linux/tools/perf/builtin-sched.c
<<
>>
Prefs
   1// SPDX-License-Identifier: GPL-2.0
   2#include "builtin.h"
   3#include "perf.h"
   4
   5#include "util/util.h"
   6#include "util/evlist.h"
   7#include "util/cache.h"
   8#include "util/evsel.h"
   9#include "util/symbol.h"
  10#include "util/thread.h"
  11#include "util/header.h"
  12#include "util/session.h"
  13#include "util/tool.h"
  14#include "util/cloexec.h"
  15#include "util/thread_map.h"
  16#include "util/color.h"
  17#include "util/stat.h"
  18#include "util/callchain.h"
  19#include "util/time-utils.h"
  20
  21#include <subcmd/parse-options.h>
  22#include "util/trace-event.h"
  23
  24#include "util/debug.h"
  25
  26#include <linux/kernel.h>
  27#include <linux/log2.h>
  28#include <sys/prctl.h>
  29#include <sys/resource.h>
  30#include <inttypes.h>
  31
  32#include <errno.h>
  33#include <semaphore.h>
  34#include <pthread.h>
  35#include <math.h>
  36#include <api/fs/fs.h>
  37#include <linux/time64.h>
  38
  39#include "sane_ctype.h"
  40
  41#define PR_SET_NAME             15               /* Set process name */
  42#define MAX_CPUS                4096
  43#define COMM_LEN                20
  44#define SYM_LEN                 129
  45#define MAX_PID                 1024000
  46
  47struct sched_atom;
  48
  49struct task_desc {
  50        unsigned long           nr;
  51        unsigned long           pid;
  52        char                    comm[COMM_LEN];
  53
  54        unsigned long           nr_events;
  55        unsigned long           curr_event;
  56        struct sched_atom       **atoms;
  57
  58        pthread_t               thread;
  59        sem_t                   sleep_sem;
  60
  61        sem_t                   ready_for_work;
  62        sem_t                   work_done_sem;
  63
  64        u64                     cpu_usage;
  65};
  66
  67enum sched_event_type {
  68        SCHED_EVENT_RUN,
  69        SCHED_EVENT_SLEEP,
  70        SCHED_EVENT_WAKEUP,
  71        SCHED_EVENT_MIGRATION,
  72};
  73
  74struct sched_atom {
  75        enum sched_event_type   type;
  76        int                     specific_wait;
  77        u64                     timestamp;
  78        u64                     duration;
  79        unsigned long           nr;
  80        sem_t                   *wait_sem;
  81        struct task_desc        *wakee;
  82};
  83
  84#define TASK_STATE_TO_CHAR_STR "RSDTtZXxKWP"
  85
  86/* task state bitmask, copied from include/linux/sched.h */
  87#define TASK_RUNNING            0
  88#define TASK_INTERRUPTIBLE      1
  89#define TASK_UNINTERRUPTIBLE    2
  90#define __TASK_STOPPED          4
  91#define __TASK_TRACED           8
  92/* in tsk->exit_state */
  93#define EXIT_DEAD               16
  94#define EXIT_ZOMBIE             32
  95#define EXIT_TRACE              (EXIT_ZOMBIE | EXIT_DEAD)
  96/* in tsk->state again */
  97#define TASK_DEAD               64
  98#define TASK_WAKEKILL           128
  99#define TASK_WAKING             256
 100#define TASK_PARKED             512
 101
 102enum thread_state {
 103        THREAD_SLEEPING = 0,
 104        THREAD_WAIT_CPU,
 105        THREAD_SCHED_IN,
 106        THREAD_IGNORE
 107};
 108
 109struct work_atom {
 110        struct list_head        list;
 111        enum thread_state       state;
 112        u64                     sched_out_time;
 113        u64                     wake_up_time;
 114        u64                     sched_in_time;
 115        u64                     runtime;
 116};
 117
 118struct work_atoms {
 119        struct list_head        work_list;
 120        struct thread           *thread;
 121        struct rb_node          node;
 122        u64                     max_lat;
 123        u64                     max_lat_at;
 124        u64                     total_lat;
 125        u64                     nb_atoms;
 126        u64                     total_runtime;
 127        int                     num_merged;
 128};
 129
 130typedef int (*sort_fn_t)(struct work_atoms *, struct work_atoms *);
 131
 132struct perf_sched;
 133
 134struct trace_sched_handler {
 135        int (*switch_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 136                            struct perf_sample *sample, struct machine *machine);
 137
 138        int (*runtime_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 139                             struct perf_sample *sample, struct machine *machine);
 140
 141        int (*wakeup_event)(struct perf_sched *sched, struct perf_evsel *evsel,
 142                            struct perf_sample *sample, struct machine *machine);
 143
 144        /* PERF_RECORD_FORK event, not sched_process_fork tracepoint */
 145        int (*fork_event)(struct perf_sched *sched, union perf_event *event,
 146                          struct machine *machine);
 147
 148        int (*migrate_task_event)(struct perf_sched *sched,
 149                                  struct perf_evsel *evsel,
 150                                  struct perf_sample *sample,
 151                                  struct machine *machine);
 152};
 153
 154#define COLOR_PIDS PERF_COLOR_BLUE
 155#define COLOR_CPUS PERF_COLOR_BG_RED
 156
 157struct perf_sched_map {
 158        DECLARE_BITMAP(comp_cpus_mask, MAX_CPUS);
 159        int                     *comp_cpus;
 160        bool                     comp;
 161        struct thread_map       *color_pids;
 162        const char              *color_pids_str;
 163        struct cpu_map          *color_cpus;
 164        const char              *color_cpus_str;
 165        struct cpu_map          *cpus;
 166        const char              *cpus_str;
 167};
 168
 169struct perf_sched {
 170        struct perf_tool tool;
 171        const char       *sort_order;
 172        unsigned long    nr_tasks;
 173        struct task_desc **pid_to_task;
 174        struct task_desc **tasks;
 175        const struct trace_sched_handler *tp_handler;
 176        pthread_mutex_t  start_work_mutex;
 177        pthread_mutex_t  work_done_wait_mutex;
 178        int              profile_cpu;
 179/*
 180 * Track the current task - that way we can know whether there's any
 181 * weird events, such as a task being switched away that is not current.
 182 */
 183        int              max_cpu;
 184        u32              curr_pid[MAX_CPUS];
 185        struct thread    *curr_thread[MAX_CPUS];
 186        char             next_shortname1;
 187        char             next_shortname2;
 188        unsigned int     replay_repeat;
 189        unsigned long    nr_run_events;
 190        unsigned long    nr_sleep_events;
 191        unsigned long    nr_wakeup_events;
 192        unsigned long    nr_sleep_corrections;
 193        unsigned long    nr_run_events_optimized;
 194        unsigned long    targetless_wakeups;
 195        unsigned long    multitarget_wakeups;
 196        unsigned long    nr_runs;
 197        unsigned long    nr_timestamps;
 198        unsigned long    nr_unordered_timestamps;
 199        unsigned long    nr_context_switch_bugs;
 200        unsigned long    nr_events;
 201        unsigned long    nr_lost_chunks;
 202        unsigned long    nr_lost_events;
 203        u64              run_measurement_overhead;
 204        u64              sleep_measurement_overhead;
 205        u64              start_time;
 206        u64              cpu_usage;
 207        u64              runavg_cpu_usage;
 208        u64              parent_cpu_usage;
 209        u64              runavg_parent_cpu_usage;
 210        u64              sum_runtime;
 211        u64              sum_fluct;
 212        u64              run_avg;
 213        u64              all_runtime;
 214        u64              all_count;
 215        u64              cpu_last_switched[MAX_CPUS];
 216        struct rb_root   atom_root, sorted_atom_root, merged_atom_root;
 217        struct list_head sort_list, cmp_pid;
 218        bool force;
 219        bool skip_merge;
 220        struct perf_sched_map map;
 221
 222        /* options for timehist command */
 223        bool            summary;
 224        bool            summary_only;
 225        bool            idle_hist;
 226        bool            show_callchain;
 227        unsigned int    max_stack;
 228        bool            show_cpu_visual;
 229        bool            show_wakeups;
 230        bool            show_next;
 231        bool            show_migrations;
 232        bool            show_state;
 233        u64             skipped_samples;
 234        const char      *time_str;
 235        struct perf_time_interval ptime;
 236        struct perf_time_interval hist_time;
 237};
 238
 239/* per thread run time data */
 240struct thread_runtime {
 241        u64 last_time;      /* time of previous sched in/out event */
 242        u64 dt_run;         /* run time */
 243        u64 dt_sleep;       /* time between CPU access by sleep (off cpu) */
 244        u64 dt_iowait;      /* time between CPU access by iowait (off cpu) */
 245        u64 dt_preempt;     /* time between CPU access by preempt (off cpu) */
 246        u64 dt_delay;       /* time between wakeup and sched-in */
 247        u64 ready_to_run;   /* time of wakeup */
 248
 249        struct stats run_stats;
 250        u64 total_run_time;
 251        u64 total_sleep_time;
 252        u64 total_iowait_time;
 253        u64 total_preempt_time;
 254        u64 total_delay_time;
 255
 256        int last_state;
 257
 258        char shortname[3];
 259        bool comm_changed;
 260
 261        u64 migrations;
 262};
 263
 264/* per event run time data */
 265struct evsel_runtime {
 266        u64 *last_time; /* time this event was last seen per cpu */
 267        u32 ncpu;       /* highest cpu slot allocated */
 268};
 269
 270/* per cpu idle time data */
 271struct idle_thread_runtime {
 272        struct thread_runtime   tr;
 273        struct thread           *last_thread;
 274        struct rb_root          sorted_root;
 275        struct callchain_root   callchain;
 276        struct callchain_cursor cursor;
 277};
 278
 279/* track idle times per cpu */
 280static struct thread **idle_threads;
 281static int idle_max_cpu;
 282static char idle_comm[] = "<idle>";
 283
 284static u64 get_nsecs(void)
 285{
 286        struct timespec ts;
 287
 288        clock_gettime(CLOCK_MONOTONIC, &ts);
 289
 290        return ts.tv_sec * NSEC_PER_SEC + ts.tv_nsec;
 291}
 292
 293static void burn_nsecs(struct perf_sched *sched, u64 nsecs)
 294{
 295        u64 T0 = get_nsecs(), T1;
 296
 297        do {
 298                T1 = get_nsecs();
 299        } while (T1 + sched->run_measurement_overhead < T0 + nsecs);
 300}
 301
 302static void sleep_nsecs(u64 nsecs)
 303{
 304        struct timespec ts;
 305
 306        ts.tv_nsec = nsecs % 999999999;
 307        ts.tv_sec = nsecs / 999999999;
 308
 309        nanosleep(&ts, NULL);
 310}
 311
 312static void calibrate_run_measurement_overhead(struct perf_sched *sched)
 313{
 314        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 315        int i;
 316
 317        for (i = 0; i < 10; i++) {
 318                T0 = get_nsecs();
 319                burn_nsecs(sched, 0);
 320                T1 = get_nsecs();
 321                delta = T1-T0;
 322                min_delta = min(min_delta, delta);
 323        }
 324        sched->run_measurement_overhead = min_delta;
 325
 326        printf("run measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 327}
 328
 329static void calibrate_sleep_measurement_overhead(struct perf_sched *sched)
 330{
 331        u64 T0, T1, delta, min_delta = NSEC_PER_SEC;
 332        int i;
 333
 334        for (i = 0; i < 10; i++) {
 335                T0 = get_nsecs();
 336                sleep_nsecs(10000);
 337                T1 = get_nsecs();
 338                delta = T1-T0;
 339                min_delta = min(min_delta, delta);
 340        }
 341        min_delta -= 10000;
 342        sched->sleep_measurement_overhead = min_delta;
 343
 344        printf("sleep measurement overhead: %" PRIu64 " nsecs\n", min_delta);
 345}
 346
 347static struct sched_atom *
 348get_new_event(struct task_desc *task, u64 timestamp)
 349{
 350        struct sched_atom *event = zalloc(sizeof(*event));
 351        unsigned long idx = task->nr_events;
 352        size_t size;
 353
 354        event->timestamp = timestamp;
 355        event->nr = idx;
 356
 357        task->nr_events++;
 358        size = sizeof(struct sched_atom *) * task->nr_events;
 359        task->atoms = realloc(task->atoms, size);
 360        BUG_ON(!task->atoms);
 361
 362        task->atoms[idx] = event;
 363
 364        return event;
 365}
 366
 367static struct sched_atom *last_event(struct task_desc *task)
 368{
 369        if (!task->nr_events)
 370                return NULL;
 371
 372        return task->atoms[task->nr_events - 1];
 373}
 374
 375static void add_sched_event_run(struct perf_sched *sched, struct task_desc *task,
 376                                u64 timestamp, u64 duration)
 377{
 378        struct sched_atom *event, *curr_event = last_event(task);
 379
 380        /*
 381         * optimize an existing RUN event by merging this one
 382         * to it:
 383         */
 384        if (curr_event && curr_event->type == SCHED_EVENT_RUN) {
 385                sched->nr_run_events_optimized++;
 386                curr_event->duration += duration;
 387                return;
 388        }
 389
 390        event = get_new_event(task, timestamp);
 391
 392        event->type = SCHED_EVENT_RUN;
 393        event->duration = duration;
 394
 395        sched->nr_run_events++;
 396}
 397
 398static void add_sched_event_wakeup(struct perf_sched *sched, struct task_desc *task,
 399                                   u64 timestamp, struct task_desc *wakee)
 400{
 401        struct sched_atom *event, *wakee_event;
 402
 403        event = get_new_event(task, timestamp);
 404        event->type = SCHED_EVENT_WAKEUP;
 405        event->wakee = wakee;
 406
 407        wakee_event = last_event(wakee);
 408        if (!wakee_event || wakee_event->type != SCHED_EVENT_SLEEP) {
 409                sched->targetless_wakeups++;
 410                return;
 411        }
 412        if (wakee_event->wait_sem) {
 413                sched->multitarget_wakeups++;
 414                return;
 415        }
 416
 417        wakee_event->wait_sem = zalloc(sizeof(*wakee_event->wait_sem));
 418        sem_init(wakee_event->wait_sem, 0, 0);
 419        wakee_event->specific_wait = 1;
 420        event->wait_sem = wakee_event->wait_sem;
 421
 422        sched->nr_wakeup_events++;
 423}
 424
 425static void add_sched_event_sleep(struct perf_sched *sched, struct task_desc *task,
 426                                  u64 timestamp, u64 task_state __maybe_unused)
 427{
 428        struct sched_atom *event = get_new_event(task, timestamp);
 429
 430        event->type = SCHED_EVENT_SLEEP;
 431
 432        sched->nr_sleep_events++;
 433}
 434
 435static struct task_desc *register_pid(struct perf_sched *sched,
 436                                      unsigned long pid, const char *comm)
 437{
 438        struct task_desc *task;
 439        static int pid_max;
