linux/mm/zsmalloc.c
<<
>>
Prefs
   1/*
   2 * zsmalloc memory allocator
   3 *
   4 * Copyright (C) 2011  Nitin Gupta
   5 * Copyright (C) 2012, 2013 Minchan Kim
   6 *
   7 * This code is released using a dual license strategy: BSD/GPL
   8 * You can choose the license that better fits your requirements.
   9 *
  10 * Released under the terms of 3-clause BSD License
  11 * Released under the terms of GNU General Public License Version 2.0
  12 */
  13
  14/*
  15 * Following is how we use various fields and flags of underlying
  16 * struct page(s) to form a zspage.
  17 *
  18 * Usage of struct page fields:
  19 *      page->private: points to zspage
  20 *      page->freelist(index): links together all component pages of a zspage
  21 *              For the huge page, this is always 0, so we use this field
  22 *              to store handle.
  23 *      page->units: first object offset in a subpage of zspage
  24 *
  25 * Usage of struct page flags:
  26 *      PG_private: identifies the first component page
  27 *      PG_owner_priv_1: identifies the huge component page
  28 *
  29 */
  30
  31#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  32
  33#include <linux/module.h>
  34#include <linux/kernel.h>
  35#include <linux/sched.h>
  36#include <linux/magic.h>
  37#include <linux/bitops.h>
  38#include <linux/errno.h>
  39#include <linux/highmem.h>
  40#include <linux/string.h>
  41#include <linux/slab.h>
  42#include <asm/tlbflush.h>
  43#include <asm/pgtable.h>
  44#include <linux/cpumask.h>
  45#include <linux/cpu.h>
  46#include <linux/vmalloc.h>
  47#include <linux/preempt.h>
  48#include <linux/spinlock.h>
  49#include <linux/shrinker.h>
  50#include <linux/types.h>
  51#include <linux/debugfs.h>
  52#include <linux/zsmalloc.h>
  53#include <linux/zpool.h>
  54#include <linux/mount.h>
  55#include <linux/migrate.h>
  56#include <linux/pagemap.h>
  57#include <linux/fs.h>
  58
  59#define ZSPAGE_MAGIC    0x58
  60
  61/*
  62 * This must be power of 2 and greater than of equal to sizeof(link_free).
  63 * These two conditions ensure that any 'struct link_free' itself doesn't
  64 * span more than 1 page which avoids complex case of mapping 2 pages simply
  65 * to restore link_free pointer values.
  66 */
  67#define ZS_ALIGN                8
  68
  69/*
  70 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
  71 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
  72 */
  73#define ZS_MAX_ZSPAGE_ORDER 2
  74#define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
  75
  76#define ZS_HANDLE_SIZE (sizeof(unsigned long))
  77
  78/*
  79 * Object location (<PFN>, <obj_idx>) is encoded as
  80 * as single (unsigned long) handle value.
  81 *
  82 * Note that object index <obj_idx> starts from 0.
  83 *
  84 * This is made more complicated by various memory models and PAE.
  85 */
  86
  87#ifndef MAX_POSSIBLE_PHYSMEM_BITS
  88#ifdef MAX_PHYSMEM_BITS
  89#define MAX_POSSIBLE_PHYSMEM_BITS MAX_PHYSMEM_BITS
  90#else
  91/*
  92 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
  93 * be PAGE_SHIFT
  94 */
  95#define MAX_POSSIBLE_PHYSMEM_BITS BITS_PER_LONG
  96#endif
  97#endif
  98
  99#define _PFN_BITS               (MAX_POSSIBLE_PHYSMEM_BITS - PAGE_SHIFT)
 100
 101/*
 102 * Memory for allocating for handle keeps object position by
 103 * encoding <page, obj_idx> and the encoded value has a room
 104 * in least bit(ie, look at obj_to_location).
 105 * We use the bit to synchronize between object access by
 106 * user and migration.
 107 */
 108#define HANDLE_PIN_BIT  0
 109
 110/*
 111 * Head in allocated object should have OBJ_ALLOCATED_TAG
 112 * to identify the object was allocated or not.
 113 * It's okay to add the status bit in the least bit because
 114 * header keeps handle which is 4byte-aligned address so we
 115 * have room for two bit at least.
 116 */
 117#define OBJ_ALLOCATED_TAG 1
 118#define OBJ_TAG_BITS 1
 119#define OBJ_INDEX_BITS  (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
 120#define OBJ_INDEX_MASK  ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
 121
 122#define FULLNESS_BITS   2
 123#define CLASS_BITS      8
 124#define ISOLATED_BITS   3
 125#define MAGIC_VAL_BITS  8
 126
 127#define MAX(a, b) ((a) >= (b) ? (a) : (b))
 128/* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
 129#define ZS_MIN_ALLOC_SIZE \
 130        MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
 131/* each chunk includes extra space to keep handle */
 132#define ZS_MAX_ALLOC_SIZE       PAGE_SIZE
 133
 134/*
 135 * On systems with 4K page size, this gives 255 size classes! There is a
 136 * trader-off here:
 137 *  - Large number of size classes is potentially wasteful as free page are
 138 *    spread across these classes
 139 *  - Small number of size classes causes large internal fragmentation
 140 *  - Probably its better to use specific size classes (empirically
 141 *    determined). NOTE: all those class sizes must be set as multiple of
 142 *    ZS_ALIGN to make sure link_free itself never has to span 2 pages.
 143 *
 144 *  ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
 145 *  (reason above)
 146 */
 147#define ZS_SIZE_CLASS_DELTA     (PAGE_SIZE >> CLASS_BITS)
 148#define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
 149                                      ZS_SIZE_CLASS_DELTA) + 1)
 150
 151enum fullness_group {
 152        ZS_EMPTY,
 153        ZS_ALMOST_EMPTY,
 154        ZS_ALMOST_FULL,
 155        ZS_FULL,
 156        NR_ZS_FULLNESS,
 157};
 158
 159enum zs_stat_type {
 160        CLASS_EMPTY,
 161        CLASS_ALMOST_EMPTY,
 162        CLASS_ALMOST_FULL,
 163        CLASS_FULL,
 164        OBJ_ALLOCATED,
 165        OBJ_USED,
 166        NR_ZS_STAT_TYPE,
 167};
 168
 169struct zs_size_stat {
 170        unsigned long objs[NR_ZS_STAT_TYPE];
 171};
 172
 173#ifdef CONFIG_ZSMALLOC_STAT
 174static struct dentry *zs_stat_root;
 175#endif
 176
 177#ifdef CONFIG_COMPACTION
 178static struct vfsmount *zsmalloc_mnt;
 179#endif
 180
 181/*
 182 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
 183 *      n <= N / f, where
 184 * n = number of allocated objects
 185 * N = total number of objects zspage can store
 186 * f = fullness_threshold_frac
 187 *
 188 * Similarly, we assign zspage to:
 189 *      ZS_ALMOST_FULL  when n > N / f
 190 *      ZS_EMPTY        when n == 0
 191 *      ZS_FULL         when n == N
 192 *
 193 * (see: fix_fullness_group())
 194 */
 195static const int fullness_threshold_frac = 4;
 196static size_t huge_class_size;
 197
 198struct size_class {
 199        spinlock_t lock;
 200        struct list_head fullness_list[NR_ZS_FULLNESS];
 201        /*
 202         * Size of objects stored in this class. Must be multiple
 203         * of ZS_ALIGN.
 204         */
 205        int size;
 206        int objs_per_zspage;
 207        /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
 208        int pages_per_zspage;
 209
 210        unsigned int index;
 211        struct zs_size_stat stats;
 212};
 213
 214/* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
 215static void SetPageHugeObject(struct page *page)
 216{
 217        SetPageOwnerPriv1(page);
 218}
 219
 220static void ClearPageHugeObject(struct page *page)
 221{
 222        ClearPageOwnerPriv1(page);
 223}
 224
 225static int PageHugeObject(struct page *page)
 226{
 227        return PageOwnerPriv1(page);
 228}
 229
 230/*
 231 * Placed within free objects to form a singly linked list.
 232 * For every zspage, zspage->freeobj gives head of this list.
 233 *
 234 * This must be power of 2 and less than or equal to ZS_ALIGN
 235 */
 236struct link_free {
 237        union {
 238                /*
 239                 * Free object index;
 240                 * It's valid for non-allocated object
 241                 */
 242                unsigned long next;
 243                /*
 244                 * Handle of allocated object.
