linux/net/ipv4/arp.c
<<
>>
Prefs
   1/* linux/net/ipv4/arp.c
   2 *
   3 * Copyright (C) 1994 by Florian  La Roche
   4 *
   5 * This module implements the Address Resolution Protocol ARP (RFC 826),
   6 * which is used to convert IP addresses (or in the future maybe other
   7 * high-level addresses) into a low-level hardware address (like an Ethernet
   8 * address).
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License
  12 * as published by the Free Software Foundation; either version
  13 * 2 of the License, or (at your option) any later version.
  14 *
  15 * Fixes:
  16 *              Alan Cox        :       Removed the Ethernet assumptions in
  17 *                                      Florian's code
  18 *              Alan Cox        :       Fixed some small errors in the ARP
  19 *                                      logic
  20 *              Alan Cox        :       Allow >4K in /proc
  21 *              Alan Cox        :       Make ARP add its own protocol entry
  22 *              Ross Martin     :       Rewrote arp_rcv() and arp_get_info()
  23 *              Stephen Henson  :       Add AX25 support to arp_get_info()
  24 *              Alan Cox        :       Drop data when a device is downed.
  25 *              Alan Cox        :       Use init_timer().
  26 *              Alan Cox        :       Double lock fixes.
  27 *              Martin Seine    :       Move the arphdr structure
  28 *                                      to if_arp.h for compatibility.
  29 *                                      with BSD based programs.
  30 *              Andrew Tridgell :       Added ARP netmask code and
  31 *                                      re-arranged proxy handling.
  32 *              Alan Cox        :       Changed to use notifiers.
  33 *              Niibe Yutaka    :       Reply for this device or proxies only.
  34 *              Alan Cox        :       Don't proxy across hardware types!
  35 *              Jonathan Naylor :       Added support for NET/ROM.
  36 *              Mike Shaver     :       RFC1122 checks.
  37 *              Jonathan Naylor :       Only lookup the hardware address for
  38 *                                      the correct hardware type.
  39 *              Germano Caronni :       Assorted subtle races.
  40 *              Craig Schlenter :       Don't modify permanent entry
  41 *                                      during arp_rcv.
  42 *              Russ Nelson     :       Tidied up a few bits.
  43 *              Alexey Kuznetsov:       Major changes to caching and behaviour,
  44 *                                      eg intelligent arp probing and
  45 *                                      generation
  46 *                                      of host down events.
  47 *              Alan Cox        :       Missing unlock in device events.
  48 *              Eckes           :       ARP ioctl control errors.
  49 *              Alexey Kuznetsov:       Arp free fix.
  50 *              Manuel Rodriguez:       Gratuitous ARP.
  51 *              Jonathan Layes  :       Added arpd support through kerneld
  52 *                                      message queue (960314)
  53 *              Mike Shaver     :       /proc/sys/net/ipv4/arp_* support
  54 *              Mike McLagan    :       Routing by source
  55 *              Stuart Cheshire :       Metricom and grat arp fixes
  56 *                                      *** FOR 2.1 clean this up ***
  57 *              Lawrence V. Stefani: (08/12/96) Added FDDI support.
  58 *              Alan Cox        :       Took the AP1000 nasty FDDI hack and
  59 *                                      folded into the mainstream FDDI code.
  60 *                                      Ack spit, Linus how did you allow that
  61 *                                      one in...
  62 *              Jes Sorensen    :       Make FDDI work again in 2.1.x and
  63 *                                      clean up the APFDDI & gen. FDDI bits.
  64 *              Alexey Kuznetsov:       new arp state machine;
  65 *                                      now it is in net/core/neighbour.c.
  66 *              Krzysztof Halasa:       Added Frame Relay ARP support.
  67 *              Arnaldo C. Melo :       convert /proc/net/arp to seq_file
  68 *              Shmulik Hen:            Split arp_send to arp_create and
  69 *                                      arp_xmit so intermediate drivers like
  70 *                                      bonding can change the skb before
  71 *                                      sending (e.g. insert 8021q tag).
  72 *              Harald Welte    :       convert to make use of jenkins hash
  73 *              Jesper D. Brouer:       Proxy ARP PVLAN RFC 3069 support.
  74 */
  75
  76#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  77
  78#include <linux/module.h>
  79#include <linux/types.h>
  80#include <linux/string.h>
  81#include <linux/kernel.h>
  82#include <linux/capability.h>
  83#include <linux/socket.h>
  84#include <linux/sockios.h>
  85#include <linux/errno.h>
  86#include <linux/in.h>
  87#include <linux/mm.h>
  88#include <linux/inet.h>
  89#include <linux/inetdevice.h>
  90#include <linux/netdevice.h>
  91#include <linux/etherdevice.h>
  92#include <linux/fddidevice.h>
  93#include <linux/if_arp.h>
  94#include <linux/skbuff.h>
  95#include <linux/proc_fs.h>
  96#include <linux/seq_file.h>
  97#include <linux/stat.h>
  98#include <linux/init.h>
  99#include <linux/net.h>
 100#include <linux/rcupdate.h>
 101#include <linux/slab.h>
 102#ifdef CONFIG_SYSCTL
 103#include <linux/sysctl.h>
 104#endif
 105
 106#include <net/net_namespace.h>
 107#include <net/ip.h>
 108#include <net/icmp.h>
 109#include <net/route.h>
 110#include <net/protocol.h>
 111#include <net/tcp.h>
 112#include <net/sock.h>
 113#include <net/arp.h>
 114#include <net/ax25.h>
 115#include <net/netrom.h>
 116#include <net/dst_metadata.h>
 117#include <net/ip_tunnels.h>
 118
 119#include <linux/uaccess.h>
 120
 121#include <linux/netfilter_arp.h>
 122
 123/*
 124 *      Interface to generic neighbour cache.
