linux/virt/kvm/kvm_main.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include <kvm/iodev.h>
  20
  21#include <linux/kvm_host.h>
  22#include <linux/kvm.h>
  23#include <linux/module.h>
  24#include <linux/errno.h>
  25#include <linux/percpu.h>
  26#include <linux/mm.h>
  27#include <linux/miscdevice.h>
  28#include <linux/vmalloc.h>
  29#include <linux/reboot.h>
  30#include <linux/debugfs.h>
  31#include <linux/highmem.h>
  32#include <linux/file.h>
  33#include <linux/syscore_ops.h>
  34#include <linux/cpu.h>
  35#include <linux/sched/signal.h>
  36#include <linux/sched/mm.h>
  37#include <linux/sched/stat.h>
  38#include <linux/cpumask.h>
  39#include <linux/smp.h>
  40#include <linux/anon_inodes.h>
  41#include <linux/profile.h>
  42#include <linux/kvm_para.h>
  43#include <linux/pagemap.h>
  44#include <linux/mman.h>
  45#include <linux/swap.h>
  46#include <linux/bitops.h>
  47#include <linux/spinlock.h>
  48#include <linux/compat.h>
  49#include <linux/srcu.h>
  50#include <linux/hugetlb.h>
  51#include <linux/slab.h>
  52#include <linux/sort.h>
  53#include <linux/bsearch.h>
  54
  55#include <asm/processor.h>
  56#include <asm/io.h>
  57#include <asm/ioctl.h>
  58#include <linux/uaccess.h>
  59#include <asm/pgtable.h>
  60
  61#include "coalesced_mmio.h"
  62#include "async_pf.h"
  63#include "vfio.h"
  64
  65#define CREATE_TRACE_POINTS
  66#include <trace/events/kvm.h>
  67
  68/* Worst case buffer size needed for holding an integer. */
  69#define ITOA_MAX_LEN 12
  70
  71MODULE_AUTHOR("Qumranet");
  72MODULE_LICENSE("GPL");
  73
  74/* Architectures should define their poll value according to the halt latency */
  75unsigned int halt_poll_ns = KVM_HALT_POLL_NS_DEFAULT;
  76module_param(halt_poll_ns, uint, 0644);
  77EXPORT_SYMBOL_GPL(halt_poll_ns);
  78
  79/* Default doubles per-vcpu halt_poll_ns. */
  80unsigned int halt_poll_ns_grow = 2;
  81module_param(halt_poll_ns_grow, uint, 0644);
  82EXPORT_SYMBOL_GPL(halt_poll_ns_grow);
  83
  84/* Default resets per-vcpu halt_poll_ns . */
  85unsigned int halt_poll_ns_shrink;
  86module_param(halt_poll_ns_shrink, uint, 0644);
  87EXPORT_SYMBOL_GPL(halt_poll_ns_shrink);
  88
  89/*
  90 * Ordering of locks:
  91 *
  92 *      kvm->lock --> kvm->slots_lock --> kvm->irq_lock
  93 */
  94
  95DEFINE_SPINLOCK(kvm_lock);
  96static DEFINE_RAW_SPINLOCK(kvm_count_lock);
  97LIST_HEAD(vm_list);
  98
  99static cpumask_var_t cpus_hardware_enabled;
 100static int kvm_usage_count;
 101static atomic_t hardware_enable_failed;
 102
 103struct kmem_cache *kvm_vcpu_cache;
 104EXPORT_SYMBOL_GPL(kvm_vcpu_cache);
 105
 106static __read_mostly struct preempt_ops kvm_preempt_ops;
 107
 108struct dentry *kvm_debugfs_dir;
 109EXPORT_SYMBOL_GPL(kvm_debugfs_dir);
 110
 111static int kvm_debugfs_num_entries;
 112static const struct file_operations *stat_fops_per_vm[];
 113
 114static long kvm_vcpu_ioctl(struct file *file, unsigned int ioctl,
 115                           unsigned long arg);
 116#ifdef CONFIG_KVM_COMPAT
 117static long kvm_vcpu_compat_ioctl(struct file *file, unsigned int ioctl,
 118                                  unsigned long arg);
 119#define KVM_COMPAT(c)   .compat_ioctl   = (c)
 120#else
 121static long kvm_no_compat_ioctl(struct file *file, unsigned int ioctl,
 122                                unsigned long arg) { return -EINVAL; }
 123#define KVM_COMPAT(c)   .compat_ioctl   = kvm_no_compat_ioctl
 124#endif
 125static int hardware_enable_all(void);
 126static void hardware_disable_all(void);
 127
 128static void kvm_io_bus_destroy(struct kvm_io_bus *bus);
 129
 130static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot, gfn_t gfn);
 131
 132__visible bool kvm_rebooting;
 133EXPORT_SYMBOL_GPL(kvm_rebooting);
 134
 135static bool largepages_enabled = true;
 136
 137#define KVM_EVENT_CREATE_VM 0
 138#define KVM_EVENT_DESTROY_VM 1
 139static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm);
 140static unsigned long long kvm_createvm_count;
 141static unsigned long long kvm_active_vms;
 142
 143__weak int kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
 144                unsigned long start, unsigned long end, bool blockable)
 145{
 146        return 0;
 147}
 148
 149bool kvm_is_reserved_pfn(kvm_pfn_t pfn)
 150{
 151        if (pfn_valid(pfn))
 152                return PageReserved(pfn_to_page(pfn));
 153
 154        return true;
 155}
 156
 157/*
 158 * Switches to specified vcpu, until a matching vcpu_put()
 159 */
 160void vcpu_load(struct kvm_vcpu *vcpu)
 161{
 162        int cpu = get_cpu();
 163        preempt_notifier_register(&vcpu->preempt_notifier);
 164        kvm_arch_vcpu_load(vcpu, cpu);
 165        put_cpu();
 166}
 167EXPORT_SYMBOL_GPL(vcpu_load);
 168
 169void vcpu_put(struct kvm_vcpu *vcpu)
 170{
 171        preempt_disable();
 172        kvm_arch_vcpu_put(vcpu);
 173        preempt_notifier_unregister(&vcpu->preempt_notifier);
 174        preempt_enable();
 175}
 176EXPORT_SYMBOL_GPL(vcpu_put);
 177
 178/* TODO: merge with kvm_arch_vcpu_should_kick */
 179static bool kvm_request_needs_ipi(struct kvm_vcpu *vcpu, unsigned req)
 180{
 181        int mode = kvm_vcpu_exiting_guest_mode(vcpu);
 182
 183        /*
 184         * We need to wait for the VCPU to reenable interrupts and get out of
 185         * READING_SHADOW_PAGE_TABLES mode.
 186         */
 187        if (req & KVM_REQUEST_WAIT)
 188                return mode != OUTSIDE_GUEST_MODE;
 189
 190        /*
 191         * Need to kick a running VCPU, but otherwise there is nothing to do.
 192         */
 193        return mode == IN_GUEST_MODE;
 194}
 195
 196static void ack_flush(void *_completed)
 197{
 198}
 199
 200static inline bool kvm_kick_many_cpus(const struct cpumask *cpus, bool wait)
 201{
 202        if (unlikely(!cpus))
 203                cpus = cpu_online_mask;
 204
 205        if (cpumask_empty(cpus))
 206                return false;
 207
 208        smp_call_function_many(cpus, ack_flush, NULL, wait);
 209        return true;
 210}
 211
 212bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
 213                                 unsigned long *vcpu_bitmap, cpumask_var_t tmp)
 214{
 215        int i, cpu, me;
 216        struct kvm_vcpu *vcpu;
 217        bool called;
 218
 219        me = get_cpu();
 220
 221        kvm_for_each_vcpu(i, vcpu, kvm) {
 222                if (!test_bit(i, vcpu_bitmap))
 223                        continue;
 224
 225                kvm_make_request(req, vcpu);
 226                cpu = vcpu->cpu;
 227
 228                if (!(req & KVM_REQUEST_NO_WAKEUP) && kvm_vcpu_wake_up(vcpu))
 229                        continue;
 230
 231                if (tmp != NULL && cpu != -1 && cpu != me &&
 232                    kvm_request_needs_ipi(vcpu, req))
 233                        __cpumask_set_cpu(cpu, tmp);
 234        }
 235
 236        called = kvm_kick_many_cpus(tmp, !!(req & KVM_REQUEST_WAIT));
 237        put_cpu();
 238
 239        return called;
 240}
 241
 242bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req)
 243{
 244        cpumask_var_t cpus;
 245        bool called;
 246        static unsigned long vcpu_bitmap[BITS_TO_LONGS(KVM_MAX_VCPUS)]
 247                = {[0 ... BITS_TO_LONGS(KVM_MAX_VCPUS)-1] = ULONG_MAX};
 248
 249        zalloc_cpumask_var(&cpus, GFP_ATOMIC);
 250
 251        called = kvm_make_vcpus_request_mask(kvm, req, vcpu_bitmap, cpus);
 252
 253        free_cpumask_var(cpus);
 254        return called;
 255}
 256
 257#ifndef CONFIG_HAVE_KVM_ARCH_TLB_FLUSH_ALL
 258void kvm_flush_remote_tlbs(struct kvm *kvm)
 259{
 260        /*
 261         * Read tlbs_dirty before setting KVM_REQ_TLB_FLUSH in
 262         * kvm_make_all_cpus_request.
 263         */
 264        long dirty_count = smp_load_acquire(&kvm->tlbs_dirty);
 265
 266        /*
 267         * We want to publish modifications to the page tables before reading
 268         * mode. Pairs with a memory barrier in arch-specific code.
 269         * - x86: smp_mb__after_srcu_read_unlock in vcpu_enter_guest
 270         * and smp_mb in walk_shadow_page_lockless_begin/end.
 271         * - powerpc: smp_mb in kvmppc_prepare_to_enter.
 272         *
 273         * There is already an smp_mb__after_atomic() before
 274         * kvm_make_all_cpus_request() reads vcpu->mode. We reuse that
 275         * barrier here.
 276         */
 277        if (!kvm_arch_flush_remote_tlb(kvm)
 278            || kvm_make_all_cpus_request(kvm, KVM_REQ_TLB_FLUSH))
 279                ++kvm->stat.remote_tlb_flush;
 280        cmpxchg(&kvm->tlbs_dirty, dirty_count, 0);
 281}
 282EXPORT_SYMBOL_GPL(kvm_flush_remote_tlbs);
 283#endif
 284
 285void kvm_reload_remote_mmus(struct kvm *kvm)
 286{
 287        kvm_make_all_cpus_request(kvm, KVM_REQ_MMU_RELOAD);
 288}
 289
 290int kvm_vcpu_init(struct kvm_vcpu *vcpu, struct kvm *kvm, unsigned id)
 291{
 292        struct page *page;
 293        int r;
 294
 295        mutex_init(&vcpu->mutex);
 296        vcpu->cpu = -1;
 297        vcpu->kvm = kvm;
 298        vcpu->vcpu_id = id;
 299        vcpu->pid = NULL;
 300        init_swait_queue_head(&vcpu->wq);
 301        kvm_async_pf_vcpu_init(vcpu);
 302
 303        vcpu->pre_pcpu = -1;
 304        INIT_LIST_HEAD(&vcpu->blocked_vcpu_list);
 305
 306        page = alloc_page(GFP_KERNEL | __GFP_ZERO);
 307        if (!page) {
 308                r = -ENOMEM;
 309                goto fail;
 310        }
 311        vcpu->run = page_address(page);
 312
 313        kvm_vcpu_set_in_spin_loop(vcpu, false);
 314        kvm_vcpu_set_dy_eligible(vcpu, false);
 315        vcpu->preempted = false;
 316
 317        r = kvm_arch_vcpu_init(vcpu);
 318        if (r < 0)
 319                goto fail_free_run;
 320        return 0;
 321
 322fail_free_run:
 323        free_page((unsigned long)vcpu->run);
 324fail:
 325        return r;
 326}
 327EXPORT_SYMBOL_GPL(kvm_vcpu_init);
 328
 329void kvm_vcpu_uninit(struct kvm_vcpu *vcpu)
 330{
 331        /*
 332         * no need for rcu_read_lock as VCPU_RUN is the only place that
 333         * will change the vcpu->pid pointer and on uninit all file
 334         * descriptors are already gone.
 335         */
 336        put_pid(rcu_dereference_protected(vcpu->pid, 1));
 337        kvm_arch_vcpu_uninit(vcpu);
 338        free_page((unsigned long)vcpu->run);
 339}
 340EXPORT_SYMBOL_GPL(kvm_vcpu_uninit);
 341
 342#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 343static inline struct kvm *mmu_notifier_to_kvm(struct mmu_notifier *mn)
 344{
 345        return container_of(mn, struct kvm, mmu_notifier);
 346}
 347
 348static void kvm_mmu_notifier_change_pte(struct mmu_notifier *mn,
 349                                        struct mm_struct *mm,
 350                                        unsigned long address,
 351                                        pte_t pte)
 352{
 353        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 354        int idx;
 355
 356        idx = srcu_read_lock(&kvm->srcu);
 357        spin_lock(&kvm->mmu_lock);
 358        kvm->mmu_notifier_seq++;
 359        kvm_set_spte_hva(kvm, address, pte);
 360        spin_unlock(&kvm->mmu_lock);
 361        srcu_read_unlock(&kvm->srcu, idx);
 362}
 363
 364static int kvm_mmu_notifier_invalidate_range_start(struct mmu_notifier *mn,
 365                                                    struct mm_struct *mm,
 366                                                    unsigned long start,
 367                                                    unsigned long end,
 368                                                    bool blockable)
 369{
 370        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 371        int need_tlb_flush = 0, idx;
 372        int ret;
 373
 374        idx = srcu_read_lock(&kvm->srcu);
 375        spin_lock(&kvm->mmu_lock);
 376        /*
 377         * The count increase must become visible at unlock time as no
 378         * spte can be established without taking the mmu_lock and
 379         * count is also read inside the mmu_lock critical section.