 440
 441        if (sched->pid_to_task == NULL) {
 442                if (sysctl__read_int("kernel/pid_max", &pid_max) < 0)
 443                        pid_max = MAX_PID;
 444                BUG_ON((sched->pid_to_task = calloc(pid_max, sizeof(struct task_desc *))) == NULL);
 445        }
 446        if (pid >= (unsigned long)pid_max) {
 447                BUG_ON((sched->pid_to_task = realloc(sched->pid_to_task, (pid + 1) *
 448                        sizeof(struct task_desc *))) == NULL);
 449                while (pid >= (unsigned long)pid_max)
 450                        sched->pid_to_task[pid_max++] = NULL;
 451        }
 452
 453        task = sched->pid_to_task[pid];
 454
 455        if (task)
 456                return task;
 457
 458        task = zalloc(sizeof(*task));
 459        task->pid = pid;
 460        task->nr = sched->nr_tasks;
 461        strcpy(task->comm, comm);
 462        /*
 463         * every task starts in sleeping state - this gets ignored
 464         * if there's no wakeup pointing to this sleep state:
 465         */
 466        add_sched_event_sleep(sched, task, 0, 0);
 467
 468        sched->pid_to_task[pid] = task;
 469        sched->nr_tasks++;
 470        sched->tasks = realloc(sched->tasks, sched->nr_tasks * sizeof(struct task_desc *));
 471        BUG_ON(!sched->tasks);
 472        sched->tasks[task->nr] = task;
 473
 474        if (verbose > 0)
 475                printf("registered task #%ld, PID %ld (%s)\n", sched->nr_tasks, pid, comm);
 476
 477        return task;
 478}
 479
 480
 481static void print_task_traces(struct perf_sched *sched)
 482{
 483        struct task_desc *task;
 484        unsigned long i;
 485
 486        for (i = 0; i < sched->nr_tasks; i++) {
 487                task = sched->tasks[i];
 488                printf("task %6ld (%20s:%10ld), nr_events: %ld\n",
 489                        task->nr, task->comm, task->pid, task->nr_events);
 490        }
 491}
 492
 493static void add_cross_task_wakeups(struct perf_sched *sched)
 494{
 495        struct task_desc *task1, *task2;
 496        unsigned long i, j;
 497
 498        for (i = 0; i < sched->nr_tasks; i++) {
 499                task1 = sched->tasks[i];
 500                j = i + 1;
 501                if (j == sched->nr_tasks)
 502                        j = 0;
 503                task2 = sched->tasks[j];
 504                add_sched_event_wakeup(sched, task1, 0, task2);
 505        }
 506}
 507
 508static void perf_sched__process_event(struct perf_sched *sched,
 509                                      struct sched_atom *atom)
 510{
 511        int ret = 0;
 512
 513        switch (atom->type) {
 514                case SCHED_EVENT_RUN:
 515                        burn_nsecs(sched, atom->duration);
 516                        break;
 517                case SCHED_EVENT_SLEEP:
 518                        if (atom->wait_sem)
 519                                ret = sem_wait(atom->wait_sem);
 520                        BUG_ON(ret);
 521                        break;
 522                case SCHED_EVENT_WAKEUP:
 523                        if (atom->wait_sem)
 524                                ret = sem_post(atom->wait_sem);
 525                        BUG_ON(ret);
 526                        break;
 527                case SCHED_EVENT_MIGRATION:
 528                        break;
 529                default:
 530                        BUG_ON(1);
 531        }
 532}
 533
 534static u64 get_cpu_usage_nsec_parent(void)
 535{
 536        struct rusage ru;
 537        u64 sum;
 538        int err;
 539
 540        err = getrusage(RUSAGE_SELF, &ru);
 541        BUG_ON(err);
 542
 543        sum =  ru.ru_utime.tv_sec * NSEC_PER_SEC + ru.ru_utime.tv_usec * NSEC_PER_USEC;
 544        sum += ru.ru_stime.tv_sec * NSEC_PER_SEC + ru.ru_stime.tv_usec * NSEC_PER_USEC;
 545
 546        return sum;
 547}
 548
 549static int self_open_counters(struct perf_sched *sched, unsigned long cur_task)
 550{
 551        struct perf_event_attr attr;
 552        char sbuf[STRERR_BUFSIZE], info[STRERR_BUFSIZE];
 553        int fd;
 554        struct rlimit limit;
 555        bool need_privilege = false;
 556
 557        memset(&attr, 0, sizeof(attr));
 558
 559        attr.type = PERF_TYPE_SOFTWARE;
 560        attr.config = PERF_COUNT_SW_TASK_CLOCK;
 561
 562force_again:
 563        fd = sys_perf_event_open(&attr, 0, -1, -1,
 564                                 perf_event_open_cloexec_flag());
 565
 566        if (fd < 0) {
 567                if (errno == EMFILE) {
 568                        if (sched->force) {
 569                                BUG_ON(getrlimit(RLIMIT_NOFILE, &limit) == -1);
 570                                limit.rlim_cur += sched->nr_tasks - cur_task;
 571                                if (limit.rlim_cur > limit.rlim_max) {
 572                                        limit.rlim_max = limit.rlim_cur;
 573                                        need_privilege = true;
 574                                }
 575                                if (setrlimit(RLIMIT_NOFILE, &limit) == -1) {
 576                                        if (need_privilege && errno == EPERM)
 577                                                strcpy(info, "Need privilege\n");
 578                                } else
 579                                        goto force_again;
 580                        } else
 581                                strcpy(info, "Have a try with -f option\n");
 582                }
 583                pr_err("Error: sys_perf_event_open() syscall returned "
 584                       "with %d (%s)\n%s", fd,
 585                       str_error_r(errno, sbuf, sizeof(sbuf)), info);
 586                exit(EXIT_FAILURE);
 587        }
 588        return fd;
 589}
 590
 591static u64 get_cpu_usage_nsec_self(int fd)
 592{
 593        u64 runtime;
 594        int ret;
 595
 596        ret = read(fd, &runtime, sizeof(runtime));
 597        BUG_ON(ret != sizeof(runtime));
 598
 599        return runtime;
 600}
 601
 602struct sched_thread_parms {
 603        struct task_desc  *task;
 604        struct perf_sched *sched;
 605        int fd;
 606};
 607
 608static void *thread_func(void *ctx)
 609{
 610        struct sched_thread_parms *parms = ctx;
 611        struct task_desc *this_task = parms->task;
 612        struct perf_sched *sched = parms->sched;
 613        u64 cpu_usage_0, cpu_usage_1;
 614        unsigned long i, ret;
 615        char comm2[22];
 616        int fd = parms->fd;
 617
 618        zfree(&parms);
 619
 620        sprintf(comm2, ":%s", this_task->comm);
 621        prctl(PR_SET_NAME, comm2);
 622        if (fd < 0)
 623                return NULL;
 624again:
 625        ret = sem_post(&this_task->ready_for_work);
 626        BUG_ON(ret);
 627        ret = pthread_mutex_lock(&sched->start_work_mutex);
 628        BUG_ON(ret);
 629        ret = pthread_mutex_unlock(&sched->start_work_mutex);
 630        BUG_ON(ret);
 631
 632        cpu_usage_0 = get_cpu_usage_nsec_self(fd);
 633
 634        for (i = 0; i < this_task->nr_events; i++) {
 635                this_task->curr_event = i;
 636                perf_sched__process_event(sched, this_task->atoms[i]);
 637        }
 638
 639        cpu_usage_1 = get_cpu_usage_nsec_self(fd);
 640        this_task->cpu_usage = cpu_usage_1 - cpu_usage_0;
 641        ret = sem_post(&this_task->work_done_sem);
 642        BUG_ON(ret);
 643
 644        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 645        BUG_ON(ret);
 646        ret = pthread_mutex_unlock(&sched->work_done_wait_mutex);
 647        BUG_ON(ret);
 648
 649        goto again;
 650}
 651
 652static void create_tasks(struct perf_sched *sched)
 653{
 654        struct task_desc *task;
 655        pthread_attr_t attr;
 656        unsigned long i;
 657        int err;
 658
 659        err = pthread_attr_init(&attr);
 660        BUG_ON(err);
 661        err = pthread_attr_setstacksize(&attr,
 662                        (size_t) max(16 * 1024, PTHREAD_STACK_MIN));
 663        BUG_ON(err);
 664        err = pthread_mutex_lock(&sched->start_work_mutex);
 665        BUG_ON(err);
 666        err = pthread_mutex_lock(&sched->work_done_wait_mutex);
 667        BUG_ON(err);
 668        for (i = 0; i < sched->nr_tasks; i++) {
 669                struct sched_thread_parms *parms = malloc(sizeof(*parms));
 670                BUG_ON(parms == NULL);
 671                parms->task = task = sched->tasks[i];
 672                parms->sched = sched;
 673                parms->fd = self_open_counters(sched, i);
 674                sem_init(&task->sleep_sem, 0, 0);
 675                sem_init(&task->ready_for_work, 0, 0);
 676                sem_init(&task->work_done_sem, 0, 0);
 677                task->curr_event = 0;
 678                err = pthread_create(&task->thread, &attr, thread_func, parms);
 679                BUG_ON(err);
 680        }
 681}
 682
 683static void wait_for_tasks(struct perf_sched *sched)
 684{
 685        u64 cpu_usage_0, cpu_usage_1;
 686        struct task_desc *task;
 687        unsigned long i, ret;
 688
 689        sched->start_time = get_nsecs();
 690        sched->cpu_usage = 0;
 691        pthread_mutex_unlock(&sched->work_done_wait_mutex);
 692
 693        for (i = 0; i < sched->nr_tasks; i++) {
 694                task = sched->tasks[i];
 695                ret = sem_wait(&task->ready_for_work);
 696                BUG_ON(ret);
 697                sem_init(&task->ready_for_work, 0, 0);
 698        }
 699        ret = pthread_mutex_lock(&sched->work_done_wait_mutex);
 700        BUG_ON(ret);
 701
 702        cpu_usage_0 = get_cpu_usage_nsec_parent();
 703
 704        pthread_mutex_unlock(&sched->start_work_mutex);
 705
 706        for (i = 0; i < sched->nr_tasks; i++) {
 707                task = sched->tasks[i];
 708                ret = sem_wait(&task->work_done_sem);
 709                BUG_ON(ret);
 710                sem_init(&task->work_done_sem, 0, 0);
 711                sched->cpu_usage += task->cpu_usage;
 712                task->cpu_usage = 0;
 713        }
 714
 715        cpu_usage_1 = get_cpu_usage_nsec_parent();
 716        if (!sched->runavg_cpu_usage)
 717                sched->runavg_cpu_usage = sched->cpu_usage;
 718        sched->runavg_cpu_usage = (sched->runavg_cpu_usage * (sched->replay_repeat - 1) + sched->cpu_usage) / sched->replay_repeat;
 719
 720        sched->parent_cpu_usage = cpu_usage_1 - cpu_usage_0;
 721        if (!sched->runavg_parent_cpu_usage)
 722                sched->runavg_parent_cpu_usage = sched->parent_cpu_usage;
 723        sched->runavg_parent_cpu_usage = (sched->runavg_parent_cpu_usage * (sched->replay_repeat - 1) +
 724                                         sched->parent_cpu_usage)/sched->replay_repeat;
 725
 726        ret = pthread_mutex_lock(&sched->start_work_mutex);
 727        BUG_ON(ret);
 728
 729        for (i = 0; i < sched->nr_tasks; i++) {
 730                task = sched->tasks[i];
 731                sem_init(&task->sleep_sem, 0, 0);
 732                task->curr_event = 0;
 733        }
 734}
 735
 736static void run_one_test(struct perf_sched *sched)
 737{
 738        u64 T0, T1, delta, avg_delta, fluct;
 739
 740        T0 = get_nsecs();
 741        wait_for_tasks(sched);
 742        T1 = get_nsecs();
 743
 744        delta = T1 - T0;
 745        sched->sum_runtime += delta;
 746        sched->nr_runs++;
 747
 748        avg_delta = sched->sum_runtime / sched->nr_runs;
 749        if (delta < avg_delta)
 750                fluct = avg_delta - delta;
 751        else
 752                fluct = delta - avg_delta;
 753        sched->sum_fluct += fluct;
 754        if (!sched->run_avg)
 755                sched->run_avg = delta;
 756        sched->run_avg = (sched->run_avg * (sched->replay_repeat - 1) + delta) / sched->replay_repeat;
 757
 758        printf("#%-3ld: %0.3f, ", sched->nr_runs, (double)delta / NSEC_PER_MSEC);
 759
 760        printf("ravg: %0.2f, ", (double)sched->run_avg / NSEC_PER_MSEC);
 761
 762        printf("cpu: %0.2f / %0.2f",
 763                (double)sched->cpu_usage / NSEC_PER_MSEC, (double)sched->runavg_cpu_usage / NSEC_PER_MSEC);
 764
 765#if 0
 766        /*
 767         * rusage statistics done by the parent, these are less
 768         * accurate than the sched->sum_exec_runtime based statistics:
 769         */
 770        printf(" [%0.2f / %0.2f]",
 771                (double)sched->parent_cpu_usage / NSEC_PER_MSEC,
 772                (double)sched->runavg_parent_cpu_usage / NSEC_PER_MSEC);
 773#endif
 774
 775        printf("\n");
 776
 777        if (sched->nr_sleep_corrections)
 778                printf(" (%ld sleep corrections)\n", sched->nr_sleep_corrections);
 779        sched->nr_sleep_corrections = 0;
 780}
 781
 782static void test_calibrations(struct perf_sched *sched)
 783{
 784        u64 T0, T1;
 785
 786        T0 = get_nsecs();
 787        burn_nsecs(sched, NSEC_PER_MSEC);
 788        T1 = get_nsecs();
 789
 790        printf("the run test took %" PRIu64 " nsecs\n", T1 - T0);
 791
 792        T0 = get_nsecs();
 793        sleep_nsecs(NSEC_PER_MSEC);
 794        T1 = get_nsecs();
 795
 796        printf("the sleep test took %" PRIu64 " nsecs\n", T1 - T0);
 797}
 798
 799static int
 800replay_wakeup_event(struct perf_sched *sched,
 801                    struct perf_evsel *evsel, struct perf_sample *sample,
 802                    struct machine *machine __maybe_unused)
 803{
 804        const char *comm = perf_evsel__strval(evsel, sample, "comm");
 805        const u32 pid    = perf_evsel__intval(evsel, sample, "pid");
 806        struct task_desc *waker, *wakee;
 807
 808        if (verbose > 0) {
 809                printf("sched_wakeup event %p\n", evsel);
 810
 811                printf(" ... pid %d woke up %s/%d\n", sample->tid, comm, pid);
 812        }
 813
 814        waker = register_pid(sched, sample->tid, "<unknown>");
 815        wakee = register_pid(sched, pid, comm);
 816
 817        add_sched_event_wakeup(sched, waker, sample->time, wakee);
 818        return 0;
 819}
 820
 821static int replay_switch_event(struct perf_sched *sched,
 822                               struct perf_evsel *evsel,
 823                               struct perf_sample *sample,
 824                               struct machine *machine __maybe_unused)
 825{
 826        const char *prev_comm  = perf_evsel__strval(evsel, sample, "prev_comm"),
 827                   *next_comm  = perf_evsel__strval(evsel, sample, "next_comm");
 828        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
 829                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
 830        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
 831        struct task_desc *prev, __maybe_unused *next;
 832        u64 timestamp0, timestamp = sample->time;
 833        int cpu = sample->cpu;
 834        s64 delta;
 835
 836        if (verbose > 0)
 837                printf("sched_switch event %p\n", evsel);
 838
 839        if (cpu >= MAX_CPUS || cpu < 0)
 840                return 0;
 841
 842        timestamp0 = sched->cpu_last_switched[cpu];
 843        if (timestamp0)
 844                delta = timestamp - timestamp0;
 845        else