 125 */
 126static u32 arp_hash(const void *pkey, const struct net_device *dev, __u32 *hash_rnd);
 127static bool arp_key_eq(const struct neighbour *n, const void *pkey);
 128static int arp_constructor(struct neighbour *neigh);
 129static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb);
 130static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb);
 131static void parp_redo(struct sk_buff *skb);
 132
 133static const struct neigh_ops arp_generic_ops = {
 134        .family =               AF_INET,
 135        .solicit =              arp_solicit,
 136        .error_report =         arp_error_report,
 137        .output =               neigh_resolve_output,
 138        .connected_output =     neigh_connected_output,
 139};
 140
 141static const struct neigh_ops arp_hh_ops = {
 142        .family =               AF_INET,
 143        .solicit =              arp_solicit,
 144        .error_report =         arp_error_report,
 145        .output =               neigh_resolve_output,
 146        .connected_output =     neigh_resolve_output,
 147};
 148
 149static const struct neigh_ops arp_direct_ops = {
 150        .family =               AF_INET,
 151        .output =               neigh_direct_output,
 152        .connected_output =     neigh_direct_output,
 153};
 154
 155struct neigh_table arp_tbl = {
 156        .family         = AF_INET,
 157        .key_len        = 4,
 158        .protocol       = cpu_to_be16(ETH_P_IP),
 159        .hash           = arp_hash,
 160        .key_eq         = arp_key_eq,
 161        .constructor    = arp_constructor,
 162        .proxy_redo     = parp_redo,
 163        .id             = "arp_cache",
 164        .parms          = {
 165                .tbl                    = &arp_tbl,
 166                .reachable_time         = 30 * HZ,
 167                .data   = {
 168                        [NEIGH_VAR_MCAST_PROBES] = 3,
 169                        [NEIGH_VAR_UCAST_PROBES] = 3,
 170                        [NEIGH_VAR_RETRANS_TIME] = 1 * HZ,
 171                        [NEIGH_VAR_BASE_REACHABLE_TIME] = 30 * HZ,
 172                        [NEIGH_VAR_DELAY_PROBE_TIME] = 5 * HZ,
 173                        [NEIGH_VAR_GC_STALETIME] = 60 * HZ,
 174                        [NEIGH_VAR_QUEUE_LEN_BYTES] = SK_WMEM_MAX,
 175                        [NEIGH_VAR_PROXY_QLEN] = 64,
 176                        [NEIGH_VAR_ANYCAST_DELAY] = 1 * HZ,
 177                        [NEIGH_VAR_PROXY_DELAY] = (8 * HZ) / 10,
 178                        [NEIGH_VAR_LOCKTIME] = 1 * HZ,
 179                },
 180        },
 181        .gc_interval    = 30 * HZ,
 182        .gc_thresh1     = 128,
 183        .gc_thresh2     = 512,
 184        .gc_thresh3     = 1024,
 185};
 186EXPORT_SYMBOL(arp_tbl);
 187
 188int arp_mc_map(__be32 addr, u8 *haddr, struct net_device *dev, int dir)
 189{
 190        switch (dev->type) {
 191        case ARPHRD_ETHER:
 192        case ARPHRD_FDDI:
 193        case ARPHRD_IEEE802:
 194                ip_eth_mc_map(addr, haddr);
 195                return 0;
 196        case ARPHRD_INFINIBAND:
 197                ip_ib_mc_map(addr, dev->broadcast, haddr);
 198                return 0;
 199        case ARPHRD_IPGRE:
 200                ip_ipgre_mc_map(addr, dev->broadcast, haddr);
 201                return 0;
 202        default:
 203                if (dir) {
 204                        memcpy(haddr, dev->broadcast, dev->addr_len);
 205                        return 0;
 206                }
 207        }
 208        return -EINVAL;
 209}
 210
 211
 212static u32 arp_hash(const void *pkey,
 213                    const struct net_device *dev,
 214                    __u32 *hash_rnd)
 215{
 216        return arp_hashfn(pkey, dev, hash_rnd);
 217}
 218
 219static bool arp_key_eq(const struct neighbour *neigh, const void *pkey)
 220{
 221        return neigh_key_eq32(neigh, pkey);
 222}
 223
 224static int arp_constructor(struct neighbour *neigh)
 225{
 226        __be32 addr;
 227        struct net_device *dev = neigh->dev;
 228        struct in_device *in_dev;
 229        struct neigh_parms *parms;
 230        u32 inaddr_any = INADDR_ANY;
 231
 232        if (dev->flags & (IFF_LOOPBACK | IFF_POINTOPOINT))
 233                memcpy(neigh->primary_key, &inaddr_any, arp_tbl.key_len);
 234
 235        addr = *(__be32 *)neigh->primary_key;
 236        rcu_read_lock();
 237        in_dev = __in_dev_get_rcu(dev);
 238        if (!in_dev) {
 239                rcu_read_unlock();
 240                return -EINVAL;
 241        }
 242
 243        neigh->type = inet_addr_type_dev_table(dev_net(dev), dev, addr);
 244
 245        parms = in_dev->arp_parms;
 246        __neigh_parms_put(neigh->parms);
 247        neigh->parms = neigh_parms_clone(parms);
 248        rcu_read_unlock();
 249
 250        if (!dev->header_ops) {
 251                neigh->nud_state = NUD_NOARP;
 252                neigh->ops = &arp_direct_ops;
 253                neigh->output = neigh_direct_output;
 254        } else {
 255                /* Good devices (checked by reading texts, but only Ethernet is
 256                   tested)
 257
 258                   ARPHRD_ETHER: (ethernet, apfddi)
 259                   ARPHRD_FDDI: (fddi)
 260                   ARPHRD_IEEE802: (tr)
 261                   ARPHRD_METRICOM: (strip)
 262                   ARPHRD_ARCNET:
 263                   etc. etc. etc.
 264
 265                   ARPHRD_IPDDP will also work, if author repairs it.
 266                   I did not it, because this driver does not work even
 267                   in old paradigm.
 268                 */
 269
 270                if (neigh->type == RTN_MULTICAST) {
 271                        neigh->nud_state = NUD_NOARP;
 272                        arp_mc_map(addr, neigh->ha, dev, 1);
 273                } else if (dev->flags & (IFF_NOARP | IFF_LOOPBACK)) {
 274                        neigh->nud_state = NUD_NOARP;
 275                        memcpy(neigh->ha, dev->dev_addr, dev->addr_len);
 276                } else if (neigh->type == RTN_BROADCAST ||
 277                           (dev->flags & IFF_POINTOPOINT)) {
 278                        neigh->nud_state = NUD_NOARP;
 279                        memcpy(neigh->ha, dev->broadcast, dev->addr_len);
 280                }
 281
 282                if (dev->header_ops->cache)
 283                        neigh->ops = &arp_hh_ops;
 284                else
 285                        neigh->ops = &arp_generic_ops;
 286
 287                if (neigh->nud_state & NUD_VALID)
 288                        neigh->output = neigh->ops->connected_output;
 289                else
 290                        neigh->output = neigh->ops->output;
 291        }
 292        return 0;
 293}
 294
 295static void arp_error_report(struct neighbour *neigh, struct sk_buff *skb)
 296{
 297        dst_link_failure(skb);
 298        kfree_skb(skb);
 299}
 300
 301/* Create and send an arp packet. */
 302static void arp_send_dst(int type, int ptype, __be32 dest_ip,
 303                         struct net_device *dev, __be32 src_ip,
 304                         const unsigned char *dest_hw,
 305                         const unsigned char *src_hw,