 380         */
 381        kvm->mmu_notifier_count++;
 382        need_tlb_flush = kvm_unmap_hva_range(kvm, start, end);
 383        need_tlb_flush |= kvm->tlbs_dirty;
 384        /* we've to flush the tlb before the pages can be freed */
 385        if (need_tlb_flush)
 386                kvm_flush_remote_tlbs(kvm);
 387
 388        spin_unlock(&kvm->mmu_lock);
 389
 390        ret = kvm_arch_mmu_notifier_invalidate_range(kvm, start, end, blockable);
 391
 392        srcu_read_unlock(&kvm->srcu, idx);
 393
 394        return ret;
 395}
 396
 397static void kvm_mmu_notifier_invalidate_range_end(struct mmu_notifier *mn,
 398                                                  struct mm_struct *mm,
 399                                                  unsigned long start,
 400                                                  unsigned long end)
 401{
 402        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 403
 404        spin_lock(&kvm->mmu_lock);
 405        /*
 406         * This sequence increase will notify the kvm page fault that
 407         * the page that is going to be mapped in the spte could have
 408         * been freed.
 409         */
 410        kvm->mmu_notifier_seq++;
 411        smp_wmb();
 412        /*
 413         * The above sequence increase must be visible before the
 414         * below count decrease, which is ensured by the smp_wmb above
 415         * in conjunction with the smp_rmb in mmu_notifier_retry().
 416         */
 417        kvm->mmu_notifier_count--;
 418        spin_unlock(&kvm->mmu_lock);
 419
 420        BUG_ON(kvm->mmu_notifier_count < 0);
 421}
 422
 423static int kvm_mmu_notifier_clear_flush_young(struct mmu_notifier *mn,
 424                                              struct mm_struct *mm,
 425                                              unsigned long start,
 426                                              unsigned long end)
 427{
 428        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 429        int young, idx;
 430
 431        idx = srcu_read_lock(&kvm->srcu);
 432        spin_lock(&kvm->mmu_lock);
 433
 434        young = kvm_age_hva(kvm, start, end);
 435        if (young)
 436                kvm_flush_remote_tlbs(kvm);
 437
 438        spin_unlock(&kvm->mmu_lock);
 439        srcu_read_unlock(&kvm->srcu, idx);
 440
 441        return young;
 442}
 443
 444static int kvm_mmu_notifier_clear_young(struct mmu_notifier *mn,
 445                                        struct mm_struct *mm,
 446                                        unsigned long start,
 447                                        unsigned long end)
 448{
 449        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 450        int young, idx;
 451
 452        idx = srcu_read_lock(&kvm->srcu);
 453        spin_lock(&kvm->mmu_lock);
 454        /*
 455         * Even though we do not flush TLB, this will still adversely
 456         * affect performance on pre-Haswell Intel EPT, where there is
 457         * no EPT Access Bit to clear so that we have to tear down EPT
 458         * tables instead. If we find this unacceptable, we can always
 459         * add a parameter to kvm_age_hva so that it effectively doesn't
 460         * do anything on clear_young.
 461         *
 462         * Also note that currently we never issue secondary TLB flushes
 463         * from clear_young, leaving this job up to the regular system
 464         * cadence. If we find this inaccurate, we might come up with a
 465         * more sophisticated heuristic later.
 466         */
 467        young = kvm_age_hva(kvm, start, end);
 468        spin_unlock(&kvm->mmu_lock);
 469        srcu_read_unlock(&kvm->srcu, idx);
 470
 471        return young;
 472}
 473
 474static int kvm_mmu_notifier_test_young(struct mmu_notifier *mn,
 475                                       struct mm_struct *mm,
 476                                       unsigned long address)
 477{
 478        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 479        int young, idx;
 480
 481        idx = srcu_read_lock(&kvm->srcu);
 482        spin_lock(&kvm->mmu_lock);
 483        young = kvm_test_age_hva(kvm, address);
 484        spin_unlock(&kvm->mmu_lock);
 485        srcu_read_unlock(&kvm->srcu, idx);
 486
 487        return young;
 488}
 489
 490static void kvm_mmu_notifier_release(struct mmu_notifier *mn,
 491                                     struct mm_struct *mm)
 492{
 493        struct kvm *kvm = mmu_notifier_to_kvm(mn);
 494        int idx;
 495
 496        idx = srcu_read_lock(&kvm->srcu);
 497        kvm_arch_flush_shadow_all(kvm);
 498        srcu_read_unlock(&kvm->srcu, idx);
 499}
 500
 501static const struct mmu_notifier_ops kvm_mmu_notifier_ops = {
 502        .flags                  = MMU_INVALIDATE_DOES_NOT_BLOCK,
 503        .invalidate_range_start = kvm_mmu_notifier_invalidate_range_start,
 504        .invalidate_range_end   = kvm_mmu_notifier_invalidate_range_end,
 505        .clear_flush_young      = kvm_mmu_notifier_clear_flush_young,
 506        .clear_young            = kvm_mmu_notifier_clear_young,
 507        .test_young             = kvm_mmu_notifier_test_young,
 508        .change_pte             = kvm_mmu_notifier_change_pte,
 509        .release                = kvm_mmu_notifier_release,
 510};
 511
 512static int kvm_init_mmu_notifier(struct kvm *kvm)
 513{
 514        kvm->mmu_notifier.ops = &kvm_mmu_notifier_ops;
 515        return mmu_notifier_register(&kvm->mmu_notifier, current->mm);
 516}
 517
 518#else  /* !(CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER) */
 519
 520static int kvm_init_mmu_notifier(struct kvm *kvm)
 521{
 522        return 0;
 523}
 524
 525#endif /* CONFIG_MMU_NOTIFIER && KVM_ARCH_WANT_MMU_NOTIFIER */
 526
 527static struct kvm_memslots *kvm_alloc_memslots(void)
 528{
 529        int i;
 530        struct kvm_memslots *slots;
 531
 532        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
 533        if (!slots)
 534                return NULL;
 535
 536        for (i = 0; i < KVM_MEM_SLOTS_NUM; i++)
 537                slots->id_to_index[i] = slots->memslots[i].id = i;
 538
 539        return slots;
 540}
 541
 542static void kvm_destroy_dirty_bitmap(struct kvm_memory_slot *memslot)
 543{
 544        if (!memslot->dirty_bitmap)
 545                return;
 546
 547        kvfree(memslot->dirty_bitmap);
 548        memslot->dirty_bitmap = NULL;
 549}
 550
 551/*
 552 * Free any memory in @free but not in @dont.
 553 */
 554static void kvm_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
 555                              struct kvm_memory_slot *dont)
 556{
 557        if (!dont || free->dirty_bitmap != dont->dirty_bitmap)
 558                kvm_destroy_dirty_bitmap(free);
 559
 560        kvm_arch_free_memslot(kvm, free, dont);
 561
 562        free->npages = 0;
 563}
 564
 565static void kvm_free_memslots(struct kvm *kvm, struct kvm_memslots *slots)
 566{
 567        struct kvm_memory_slot *memslot;
 568
 569        if (!slots)
 570                return;
 571
 572        kvm_for_each_memslot(memslot, slots)
 573                kvm_free_memslot(kvm, memslot, NULL);
 574
 575        kvfree(slots);
 576}
 577
 578static void kvm_destroy_vm_debugfs(struct kvm *kvm)
 579{
 580        int i;
 581
 582        if (!kvm->debugfs_dentry)
 583                return;
 584
 585        debugfs_remove_recursive(kvm->debugfs_dentry);
 586
 587        if (kvm->debugfs_stat_data) {
 588                for (i = 0; i < kvm_debugfs_num_entries; i++)
 589                        kfree(kvm->debugfs_stat_data[i]);
 590                kfree(kvm->debugfs_stat_data);
 591        }
 592}
 593
 594static int kvm_create_vm_debugfs(struct kvm *kvm, int fd)
 595{
 596        char dir_name[ITOA_MAX_LEN * 2];
 597        struct kvm_stat_data *stat_data;
 598        struct kvm_stats_debugfs_item *p;
 599
 600        if (!debugfs_initialized())
 601                return 0;
 602
 603        snprintf(dir_name, sizeof(dir_name), "%d-%d", task_pid_nr(current), fd);
 604        kvm->debugfs_dentry = debugfs_create_dir(dir_name, kvm_debugfs_dir);
 605
 606        kvm->debugfs_stat_data = kcalloc(kvm_debugfs_num_entries,
 607                                         sizeof(*kvm->debugfs_stat_data),
 608                                         GFP_KERNEL);
 609        if (!kvm->debugfs_stat_data)
 610                return -ENOMEM;
 611
 612        for (p = debugfs_entries; p->name; p++) {
 613                stat_data = kzalloc(sizeof(*stat_data), GFP_KERNEL);
 614                if (!stat_data)
 615                        return -ENOMEM;
 616
 617                stat_data->kvm = kvm;
 618                stat_data->offset = p->offset;
 619                kvm->debugfs_stat_data[p - debugfs_entries] = stat_data;
 620                debugfs_create_file(p->name, 0644, kvm->debugfs_dentry,
 621                                    stat_data, stat_fops_per_vm[p->kind]);
 622        }
 623        return 0;
 624}
 625
 626static struct kvm *kvm_create_vm(unsigned long type)
 627{
 628        int r, i;
 629        struct kvm *kvm = kvm_arch_alloc_vm();
 630
 631        if (!kvm)
 632                return ERR_PTR(-ENOMEM);
 633
 634        spin_lock_init(&kvm->mmu_lock);
 635        mmgrab(current->mm);
 636        kvm->mm = current->mm;
 637        kvm_eventfd_init(kvm);
 638        mutex_init(&kvm->lock);
 639        mutex_init(&kvm->irq_lock);
 640        mutex_init(&kvm->slots_lock);
 641        refcount_set(&kvm->users_count, 1);
 642        INIT_LIST_HEAD(&kvm->devices);
 643
 644        r = kvm_arch_init_vm(kvm, type);
 645        if (r)
 646                goto out_err_no_disable;
 647
 648        r = hardware_enable_all();
 649        if (r)
 650                goto out_err_no_disable;
 651
 652#ifdef CONFIG_HAVE_KVM_IRQFD
 653        INIT_HLIST_HEAD(&kvm->irq_ack_notifier_list);
 654#endif
 655
 656        BUILD_BUG_ON(KVM_MEM_SLOTS_NUM > SHRT_MAX);
 657
 658        r = -ENOMEM;
 659        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
 660                struct kvm_memslots *slots = kvm_alloc_memslots();
 661                if (!slots)
 662                        goto out_err_no_srcu;
 663                /*
 664                 * Generations must be different for each address space.
 665                 * Init kvm generation close to the maximum to easily test the
 666                 * code of handling generation number wrap-around.
 667                 */
 668                slots->generation = i * 2 - 150;
 669                rcu_assign_pointer(kvm->memslots[i], slots);
 670        }
 671
 672        if (init_srcu_struct(&kvm->srcu))
 673                goto out_err_no_srcu;
 674        if (init_srcu_struct(&kvm->irq_srcu))
 675                goto out_err_no_irq_srcu;
 676        for (i = 0; i < KVM_NR_BUSES; i++) {
 677                rcu_assign_pointer(kvm->buses[i],
 678                        kzalloc(sizeof(struct kvm_io_bus), GFP_KERNEL));
 679                if (!kvm->buses[i])
 680                        goto out_err;
 681        }
 682
 683        r = kvm_init_mmu_notifier(kvm);
 684        if (r)
 685                goto out_err;
 686
 687        spin_lock(&kvm_lock);
 688        list_add(&kvm->vm_list, &vm_list);
 689        spin_unlock(&kvm_lock);
 690
 691        preempt_notifier_inc();
 692
 693        return kvm;
 694
 695out_err:
 696        cleanup_srcu_struct(&kvm->irq_srcu);
 697out_err_no_irq_srcu:
 698        cleanup_srcu_struct(&kvm->srcu);
 699out_err_no_srcu:
 700        hardware_disable_all();
 701out_err_no_disable:
 702        refcount_set(&kvm->users_count, 0);
 703        for (i = 0; i < KVM_NR_BUSES; i++)
 704                kfree(kvm_get_bus(kvm, i));
 705        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 706                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 707        kvm_arch_free_vm(kvm);
 708        mmdrop(current->mm);
 709        return ERR_PTR(r);
 710}
 711
 712static void kvm_destroy_devices(struct kvm *kvm)
 713{
 714        struct kvm_device *dev, *tmp;
 715
 716        /*
 717         * We do not need to take the kvm->lock here, because nobody else
 718         * has a reference to the struct kvm at this point and therefore
 719         * cannot access the devices list anyhow.
 720         */
 721        list_for_each_entry_safe(dev, tmp, &kvm->devices, vm_node) {
 722                list_del(&dev->vm_node);
 723                dev->ops->destroy(dev);
 724        }
 725}
 726
 727static void kvm_destroy_vm(struct kvm *kvm)
 728{
 729        int i;
 730        struct mm_struct *mm = kvm->mm;
 731
 732        kvm_uevent_notify_change(KVM_EVENT_DESTROY_VM, kvm);
 733        kvm_destroy_vm_debugfs(kvm);
 734        kvm_arch_sync_events(kvm);
 735        spin_lock(&kvm_lock);
 736        list_del(&kvm->vm_list);
 737        spin_unlock(&kvm_lock);
 738        kvm_free_irq_routing(kvm);
 739        for (i = 0; i < KVM_NR_BUSES; i++) {
 740                struct kvm_io_bus *bus = kvm_get_bus(kvm, i);
 741
 742                if (bus)
 743                        kvm_io_bus_destroy(bus);
 744                kvm->buses[i] = NULL;
 745        }
 746        kvm_coalesced_mmio_free(kvm);
 747#if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
 748        mmu_notifier_unregister(&kvm->mmu_notifier, kvm->mm);
 749#else
 750        kvm_arch_flush_shadow_all(kvm);
 751#endif
 752        kvm_arch_destroy_vm(kvm);
 753        kvm_destroy_devices(kvm);
 754        for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++)
 755                kvm_free_memslots(kvm, __kvm_memslots(kvm, i));
 756        cleanup_srcu_struct(&kvm->irq_srcu);
 757        cleanup_srcu_struct(&kvm->srcu);
 758        kvm_arch_free_vm(kvm);
 759        preempt_notifier_dec();
 760        hardware_disable_all();
 761        mmdrop(mm);
 762}
 763
 764void kvm_get_kvm(struct kvm *kvm)
 765{
 766        refcount_inc(&kvm->users_count);
 767}
 768EXPORT_SYMBOL_GPL(kvm_get_kvm);
 769
 770void kvm_put_kvm(struct kvm *kvm)
 771{
 772        if (refcount_dec_and_test(&kvm->users_count))
 773                kvm_destroy_vm(kvm);
 774}
 775EXPORT_SYMBOL_GPL(kvm_put_kvm);
 776
 777
 778static int kvm_vm_release(struct inode *inode, struct file *filp)
 779{
 780        struct kvm *kvm = filp->private_data;
 781
 782        kvm_irqfd_release(kvm);
 783
 784        kvm_put_kvm(kvm);
 785        return 0;
 786}
 787
 788/*
 789 * Allocation size is twice as large as the actual dirty bitmap size.