 846                delta = 0;
 847
 848        if (delta < 0) {
 849                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
 850                return -1;
 851        }
 852
 853        pr_debug(" ... switch from %s/%d to %s/%d [ran %" PRIu64 " nsecs]\n",
 854                 prev_comm, prev_pid, next_comm, next_pid, delta);
 855
 856        prev = register_pid(sched, prev_pid, prev_comm);
 857        next = register_pid(sched, next_pid, next_comm);
 858
 859        sched->cpu_last_switched[cpu] = timestamp;
 860
 861        add_sched_event_run(sched, prev, timestamp, delta);
 862        add_sched_event_sleep(sched, prev, timestamp, prev_state);
 863
 864        return 0;
 865}
 866
 867static int replay_fork_event(struct perf_sched *sched,
 868                             union perf_event *event,
 869                             struct machine *machine)
 870{
 871        struct thread *child, *parent;
 872
 873        child = machine__findnew_thread(machine, event->fork.pid,
 874                                        event->fork.tid);
 875        parent = machine__findnew_thread(machine, event->fork.ppid,
 876                                         event->fork.ptid);
 877
 878        if (child == NULL || parent == NULL) {
 879                pr_debug("thread does not exist on fork event: child %p, parent %p\n",
 880                                 child, parent);
 881                goto out_put;
 882        }
 883
 884        if (verbose > 0) {
 885                printf("fork event\n");
 886                printf("... parent: %s/%d\n", thread__comm_str(parent), parent->tid);
 887                printf("...  child: %s/%d\n", thread__comm_str(child), child->tid);
 888        }
 889
 890        register_pid(sched, parent->tid, thread__comm_str(parent));
 891        register_pid(sched, child->tid, thread__comm_str(child));
 892out_put:
 893        thread__put(child);
 894        thread__put(parent);
 895        return 0;
 896}
 897
 898struct sort_dimension {
 899        const char              *name;
 900        sort_fn_t               cmp;
 901        struct list_head        list;
 902};
 903
 904/*
 905 * handle runtime stats saved per thread
 906 */
 907static struct thread_runtime *thread__init_runtime(struct thread *thread)
 908{
 909        struct thread_runtime *r;
 910
 911        r = zalloc(sizeof(struct thread_runtime));
 912        if (!r)
 913                return NULL;
 914
 915        init_stats(&r->run_stats);
 916        thread__set_priv(thread, r);
 917
 918        return r;
 919}
 920
 921static struct thread_runtime *thread__get_runtime(struct thread *thread)
 922{
 923        struct thread_runtime *tr;
 924
 925        tr = thread__priv(thread);
 926        if (tr == NULL) {
 927                tr = thread__init_runtime(thread);
 928                if (tr == NULL)
 929                        pr_debug("Failed to malloc memory for runtime data.\n");
 930        }
 931
 932        return tr;
 933}
 934
 935static int
 936thread_lat_cmp(struct list_head *list, struct work_atoms *l, struct work_atoms *r)
 937{
 938        struct sort_dimension *sort;
 939        int ret = 0;
 940
 941        BUG_ON(list_empty(list));
 942
 943        list_for_each_entry(sort, list, list) {
 944                ret = sort->cmp(l, r);
 945                if (ret)
 946                        return ret;
 947        }
 948
 949        return ret;
 950}
 951
 952static struct work_atoms *
 953thread_atoms_search(struct rb_root *root, struct thread *thread,
 954                         struct list_head *sort_list)
 955{
 956        struct rb_node *node = root->rb_node;
 957        struct work_atoms key = { .thread = thread };
 958
 959        while (node) {
 960                struct work_atoms *atoms;
 961                int cmp;
 962
 963                atoms = container_of(node, struct work_atoms, node);
 964
 965                cmp = thread_lat_cmp(sort_list, &key, atoms);
 966                if (cmp > 0)
 967                        node = node->rb_left;
 968                else if (cmp < 0)
 969                        node = node->rb_right;
 970                else {
 971                        BUG_ON(thread != atoms->thread);
 972                        return atoms;
 973                }
 974        }
 975        return NULL;
 976}
 977
 978static void
 979__thread_latency_insert(struct rb_root *root, struct work_atoms *data,
 980                         struct list_head *sort_list)
 981{
 982        struct rb_node **new = &(root->rb_node), *parent = NULL;
 983
 984        while (*new) {
 985                struct work_atoms *this;
 986                int cmp;
 987
 988                this = container_of(*new, struct work_atoms, node);
 989                parent = *new;
 990
 991                cmp = thread_lat_cmp(sort_list, data, this);
 992
 993                if (cmp > 0)
 994                        new = &((*new)->rb_left);
 995                else
 996                        new = &((*new)->rb_right);
 997        }
 998
 999        rb_link_node(&data->node, parent, new);
1000        rb_insert_color(&data->node, root);
1001}
1002
1003static int thread_atoms_insert(struct perf_sched *sched, struct thread *thread)
1004{
1005        struct work_atoms *atoms = zalloc(sizeof(*atoms));
1006        if (!atoms) {
1007                pr_err("No memory at %s\n", __func__);
1008                return -1;
1009        }
1010
1011        atoms->thread = thread__get(thread);
1012        INIT_LIST_HEAD(&atoms->work_list);
1013        __thread_latency_insert(&sched->atom_root, atoms, &sched->cmp_pid);
1014        return 0;
1015}
1016
1017static char sched_out_state(u64 prev_state)
1018{
1019        const char *str = TASK_STATE_TO_CHAR_STR;
1020
1021        return str[prev_state];
1022}
1023
1024static int
1025add_sched_out_event(struct work_atoms *atoms,
1026                    char run_state,
1027                    u64 timestamp)
1028{
1029        struct work_atom *atom = zalloc(sizeof(*atom));
1030        if (!atom) {
1031                pr_err("Non memory at %s", __func__);
1032                return -1;
1033        }
1034
1035        atom->sched_out_time = timestamp;
1036
1037        if (run_state == 'R') {
1038                atom->state = THREAD_WAIT_CPU;
1039                atom->wake_up_time = atom->sched_out_time;
1040        }
1041
1042        list_add_tail(&atom->list, &atoms->work_list);
1043        return 0;
1044}
1045
1046static void
1047add_runtime_event(struct work_atoms *atoms, u64 delta,
1048                  u64 timestamp __maybe_unused)
1049{
1050        struct work_atom *atom;
1051
1052        BUG_ON(list_empty(&atoms->work_list));
1053
1054        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1055
1056        atom->runtime += delta;
1057        atoms->total_runtime += delta;
1058}
1059
1060static void
1061add_sched_in_event(struct work_atoms *atoms, u64 timestamp)
1062{
1063        struct work_atom *atom;
1064        u64 delta;
1065
1066        if (list_empty(&atoms->work_list))
1067                return;
1068
1069        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1070
1071        if (atom->state != THREAD_WAIT_CPU)
1072                return;
1073
1074        if (timestamp < atom->wake_up_time) {
1075                atom->state = THREAD_IGNORE;
1076                return;
1077        }
1078
1079        atom->state = THREAD_SCHED_IN;
1080        atom->sched_in_time = timestamp;
1081
1082        delta = atom->sched_in_time - atom->wake_up_time;
1083        atoms->total_lat += delta;
1084        if (delta > atoms->max_lat) {
1085                atoms->max_lat = delta;
1086                atoms->max_lat_at = timestamp;
1087        }
1088        atoms->nb_atoms++;
1089}
1090
1091static int latency_switch_event(struct perf_sched *sched,
1092                                struct perf_evsel *evsel,
1093                                struct perf_sample *sample,
1094                                struct machine *machine)
1095{
1096        const u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1097                  next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1098        const u64 prev_state = perf_evsel__intval(evsel, sample, "prev_state");
1099        struct work_atoms *out_events, *in_events;
1100        struct thread *sched_out, *sched_in;
1101        u64 timestamp0, timestamp = sample->time;
1102        int cpu = sample->cpu, err = -1;
1103        s64 delta;
1104
1105        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1106
1107        timestamp0 = sched->cpu_last_switched[cpu];
1108        sched->cpu_last_switched[cpu] = timestamp;
1109        if (timestamp0)
1110                delta = timestamp - timestamp0;
1111        else
1112                delta = 0;
1113
1114        if (delta < 0) {
1115                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1116                return -1;
1117        }
1118
1119        sched_out = machine__findnew_thread(machine, -1, prev_pid);
1120        sched_in = machine__findnew_thread(machine, -1, next_pid);
1121        if (sched_out == NULL || sched_in == NULL)
1122                goto out_put;
1123
1124        out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1125        if (!out_events) {
1126                if (thread_atoms_insert(sched, sched_out))
1127                        goto out_put;
1128                out_events = thread_atoms_search(&sched->atom_root, sched_out, &sched->cmp_pid);
1129                if (!out_events) {
1130                        pr_err("out-event: Internal tree error");
1131                        goto out_put;
1132                }
1133        }
1134        if (add_sched_out_event(out_events, sched_out_state(prev_state), timestamp))
1135                return -1;
1136
1137        in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1138        if (!in_events) {
1139                if (thread_atoms_insert(sched, sched_in))
1140                        goto out_put;
1141                in_events = thread_atoms_search(&sched->atom_root, sched_in, &sched->cmp_pid);
1142                if (!in_events) {
1143                        pr_err("in-event: Internal tree error");
1144                        goto out_put;
1145                }
1146                /*
1147                 * Take came in we have not heard about yet,
1148                 * add in an initial atom in runnable state:
1149                 */
1150                if (add_sched_out_event(in_events, 'R', timestamp))
1151                        goto out_put;
1152        }
1153        add_sched_in_event(in_events, timestamp);
1154        err = 0;
1155out_put:
1156        thread__put(sched_out);
1157        thread__put(sched_in);
1158        return err;
1159}
1160
1161static int latency_runtime_event(struct perf_sched *sched,
1162                                 struct perf_evsel *evsel,
1163                                 struct perf_sample *sample,
1164                                 struct machine *machine)
1165{
1166        const u32 pid      = perf_evsel__intval(evsel, sample, "pid");
1167        const u64 runtime  = perf_evsel__intval(evsel, sample, "runtime");
1168        struct thread *thread = machine__findnew_thread(machine, -1, pid);
1169        struct work_atoms *atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1170        u64 timestamp = sample->time;
1171        int cpu = sample->cpu, err = -1;
1172
1173        if (thread == NULL)
1174                return -1;
1175
1176        BUG_ON(cpu >= MAX_CPUS || cpu < 0);
1177        if (!atoms) {
1178                if (thread_atoms_insert(sched, thread))
1179                        goto out_put;
1180                atoms = thread_atoms_search(&sched->atom_root, thread, &sched->cmp_pid);
1181                if (!atoms) {
1182                        pr_err("in-event: Internal tree error");
1183                        goto out_put;
1184                }
1185                if (add_sched_out_event(atoms, 'R', timestamp))
1186                        goto out_put;
1187        }
1188
1189        add_runtime_event(atoms, runtime, timestamp);
1190        err = 0;
1191out_put:
1192        thread__put(thread);
1193        return err;
1194}
1195
1196static int latency_wakeup_event(struct perf_sched *sched,
1197                                struct perf_evsel *evsel,
1198                                struct perf_sample *sample,
1199                                struct machine *machine)
1200{
1201        const u32 pid     = perf_evsel__intval(evsel, sample, "pid");
1202        struct work_atoms *atoms;
1203        struct work_atom *atom;
1204        struct thread *wakee;
1205        u64 timestamp = sample->time;
1206        int err = -1;
1207
1208        wakee = machine__findnew_thread(machine, -1, pid);
1209        if (wakee == NULL)
1210                return -1;
1211        atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1212        if (!atoms) {
1213                if (thread_atoms_insert(sched, wakee))
1214                        goto out_put;
1215                atoms = thread_atoms_search(&sched->atom_root, wakee, &sched->cmp_pid);
1216                if (!atoms) {
1217                        pr_err("wakeup-event: Internal tree error");
1218                        goto out_put;
1219                }
1220                if (add_sched_out_event(atoms, 'S', timestamp))
1221                        goto out_put;
1222        }
1223
1224        BUG_ON(list_empty(&atoms->work_list));
1225
1226        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1227
1228        /*
1229         * As we do not guarantee the wakeup event happens when
1230         * task is out of run queue, also may happen when task is
1231         * on run queue and wakeup only change ->state to TASK_RUNNING,
1232         * then we should not set the ->wake_up_time when wake up a
1233         * task which is on run queue.
1234         *
1235         * You WILL be missing events if you've recorded only
1236         * one CPU, or are only looking at only one, so don't
1237         * skip in this case.
1238         */
1239        if (sched->profile_cpu == -1 && atom->state != THREAD_SLEEPING)
1240                goto out_ok;
1241
1242        sched->nr_timestamps++;
1243        if (atom->sched_out_time > timestamp) {
1244                sched->nr_unordered_timestamps++;
1245                goto out_ok;
1246        }
1247
1248        atom->state = THREAD_WAIT_CPU;
1249        atom->wake_up_time = timestamp;
1250out_ok:
1251        err = 0;
1252out_put:
1253        thread__put(wakee);
1254        return err;
1255}
1256
1257static int latency_migrate_task_event(struct perf_sched *sched,
1258                                      struct perf_evsel *evsel,
1259                                      struct perf_sample *sample,
1260                                      struct machine *machine)
1261{
1262        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
1263        u64 timestamp = sample->time;
1264        struct work_atoms *atoms;
1265        struct work_atom *atom;
1266        struct thread *migrant;
1267        int err = -1;
1268
1269        /*
1270         * Only need to worry about migration when profiling one CPU.