 306                         const unsigned char *target_hw,
 307                         struct dst_entry *dst)
 308{
 309        struct sk_buff *skb;
 310
 311        /* arp on this interface. */
 312        if (dev->flags & IFF_NOARP)
 313                return;
 314
 315        skb = arp_create(type, ptype, dest_ip, dev, src_ip,
 316                         dest_hw, src_hw, target_hw);
 317        if (!skb)
 318                return;
 319
 320        skb_dst_set(skb, dst_clone(dst));
 321        arp_xmit(skb);
 322}
 323
 324void arp_send(int type, int ptype, __be32 dest_ip,
 325              struct net_device *dev, __be32 src_ip,
 326              const unsigned char *dest_hw, const unsigned char *src_hw,
 327              const unsigned char *target_hw)
 328{
 329        arp_send_dst(type, ptype, dest_ip, dev, src_ip, dest_hw, src_hw,
 330                     target_hw, NULL);
 331}
 332EXPORT_SYMBOL(arp_send);
 333
 334static void arp_solicit(struct neighbour *neigh, struct sk_buff *skb)
 335{
 336        __be32 saddr = 0;
 337        u8 dst_ha[MAX_ADDR_LEN], *dst_hw = NULL;
 338        struct net_device *dev = neigh->dev;
 339        __be32 target = *(__be32 *)neigh->primary_key;
 340        int probes = atomic_read(&neigh->probes);
 341        struct in_device *in_dev;
 342        struct dst_entry *dst = NULL;
 343
 344        rcu_read_lock();
 345        in_dev = __in_dev_get_rcu(dev);
 346        if (!in_dev) {
 347                rcu_read_unlock();
 348                return;
 349        }
 350        switch (IN_DEV_ARP_ANNOUNCE(in_dev)) {
 351        default:
 352        case 0:         /* By default announce any local IP */
 353                if (skb && inet_addr_type_dev_table(dev_net(dev), dev,
 354                                          ip_hdr(skb)->saddr) == RTN_LOCAL)
 355                        saddr = ip_hdr(skb)->saddr;
 356                break;
 357        case 1:         /* Restrict announcements of saddr in same subnet */
 358                if (!skb)
 359                        break;
 360                saddr = ip_hdr(skb)->saddr;
 361                if (inet_addr_type_dev_table(dev_net(dev), dev,
 362                                             saddr) == RTN_LOCAL) {
 363                        /* saddr should be known to target */
 364                        if (inet_addr_onlink(in_dev, target, saddr))
 365                                break;
 366                }
 367                saddr = 0;
 368                break;
 369        case 2:         /* Avoid secondary IPs, get a primary/preferred one */
 370                break;
 371        }
 372        rcu_read_unlock();
 373
 374        if (!saddr)
 375                saddr = inet_select_addr(dev, target, RT_SCOPE_LINK);
 376
 377        probes -= NEIGH_VAR(neigh->parms, UCAST_PROBES);
 378        if (probes < 0) {
 379                if (!(neigh->nud_state & NUD_VALID))
 380                        pr_debug("trying to ucast probe in NUD_INVALID\n");
 381                neigh_ha_snapshot(dst_ha, neigh, dev);
 382                dst_hw = dst_ha;
 383        } else {
 384                probes -= NEIGH_VAR(neigh->parms, APP_PROBES);
 385                if (probes < 0) {
 386                        neigh_app_ns(neigh);
 387                        return;
 388                }
 389        }
 390
 391        if (skb && !(dev->priv_flags & IFF_XMIT_DST_RELEASE))
 392                dst = skb_dst(skb);
 393        arp_send_dst(ARPOP_REQUEST, ETH_P_ARP, target, dev, saddr,
 394                     dst_hw, dev->dev_addr, NULL, dst);
 395}
 396
 397static int arp_ignore(struct in_device *in_dev, __be32 sip, __be32 tip)
 398{
 399        struct net *net = dev_net(in_dev->dev);
 400        int scope;
 401
 402        switch (IN_DEV_ARP_IGNORE(in_dev)) {
 403        case 0: /* Reply, the tip is already validated */
 404                return 0;
 405        case 1: /* Reply only if tip is configured on the incoming interface */
 406                sip = 0;
 407                scope = RT_SCOPE_HOST;
 408                break;
 409        case 2: /*
 410                 * Reply only if tip is configured on the incoming interface
 411                 * and is in same subnet as sip
 412                 */
 413                scope = RT_SCOPE_HOST;
 414                break;
 415        case 3: /* Do not reply for scope host addresses */
 416                sip = 0;
 417                scope = RT_SCOPE_LINK;
 418                in_dev = NULL;
 419                break;
 420        case 4: /* Reserved */
 421        case 5:
 422        case 6:
 423        case 7:
 424                return 0;
 425        case 8: /* Do not reply */
 426                return 1;
 427        default:
 428                return 0;
 429        }
 430        return !inet_confirm_addr(net, in_dev, sip, tip, scope);
 431}
 432
 433static int arp_filter(__be32 sip, __be32 tip, struct net_device *dev)
 434{
 435        struct rtable *rt;
 436        int flag = 0;
 437        /*unsigned long now; */
 438        struct net *net = dev_net(dev);
 439
 440        rt = ip_route_output(net, sip, tip, 0, l3mdev_master_ifindex_rcu(dev));
 441        if (IS_ERR(rt))
 442                return 1;
 443        if (rt->dst.dev != dev) {
 444                __NET_INC_STATS(net, LINUX_MIB_ARPFILTER);
 445                flag = 1;
 446        }
 447        ip_rt_put(rt);
 448        return flag;
 449}
 450
 451/*
 452 * Check if we can use proxy ARP for this path
 453 */
 454static inline int arp_fwd_proxy(struct in_device *in_dev,
 455                                struct net_device *dev, struct rtable *rt)
 456{
 457        struct in_device *out_dev;
 458        int imi, omi = -1;
 459
 460        if (rt->dst.dev == dev)
 461                return 0;
 462
 463        if (!IN_DEV_PROXY_ARP(in_dev))
 464                return 0;
 465        imi = IN_DEV_MEDIUM_ID(in_dev);
 466        if (imi == 0)
 467                return 1;
 468        if (imi == -1)
 469                return 0;
 470
 471        /* place to check for proxy_arp for routes */
 472
 473        out_dev = __in_dev_get_rcu(rt->dst.dev);
 474        if (out_dev)
 475                omi = IN_DEV_MEDIUM_ID(out_dev);
 476
 477        return omi != imi && omi != -1;
 478}
 479
 480/*
 481 * Check for RFC3069 proxy arp private VLAN (allow to send back to same dev)
 482 *
 483 * RFC3069 supports proxy arp replies back to the same interface.  This
 484 * is done to support (ethernet) switch features, like RFC 3069, where
 485 * the individual ports are not allowed to communicate with each
 486 * other, BUT they are allowed to talk to the upstream router.  As
 487 * described in RFC 3069, it is possible to allow these hosts to
 488 * communicate through the upstream router, by proxy_arp'ing.
 489 *
 490 * RFC 3069: "VLAN Aggregation for Efficient IP Address Allocation"
 491 *
 492 *  This technology is known by different names:
 493 *    In RFC 3069 it is called VLAN Aggregation.
 494 *    Cisco and Allied Telesyn call it Private VLAN.
 495 *    Hewlett-Packard call it Source-Port filtering or port-isolation.
 496 *    Ericsson call it MAC-Forced Forwarding (RFC Draft).