 790 * See x86's kvm_vm_ioctl_get_dirty_log() why this is needed.
 791 */
 792static int kvm_create_dirty_bitmap(struct kvm_memory_slot *memslot)
 793{
 794        unsigned long dirty_bytes = 2 * kvm_dirty_bitmap_bytes(memslot);
 795
 796        memslot->dirty_bitmap = kvzalloc(dirty_bytes, GFP_KERNEL);
 797        if (!memslot->dirty_bitmap)
 798                return -ENOMEM;
 799
 800        return 0;
 801}
 802
 803/*
 804 * Insert memslot and re-sort memslots based on their GFN,
 805 * so binary search could be used to lookup GFN.
 806 * Sorting algorithm takes advantage of having initially
 807 * sorted array and known changed memslot position.
 808 */
 809static void update_memslots(struct kvm_memslots *slots,
 810                            struct kvm_memory_slot *new)
 811{
 812        int id = new->id;
 813        int i = slots->id_to_index[id];
 814        struct kvm_memory_slot *mslots = slots->memslots;
 815
 816        WARN_ON(mslots[i].id != id);
 817        if (!new->npages) {
 818                WARN_ON(!mslots[i].npages);
 819                if (mslots[i].npages)
 820                        slots->used_slots--;
 821        } else {
 822                if (!mslots[i].npages)
 823                        slots->used_slots++;
 824        }
 825
 826        while (i < KVM_MEM_SLOTS_NUM - 1 &&
 827               new->base_gfn <= mslots[i + 1].base_gfn) {
 828                if (!mslots[i + 1].npages)
 829                        break;
 830                mslots[i] = mslots[i + 1];
 831                slots->id_to_index[mslots[i].id] = i;
 832                i++;
 833        }
 834
 835        /*
 836         * The ">=" is needed when creating a slot with base_gfn == 0,
 837         * so that it moves before all those with base_gfn == npages == 0.
 838         *
 839         * On the other hand, if new->npages is zero, the above loop has
 840         * already left i pointing to the beginning of the empty part of
 841         * mslots, and the ">=" would move the hole backwards in this
 842         * case---which is wrong.  So skip the loop when deleting a slot.
 843         */
 844        if (new->npages) {
 845                while (i > 0 &&
 846                       new->base_gfn >= mslots[i - 1].base_gfn) {
 847                        mslots[i] = mslots[i - 1];
 848                        slots->id_to_index[mslots[i].id] = i;
 849                        i--;
 850                }
 851        } else
 852                WARN_ON_ONCE(i != slots->used_slots);
 853
 854        mslots[i] = *new;
 855        slots->id_to_index[mslots[i].id] = i;
 856}
 857
 858static int check_memory_region_flags(const struct kvm_userspace_memory_region *mem)
 859{
 860        u32 valid_flags = KVM_MEM_LOG_DIRTY_PAGES;
 861
 862#ifdef __KVM_HAVE_READONLY_MEM
 863        valid_flags |= KVM_MEM_READONLY;
 864#endif
 865
 866        if (mem->flags & ~valid_flags)
 867                return -EINVAL;
 868
 869        return 0;
 870}
 871
 872static struct kvm_memslots *install_new_memslots(struct kvm *kvm,
 873                int as_id, struct kvm_memslots *slots)
 874{
 875        struct kvm_memslots *old_memslots = __kvm_memslots(kvm, as_id);
 876
 877        /*
 878         * Set the low bit in the generation, which disables SPTE caching
 879         * until the end of synchronize_srcu_expedited.
 880         */
 881        WARN_ON(old_memslots->generation & 1);
 882        slots->generation = old_memslots->generation + 1;
 883
 884        rcu_assign_pointer(kvm->memslots[as_id], slots);
 885        synchronize_srcu_expedited(&kvm->srcu);
 886
 887        /*
 888         * Increment the new memslot generation a second time. This prevents
 889         * vm exits that race with memslot updates from caching a memslot
 890         * generation that will (potentially) be valid forever.
 891         *
 892         * Generations must be unique even across address spaces.  We do not need
 893         * a global counter for that, instead the generation space is evenly split
 894         * across address spaces.  For example, with two address spaces, address
 895         * space 0 will use generations 0, 4, 8, ... while * address space 1 will
 896         * use generations 2, 6, 10, 14, ...
 897         */
 898        slots->generation += KVM_ADDRESS_SPACE_NUM * 2 - 1;
 899
 900        kvm_arch_memslots_updated(kvm, slots);
 901
 902        return old_memslots;
 903}
 904
 905/*
 906 * Allocate some memory and give it an address in the guest physical address
 907 * space.
 908 *
 909 * Discontiguous memory is allowed, mostly for framebuffers.
 910 *
 911 * Must be called holding kvm->slots_lock for write.
 912 */
 913int __kvm_set_memory_region(struct kvm *kvm,
 914                            const struct kvm_userspace_memory_region *mem)
 915{
 916        int r;
 917        gfn_t base_gfn;
 918        unsigned long npages;
 919        struct kvm_memory_slot *slot;
 920        struct kvm_memory_slot old, new;
 921        struct kvm_memslots *slots = NULL, *old_memslots;
 922        int as_id, id;
 923        enum kvm_mr_change change;
 924
 925        r = check_memory_region_flags(mem);
 926        if (r)
 927                goto out;
 928
 929        r = -EINVAL;
 930        as_id = mem->slot >> 16;
 931        id = (u16)mem->slot;
 932
 933        /* General sanity checks */
 934        if (mem->memory_size & (PAGE_SIZE - 1))
 935                goto out;
 936        if (mem->guest_phys_addr & (PAGE_SIZE - 1))
 937                goto out;
 938        /* We can read the guest memory with __xxx_user() later on. */
 939        if ((id < KVM_USER_MEM_SLOTS) &&
 940            ((mem->userspace_addr & (PAGE_SIZE - 1)) ||
 941             !access_ok(VERIFY_WRITE,
 942                        (void __user *)(unsigned long)mem->userspace_addr,
 943                        mem->memory_size)))
 944                goto out;
 945        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_MEM_SLOTS_NUM)
 946                goto out;
 947        if (mem->guest_phys_addr + mem->memory_size < mem->guest_phys_addr)
 948                goto out;
 949
 950        slot = id_to_memslot(__kvm_memslots(kvm, as_id), id);
 951        base_gfn = mem->guest_phys_addr >> PAGE_SHIFT;
 952        npages = mem->memory_size >> PAGE_SHIFT;
 953
 954        if (npages > KVM_MEM_MAX_NR_PAGES)
 955                goto out;
 956
 957        new = old = *slot;
 958
 959        new.id = id;
 960        new.base_gfn = base_gfn;
 961        new.npages = npages;
 962        new.flags = mem->flags;
 963
 964        if (npages) {
 965                if (!old.npages)
 966                        change = KVM_MR_CREATE;
 967                else { /* Modify an existing slot. */
 968                        if ((mem->userspace_addr != old.userspace_addr) ||
 969                            (npages != old.npages) ||
 970                            ((new.flags ^ old.flags) & KVM_MEM_READONLY))
 971                                goto out;
 972
 973                        if (base_gfn != old.base_gfn)
 974                                change = KVM_MR_MOVE;
 975                        else if (new.flags != old.flags)
 976                                change = KVM_MR_FLAGS_ONLY;
 977                        else { /* Nothing to change. */
 978                                r = 0;
 979                                goto out;
 980                        }
 981                }
 982        } else {
 983                if (!old.npages)
 984                        goto out;
 985
 986                change = KVM_MR_DELETE;
 987                new.base_gfn = 0;
 988                new.flags = 0;
 989        }
 990
 991        if ((change == KVM_MR_CREATE) || (change == KVM_MR_MOVE)) {
 992                /* Check for overlaps */
 993                r = -EEXIST;
 994                kvm_for_each_memslot(slot, __kvm_memslots(kvm, as_id)) {
 995                        if (slot->id == id)
 996                                continue;
 997                        if (!((base_gfn + npages <= slot->base_gfn) ||
 998                              (base_gfn >= slot->base_gfn + slot->npages)))
 999                                goto out;
1000                }
1001        }
1002
1003        /* Free page dirty bitmap if unneeded */
1004        if (!(new.flags & KVM_MEM_LOG_DIRTY_PAGES))
1005                new.dirty_bitmap = NULL;
1006
1007        r = -ENOMEM;
1008        if (change == KVM_MR_CREATE) {
1009                new.userspace_addr = mem->userspace_addr;
1010
1011                if (kvm_arch_create_memslot(kvm, &new, npages))
1012                        goto out_free;
1013        }
1014
1015        /* Allocate page dirty bitmap if needed */
1016        if ((new.flags & KVM_MEM_LOG_DIRTY_PAGES) && !new.dirty_bitmap) {
1017                if (kvm_create_dirty_bitmap(&new) < 0)
1018                        goto out_free;
1019        }
1020
1021        slots = kvzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
1022        if (!slots)
1023                goto out_free;
1024        memcpy(slots, __kvm_memslots(kvm, as_id), sizeof(struct kvm_memslots));
1025
1026        if ((change == KVM_MR_DELETE) || (change == KVM_MR_MOVE)) {
1027                slot = id_to_memslot(slots, id);
1028                slot->flags |= KVM_MEMSLOT_INVALID;
1029
1030                old_memslots = install_new_memslots(kvm, as_id, slots);
1031
1032                /* From this point no new shadow pages pointing to a deleted,
1033                 * or moved, memslot will be created.
1034                 *
1035                 * validation of sp->gfn happens in:
1036                 *      - gfn_to_hva (kvm_read_guest, gfn_to_pfn)
1037                 *      - kvm_is_visible_gfn (mmu_check_roots)
1038                 */
1039                kvm_arch_flush_shadow_memslot(kvm, slot);
1040
1041                /*
1042                 * We can re-use the old_memslots from above, the only difference
1043                 * from the currently installed memslots is the invalid flag.  This
1044                 * will get overwritten by update_memslots anyway.
1045                 */
1046                slots = old_memslots;
1047        }
1048
1049        r = kvm_arch_prepare_memory_region(kvm, &new, mem, change);
1050        if (r)
1051                goto out_slots;
1052
1053        /* actual memory is freed via old in kvm_free_memslot below */
1054        if (change == KVM_MR_DELETE) {
1055                new.dirty_bitmap = NULL;
1056                memset(&new.arch, 0, sizeof(new.arch));
1057        }
1058
1059        update_memslots(slots, &new);
1060        old_memslots = install_new_memslots(kvm, as_id, slots);
1061
1062        kvm_arch_commit_memory_region(kvm, mem, &old, &new, change);
1063
1064        kvm_free_memslot(kvm, &old, &new);
1065        kvfree(old_memslots);
1066        return 0;
1067
1068out_slots:
1069        kvfree(slots);
1070out_free:
1071        kvm_free_memslot(kvm, &new, &old);
1072out:
1073        return r;
1074}
1075EXPORT_SYMBOL_GPL(__kvm_set_memory_region);
1076
1077int kvm_set_memory_region(struct kvm *kvm,
1078                          const struct kvm_userspace_memory_region *mem)
1079{
1080        int r;
1081
1082        mutex_lock(&kvm->slots_lock);
1083        r = __kvm_set_memory_region(kvm, mem);
1084        mutex_unlock(&kvm->slots_lock);
1085        return r;
1086}
1087EXPORT_SYMBOL_GPL(kvm_set_memory_region);
1088
1089static int kvm_vm_ioctl_set_memory_region(struct kvm *kvm,
1090                                          struct kvm_userspace_memory_region *mem)
1091{
1092        if ((u16)mem->slot >= KVM_USER_MEM_SLOTS)
1093                return -EINVAL;
1094
1095        return kvm_set_memory_region(kvm, mem);
1096}
1097
1098int kvm_get_dirty_log(struct kvm *kvm,
1099                        struct kvm_dirty_log *log, int *is_dirty)
1100{
1101        struct kvm_memslots *slots;
1102        struct kvm_memory_slot *memslot;
1103        int i, as_id, id;
1104        unsigned long n;
1105        unsigned long any = 0;
1106
1107        as_id = log->slot >> 16;
1108        id = (u16)log->slot;
1109        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1110                return -EINVAL;
1111
1112        slots = __kvm_memslots(kvm, as_id);
1113        memslot = id_to_memslot(slots, id);
1114        if (!memslot->dirty_bitmap)
1115                return -ENOENT;
1116
1117        n = kvm_dirty_bitmap_bytes(memslot);
1118
1119        for (i = 0; !any && i < n/sizeof(long); ++i)
1120                any = memslot->dirty_bitmap[i];
1121
1122        if (copy_to_user(log->dirty_bitmap, memslot->dirty_bitmap, n))
1123                return -EFAULT;
1124
1125        if (any)
1126                *is_dirty = 1;
1127        return 0;
1128}
1129EXPORT_SYMBOL_GPL(kvm_get_dirty_log);
1130
1131#ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1132/**
1133 * kvm_get_dirty_log_protect - get a snapshot of dirty pages, and if any pages
1134 *      are dirty write protect them for next write.