1271         */
1272        if (sched->profile_cpu == -1)
1273                return 0;
1274
1275        migrant = machine__findnew_thread(machine, -1, pid);
1276        if (migrant == NULL)
1277                return -1;
1278        atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1279        if (!atoms) {
1280                if (thread_atoms_insert(sched, migrant))
1281                        goto out_put;
1282                register_pid(sched, migrant->tid, thread__comm_str(migrant));
1283                atoms = thread_atoms_search(&sched->atom_root, migrant, &sched->cmp_pid);
1284                if (!atoms) {
1285                        pr_err("migration-event: Internal tree error");
1286                        goto out_put;
1287                }
1288                if (add_sched_out_event(atoms, 'R', timestamp))
1289                        goto out_put;
1290        }
1291
1292        BUG_ON(list_empty(&atoms->work_list));
1293
1294        atom = list_entry(atoms->work_list.prev, struct work_atom, list);
1295        atom->sched_in_time = atom->sched_out_time = atom->wake_up_time = timestamp;
1296
1297        sched->nr_timestamps++;
1298
1299        if (atom->sched_out_time > timestamp)
1300                sched->nr_unordered_timestamps++;
1301        err = 0;
1302out_put:
1303        thread__put(migrant);
1304        return err;
1305}
1306
1307static void output_lat_thread(struct perf_sched *sched, struct work_atoms *work_list)
1308{
1309        int i;
1310        int ret;
1311        u64 avg;
1312        char max_lat_at[32];
1313
1314        if (!work_list->nb_atoms)
1315                return;
1316        /*
1317         * Ignore idle threads:
1318         */
1319        if (!strcmp(thread__comm_str(work_list->thread), "swapper"))
1320                return;
1321
1322        sched->all_runtime += work_list->total_runtime;
1323        sched->all_count   += work_list->nb_atoms;
1324
1325        if (work_list->num_merged > 1)
1326                ret = printf("  %s:(%d) ", thread__comm_str(work_list->thread), work_list->num_merged);
1327        else
1328                ret = printf("  %s:%d ", thread__comm_str(work_list->thread), work_list->thread->tid);
1329
1330        for (i = 0; i < 24 - ret; i++)
1331                printf(" ");
1332
1333        avg = work_list->total_lat / work_list->nb_atoms;
1334        timestamp__scnprintf_usec(work_list->max_lat_at, max_lat_at, sizeof(max_lat_at));
1335
1336        printf("|%11.3f ms |%9" PRIu64 " | avg:%9.3f ms | max:%9.3f ms | max at: %13s s\n",
1337              (double)work_list->total_runtime / NSEC_PER_MSEC,
1338                 work_list->nb_atoms, (double)avg / NSEC_PER_MSEC,
1339                 (double)work_list->max_lat / NSEC_PER_MSEC,
1340                 max_lat_at);
1341}
1342
1343static int pid_cmp(struct work_atoms *l, struct work_atoms *r)
1344{
1345        if (l->thread == r->thread)
1346                return 0;
1347        if (l->thread->tid < r->thread->tid)
1348                return -1;
1349        if (l->thread->tid > r->thread->tid)
1350                return 1;
1351        return (int)(l->thread - r->thread);
1352}
1353
1354static int avg_cmp(struct work_atoms *l, struct work_atoms *r)
1355{
1356        u64 avgl, avgr;
1357
1358        if (!l->nb_atoms)
1359                return -1;
1360
1361        if (!r->nb_atoms)
1362                return 1;
1363
1364        avgl = l->total_lat / l->nb_atoms;
1365        avgr = r->total_lat / r->nb_atoms;
1366
1367        if (avgl < avgr)
1368                return -1;
1369        if (avgl > avgr)
1370                return 1;
1371
1372        return 0;
1373}
1374
1375static int max_cmp(struct work_atoms *l, struct work_atoms *r)
1376{
1377        if (l->max_lat < r->max_lat)
1378                return -1;
1379        if (l->max_lat > r->max_lat)
1380                return 1;
1381
1382        return 0;
1383}
1384
1385static int switch_cmp(struct work_atoms *l, struct work_atoms *r)
1386{
1387        if (l->nb_atoms < r->nb_atoms)
1388                return -1;
1389        if (l->nb_atoms > r->nb_atoms)
1390                return 1;
1391
1392        return 0;
1393}
1394
1395static int runtime_cmp(struct work_atoms *l, struct work_atoms *r)
1396{
1397        if (l->total_runtime < r->total_runtime)
1398                return -1;
1399        if (l->total_runtime > r->total_runtime)
1400                return 1;
1401
1402        return 0;
1403}
1404
1405static int sort_dimension__add(const char *tok, struct list_head *list)
1406{
1407        size_t i;
1408        static struct sort_dimension avg_sort_dimension = {
1409                .name = "avg",
1410                .cmp  = avg_cmp,
1411        };
1412        static struct sort_dimension max_sort_dimension = {
1413                .name = "max",
1414                .cmp  = max_cmp,
1415        };
1416        static struct sort_dimension pid_sort_dimension = {
1417                .name = "pid",
1418                .cmp  = pid_cmp,
1419        };
1420        static struct sort_dimension runtime_sort_dimension = {
1421                .name = "runtime",
1422                .cmp  = runtime_cmp,
1423        };
1424        static struct sort_dimension switch_sort_dimension = {
1425                .name = "switch",
1426                .cmp  = switch_cmp,
1427        };
1428        struct sort_dimension *available_sorts[] = {
1429                &pid_sort_dimension,
1430                &avg_sort_dimension,
1431                &max_sort_dimension,
1432                &switch_sort_dimension,
1433                &runtime_sort_dimension,
1434        };
1435
1436        for (i = 0; i < ARRAY_SIZE(available_sorts); i++) {
1437                if (!strcmp(available_sorts[i]->name, tok)) {
1438                        list_add_tail(&available_sorts[i]->list, list);
1439
1440                        return 0;
1441                }
1442        }
1443
1444        return -1;
1445}
1446
1447static void perf_sched__sort_lat(struct perf_sched *sched)
1448{
1449        struct rb_node *node;
1450        struct rb_root *root = &sched->atom_root;
1451again:
1452        for (;;) {
1453                struct work_atoms *data;
1454                node = rb_first(root);
1455                if (!node)
1456                        break;
1457
1458                rb_erase(node, root);
1459                data = rb_entry(node, struct work_atoms, node);
1460                __thread_latency_insert(&sched->sorted_atom_root, data, &sched->sort_list);
1461        }
1462        if (root == &sched->atom_root) {
1463                root = &sched->merged_atom_root;
1464                goto again;
1465        }
1466}
1467
1468static int process_sched_wakeup_event(struct perf_tool *tool,
1469                                      struct perf_evsel *evsel,
1470                                      struct perf_sample *sample,
1471                                      struct machine *machine)
1472{
1473        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1474
1475        if (sched->tp_handler->wakeup_event)
1476                return sched->tp_handler->wakeup_event(sched, evsel, sample, machine);
1477
1478        return 0;
1479}
1480
1481union map_priv {
1482        void    *ptr;
1483        bool     color;
1484};
1485
1486static bool thread__has_color(struct thread *thread)
1487{
1488        union map_priv priv = {
1489                .ptr = thread__priv(thread),
1490        };
1491
1492        return priv.color;
1493}
1494
1495static struct thread*
1496map__findnew_thread(struct perf_sched *sched, struct machine *machine, pid_t pid, pid_t tid)
1497{
1498        struct thread *thread = machine__findnew_thread(machine, pid, tid);
1499        union map_priv priv = {
1500                .color = false,
1501        };
1502
1503        if (!sched->map.color_pids || !thread || thread__priv(thread))
1504                return thread;
1505
1506        if (thread_map__has(sched->map.color_pids, tid))
1507                priv.color = true;
1508
1509        thread__set_priv(thread, priv.ptr);
1510        return thread;
1511}
1512
1513static int map_switch_event(struct perf_sched *sched, struct perf_evsel *evsel,
1514                            struct perf_sample *sample, struct machine *machine)
1515{
1516        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1517        struct thread *sched_in;
1518        struct thread_runtime *tr;
1519        int new_shortname;
1520        u64 timestamp0, timestamp = sample->time;
1521        s64 delta;
1522        int i, this_cpu = sample->cpu;
1523        int cpus_nr;
1524        bool new_cpu = false;
1525        const char *color = PERF_COLOR_NORMAL;
1526        char stimestamp[32];
1527
1528        BUG_ON(this_cpu >= MAX_CPUS || this_cpu < 0);
1529
1530        if (this_cpu > sched->max_cpu)
1531                sched->max_cpu = this_cpu;
1532
1533        if (sched->map.comp) {
1534                cpus_nr = bitmap_weight(sched->map.comp_cpus_mask, MAX_CPUS);
1535                if (!test_and_set_bit(this_cpu, sched->map.comp_cpus_mask)) {
1536                        sched->map.comp_cpus[cpus_nr++] = this_cpu;
1537                        new_cpu = true;
1538                }
1539        } else
1540                cpus_nr = sched->max_cpu;
1541
1542        timestamp0 = sched->cpu_last_switched[this_cpu];
1543        sched->cpu_last_switched[this_cpu] = timestamp;
1544        if (timestamp0)
1545                delta = timestamp - timestamp0;
1546        else
1547                delta = 0;
1548
1549        if (delta < 0) {
1550                pr_err("hm, delta: %" PRIu64 " < 0 ?\n", delta);
1551                return -1;
1552        }
1553
1554        sched_in = map__findnew_thread(sched, machine, -1, next_pid);
1555        if (sched_in == NULL)
1556                return -1;
1557
1558        tr = thread__get_runtime(sched_in);
1559        if (tr == NULL) {
1560                thread__put(sched_in);
1561                return -1;
1562        }
1563
1564        sched->curr_thread[this_cpu] = thread__get(sched_in);
1565
1566        printf("  ");
1567
1568        new_shortname = 0;
1569        if (!tr->shortname[0]) {
1570                if (!strcmp(thread__comm_str(sched_in), "swapper")) {
1571                        /*
1572                         * Don't allocate a letter-number for swapper:0
1573                         * as a shortname. Instead, we use '.' for it.
1574                         */
1575                        tr->shortname[0] = '.';
1576                        tr->shortname[1] = ' ';
1577                } else {
1578                        tr->shortname[0] = sched->next_shortname1;
1579                        tr->shortname[1] = sched->next_shortname2;
1580
1581                        if (sched->next_shortname1 < 'Z') {
1582                                sched->next_shortname1++;
1583                        } else {
1584                                sched->next_shortname1 = 'A';
1585                                if (sched->next_shortname2 < '9')
1586                                        sched->next_shortname2++;
1587                                else
1588                                        sched->next_shortname2 = '0';
1589                        }
1590                }
1591                new_shortname = 1;
1592        }
1593
1594        for (i = 0; i < cpus_nr; i++) {
1595                int cpu = sched->map.comp ? sched->map.comp_cpus[i] : i;
1596                struct thread *curr_thread = sched->curr_thread[cpu];
1597                struct thread_runtime *curr_tr;
1598                const char *pid_color = color;
1599                const char *cpu_color = color;
1600
1601                if (curr_thread && thread__has_color(curr_thread))
1602                        pid_color = COLOR_PIDS;
1603
1604                if (sched->map.cpus && !cpu_map__has(sched->map.cpus, cpu))
1605                        continue;
1606
1607                if (sched->map.color_cpus && cpu_map__has(sched->map.color_cpus, cpu))
1608                        cpu_color = COLOR_CPUS;
1609
1610                if (cpu != this_cpu)
1611                        color_fprintf(stdout, color, " ");
1612                else
1613                        color_fprintf(stdout, cpu_color, "*");
1614
1615                if (sched->curr_thread[cpu]) {
1616                        curr_tr = thread__get_runtime(sched->curr_thread[cpu]);
1617                        if (curr_tr == NULL) {
1618                                thread__put(sched_in);
1619                                return -1;
1620                        }
1621                        color_fprintf(stdout, pid_color, "%2s ", curr_tr->shortname);
1622                } else
1623                        color_fprintf(stdout, color, "   ");
1624        }
1625
1626        if (sched->map.cpus && !cpu_map__has(sched->map.cpus, this_cpu))
1627                goto out;
1628
1629        timestamp__scnprintf_usec(timestamp, stimestamp, sizeof(stimestamp));
1630        color_fprintf(stdout, color, "  %12s secs ", stimestamp);
1631        if (new_shortname || tr->comm_changed || (verbose > 0 && sched_in->tid)) {
1632                const char *pid_color = color;
1633
1634                if (thread__has_color(sched_in))
1635                        pid_color = COLOR_PIDS;
1636
1637                color_fprintf(stdout, pid_color, "%s => %s:%d",
1638                       tr->shortname, thread__comm_str(sched_in), sched_in->tid);
1639                tr->comm_changed = false;
1640        }
1641
1642        if (sched->map.comp && new_cpu)
1643                color_fprintf(stdout, color, " (CPU %d)", this_cpu);
1644
1645out:
1646        color_fprintf(stdout, color, "\n");
1647
1648        thread__put(sched_in);
1649
1650        return 0;
1651}
1652
1653static int process_sched_switch_event(struct perf_tool *tool,
1654                                      struct perf_evsel *evsel,
1655                                      struct perf_sample *sample,
1656                                      struct machine *machine)
1657{
1658        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1659        int this_cpu = sample->cpu, err = 0;
1660        u32 prev_pid = perf_evsel__intval(evsel, sample, "prev_pid"),
1661            next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1662
1663        if (sched->curr_pid[this_cpu] != (u32)-1) {
1664                /*
1665                 * Are we trying to switch away a PID that is
1666                 * not current?
1667                 */
1668                if (sched->curr_pid[this_cpu] != prev_pid)
1669                        sched->nr_context_switch_bugs++;
1670        }
1671
1672        if (sched->tp_handler->switch_event)
1673                err = sched->tp_handler->switch_event(sched, evsel, sample, machine);
1674
1675        sched->curr_pid[this_cpu] = next_pid;
1676        return err;
1677}
1678
1679static int process_sched_runtime_event(struct perf_tool *tool,
1680                                       struct perf_evsel *evsel,
1681                                       struct perf_sample *sample,
1682                                       struct machine *machine)
1683{
1684        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1685
1686        if (sched->tp_handler->runtime_event)
1687                return sched->tp_handler->runtime_event(sched, evsel, sample, machine);
1688
1689        return 0;
1690}
1691
1692static int perf_sched__process_fork_event(struct perf_tool *tool,
1693                                          union perf_event *event,
1694                                          struct perf_sample *sample,
1695                                          struct machine *machine)
1696{
1697        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1698
1699        /* run the fork event through the perf machineruy */
1700        perf_event__process_fork(tool, event, sample, machine);
1701
1702        /* and then run additional processing needed for this command */
1703        if (sched->tp_handler->fork_event)
1704                return sched->tp_handler->fork_event(sched, event, machine);
1705
1706        return 0;
1707}
1708
1709static int process_sched_migrate_task_event(struct perf_tool *tool,
1710                                            struct perf_evsel *evsel,
1711                                            struct perf_sample *sample,
1712                                            struct machine *machine)
1713{
1714        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
1715
1716        if (sched->tp_handler->migrate_task_event)
1717                return sched->tp_handler->migrate_task_event(sched, evsel, sample, machine);
1718
1719        return 0;
1720}
1721
1722typedef int (*tracepoint_handler)(struct perf_tool *tool,
1723                                  struct perf_evsel *evsel,
1724                                  struct perf_sample *sample,
1725                                  struct machine *machine);
1726
1727static int perf_sched__process_tracepoint_sample(struct perf_tool *tool __maybe_unused,
1728                                                 union perf_event *event __maybe_unused,
1729                                                 struct perf_sample *sample,
1730                                                 struct perf_evsel *evsel,
1731                                                 struct machine *machine)
1732{
1733        int err = 0;
1734
1735        if (evsel->handler != NULL) {
1736                tracepoint_handler f = evsel->handler;
1737                err = f(tool, evsel, sample, machine);
1738        }
1739
1740        return err;
1741}
1742
1743static int perf_sched__process_comm(struct perf_tool *tool __maybe_unused,
1744                                    union perf_event *event,
1745                                    struct perf_sample *sample,
1746                                    struct machine *machine)
1747{
1748        struct thread *thread;
1749        struct thread_runtime *tr;
1750        int err;
1751
1752        err = perf_event__process_comm(tool, event, sample, machine);
1753        if (err)
1754                return err;
1755
1756        thread = machine__find_thread(machine, sample->pid, sample->tid);
1757        if (!thread) {
1758                pr_err("Internal error: can't find thread\n");
1759                return -1;
1760        }
1761
1762        tr = thread__get_runtime(thread);
1763        if (tr == NULL) {
1764                thread__put(thread);
1765                return -1;
1766        }
1767
1768        tr->comm_changed = true;
1769        thread__put(thread);
1770
1771        return 0;
1772}
1773
1774static int perf_sched__read_events(struct perf_sched *sched)
1775{
1776        const struct perf_evsel_str_handler handlers[] = {
1777                { "sched:sched_switch",       process_sched_switch_event, },
1778                { "sched:sched_stat_runtime", process_sched_runtime_event, },
1779                { "sched:sched_wakeup",       process_sched_wakeup_event, },
1780                { "sched:sched_wakeup_new",   process_sched_wakeup_event, },
1781                { "sched:sched_migrate_task", process_sched_migrate_task_event, },
1782        };
1783        struct perf_session *session;
1784        struct perf_data data = {
1785                .file      = {
1786                        .path = input_name,
1787                },
1788                .mode      = PERF_DATA_MODE_READ,
1789                .force     = sched->force,
1790        };
1791        int rc = -1;
1792
1793        session = perf_session__new(&data, false, &sched->tool);
1794        if (session == NULL) {
1795                pr_debug("No Memory for session\n");
1796                return -1;
1797        }
1798
1799        symbol__init(&session->header.env);
1800
1801        if (perf_session__set_tracepoints_handlers(session, handlers))
1802                goto out_delete;
1803
1804        if (perf_session__has_traces(session, "record -R")) {
1805                int err = perf_session__process_events(session);
1806                if (err) {
1807                        pr_err("Failed to process events, error %d", err);
1808                        goto out_delete;
1809                }
1810
1811                sched->nr_events      = session->evlist->stats.nr_events[0];
1812                sched->nr_lost_events = session->evlist->stats.total_lost;
1813                sched->nr_lost_chunks = session->evlist->stats.nr_events[PERF_RECORD_LOST];
1814        }
1815
1816        rc = 0;
1817out_delete:
1818        perf_session__delete(session);
1819        return rc;
1820}
1821
1822/*
1823 * scheduling times are printed as msec.usec
1824 */
1825static inline void print_sched_time(unsigned long long nsecs, int width)
1826{
1827        unsigned long msecs;
1828        unsigned long usecs;
1829
1830        msecs  = nsecs / NSEC_PER_MSEC;
1831        nsecs -= msecs * NSEC_PER_MSEC;
1832        usecs  = nsecs / NSEC_PER_USEC;
1833        printf("%*lu.%03lu ", width, msecs, usecs);
1834}
1835
1836/*
1837 * returns runtime data for event, allocating memory for it the
1838 * first time it is used.