 497 *
 498 */
 499static inline int arp_fwd_pvlan(struct in_device *in_dev,
 500                                struct net_device *dev, struct rtable *rt,
 501                                __be32 sip, __be32 tip)
 502{
 503        /* Private VLAN is only concerned about the same ethernet segment */
 504        if (rt->dst.dev != dev)
 505                return 0;
 506
 507        /* Don't reply on self probes (often done by windowz boxes)*/
 508        if (sip == tip)
 509                return 0;
 510
 511        if (IN_DEV_PROXY_ARP_PVLAN(in_dev))
 512                return 1;
 513        else
 514                return 0;
 515}
 516
 517/*
 518 *      Interface to link layer: send routine and receive handler.
 519 */
 520
 521/*
 522 *      Create an arp packet. If dest_hw is not set, we create a broadcast
 523 *      message.
 524 */
 525struct sk_buff *arp_create(int type, int ptype, __be32 dest_ip,
 526                           struct net_device *dev, __be32 src_ip,
 527                           const unsigned char *dest_hw,
 528                           const unsigned char *src_hw,
 529                           const unsigned char *target_hw)
 530{
 531        struct sk_buff *skb;
 532        struct arphdr *arp;
 533        unsigned char *arp_ptr;
 534        int hlen = LL_RESERVED_SPACE(dev);
 535        int tlen = dev->needed_tailroom;
 536
 537        /*
 538         *      Allocate a buffer
 539         */
 540
 541        skb = alloc_skb(arp_hdr_len(dev) + hlen + tlen, GFP_ATOMIC);
 542        if (!skb)
 543                return NULL;
 544
 545        skb_reserve(skb, hlen);
 546        skb_reset_network_header(skb);
 547        arp = skb_put(skb, arp_hdr_len(dev));
 548        skb->dev = dev;
 549        skb->protocol = htons(ETH_P_ARP);
 550        if (!src_hw)
 551                src_hw = dev->dev_addr;
 552        if (!dest_hw)
 553                dest_hw = dev->broadcast;
 554
 555        /*
 556         *      Fill the device header for the ARP frame
 557         */
 558        if (dev_hard_header(skb, dev, ptype, dest_hw, src_hw, skb->len) < 0)
 559                goto out;
 560
 561        /*
 562         * Fill out the arp protocol part.
 563         *
 564         * The arp hardware type should match the device type, except for FDDI,
 565         * which (according to RFC 1390) should always equal 1 (Ethernet).
 566         */
 567        /*
 568         *      Exceptions everywhere. AX.25 uses the AX.25 PID value not the
 569         *      DIX code for the protocol. Make these device structure fields.
 570         */
 571        switch (dev->type) {
 572        default:
 573                arp->ar_hrd = htons(dev->type);
 574                arp->ar_pro = htons(ETH_P_IP);
 575                break;
 576
 577#if IS_ENABLED(CONFIG_AX25)
 578        case ARPHRD_AX25:
 579                arp->ar_hrd = htons(ARPHRD_AX25);
 580                arp->ar_pro = htons(AX25_P_IP);
 581                break;
 582
 583#if IS_ENABLED(CONFIG_NETROM)
 584        case ARPHRD_NETROM:
 585                arp->ar_hrd = htons(ARPHRD_NETROM);
 586                arp->ar_pro = htons(AX25_P_IP);
 587                break;
 588#endif
 589#endif
 590
 591#if IS_ENABLED(CONFIG_FDDI)
 592        case ARPHRD_FDDI:
 593                arp->ar_hrd = htons(ARPHRD_ETHER);
 594                arp->ar_pro = htons(ETH_P_IP);
 595                break;
 596#endif
 597        }
 598
 599        arp->ar_hln = dev->addr_len;
 600        arp->ar_pln = 4;
 601        arp->ar_op = htons(type);
 602
 603        arp_ptr = (unsigned char *)(arp + 1);
 604
 605        memcpy(arp_ptr, src_hw, dev->addr_len);
 606        arp_ptr += dev->addr_len;
 607        memcpy(arp_ptr, &src_ip, 4);
 608        arp_ptr += 4;
 609
 610        switch (dev->type) {
 611#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 612        case ARPHRD_IEEE1394:
 613                break;
 614#endif
 615        default:
 616                if (target_hw)
 617                        memcpy(arp_ptr, target_hw, dev->addr_len);
 618                else
 619                        memset(arp_ptr, 0, dev->addr_len);
 620                arp_ptr += dev->addr_len;
 621        }
 622        memcpy(arp_ptr, &dest_ip, 4);
 623
 624        return skb;
 625
 626out:
 627        kfree_skb(skb);
 628        return NULL;
 629}
 630EXPORT_SYMBOL(arp_create);
 631
 632static int arp_xmit_finish(struct net *net, struct sock *sk, struct sk_buff *skb)
 633{
 634        return dev_queue_xmit(skb);
 635}
 636
 637/*
 638 *      Send an arp packet.
 639 */
 640void arp_xmit(struct sk_buff *skb)
 641{
 642        /* Send it off, maybe filter it using firewalling first.  */
 643        NF_HOOK(NFPROTO_ARP, NF_ARP_OUT,
 644                dev_net(skb->dev), NULL, skb, NULL, skb->dev,
 645                arp_xmit_finish);
 646}
 647EXPORT_SYMBOL(arp_xmit);
 648
 649static bool arp_is_garp(struct net *net, struct net_device *dev,
 650                        int *addr_type, __be16 ar_op,
 651                        __be32 sip, __be32 tip,
 652                        unsigned char *sha, unsigned char *tha)
 653{
 654        bool is_garp = tip == sip;
 655
 656        /* Gratuitous ARP _replies_ also require target hwaddr to be
 657         * the same as source.
 658         */
 659        if (is_garp && ar_op == htons(ARPOP_REPLY))
 660                is_garp =
 661                        /* IPv4 over IEEE 1394 doesn't provide target
 662                         * hardware address field in its ARP payload.
 663                         */
 664                        tha &&
 665                        !memcmp(tha, sha, dev->addr_len);
 666
 667        if (is_garp) {
 668                *addr_type = inet_addr_type_dev_table(net, dev, sip);
 669                if (*addr_type != RTN_UNICAST)
 670                        is_garp = false;
 671        }
 672        return is_garp;
 673}
 674
 675/*
 676 *      Process an arp request.
 677 */
 678
 679static int arp_process(struct net *net, struct sock *sk, struct sk_buff *skb)
 680{
 681        struct net_device *dev = skb->dev;
 682        struct in_device *in_dev = __in_dev_get_rcu(dev);
 683        struct arphdr *arp;
 684        unsigned char *arp_ptr;
 685        struct rtable *rt;
 686        unsigned char *sha;
 687        unsigned char *tha = NULL;
 688        __be32 sip, tip;
 689        u16 dev_type = dev->type;
 690        int addr_type;
 691        struct neighbour *n;
 692        struct dst_entry *reply_dst = NULL;
 693        bool is_garp = false;
 694
 695        /* arp_rcv below verifies the ARP header and verifies the device
 696         * is ARP'able.
