep;
3802        }
3803
3804        tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3805        current->reclaim_state = NULL;
3806
3807        return 0;
3808}
3809
3810/*
3811 * A zone is low on free memory or too fragmented for high-order memory.  If
3812 * kswapd should reclaim (direct reclaim is deferred), wake it up for the zone's
3813 * pgdat.  It will wake up kcompactd after reclaiming memory.  If kswapd reclaim
3814 * has failed or is not needed, still wake up kcompactd if only compaction is
3815 * needed.
3816 */
3817void wakeup_kswapd(struct zone *zone, gfp_t gfp_flags, int order,
3818                   enum zone_type classzone_idx)
3819{
3820        pg_data_t *pgdat;
3821
3822        if (!managed_zone(zone))
3823                return;
3824
3825        if (!cpuset_zone_allowed(zone, gfp_flags))
3826                return;
3827        pgdat = zone->zone_pgdat;
3828        pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3829                                                           classzone_idx);
3830        pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3831        if (!waitqueue_active(&pgdat->kswapd_wait))
3832                return;
3833
3834        /* Hopeless node, leave it to direct reclaim if possible */
3835        if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ||
3836            pgdat_balanced(pgdat, order, classzone_idx)) {
3837                /*
3838                 * There may be plenty of free memory available, but it's too
3839                 * fragmented for high-order allocations.  Wake up kcompactd
3840                 * and rely on compaction_suitable() to determine if it's
3841                 * needed.  If it fails, it will defer subsequent attempts to
3842                 * ratelimit its work.
3843                 */
3844                if (!(gfp_flags & __GFP_DIRECT_RECLAIM))
3845                        wakeup_kcompactd(pgdat, order, classzone_idx);
3846                return;
3847        }
3848
3849        trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order,
3850                                      gfp_flags);
3851        wake_up_interruptible(&pgdat->kswapd_wait);
3852}
3853
3854#ifdef CONFIG_HIBERNATION
3855/*
3856 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3857 * freed pages.
3858 *
3859 * Rather than trying to age LRUs the aim is to preserve the overall
3860 * LRU order by reclaiming preferentially
3861 * inactive > active > active referenced > active mapped
3862 */
3863unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3864{
3865        struct reclaim_state reclaim_state;
3866        struct scan_control sc = {
3867                .nr_to_reclaim = nr_to_reclaim,
3868                .gfp_mask = GFP_HIGHUSER_MOVABLE,
3869                .reclaim_idx = MAX_NR_ZONES - 1,
3870                .priority = DEF_PRIORITY,
3871                .may_writepage = 1,
3872                .may_unmap = 1,
3873                .may_swap = 1,
3874                .hibernation_mode = 1,
3875        };
3876        struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3877        struct task_struct *p = current;
3878        unsigned long nr_reclaimed;
3879        unsigned int noreclaim_flag;
3880
3881        fs_reclaim_acquire(sc.gfp_mask);
3882        noreclaim_flag = memalloc_noreclaim_save();
3883        reclaim_state.reclaimed_slab = 0;
3884        p->reclaim_state = &reclaim_state;
3885
3886        nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3887
3888        p->reclaim_state = NULL;
3889        memalloc_noreclaim_restore(noreclaim_flag);
3890        fs_reclaim_release(sc.gfp_mask);
3891
3892        return nr_reclaimed;
3893}
3894#endif /* CONFIG_HIBERNATION */
3895
3896/* It's optimal to keep kswapds on the same CPUs as their memory, but
3897   not required for correctness.  So if the last cpu in a node goes
3898   away, we get changed to run anywhere: as the first one comes back,
3899   restore their cpu bindings. */
3900static int kswapd_cpu_online(unsigned int cpu)
3901{
3902        int nid;
3903
3904        for_each_node_state(nid, N_MEMORY) {
3905                pg_data_t *pgdat = NODE_DATA(nid);
3906                const struct cpumask *mask;
3907
3908                mask = cpumask_of_node(pgdat->node_id);
3909
3910                if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3911                        /* One of our CPUs online: restore mask */
3912                        set_cpus_allowed_ptr(pgdat->kswapd, mask);
3913        }
3914        return 0;
3915}
3916
3917/*
3918 * This kswapd start function will be called by init and node-hot-add.