 245                 */
 246                unsigned long handle;
 247        };
 248};
 249
 250struct zs_pool {
 251        const char *name;
 252
 253        struct size_class *size_class[ZS_SIZE_CLASSES];
 254        struct kmem_cache *handle_cachep;
 255        struct kmem_cache *zspage_cachep;
 256
 257        atomic_long_t pages_allocated;
 258
 259        struct zs_pool_stats stats;
 260
 261        /* Compact classes */
 262        struct shrinker shrinker;
 263
 264#ifdef CONFIG_ZSMALLOC_STAT
 265        struct dentry *stat_dentry;
 266#endif
 267#ifdef CONFIG_COMPACTION
 268        struct inode *inode;
 269        struct work_struct free_work;
 270#endif
 271};
 272
 273struct zspage {
 274        struct {
 275                unsigned int fullness:FULLNESS_BITS;
 276                unsigned int class:CLASS_BITS + 1;
 277                unsigned int isolated:ISOLATED_BITS;
 278                unsigned int magic:MAGIC_VAL_BITS;
 279        };
 280        unsigned int inuse;
 281        unsigned int freeobj;
 282        struct page *first_page;
 283        struct list_head list; /* fullness list */
 284#ifdef CONFIG_COMPACTION
 285        rwlock_t lock;
 286#endif
 287};
 288
 289struct mapping_area {
 290#ifdef CONFIG_PGTABLE_MAPPING
 291        struct vm_struct *vm; /* vm area for mapping object that span pages */
 292#else
 293        char *vm_buf; /* copy buffer for objects that span pages */
 294#endif
 295        char *vm_addr; /* address of kmap_atomic()'ed pages */
 296        enum zs_mapmode vm_mm; /* mapping mode */
 297};
 298
 299#ifdef CONFIG_COMPACTION
 300static int zs_register_migration(struct zs_pool *pool);
 301static void zs_unregister_migration(struct zs_pool *pool);
 302static void migrate_lock_init(struct zspage *zspage);
 303static void migrate_read_lock(struct zspage *zspage);
 304static void migrate_read_unlock(struct zspage *zspage);
 305static void kick_deferred_free(struct zs_pool *pool);
 306static void init_deferred_free(struct zs_pool *pool);
 307static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
 308#else
 309static int zsmalloc_mount(void) { return 0; }
 310static void zsmalloc_unmount(void) {}
 311static int zs_register_migration(struct zs_pool *pool) { return 0; }
 312static void zs_unregister_migration(struct zs_pool *pool) {}
 313static void migrate_lock_init(struct zspage *zspage) {}
 314static void migrate_read_lock(struct zspage *zspage) {}
 315static void migrate_read_unlock(struct zspage *zspage) {}
 316static void kick_deferred_free(struct zs_pool *pool) {}
 317static void init_deferred_free(struct zs_pool *pool) {}
 318static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
 319#endif
 320
 321static int create_cache(struct zs_pool *pool)
 322{
 323        pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
 324                                        0, 0, NULL);
 325        if (!pool->handle_cachep)
 326                return 1;
 327
 328        pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
 329                                        0, 0, NULL);
 330        if (!pool->zspage_cachep) {
 331                kmem_cache_destroy(pool->handle_cachep);
 332                pool->handle_cachep = NULL;
 333                return 1;
 334        }
 335
 336        return 0;
 337}
 338
 339static void destroy_cache(struct zs_pool *pool)
 340{
 341        kmem_cache_destroy(pool->handle_cachep);
 342        kmem_cache_destroy(pool->zspage_cachep);
 343}
 344
 345static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
 346{
 347        return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
 348                        gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 349}
 350
 351static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
 352{
 353        kmem_cache_free(pool->handle_cachep, (void *)handle);
 354}
 355
 356static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
 357{
 358        return kmem_cache_alloc(pool->zspage_cachep,
 359                        flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
 360}
 361
 362static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
 363{
 364        kmem_cache_free(pool->zspage_cachep, zspage);
 365}
 366
 367static void record_obj(unsigned long handle, unsigned long obj)
 368{
 369        /*
 370         * lsb of @obj represents handle lock while other bits
 371         * represent object value the handle is pointing so
 372         * updating shouldn't do store tearing.
 373         */
 374        WRITE_ONCE(*(unsigned long *)handle, obj);
 375}
 376
 377/* zpool driver */
 378
 379#ifdef CONFIG_ZPOOL
 380
 381static void *zs_zpool_create(const char *name, gfp_t gfp,
 382                             const struct zpool_ops *zpool_ops,
 383                             struct zpool *zpool)
 384{
 385        /*
 386         * Ignore global gfp flags: zs_malloc() may be invoked from
 387         * different contexts and its caller must provide a valid
 388         * gfp mask.
 389         */
 390        return zs_create_pool(name);
 391}
 392
 393static void zs_zpool_destroy(void *pool)
 394{
 395        zs_destroy_pool(pool);
 396}
 397
 398static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
 399                        unsigned long *handle)
 400{
 401        *handle = zs_malloc(pool, size, gfp);
 402        return *handle ? 0 : -1;
 403}
 404static void zs_zpool_free(void *pool, unsigned long handle)
 405{
 406        zs_free(pool, handle);
 407}
 408
 409static void *zs_zpool_map(void *pool, unsigned long handle,
 410                        enum zpool_mapmode mm)
 411{
 412        enum zs_mapmode zs_mm;
 413
 414        switch (mm) {
 415        case ZPOOL_MM_RO:
 416                zs_mm = ZS_MM_RO;
 417                break;
 418        case ZPOOL_MM_WO:
 419                zs_mm = ZS_MM_WO;
 420                break;
 421        case ZPOOL_MM_RW: /* fallthru */
 422        default:
 423                zs_mm = ZS_MM_RW;
 424                break;
 425        }
 426
 427        return zs_map_object(pool, handle, zs_mm);
 428}
 429static void zs_zpool_unmap(void *pool, unsigned long handle)
 430{
 431        zs_unmap_object(pool, handle);
 432}
 433
 434static u64 zs_zpool_total_size(void *pool)
 435{
 436        return zs_get_total_pages(pool) << PAGE_SHIFT;
 437}
 438
 439static struct zpool_driver zs_zpool_driver = {
 440        .type =         "zsmalloc",
 441        .owner =        THIS_MODULE,
 442        .create =       zs_zpool_create,
 443        .destroy =      zs_zpool_destroy,
 444        .malloc =       zs_zpool_malloc,
 445        .free =         zs_zpool_free,
 446        .map =          zs_zpool_map,
 447        .unmap =        zs_zpool_unmap,
 448        .total_size =   zs_zpool_total_size,
 449};
 450
 451MODULE_ALIAS("zpool-zsmalloc");
 452#endif /* CONFIG_ZPOOL */
 453
 454/* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
 455static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
 456
 457static bool is_zspage_isolated(struct zspage *zspage)
 458{
 459        return zspage->isolated;
 460}
 461
 462static __maybe_unused int is_first_page(struct page *page)
 463{
 464        return PagePrivate(page);
 465}
 466
 467/* Protected by class->lock */
 468static inline int get_zspage_inuse(struct zspage *zspage)
 469{
 470        return zspage->inuse;
 471}
 472
 473static inline void set_zspage_inuse(struct zspage *zspage, int val)
 474{
 475        zspage->inuse = val;
 476}
 477
 478static inline void mod_zspage_inuse(struct zspage *zspage, int val)
 479{
 480        zspage->inuse += val;
 481}
 482
 483static inline struct page *get_first_page(struct zspage *zspage)
 484{
 485        struct page *first_page = zspage->first_page;
 486
 487        VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
 488        return first_page;
 489}
 490
 491static inline int get_first_obj_offset(struct page *page)
 492{
 493        return page->units;
 494}
 495
 496static inline void set_first_obj_offset(struct page *page, int offset)
 497{
 498        page->units = offset;
 499}
 500
 501static inline unsigned int get_freeobj(struct zspage *zspage)
 502{
 503        return zspage->freeobj;
 504}
 505
 506static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
 507{
 508        zspage->freeobj = obj;
 509}
 510
 511static void get_zspage_mapping(struct zspage *zspage,
 512                                unsigned int *class_idx,
 513                                enum fullness_group *fullness)
 514{
 515        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 516
 517        *fullness = zspage->fullness;
 518        *class_idx = zspage->class;
 519}
 520
 521static void set_zspage_mapping(struct zspage *zspage,
 522                                unsigned int class_idx,
 523                                enum fullness_group fullness)
 524{
 525        zspage->class = class_idx;
 526        zspage->fullness = fullness;
 527}
 528
 529/*
 530 * zsmalloc divides the pool into various size classes where each
 531 * class maintains a list of zspages where each zspage is divided
 532 * into equal sized chunks. Each allocation falls into one of these
 533 * classes depending on its size. This function returns index of the
 534 * size class which has chunk size big enough to hold the give size.
 535 */
 536static int get_size_class_index(int size)
 537{
 538        int idx = 0;
 539
 540        if (likely(size > ZS_MIN_ALLOC_SIZE))
 541                idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
 542                                ZS_SIZE_CLASS_DELTA);
 543
 544        return min_t(int, ZS_SIZE_CLASSES - 1, idx);
 545}
 546
 547/* type can be of enum type zs_stat_type or fullness_group */
 548static inline void zs_stat_inc(struct size_class *class,
 549                                int type, unsigned long cnt)
 550{
 551        class->stats.objs[type] += cnt;
 552}
 553
 554/* type can be of enum type zs_stat_type or fullness_group */
 555static inline void zs_stat_dec(struct size_class *class,
 556                                int type, unsigned long cnt)
 557{
 558        class->stats.objs[type] -= cnt;
 559}
 560
 561/* type can be of enum type zs_stat_type or fullness_group */
 562static inline unsigned long zs_stat_get(struct size_class *class,
 563                                int type)
 564{
 565        return class->stats.objs[type];
 566}
 567
 568#ifdef CONFIG_ZSMALLOC_STAT
 569
 570static void __init zs_stat_init(void)
 571{
 572        if (!debugfs_initialized()) {
 573                pr_warn("debugfs not available, stat dir not created\n");
 574                return;
 575        }
 576
 577        zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
 578        if (!zs_stat_root)
 579                pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
 580}
 581
 582static void __exit zs_stat_exit(void)
 583{
 584        debugfs_remove_recursive(zs_stat_root);
 585}
 586
 587static unsigned long zs_can_compact(struct size_class *class);
 588
 589static int zs_stats_size_show(struct seq_file *s, void *v)
 590{
 591        int i;
 592        struct zs_pool *pool = s->private;
 593        struct size_class *class;
 594        int objs_per_zspage;
 595        unsigned long class_almost_full, class_almost_empty;
 596        unsigned long obj_allocated, obj_used, pages_used, freeable;
 597        unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
 598        unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
 599        unsigned long total_freeable = 0;
 600
 601        seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
 602                        "class", "size", "almost_full", "almost_empty",
 603                        "obj_allocated", "obj_used", "pages_used",
 604                        "pages_per_zspage", "freeable");
 605
 606        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
 607                class = pool->size_class[i];
 608
 609                if (class->index != i)
 610                        continue;
 611
 612                spin_lock(&class->lock);
 613                class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
 614                class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
 615                obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
 616                obj_used = zs_stat_get(class, OBJ_USED);
 617                freeable = zs_can_compact(class);
 618                spin_unlock(&class->lock);
 619
 620                objs_per_zspage = class->objs_per_zspage;
 621                pages_used = obj_allocated / objs_per_zspage *
 622                                class->pages_per_zspage;
 623
 624                seq_printf(s, " %5u %5u %11lu %12lu %13lu"
 625                                " %10lu %10lu %16d %8lu\n",
 626                        i, class->size, class_almost_full, class_almost_empty,
 627                        obj_allocated, obj_used, pages_used,
 628                        class->pages_per_zspage, freeable);
 629
 630                total_class_almost_full += class_almost_full;
 631                total_class_almost_empty += class_almost_empty;
 632                total_objs += obj_allocated;
 633                total_used_objs += obj_used;
 634                total_pages += pages_used;
 635                total_freeable += freeable;
 636        }
 637
 638        seq_puts(s, "\n");
 639        seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
 640                        "Total", "", total_class_almost_full,
 641                        total_class_almost_empty, total_objs,
 642                        total_used_objs, total_pages, "", total_freeable);
 643
 644        return 0;
 645}
 646DEFINE_SHOW_ATTRIBUTE(zs_stats_size);
 647
 648static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 649{
 650        struct dentry *entry;
 651
 652        if (!zs_stat_root) {
 653                pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
 654                return;
 655        }
 656
 657        entry = debugfs_create_dir(name, zs_stat_root);
 658        if (!entry) {
 659                pr_warn("debugfs dir <%s> creation failed\n", name);
 660                return;
 661        }
 662        pool->stat_dentry = entry;
 663
 664        entry = debugfs_create_file("classes", S_IFREG | 0444,
 665                                    pool->stat_dentry, pool,
 666                                    &zs_stats_size_fops);
 667        if (!entry) {
 668                pr_warn("%s: debugfs file entry <%s> creation failed\n",
 669                                name, "classes");
 670                debugfs_remove_recursive(pool->stat_dentry);
 671                pool->stat_dentry = NULL;
 672        }
 673}
 674
 675static void zs_pool_stat_destroy(struct zs_pool *pool)
 676{
 677        debugfs_remove_recursive(pool->stat_dentry);
 678}
 679
 680#else /* CONFIG_ZSMALLOC_STAT */
 681static void __init zs_stat_init(void)
 682{
 683}
 684
 685static void __exit zs_stat_exit(void)
 686{
 687}
 688
 689static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
 690{
 691}
 692
 693static inline void zs_pool_stat_destroy(struct zs_pool *pool)
 694{
 695}
 696#endif
 697
 698
 699/*
 700 * For each size class, zspages are divided into different groups
 701 * depending on how "full" they are. This was done so that we could
 702 * easily find empty or nearly empty zspages when we try to shrink
 703 * the pool (not yet implemented). This function returns fullness
 704 * status of the given page.