 697         */
 698
 699        if (!in_dev)
 700                goto out_free_skb;
 701
 702        arp = arp_hdr(skb);
 703
 704        switch (dev_type) {
 705        default:
 706                if (arp->ar_pro != htons(ETH_P_IP) ||
 707                    htons(dev_type) != arp->ar_hrd)
 708                        goto out_free_skb;
 709                break;
 710        case ARPHRD_ETHER:
 711        case ARPHRD_FDDI:
 712        case ARPHRD_IEEE802:
 713                /*
 714                 * ETHERNET, and Fibre Channel (which are IEEE 802
 715                 * devices, according to RFC 2625) devices will accept ARP
 716                 * hardware types of either 1 (Ethernet) or 6 (IEEE 802.2).
 717                 * This is the case also of FDDI, where the RFC 1390 says that
 718                 * FDDI devices should accept ARP hardware of (1) Ethernet,
 719                 * however, to be more robust, we'll accept both 1 (Ethernet)
 720                 * or 6 (IEEE 802.2)
 721                 */
 722                if ((arp->ar_hrd != htons(ARPHRD_ETHER) &&
 723                     arp->ar_hrd != htons(ARPHRD_IEEE802)) ||
 724                    arp->ar_pro != htons(ETH_P_IP))
 725                        goto out_free_skb;
 726                break;
 727        case ARPHRD_AX25:
 728                if (arp->ar_pro != htons(AX25_P_IP) ||
 729                    arp->ar_hrd != htons(ARPHRD_AX25))
 730                        goto out_free_skb;
 731                break;
 732        case ARPHRD_NETROM:
 733                if (arp->ar_pro != htons(AX25_P_IP) ||
 734                    arp->ar_hrd != htons(ARPHRD_NETROM))
 735                        goto out_free_skb;
 736                break;
 737        }
 738
 739        /* Understand only these message types */
 740
 741        if (arp->ar_op != htons(ARPOP_REPLY) &&
 742            arp->ar_op != htons(ARPOP_REQUEST))
 743                goto out_free_skb;
 744
 745/*
 746 *      Extract fields
 747 */
 748        arp_ptr = (unsigned char *)(arp + 1);
 749        sha     = arp_ptr;
 750        arp_ptr += dev->addr_len;
 751        memcpy(&sip, arp_ptr, 4);
 752        arp_ptr += 4;
 753        switch (dev_type) {
 754#if IS_ENABLED(CONFIG_FIREWIRE_NET)
 755        case ARPHRD_IEEE1394:
 756                break;
 757#endif
 758        default:
 759                tha = arp_ptr;
 760                arp_ptr += dev->addr_len;
 761        }
 762        memcpy(&tip, arp_ptr, 4);
 763/*
 764 *      Check for bad requests for 127.x.x.x and requests for multicast
 765 *      addresses.  If this is one such, delete it.
 766 */
 767        if (ipv4_is_multicast(tip) ||
 768            (!IN_DEV_ROUTE_LOCALNET(in_dev) && ipv4_is_loopback(tip)))
 769                goto out_free_skb;
 770
 771 /*
 772  *     For some 802.11 wireless deployments (and possibly other networks),
 773  *     there will be an ARP proxy and gratuitous ARP frames are attacks
 774  *     and thus should not be accepted.
 775  */
 776        if (sip == tip && IN_DEV_ORCONF(in_dev, DROP_GRATUITOUS_ARP))
 777                goto out_free_skb;
 778
 779/*
 780 *     Special case: We must set Frame Relay source Q.922 address
 781 */
 782        if (dev_type == ARPHRD_DLCI)
 783                sha = dev->broadcast;
 784
 785/*
 786 *  Process entry.  The idea here is we want to send a reply if it is a
 787 *  request for us or if it is a request for someone else that we hold
 788 *  a proxy for.  We want to add an entry to our cache if it is a reply
 789 *  to us or if it is a request for our address.
 790 *  (The assumption for this last is that if someone is requesting our
 791 *  address, they are probably intending to talk to us, so it saves time
 792 *  if we cache their address.  Their address is also probably not in
 793 *  our cache, since ours is not in their cache.)
 794 *
 795 *  Putting this another way, we only care about replies if they are to
 796 *  us, in which case we add them to the cache.  For requests, we care
 797 *  about those for us and those for our proxies.  We reply to both,
 798 *  and in the case of requests for us we add the requester to the arp
 799 *  cache.
 800 */
 801
 802        if (arp->ar_op == htons(ARPOP_REQUEST) && skb_metadata_dst(skb))
 803                reply_dst = (struct dst_entry *)
 804                            iptunnel_metadata_reply(skb_metadata_dst(skb),
 805                                                    GFP_ATOMIC);
 806
 807        /* Special case: IPv4 duplicate address detection packet (RFC2131) */
 808        if (sip == 0) {
 809                if (arp->ar_op == htons(ARPOP_REQUEST) &&
 810                    inet_addr_type_dev_table(net, dev, tip) == RTN_LOCAL &&
 811                    !arp_ignore(in_dev, sip, tip))
 812                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP, sip, dev, tip,
 813                                     sha, dev->dev_addr, sha, reply_dst);
 814                goto out_consume_skb;
 815        }
 816
 817        if (arp->ar_op == htons(ARPOP_REQUEST) &&
 818            ip_route_input_noref(skb, tip, sip, 0, dev) == 0) {
 819
 820                rt = skb_rtable(skb);
 821                addr_type = rt->rt_type;
 822
 823                if (addr_type == RTN_LOCAL) {
 824                        int dont_send;
 825
 826                        dont_send = arp_ignore(in_dev, sip, tip);
 827                        if (!dont_send && IN_DEV_ARPFILTER(in_dev))
 828                                dont_send = arp_filter(sip, tip, dev);
 829                        if (!dont_send) {
 830                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 831                                if (n) {
 832                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 833                                                     sip, dev, tip, sha,
 834                                                     dev->dev_addr, sha,
 835                                                     reply_dst);
 836                                        neigh_release(n);
 837                                }
 838                        }
 839                        goto out_consume_skb;
 840                } else if (IN_DEV_FORWARD(in_dev)) {
 841                        if (addr_type == RTN_UNICAST  &&
 842                            (arp_fwd_proxy(in_dev, dev, rt) ||
 843                             arp_fwd_pvlan(in_dev, dev, rt, sip, tip) ||
 844                             (rt->dst.dev != dev &&
 845                              pneigh_lookup(&arp_tbl, net, &tip, dev, 0)))) {
 846                                n = neigh_event_ns(&arp_tbl, sha, &sip, dev);
 847                                if (n)
 848                                        neigh_release(n);
 849
 850                                if (NEIGH_CB(skb)->flags & LOCALLY_ENQUEUED ||
 851                                    skb->pkt_type == PACKET_HOST ||
 852                                    NEIGH_VAR(in_dev->arp_parms, PROXY_DELAY) == 0) {
 853                                        arp_send_dst(ARPOP_REPLY, ETH_P_ARP,
 854                                                     sip, dev, tip, sha,
 855                                                     dev->dev_addr, sha,
 856                                                     reply_dst);
 857                                } else {
 858                                        pneigh_enqueue(&arp_tbl,
 859                                                       in_dev->arp_parms, skb);
 860                                        goto out_free_dst;
 861                                }
 862                                goto out_consume_skb;
 863                        }
 864                }
 865        }
 866
 867        /* Update our ARP tables */
 868
 869        n = __neigh_lookup(&arp_tbl, &sip, dev, 0);
 870
 871        addr_type = -1;
 872        if (n || IN_DEV_ARP_ACCEPT(in_dev)) {
 873                is_garp = arp_is_garp(net, dev, &addr_type, arp->ar_op,
 874                                      sip, tip, sha, tha);
 875        }
 876
 877        if (IN_DEV_ARP_ACCEPT(in_dev)) {
 878                /* Unsolicited ARP is not accepted by default.