1839 */
1840static struct evsel_runtime *perf_evsel__get_runtime(struct perf_evsel *evsel)
1841{
1842        struct evsel_runtime *r = evsel->priv;
1843
1844        if (r == NULL) {
1845                r = zalloc(sizeof(struct evsel_runtime));
1846                evsel->priv = r;
1847        }
1848
1849        return r;
1850}
1851
1852/*
1853 * save last time event was seen per cpu
1854 */
1855static void perf_evsel__save_time(struct perf_evsel *evsel,
1856                                  u64 timestamp, u32 cpu)
1857{
1858        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1859
1860        if (r == NULL)
1861                return;
1862
1863        if ((cpu >= r->ncpu) || (r->last_time == NULL)) {
1864                int i, n = __roundup_pow_of_two(cpu+1);
1865                void *p = r->last_time;
1866
1867                p = realloc(r->last_time, n * sizeof(u64));
1868                if (!p)
1869                        return;
1870
1871                r->last_time = p;
1872                for (i = r->ncpu; i < n; ++i)
1873                        r->last_time[i] = (u64) 0;
1874
1875                r->ncpu = n;
1876        }
1877
1878        r->last_time[cpu] = timestamp;
1879}
1880
1881/* returns last time this event was seen on the given cpu */
1882static u64 perf_evsel__get_time(struct perf_evsel *evsel, u32 cpu)
1883{
1884        struct evsel_runtime *r = perf_evsel__get_runtime(evsel);
1885
1886        if ((r == NULL) || (r->last_time == NULL) || (cpu >= r->ncpu))
1887                return 0;
1888
1889        return r->last_time[cpu];
1890}
1891
1892static int comm_width = 30;
1893
1894static char *timehist_get_commstr(struct thread *thread)
1895{
1896        static char str[32];
1897        const char *comm = thread__comm_str(thread);
1898        pid_t tid = thread->tid;
1899        pid_t pid = thread->pid_;
1900        int n;
1901
1902        if (pid == 0)
1903                n = scnprintf(str, sizeof(str), "%s", comm);
1904
1905        else if (tid != pid)
1906                n = scnprintf(str, sizeof(str), "%s[%d/%d]", comm, tid, pid);
1907
1908        else
1909                n = scnprintf(str, sizeof(str), "%s[%d]", comm, tid);
1910
1911        if (n > comm_width)
1912                comm_width = n;
1913
1914        return str;
1915}
1916
1917static void timehist_header(struct perf_sched *sched)
1918{
1919        u32 ncpus = sched->max_cpu + 1;
1920        u32 i, j;
1921
1922        printf("%15s %6s ", "time", "cpu");
1923
1924        if (sched->show_cpu_visual) {
1925                printf(" ");
1926                for (i = 0, j = 0; i < ncpus; ++i) {
1927                        printf("%x", j++);
1928                        if (j > 15)
1929                                j = 0;
1930                }
1931                printf(" ");
1932        }
1933
1934        printf(" %-*s  %9s  %9s  %9s", comm_width,
1935                "task name", "wait time", "sch delay", "run time");
1936
1937        if (sched->show_state)
1938                printf("  %s", "state");
1939
1940        printf("\n");
1941
1942        /*
1943         * units row
1944         */
1945        printf("%15s %-6s ", "", "");
1946
1947        if (sched->show_cpu_visual)
1948                printf(" %*s ", ncpus, "");
1949
1950        printf(" %-*s  %9s  %9s  %9s", comm_width,
1951               "[tid/pid]", "(msec)", "(msec)", "(msec)");
1952
1953        if (sched->show_state)
1954                printf("  %5s", "");
1955
1956        printf("\n");
1957
1958        /*
1959         * separator
1960         */
1961        printf("%.15s %.6s ", graph_dotted_line, graph_dotted_line);
1962
1963        if (sched->show_cpu_visual)
1964                printf(" %.*s ", ncpus, graph_dotted_line);
1965
1966        printf(" %.*s  %.9s  %.9s  %.9s", comm_width,
1967                graph_dotted_line, graph_dotted_line, graph_dotted_line,
1968                graph_dotted_line);
1969
1970        if (sched->show_state)
1971                printf("  %.5s", graph_dotted_line);
1972
1973        printf("\n");
1974}
1975
1976static char task_state_char(struct thread *thread, int state)
1977{
1978        static const char state_to_char[] = TASK_STATE_TO_CHAR_STR;
1979        unsigned bit = state ? ffs(state) : 0;
1980
1981        /* 'I' for idle */
1982        if (thread->tid == 0)
1983                return 'I';
1984
1985        return bit < sizeof(state_to_char) - 1 ? state_to_char[bit] : '?';
1986}
1987
1988static void timehist_print_sample(struct perf_sched *sched,
1989                                  struct perf_evsel *evsel,
1990                                  struct perf_sample *sample,
1991                                  struct addr_location *al,
1992                                  struct thread *thread,
1993                                  u64 t, int state)
1994{
1995        struct thread_runtime *tr = thread__priv(thread);
1996        const char *next_comm = perf_evsel__strval(evsel, sample, "next_comm");
1997        const u32 next_pid = perf_evsel__intval(evsel, sample, "next_pid");
1998        u32 max_cpus = sched->max_cpu + 1;
1999        char tstr[64];
2000        char nstr[30];
2001        u64 wait_time;
2002
2003        timestamp__scnprintf_usec(t, tstr, sizeof(tstr));
2004        printf("%15s [%04d] ", tstr, sample->cpu);
2005
2006        if (sched->show_cpu_visual) {
2007                u32 i;
2008                char c;
2009
2010                printf(" ");
2011                for (i = 0; i < max_cpus; ++i) {
2012                        /* flag idle times with 'i'; others are sched events */
2013                        if (i == sample->cpu)
2014                                c = (thread->tid == 0) ? 'i' : 's';
2015                        else
2016                                c = ' ';
2017                        printf("%c", c);
2018                }
2019                printf(" ");
2020        }
2021
2022        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2023
2024        wait_time = tr->dt_sleep + tr->dt_iowait + tr->dt_preempt;
2025        print_sched_time(wait_time, 6);
2026
2027        print_sched_time(tr->dt_delay, 6);
2028        print_sched_time(tr->dt_run, 6);
2029
2030        if (sched->show_state)
2031                printf(" %5c ", task_state_char(thread, state));
2032
2033        if (sched->show_next) {
2034                snprintf(nstr, sizeof(nstr), "next: %s[%d]", next_comm, next_pid);
2035                printf(" %-*s", comm_width, nstr);
2036        }
2037
2038        if (sched->show_wakeups && !sched->show_next)
2039                printf("  %-*s", comm_width, "");
2040
2041        if (thread->tid == 0)
2042                goto out;
2043
2044        if (sched->show_callchain)
2045                printf("  ");
2046
2047        sample__fprintf_sym(sample, al, 0,
2048                            EVSEL__PRINT_SYM | EVSEL__PRINT_ONELINE |
2049                            EVSEL__PRINT_CALLCHAIN_ARROW |
2050                            EVSEL__PRINT_SKIP_IGNORED,
2051                            &callchain_cursor, stdout);
2052
2053out:
2054        printf("\n");
2055}
2056
2057/*
2058 * Explanation of delta-time stats:
2059 *
2060 *            t = time of current schedule out event
2061 *        tprev = time of previous sched out event
2062 *                also time of schedule-in event for current task
2063 *    last_time = time of last sched change event for current task
2064 *                (i.e, time process was last scheduled out)
2065 * ready_to_run = time of wakeup for current task
2066 *
2067 * -----|------------|------------|------------|------
2068 *    last         ready        tprev          t
2069 *    time         to run
2070 *
2071 *      |-------- dt_wait --------|
2072 *                   |- dt_delay -|-- dt_run --|
2073 *
2074 *   dt_run = run time of current task
2075 *  dt_wait = time between last schedule out event for task and tprev
2076 *            represents time spent off the cpu
2077 * dt_delay = time between wakeup and schedule-in of task
2078 */
2079
2080static void timehist_update_runtime_stats(struct thread_runtime *r,
2081                                         u64 t, u64 tprev)
2082{
2083        r->dt_delay   = 0;
2084        r->dt_sleep   = 0;
2085        r->dt_iowait  = 0;
2086        r->dt_preempt = 0;
2087        r->dt_run     = 0;
2088
2089        if (tprev) {
2090                r->dt_run = t - tprev;
2091                if (r->ready_to_run) {
2092                        if (r->ready_to_run > tprev)
2093                                pr_debug("time travel: wakeup time for task > previous sched_switch event\n");
2094                        else
2095                                r->dt_delay = tprev - r->ready_to_run;
2096                }
2097
2098                if (r->last_time > tprev)
2099                        pr_debug("time travel: last sched out time for task > previous sched_switch event\n");
2100                else if (r->last_time) {
2101                        u64 dt_wait = tprev - r->last_time;
2102
2103                        if (r->last_state == TASK_RUNNING)
2104                                r->dt_preempt = dt_wait;
2105                        else if (r->last_state == TASK_UNINTERRUPTIBLE)
2106                                r->dt_iowait = dt_wait;
2107                        else
2108                                r->dt_sleep = dt_wait;
2109                }
2110        }
2111
2112        update_stats(&r->run_stats, r->dt_run);
2113
2114        r->total_run_time     += r->dt_run;
2115        r->total_delay_time   += r->dt_delay;
2116        r->total_sleep_time   += r->dt_sleep;
2117        r->total_iowait_time  += r->dt_iowait;
2118        r->total_preempt_time += r->dt_preempt;
2119}
2120
2121static bool is_idle_sample(struct perf_sample *sample,
2122                           struct perf_evsel *evsel)
2123{
2124        /* pid 0 == swapper == idle task */
2125        if (strcmp(perf_evsel__name(evsel), "sched:sched_switch") == 0)
2126                return perf_evsel__intval(evsel, sample, "prev_pid") == 0;
2127
2128        return sample->pid == 0;
2129}
2130
2131static void save_task_callchain(struct perf_sched *sched,
2132                                struct perf_sample *sample,
2133                                struct perf_evsel *evsel,
2134                                struct machine *machine)
2135{
2136        struct callchain_cursor *cursor = &callchain_cursor;
2137        struct thread *thread;
2138
2139        /* want main thread for process - has maps */
2140        thread = machine__findnew_thread(machine, sample->pid, sample->pid);
2141        if (thread == NULL) {
2142                pr_debug("Failed to get thread for pid %d.\n", sample->pid);
2143                return;
2144        }
2145
2146        if (!sched->show_callchain || sample->callchain == NULL)
2147                return;
2148
2149        if (thread__resolve_callchain(thread, cursor, evsel, sample,
2150                                      NULL, NULL, sched->max_stack + 2) != 0) {
2151                if (verbose > 0)
2152                        pr_err("Failed to resolve callchain. Skipping\n");
2153
2154                return;
2155        }
2156
2157        callchain_cursor_commit(cursor);
2158
2159        while (true) {
2160                struct callchain_cursor_node *node;
2161                struct symbol *sym;
2162
2163                node = callchain_cursor_current(cursor);
2164                if (node == NULL)
2165                        break;
2166
2167                sym = node->sym;
2168                if (sym) {
2169                        if (!strcmp(sym->name, "schedule") ||
2170                            !strcmp(sym->name, "__schedule") ||
2171                            !strcmp(sym->name, "preempt_schedule"))
2172                                sym->ignore = 1;
2173                }
2174
2175                callchain_cursor_advance(cursor);
2176        }
2177}
2178
2179static int init_idle_thread(struct thread *thread)
2180{
2181        struct idle_thread_runtime *itr;
2182
2183        thread__set_comm(thread, idle_comm, 0);
2184
2185        itr = zalloc(sizeof(*itr));
2186        if (itr == NULL)
2187                return -ENOMEM;
2188
2189        init_stats(&itr->tr.run_stats);
2190        callchain_init(&itr->callchain);
2191        callchain_cursor_reset(&itr->cursor);
2192        thread__set_priv(thread, itr);
2193
2194        return 0;
2195}
2196
2197/*
2198 * Track idle stats per cpu by maintaining a local thread
2199 * struct for the idle task on each cpu.