 705 */
 706static enum fullness_group get_fullness_group(struct size_class *class,
 707                                                struct zspage *zspage)
 708{
 709        int inuse, objs_per_zspage;
 710        enum fullness_group fg;
 711
 712        inuse = get_zspage_inuse(zspage);
 713        objs_per_zspage = class->objs_per_zspage;
 714
 715        if (inuse == 0)
 716                fg = ZS_EMPTY;
 717        else if (inuse == objs_per_zspage)
 718                fg = ZS_FULL;
 719        else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
 720                fg = ZS_ALMOST_EMPTY;
 721        else
 722                fg = ZS_ALMOST_FULL;
 723
 724        return fg;
 725}
 726
 727/*
 728 * Each size class maintains various freelists and zspages are assigned
 729 * to one of these freelists based on the number of live objects they
 730 * have. This functions inserts the given zspage into the freelist
 731 * identified by <class, fullness_group>.
 732 */
 733static void insert_zspage(struct size_class *class,
 734                                struct zspage *zspage,
 735                                enum fullness_group fullness)
 736{
 737        struct zspage *head;
 738
 739        zs_stat_inc(class, fullness, 1);
 740        head = list_first_entry_or_null(&class->fullness_list[fullness],
 741                                        struct zspage, list);
 742        /*
 743         * We want to see more ZS_FULL pages and less almost empty/full.
 744         * Put pages with higher ->inuse first.
 745         */
 746        if (head) {
 747                if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
 748                        list_add(&zspage->list, &head->list);
 749                        return;
 750                }
 751        }
 752        list_add(&zspage->list, &class->fullness_list[fullness]);
 753}
 754
 755/*
 756 * This function removes the given zspage from the freelist identified
 757 * by <class, fullness_group>.
 758 */
 759static void remove_zspage(struct size_class *class,
 760                                struct zspage *zspage,
 761                                enum fullness_group fullness)
 762{
 763        VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
 764        VM_BUG_ON(is_zspage_isolated(zspage));
 765
 766        list_del_init(&zspage->list);
 767        zs_stat_dec(class, fullness, 1);
 768}
 769
 770/*
 771 * Each size class maintains zspages in different fullness groups depending
 772 * on the number of live objects they contain. When allocating or freeing
 773 * objects, the fullness status of the page can change, say, from ALMOST_FULL
 774 * to ALMOST_EMPTY when freeing an object. This function checks if such
 775 * a status change has occurred for the given page and accordingly moves the
 776 * page from the freelist of the old fullness group to that of the new
 777 * fullness group.
 778 */
 779static enum fullness_group fix_fullness_group(struct size_class *class,
 780                                                struct zspage *zspage)
 781{
 782        int class_idx;
 783        enum fullness_group currfg, newfg;
 784
 785        get_zspage_mapping(zspage, &class_idx, &currfg);
 786        newfg = get_fullness_group(class, zspage);
 787        if (newfg == currfg)
 788                goto out;
 789
 790        if (!is_zspage_isolated(zspage)) {
 791                remove_zspage(class, zspage, currfg);
 792                insert_zspage(class, zspage, newfg);
 793        }
 794
 795        set_zspage_mapping(zspage, class_idx, newfg);
 796
 797out:
 798        return newfg;
 799}
 800
 801/*
 802 * We have to decide on how many pages to link together
 803 * to form a zspage for each size class. This is important
 804 * to reduce wastage due to unusable space left at end of
 805 * each zspage which is given as:
 806 *     wastage = Zp % class_size
 807 *     usage = Zp - wastage
 808 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
 809 *
 810 * For example, for size class of 3/8 * PAGE_SIZE, we should
 811 * link together 3 PAGE_SIZE sized pages to form a zspage
 812 * since then we can perfectly fit in 8 such objects.
 813 */
 814static int get_pages_per_zspage(int class_size)
 815{
 816        int i, max_usedpc = 0;
 817        /* zspage order which gives maximum used size per KB */
 818        int max_usedpc_order = 1;
 819
 820        for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
 821                int zspage_size;
 822                int waste, usedpc;
 823
 824                zspage_size = i * PAGE_SIZE;
 825                waste = zspage_size % class_size;
 826                usedpc = (zspage_size - waste) * 100 / zspage_size;
 827
 828                if (usedpc > max_usedpc) {
 829                        max_usedpc = usedpc;
 830                        max_usedpc_order = i;
 831                }
 832        }
 833
 834        return max_usedpc_order;
 835}
 836
 837static struct zspage *get_zspage(struct page *page)
 838{
 839        struct zspage *zspage = (struct zspage *)page->private;
 840
 841        BUG_ON(zspage->magic != ZSPAGE_MAGIC);
 842        return zspage;
 843}
 844
 845static struct page *get_next_page(struct page *page)
 846{
 847        if (unlikely(PageHugeObject(page)))
 848                return NULL;
 849
 850        return page->freelist;
 851}
 852
 853/**
 854 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
 855 * @obj: the encoded object value
 856 * @page: page object resides in zspage
 857 * @obj_idx: object index
 858 */
 859static void obj_to_location(unsigned long obj, struct page **page,
 860                                unsigned int *obj_idx)
 861{
 862        obj >>= OBJ_TAG_BITS;
 863        *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
 864        *obj_idx = (obj & OBJ_INDEX_MASK);
 865}
 866
 867/**
 868 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
 869 * @page: page object resides in zspage
 870 * @obj_idx: object index
 871 */
 872static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
 873{
 874        unsigned long obj;
 875
 876        obj = page_to_pfn(page) << OBJ_INDEX_BITS;
 877        obj |= obj_idx & OBJ_INDEX_MASK;
 878        obj <<= OBJ_TAG_BITS;
 879
 880        return obj;
 881}
 882
 883static unsigned long handle_to_obj(unsigned long handle)
 884{
 885        return *(unsigned long *)handle;
 886}
 887
 888static unsigned long obj_to_head(struct page *page, void *obj)
 889{
 890        if (unlikely(PageHugeObject(page))) {
 891                VM_BUG_ON_PAGE(!is_first_page(page), page);
 892                return page->index;
 893        } else
 894                return *(unsigned long *)obj;
 895}
 896
 897static inline int testpin_tag(unsigned long handle)
 898{
 899        return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
 900}
 901
 902static inline int trypin_tag(unsigned long handle)
 903{
 904        return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
 905}
 906
 907static void pin_tag(unsigned long handle)
 908{
 909        bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
 910}
 911
 912static void unpin_tag(unsigned long handle)
 913{
 914        bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
 915}
 916
 917static void reset_page(struct page *page)
 918{
 919        __ClearPageMovable(page);
 920        ClearPagePrivate(page);
 921        set_page_private(page, 0);
 922        page_mapcount_reset(page);
 923        ClearPageHugeObject(page);
 924        page->freelist = NULL;
 925}
 926
 927static int trylock_zspage(struct zspage *zspage)
 928{
 929        struct page *cursor, *fail;
 930
 931        for (cursor = get_first_page(zspage); cursor != NULL; cursor =
 932                                        get_next_page(cursor)) {
 933                if (!trylock_page(cursor)) {
 934                        fail = cursor;
 935                        goto unlock;
 936                }
 937        }
 938
 939        return 1;
 940unlock:
 941        for (cursor = get_first_page(zspage); cursor != fail; cursor =
 942                                        get_next_page(cursor))
 943                unlock_page(cursor);
 944
 945        return 0;
 946}
 947
 948static void __free_zspage(struct zs_pool *pool, struct size_class *class,
 949                                struct zspage *zspage)
 950{
 951        struct page *page, *next;
 952        enum fullness_group fg;
 953        unsigned int class_idx;
 954
 955        get_zspage_mapping(zspage, &class_idx, &fg);
 956
 957        assert_spin_locked(&class->lock);
 958
 959        VM_BUG_ON(get_zspage_inuse(zspage));
 960        VM_BUG_ON(fg != ZS_EMPTY);
 961
 962        next = page = get_first_page(zspage);
 963        do {
 964                VM_BUG_ON_PAGE(!PageLocked(page), page);
 965                next = get_next_page(page);
 966                reset_page(page);
 967                unlock_page(page);
 968                dec_zone_page_state(page, NR_ZSPAGES);
 969                put_page(page);
 970                page = next;
 971        } while (page != NULL);
 972
 973        cache_free_zspage(pool, zspage);
 974
 975        zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
 976        atomic_long_sub(class->pages_per_zspage,
 977                                        &pool->pages_allocated);
 978}
 979
 980static void free_zspage(struct zs_pool *pool, struct size_class *class,
 981                                struct zspage *zspage)
 982{
 983        VM_BUG_ON(get_zspage_inuse(zspage));
 984        VM_BUG_ON(list_empty(&zspage->list));
 985
 986        if (!trylock_zspage(zspage)) {
 987                kick_deferred_free(pool);
 988                return;
 989        }
 990
 991        remove_zspage(class, zspage, ZS_EMPTY);
 992        __free_zspage(pool, class, zspage);
 993}
 994
 995/* Initialize a newly allocated zspage */
 996static void init_zspage(struct size_class *class, struct zspage *zspage)
 997{
 998        unsigned int freeobj = 1;
 999        unsigned long off = 0;
1000        struct page *page = get_first_page(zspage);
1001
1002        while (page) {
1003                struct page *next_page;
1004                struct link_free *link;
1005                void *vaddr;
1006
1007                set_first_obj_offset(page, off);
1008
1009                vaddr = kmap_atomic(page);
1010                link = (struct link_free *)vaddr + off / sizeof(*link);
1011
1012                while ((off += class->size) < PAGE_SIZE) {
1013                        link->next = freeobj++ << OBJ_TAG_BITS;
1014                        link += class->size / sizeof(*link);
1015                }
1016
1017                /*
1018                 * We now come to the last (full or partial) object on this
1019                 * page, which must point to the first object on the next
1020                 * page (if present)
1021                 */
1022                next_page = get_next_page(page);
1023                if (next_page) {
1024                        link->next = freeobj++ << OBJ_TAG_BITS;
1025                } else {
1026                        /*
1027                         * Reset OBJ_TAG_BITS bit to last link to tell
1028                         * whether it's allocated object or not.