1135 * @kvm:        pointer to kvm instance
1136 * @log:        slot id and address to which we copy the log
1137 * @is_dirty:   flag set if any page is dirty
1138 *
1139 * We need to keep it in mind that VCPU threads can write to the bitmap
1140 * concurrently. So, to avoid losing track of dirty pages we keep the
1141 * following order:
1142 *
1143 *    1. Take a snapshot of the bit and clear it if needed.
1144 *    2. Write protect the corresponding page.
1145 *    3. Copy the snapshot to the userspace.
1146 *    4. Upon return caller flushes TLB's if needed.
1147 *
1148 * Between 2 and 4, the guest may write to the page using the remaining TLB
1149 * entry.  This is not a problem because the page is reported dirty using
1150 * the snapshot taken before and step 4 ensures that writes done after
1151 * exiting to userspace will be logged for the next call.
1152 *
1153 */
1154int kvm_get_dirty_log_protect(struct kvm *kvm,
1155                        struct kvm_dirty_log *log, bool *is_dirty)
1156{
1157        struct kvm_memslots *slots;
1158        struct kvm_memory_slot *memslot;
1159        int i, as_id, id;
1160        unsigned long n;
1161        unsigned long *dirty_bitmap;
1162        unsigned long *dirty_bitmap_buffer;
1163
1164        as_id = log->slot >> 16;
1165        id = (u16)log->slot;
1166        if (as_id >= KVM_ADDRESS_SPACE_NUM || id >= KVM_USER_MEM_SLOTS)
1167                return -EINVAL;
1168
1169        slots = __kvm_memslots(kvm, as_id);
1170        memslot = id_to_memslot(slots, id);
1171
1172        dirty_bitmap = memslot->dirty_bitmap;
1173        if (!dirty_bitmap)
1174                return -ENOENT;
1175
1176        n = kvm_dirty_bitmap_bytes(memslot);
1177
1178        dirty_bitmap_buffer = kvm_second_dirty_bitmap(memslot);
1179        memset(dirty_bitmap_buffer, 0, n);
1180
1181        spin_lock(&kvm->mmu_lock);
1182        *is_dirty = false;
1183        for (i = 0; i < n / sizeof(long); i++) {
1184                unsigned long mask;
1185                gfn_t offset;
1186
1187                if (!dirty_bitmap[i])
1188                        continue;
1189
1190                *is_dirty = true;
1191
1192                mask = xchg(&dirty_bitmap[i], 0);
1193                dirty_bitmap_buffer[i] = mask;
1194
1195                if (mask) {
1196                        offset = i * BITS_PER_LONG;
1197                        kvm_arch_mmu_enable_log_dirty_pt_masked(kvm, memslot,
1198                                                                offset, mask);
1199                }
1200        }
1201
1202        spin_unlock(&kvm->mmu_lock);
1203        if (copy_to_user(log->dirty_bitmap, dirty_bitmap_buffer, n))
1204                return -EFAULT;
1205        return 0;
1206}
1207EXPORT_SYMBOL_GPL(kvm_get_dirty_log_protect);
1208#endif
1209
1210bool kvm_largepages_enabled(void)
1211{
1212        return largepages_enabled;
1213}
1214
1215void kvm_disable_largepages(void)
1216{
1217        largepages_enabled = false;
1218}
1219EXPORT_SYMBOL_GPL(kvm_disable_largepages);
1220
1221struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn)
1222{
1223        return __gfn_to_memslot(kvm_memslots(kvm), gfn);
1224}
1225EXPORT_SYMBOL_GPL(gfn_to_memslot);
1226
1227struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn)
1228{
1229        return __gfn_to_memslot(kvm_vcpu_memslots(vcpu), gfn);
1230}
1231
1232bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn)
1233{
1234        struct kvm_memory_slot *memslot = gfn_to_memslot(kvm, gfn);
1235
1236        if (!memslot || memslot->id >= KVM_USER_MEM_SLOTS ||
1237              memslot->flags & KVM_MEMSLOT_INVALID)
1238                return false;
1239
1240        return true;
1241}
1242EXPORT_SYMBOL_GPL(kvm_is_visible_gfn);
1243
1244unsigned long kvm_host_page_size(struct kvm *kvm, gfn_t gfn)
1245{
1246        struct vm_area_struct *vma;
1247        unsigned long addr, size;
1248
1249        size = PAGE_SIZE;
1250
1251        addr = gfn_to_hva(kvm, gfn);
1252        if (kvm_is_error_hva(addr))
1253                return PAGE_SIZE;
1254
1255        down_read(&current->mm->mmap_sem);
1256        vma = find_vma(current->mm, addr);
1257        if (!vma)
1258                goto out;
1259
1260        size = vma_kernel_pagesize(vma);
1261
1262out:
1263        up_read(&current->mm->mmap_sem);
1264
1265        return size;
1266}
1267
1268static bool memslot_is_readonly(struct kvm_memory_slot *slot)
1269{
1270        return slot->flags & KVM_MEM_READONLY;
1271}
1272
1273static unsigned long __gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1274                                       gfn_t *nr_pages, bool write)
1275{
1276        if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1277                return KVM_HVA_ERR_BAD;
1278
1279        if (memslot_is_readonly(slot) && write)
1280                return KVM_HVA_ERR_RO_BAD;
1281
1282        if (nr_pages)
1283                *nr_pages = slot->npages - (gfn - slot->base_gfn);
1284
1285        return __gfn_to_hva_memslot(slot, gfn);
1286}
1287
1288static unsigned long gfn_to_hva_many(struct kvm_memory_slot *slot, gfn_t gfn,
1289                                     gfn_t *nr_pages)
1290{
1291        return __gfn_to_hva_many(slot, gfn, nr_pages, true);
1292}
1293
1294unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot,
1295                                        gfn_t gfn)
1296{
1297        return gfn_to_hva_many(slot, gfn, NULL);
1298}
1299EXPORT_SYMBOL_GPL(gfn_to_hva_memslot);
1300
1301unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn)
1302{
1303        return gfn_to_hva_many(gfn_to_memslot(kvm, gfn), gfn, NULL);
1304}
1305EXPORT_SYMBOL_GPL(gfn_to_hva);
1306
1307unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn)
1308{
1309        return gfn_to_hva_many(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn, NULL);
1310}
1311EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_hva);
1312
1313/*
1314 * If writable is set to false, the hva returned by this function is only
1315 * allowed to be read.
1316 */
1317unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot,
1318                                      gfn_t gfn, bool *writable)
1319{
1320        unsigned long hva = __gfn_to_hva_many(slot, gfn, NULL, false);
1321
1322        if (!kvm_is_error_hva(hva) && writable)
1323                *writable = !memslot_is_readonly(slot);
1324
1325        return hva;
1326}
1327
1328unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable)
1329{
1330        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1331
1332        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1333}
1334
1335unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable)
1336{
1337        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1338
1339        return gfn_to_hva_memslot_prot(slot, gfn, writable);
1340}
1341
1342static inline int check_user_page_hwpoison(unsigned long addr)
1343{
1344        int rc, flags = FOLL_HWPOISON | FOLL_WRITE;
1345
1346        rc = get_user_pages(addr, 1, flags, NULL, NULL);
1347        return rc == -EHWPOISON;
1348}
1349
1350/*
1351 * The fast path to get the writable pfn which will be stored in @pfn,
1352 * true indicates success, otherwise false is returned.  It's also the
1353 * only part that runs if we can are in atomic context.
1354 */
1355static bool hva_to_pfn_fast(unsigned long addr, bool write_fault,
1356                            bool *writable, kvm_pfn_t *pfn)
1357{
1358        struct page *page[1];
1359        int npages;
1360
1361        /*
1362         * Fast pin a writable pfn only if it is a write fault request
1363         * or the caller allows to map a writable pfn for a read fault
1364         * request.
1365         */
1366        if (!(write_fault || writable))
1367                return false;
1368
1369        npages = __get_user_pages_fast(addr, 1, 1, page);
1370        if (npages == 1) {
1371                *pfn = page_to_pfn(page[0]);
1372
1373                if (writable)
1374                        *writable = true;
1375                return true;
1376        }
1377
1378        return false;
1379}
1380
1381/*
1382 * The slow path to get the pfn of the specified host virtual address,
1383 * 1 indicates success, -errno is returned if error is detected.
1384 */
1385static int hva_to_pfn_slow(unsigned long addr, bool *async, bool write_fault,
1386                           bool *writable, kvm_pfn_t *pfn)
1387{
1388        unsigned int flags = FOLL_HWPOISON;
1389        struct page *page;
1390        int npages = 0;
1391
1392        might_sleep();
1393
1394        if (writable)
1395                *writable = write_fault;
1396
1397        if (write_fault)
1398                flags |= FOLL_WRITE;
1399        if (async)
1400                flags |= FOLL_NOWAIT;
1401
1402        npages = get_user_pages_unlocked(addr, 1, &page, flags);
1403        if (npages != 1)
1404                return npages;
1405
1406        /* map read fault as writable if possible */
1407        if (unlikely(!write_fault) && writable) {
1408                struct page *wpage;
1409
1410                if (__get_user_pages_fast(addr, 1, 1, &wpage) == 1) {
1411                        *writable = true;
1412                        put_page(page);
1413                        page = wpage;
1414                }
1415        }
1416        *pfn = page_to_pfn(page);
1417        return npages;
1418}
1419
1420static bool vma_is_valid(struct vm_area_struct *vma, bool write_fault)
1421{
1422        if (unlikely(!(vma->vm_flags & VM_READ)))
1423                return false;
1424
1425        if (write_fault && (unlikely(!(vma->vm_flags & VM_WRITE))))
1426                return false;
1427
1428        return true;
1429}
1430
1431static int hva_to_pfn_remapped(struct vm_area_struct *vma,
1432                               unsigned long addr, bool *async,
1433                               bool write_fault, bool *writable,
1434                               kvm_pfn_t *p_pfn)
1435{
1436        unsigned long pfn;
1437        int r;
1438
1439        r = follow_pfn(vma, addr, &pfn);
1440        if (r) {
1441                /*
1442                 * get_user_pages fails for VM_IO and VM_PFNMAP vmas and does
1443                 * not call the fault handler, so do it here.
1444                 */
1445                bool unlocked = false;
1446                r = fixup_user_fault(current, current->mm, addr,
1447                                     (write_fault ? FAULT_FLAG_WRITE : 0),
1448                                     &unlocked);
1449                if (unlocked)
1450                        return -EAGAIN;
1451                if (r)
1452                        return r;
1453
1454                r = follow_pfn(vma, addr, &pfn);
1455                if (r)
1456                        return r;
1457
1458        }
1459
1460        if (writable)
1461                *writable = true;
1462
1463        /*
1464         * Get a reference here because callers of *hva_to_pfn* and
1465         * *gfn_to_pfn* ultimately call kvm_release_pfn_clean on the
1466         * returned pfn.  This is only needed if the VMA has VM_MIXEDMAP
1467         * set, but the kvm_get_pfn/kvm_release_pfn_clean pair will
1468         * simply do nothing for reserved pfns.
1469         *
1470         * Whoever called remap_pfn_range is also going to call e.g.
1471         * unmap_mapping_range before the underlying pages are freed,
1472         * causing a call to our MMU notifier.
1473         */ 
1474        kvm_get_pfn(pfn);
1475
1476        *p_pfn = pfn;
1477        return 0;
1478}
1479
1480/*
1481 * Pin guest page in memory and return its pfn.
1482 * @addr: host virtual address which maps memory to the guest
1483 * @atomic: whether this function can sleep
1484 * @async: whether this function need to wait IO complete if the
1485 *         host page is not in the memory
1486 * @write_fault: whether we should get a writable host page
1487 * @writable: whether it allows to map a writable host page for !@write_fault
1488 *
1489 * The function will map a writable host page for these two cases:
1490 * 1): @write_fault = true
1491 * 2): @write_fault = false && @writable, @writable will tell the caller
1492 *     whether the mapping is writable.