3919 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3920 */
3921int kswapd_run(int nid)
3922{
3923        pg_data_t *pgdat = NODE_DATA(nid);
3924        int ret = 0;
3925
3926        if (pgdat->kswapd)
3927                return 0;
3928
3929        pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3930        if (IS_ERR(pgdat->kswapd)) {
3931                /* failure at boot is fatal */
3932                BUG_ON(system_state < SYSTEM_RUNNING);
3933                pr_err("Failed to start kswapd on node %d\n", nid);
3934                ret = PTR_ERR(pgdat->kswapd);
3935                pgdat->kswapd = NULL;
3936        }
3937        return ret;
3938}
3939
3940/*
3941 * Called by memory hotplug when all memory in a node is offlined.  Caller must
3942 * hold mem_hotplug_begin/end().
3943 */
3944void kswapd_stop(int nid)
3945{
3946        struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3947
3948        if (kswapd) {
3949                kthread_stop(kswapd);
3950                NODE_DATA(nid)->kswapd = NULL;
3951        }
3952}
3953
3954static int __init kswapd_init(void)
3955{
3956        int nid, ret;
3957
3958        swap_setup();
3959        for_each_node_state(nid, N_MEMORY)
3960                kswapd_run(nid);
3961        ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3962                                        "mm/vmscan:online", kswapd_cpu_online,
3963                                        NULL);
3964        WARN_ON(ret < 0);
3965        return 0;
3966}
3967
3968module_init(kswapd_init)
3969
3970#ifdef CONFIG_NUMA
3971/*
3972 * Node reclaim mode
3973 *
3974 * If non-zero call node_reclaim when the number of free pages falls below
3975 * the watermarks.
3976 */
3977int node_reclaim_mode __read_mostly;
3978
3979#define RECLAIM_OFF 0
3980#define RECLAIM_ZONE (1<<0)     /* Run shrink_inactive_list on the zone */
3981#define RECLAIM_WRITE (1<<1)    /* Writeout pages during reclaim */
3982#define RECLAIM_UNMAP (1<<2)    /* Unmap pages during reclaim */
3983
3984/*
3985 * Priority for NODE_RECLAIM. This determines the fraction of pages
3986 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3987 * a zone.
3988 */
3989#define NODE_RECLAIM_PRIORITY 4
3990
3991/*
3992 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3993 * occur.
3994 */
3995int sysctl_min_unmapped_ratio = 1;
3996
3997/*
3998 * If the number of slab pages in a zone grows beyond this percentage then
3999 * slab reclaim needs to occur.
4000 */
4001int sysctl_min_slab_ratio = 5;
4002
4003static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
4004{
4005        unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
4006        unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
4007                node_page_state(pgdat, NR_ACTIVE_FILE);
4008
4009        /*
4010         * It's possible for there to be more file mapped pages than
4011         * accounted for by the pages on the file LRU lists because
4012         * tmpfs pages accounted for as ANON can also be FILE_MAPPED
4013         */
4014        return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
4015}
4016
4017/* Work out how many page cache pages we can reclaim in this reclaim_mode */
4018static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
4019{
4020        unsigned long nr_pagecache_reclaimable;
4021        unsigned long delta = 0;
4022
4023        /*
4024         * If RECLAIM_UNMAP is set, then all file pages are considered
4025         * potentially reclaimable. Otherwise, we have to worry about
4026         * pages like swapcache and node_unmapped_file_pages() provides
4027         * a better estimate
4028         */
4029        if (node_reclaim_mode & RECLAIM_UNMAP)
4030                nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
4031        else
4032                nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
4033
4034        /* If we can't clean pages, remove dirty pages from consideration */
4035        if (!(node_reclaim_mode & RECLAIM_WRITE))
4036                delta += node_page_state(pgdat, NR_FILE_DIRTY);
4037
4038        /* Watch for any possible underflows due to delta */
4039        if (unlikely(delta > nr_pagecache_reclaimable))
4040                delta = nr_pagecache_reclaimable;
4041
4042        return nr_pagecache_reclaimable - delta;
4043}
4044
4045/*
4046 * Try to free up some pages from this node through reclaim.
4047 */
4048static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4049{
4050        /* Minimum pages needed in order to stay on node */
4051        const unsigned long nr_pages = 1 << order;
4052        struct task_struct *p = current;
4053        struct reclaim_state reclaim_state;
4054        unsigned int noreclaim_flag;
4055        struct scan_control sc = {
4056                .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
4057                .gfp_mask = current_gfp_context(gfp_mask),
4058                .order = order,
4059                .priority = NODE_RECLAIM_PRIORITY,
4060                .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
4061                .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
4062                .may_swap = 1,
4063                .reclaim_idx = gfp_zone(gfp_mask),
4064        };
4065
4066        cond_resched();
4067        fs_reclaim_acquire(sc.gfp_mask);
4068        /*
4069         * We need to be able to allocate from the reserves for RECLAIM_UNMAP
4070         * and we also need to be able to write out pages for RECLAIM_WRITE
4071         * and RECLAIM_UNMAP.