1029                         */
1030                        link->next = -1UL << OBJ_TAG_BITS;
1031                }
1032                kunmap_atomic(vaddr);
1033                page = next_page;
1034                off %= PAGE_SIZE;
1035        }
1036
1037        set_freeobj(zspage, 0);
1038}
1039
1040static void create_page_chain(struct size_class *class, struct zspage *zspage,
1041                                struct page *pages[])
1042{
1043        int i;
1044        struct page *page;
1045        struct page *prev_page = NULL;
1046        int nr_pages = class->pages_per_zspage;
1047
1048        /*
1049         * Allocate individual pages and link them together as:
1050         * 1. all pages are linked together using page->freelist
1051         * 2. each sub-page point to zspage using page->private
1052         *
1053         * we set PG_private to identify the first page (i.e. no other sub-page
1054         * has this flag set).
1055         */
1056        for (i = 0; i < nr_pages; i++) {
1057                page = pages[i];
1058                set_page_private(page, (unsigned long)zspage);
1059                page->freelist = NULL;
1060                if (i == 0) {
1061                        zspage->first_page = page;
1062                        SetPagePrivate(page);
1063                        if (unlikely(class->objs_per_zspage == 1 &&
1064                                        class->pages_per_zspage == 1))
1065                                SetPageHugeObject(page);
1066                } else {
1067                        prev_page->freelist = page;
1068                }
1069                prev_page = page;
1070        }
1071}
1072
1073/*
1074 * Allocate a zspage for the given size class
1075 */
1076static struct zspage *alloc_zspage(struct zs_pool *pool,
1077                                        struct size_class *class,
1078                                        gfp_t gfp)
1079{
1080        int i;
1081        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1082        struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1083
1084        if (!zspage)
1085                return NULL;
1086
1087        memset(zspage, 0, sizeof(struct zspage));
1088        zspage->magic = ZSPAGE_MAGIC;
1089        migrate_lock_init(zspage);
1090
1091        for (i = 0; i < class->pages_per_zspage; i++) {
1092                struct page *page;
1093
1094                page = alloc_page(gfp);
1095                if (!page) {
1096                        while (--i >= 0) {
1097                                dec_zone_page_state(pages[i], NR_ZSPAGES);
1098                                __free_page(pages[i]);
1099                        }
1100                        cache_free_zspage(pool, zspage);
1101                        return NULL;
1102                }
1103
1104                inc_zone_page_state(page, NR_ZSPAGES);
1105                pages[i] = page;
1106        }
1107
1108        create_page_chain(class, zspage, pages);
1109        init_zspage(class, zspage);
1110
1111        return zspage;
1112}
1113
1114static struct zspage *find_get_zspage(struct size_class *class)
1115{
1116        int i;
1117        struct zspage *zspage;
1118
1119        for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1120                zspage = list_first_entry_or_null(&class->fullness_list[i],
1121                                struct zspage, list);
1122                if (zspage)
1123                        break;
1124        }
1125
1126        return zspage;
1127}
1128
1129#ifdef CONFIG_PGTABLE_MAPPING
1130static inline int __zs_cpu_up(struct mapping_area *area)
1131{
1132        /*
1133         * Make sure we don't leak memory if a cpu UP notification
1134         * and zs_init() race and both call zs_cpu_up() on the same cpu
1135         */
1136        if (area->vm)
1137                return 0;
1138        area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1139        if (!area->vm)
1140                return -ENOMEM;
1141        return 0;
1142}
1143
1144static inline void __zs_cpu_down(struct mapping_area *area)
1145{
1146        if (area->vm)
1147                free_vm_area(area->vm);
1148        area->vm = NULL;
1149}
1150
1151static inline void *__zs_map_object(struct mapping_area *area,
1152                                struct page *pages[2], int off, int size)
1153{
1154        BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1155        area->vm_addr = area->vm->addr;
1156        return area->vm_addr + off;
1157}
1158
1159static inline void __zs_unmap_object(struct mapping_area *area,
1160                                struct page *pages[2], int off, int size)
1161{
1162        unsigned long addr = (unsigned long)area->vm_addr;
1163
1164        unmap_kernel_range(addr, PAGE_SIZE * 2);
1165}
1166
1167#else /* CONFIG_PGTABLE_MAPPING */
1168
1169static inline int __zs_cpu_up(struct mapping_area *area)
1170{
1171        /*
1172         * Make sure we don't leak memory if a cpu UP notification
1173         * and zs_init() race and both call zs_cpu_up() on the same cpu
1174         */
1175        if (area->vm_buf)
1176                return 0;
1177        area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1178        if (!area->vm_buf)
1179                return -ENOMEM;
1180        return 0;
1181}
1182
1183static inline void __zs_cpu_down(struct mapping_area *area)
1184{
1185        kfree(area->vm_buf);
1186        area->vm_buf = NULL;
1187}
1188
1189static void *__zs_map_object(struct mapping_area *area,
1190                        struct page *pages[2], int off, int size)
1191{
1192        int sizes[2];
1193        void *addr;
1194        char *buf = area->vm_buf;
1195
1196        /* disable page faults to match kmap_atomic() return conditions */
1197        pagefault_disable();
1198
1199        /* no read fastpath */
1200        if (area->vm_mm == ZS_MM_WO)
1201                goto out;
1202
1203        sizes[0] = PAGE_SIZE - off;
1204        sizes[1] = size - sizes[0];
1205
1206        /* copy object to per-cpu buffer */
1207        addr = kmap_atomic(pages[0]);
1208        memcpy(buf, addr + off, sizes[0]);
1209        kunmap_atomic(addr);
1210        addr = kmap_atomic(pages[1]);
1211        memcpy(buf + sizes[0], addr, sizes[1]);
1212        kunmap_atomic(addr);
1213out:
1214        return area->vm_buf;
1215}
1216
1217static void __zs_unmap_object(struct mapping_area *area,
1218                        struct page *pages[2], int off, int size)
1219{
1220        int sizes[2];
1221        void *addr;
1222        char *buf;
1223
1224        /* no write fastpath */
1225        if (area->vm_mm == ZS_MM_RO)
1226                goto out;
1227
1228        buf = area->vm_buf;
1229        buf = buf + ZS_HANDLE_SIZE;
1230        size -= ZS_HANDLE_SIZE;
1231        off += ZS_HANDLE_SIZE;
1232
1233        sizes[0] = PAGE_SIZE - off;
1234        sizes[1] = size - sizes[0];
1235
1236        /* copy per-cpu buffer to object */
1237        addr = kmap_atomic(pages[0]);
1238        memcpy(addr + off, buf, sizes[0]);
1239        kunmap_atomic(addr);
1240        addr = kmap_atomic(pages[1]);
1241        memcpy(addr, buf + sizes[0], sizes[1]);
1242        kunmap_atomic(addr);
1243
1244out:
1245        /* enable page faults to match kunmap_atomic() return conditions */
1246        pagefault_enable();
1247}
1248
1249#endif /* CONFIG_PGTABLE_MAPPING */
1250
1251static int zs_cpu_prepare(unsigned int cpu)
1252{
1253        struct mapping_area *area;
1254
1255        area = &per_cpu(zs_map_area, cpu);
1256        return __zs_cpu_up(area);
1257}
1258
1259static int zs_cpu_dead(unsigned int cpu)
1260{
1261        struct mapping_area *area;
1262
1263        area = &per_cpu(zs_map_area, cpu);
1264        __zs_cpu_down(area);
1265        return 0;
1266}
1267
1268static bool can_merge(struct size_class *prev, int pages_per_zspage,
1269                                        int objs_per_zspage)
1270{
1271        if (prev->pages_per_zspage == pages_per_zspage &&
1272                prev->objs_per_zspage == objs_per_zspage)
1273                return true;
1274
1275        return false;
1276}
1277
1278static bool zspage_full(struct size_class *class, struct zspage *zspage)
1279{
1280        return get_zspage_inuse(zspage) == class->objs_per_zspage;
1281}
1282
1283unsigned long zs_get_total_pages(struct zs_pool *pool)
1284{
1285        return atomic_long_read(&pool->pages_allocated);
1286}
1287EXPORT_SYMBOL_GPL(zs_get_total_pages);
1288
1289/**
1290 * zs_map_object - get address of allocated object from handle.