1493 */
1494static kvm_pfn_t hva_to_pfn(unsigned long addr, bool atomic, bool *async,
1495                        bool write_fault, bool *writable)
1496{
1497        struct vm_area_struct *vma;
1498        kvm_pfn_t pfn = 0;
1499        int npages, r;
1500
1501        /* we can do it either atomically or asynchronously, not both */
1502        BUG_ON(atomic && async);
1503
1504        if (hva_to_pfn_fast(addr, write_fault, writable, &pfn))
1505                return pfn;
1506
1507        if (atomic)
1508                return KVM_PFN_ERR_FAULT;
1509
1510        npages = hva_to_pfn_slow(addr, async, write_fault, writable, &pfn);
1511        if (npages == 1)
1512                return pfn;
1513
1514        down_read(&current->mm->mmap_sem);
1515        if (npages == -EHWPOISON ||
1516              (!async && check_user_page_hwpoison(addr))) {
1517                pfn = KVM_PFN_ERR_HWPOISON;
1518                goto exit;
1519        }
1520
1521retry:
1522        vma = find_vma_intersection(current->mm, addr, addr + 1);
1523
1524        if (vma == NULL)
1525                pfn = KVM_PFN_ERR_FAULT;
1526        else if (vma->vm_flags & (VM_IO | VM_PFNMAP)) {
1527                r = hva_to_pfn_remapped(vma, addr, async, write_fault, writable, &pfn);
1528                if (r == -EAGAIN)
1529                        goto retry;
1530                if (r < 0)
1531                        pfn = KVM_PFN_ERR_FAULT;
1532        } else {
1533                if (async && vma_is_valid(vma, write_fault))
1534                        *async = true;
1535                pfn = KVM_PFN_ERR_FAULT;
1536        }
1537exit:
1538        up_read(&current->mm->mmap_sem);
1539        return pfn;
1540}
1541
1542kvm_pfn_t __gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn,
1543                               bool atomic, bool *async, bool write_fault,
1544                               bool *writable)
1545{
1546        unsigned long addr = __gfn_to_hva_many(slot, gfn, NULL, write_fault);
1547
1548        if (addr == KVM_HVA_ERR_RO_BAD) {
1549                if (writable)
1550                        *writable = false;
1551                return KVM_PFN_ERR_RO_FAULT;
1552        }
1553
1554        if (kvm_is_error_hva(addr)) {
1555                if (writable)
1556                        *writable = false;
1557                return KVM_PFN_NOSLOT;
1558        }
1559
1560        /* Do not map writable pfn in the readonly memslot. */
1561        if (writable && memslot_is_readonly(slot)) {
1562                *writable = false;
1563                writable = NULL;
1564        }
1565
1566        return hva_to_pfn(addr, atomic, async, write_fault,
1567                          writable);
1568}
1569EXPORT_SYMBOL_GPL(__gfn_to_pfn_memslot);
1570
1571kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1572                      bool *writable)
1573{
1574        return __gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn, false, NULL,
1575                                    write_fault, writable);
1576}
1577EXPORT_SYMBOL_GPL(gfn_to_pfn_prot);
1578
1579kvm_pfn_t gfn_to_pfn_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1580{
1581        return __gfn_to_pfn_memslot(slot, gfn, false, NULL, true, NULL);
1582}
1583EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot);
1584
1585kvm_pfn_t gfn_to_pfn_memslot_atomic(struct kvm_memory_slot *slot, gfn_t gfn)
1586{
1587        return __gfn_to_pfn_memslot(slot, gfn, true, NULL, true, NULL);
1588}
1589EXPORT_SYMBOL_GPL(gfn_to_pfn_memslot_atomic);
1590
1591kvm_pfn_t gfn_to_pfn_atomic(struct kvm *kvm, gfn_t gfn)
1592{
1593        return gfn_to_pfn_memslot_atomic(gfn_to_memslot(kvm, gfn), gfn);
1594}
1595EXPORT_SYMBOL_GPL(gfn_to_pfn_atomic);
1596
1597kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn)
1598{
1599        return gfn_to_pfn_memslot_atomic(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1600}
1601EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn_atomic);
1602
1603kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn)
1604{
1605        return gfn_to_pfn_memslot(gfn_to_memslot(kvm, gfn), gfn);
1606}
1607EXPORT_SYMBOL_GPL(gfn_to_pfn);
1608
1609kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn)
1610{
1611        return gfn_to_pfn_memslot(kvm_vcpu_gfn_to_memslot(vcpu, gfn), gfn);
1612}
1613EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_pfn);
1614
1615int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1616                            struct page **pages, int nr_pages)
1617{
1618        unsigned long addr;
1619        gfn_t entry = 0;
1620
1621        addr = gfn_to_hva_many(slot, gfn, &entry);
1622        if (kvm_is_error_hva(addr))
1623                return -1;
1624
1625        if (entry < nr_pages)
1626                return 0;
1627
1628        return __get_user_pages_fast(addr, nr_pages, 1, pages);
1629}
1630EXPORT_SYMBOL_GPL(gfn_to_page_many_atomic);
1631
1632static struct page *kvm_pfn_to_page(kvm_pfn_t pfn)
1633{
1634        if (is_error_noslot_pfn(pfn))
1635                return KVM_ERR_PTR_BAD_PAGE;
1636
1637        if (kvm_is_reserved_pfn(pfn)) {
1638                WARN_ON(1);
1639                return KVM_ERR_PTR_BAD_PAGE;
1640        }
1641
1642        return pfn_to_page(pfn);
1643}
1644
1645struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn)
1646{
1647        kvm_pfn_t pfn;
1648
1649        pfn = gfn_to_pfn(kvm, gfn);
1650
1651        return kvm_pfn_to_page(pfn);
1652}
1653EXPORT_SYMBOL_GPL(gfn_to_page);
1654
1655struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn)
1656{
1657        kvm_pfn_t pfn;
1658
1659        pfn = kvm_vcpu_gfn_to_pfn(vcpu, gfn);
1660
1661        return kvm_pfn_to_page(pfn);
1662}
1663EXPORT_SYMBOL_GPL(kvm_vcpu_gfn_to_page);
1664
1665void kvm_release_page_clean(struct page *page)
1666{
1667        WARN_ON(is_error_page(page));
1668
1669        kvm_release_pfn_clean(page_to_pfn(page));
1670}
1671EXPORT_SYMBOL_GPL(kvm_release_page_clean);
1672
1673void kvm_release_pfn_clean(kvm_pfn_t pfn)
1674{
1675        if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn))
1676                put_page(pfn_to_page(pfn));
1677}
1678EXPORT_SYMBOL_GPL(kvm_release_pfn_clean);
1679
1680void kvm_release_page_dirty(struct page *page)
1681{
1682        WARN_ON(is_error_page(page));
1683
1684        kvm_release_pfn_dirty(page_to_pfn(page));
1685}
1686EXPORT_SYMBOL_GPL(kvm_release_page_dirty);
1687
1688void kvm_release_pfn_dirty(kvm_pfn_t pfn)
1689{
1690        kvm_set_pfn_dirty(pfn);
1691        kvm_release_pfn_clean(pfn);
1692}
1693EXPORT_SYMBOL_GPL(kvm_release_pfn_dirty);
1694
1695void kvm_set_pfn_dirty(kvm_pfn_t pfn)
1696{
1697        if (!kvm_is_reserved_pfn(pfn)) {
1698                struct page *page = pfn_to_page(pfn);
1699
1700                if (!PageReserved(page))
1701                        SetPageDirty(page);
1702        }
1703}
1704EXPORT_SYMBOL_GPL(kvm_set_pfn_dirty);
1705
1706void kvm_set_pfn_accessed(kvm_pfn_t pfn)
1707{
1708        if (!kvm_is_reserved_pfn(pfn))
1709                mark_page_accessed(pfn_to_page(pfn));
1710}
1711EXPORT_SYMBOL_GPL(kvm_set_pfn_accessed);
1712
1713void kvm_get_pfn(kvm_pfn_t pfn)
1714{
1715        if (!kvm_is_reserved_pfn(pfn))
1716                get_page(pfn_to_page(pfn));
1717}
1718EXPORT_SYMBOL_GPL(kvm_get_pfn);
1719
1720static int next_segment(unsigned long len, int offset)
1721{
1722        if (len > PAGE_SIZE - offset)
1723                return PAGE_SIZE - offset;
1724        else
1725                return len;
1726}
1727
1728static int __kvm_read_guest_page(struct kvm_memory_slot *slot, gfn_t gfn,
1729                                 void *data, int offset, int len)
1730{
1731        int r;
1732        unsigned long addr;
1733
1734        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1735        if (kvm_is_error_hva(addr))
1736                return -EFAULT;
1737        r = __copy_from_user(data, (void __user *)addr + offset, len);
1738        if (r)
1739                return -EFAULT;
1740        return 0;
1741}
1742
1743int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1744                        int len)
1745{
1746        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1747
1748        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1749}
1750EXPORT_SYMBOL_GPL(kvm_read_guest_page);
1751
1752int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data,
1753                             int offset, int len)
1754{
1755        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1756
1757        return __kvm_read_guest_page(slot, gfn, data, offset, len);
1758}
1759EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_page);
1760
1761int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len)
1762{
1763        gfn_t gfn = gpa >> PAGE_SHIFT;
1764        int seg;
1765        int offset = offset_in_page(gpa);
1766        int ret;
1767
1768        while ((seg = next_segment(len, offset)) != 0) {
1769                ret = kvm_read_guest_page(kvm, gfn, data, offset, seg);
1770                if (ret < 0)
1771                        return ret;
1772                offset = 0;
1773                len -= seg;
1774                data += seg;
1775                ++gfn;
1776        }
1777        return 0;
1778}
1779EXPORT_SYMBOL_GPL(kvm_read_guest);
1780
1781int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data, unsigned long len)
1782{
1783        gfn_t gfn = gpa >> PAGE_SHIFT;
1784        int seg;
1785        int offset = offset_in_page(gpa);
1786        int ret;
1787
1788        while ((seg = next_segment(len, offset)) != 0) {
1789                ret = kvm_vcpu_read_guest_page(vcpu, gfn, data, offset, seg);
1790                if (ret < 0)
1791                        return ret;
1792                offset = 0;
1793                len -= seg;
1794                data += seg;
1795                ++gfn;
1796        }
1797        return 0;
1798}
1799EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest);
1800
1801static int __kvm_read_guest_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1802                                   void *data, int offset, unsigned long len)
1803{
1804        int r;
1805        unsigned long addr;
1806
1807        addr = gfn_to_hva_memslot_prot(slot, gfn, NULL);
1808        if (kvm_is_error_hva(addr))
1809                return -EFAULT;
1810        pagefault_disable();
1811        r = __copy_from_user_inatomic(data, (void __user *)addr + offset, len);
1812        pagefault_enable();
1813        if (r)
1814                return -EFAULT;
1815        return 0;
1816}
1817
1818int kvm_read_guest_atomic(struct kvm *kvm, gpa_t gpa, void *data,
1819                          unsigned long len)
1820{
1821        gfn_t gfn = gpa >> PAGE_SHIFT;
1822        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1823        int offset = offset_in_page(gpa);
1824
1825        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1826}
1827EXPORT_SYMBOL_GPL(kvm_read_guest_atomic);
1828
1829int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa,
1830                               void *data, unsigned long len)
1831{
1832        gfn_t gfn = gpa >> PAGE_SHIFT;
1833        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1834        int offset = offset_in_page(gpa);
1835
1836        return __kvm_read_guest_atomic(slot, gfn, data, offset, len);
1837}
1838EXPORT_SYMBOL_GPL(kvm_vcpu_read_guest_atomic);
1839
1840static int __kvm_write_guest_page(struct kvm_memory_slot *memslot, gfn_t gfn,
1841                                  const void *data, int offset, int len)
1842{
1843        int r;
1844        unsigned long addr;
1845
1846        addr = gfn_to_hva_memslot(memslot, gfn);
1847        if (kvm_is_error_hva(addr))
1848                return -EFAULT;
1849        r = __copy_to_user((void __user *)addr + offset, data, len);
1850        if (r)
1851                return -EFAULT;
1852        mark_page_dirty_in_slot(memslot, gfn);
1853        return 0;
1854}
1855
1856int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn,
1857                         const void *data, int offset, int len)
1858{
1859        struct kvm_memory_slot *slot = gfn_to_memslot(kvm, gfn);
1860
1861        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1862}
1863EXPORT_SYMBOL_GPL(kvm_write_guest_page);
1864
1865int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
1866                              const void *data, int offset, int len)
1867{
1868        struct kvm_memory_slot *slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1869
1870        return __kvm_write_guest_page(slot, gfn, data, offset, len);
1871}
1872EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest_page);
1873
1874int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1875                    unsigned long len)
1876{
1877        gfn_t gfn = gpa >> PAGE_SHIFT;
1878        int seg;
1879        int offset = offset_in_page(gpa);
1880        int ret;
1881
1882        while ((seg = next_segment(len, offset)) != 0) {
1883                ret = kvm_write_guest_page(kvm, gfn, data, offset, seg);
1884                if (ret < 0)
1885                        return ret;
1886                offset = 0;
1887                len -= seg;
1888                data += seg;
1889                ++gfn;
1890        }
1891        return 0;
1892}
1893EXPORT_SYMBOL_GPL(kvm_write_guest);
1894
1895int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1896                         unsigned long len)
1897{
1898        gfn_t gfn = gpa >> PAGE_SHIFT;
1899        int seg;
1900        int offset = offset_in_page(gpa);
1901        int ret;
1902
1903        while ((seg = next_segment(len, offset)) != 0) {
1904                ret = kvm_vcpu_write_guest_page(vcpu, gfn, data, offset, seg);
1905                if (ret < 0)
1906                        return ret;
1907                offset = 0;
1908                len -= seg;
1909                data += seg;
1910                ++gfn;
1911        }
1912        return 0;
1913}
1914EXPORT_SYMBOL_GPL(kvm_vcpu_write_guest);
1915
1916static int __kvm_gfn_to_hva_cache_init(struct kvm_memslots *slots,
1917                                       struct gfn_to_hva_cache *ghc,
1918                                       gpa_t gpa, unsigned long len)
1919{
1920        int offset = offset_in_page(gpa);
1921        gfn_t start_gfn = gpa >> PAGE_SHIFT;
1922        gfn_t end_gfn = (gpa + len - 1) >> PAGE_SHIFT;
1923        gfn_t nr_pages_needed = end_gfn - start_gfn + 1;
1924        gfn_t nr_pages_avail;
1925
1926        ghc->gpa = gpa;
1927        ghc->generation = slots->generation;
1928        ghc->len = len;
1929        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1930        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn, NULL);
1931        if (!kvm_is_error_hva(ghc->hva) && nr_pages_needed <= 1) {
1932                ghc->hva += offset;
1933        } else {
1934                /*
1935                 * If the requested region crosses two memslots, we still
1936                 * verify that the entire region is valid here.