4072         */
4073        noreclaim_flag = memalloc_noreclaim_save();
4074        p->flags |= PF_SWAPWRITE;
4075        reclaim_state.reclaimed_slab = 0;
4076        p->reclaim_state = &reclaim_state;
4077
4078        if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
4079                /*
4080                 * Free memory by calling shrink node with increasing
4081                 * priorities until we have enough memory freed.
4082                 */
4083                do {
4084                        shrink_node(pgdat, &sc);
4085                } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
4086        }
4087
4088        p->reclaim_state = NULL;
4089        current->flags &= ~PF_SWAPWRITE;
4090        memalloc_noreclaim_restore(noreclaim_flag);
4091        fs_reclaim_release(sc.gfp_mask);
4092        return sc.nr_reclaimed >= nr_pages;
4093}
4094
4095int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
4096{
4097        int ret;
4098
4099        /*
4100         * Node reclaim reclaims unmapped file backed pages and
4101         * slab pages if we are over the defined limits.
4102         *
4103         * A small portion of unmapped file backed pages is needed for
4104         * file I/O otherwise pages read by file I/O will be immediately
4105         * thrown out if the node is overallocated. So we do not reclaim
4106         * if less than a specified percentage of the node is used by
4107         * unmapped file backed pages.
4108         */
4109        if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
4110            node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
4111                return NODE_RECLAIM_FULL;
4112
4113        /*
4114         * Do not scan if the allocation should not be delayed.
4115         */
4116        if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
4117                return NODE_RECLAIM_NOSCAN;
4118
4119        /*
4120         * Only run node reclaim on the local node or on nodes that do not
4121         * have associated processors. This will favor the local processor
4122         * over remote processors and spread off node memory allocations
4123         * as wide as possible.
4124         */
4125        if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4126                return NODE_RECLAIM_NOSCAN;
4127
4128        if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4129                return NODE_RECLAIM_NOSCAN;
4130
4131        ret = __node_reclaim(pgdat, gfp_mask, order);
4132        clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4133
4134        if (!ret)
4135                count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4136
4137        return ret;
4138}
4139#endif
4140
4141/*
4142 * page_evictable - test whether a page is evictable
4143 * @page: the page to test
4144 *
4145 * Test whether page is evictable--i.e., should be placed on active/inactive
4146 * lists vs unevictable list.
4147 *
4148 * Reasons page might not be evictable:
4149 * (1) page's mapping marked unevictable
4150 * (2) page is part of an mlocked VMA
4151 *
4152 */
4153int page_evictable(struct page *page)
4154{
4155        int ret;
4156
4157        /* Prevent address_space of inode and swap cache from being freed */
4158        rcu_read_lock();
4159        ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4160        rcu_read_unlock();
4161        return ret;
4162}
4163
4164#ifdef CONFIG_SHMEM
4165/**
4166 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4167 * @pages:      array of pages to check
4168 * @nr_pages:   number of pages to check
4169 *
4170 * Checks pages for evictability and moves them to the appropriate lru list.
4171 *
4172 * This function is only used for SysV IPC SHM_UNLOCK.
4173 */
4174void check_move_unevictable_pages(struct page **pages, int nr_pages)
4175{
4176        struct lruvec *lruvec;
4177        struct pglist_data *pgdat = NULL;
4178        int pgscanned = 0;
4179        int pgrescued = 0;
4180        int i;
4181
4182        for (i = 0; i < nr_pages; i++) {
4183                struct page *page = pages[i];
4184                struct pglist_data *pagepgdat = page_pgdat(page);
4185
4186                pgscanned++;
4187                if (pagepgdat != pgdat) {
4188                        if (pgdat)
4189                                spin_unlock_irq(&pgdat->lru_lock);
4190                        pgdat = pagepgdat;
4191                        spin_lock_irq(&pgdat->lru_lock);
4192                }
4193                lruvec = mem_cgroup_page_lruvec(page, pgdat);
4194
4195                if (!PageLRU(page) || !PageUnevictable(page))
4196                        continue;
4197
4198                if (page_evictable(page)) {
4199                        enum lru_list lru = page_lru_base_type(page);
4200
4201                        VM_BUG_ON_PAGE(PageActive(page), page);
4202                        ClearPageUnevictable(page);
4203                        del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4204                        add_page_to_lru_list(page, lruvec, lru);
4205                        pgrescued++;
4206                }
4207        }
4208
4209        if (pgdat) {
4210                __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4211                __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4212                spin_unlock_irq(&pgdat->lru_lock);
4213        }
4214}
4215#endif /* CONFIG_SHMEM */
4216