1291 * @pool: pool from which the object was allocated
1292 * @handle: handle returned from zs_malloc
1293 * @mm: maping mode to use
1294 *
1295 * Before using an object allocated from zs_malloc, it must be mapped using
1296 * this function. When done with the object, it must be unmapped using
1297 * zs_unmap_object.
1298 *
1299 * Only one object can be mapped per cpu at a time. There is no protection
1300 * against nested mappings.
1301 *
1302 * This function returns with preemption and page faults disabled.
1303 */
1304void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1305                        enum zs_mapmode mm)
1306{
1307        struct zspage *zspage;
1308        struct page *page;
1309        unsigned long obj, off;
1310        unsigned int obj_idx;
1311
1312        unsigned int class_idx;
1313        enum fullness_group fg;
1314        struct size_class *class;
1315        struct mapping_area *area;
1316        struct page *pages[2];
1317        void *ret;
1318
1319        /*
1320         * Because we use per-cpu mapping areas shared among the
1321         * pools/users, we can't allow mapping in interrupt context
1322         * because it can corrupt another users mappings.
1323         */
1324        BUG_ON(in_interrupt());
1325
1326        /* From now on, migration cannot move the object */
1327        pin_tag(handle);
1328
1329        obj = handle_to_obj(handle);
1330        obj_to_location(obj, &page, &obj_idx);
1331        zspage = get_zspage(page);
1332
1333        /* migration cannot move any subpage in this zspage */
1334        migrate_read_lock(zspage);
1335
1336        get_zspage_mapping(zspage, &class_idx, &fg);
1337        class = pool->size_class[class_idx];
1338        off = (class->size * obj_idx) & ~PAGE_MASK;
1339
1340        area = &get_cpu_var(zs_map_area);
1341        area->vm_mm = mm;
1342        if (off + class->size <= PAGE_SIZE) {
1343                /* this object is contained entirely within a page */
1344                area->vm_addr = kmap_atomic(page);
1345                ret = area->vm_addr + off;
1346                goto out;
1347        }
1348
1349        /* this object spans two pages */
1350        pages[0] = page;
1351        pages[1] = get_next_page(page);
1352        BUG_ON(!pages[1]);
1353
1354        ret = __zs_map_object(area, pages, off, class->size);
1355out:
1356        if (likely(!PageHugeObject(page)))
1357                ret += ZS_HANDLE_SIZE;
1358
1359        return ret;
1360}
1361EXPORT_SYMBOL_GPL(zs_map_object);
1362
1363void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1364{
1365        struct zspage *zspage;
1366        struct page *page;
1367        unsigned long obj, off;
1368        unsigned int obj_idx;
1369
1370        unsigned int class_idx;
1371        enum fullness_group fg;
1372        struct size_class *class;
1373        struct mapping_area *area;
1374
1375        obj = handle_to_obj(handle);
1376        obj_to_location(obj, &page, &obj_idx);
1377        zspage = get_zspage(page);
1378        get_zspage_mapping(zspage, &class_idx, &fg);
1379        class = pool->size_class[class_idx];
1380        off = (class->size * obj_idx) & ~PAGE_MASK;
1381
1382        area = this_cpu_ptr(&zs_map_area);
1383        if (off + class->size <= PAGE_SIZE)
1384                kunmap_atomic(area->vm_addr);
1385        else {
1386                struct page *pages[2];
1387
1388                pages[0] = page;
1389                pages[1] = get_next_page(page);
1390                BUG_ON(!pages[1]);
1391
1392                __zs_unmap_object(area, pages, off, class->size);
1393        }
1394        put_cpu_var(zs_map_area);
1395
1396        migrate_read_unlock(zspage);
1397        unpin_tag(handle);
1398}
1399EXPORT_SYMBOL_GPL(zs_unmap_object);
1400
1401/**
1402 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1403 *                        zsmalloc &size_class.
1404 * @pool: zsmalloc pool to use
1405 *
1406 * The function returns the size of the first huge class - any object of equal
1407 * or bigger size will be stored in zspage consisting of a single physical
1408 * page.
1409 *
1410 * Context: Any context.
1411 *
1412 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1413 */
1414size_t zs_huge_class_size(struct zs_pool *pool)
1415{
1416        return huge_class_size;
1417}
1418EXPORT_SYMBOL_GPL(zs_huge_class_size);
1419
1420static unsigned long obj_malloc(struct size_class *class,
1421                                struct zspage *zspage, unsigned long handle)
1422{
1423        int i, nr_page, offset;
1424        unsigned long obj;
1425        struct link_free *link;
1426
1427        struct page *m_page;
1428        unsigned long m_offset;
1429        void *vaddr;
1430
1431        handle |= OBJ_ALLOCATED_TAG;
1432        obj = get_freeobj(zspage);
1433
1434        offset = obj * class->size;
1435        nr_page = offset >> PAGE_SHIFT;
1436        m_offset = offset & ~PAGE_MASK;
1437        m_page = get_first_page(zspage);
1438
1439        for (i = 0; i < nr_page; i++)
1440                m_page = get_next_page(m_page);
1441
1442        vaddr = kmap_atomic(m_page);
1443        link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1444        set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1445        if (likely(!PageHugeObject(m_page)))
1446                /* record handle in the header of allocated chunk */
1447                link->handle = handle;
1448        else
1449                /* record handle to page->index */
1450                zspage->first_page->index = handle;
1451
1452        kunmap_atomic(vaddr);
1453        mod_zspage_inuse(zspage, 1);
1454        zs_stat_inc(class, OBJ_USED, 1);
1455
1456        obj = location_to_obj(m_page, obj);
1457
1458        return obj;
1459}
1460
1461
1462/**
1463 * zs_malloc - Allocate block of given size from pool.
1464 * @pool: pool to allocate from
1465 * @size: size of block to allocate
1466 * @gfp: gfp flags when allocating object
1467 *
1468 * On success, handle to the allocated object is returned,
1469 * otherwise 0.
1470 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1471 */
1472unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1473{
1474        unsigned long handle, obj;
1475        struct size_class *class;
1476        enum fullness_group newfg;
1477        struct zspage *zspage;
1478
1479        if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1480                return 0;
1481
1482        handle = cache_alloc_handle(pool, gfp);
1483        if (!handle)
1484                return 0;
1485
1486        /* extra space in chunk to keep the handle */
1487        size += ZS_HANDLE_SIZE;
1488        class = pool->size_class[get_size_class_index(size)];
1489
1490        spin_lock(&class->lock);
1491        zspage = find_get_zspage(class);
1492        if (likely(zspage)) {
1493                obj = obj_malloc(class, zspage, handle);
1494                /* Now move the zspage to another fullness group, if required */
1495                fix_fullness_group(class, zspage);
1496                record_obj(handle, obj);
1497                spin_unlock(&class->lock);
1498
1499                return handle;
1500        }
1501
1502        spin_unlock(&class->lock);
1503
1504        zspage = alloc_zspage(pool, class, gfp);
1505        if (!zspage) {
1506                cache_free_handle(pool, handle);
1507                return 0;
1508        }
1509
1510        spin_lock(&class->lock);
1511        obj = obj_malloc(class, zspage, handle);
1512        newfg = get_fullness_group(class, zspage);
1513        insert_zspage(class, zspage, newfg);
1514        set_zspage_mapping(zspage, class->index, newfg);
1515        record_obj(handle, obj);
1516        atomic_long_add(class->pages_per_zspage,
1517                                &pool->pages_allocated);
1518        zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1519
1520        /* We completely set up zspage so mark them as movable */
1521        SetZsPageMovable(pool, zspage);
1522        spin_unlock(&class->lock);
1523
1524        return handle;
1525}
1526EXPORT_SYMBOL_GPL(zs_malloc);
1527
1528static void obj_free(struct size_class *class, unsigned long obj)
1529{
1530        struct link_free *link;
1531        struct zspage *zspage;
1532        struct page *f_page;
1533        unsigned long f_offset;
1534        unsigned int f_objidx;
1535        void *vaddr;
1536
1537        obj &= ~OBJ_ALLOCATED_TAG;
1538        obj_to_location(obj, &f_page, &f_objidx);
1539        f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1540        zspage = get_zspage(f_page);
1541
1542        vaddr = kmap_atomic(f_page);
1543
1544        /* Insert this object in containing zspage's freelist */
1545        link = (struct link_free *)(vaddr + f_offset);
1546        link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1547        kunmap_atomic(vaddr);
1548        set_freeobj(zspage, f_objidx);
1549        mod_zspage_inuse(zspage, -1);
1550        zs_stat_dec(class, OBJ_USED, 1);
1551}
1552
1553void zs_free(struct zs_pool *pool, unsigned long handle)
1554{
1555        struct zspage *zspage;
1556        struct page *f_page;
1557        unsigned long obj;
1558        unsigned int f_objidx;
1559        int class_idx;
1560        struct size_class *class;
1561        enum fullness_group fullness;
1562        bool isolated;
1563
1564        if (unlikely(!handle))
1565                return;
1566
1567        pin_tag(handle);
1568        obj = handle_to_obj(handle);
1569        obj_to_location(obj, &f_page, &f_objidx);
1570        zspage = get_zspage(f_page);
1571
1572        migrate_read_lock(zspage);
1573
1574        get_zspage_mapping(zspage, &class_idx, &fullness);
1575        class = pool->size_class[class_idx];
1576
1577        spin_lock(&class->lock);
1578        obj_free(class, obj);
1579        fullness = fix_fullness_group(class, zspage);
1580        if (fullness != ZS_EMPTY) {
1581                migrate_read_unlock(zspage);
1582                goto out;
1583        }
1584
1585        isolated = is_zspage_isolated(zspage);
1586        migrate_read_unlock(zspage);
1587        /* If zspage is isolated, zs_page_putback will free the zspage */
1588        if (likely(!isolated))
1589                free_zspage(pool, class, zspage);
1590out:
1591
1592        spin_unlock(&class->lock);
1593        unpin_tag(handle);
1594        cache_free_handle(pool, handle);
1595}
1596EXPORT_SYMBOL_GPL(zs_free);
1597
1598static void zs_object_copy(struct size_class *class, unsigned long dst,
1599                                unsigned long src)