1937                 */
1938                while (start_gfn <= end_gfn) {
1939                        nr_pages_avail = 0;
1940                        ghc->memslot = __gfn_to_memslot(slots, start_gfn);
1941                        ghc->hva = gfn_to_hva_many(ghc->memslot, start_gfn,
1942                                                   &nr_pages_avail);
1943                        if (kvm_is_error_hva(ghc->hva))
1944                                return -EFAULT;
1945                        start_gfn += nr_pages_avail;
1946                }
1947                /* Use the slow path for cross page reads and writes. */
1948                ghc->memslot = NULL;
1949        }
1950        return 0;
1951}
1952
1953int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1954                              gpa_t gpa, unsigned long len)
1955{
1956        struct kvm_memslots *slots = kvm_memslots(kvm);
1957        return __kvm_gfn_to_hva_cache_init(slots, ghc, gpa, len);
1958}
1959EXPORT_SYMBOL_GPL(kvm_gfn_to_hva_cache_init);
1960
1961int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1962                           void *data, int offset, unsigned long len)
1963{
1964        struct kvm_memslots *slots = kvm_memslots(kvm);
1965        int r;
1966        gpa_t gpa = ghc->gpa + offset;
1967
1968        BUG_ON(len + offset > ghc->len);
1969
1970        if (slots->generation != ghc->generation)
1971                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
1972
1973        if (unlikely(!ghc->memslot))
1974                return kvm_write_guest(kvm, gpa, data, len);
1975
1976        if (kvm_is_error_hva(ghc->hva))
1977                return -EFAULT;
1978
1979        r = __copy_to_user((void __user *)ghc->hva + offset, data, len);
1980        if (r)
1981                return -EFAULT;
1982        mark_page_dirty_in_slot(ghc->memslot, gpa >> PAGE_SHIFT);
1983
1984        return 0;
1985}
1986EXPORT_SYMBOL_GPL(kvm_write_guest_offset_cached);
1987
1988int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1989                           void *data, unsigned long len)
1990{
1991        return kvm_write_guest_offset_cached(kvm, ghc, data, 0, len);
1992}
1993EXPORT_SYMBOL_GPL(kvm_write_guest_cached);
1994
1995int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1996                           void *data, unsigned long len)
1997{
1998        struct kvm_memslots *slots = kvm_memslots(kvm);
1999        int r;
2000
2001        BUG_ON(len > ghc->len);
2002
2003        if (slots->generation != ghc->generation)
2004                __kvm_gfn_to_hva_cache_init(slots, ghc, ghc->gpa, ghc->len);
2005
2006        if (unlikely(!ghc->memslot))
2007                return kvm_read_guest(kvm, ghc->gpa, data, len);
2008
2009        if (kvm_is_error_hva(ghc->hva))
2010                return -EFAULT;
2011
2012        r = __copy_from_user(data, (void __user *)ghc->hva, len);
2013        if (r)
2014                return -EFAULT;
2015
2016        return 0;
2017}
2018EXPORT_SYMBOL_GPL(kvm_read_guest_cached);
2019
2020int kvm_clear_guest_page(struct kvm *kvm, gfn_t gfn, int offset, int len)
2021{
2022        const void *zero_page = (const void *) __va(page_to_phys(ZERO_PAGE(0)));
2023
2024        return kvm_write_guest_page(kvm, gfn, zero_page, offset, len);
2025}
2026EXPORT_SYMBOL_GPL(kvm_clear_guest_page);
2027
2028int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len)
2029{
2030        gfn_t gfn = gpa >> PAGE_SHIFT;
2031        int seg;
2032        int offset = offset_in_page(gpa);
2033        int ret;
2034
2035        while ((seg = next_segment(len, offset)) != 0) {
2036                ret = kvm_clear_guest_page(kvm, gfn, offset, seg);
2037                if (ret < 0)
2038                        return ret;
2039                offset = 0;
2040                len -= seg;
2041                ++gfn;
2042        }
2043        return 0;
2044}
2045EXPORT_SYMBOL_GPL(kvm_clear_guest);
2046
2047static void mark_page_dirty_in_slot(struct kvm_memory_slot *memslot,
2048                                    gfn_t gfn)
2049{
2050        if (memslot && memslot->dirty_bitmap) {
2051                unsigned long rel_gfn = gfn - memslot->base_gfn;
2052
2053                set_bit_le(rel_gfn, memslot->dirty_bitmap);
2054        }
2055}
2056
2057void mark_page_dirty(struct kvm *kvm, gfn_t gfn)
2058{
2059        struct kvm_memory_slot *memslot;
2060
2061        memslot = gfn_to_memslot(kvm, gfn);
2062        mark_page_dirty_in_slot(memslot, gfn);
2063}
2064EXPORT_SYMBOL_GPL(mark_page_dirty);
2065
2066void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn)
2067{
2068        struct kvm_memory_slot *memslot;
2069
2070        memslot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
2071        mark_page_dirty_in_slot(memslot, gfn);
2072}
2073EXPORT_SYMBOL_GPL(kvm_vcpu_mark_page_dirty);
2074
2075void kvm_sigset_activate(struct kvm_vcpu *vcpu)
2076{
2077        if (!vcpu->sigset_active)
2078                return;
2079
2080        /*
2081         * This does a lockless modification of ->real_blocked, which is fine
2082         * because, only current can change ->real_blocked and all readers of
2083         * ->real_blocked don't care as long ->real_blocked is always a subset
2084         * of ->blocked.
2085         */
2086        sigprocmask(SIG_SETMASK, &vcpu->sigset, &current->real_blocked);
2087}
2088
2089void kvm_sigset_deactivate(struct kvm_vcpu *vcpu)
2090{
2091        if (!vcpu->sigset_active)
2092                return;
2093
2094        sigprocmask(SIG_SETMASK, &current->real_blocked, NULL);
2095        sigemptyset(&current->real_blocked);
2096}
2097
2098static void grow_halt_poll_ns(struct kvm_vcpu *vcpu)
2099{
2100        unsigned int old, val, grow;
2101
2102        old = val = vcpu->halt_poll_ns;
2103        grow = READ_ONCE(halt_poll_ns_grow);
2104        /* 10us base */
2105        if (val == 0 && grow)
2106                val = 10000;
2107        else
2108                val *= grow;
2109
2110        if (val > halt_poll_ns)
2111                val = halt_poll_ns;
2112
2113        vcpu->halt_poll_ns = val;
2114        trace_kvm_halt_poll_ns_grow(vcpu->vcpu_id, val, old);
2115}
2116
2117static void shrink_halt_poll_ns(struct kvm_vcpu *vcpu)
2118{
2119        unsigned int old, val, shrink;
2120
2121        old = val = vcpu->halt_poll_ns;
2122        shrink = READ_ONCE(halt_poll_ns_shrink);
2123        if (shrink == 0)
2124                val = 0;
2125        else
2126                val /= shrink;
2127
2128        vcpu->halt_poll_ns = val;
2129        trace_kvm_halt_poll_ns_shrink(vcpu->vcpu_id, val, old);
2130}
2131
2132static int kvm_vcpu_check_block(struct kvm_vcpu *vcpu)
2133{
2134        int ret = -EINTR;
2135        int idx = srcu_read_lock(&vcpu->kvm->srcu);
2136
2137        if (kvm_arch_vcpu_runnable(vcpu)) {
2138                kvm_make_request(KVM_REQ_UNHALT, vcpu);
2139                goto out;
2140        }
2141        if (kvm_cpu_has_pending_timer(vcpu))
2142                goto out;
2143        if (signal_pending(current))
2144                goto out;
2145
2146        ret = 0;
2147out:
2148        srcu_read_unlock(&vcpu->kvm->srcu, idx);
2149        return ret;
2150}
2151
2152/*
2153 * The vCPU has executed a HLT instruction with in-kernel mode enabled.
2154 */
2155void kvm_vcpu_block(struct kvm_vcpu *vcpu)
2156{
2157        ktime_t start, cur;
2158        DECLARE_SWAITQUEUE(wait);
2159        bool waited = false;
2160        u64 block_ns;
2161
2162        start = cur = ktime_get();
2163        if (vcpu->halt_poll_ns) {
2164                ktime_t stop = ktime_add_ns(ktime_get(), vcpu->halt_poll_ns);
2165
2166                ++vcpu->stat.halt_attempted_poll;
2167                do {
2168                        /*
2169                         * This sets KVM_REQ_UNHALT if an interrupt
2170                         * arrives.
2171                         */
2172                        if (kvm_vcpu_check_block(vcpu) < 0) {
2173                                ++vcpu->stat.halt_successful_poll;
2174                                if (!vcpu_valid_wakeup(vcpu))
2175                                        ++vcpu->stat.halt_poll_invalid;
2176                                goto out;
2177                        }
2178                        cur = ktime_get();
2179                } while (single_task_running() && ktime_before(cur, stop));
2180        }
2181
2182        kvm_arch_vcpu_blocking(vcpu);
2183
2184        for (;;) {
2185                prepare_to_swait_exclusive(&vcpu->wq, &wait, TASK_INTERRUPTIBLE);
2186
2187                if (kvm_vcpu_check_block(vcpu) < 0)
2188                        break;
2189
2190                waited = true;
2191                schedule();
2192        }
2193
2194        finish_swait(&vcpu->wq, &wait);
2195        cur = ktime_get();
2196
2197        kvm_arch_vcpu_unblocking(vcpu);
2198out:
2199        block_ns = ktime_to_ns(cur) - ktime_to_ns(start);
2200
2201        if (!vcpu_valid_wakeup(vcpu))
2202                shrink_halt_poll_ns(vcpu);
2203        else if (halt_poll_ns) {
2204                if (block_ns <= vcpu->halt_poll_ns)
2205                        ;
2206                /* we had a long block, shrink polling */
2207                else if (vcpu->halt_poll_ns && block_ns > halt_poll_ns)
2208                        shrink_halt_poll_ns(vcpu);
2209                /* we had a short halt and our poll time is too small */
2210                else if (vcpu->halt_poll_ns < halt_poll_ns &&
2211                        block_ns < halt_poll_ns)
2212                        grow_halt_poll_ns(vcpu);
2213        } else
2214                vcpu->halt_poll_ns = 0;
2215
2216        trace_kvm_vcpu_wakeup(block_ns, waited, vcpu_valid_wakeup(vcpu));
2217        kvm_arch_vcpu_block_finish(vcpu);
2218}
2219EXPORT_SYMBOL_GPL(kvm_vcpu_block);
2220
2221bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
2222{
2223        struct swait_queue_head *wqp;
2224
2225        wqp = kvm_arch_vcpu_wq(vcpu);
2226        if (swq_has_sleeper(wqp)) {
2227                swake_up_one(wqp);
2228                ++vcpu->stat.halt_wakeup;
2229                return true;
2230        }
2231
2232        return false;
2233}
2234EXPORT_SYMBOL_GPL(kvm_vcpu_wake_up);
2235
2236#ifndef CONFIG_S390
2237/*
2238 * Kick a sleeping VCPU, or a guest VCPU in guest mode, into host kernel mode.
2239 */
2240void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
2241{
2242        int me;
2243        int cpu = vcpu->cpu;
2244
2245        if (kvm_vcpu_wake_up(vcpu))
2246                return;
2247
2248        me = get_cpu();
2249        if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
2250                if (kvm_arch_vcpu_should_kick(vcpu))
2251                        smp_send_reschedule(cpu);
2252        put_cpu();
2253}
2254EXPORT_SYMBOL_GPL(kvm_vcpu_kick);
2255#endif /* !CONFIG_S390 */
2256
2257int kvm_vcpu_yield_to(struct kvm_vcpu *target)
2258{
2259        struct pid *pid;
2260        struct task_struct *task = NULL;
2261        int ret = 0;
2262
2263        rcu_read_lock();
2264        pid = rcu_dereference(target->pid);
2265        if (pid)
2266                task = get_pid_task(pid, PIDTYPE_PID);
2267        rcu_read_unlock();
2268        if (!task)
2269                return ret;
2270        ret = yield_to(task, 1);
2271        put_task_struct(task);
2272
2273        return ret;
2274}
2275EXPORT_SYMBOL_GPL(kvm_vcpu_yield_to);
2276
2277/*
2278 * Helper that checks whether a VCPU is eligible for directed yield.
2279 * Most eligible candidate to yield is decided by following heuristics:
2280 *
2281 *  (a) VCPU which has not done pl-exit or cpu relax intercepted recently
2282 *  (preempted lock holder), indicated by @in_spin_loop.
2283 *  Set at the beiginning and cleared at the end of interception/PLE handler.
2284 *
2285 *  (b) VCPU which has done pl-exit/ cpu relax intercepted but did not get
2286 *  chance last time (mostly it has become eligible now since we have probably
2287 *  yielded to lockholder in last iteration. This is done by toggling
2288 *  @dy_eligible each time a VCPU checked for eligibility.)
2289 *
2290 *  Yielding to a recently pl-exited/cpu relax intercepted VCPU before yielding
2291 *  to preempted lock-holder could result in wrong VCPU selection and CPU
2292 *  burning. Giving priority for a potential lock-holder increases lock
2293 *  progress.
2294 *
2295 *  Since algorithm is based on heuristics, accessing another VCPU data without
2296 *  locking does not harm. It may result in trying to yield to  same VCPU, fail
2297 *  and continue with next VCPU and so on.
2298 */
2299static bool kvm_vcpu_eligible_for_directed_yield(struct kvm_vcpu *vcpu)
2300{
2301#ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2302        bool eligible;
2303
2304        eligible = !vcpu->spin_loop.in_spin_loop ||
2305                    vcpu->spin_loop.dy_eligible;
2306
2307        if (vcpu->spin_loop.in_spin_loop)
2308                kvm_vcpu_set_dy_eligible(vcpu, !vcpu->spin_loop.dy_eligible);
2309
2310        return eligible;
2311#else
2312        return true;
2313#endif
2314}
2315
2316void kvm_vcpu_on_spin(struct kvm_vcpu *me, bool yield_to_kernel_mode)
2317{
2318        struct kvm *kvm = me->kvm;
2319        struct kvm_vcpu *vcpu;
2320        int last_boosted_vcpu = me->kvm->last_boosted_vcpu;
2321        int yielded = 0;
2322        int try = 3;
2323        int pass;
2324        int i;
2325
2326        kvm_vcpu_set_in_spin_loop(me, true);
2327        /*
2328         * We boost the priority of a VCPU that is runnable but not
2329         * currently running, because it got preempted by something
2330         * else and called schedule in __vcpu_run.  Hopefully that
2331         * VCPU is holding the lock that we need and will release it.
2332         * We approximate round-robin by starting at the last boosted VCPU.