2200 */
2201static int init_idle_threads(int ncpu)
2202{
2203        int i, ret;
2204
2205        idle_threads = zalloc(ncpu * sizeof(struct thread *));
2206        if (!idle_threads)
2207                return -ENOMEM;
2208
2209        idle_max_cpu = ncpu;
2210
2211        /* allocate the actual thread struct if needed */
2212        for (i = 0; i < ncpu; ++i) {
2213                idle_threads[i] = thread__new(0, 0);
2214                if (idle_threads[i] == NULL)
2215                        return -ENOMEM;
2216
2217                ret = init_idle_thread(idle_threads[i]);
2218                if (ret < 0)
2219                        return ret;
2220        }
2221
2222        return 0;
2223}
2224
2225static void free_idle_threads(void)
2226{
2227        int i;
2228
2229        if (idle_threads == NULL)
2230                return;
2231
2232        for (i = 0; i < idle_max_cpu; ++i) {
2233                if ((idle_threads[i]))
2234                        thread__delete(idle_threads[i]);
2235        }
2236
2237        free(idle_threads);
2238}
2239
2240static struct thread *get_idle_thread(int cpu)
2241{
2242        /*
2243         * expand/allocate array of pointers to local thread
2244         * structs if needed
2245         */
2246        if ((cpu >= idle_max_cpu) || (idle_threads == NULL)) {
2247                int i, j = __roundup_pow_of_two(cpu+1);
2248                void *p;
2249
2250                p = realloc(idle_threads, j * sizeof(struct thread *));
2251                if (!p)
2252                        return NULL;
2253
2254                idle_threads = (struct thread **) p;
2255                for (i = idle_max_cpu; i < j; ++i)
2256                        idle_threads[i] = NULL;
2257
2258                idle_max_cpu = j;
2259        }
2260
2261        /* allocate a new thread struct if needed */
2262        if (idle_threads[cpu] == NULL) {
2263                idle_threads[cpu] = thread__new(0, 0);
2264
2265                if (idle_threads[cpu]) {
2266                        if (init_idle_thread(idle_threads[cpu]) < 0)
2267                                return NULL;
2268                }
2269        }
2270
2271        return idle_threads[cpu];
2272}
2273
2274static void save_idle_callchain(struct perf_sched *sched,
2275                                struct idle_thread_runtime *itr,
2276                                struct perf_sample *sample)
2277{
2278        if (!sched->show_callchain || sample->callchain == NULL)
2279                return;
2280
2281        callchain_cursor__copy(&itr->cursor, &callchain_cursor);
2282}
2283
2284static struct thread *timehist_get_thread(struct perf_sched *sched,
2285                                          struct perf_sample *sample,
2286                                          struct machine *machine,
2287                                          struct perf_evsel *evsel)
2288{
2289        struct thread *thread;
2290
2291        if (is_idle_sample(sample, evsel)) {
2292                thread = get_idle_thread(sample->cpu);
2293                if (thread == NULL)
2294                        pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2295
2296        } else {
2297                /* there were samples with tid 0 but non-zero pid */
2298                thread = machine__findnew_thread(machine, sample->pid,
2299                                                 sample->tid ?: sample->pid);
2300                if (thread == NULL) {
2301                        pr_debug("Failed to get thread for tid %d. skipping sample.\n",
2302                                 sample->tid);
2303                }
2304
2305                save_task_callchain(sched, sample, evsel, machine);
2306                if (sched->idle_hist) {
2307                        struct thread *idle;
2308                        struct idle_thread_runtime *itr;
2309
2310                        idle = get_idle_thread(sample->cpu);
2311                        if (idle == NULL) {
2312                                pr_err("Failed to get idle thread for cpu %d.\n", sample->cpu);
2313                                return NULL;
2314                        }
2315
2316                        itr = thread__priv(idle);
2317                        if (itr == NULL)
2318                                return NULL;
2319
2320                        itr->last_thread = thread;
2321
2322                        /* copy task callchain when entering to idle */
2323                        if (perf_evsel__intval(evsel, sample, "next_pid") == 0)
2324                                save_idle_callchain(sched, itr, sample);
2325                }
2326        }
2327
2328        return thread;
2329}
2330
2331static bool timehist_skip_sample(struct perf_sched *sched,
2332                                 struct thread *thread,
2333                                 struct perf_evsel *evsel,
2334                                 struct perf_sample *sample)
2335{
2336        bool rc = false;
2337
2338        if (thread__is_filtered(thread)) {
2339                rc = true;
2340                sched->skipped_samples++;
2341        }
2342
2343        if (sched->idle_hist) {
2344                if (strcmp(perf_evsel__name(evsel), "sched:sched_switch"))
2345                        rc = true;
2346                else if (perf_evsel__intval(evsel, sample, "prev_pid") != 0 &&
2347                         perf_evsel__intval(evsel, sample, "next_pid") != 0)
2348                        rc = true;
2349        }
2350
2351        return rc;
2352}
2353
2354static void timehist_print_wakeup_event(struct perf_sched *sched,
2355                                        struct perf_evsel *evsel,
2356                                        struct perf_sample *sample,
2357                                        struct machine *machine,
2358                                        struct thread *awakened)
2359{
2360        struct thread *thread;
2361        char tstr[64];
2362
2363        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2364        if (thread == NULL)
2365                return;
2366
2367        /* show wakeup unless both awakee and awaker are filtered */
2368        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2369            timehist_skip_sample(sched, awakened, evsel, sample)) {
2370                return;
2371        }
2372
2373        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2374        printf("%15s [%04d] ", tstr, sample->cpu);
2375        if (sched->show_cpu_visual)
2376                printf(" %*s ", sched->max_cpu + 1, "");
2377
2378        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2379
2380        /* dt spacer */
2381        printf("  %9s  %9s  %9s ", "", "", "");
2382
2383        printf("awakened: %s", timehist_get_commstr(awakened));
2384
2385        printf("\n");
2386}
2387
2388static int timehist_sched_wakeup_event(struct perf_tool *tool,
2389                                       union perf_event *event __maybe_unused,
2390                                       struct perf_evsel *evsel,
2391                                       struct perf_sample *sample,
2392                                       struct machine *machine)
2393{
2394        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2395        struct thread *thread;
2396        struct thread_runtime *tr = NULL;
2397        /* want pid of awakened task not pid in sample */
2398        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2399
2400        thread = machine__findnew_thread(machine, 0, pid);
2401        if (thread == NULL)
2402                return -1;
2403
2404        tr = thread__get_runtime(thread);
2405        if (tr == NULL)
2406                return -1;
2407
2408        if (tr->ready_to_run == 0)
2409                tr->ready_to_run = sample->time;
2410
2411        /* show wakeups if requested */
2412        if (sched->show_wakeups &&
2413            !perf_time__skip_sample(&sched->ptime, sample->time))
2414                timehist_print_wakeup_event(sched, evsel, sample, machine, thread);
2415
2416        return 0;
2417}
2418
2419static void timehist_print_migration_event(struct perf_sched *sched,
2420                                        struct perf_evsel *evsel,
2421                                        struct perf_sample *sample,
2422                                        struct machine *machine,
2423                                        struct thread *migrated)
2424{
2425        struct thread *thread;
2426        char tstr[64];
2427        u32 max_cpus = sched->max_cpu + 1;
2428        u32 ocpu, dcpu;
2429
2430        if (sched->summary_only)
2431                return;
2432
2433        max_cpus = sched->max_cpu + 1;
2434        ocpu = perf_evsel__intval(evsel, sample, "orig_cpu");
2435        dcpu = perf_evsel__intval(evsel, sample, "dest_cpu");
2436
2437        thread = machine__findnew_thread(machine, sample->pid, sample->tid);
2438        if (thread == NULL)
2439                return;
2440
2441        if (timehist_skip_sample(sched, thread, evsel, sample) &&
2442            timehist_skip_sample(sched, migrated, evsel, sample)) {
2443                return;
2444        }
2445
2446        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2447        printf("%15s [%04d] ", tstr, sample->cpu);
2448
2449        if (sched->show_cpu_visual) {
2450                u32 i;
2451                char c;
2452
2453                printf("  ");
2454                for (i = 0; i < max_cpus; ++i) {
2455                        c = (i == sample->cpu) ? 'm' : ' ';
2456                        printf("%c", c);
2457                }
2458                printf("  ");
2459        }
2460
2461        printf(" %-*s ", comm_width, timehist_get_commstr(thread));
2462
2463        /* dt spacer */
2464        printf("  %9s  %9s  %9s ", "", "", "");
2465
2466        printf("migrated: %s", timehist_get_commstr(migrated));
2467        printf(" cpu %d => %d", ocpu, dcpu);
2468
2469        printf("\n");
2470}
2471
2472static int timehist_migrate_task_event(struct perf_tool *tool,
2473                                       union perf_event *event __maybe_unused,
2474                                       struct perf_evsel *evsel,
2475                                       struct perf_sample *sample,
2476                                       struct machine *machine)
2477{
2478        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2479        struct thread *thread;
2480        struct thread_runtime *tr = NULL;
2481        /* want pid of migrated task not pid in sample */
2482        const u32 pid = perf_evsel__intval(evsel, sample, "pid");
2483
2484        thread = machine__findnew_thread(machine, 0, pid);
2485        if (thread == NULL)
2486                return -1;
2487
2488        tr = thread__get_runtime(thread);
2489        if (tr == NULL)
2490                return -1;
2491
2492        tr->migrations++;
2493
2494        /* show migrations if requested */
2495        timehist_print_migration_event(sched, evsel, sample, machine, thread);
2496
2497        return 0;
2498}
2499
2500static int timehist_sched_change_event(struct perf_tool *tool,
2501                                       union perf_event *event,
2502                                       struct perf_evsel *evsel,
2503                                       struct perf_sample *sample,
2504                                       struct machine *machine)
2505{
2506        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2507        struct perf_time_interval *ptime = &sched->ptime;
2508        struct addr_location al;
2509        struct thread *thread;
2510        struct thread_runtime *tr = NULL;
2511        u64 tprev, t = sample->time;
2512        int rc = 0;
2513        int state = perf_evsel__intval(evsel, sample, "prev_state");
2514
2515
2516        if (machine__resolve(machine, &al, sample) < 0) {
2517                pr_err("problem processing %d event. skipping it\n",
2518                       event->header.type);
2519                rc = -1;
2520                goto out;
2521        }
2522
2523        thread = timehist_get_thread(sched, sample, machine, evsel);
2524        if (thread == NULL) {
2525                rc = -1;
2526                goto out;
2527        }
2528
2529        if (timehist_skip_sample(sched, thread, evsel, sample))
2530                goto out;
2531
2532        tr = thread__get_runtime(thread);
2533        if (tr == NULL) {
2534                rc = -1;
2535                goto out;
2536        }
2537
2538        tprev = perf_evsel__get_time(evsel, sample->cpu);
2539
2540        /*
2541         * If start time given:
2542         * - sample time is under window user cares about - skip sample
2543         * - tprev is under window user cares about  - reset to start of window
2544         */
2545        if (ptime->start && ptime->start > t)
2546                goto out;
2547
2548        if (tprev && ptime->start > tprev)
2549                tprev = ptime->start;
2550
2551        /*
2552         * If end time given:
2553         * - previous sched event is out of window - we are done
2554         * - sample time is beyond window user cares about - reset it
2555         *   to close out stats for time window interest
2556         */
2557        if (ptime->end) {
2558                if (tprev > ptime->end)
2559                        goto out;
2560
2561                if (t > ptime->end)
2562                        t = ptime->end;
2563        }
2564
2565        if (!sched->idle_hist || thread->tid == 0) {
2566                timehist_update_runtime_stats(tr, t, tprev);
2567
2568                if (sched->idle_hist) {
2569                        struct idle_thread_runtime *itr = (void *)tr;
2570                        struct thread_runtime *last_tr;
2571
2572                        BUG_ON(thread->tid != 0);
2573
2574                        if (itr->last_thread == NULL)
2575                                goto out;
2576
2577                        /* add current idle time as last thread's runtime */
2578                        last_tr = thread__get_runtime(itr->last_thread);
2579                        if (last_tr == NULL)
2580                                goto out;
2581
2582                        timehist_update_runtime_stats(last_tr, t, tprev);
2583                        /*
2584                         * remove delta time of last thread as it's not updated
2585                         * and otherwise it will show an invalid value next
2586                         * time.  we only care total run time and run stat.
2587                         */
2588                        last_tr->dt_run = 0;
2589                        last_tr->dt_delay = 0;
2590                        last_tr->dt_sleep = 0;
2591                        last_tr->dt_iowait = 0;
2592                        last_tr->dt_preempt = 0;
2593
2594                        if (itr->cursor.nr)
2595                                callchain_append(&itr->callchain, &itr->cursor, t - tprev);
2596
2597                        itr->last_thread = NULL;
2598                }
2599        }
2600
2601        if (!sched->summary_only)
2602                timehist_print_sample(sched, evsel, sample, &al, thread, t, state);
2603
2604out:
2605        if (sched->hist_time.start == 0 && t >= ptime->start)
2606                sched->hist_time.start = t;
2607        if (ptime->end == 0 || t <= ptime->end)
2608                sched->hist_time.end = t;
2609
2610        if (tr) {
2611                /* time of this sched_switch event becomes last time task seen */
2612                tr->last_time = sample->time;
2613
2614                /* last state is used to determine where to account wait time */
2615                tr->last_state = state;
2616
2617                /* sched out event for task so reset ready to run time */
2618                tr->ready_to_run = 0;
2619        }
2620
2621        perf_evsel__save_time(evsel, sample->time, sample->cpu);
2622
2623        return rc;
2624}
2625
2626static int timehist_sched_switch_event(struct perf_tool *tool,
2627                             union perf_event *event,
2628                             struct perf_evsel *evsel,
2629                             struct perf_sample *sample,
2630                             struct machine *machine __maybe_unused)
2631{
2632        return timehist_sched_change_event(tool, event, evsel, sample, machine);
2633}
2634
2635static int process_lost(struct perf_tool *tool __maybe_unused,
2636                        union perf_event *event,
2637                        struct perf_sample *sample,
2638                        struct machine *machine __maybe_unused)
2639{
2640        char tstr[64];
2641
2642        timestamp__scnprintf_usec(sample->time, tstr, sizeof(tstr));
2643        printf("%15s ", tstr);
2644        printf("lost %" PRIu64 " events on cpu %d\n", event->lost.lost, sample->cpu);
2645
2646        return 0;
2647}
2648
2649
2650static void print_thread_runtime(struct thread *t,
2651                                 struct thread_runtime *r)
2652{
2653        double mean = avg_stats(&r->run_stats);
2654        float stddev;
2655
2656        printf("%*s   %5d  %9" PRIu64 " ",
2657               comm_width, timehist_get_commstr(t), t->ppid,
2658               (u64) r->run_stats.n);
2659
2660        print_sched_time(r->total_run_time, 8);
2661        stddev = rel_stddev_stats(stddev_stats(&r->run_stats), mean);
2662        print_sched_time(r->run_stats.min, 6);
2663        printf(" ");
2664        print_sched_time((u64) mean, 6);
2665        printf(" ");
2666        print_sched_time(r->run_stats.max, 6);
2667        printf("  ");
2668        printf("%5.2f", stddev);