1600{
1601        struct page *s_page, *d_page;
1602        unsigned int s_objidx, d_objidx;
1603        unsigned long s_off, d_off;
1604        void *s_addr, *d_addr;
1605        int s_size, d_size, size;
1606        int written = 0;
1607
1608        s_size = d_size = class->size;
1609
1610        obj_to_location(src, &s_page, &s_objidx);
1611        obj_to_location(dst, &d_page, &d_objidx);
1612
1613        s_off = (class->size * s_objidx) & ~PAGE_MASK;
1614        d_off = (class->size * d_objidx) & ~PAGE_MASK;
1615
1616        if (s_off + class->size > PAGE_SIZE)
1617                s_size = PAGE_SIZE - s_off;
1618
1619        if (d_off + class->size > PAGE_SIZE)
1620                d_size = PAGE_SIZE - d_off;
1621
1622        s_addr = kmap_atomic(s_page);
1623        d_addr = kmap_atomic(d_page);
1624
1625        while (1) {
1626                size = min(s_size, d_size);
1627                memcpy(d_addr + d_off, s_addr + s_off, size);
1628                written += size;
1629
1630                if (written == class->size)
1631                        break;
1632
1633                s_off += size;
1634                s_size -= size;
1635                d_off += size;
1636                d_size -= size;
1637
1638                if (s_off >= PAGE_SIZE) {
1639                        kunmap_atomic(d_addr);
1640                        kunmap_atomic(s_addr);
1641                        s_page = get_next_page(s_page);
1642                        s_addr = kmap_atomic(s_page);
1643                        d_addr = kmap_atomic(d_page);
1644                        s_size = class->size - written;
1645                        s_off = 0;
1646                }
1647
1648                if (d_off >= PAGE_SIZE) {
1649                        kunmap_atomic(d_addr);
1650                        d_page = get_next_page(d_page);
1651                        d_addr = kmap_atomic(d_page);
1652                        d_size = class->size - written;
1653                        d_off = 0;
1654                }
1655        }
1656
1657        kunmap_atomic(d_addr);
1658        kunmap_atomic(s_addr);
1659}
1660
1661/*
1662 * Find alloced object in zspage from index object and
1663 * return handle.
1664 */
1665static unsigned long find_alloced_obj(struct size_class *class,
1666                                        struct page *page, int *obj_idx)
1667{
1668        unsigned long head;
1669        int offset = 0;
1670        int index = *obj_idx;
1671        unsigned long handle = 0;
1672        void *addr = kmap_atomic(page);
1673
1674        offset = get_first_obj_offset(page);
1675        offset += class->size * index;
1676
1677        while (offset < PAGE_SIZE) {
1678                head = obj_to_head(page, addr + offset);
1679                if (head & OBJ_ALLOCATED_TAG) {
1680                        handle = head & ~OBJ_ALLOCATED_TAG;
1681                        if (trypin_tag(handle))
1682                                break;
1683                        handle = 0;
1684                }
1685
1686                offset += class->size;
1687                index++;
1688        }
1689
1690        kunmap_atomic(addr);
1691
1692        *obj_idx = index;
1693
1694        return handle;
1695}
1696
1697struct zs_compact_control {
1698        /* Source spage for migration which could be a subpage of zspage */
1699        struct page *s_page;
1700        /* Destination page for migration which should be a first page
1701         * of zspage. */
1702        struct page *d_page;
1703         /* Starting object index within @s_page which used for live object
1704          * in the subpage. */
1705        int obj_idx;
1706};
1707
1708static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1709                                struct zs_compact_control *cc)
1710{
1711        unsigned long used_obj, free_obj;
1712        unsigned long handle;
1713        struct page *s_page = cc->s_page;
1714        struct page *d_page = cc->d_page;
1715        int obj_idx = cc->obj_idx;
1716        int ret = 0;
1717
1718        while (1) {
1719                handle = find_alloced_obj(class, s_page, &obj_idx);
1720                if (!handle) {
1721                        s_page = get_next_page(s_page);
1722                        if (!s_page)
1723                                break;
1724                        obj_idx = 0;
1725                        continue;
1726                }
1727
1728                /* Stop if there is no more space */
1729                if (zspage_full(class, get_zspage(d_page))) {
1730                        unpin_tag(handle);
1731                        ret = -ENOMEM;
1732                        break;
1733                }
1734
1735                used_obj = handle_to_obj(handle);
1736                free_obj = obj_malloc(class, get_zspage(d_page), handle);
1737                zs_object_copy(class, free_obj, used_obj);
1738                obj_idx++;
1739                /*
1740                 * record_obj updates handle's value to free_obj and it will
1741                 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1742                 * breaks synchronization using pin_tag(e,g, zs_free) so
1743                 * let's keep the lock bit.
1744                 */
1745                free_obj |= BIT(HANDLE_PIN_BIT);
1746                record_obj(handle, free_obj);
1747                unpin_tag(handle);
1748                obj_free(class, used_obj);
1749        }
1750
1751        /* Remember last position in this iteration */
1752        cc->s_page = s_page;
1753        cc->obj_idx = obj_idx;
1754
1755        return ret;
1756}
1757
1758static struct zspage *isolate_zspage(struct size_class *class, bool source)
1759{
1760        int i;
1761        struct zspage *zspage;
1762        enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1763
1764        if (!source) {
1765                fg[0] = ZS_ALMOST_FULL;
1766                fg[1] = ZS_ALMOST_EMPTY;
1767        }
1768
1769        for (i = 0; i < 2; i++) {
1770                zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1771                                                        struct zspage, list);
1772                if (zspage) {
1773                        VM_BUG_ON(is_zspage_isolated(zspage));
1774                        remove_zspage(class, zspage, fg[i]);
1775                        return zspage;
1776                }
1777        }
1778
1779        return zspage;
1780}
1781
1782/*
1783 * putback_zspage - add @zspage into right class's fullness list
1784 * @class: destination class
1785 * @zspage: target page
1786 *
1787 * Return @zspage's fullness_group
1788 */
1789static enum fullness_group putback_zspage(struct size_class *class,
1790                        struct zspage *zspage)
1791{
1792        enum fullness_group fullness;
1793
1794        VM_BUG_ON(is_zspage_isolated(zspage));
1795
1796        fullness = get_fullness_group(class, zspage);
1797        insert_zspage(class, zspage, fullness);
1798        set_zspage_mapping(zspage, class->index, fullness);
1799
1800        return fullness;
1801}
1802
1803#ifdef CONFIG_COMPACTION
1804/*
1805 * To prevent zspage destroy during migration, zspage freeing should
1806 * hold locks of all pages in the zspage.
1807 */
1808static void lock_zspage(struct zspage *zspage)
1809{
1810        struct page *page = get_first_page(zspage);
1811
1812        do {
1813                lock_page(page);
1814        } while ((page = get_next_page(page)) != NULL);
1815}
1816
1817static struct dentry *zs_mount(struct file_system_type *fs_type,
1818                                int flags, const char *dev_name, void *data)
1819{
1820        static const struct dentry_operations ops = {
1821                .d_dname = simple_dname,
1822        };
1823
1824        return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1825}
1826
1827static struct file_system_type zsmalloc_fs = {
1828        .name           = "zsmalloc",
1829        .mount          = zs_mount,
1830        .kill_sb        = kill_anon_super,
1831};
1832
1833static int zsmalloc_mount(void)
1834{
1835        int ret = 0;
1836
1837        zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1838        if (IS_ERR(zsmalloc_mnt))
1839                ret = PTR_ERR(zsmalloc_mnt);
1840
1841        return ret;
1842}
1843
1844static void zsmalloc_unmount(void)
1845{
1846        kern_unmount(zsmalloc_mnt);
1847}
1848
1849static void migrate_lock_init(struct zspage *zspage)
1850{
1851        rwlock_init(&zspage->lock);
1852}
1853
1854static void migrate_read_lock(struct zspage *zspage)
1855{
1856        read_lock(&zspage->lock);
1857}
1858
1859static void migrate_read_unlock(struct zspage *zspage)
1860{
1861        read_unlock(&zspage->lock);
1862}
1863
1864static void migrate_write_lock(struct zspage *zspage)
1865{
1866        write_lock(&zspage->lock);
1867}
1868
1869static void migrate_write_unlock(struct zspage *zspage)
1870{
1871        write_unlock(&zspage->lock);
1872}
1873
1874/* Number of isolated subpage for *page migration* in this zspage */
1875static void inc_zspage_isolation(struct zspage *zspage)
1876{
1877        zspage->isolated++;
1878}
1879
1880static void dec_zspage_isolation(struct zspage *zspage)
1881{
1882        zspage->isolated--;
1883}
1884
1885static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1886                                struct page *newpage, struct page *oldpage)
1887{
1888        struct page *page;
1889        struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1890        int idx = 0;
1891
1892        page = get_first_page(zspage);
1893        do {
1894                if (page == oldpage)
1895                        pages[idx] = newpage;
1896                else
1897                        pages[idx] = page;
1898                idx++;
1899        } while ((page = get_next_page(page)) != NULL);
1900
1901        create_page_chain(class, zspage, pages);
1902        set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1903        if (unlikely(PageHugeObject(oldpage)))
1904                newpage->index = oldpage->index;
1905        __SetPageMovable(newpage, page_mapping(oldpage));
1906}
1907
1908static bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1909{
1910        struct zs_pool *pool;
1911        struct size_class *class;
1912        int class_idx;
1913        enum fullness_group fullness;
1914        struct zspage *zspage;
1915        struct address_space *mapping;
1916
1917        /*
1918         * Page is locked so zspage couldn't be destroyed. For detail, look at
1919         * lock_zspage in free_zspage.