 879                   It is possible, that this option should be enabled for some
 880                   devices (strip is candidate)
 881                 */
 882                if (!n &&
 883                    (is_garp ||
 884                     (arp->ar_op == htons(ARPOP_REPLY) &&
 885                      (addr_type == RTN_UNICAST ||
 886                       (addr_type < 0 &&
 887                        /* postpone calculation to as late as possible */
 888                        inet_addr_type_dev_table(net, dev, sip) ==
 889                                RTN_UNICAST)))))
 890                        n = __neigh_lookup(&arp_tbl, &sip, dev, 1);
 891        }
 892
 893        if (n) {
 894                int state = NUD_REACHABLE;
 895                int override;
 896
 897                /* If several different ARP replies follows back-to-back,
 898                   use the FIRST one. It is possible, if several proxy
 899                   agents are active. Taking the first reply prevents
 900                   arp trashing and chooses the fastest router.
 901                 */
 902                override = time_after(jiffies,
 903                                      n->updated +
 904                                      NEIGH_VAR(n->parms, LOCKTIME)) ||
 905                           is_garp;
 906
 907                /* Broadcast replies and request packets
 908                   do not assert neighbour reachability.
 909                 */
 910                if (arp->ar_op != htons(ARPOP_REPLY) ||
 911                    skb->pkt_type != PACKET_HOST)
 912                        state = NUD_STALE;
 913                neigh_update(n, sha, state,
 914                             override ? NEIGH_UPDATE_F_OVERRIDE : 0, 0);
 915                neigh_release(n);
 916        }
 917
 918out_consume_skb:
 919        consume_skb(skb);
 920
 921out_free_dst:
 922        dst_release(reply_dst);
 923        return NET_RX_SUCCESS;
 924
 925out_free_skb:
 926        kfree_skb(skb);
 927        return NET_RX_DROP;
 928}
 929
 930static void parp_redo(struct sk_buff *skb)
 931{
 932        arp_process(dev_net(skb->dev), NULL, skb);
 933}
 934
 935
 936/*
 937 *      Receive an arp request from the device layer.
 938 */
 939
 940static int arp_rcv(struct sk_buff *skb, struct net_device *dev,
 941                   struct packet_type *pt, struct net_device *orig_dev)
 942{
 943        const struct arphdr *arp;
 944
 945        /* do not tweak dropwatch on an ARP we will ignore */
 946        if (dev->flags & IFF_NOARP ||
 947            skb->pkt_type == PACKET_OTHERHOST ||
 948            skb->pkt_type == PACKET_LOOPBACK)
 949                goto consumeskb;
 950
 951        skb = skb_share_check(skb, GFP_ATOMIC);
 952        if (!skb)
 953                goto out_of_mem;
 954
 955        /* ARP header, plus 2 device addresses, plus 2 IP addresses.  */
 956        if (!pskb_may_pull(skb, arp_hdr_len(dev)))
 957                goto freeskb;
 958
 959        arp = arp_hdr(skb);
 960        if (arp->ar_hln != dev->addr_len || arp->ar_pln != 4)
 961                goto freeskb;
 962
 963        memset(NEIGH_CB(skb), 0, sizeof(struct neighbour_cb));
 964
 965        return NF_HOOK(NFPROTO_ARP, NF_ARP_IN,
 966                       dev_net(dev), NULL, skb, dev, NULL,
 967                       arp_process);
 968
 969consumeskb:
 970        consume_skb(skb);
 971        return NET_RX_SUCCESS;
 972freeskb:
 973        kfree_skb(skb);
 974out_of_mem:
 975        return NET_RX_DROP;
 976}
 977
 978/*
 979 *      User level interface (ioctl)
 980 */
 981
 982/*
 983 *      Set (create) an ARP cache entry.
 984 */
 985
 986static int arp_req_set_proxy(struct net *net, struct net_device *dev, int on)
 987{
 988        if (!dev) {
 989                IPV4_DEVCONF_ALL(net, PROXY_ARP) = on;
 990                return 0;
 991        }
 992        if (__in_dev_get_rtnl(dev)) {
 993                IN_DEV_CONF_SET(__in_dev_get_rtnl(dev), PROXY_ARP, on);
 994                return 0;
 995        }
 996        return -ENXIO;
 997}
 998
 999static int arp_req_set_public(struct net *net, struct arpreq *r,
1000                struct net_device *dev)
1001{
1002        __be32 ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1003        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1004
1005        if (mask && mask != htonl(0xFFFFFFFF))
1006                return -EINVAL;
1007        if (!dev && (r->arp_flags & ATF_COM)) {
1008                dev = dev_getbyhwaddr_rcu(net, r->arp_ha.sa_family,
1009                                      r->arp_ha.sa_data);
1010                if (!dev)
1011                        return -ENODEV;
1012        }
1013        if (mask) {
1014                if (!pneigh_lookup(&arp_tbl, net, &ip, dev, 1))
1015                        return -ENOBUFS;
1016                return 0;
1017        }
1018
1019        return arp_req_set_proxy(net, dev, 1);
1020}
1021
1022static int arp_req_set(struct net *net, struct arpreq *r,
1023                       struct net_device *dev)
1024{
1025        __be32 ip;
1026        struct neighbour *neigh;
1027        int err;
1028
1029        if (r->arp_flags & ATF_PUBL)
1030                return arp_req_set_public(net, r, dev);
1031
1032        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1033        if (r->arp_flags & ATF_PERM)
1034                r->arp_flags |= ATF_COM;
1035        if (!dev) {
1036                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1037
1038                if (IS_ERR(rt))
1039                        return PTR_ERR(rt);
1040                dev = rt->dst.dev;
1041                ip_rt_put(rt);
1042                if (!dev)
1043                        return -EINVAL;
1044        }
1045        switch (dev->type) {
1046#if IS_ENABLED(CONFIG_FDDI)
1047        case ARPHRD_FDDI:
1048                /*
1049                 * According to RFC 1390, FDDI devices should accept ARP
1050                 * hardware types of 1 (Ethernet).  However, to be more
1051                 * robust, we'll accept hardware types of either 1 (Ethernet)
1052                 * or 6 (IEEE 802.2).