2669        printf("   %5" PRIu64, r->migrations);
2670        printf("\n");
2671}
2672
2673static void print_thread_waittime(struct thread *t,
2674                                  struct thread_runtime *r)
2675{
2676        printf("%*s   %5d  %9" PRIu64 " ",
2677               comm_width, timehist_get_commstr(t), t->ppid,
2678               (u64) r->run_stats.n);
2679
2680        print_sched_time(r->total_run_time, 8);
2681        print_sched_time(r->total_sleep_time, 6);
2682        printf(" ");
2683        print_sched_time(r->total_iowait_time, 6);
2684        printf(" ");
2685        print_sched_time(r->total_preempt_time, 6);
2686        printf(" ");
2687        print_sched_time(r->total_delay_time, 6);
2688        printf("\n");
2689}
2690
2691struct total_run_stats {
2692        struct perf_sched *sched;
2693        u64  sched_count;
2694        u64  task_count;
2695        u64  total_run_time;
2696};
2697
2698static int __show_thread_runtime(struct thread *t, void *priv)
2699{
2700        struct total_run_stats *stats = priv;
2701        struct thread_runtime *r;
2702
2703        if (thread__is_filtered(t))
2704                return 0;
2705
2706        r = thread__priv(t);
2707        if (r && r->run_stats.n) {
2708                stats->task_count++;
2709                stats->sched_count += r->run_stats.n;
2710                stats->total_run_time += r->total_run_time;
2711
2712                if (stats->sched->show_state)
2713                        print_thread_waittime(t, r);
2714                else
2715                        print_thread_runtime(t, r);
2716        }
2717
2718        return 0;
2719}
2720
2721static int show_thread_runtime(struct thread *t, void *priv)
2722{
2723        if (t->dead)
2724                return 0;
2725
2726        return __show_thread_runtime(t, priv);
2727}
2728
2729static int show_deadthread_runtime(struct thread *t, void *priv)
2730{
2731        if (!t->dead)
2732                return 0;
2733
2734        return __show_thread_runtime(t, priv);
2735}
2736
2737static size_t callchain__fprintf_folded(FILE *fp, struct callchain_node *node)
2738{
2739        const char *sep = " <- ";
2740        struct callchain_list *chain;
2741        size_t ret = 0;
2742        char bf[1024];
2743        bool first;
2744
2745        if (node == NULL)
2746                return 0;
2747
2748        ret = callchain__fprintf_folded(fp, node->parent);
2749        first = (ret == 0);
2750
2751        list_for_each_entry(chain, &node->val, list) {
2752                if (chain->ip >= PERF_CONTEXT_MAX)
2753                        continue;
2754                if (chain->ms.sym && chain->ms.sym->ignore)
2755                        continue;
2756                ret += fprintf(fp, "%s%s", first ? "" : sep,
2757                               callchain_list__sym_name(chain, bf, sizeof(bf),
2758                                                        false));
2759                first = false;
2760        }
2761
2762        return ret;
2763}
2764
2765static size_t timehist_print_idlehist_callchain(struct rb_root *root)
2766{
2767        size_t ret = 0;
2768        FILE *fp = stdout;
2769        struct callchain_node *chain;
2770        struct rb_node *rb_node = rb_first(root);
2771
2772        printf("  %16s  %8s  %s\n", "Idle time (msec)", "Count", "Callchains");
2773        printf("  %.16s  %.8s  %.50s\n", graph_dotted_line, graph_dotted_line,
2774               graph_dotted_line);
2775
2776        while (rb_node) {
2777                chain = rb_entry(rb_node, struct callchain_node, rb_node);
2778                rb_node = rb_next(rb_node);
2779
2780                ret += fprintf(fp, "  ");
2781                print_sched_time(chain->hit, 12);
2782                ret += 16;  /* print_sched_time returns 2nd arg + 4 */
2783                ret += fprintf(fp, " %8d  ", chain->count);
2784                ret += callchain__fprintf_folded(fp, chain);
2785                ret += fprintf(fp, "\n");
2786        }
2787
2788        return ret;
2789}
2790
2791static void timehist_print_summary(struct perf_sched *sched,
2792                                   struct perf_session *session)
2793{
2794        struct machine *m = &session->machines.host;
2795        struct total_run_stats totals;
2796        u64 task_count;
2797        struct thread *t;
2798        struct thread_runtime *r;
2799        int i;
2800        u64 hist_time = sched->hist_time.end - sched->hist_time.start;
2801
2802        memset(&totals, 0, sizeof(totals));
2803        totals.sched = sched;
2804
2805        if (sched->idle_hist) {
2806                printf("\nIdle-time summary\n");
2807                printf("%*s  parent  sched-out  ", comm_width, "comm");
2808                printf("  idle-time   min-idle    avg-idle    max-idle  stddev  migrations\n");
2809        } else if (sched->show_state) {
2810                printf("\nWait-time summary\n");
2811                printf("%*s  parent   sched-in  ", comm_width, "comm");
2812                printf("   run-time      sleep      iowait     preempt       delay\n");
2813        } else {
2814                printf("\nRuntime summary\n");
2815                printf("%*s  parent   sched-in  ", comm_width, "comm");
2816                printf("   run-time    min-run     avg-run     max-run  stddev  migrations\n");
2817        }
2818        printf("%*s            (count)  ", comm_width, "");
2819        printf("     (msec)     (msec)      (msec)      (msec)       %s\n",
2820               sched->show_state ? "(msec)" : "%");
2821        printf("%.117s\n", graph_dotted_line);
2822
2823        machine__for_each_thread(m, show_thread_runtime, &totals);
2824        task_count = totals.task_count;
2825        if (!task_count)
2826                printf("<no still running tasks>\n");
2827
2828        printf("\nTerminated tasks:\n");
2829        machine__for_each_thread(m, show_deadthread_runtime, &totals);
2830        if (task_count == totals.task_count)
2831                printf("<no terminated tasks>\n");
2832
2833        /* CPU idle stats not tracked when samples were skipped */
2834        if (sched->skipped_samples && !sched->idle_hist)
2835                return;
2836
2837        printf("\nIdle stats:\n");
2838        for (i = 0; i < idle_max_cpu; ++i) {
2839                t = idle_threads[i];
2840                if (!t)
2841                        continue;
2842
2843                r = thread__priv(t);
2844                if (r && r->run_stats.n) {
2845                        totals.sched_count += r->run_stats.n;
2846                        printf("    CPU %2d idle for ", i);
2847                        print_sched_time(r->total_run_time, 6);
2848                        printf(" msec  (%6.2f%%)\n", 100.0 * r->total_run_time / hist_time);
2849                } else
2850                        printf("    CPU %2d idle entire time window\n", i);
2851        }
2852
2853        if (sched->idle_hist && sched->show_callchain) {
2854                callchain_param.mode  = CHAIN_FOLDED;
2855                callchain_param.value = CCVAL_PERIOD;
2856
2857                callchain_register_param(&callchain_param);
2858
2859                printf("\nIdle stats by callchain:\n");
2860                for (i = 0; i < idle_max_cpu; ++i) {
2861                        struct idle_thread_runtime *itr;
2862
2863                        t = idle_threads[i];
2864                        if (!t)
2865                                continue;
2866
2867                        itr = thread__priv(t);
2868                        if (itr == NULL)
2869                                continue;
2870
2871                        callchain_param.sort(&itr->sorted_root, &itr->callchain,
2872                                             0, &callchain_param);
2873
2874                        printf("  CPU %2d:", i);
2875                        print_sched_time(itr->tr.total_run_time, 6);
2876                        printf(" msec\n");
2877                        timehist_print_idlehist_callchain(&itr->sorted_root);
2878                        printf("\n");
2879                }
2880        }
2881
2882        printf("\n"
2883               "    Total number of unique tasks: %" PRIu64 "\n"
2884               "Total number of context switches: %" PRIu64 "\n",
2885               totals.task_count, totals.sched_count);
2886
2887        printf("           Total run time (msec): ");
2888        print_sched_time(totals.total_run_time, 2);
2889        printf("\n");
2890
2891        printf("    Total scheduling time (msec): ");
2892        print_sched_time(hist_time, 2);
2893        printf(" (x %d)\n", sched->max_cpu);
2894}
2895
2896typedef int (*sched_handler)(struct perf_tool *tool,
2897                          union perf_event *event,
2898                          struct perf_evsel *evsel,
2899                          struct perf_sample *sample,
2900                          struct machine *machine);
2901
2902static int perf_timehist__process_sample(struct perf_tool *tool,
2903                                         union perf_event *event,
2904                                         struct perf_sample *sample,
2905                                         struct perf_evsel *evsel,
2906                                         struct machine *machine)
2907{
2908        struct perf_sched *sched = container_of(tool, struct perf_sched, tool);
2909        int err = 0;
2910        int this_cpu = sample->cpu;
2911
2912        if (this_cpu > sched->max_cpu)
2913                sched->max_cpu = this_cpu;
2914
2915        if (evsel->handler != NULL) {
2916                sched_handler f = evsel->handler;
2917
2918                err = f(tool, event, evsel, sample, machine);
2919        }
2920
2921        return err;
2922}
2923
2924static int timehist_check_attr(struct perf_sched *sched,
2925                               struct perf_evlist *evlist)
2926{
2927        struct perf_evsel *evsel;
2928        struct evsel_runtime *er;
2929
2930        list_for_each_entry(evsel, &evlist->entries, node) {
2931                er = perf_evsel__get_runtime(evsel);
2932                if (er == NULL) {
2933                        pr_err("Failed to allocate memory for evsel runtime data\n");
2934                        return -1;
2935                }
2936
2937                if (sched->show_callchain && !evsel__has_callchain(evsel)) {
2938                        pr_info("Samples do not have callchains.\n");
2939                        sched->show_callchain = 0;
2940                        symbol_conf.use_callchain = 0;
2941                }
2942        }
2943
2944        return 0;
2945}
2946
2947static int perf_sched__timehist(struct perf_sched *sched)
2948{
2949        const struct perf_evsel_str_handler handlers[] = {
2950                { "sched:sched_switch",       timehist_sched_switch_event, },
2951                { "sched:sched_wakeup",       timehist_sched_wakeup_event, },
2952                { "sched:sched_wakeup_new",   timehist_sched_wakeup_event, },
2953        };
2954        const struct perf_evsel_str_handler migrate_handlers[] = {
2955                { "sched:sched_migrate_task", timehist_migrate_task_event, },
2956        };
2957        struct perf_data data = {
2958                .file      = {
2959                        .path = input_name,
2960                },
2961                .mode      = PERF_DATA_MODE_READ,
2962                .force     = sched->force,
2963        };
2964
2965        struct perf_session *session;
2966        struct perf_evlist *evlist;
2967        int err = -1;
2968
2969        /*
2970         * event handlers for timehist option
2971         */
2972        sched->tool.sample       = perf_timehist__process_sample;
2973        sched->tool.mmap         = perf_event__process_mmap;
2974        sched->tool.comm         = perf_event__process_comm;
2975        sched->tool.exit         = perf_event__process_exit;
2976        sched->tool.fork         = perf_event__process_fork;
2977        sched->tool.lost         = process_lost;
2978        sched->tool.attr         = perf_event__process_attr;
2979        sched->tool.tracing_data = perf_event__process_tracing_data;
2980        sched->tool.build_id     = perf_event__process_build_id;
2981
2982        sched->tool.ordered_events = true;
2983        sched->tool.ordering_requires_timestamps = true;
2984
2985        symbol_conf.use_callchain = sched->show_callchain;
2986
2987        session = perf_session__new(&data, false, &sched->tool);
2988        if (session == NULL)
2989                return -ENOMEM;
2990
2991        evlist = session->evlist;
2992
2993        symbol__init(&session->header.env);
2994
2995        if (perf_time__parse_str(&sched->ptime, sched->time_str) != 0) {
2996                pr_err("Invalid time string\n");
2997                return -EINVAL;
2998        }
2999
3000        if (timehist_check_attr(sched, evlist) != 0)
3001                goto out;
3002
3003        setup_pager();
3004
3005        /* setup per-evsel handlers */
3006        if (perf_session__set_tracepoints_handlers(session, handlers))
3007                goto out;
3008
3009        /* sched_switch event at a minimum needs to exist */
3010        if (!perf_evlist__find_tracepoint_by_name(session->evlist,
3011                                                  "sched:sched_switch")) {
3012                pr_err("No sched_switch events found. Have you run 'perf sched record'?\n");
3013                goto out;
3014        }
3015
3016        if (sched->show_migrations &&
3017            perf_session__set_tracepoints_handlers(session, migrate_handlers))
3018                goto out;
3019
3020        /* pre-allocate struct for per-CPU idle stats */
3021        sched->max_cpu = session->header.env.nr_cpus_online;
3022        if (sched->max_cpu == 0)
3023                sched->max_cpu = 4;
3024        if (init_idle_threads(sched->max_cpu))
3025                goto out;
3026
3027        /* summary_only implies summary option, but don't overwrite summary if set */
3028        if (sched->summary_only)
3029                sched->summary = sched->summary_only;
3030
3031        if (!sched->summary_only)
3032                timehist_header(sched);
3033
3034        err = perf_session__process_events(session);
3035        if (err) {
3036                pr_err("Failed to process events, error %d", err);
3037                goto out;
3038        }
3039
3040        sched->nr_events      = evlist->stats.nr_events[0];
3041        sched->nr_lost_events = evlist->stats.total_lost;
3042        sched->nr_lost_chunks = evlist->stats.nr_events[PERF_RECORD_LOST];
3043
3044        if (sched->summary)
3045                timehist_print_summary(sched, session);
3046
3047out:
3048        free_idle_threads();
3049        perf_session__delete(session);
3050
3051        return err;
3052}
3053
3054
3055static void print_bad_events(struct perf_sched *sched)
3056{
3057        if (sched->nr_unordered_timestamps && sched->nr_timestamps) {
3058                printf("  INFO: %.3f%% unordered timestamps (%ld out of %ld)\n",
3059                        (double)sched->nr_unordered_timestamps/(double)sched->nr_timestamps*100.0,
3060                        sched->nr_unordered_timestamps, sched->nr_timestamps);
3061        }
3062        if (sched->nr_lost_events && sched->nr_events) {
3063                printf("  INFO: %.3f%% lost events (%ld out of %ld, in %ld chunks)\n",
3064                        (double)sched->nr_lost_events/(double)sched->nr_events * 100.0,
3065                        sched->nr_lost_events, sched->nr_events, sched->nr_lost_chunks);
3066        }
3067        if (sched->nr_context_switch_bugs && sched->nr_timestamps) {
3068                printf("  INFO: %.3f%% context switch bugs (%ld out of %ld)",
3069                        (double)sched->nr_context_switch_bugs/(double)sched->nr_timestamps*100.0,
3070                        sched->nr_context_switch_bugs, sched->nr_timestamps);
3071                if (sched->nr_lost_events)
3072                        printf(" (due to lost events?)");
3073                printf("\n");
3074        }
3075}
3076
3077static void __merge_work_atoms(struct rb_root *root, struct work_atoms *data)
3078{
3079        struct rb_node **new = &(root->rb_node), *parent = NULL;
3080        struct work_atoms *this;
3081        const char *comm = thread__comm_str(data->thread), *this_comm;
3082
3083        while (*new) {
3084                int cmp;
3085
3086                this = container_of(*new, struct work_atoms, node);
3087                parent = *new;
3088
3089                this_comm = thread__comm_str(this->thread);
3090                cmp = strcmp(comm, this_comm);
3091                if (cmp > 0) {
3092                        new = &((*new)->rb_left);
3093                } else if (cmp < 0) {
3094                        new = &((*new)->rb_right);
3095                } else {
3096                        this->num_merged++;
3097                        this->total_runtime += data->total_runtime;
3098                        this->nb_atoms += data->nb_atoms;
3099                        this->total_lat += data->total_lat;
3100                        list_splice(&data->work_list, &this->work_list);
3101                        if (this->max_lat < data->max_lat) {
3102                                this->max_lat = data->max_lat;
3103                                this->max_lat_at = data->max_lat_at;
3104                        }
3105                        zfree(&data);
3106                        return;
3107                }
3108        }
3109
3110        data->num_merged++;
3111        rb_link_node(&data->node, parent, new);
3112        rb_insert_color(&data->node, root);
3113}
3114