1920         */
1921        VM_BUG_ON_PAGE(!PageMovable(page), page);
1922        VM_BUG_ON_PAGE(PageIsolated(page), page);
1923
1924        zspage = get_zspage(page);
1925
1926        /*
1927         * Without class lock, fullness could be stale while class_idx is okay
1928         * because class_idx is constant unless page is freed so we should get
1929         * fullness again under class lock.
1930         */
1931        get_zspage_mapping(zspage, &class_idx, &fullness);
1932        mapping = page_mapping(page);
1933        pool = mapping->private_data;
1934        class = pool->size_class[class_idx];
1935
1936        spin_lock(&class->lock);
1937        if (get_zspage_inuse(zspage) == 0) {
1938                spin_unlock(&class->lock);
1939                return false;
1940        }
1941
1942        /* zspage is isolated for object migration */
1943        if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1944                spin_unlock(&class->lock);
1945                return false;
1946        }
1947
1948        /*
1949         * If this is first time isolation for the zspage, isolate zspage from
1950         * size_class to prevent further object allocation from the zspage.
1951         */
1952        if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1953                get_zspage_mapping(zspage, &class_idx, &fullness);
1954                remove_zspage(class, zspage, fullness);
1955        }
1956
1957        inc_zspage_isolation(zspage);
1958        spin_unlock(&class->lock);
1959
1960        return true;
1961}
1962
1963static int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1964                struct page *page, enum migrate_mode mode)
1965{
1966        struct zs_pool *pool;
1967        struct size_class *class;
1968        int class_idx;
1969        enum fullness_group fullness;
1970        struct zspage *zspage;
1971        struct page *dummy;
1972        void *s_addr, *d_addr, *addr;
1973        int offset, pos;
1974        unsigned long handle, head;
1975        unsigned long old_obj, new_obj;
1976        unsigned int obj_idx;
1977        int ret = -EAGAIN;
1978
1979        /*
1980         * We cannot support the _NO_COPY case here, because copy needs to
1981         * happen under the zs lock, which does not work with
1982         * MIGRATE_SYNC_NO_COPY workflow.
1983         */
1984        if (mode == MIGRATE_SYNC_NO_COPY)
1985                return -EINVAL;
1986
1987        VM_BUG_ON_PAGE(!PageMovable(page), page);
1988        VM_BUG_ON_PAGE(!PageIsolated(page), page);
1989
1990        zspage = get_zspage(page);
1991
1992        /* Concurrent compactor cannot migrate any subpage in zspage */
1993        migrate_write_lock(zspage);
1994        get_zspage_mapping(zspage, &class_idx, &fullness);
1995        pool = mapping->private_data;
1996        class = pool->size_class[class_idx];
1997        offset = get_first_obj_offset(page);
1998
1999        spin_lock(&class->lock);
2000        if (!get_zspage_inuse(zspage)) {
2001                /*
2002                 * Set "offset" to end of the page so that every loops
2003                 * skips unnecessary object scanning.
2004                 */
2005                offset = PAGE_SIZE;
2006        }
2007
2008        pos = offset;
2009        s_addr = kmap_atomic(page);
2010        while (pos < PAGE_SIZE) {
2011                head = obj_to_head(page, s_addr + pos);
2012                if (head & OBJ_ALLOCATED_TAG) {
2013                        handle = head & ~OBJ_ALLOCATED_TAG;
2014                        if (!trypin_tag(handle))
2015                                goto unpin_objects;
2016                }
2017                pos += class->size;
2018        }
2019
2020        /*
2021         * Here, any user cannot access all objects in the zspage so let's move.
2022         */
2023        d_addr = kmap_atomic(newpage);
2024        memcpy(d_addr, s_addr, PAGE_SIZE);
2025        kunmap_atomic(d_addr);
2026
2027        for (addr = s_addr + offset; addr < s_addr + pos;
2028                                        addr += class->size) {
2029                head = obj_to_head(page, addr);
2030                if (head & OBJ_ALLOCATED_TAG) {
2031                        handle = head & ~OBJ_ALLOCATED_TAG;
2032                        if (!testpin_tag(handle))
2033                                BUG();
2034
2035                        old_obj = handle_to_obj(handle);
2036                        obj_to_location(old_obj, &dummy, &obj_idx);
2037                        new_obj = (unsigned long)location_to_obj(newpage,
2038                                                                obj_idx);
2039                        new_obj |= BIT(HANDLE_PIN_BIT);
2040                        record_obj(handle, new_obj);
2041                }
2042        }
2043
2044        replace_sub_page(class, zspage, newpage, page);
2045        get_page(newpage);
2046
2047        dec_zspage_isolation(zspage);
2048
2049        /*
2050         * Page migration is done so let's putback isolated zspage to
2051         * the list if @page is final isolated subpage in the zspage.
2052         */
2053        if (!is_zspage_isolated(zspage))
2054                putback_zspage(class, zspage);
2055
2056        reset_page(page);
2057        put_page(page);
2058        page = newpage;
2059
2060        ret = MIGRATEPAGE_SUCCESS;
2061unpin_objects:
2062        for (addr = s_addr + offset; addr < s_addr + pos;
2063                                                addr += class->size) {
2064                head = obj_to_head(page, addr);
2065                if (head & OBJ_ALLOCATED_TAG) {
2066                        handle = head & ~OBJ_ALLOCATED_TAG;
2067                        if (!testpin_tag(handle))
2068                                BUG();
2069                        unpin_tag(handle);
2070                }
2071        }
2072        kunmap_atomic(s_addr);
2073        spin_unlock(&class->lock);
2074        migrate_write_unlock(zspage);
2075
2076        return ret;
2077}
2078
2079static void zs_page_putback(struct page *page)
2080{
2081        struct zs_pool *pool;
2082        struct size_class *class;
2083        int class_idx;
2084        enum fullness_group fg;
2085        struct address_space *mapping;
2086        struct zspage *zspage;
2087
2088        VM_BUG_ON_PAGE(!PageMovable(page), page);
2089        VM_BUG_ON_PAGE(!PageIsolated(page), page);
2090
2091        zspage = get_zspage(page);
2092        get_zspage_mapping(zspage, &class_idx, &fg);
2093        mapping = page_mapping(page);
2094        pool = mapping->private_data;
2095        class = pool->size_class[class_idx];
2096
2097        spin_lock(&class->lock);
2098        dec_zspage_isolation(zspage);
2099        if (!is_zspage_isolated(zspage)) {
2100                fg = putback_zspage(class, zspage);
2101                /*
2102                 * Due to page_lock, we cannot free zspage immediately
2103                 * so let's defer.
2104                 */
2105                if (fg == ZS_EMPTY)
2106                        schedule_work(&pool->free_work);
2107        }
2108        spin_unlock(&class->lock);
2109}
2110
2111static const struct address_space_operations zsmalloc_aops = {
2112        .isolate_page = zs_page_isolate,
2113        .migratepage = zs_page_migrate,
2114        .putback_page = zs_page_putback,
2115};
2116
2117static int zs_register_migration(struct zs_pool *pool)
2118{
2119        pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2120        if (IS_ERR(pool->inode)) {
2121                pool->inode = NULL;
2122                return 1;
2123        }
2124
2125        pool->inode->i_mapping->private_data = pool;
2126        pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2127        return 0;
2128}
2129
2130static void zs_unregister_migration(struct zs_pool *pool)
2131{
2132        flush_work(&pool->free_work);
2133        iput(pool->inode);
2134}
2135
2136/*
2137 * Caller should hold page_lock of all pages in the zspage
2138 * In here, we cannot use zspage meta data.
2139 */
2140static void async_free_zspage(struct work_struct *work)
2141{
2142        int i;
2143        struct size_class *class;
2144        unsigned int class_idx;
2145        enum fullness_group fullness;
2146        struct zspage *zspage, *tmp;
2147        LIST_HEAD(free_pages);
2148        struct zs_pool *pool = container_of(work, struct zs_pool,
2149                                        free_work);
2150
2151        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2152                class = pool->size_class[i];
2153                if (class->index != i)
2154                        continue;
2155
2156                spin_lock(&class->lock);
2157                list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2158                spin_unlock(&class->lock);
2159        }
2160
2161
2162        list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2163                list_del(&zspage->list);
2164                lock_zspage(zspage);
2165
2166                get_zspage_mapping(zspage, &class_idx, &fullness);
2167                VM_BUG_ON(fullness != ZS_EMPTY);
2168                class = pool->size_class[class_idx];
2169                spin_lock(&class->lock);
2170                __free_zspage(pool, pool->size_class[class_idx], zspage);
2171                spin_unlock(&class->lock);
2172        }
2173};
2174
2175static void kick_deferred_free(struct zs_pool *pool)
2176{
2177        schedule_work(&pool->free_work);
2178}
2179
2180static void init_deferred_free(struct zs_pool *pool)
2181{
2182        INIT_WORK(&pool->free_work, async_free_zspage);
2183}
2184
2185static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2186{
2187        struct page *page = get_first_page(zspage);
2188
2189        do {
2190                WARN_ON(!trylock_page(page));
2191                __SetPageMovable(page, pool->inode->i_mapping);
2192                unlock_page(page);
2193        } while ((page = get_next_page(page)) != NULL);
2194}
2195#endif
2196
2197/*
2198 *
2199 * Based on the number of unused allocated objects calculate
2200 * and return the number of pages that we can free.