1053                 */
1054                if (r->arp_ha.sa_family != ARPHRD_FDDI &&
1055                    r->arp_ha.sa_family != ARPHRD_ETHER &&
1056                    r->arp_ha.sa_family != ARPHRD_IEEE802)
1057                        return -EINVAL;
1058                break;
1059#endif
1060        default:
1061                if (r->arp_ha.sa_family != dev->type)
1062                        return -EINVAL;
1063                break;
1064        }
1065
1066        neigh = __neigh_lookup_errno(&arp_tbl, &ip, dev);
1067        err = PTR_ERR(neigh);
1068        if (!IS_ERR(neigh)) {
1069                unsigned int state = NUD_STALE;
1070                if (r->arp_flags & ATF_PERM)
1071                        state = NUD_PERMANENT;
1072                err = neigh_update(neigh, (r->arp_flags & ATF_COM) ?
1073                                   r->arp_ha.sa_data : NULL, state,
1074                                   NEIGH_UPDATE_F_OVERRIDE |
1075                                   NEIGH_UPDATE_F_ADMIN, 0);
1076                neigh_release(neigh);
1077        }
1078        return err;
1079}
1080
1081static unsigned int arp_state_to_flags(struct neighbour *neigh)
1082{
1083        if (neigh->nud_state&NUD_PERMANENT)
1084                return ATF_PERM | ATF_COM;
1085        else if (neigh->nud_state&NUD_VALID)
1086                return ATF_COM;
1087        else
1088                return 0;
1089}
1090
1091/*
1092 *      Get an ARP cache entry.
1093 */
1094
1095static int arp_req_get(struct arpreq *r, struct net_device *dev)
1096{
1097        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1098        struct neighbour *neigh;
1099        int err = -ENXIO;
1100
1101        neigh = neigh_lookup(&arp_tbl, &ip, dev);
1102        if (neigh) {
1103                if (!(neigh->nud_state & NUD_NOARP)) {
1104                        read_lock_bh(&neigh->lock);
1105                        memcpy(r->arp_ha.sa_data, neigh->ha, dev->addr_len);
1106                        r->arp_flags = arp_state_to_flags(neigh);
1107                        read_unlock_bh(&neigh->lock);
1108                        r->arp_ha.sa_family = dev->type;
1109                        strlcpy(r->arp_dev, dev->name, sizeof(r->arp_dev));
1110                        err = 0;
1111                }
1112                neigh_release(neigh);
1113        }
1114        return err;
1115}
1116
1117static int arp_invalidate(struct net_device *dev, __be32 ip)
1118{
1119        struct neighbour *neigh = neigh_lookup(&arp_tbl, &ip, dev);
1120        int err = -ENXIO;
1121        struct neigh_table *tbl = &arp_tbl;
1122
1123        if (neigh) {
1124                if (neigh->nud_state & ~NUD_NOARP)
1125                        err = neigh_update(neigh, NULL, NUD_FAILED,
1126                                           NEIGH_UPDATE_F_OVERRIDE|
1127                                           NEIGH_UPDATE_F_ADMIN, 0);
1128                write_lock_bh(&tbl->lock);
1129                neigh_release(neigh);
1130                neigh_remove_one(neigh, tbl);
1131                write_unlock_bh(&tbl->lock);
1132        }
1133
1134        return err;
1135}
1136
1137static int arp_req_delete_public(struct net *net, struct arpreq *r,
1138                struct net_device *dev)
1139{
1140        __be32 ip = ((struct sockaddr_in *) &r->arp_pa)->sin_addr.s_addr;
1141        __be32 mask = ((struct sockaddr_in *)&r->arp_netmask)->sin_addr.s_addr;
1142
1143        if (mask == htonl(0xFFFFFFFF))
1144                return pneigh_delete(&arp_tbl, net, &ip, dev);
1145
1146        if (mask)
1147                return -EINVAL;
1148
1149        return arp_req_set_proxy(net, dev, 0);
1150}
1151
1152static int arp_req_delete(struct net *net, struct arpreq *r,
1153                          struct net_device *dev)
1154{
1155        __be32 ip;
1156
1157        if (r->arp_flags & ATF_PUBL)
1158                return arp_req_delete_public(net, r, dev);
1159
1160        ip = ((struct sockaddr_in *)&r->arp_pa)->sin_addr.s_addr;
1161        if (!dev) {
1162                struct rtable *rt = ip_route_output(net, ip, 0, RTO_ONLINK, 0);
1163                if (IS_ERR(rt))
1164                        return PTR_ERR(rt);
1165                dev = rt->dst.dev;
1166                ip_rt_put(rt);
1167                if (!dev)
1168                        return -EINVAL;
1169        }
1170        return arp_invalidate(dev, ip);
1171}
1172
1173/*
1174 *      Handle an ARP layer I/O control request.
1175 */
1176
1177int arp_ioctl(struct net *net, unsigned int cmd, void __user *arg)
1178{
1179        int err;
1180        struct arpreq r;
1181        struct net_device *dev = NULL;
1182
1183        switch (cmd) {
1184        case SIOCDARP:
1185        case SIOCSARP:
1186                if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1187                        return -EPERM;
1188                /* fall through */
1189        case SIOCGARP:
1190                err = copy_from_user(&r, arg, sizeof(struct arpreq));
1191                if (err)
1192                        return -EFAULT;
1193                break;
1194        default:
1195                return -EINVAL;
1196        }
1197
1198        if (r.arp_pa.sa_family != AF_INET)
1199                return -EPFNOSUPPORT;
1200
1201        if (!(r.arp_flags & ATF_PUBL) &&
1202            (r.arp_flags & (ATF_NETMASK | ATF_DONTPUB)))
1203                return -EINVAL;
1204        if (!(r.arp_flags & ATF_NETMASK))
1205                ((struct sockaddr_in *)&r.arp_netmask)->sin_addr.s_addr =
1206                                                           htonl(0xFFFFFFFFUL);
1207        rtnl_lock();
1208        if (r.arp_dev[0]) {
1209                err = -ENODEV;
1210                dev = __dev_get_by_name(net, r.arp_dev);
1211                if (!dev)
1212                        goto out;
1213
1214                /* Mmmm... It is wrong... ARPHRD_NETROM==0 */
1215                if (!r.arp_ha.sa_family)
1216                        r.arp_ha.sa_family = dev->type;
1217                err = -EINVAL;
1218                if ((r.arp_flags & ATF_COM) && r.arp_ha.sa_family != dev->type)
1219                        goto out;
1220        } else if (cmd == SIOCGARP) {
1221                err = -ENODEV;
1222                goto out;
1223        }
1224
1225        switch (cmd) {
1226        case SIOCDARP:
1227                err = arp_req_delete(net, &r, dev);
1228                break;
1229        case SIOCSARP:
1230                err = arp_req_set(net, &r, dev);
1231                break;
1232        case SIOCGARP:
1233                err = arp_req_get(&r, dev);
1234                break;
1235        }
1236out:
1237        rtnl_unlock();
1238        if (cmd == SIOCGARP && !err && copy_to_user(arg, &r, sizeof(r)))
1239                err = -EFAULT;
1240        return err;
1241}
1242
1243static int arp_netdev_event(struct notifier_block *this, unsigned long event,
1244                            void *ptr)
1245{
1246        struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1247        struct netdev_notifier_change_info *change_info;
1248
1249        switch (event) {
1250        case NETDEV_CHANGEADDR:
1251                neigh_changeaddr(&arp_tbl, dev);
1252                rt_cache_flush(dev_net(dev));
1253                break;
1254        case NETDEV_CHANGE:
1255                change_info = ptr;
1256                if (change_info->flags_changed & IFF_NOARP)
1257                        neigh_changeaddr(&arp_tbl, dev);
1258                break;
1259        default:
1260                break;
1261        }
1262
1263        return NOTIFY_DONE;
1264}
1265
1266static struct notifier_block arp_netdev_notifier = {
1267        .notifier_call = arp_netdev_event,
1268};
1269
1270/* Note, that it is not on notifier chain.