2333         */
2334        for (pass = 0; pass < 2 && !yielded && try; pass++) {
2335                kvm_for_each_vcpu(i, vcpu, kvm) {
2336                        if (!pass && i <= last_boosted_vcpu) {
2337                                i = last_boosted_vcpu;
2338                                continue;
2339                        } else if (pass && i > last_boosted_vcpu)
2340                                break;
2341                        if (!READ_ONCE(vcpu->preempted))
2342                                continue;
2343                        if (vcpu == me)
2344                                continue;
2345                        if (swait_active(&vcpu->wq) && !kvm_arch_vcpu_runnable(vcpu))
2346                                continue;
2347                        if (yield_to_kernel_mode && !kvm_arch_vcpu_in_kernel(vcpu))
2348                                continue;
2349                        if (!kvm_vcpu_eligible_for_directed_yield(vcpu))
2350                                continue;
2351
2352                        yielded = kvm_vcpu_yield_to(vcpu);
2353                        if (yielded > 0) {
2354                                kvm->last_boosted_vcpu = i;
2355                                break;
2356                        } else if (yielded < 0) {
2357                                try--;
2358                                if (!try)
2359                                        break;
2360                        }
2361                }
2362        }
2363        kvm_vcpu_set_in_spin_loop(me, false);
2364
2365        /* Ensure vcpu is not eligible during next spinloop */
2366        kvm_vcpu_set_dy_eligible(me, false);
2367}
2368EXPORT_SYMBOL_GPL(kvm_vcpu_on_spin);
2369
2370static vm_fault_t kvm_vcpu_fault(struct vm_fault *vmf)
2371{
2372        struct kvm_vcpu *vcpu = vmf->vma->vm_file->private_data;
2373        struct page *page;
2374
2375        if (vmf->pgoff == 0)
2376                page = virt_to_page(vcpu->run);
2377#ifdef CONFIG_X86
2378        else if (vmf->pgoff == KVM_PIO_PAGE_OFFSET)
2379                page = virt_to_page(vcpu->arch.pio_data);
2380#endif
2381#ifdef CONFIG_KVM_MMIO
2382        else if (vmf->pgoff == KVM_COALESCED_MMIO_PAGE_OFFSET)
2383                page = virt_to_page(vcpu->kvm->coalesced_mmio_ring);
2384#endif
2385        else
2386                return kvm_arch_vcpu_fault(vcpu, vmf);
2387        get_page(page);
2388        vmf->page = page;
2389        return 0;
2390}
2391
2392static const struct vm_operations_struct kvm_vcpu_vm_ops = {
2393        .fault = kvm_vcpu_fault,
2394};
2395
2396static int kvm_vcpu_mmap(struct file *file, struct vm_area_struct *vma)
2397{
2398        vma->vm_ops = &kvm_vcpu_vm_ops;
2399        return 0;
2400}
2401
2402static int kvm_vcpu_release(struct inode *inode, struct file *filp)
2403{
2404        struct kvm_vcpu *vcpu = filp->private_data;
2405
2406        debugfs_remove_recursive(vcpu->debugfs_dentry);
2407        kvm_put_kvm(vcpu->kvm);
2408        return 0;
2409}
2410
2411static struct file_operations kvm_vcpu_fops = {
2412        .release        = kvm_vcpu_release,
2413        .unlocked_ioctl = kvm_vcpu_ioctl,
2414        .mmap           = kvm_vcpu_mmap,
2415        .llseek         = noop_llseek,
2416        KVM_COMPAT(kvm_vcpu_compat_ioctl),
2417};
2418
2419/*
2420 * Allocates an inode for the vcpu.
2421 */
2422static int create_vcpu_fd(struct kvm_vcpu *vcpu)
2423{
2424        char name[8 + 1 + ITOA_MAX_LEN + 1];
2425
2426        snprintf(name, sizeof(name), "kvm-vcpu:%d", vcpu->vcpu_id);
2427        return anon_inode_getfd(name, &kvm_vcpu_fops, vcpu, O_RDWR | O_CLOEXEC);
2428}
2429
2430static int kvm_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
2431{
2432        char dir_name[ITOA_MAX_LEN * 2];
2433        int ret;
2434
2435        if (!kvm_arch_has_vcpu_debugfs())
2436                return 0;
2437
2438        if (!debugfs_initialized())
2439                return 0;
2440
2441        snprintf(dir_name, sizeof(dir_name), "vcpu%d", vcpu->vcpu_id);
2442        vcpu->debugfs_dentry = debugfs_create_dir(dir_name,
2443                                                                vcpu->kvm->debugfs_dentry);
2444        if (!vcpu->debugfs_dentry)
2445                return -ENOMEM;
2446
2447        ret = kvm_arch_create_vcpu_debugfs(vcpu);
2448        if (ret < 0) {
2449                debugfs_remove_recursive(vcpu->debugfs_dentry);
2450                return ret;
2451        }
2452
2453        return 0;
2454}
2455
2456/*
2457 * Creates some virtual cpus.  Good luck creating more than one.
2458 */
2459static int kvm_vm_ioctl_create_vcpu(struct kvm *kvm, u32 id)
2460{
2461        int r;
2462        struct kvm_vcpu *vcpu;
2463
2464        if (id >= KVM_MAX_VCPU_ID)
2465                return -EINVAL;
2466
2467        mutex_lock(&kvm->lock);
2468        if (kvm->created_vcpus == KVM_MAX_VCPUS) {
2469                mutex_unlock(&kvm->lock);
2470                return -EINVAL;
2471        }
2472
2473        kvm->created_vcpus++;
2474        mutex_unlock(&kvm->lock);
2475
2476        vcpu = kvm_arch_vcpu_create(kvm, id);
2477        if (IS_ERR(vcpu)) {
2478                r = PTR_ERR(vcpu);
2479                goto vcpu_decrement;
2480        }
2481
2482        preempt_notifier_init(&vcpu->preempt_notifier, &kvm_preempt_ops);
2483
2484        r = kvm_arch_vcpu_setup(vcpu);
2485        if (r)
2486                goto vcpu_destroy;
2487
2488        r = kvm_create_vcpu_debugfs(vcpu);
2489        if (r)
2490                goto vcpu_destroy;
2491
2492        mutex_lock(&kvm->lock);
2493        if (kvm_get_vcpu_by_id(kvm, id)) {
2494                r = -EEXIST;
2495                goto unlock_vcpu_destroy;
2496        }
2497
2498        BUG_ON(kvm->vcpus[atomic_read(&kvm->online_vcpus)]);
2499
2500        /* Now it's all set up, let userspace reach it */
2501        kvm_get_kvm(kvm);
2502        r = create_vcpu_fd(vcpu);
2503        if (r < 0) {
2504                kvm_put_kvm(kvm);
2505                goto unlock_vcpu_destroy;
2506        }
2507
2508        kvm->vcpus[atomic_read(&kvm->online_vcpus)] = vcpu;
2509
2510        /*
2511         * Pairs with smp_rmb() in kvm_get_vcpu.  Write kvm->vcpus
2512         * before kvm->online_vcpu's incremented value.
2513         */
2514        smp_wmb();
2515        atomic_inc(&kvm->online_vcpus);
2516
2517        mutex_unlock(&kvm->lock);
2518        kvm_arch_vcpu_postcreate(vcpu);
2519        return r;
2520
2521unlock_vcpu_destroy:
2522        mutex_unlock(&kvm->lock);
2523        debugfs_remove_recursive(vcpu->debugfs_dentry);
2524vcpu_destroy:
2525        kvm_arch_vcpu_destroy(vcpu);
2526vcpu_decrement:
2527        mutex_lock(&kvm->lock);
2528        kvm->created_vcpus--;
2529        mutex_unlock(&kvm->lock);
2530        return r;
2531}
2532
2533static int kvm_vcpu_ioctl_set_sigmask(struct kvm_vcpu *vcpu, sigset_t *sigset)
2534{
2535        if (sigset) {
2536                sigdelsetmask(sigset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2537                vcpu->sigset_active = 1;
2538                vcpu->sigset = *sigset;
2539        } else
2540                vcpu->sigset_active = 0;
2541        return 0;
2542}
2543
2544static long kvm_vcpu_ioctl(struct file *filp,
2545                           unsigned int ioctl, unsigned long arg)
2546{
2547        struct kvm_vcpu *vcpu = filp->private_data;
2548        void __user *argp = (void __user *)arg;
2549        int r;
2550        struct kvm_fpu *fpu = NULL;
2551        struct kvm_sregs *kvm_sregs = NULL;
2552
2553        if (vcpu->kvm->mm != current->mm)
2554                return -EIO;
2555
2556        if (unlikely(_IOC_TYPE(ioctl) != KVMIO))
2557                return -EINVAL;
2558
2559        /*
2560         * Some architectures have vcpu ioctls that are asynchronous to vcpu
2561         * execution; mutex_lock() would break them.
2562         */
2563        r = kvm_arch_vcpu_async_ioctl(filp, ioctl, arg);
2564        if (r != -ENOIOCTLCMD)
2565                return r;
2566
2567        if (mutex_lock_killable(&vcpu->mutex))
2568                return -EINTR;
2569        switch (ioctl) {
2570        case KVM_RUN: {
2571                struct pid *oldpid;
2572                r = -EINVAL;
2573                if (arg)
2574                        goto out;
2575                oldpid = rcu_access_pointer(vcpu->pid);
2576                if (unlikely(oldpid != task_pid(current))) {
2577                        /* The thread running this VCPU changed. */
2578                        struct pid *newpid;
2579
2580                        r = kvm_arch_vcpu_run_pid_change(vcpu);
2581                        if (r)
2582                                break;
2583
2584                        newpid = get_task_pid(current, PIDTYPE_PID);
2585                        rcu_assign_pointer(vcpu->pid, newpid);
2586                        if (oldpid)
2587                                synchronize_rcu();
2588                        put_pid(oldpid);
2589                }
2590                r = kvm_arch_vcpu_ioctl_run(vcpu, vcpu->run);
2591                trace_kvm_userspace_exit(vcpu->run->exit_reason, r);
2592                break;
2593        }
2594        case KVM_GET_REGS: {
2595                struct kvm_regs *kvm_regs;
2596
2597                r = -ENOMEM;
2598                kvm_regs = kzalloc(sizeof(struct kvm_regs), GFP_KERNEL);
2599                if (!kvm_regs)
2600                        goto out;
2601                r = kvm_arch_vcpu_ioctl_get_regs(vcpu, kvm_regs);
2602                if (r)
2603                        goto out_free1;
2604                r = -EFAULT;
2605                if (copy_to_user(argp, kvm_regs, sizeof(struct kvm_regs)))
2606                        goto out_free1;
2607                r = 0;
2608out_free1:
2609                kfree(kvm_regs);
2610                break;
2611        }
2612        case KVM_SET_REGS: {
2613                struct kvm_regs *kvm_regs;
2614
2615                r = -ENOMEM;
2616                kvm_regs = memdup_user(argp, sizeof(*kvm_regs));
2617                if (IS_ERR(kvm_regs)) {
2618                        r = PTR_ERR(kvm_regs);
2619                        goto out;
2620                }
2621                r = kvm_arch_vcpu_ioctl_set_regs(vcpu, kvm_regs);
2622                kfree(kvm_regs);
2623                break;
2624        }
2625        case KVM_GET_SREGS: {
2626                kvm_sregs = kzalloc(sizeof(struct kvm_sregs), GFP_KERNEL);
2627                r = -ENOMEM;
2628                if (!kvm_sregs)
2629                        goto out;
2630                r = kvm_arch_vcpu_ioctl_get_sregs(vcpu, kvm_sregs);
2631                if (r)
2632                        goto out;
2633                r = -EFAULT;
2634                if (copy_to_user(argp, kvm_sregs, sizeof(struct kvm_sregs)))
2635                        goto out;
2636                r = 0;
2637                break;
2638        }
2639        case KVM_SET_SREGS: {
2640                kvm_sregs = memdup_user(argp, sizeof(*kvm_sregs));
2641                if (IS_ERR(kvm_sregs)) {
2642                        r = PTR_ERR(kvm_sregs);
2643                        kvm_sregs = NULL;
2644                        goto out;
2645                }
2646                r = kvm_arch_vcpu_ioctl_set_sregs(vcpu, kvm_sregs);
2647                break;
2648        }
2649        case KVM_GET_MP_STATE: {
2650                struct kvm_mp_state mp_state;
2651
2652                r = kvm_arch_vcpu_ioctl_get_mpstate(vcpu, &mp_state);
2653                if (r)
2654                        goto out;
2655                r = -EFAULT;
2656                if (copy_to_user(argp, &mp_state, sizeof(mp_state)))
2657                        goto out;
2658                r = 0;
2659                break;
2660        }
2661        case KVM_SET_MP_STATE: {
2662                struct kvm_mp_state mp_state;
2663
2664                r = -EFAULT;
2665                if (copy_from_user(&mp_state, argp, sizeof(mp_state)))
2666                        goto out;
2667                r = kvm_arch_vcpu_ioctl_set_mpstate(vcpu, &mp_state);
2668                break;
2669        }
2670        case KVM_TRANSLATE: {
2671                struct kvm_translation tr;
2672
2673                r = -EFAULT;
2674                if (copy_from_user(&tr, argp, sizeof(tr)))
2675                        goto out;
2676                r = kvm_arch_vcpu_ioctl_translate(vcpu, &tr);
2677                if (r)
2678                        goto out;
2679                r = -EFAULT;
2680                if (copy_to_user(argp, &tr, sizeof(tr)))
2681                        goto out;
2682                r = 0;
2683                break;
2684        }
2685        case KVM_SET_GUEST_DEBUG: {
2686                struct kvm_guest_debug dbg;
2687
2688                r = -EFAULT;
2689                if (copy_from_user(&dbg, argp, sizeof(dbg)))
2690                        goto out;
2691                r = kvm_arch_vcpu_ioctl_set_guest_debug(vcpu, &dbg);
2692                break;
2693        }
2694        case KVM_SET_SIGNAL_MASK: {
2695                struct kvm_signal_mask __user *sigmask_arg = argp;
2696                struct kvm_signal_mask kvm_sigmask;
2697                sigset_t sigset, *p;
2698
2699                p = NULL;
2700                if (argp) {
2701                        r = -EFAULT;
2702                        if (copy_from_user(&kvm_sigmask, argp,
2703                                           sizeof(kvm_sigmask)))
2704                                goto out;
2705                        r = -EINVAL;
2706                        if (kvm_sigmask.len != sizeof(sigset))
2707                                goto out;
2708                        r = -EFAULT;
2709                        if (copy_from_user(&sigset, sigmask_arg->sigset,
2710                                           sizeof(sigset)))
2711                                goto out;
2712                        p = &sigset;