2201 */
2202static unsigned long zs_can_compact(struct size_class *class)
2203{
2204        unsigned long obj_wasted;
2205        unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2206        unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2207
2208        if (obj_allocated <= obj_used)
2209                return 0;
2210
2211        obj_wasted = obj_allocated - obj_used;
2212        obj_wasted /= class->objs_per_zspage;
2213
2214        return obj_wasted * class->pages_per_zspage;
2215}
2216
2217static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2218{
2219        struct zs_compact_control cc;
2220        struct zspage *src_zspage;
2221        struct zspage *dst_zspage = NULL;
2222
2223        spin_lock(&class->lock);
2224        while ((src_zspage = isolate_zspage(class, true))) {
2225
2226                if (!zs_can_compact(class))
2227                        break;
2228
2229                cc.obj_idx = 0;
2230                cc.s_page = get_first_page(src_zspage);
2231
2232                while ((dst_zspage = isolate_zspage(class, false))) {
2233                        cc.d_page = get_first_page(dst_zspage);
2234                        /*
2235                         * If there is no more space in dst_page, resched
2236                         * and see if anyone had allocated another zspage.
2237                         */
2238                        if (!migrate_zspage(pool, class, &cc))
2239                                break;
2240
2241                        putback_zspage(class, dst_zspage);
2242                }
2243
2244                /* Stop if we couldn't find slot */
2245                if (dst_zspage == NULL)
2246                        break;
2247
2248                putback_zspage(class, dst_zspage);
2249                if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2250                        free_zspage(pool, class, src_zspage);
2251                        pool->stats.pages_compacted += class->pages_per_zspage;
2252                }
2253                spin_unlock(&class->lock);
2254                cond_resched();
2255                spin_lock(&class->lock);
2256        }
2257
2258        if (src_zspage)
2259                putback_zspage(class, src_zspage);
2260
2261        spin_unlock(&class->lock);
2262}
2263
2264unsigned long zs_compact(struct zs_pool *pool)
2265{
2266        int i;
2267        struct size_class *class;
2268
2269        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2270                class = pool->size_class[i];
2271                if (!class)
2272                        continue;
2273                if (class->index != i)
2274                        continue;
2275                __zs_compact(pool, class);
2276        }
2277
2278        return pool->stats.pages_compacted;
2279}
2280EXPORT_SYMBOL_GPL(zs_compact);
2281
2282void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2283{
2284        memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2285}
2286EXPORT_SYMBOL_GPL(zs_pool_stats);
2287
2288static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2289                struct shrink_control *sc)
2290{
2291        unsigned long pages_freed;
2292        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2293                        shrinker);
2294
2295        pages_freed = pool->stats.pages_compacted;
2296        /*
2297         * Compact classes and calculate compaction delta.
2298         * Can run concurrently with a manually triggered
2299         * (by user) compaction.
2300         */
2301        pages_freed = zs_compact(pool) - pages_freed;
2302
2303        return pages_freed ? pages_freed : SHRINK_STOP;
2304}
2305
2306static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2307                struct shrink_control *sc)
2308{
2309        int i;
2310        struct size_class *class;
2311        unsigned long pages_to_free = 0;
2312        struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2313                        shrinker);
2314
2315        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2316                class = pool->size_class[i];
2317                if (!class)
2318                        continue;
2319                if (class->index != i)
2320                        continue;
2321
2322                pages_to_free += zs_can_compact(class);
2323        }
2324
2325        return pages_to_free;
2326}
2327
2328static void zs_unregister_shrinker(struct zs_pool *pool)
2329{
2330        unregister_shrinker(&pool->shrinker);
2331}
2332
2333static int zs_register_shrinker(struct zs_pool *pool)
2334{
2335        pool->shrinker.scan_objects = zs_shrinker_scan;
2336        pool->shrinker.count_objects = zs_shrinker_count;
2337        pool->shrinker.batch = 0;
2338        pool->shrinker.seeks = DEFAULT_SEEKS;
2339
2340        return register_shrinker(&pool->shrinker);
2341}
2342
2343/**
2344 * zs_create_pool - Creates an allocation pool to work from.
2345 * @name: pool name to be created
2346 *
2347 * This function must be called before anything when using
2348 * the zsmalloc allocator.
2349 *
2350 * On success, a pointer to the newly created pool is returned,
2351 * otherwise NULL.
2352 */
2353struct zs_pool *zs_create_pool(const char *name)
2354{
2355        int i;
2356        struct zs_pool *pool;
2357        struct size_class *prev_class = NULL;
2358
2359        pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2360        if (!pool)
2361                return NULL;
2362
2363        init_deferred_free(pool);
2364
2365        pool->name = kstrdup(name, GFP_KERNEL);
2366        if (!pool->name)
2367                goto err;
2368
2369        if (create_cache(pool))
2370                goto err;
2371
2372        /*
2373         * Iterate reversely, because, size of size_class that we want to use
2374         * for merging should be larger or equal to current size.
2375         */
2376        for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2377                int size;
2378                int pages_per_zspage;
2379                int objs_per_zspage;
2380                struct size_class *class;
2381                int fullness = 0;
2382
2383                size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2384                if (size > ZS_MAX_ALLOC_SIZE)
2385                        size = ZS_MAX_ALLOC_SIZE;
2386                pages_per_zspage = get_pages_per_zspage(size);
2387                objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2388
2389                /*
2390                 * We iterate from biggest down to smallest classes,
2391                 * so huge_class_size holds the size of the first huge
2392                 * class. Any object bigger than or equal to that will
2393                 * endup in the huge class.
2394                 */
2395                if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2396                                !huge_class_size) {
2397                        huge_class_size = size;
2398                        /*
2399                         * The object uses ZS_HANDLE_SIZE bytes to store the
2400                         * handle. We need to subtract it, because zs_malloc()
2401                         * unconditionally adds handle size before it performs
2402                         * size class search - so object may be smaller than
2403                         * huge class size, yet it still can end up in the huge
2404                         * class because it grows by ZS_HANDLE_SIZE extra bytes
2405                         * right before class lookup.
2406                         */
2407                        huge_class_size -= (ZS_HANDLE_SIZE - 1);
2408                }
2409
2410                /*
2411                 * size_class is used for normal zsmalloc operation such
2412                 * as alloc/free for that size. Although it is natural that we
2413                 * have one size_class for each size, there is a chance that we
2414                 * can get more memory utilization if we use one size_class for
2415                 * many different sizes whose size_class have same
2416                 * characteristics. So, we makes size_class point to
2417                 * previous size_class if possible.
2418                 */
2419                if (prev_class) {
2420                        if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2421                                pool->size_class[i] = prev_class;
2422                                continue;
2423                        }
2424                }
2425
2426                class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2427                if (!class)
2428                        goto err;
2429
2430                class->size = size;
2431                class->index = i;
2432                class->pages_per_zspage = pages_per_zspage;
2433                class->objs_per_zspage = objs_per_zspage;
2434                spin_lock_init(&class->lock);
2435                pool->size_class[i] = class;
2436                for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2437                                                        fullness++)
2438                        INIT_LIST_HEAD(&class->fullness_list[fullness]);
2439
2440                prev_class = class;
2441        }
2442
2443        /* debug only, don't abort if it fails */
2444        zs_pool_stat_create(pool, name);
2445
2446        if (zs_register_migration(pool))
2447                goto err;
2448
2449        /*
2450         * Not critical since shrinker is only used to trigger internal
2451         * defragmentation of the pool which is pretty optional thing.  If
2452         * registration fails we still can use the pool normally and user can
2453         * trigger compaction manually. Thus, ignore return code.
2454         */
2455        zs_register_shrinker(pool);
2456
2457        return pool;
2458
2459err:
2460        zs_destroy_pool(pool);
2461        return NULL;
2462}
2463EXPORT_SYMBOL_GPL(zs_create_pool);
2464
2465void zs_destroy_pool(struct zs_pool *pool)
2466{
2467        int i;
2468
2469        zs_unregister_shrinker(pool);
2470        zs_unregister_migration(pool);
2471        zs_pool_stat_destroy(pool);
2472
2473        for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2474                int fg;
2475                struct size_class *class = pool->size_class[i];
2476
2477                if (!class)
2478                        continue;
2479
2480                if (class->index != i)
2481                        continue;
2482
2483                for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2484                        if (!list_empty(&class->fullness_list[fg])) {
2485                                pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2486                                        class->size, fg);
2487                        }
2488                }
2489                kfree(class);
2490        }
2491
2492        destroy_cache(pool);
2493        kfree(pool->name);
2494        kfree(pool);
2495}
2496EXPORT_SYMBOL_GPL(zs_destroy_pool);
2497
2498static int __init zs_init(void)
2499{
2500        int ret;
2501
2502        ret = zsmalloc_mount();
2503        if (ret)
2504                goto out;
2505
2506        ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2507                                zs_cpu_prepare, zs_cpu_dead);
2508        if (ret)
2509                goto hp_setup_fail;
2510
2511#ifdef CONFIG_ZPOOL
2512        zpool_register_driver(&zs_zpool_driver);
2513#endif
2514
2515        zs_stat_init();
2516
2517        return 0;
2518
2519hp_setup_fail:
2520        zsmalloc_unmount();
2521out:
2522        return ret;
2523}
2524
2525static void __exit zs_exit(void)
2526{
2527#ifdef CONFIG_ZPOOL
2528        zpool_unregister_driver(&zs_zpool_driver);
2529#endif
2530        zsmalloc_unmount();
2531        cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2532
2533        zs_stat_exit();
2534}
2535
2536module_init(zs_init);
2537module_exit(zs_exit);
2538
2539MODULE_LICENSE("Dual BSD/GPL");
2540MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
2541