1271   It is necessary, that this routine was called after route cache will be
1272   flushed.
1273 */
1274void arp_ifdown(struct net_device *dev)
1275{
1276        neigh_ifdown(&arp_tbl, dev);
1277}
1278
1279
1280/*
1281 *      Called once on startup.
1282 */
1283
1284static struct packet_type arp_packet_type __read_mostly = {
1285        .type = cpu_to_be16(ETH_P_ARP),
1286        .func = arp_rcv,
1287};
1288
1289static int arp_proc_init(void);
1290
1291void __init arp_init(void)
1292{
1293        neigh_table_init(NEIGH_ARP_TABLE, &arp_tbl);
1294
1295        dev_add_pack(&arp_packet_type);
1296        arp_proc_init();
1297#ifdef CONFIG_SYSCTL
1298        neigh_sysctl_register(NULL, &arp_tbl.parms, NULL);
1299#endif
1300        register_netdevice_notifier(&arp_netdev_notifier);
1301}
1302
1303#ifdef CONFIG_PROC_FS
1304#if IS_ENABLED(CONFIG_AX25)
1305
1306/* ------------------------------------------------------------------------ */
1307/*
1308 *      ax25 -> ASCII conversion
1309 */
1310static void ax2asc2(ax25_address *a, char *buf)
1311{
1312        char c, *s;
1313        int n;
1314
1315        for (n = 0, s = buf; n < 6; n++) {
1316                c = (a->ax25_call[n] >> 1) & 0x7F;
1317
1318                if (c != ' ')
1319                        *s++ = c;
1320        }
1321
1322        *s++ = '-';
1323        n = (a->ax25_call[6] >> 1) & 0x0F;
1324        if (n > 9) {
1325                *s++ = '1';
1326                n -= 10;
1327        }
1328
1329        *s++ = n + '0';
1330        *s++ = '\0';
1331
1332        if (*buf == '\0' || *buf == '-') {
1333                buf[0] = '*';
1334                buf[1] = '\0';
1335        }
1336}
1337#endif /* CONFIG_AX25 */
1338
1339#define HBUFFERLEN 30
1340
1341static void arp_format_neigh_entry(struct seq_file *seq,
1342                                   struct neighbour *n)
1343{
1344        char hbuffer[HBUFFERLEN];
1345        int k, j;
1346        char tbuf[16];
1347        struct net_device *dev = n->dev;
1348        int hatype = dev->type;
1349
1350        read_lock(&n->lock);
1351        /* Convert hardware address to XX:XX:XX:XX ... form. */
1352#if IS_ENABLED(CONFIG_AX25)
1353        if (hatype == ARPHRD_AX25 || hatype == ARPHRD_NETROM)
1354                ax2asc2((ax25_address *)n->ha, hbuffer);
1355        else {
1356#endif
1357        for (k = 0, j = 0; k < HBUFFERLEN - 3 && j < dev->addr_len; j++) {
1358                hbuffer[k++] = hex_asc_hi(n->ha[j]);
1359                hbuffer[k++] = hex_asc_lo(n->ha[j]);
1360                hbuffer[k++] = ':';
1361        }
1362        if (k != 0)
1363                --k;
1364        hbuffer[k] = 0;
1365#if IS_ENABLED(CONFIG_AX25)
1366        }
1367#endif
1368        sprintf(tbuf, "%pI4", n->primary_key);
1369        seq_printf(seq, "%-16s 0x%-10x0x%-10x%-17s     *        %s\n",
1370                   tbuf, hatype, arp_state_to_flags(n), hbuffer, dev->name);
1371        read_unlock(&n->lock);
1372}
1373
1374static void arp_format_pneigh_entry(struct seq_file *seq,
1375                                    struct pneigh_entry *n)
1376{
1377        struct net_device *dev = n->dev;
1378        int hatype = dev ? dev->type : 0;
1379        char tbuf[16];
1380
1381        sprintf(tbuf, "%pI4", n->key);
1382        seq_printf(seq, "%-16s 0x%-10x0x%-10x%s     *        %s\n",
1383                   tbuf, hatype, ATF_PUBL | ATF_PERM, "00:00:00:00:00:00",
1384                   dev ? dev->name : "*");
1385}
1386
1387static int arp_seq_show(struct seq_file *seq, void *v)
1388{
1389        if (v == SEQ_START_TOKEN) {
1390                seq_puts(seq, "IP address       HW type     Flags       "
1391                              "HW address            Mask     Device\n");
1392        } else {
1393                struct neigh_seq_state *state = seq->private;
1394
1395                if (state->flags & NEIGH_SEQ_IS_PNEIGH)
1396                        arp_format_pneigh_entry(seq, v);
1397                else
1398                        arp_format_neigh_entry(seq, v);
1399        }
1400
1401        return 0;
1402}
1403
1404static void *arp_seq_start(struct seq_file *seq, loff_t *pos)
1405{
1406        /* Don't want to confuse "arp -a" w/ magic entries,
1407         * so we tell the generic iterator to skip NUD_NOARP.
1408         */
1409        return neigh_seq_start(seq, pos, &arp_tbl, NEIGH_SEQ_SKIP_NOARP);
1410}
1411
1412/* ------------------------------------------------------------------------ */
1413
1414static const struct seq_operations arp_seq_ops = {
1415        .start  = arp_seq_start,
1416        .next   = neigh_seq_next,
1417        .stop   = neigh_seq_stop,
1418        .show   = arp_seq_show,
1419};
1420
1421/* ------------------------------------------------------------------------ */
1422
1423static int __net_init arp_net_init(struct net *net)
1424{
1425        if (!proc_create_net("arp", 0444, net->proc_net, &arp_seq_ops,
1426                        sizeof(struct neigh_seq_state)))
1427                return -ENOMEM;
1428        return 0;
1429}
1430
1431static void __net_exit arp_net_exit(struct net *net)
1432{
1433        remove_proc_entry("arp", net->proc_net);
1434}
1435
1436static struct pernet_operations arp_net_ops = {
1437        .init = arp_net_init,
1438        .exit = arp_net_exit,
1439};
1440
1441static int __init arp_proc_init(void)
1442{
1443        return register_pernet_subsys(&arp_net_ops);
1444}
1445
1446#else /* CONFIG_PROC_FS */
1447
1448static int __init arp_proc_init(void)
1449{
1450        return 0;
1451}
1452
1453#endif /* CONFIG_PROC_FS */
1454