3115static void perf_sched__merge_lat(struct perf_sched *sched)
3116{
3117        struct work_atoms *data;
3118        struct rb_node *node;
3119
3120        if (sched->skip_merge)
3121                return;
3122
3123        while ((node = rb_first(&sched->atom_root))) {
3124                rb_erase(node, &sched->atom_root);
3125                data = rb_entry(node, struct work_atoms, node);
3126                __merge_work_atoms(&sched->merged_atom_root, data);
3127        }
3128}
3129
3130static int perf_sched__lat(struct perf_sched *sched)
3131{
3132        struct rb_node *next;
3133
3134        setup_pager();
3135
3136        if (perf_sched__read_events(sched))
3137                return -1;
3138
3139        perf_sched__merge_lat(sched);
3140        perf_sched__sort_lat(sched);
3141
3142        printf("\n -----------------------------------------------------------------------------------------------------------------\n");
3143        printf("  Task                  |   Runtime ms  | Switches | Average delay ms | Maximum delay ms | Maximum delay at       |\n");
3144        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3145
3146        next = rb_first(&sched->sorted_atom_root);
3147
3148        while (next) {
3149                struct work_atoms *work_list;
3150
3151                work_list = rb_entry(next, struct work_atoms, node);
3152                output_lat_thread(sched, work_list);
3153                next = rb_next(next);
3154                thread__zput(work_list->thread);
3155        }
3156
3157        printf(" -----------------------------------------------------------------------------------------------------------------\n");
3158        printf("  TOTAL:                |%11.3f ms |%9" PRIu64 " |\n",
3159                (double)sched->all_runtime / NSEC_PER_MSEC, sched->all_count);
3160
3161        printf(" ---------------------------------------------------\n");
3162
3163        print_bad_events(sched);
3164        printf("\n");
3165
3166        return 0;
3167}
3168
3169static int setup_map_cpus(struct perf_sched *sched)
3170{
3171        struct cpu_map *map;
3172
3173        sched->max_cpu  = sysconf(_SC_NPROCESSORS_CONF);
3174
3175        if (sched->map.comp) {
3176                sched->map.comp_cpus = zalloc(sched->max_cpu * sizeof(int));
3177                if (!sched->map.comp_cpus)
3178                        return -1;
3179        }
3180
3181        if (!sched->map.cpus_str)
3182                return 0;
3183
3184        map = cpu_map__new(sched->map.cpus_str);
3185        if (!map) {
3186                pr_err("failed to get cpus map from %s\n", sched->map.cpus_str);
3187                return -1;
3188        }
3189
3190        sched->map.cpus = map;
3191        return 0;
3192}
3193
3194static int setup_color_pids(struct perf_sched *sched)
3195{
3196        struct thread_map *map;
3197
3198        if (!sched->map.color_pids_str)
3199                return 0;
3200
3201        map = thread_map__new_by_tid_str(sched->map.color_pids_str);
3202        if (!map) {
3203                pr_err("failed to get thread map from %s\n", sched->map.color_pids_str);
3204                return -1;
3205        }
3206
3207        sched->map.color_pids = map;
3208        return 0;
3209}
3210
3211static int setup_color_cpus(struct perf_sched *sched)
3212{
3213        struct cpu_map *map;
3214
3215        if (!sched->map.color_cpus_str)
3216                return 0;
3217
3218        map = cpu_map__new(sched->map.color_cpus_str);
3219        if (!map) {
3220                pr_err("failed to get thread map from %s\n", sched->map.color_cpus_str);
3221                return -1;
3222        }
3223
3224        sched->map.color_cpus = map;
3225        return 0;
3226}
3227
3228static int perf_sched__map(struct perf_sched *sched)
3229{
3230        if (setup_map_cpus(sched))
3231                return -1;
3232
3233        if (setup_color_pids(sched))
3234                return -1;
3235
3236        if (setup_color_cpus(sched))
3237                return -1;
3238
3239        setup_pager();
3240        if (perf_sched__read_events(sched))
3241                return -1;
3242        print_bad_events(sched);
3243        return 0;
3244}
3245
3246static int perf_sched__replay(struct perf_sched *sched)
3247{
3248        unsigned long i;
3249
3250        calibrate_run_measurement_overhead(sched);
3251        calibrate_sleep_measurement_overhead(sched);
3252
3253        test_calibrations(sched);
3254
3255        if (perf_sched__read_events(sched))
3256                return -1;
3257
3258        printf("nr_run_events:        %ld\n", sched->nr_run_events);
3259        printf("nr_sleep_events:      %ld\n", sched->nr_sleep_events);
3260        printf("nr_wakeup_events:     %ld\n", sched->nr_wakeup_events);
3261
3262        if (sched->targetless_wakeups)
3263                printf("target-less wakeups:  %ld\n", sched->targetless_wakeups);
3264        if (sched->multitarget_wakeups)
3265                printf("multi-target wakeups: %ld\n", sched->multitarget_wakeups);
3266        if (sched->nr_run_events_optimized)
3267                printf("run atoms optimized: %ld\n",
3268                        sched->nr_run_events_optimized);
3269
3270        print_task_traces(sched);
3271        add_cross_task_wakeups(sched);
3272
3273        create_tasks(sched);
3274        printf("------------------------------------------------------------\n");
3275        for (i = 0; i < sched->replay_repeat; i++)
3276                run_one_test(sched);
3277
3278        return 0;
3279}
3280
3281static void setup_sorting(struct perf_sched *sched, const struct option *options,
3282                          const char * const usage_msg[])
3283{
3284        char *tmp, *tok, *str = strdup(sched->sort_order);
3285
3286        for (tok = strtok_r(str, ", ", &tmp);
3287                        tok; tok = strtok_r(NULL, ", ", &tmp)) {
3288                if (sort_dimension__add(tok, &sched->sort_list) < 0) {
3289                        usage_with_options_msg(usage_msg, options,
3290                                        "Unknown --sort key: `%s'", tok);
3291                }
3292        }
3293
3294        free(str);
3295
3296        sort_dimension__add("pid", &sched->cmp_pid);
3297}
3298
3299static int __cmd_record(int argc, const char **argv)
3300{
3301        unsigned int rec_argc, i, j;
3302        const char **rec_argv;
3303        const char * const record_args[] = {
3304                "record",
3305                "-a",
3306                "-R",
3307                "-m", "1024",
3308                "-c", "1",
3309                "-e", "sched:sched_switch",
3310                "-e", "sched:sched_stat_wait",
3311                "-e", "sched:sched_stat_sleep",
3312                "-e", "sched:sched_stat_iowait",
3313                "-e", "sched:sched_stat_runtime",
3314                "-e", "sched:sched_process_fork",
3315                "-e", "sched:sched_wakeup",
3316                "-e", "sched:sched_wakeup_new",
3317                "-e", "sched:sched_migrate_task",
3318        };
3319
3320        rec_argc = ARRAY_SIZE(record_args) + argc - 1;
3321        rec_argv = calloc(rec_argc + 1, sizeof(char *));
3322
3323        if (rec_argv == NULL)
3324                return -ENOMEM;
3325
3326        for (i = 0; i < ARRAY_SIZE(record_args); i++)
3327                rec_argv[i] = strdup(record_args[i]);
3328
3329        for (j = 1; j < (unsigned int)argc; j++, i++)
3330                rec_argv[i] = argv[j];
3331
3332        BUG_ON(i != rec_argc);
3333
3334        return cmd_record(i, rec_argv);
3335}
3336
3337int cmd_sched(int argc, const char **argv)
3338{
3339        const char default_sort_order[] = "avg, max, switch, runtime";
3340        struct perf_sched sched = {
3341                .tool = {
3342                        .sample          = perf_sched__process_tracepoint_sample,
3343                        .comm            = perf_sched__process_comm,
3344                        .namespaces      = perf_event__process_namespaces,
3345                        .lost            = perf_event__process_lost,
3346                        .fork            = perf_sched__process_fork_event,
3347                        .ordered_events = true,
3348                },
3349                .cmp_pid              = LIST_HEAD_INIT(sched.cmp_pid),
3350                .sort_list            = LIST_HEAD_INIT(sched.sort_list),
3351                .start_work_mutex     = PTHREAD_MUTEX_INITIALIZER,
3352                .work_done_wait_mutex = PTHREAD_MUTEX_INITIALIZER,
3353                .sort_order           = default_sort_order,
3354                .replay_repeat        = 10,
3355                .profile_cpu          = -1,
3356                .next_shortname1      = 'A',
3357                .next_shortname2      = '0',
3358                .skip_merge           = 0,
3359                .show_callchain       = 1,
3360                .max_stack            = 5,
3361        };
3362        const struct option sched_options[] = {
3363        OPT_STRING('i', "input", &input_name, "file",
3364                    "input file name"),
3365        OPT_INCR('v', "verbose", &verbose,
3366                    "be more verbose (show symbol address, etc)"),
3367        OPT_BOOLEAN('D', "dump-raw-trace", &dump_trace,
3368                    "dump raw trace in ASCII"),
3369        OPT_BOOLEAN('f', "force", &sched.force, "don't complain, do it"),
3370        OPT_END()
3371        };
3372        const struct option latency_options[] = {
3373        OPT_STRING('s', "sort", &sched.sort_order, "key[,key2...]",
3374                   "sort by key(s): runtime, switch, avg, max"),
3375        OPT_INTEGER('C', "CPU", &sched.profile_cpu,
3376                    "CPU to profile on"),
3377        OPT_BOOLEAN('p', "pids", &sched.skip_merge,
3378                    "latency stats per pid instead of per comm"),
3379        OPT_PARENT(sched_options)
3380        };
3381        const struct option replay_options[] = {
3382        OPT_UINTEGER('r', "repeat", &sched.replay_repeat,
3383                     "repeat the workload replay N times (-1: infinite)"),
3384        OPT_PARENT(sched_options)
3385        };
3386        const struct option map_options[] = {
3387        OPT_BOOLEAN(0, "compact", &sched.map.comp,
3388                    "map output in compact mode"),
3389        OPT_STRING(0, "color-pids", &sched.map.color_pids_str, "pids",
3390                   "highlight given pids in map"),
3391        OPT_STRING(0, "color-cpus", &sched.map.color_cpus_str, "cpus",
3392                    "highlight given CPUs in map"),
3393        OPT_STRING(0, "cpus", &sched.map.cpus_str, "cpus",
3394                    "display given CPUs in map"),
3395        OPT_PARENT(sched_options)
3396        };
3397        const struct option timehist_options[] = {
3398        OPT_STRING('k', "vmlinux", &symbol_conf.vmlinux_name,
3399                   "file", "vmlinux pathname"),
3400        OPT_STRING(0, "kallsyms", &symbol_conf.kallsyms_name,
3401                   "file", "kallsyms pathname"),
3402        OPT_BOOLEAN('g', "call-graph", &sched.show_callchain,
3403                    "Display call chains if present (default on)"),
3404        OPT_UINTEGER(0, "max-stack", &sched.max_stack,
3405                   "Maximum number of functions to display backtrace."),
3406        OPT_STRING(0, "symfs", &symbol_conf.symfs, "directory",
3407                    "Look for files with symbols relative to this directory"),
3408        OPT_BOOLEAN('s', "summary", &sched.summary_only,
3409                    "Show only syscall summary with statistics"),
3410        OPT_BOOLEAN('S', "with-summary", &sched.summary,
3411                    "Show all syscalls and summary with statistics"),
3412        OPT_BOOLEAN('w', "wakeups", &sched.show_wakeups, "Show wakeup events"),
3413        OPT_BOOLEAN('n', "next", &sched.show_next, "Show next task"),
3414        OPT_BOOLEAN('M', "migrations", &sched.show_migrations, "Show migration events"),
3415        OPT_BOOLEAN('V', "cpu-visual", &sched.show_cpu_visual, "Add CPU visual"),
3416        OPT_BOOLEAN('I', "idle-hist", &sched.idle_hist, "Show idle events only"),
3417        OPT_STRING(0, "time", &sched.time_str, "str",
3418                   "Time span for analysis (start,stop)"),
3419        OPT_BOOLEAN(0, "state", &sched.show_state, "Show task state when sched-out"),
3420        OPT_STRING('p', "pid", &symbol_conf.pid_list_str, "pid[,pid...]",
3421                   "analyze events only for given process id(s)"),
3422        OPT_STRING('t', "tid", &symbol_conf.tid_list_str, "tid[,tid...]",
3423                   "analyze events only for given thread id(s)"),
3424        OPT_PARENT(sched_options)
3425        };
3426
3427        const char * const latency_usage[] = {
3428                "perf sched latency [<options>]",
3429                NULL
3430        };
3431        const char * const replay_usage[] = {
3432                "perf sched replay [<options>]",
3433                NULL
3434        };
3435        const char * const map_usage[] = {
3436                "perf sched map [<options>]",
3437                NULL
3438        };
3439        const char * const timehist_usage[] = {
3440                "perf sched timehist [<options>]",
3441                NULL
3442        };
3443        const char *const sched_subcommands[] = { "record", "latency", "map",
3444                                                  "replay", "script",
3445                                                  "timehist", NULL };
3446        const char *sched_usage[] = {
3447                NULL,
3448                NULL
3449        };
3450        struct trace_sched_handler lat_ops  = {
3451                .wakeup_event       = latency_wakeup_event,
3452                .switch_event       = latency_switch_event,
3453                .runtime_event      = latency_runtime_event,
3454                .migrate_task_event = latency_migrate_task_event,
3455        };
3456        struct trace_sched_handler map_ops  = {
3457                .switch_event       = map_switch_event,
3458        };
3459        struct trace_sched_handler replay_ops  = {
3460                .wakeup_event       = replay_wakeup_event,
3461                .switch_event       = replay_switch_event,
3462                .fork_event         = replay_fork_event,
3463        };
3464        unsigned int i;
3465
3466        for (i = 0; i < ARRAY_SIZE(sched.curr_pid); i++)
3467                sched.curr_pid[i] = -1;
3468
3469        argc = parse_options_subcommand(argc, argv, sched_options, sched_subcommands,
3470                                        sched_usage, PARSE_OPT_STOP_AT_NON_OPTION);
3471        if (!argc)
3472                usage_with_options(sched_usage, sched_options);
3473
3474        /*
3475         * Aliased to 'perf script' for now:
3476         */
3477        if (!strcmp(argv[0], "script"))
3478                return cmd_script(argc, argv);
3479
3480        if (!strncmp(argv[0], "rec", 3)) {
3481                return __cmd_record(argc, argv);
3482        } else if (!strncmp(argv[0], "lat", 3)) {
3483                sched.tp_handler = &lat_ops;
3484                if (argc > 1) {
3485                        argc = parse_options(argc, argv, latency_options, latency_usage, 0);
3486                        if (argc)
3487                                usage_with_options(latency_usage, latency_options);
3488                }
3489                setup_sorting(&sched, latency_options, latency_usage);
3490                return perf_sched__lat(&sched);
3491        } else if (!strcmp(argv[0], "map")) {
3492                if (argc) {
3493                        argc = parse_options(argc, argv, map_options, map_usage, 0);
3494                        if (argc)
3495                                usage_with_options(map_usage, map_options);
3496                }
3497                sched.tp_handler = &map_ops;
3498                setup_sorting(&sched, latency_options, latency_usage);
3499                return perf_sched__map(&sched);
3500        } else if (!strncmp(argv[0], "rep", 3)) {
3501                sched.tp_handler = &replay_ops;
3502                if (argc) {
3503                        argc = parse_options(argc, argv, replay_options, replay_usage, 0);
3504                        if (argc)
3505                                usage_with_options(replay_usage, replay_options);
3506                }
3507                return perf_sched__replay(&sched);
3508        } else if (!strcmp(argv[0], "timehist")) {
3509                if (argc) {
3510                        argc = parse_options(argc, argv, timehist_options,
3511                                             timehist_usage, 0);
3512                        if (argc)
3513                                usage_with_options(timehist_usage, timehist_options);
3514                }
3515                if ((sched.show_wakeups || sched.show_next) &&
3516                    sched.summary_only) {
3517                        pr_err(" Error: -s and -[n|w] are mutually exclusive.\n");
3518                        parse_options_usage(timehist_usage, timehist_options, "s", true);
3519                        if (sched.show_wakeups)
3520                                parse_options_usage(NULL, timehist_options, "w", true);
3521                        if (sched.show_next)
3522                                parse_options_usage(NULL, timehist_options, "n", true);
3523                        return -EINVAL;
3524                }
3525
3526                return perf_sched__timehist(&sched);
3527        } else {
3528                usage_with_options(sched_usage, sched_options);
3529        }
3530
3531        return 0;
3532}
3533