2713                }
2714                r = kvm_vcpu_ioctl_set_sigmask(vcpu, p);
2715                break;
2716        }
2717        case KVM_GET_FPU: {
2718                fpu = kzalloc(sizeof(struct kvm_fpu), GFP_KERNEL);
2719                r = -ENOMEM;
2720                if (!fpu)
2721                        goto out;
2722                r = kvm_arch_vcpu_ioctl_get_fpu(vcpu, fpu);
2723                if (r)
2724                        goto out;
2725                r = -EFAULT;
2726                if (copy_to_user(argp, fpu, sizeof(struct kvm_fpu)))
2727                        goto out;
2728                r = 0;
2729                break;
2730        }
2731        case KVM_SET_FPU: {
2732                fpu = memdup_user(argp, sizeof(*fpu));
2733                if (IS_ERR(fpu)) {
2734                        r = PTR_ERR(fpu);
2735                        fpu = NULL;
2736                        goto out;
2737                }
2738                r = kvm_arch_vcpu_ioctl_set_fpu(vcpu, fpu);
2739                break;
2740        }
2741        default:
2742                r = kvm_arch_vcpu_ioctl(filp, ioctl, arg);
2743        }
2744out:
2745        mutex_unlock(&vcpu->mutex);
2746        kfree(fpu);
2747        kfree(kvm_sregs);
2748        return r;
2749}
2750
2751#ifdef CONFIG_KVM_COMPAT
2752static long kvm_vcpu_compat_ioctl(struct file *filp,
2753                                  unsigned int ioctl, unsigned long arg)
2754{
2755        struct kvm_vcpu *vcpu = filp->private_data;
2756        void __user *argp = compat_ptr(arg);
2757        int r;
2758
2759        if (vcpu->kvm->mm != current->mm)
2760                return -EIO;
2761
2762        switch (ioctl) {
2763        case KVM_SET_SIGNAL_MASK: {
2764                struct kvm_signal_mask __user *sigmask_arg = argp;
2765                struct kvm_signal_mask kvm_sigmask;
2766                sigset_t sigset;
2767
2768                if (argp) {
2769                        r = -EFAULT;
2770                        if (copy_from_user(&kvm_sigmask, argp,
2771                                           sizeof(kvm_sigmask)))
2772                                goto out;
2773                        r = -EINVAL;
2774                        if (kvm_sigmask.len != sizeof(compat_sigset_t))
2775                                goto out;
2776                        r = -EFAULT;
2777                        if (get_compat_sigset(&sigset, (void *)sigmask_arg->sigset))
2778                                goto out;
2779                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, &sigset);
2780                } else
2781                        r = kvm_vcpu_ioctl_set_sigmask(vcpu, NULL);
2782                break;
2783        }
2784        default:
2785                r = kvm_vcpu_ioctl(filp, ioctl, arg);
2786        }
2787
2788out:
2789        return r;
2790}
2791#endif
2792
2793static int kvm_device_ioctl_attr(struct kvm_device *dev,
2794                                 int (*accessor)(struct kvm_device *dev,
2795                                                 struct kvm_device_attr *attr),
2796                                 unsigned long arg)
2797{
2798        struct kvm_device_attr attr;
2799
2800        if (!accessor)
2801                return -EPERM;
2802
2803        if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
2804                return -EFAULT;
2805
2806        return accessor(dev, &attr);
2807}
2808
2809static long kvm_device_ioctl(struct file *filp, unsigned int ioctl,
2810                             unsigned long arg)
2811{
2812        struct kvm_device *dev = filp->private_data;
2813
2814        switch (ioctl) {
2815        case KVM_SET_DEVICE_ATTR:
2816                return kvm_device_ioctl_attr(dev, dev->ops->set_attr, arg);
2817        case KVM_GET_DEVICE_ATTR:
2818                return kvm_device_ioctl_attr(dev, dev->ops->get_attr, arg);
2819        case KVM_HAS_DEVICE_ATTR:
2820                return kvm_device_ioctl_attr(dev, dev->ops->has_attr, arg);
2821        default:
2822                if (dev->ops->ioctl)
2823                        return dev->ops->ioctl(dev, ioctl, arg);
2824
2825                return -ENOTTY;
2826        }
2827}
2828
2829static int kvm_device_release(struct inode *inode, struct file *filp)
2830{
2831        struct kvm_device *dev = filp->private_data;
2832        struct kvm *kvm = dev->kvm;
2833
2834        kvm_put_kvm(kvm);
2835        return 0;
2836}
2837
2838static const struct file_operations kvm_device_fops = {
2839        .unlocked_ioctl = kvm_device_ioctl,
2840        .release = kvm_device_release,
2841        KVM_COMPAT(kvm_device_ioctl),
2842};
2843
2844struct kvm_device *kvm_device_from_filp(struct file *filp)
2845{
2846        if (filp->f_op != &kvm_device_fops)
2847                return NULL;
2848
2849        return filp->private_data;
2850}
2851
2852static struct kvm_device_ops *kvm_device_ops_table[KVM_DEV_TYPE_MAX] = {
2853#ifdef CONFIG_KVM_MPIC
2854        [KVM_DEV_TYPE_FSL_MPIC_20]      = &kvm_mpic_ops,
2855        [KVM_DEV_TYPE_FSL_MPIC_42]      = &kvm_mpic_ops,
2856#endif
2857};
2858
2859int kvm_register_device_ops(struct kvm_device_ops *ops, u32 type)
2860{
2861        if (type >= ARRAY_SIZE(kvm_device_ops_table))
2862                return -ENOSPC;
2863
2864        if (kvm_device_ops_table[type] != NULL)
2865                return -EEXIST;
2866
2867        kvm_device_ops_table[type] = ops;
2868        return 0;
2869}
2870
2871void kvm_unregister_device_ops(u32 type)
2872{
2873        if (kvm_device_ops_table[type] != NULL)
2874                kvm_device_ops_table[type] = NULL;
2875}
2876
2877static int kvm_ioctl_create_device(struct kvm *kvm,
2878                                   struct kvm_create_device *cd)
2879{
2880        struct kvm_device_ops *ops = NULL;
2881        struct kvm_device *dev;
2882        bool test = cd->flags & KVM_CREATE_DEVICE_TEST;
2883        int ret;
2884
2885        if (cd->type >= ARRAY_SIZE(kvm_device_ops_table))
2886                return -ENODEV;
2887
2888        ops = kvm_device_ops_table[cd->type];
2889        if (ops == NULL)
2890                return -ENODEV;
2891
2892        if (test)
2893                return 0;
2894
2895        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2896        if (!dev)
2897                return -ENOMEM;
2898
2899        dev->ops = ops;
2900        dev->kvm = kvm;
2901
2902        mutex_lock(&kvm->lock);
2903        ret = ops->create(dev, cd->type);
2904        if (ret < 0) {
2905                mutex_unlock(&kvm->lock);
2906                kfree(dev);
2907                return ret;
2908        }
2909        list_add(&dev->vm_node, &kvm->devices);
2910        mutex_unlock(&kvm->lock);
2911
2912        if (ops->init)
2913                ops->init(dev);
2914
2915        ret = anon_inode_getfd(ops->name, &kvm_device_fops, dev, O_RDWR | O_CLOEXEC);
2916        if (ret < 0) {
2917                mutex_lock(&kvm->lock);
2918                list_del(&dev->vm_node);
2919                mutex_unlock(&kvm->lock);
2920                ops->destroy(dev);
2921                return ret;
2922        }
2923
2924        kvm_get_kvm(kvm);
2925        cd->fd = ret;
2926        return 0;
2927}
2928
2929static long kvm_vm_ioctl_check_extension_generic(struct kvm *kvm, long arg)
2930{
2931        switch (arg) {
2932        case KVM_CAP_USER_MEMORY:
2933        case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
2934        case KVM_CAP_JOIN_MEMORY_REGIONS_WORKS:
2935        case KVM_CAP_INTERNAL_ERROR_DATA:
2936#ifdef CONFIG_HAVE_KVM_MSI
2937        case KVM_CAP_SIGNAL_MSI:
2938#endif
2939#ifdef CONFIG_HAVE_KVM_IRQFD
2940        case KVM_CAP_IRQFD:
2941        case KVM_CAP_IRQFD_RESAMPLE:
2942#endif
2943        case KVM_CAP_IOEVENTFD_ANY_LENGTH:
2944        case KVM_CAP_CHECK_EXTENSION_VM:
2945                return 1;
2946#ifdef CONFIG_KVM_MMIO
2947        case KVM_CAP_COALESCED_MMIO:
2948                return KVM_COALESCED_MMIO_PAGE_OFFSET;
2949#endif
2950#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
2951        case KVM_CAP_IRQ_ROUTING:
2952                return KVM_MAX_IRQ_ROUTES;
2953#endif
2954#if KVM_ADDRESS_SPACE_NUM > 1
2955        case KVM_CAP_MULTI_ADDRESS_SPACE:
2956                return KVM_ADDRESS_SPACE_NUM;
2957#endif
2958        case KVM_CAP_MAX_VCPU_ID:
2959                return KVM_MAX_VCPU_ID;
2960        default:
2961                break;
2962        }
2963        return kvm_vm_ioctl_check_extension(kvm, arg);
2964}
2965
2966static long kvm_vm_ioctl(struct file *filp,
2967                           unsigned int ioctl, unsigned long arg)
2968{
2969        struct kvm *kvm = filp->private_data;
2970        void __user *argp = (void __user *)arg;
2971        int r;
2972
2973        if (kvm->mm != current->mm)
2974                return -EIO;
2975        switch (ioctl) {
2976        case KVM_CREATE_VCPU:
2977                r = kvm_vm_ioctl_create_vcpu(kvm, arg);
2978                break;
2979        case KVM_SET_USER_MEMORY_REGION: {
2980                struct kvm_userspace_memory_region kvm_userspace_mem;
2981
2982                r = -EFAULT;
2983                if (copy_from_user(&kvm_userspace_mem, argp,
2984                                                sizeof(kvm_userspace_mem)))
2985                        goto out;
2986
2987                r = kvm_vm_ioctl_set_memory_region(kvm, &kvm_userspace_mem);
2988                break;
2989        }
2990        case KVM_GET_DIRTY_LOG: {
2991                struct kvm_dirty_log log;
2992
2993                r = -EFAULT;
2994                if (copy_from_user(&log, argp, sizeof(log)))
2995                        goto out;
2996                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
2997                break;
2998        }
2999#ifdef CONFIG_KVM_MMIO
3000        case KVM_REGISTER_COALESCED_MMIO: {
3001                struct kvm_coalesced_mmio_zone zone;
3002
3003                r = -EFAULT;
3004                if (copy_from_user(&zone, argp, sizeof(zone)))
3005                        goto out;
3006                r = kvm_vm_ioctl_register_coalesced_mmio(kvm, &zone);
3007                break;
3008        }
3009        case KVM_UNREGISTER_COALESCED_MMIO: {
3010                struct kvm_coalesced_mmio_zone zone;
3011
3012                r = -EFAULT;
3013                if (copy_from_user(&zone, argp, sizeof(zone)))
3014                        goto out;
3015                r = kvm_vm_ioctl_unregister_coalesced_mmio(kvm, &zone);
3016                break;
3017        }
3018#endif
3019        case KVM_IRQFD: {
3020                struct kvm_irqfd data;
3021
3022                r = -EFAULT;
3023                if (copy_from_user(&data, argp, sizeof(data)))
3024                        goto out;
3025                r = kvm_irqfd(kvm, &data);
3026                break;
3027        }
3028        case KVM_IOEVENTFD: {
3029                struct kvm_ioeventfd data;
3030
3031                r = -EFAULT;
3032                if (copy_from_user(&data, argp, sizeof(data)))
3033                        goto out;
3034                r = kvm_ioeventfd(kvm, &data);
3035                break;
3036        }
3037#ifdef CONFIG_HAVE_KVM_MSI
3038        case KVM_SIGNAL_MSI: {
3039                struct kvm_msi msi;
3040
3041                r = -EFAULT;
3042                if (copy_from_user(&msi, argp, sizeof(msi)))
3043                        goto out;
3044                r = kvm_send_userspace_msi(kvm, &msi);
3045                break;
3046        }
3047#endif
3048#ifdef __KVM_HAVE_IRQ_LINE
3049        case KVM_IRQ_LINE_STATUS:
3050        case KVM_IRQ_LINE: {
3051                struct kvm_irq_level irq_event;
3052
3053                r = -EFAULT;
3054                if (copy_from_user(&irq_event, argp, sizeof(irq_event)))
3055                        goto out;
3056
3057                r = kvm_vm_ioctl_irq_line(kvm, &irq_event,
3058                                        ioctl == KVM_IRQ_LINE_STATUS);
3059                if (r)
3060                        goto out;
3061
3062                r = -EFAULT;
3063                if (ioctl == KVM_IRQ_LINE_STATUS) {
3064                        if (copy_to_user(argp, &irq_event, sizeof(irq_event)))
3065                                goto out;
3066                }
3067
3068                r = 0;
3069                break;
3070        }
3071#endif
3072#ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
3073        case KVM_SET_GSI_ROUTING: {
3074                struct kvm_irq_routing routing;
3075                struct kvm_irq_routing __user *urouting;
3076                struct kvm_irq_routing_entry *entries = NULL;
3077
3078                r = -EFAULT;
3079                if (copy_from_user(&routing, argp, sizeof(routing)))
3080                        goto out;
3081                r = -EINVAL;
3082                if (!kvm_arch_can_set_irq_routing(kvm))
3083                        goto out;
3084                if (routing.nr > KVM_MAX_IRQ_ROUTES)
3085                        goto out;
3086                if (routing.flags)
3087                        goto out;
3088                if (routing.nr) {
3089                        r = -ENOMEM;
3090                        entries = vmalloc(array_size(sizeof(*entries),
3091                                                     routing.nr));
3092                        if (!entries)
3093                                goto out;
3094                        r = -EFAULT;
3095                        urouting = argp;
3096                        if (copy_from_user(entries, urouting->entries,
3097                                           routing.nr * sizeof(*entries)))
3098                                goto out_free_irq_routing;
3099                }
3100                r = kvm_set_irq_routing(kvm, entries, routing.nr,
3101                                        routing.flags);
3102out_free_irq_routing:
3103                vfree(entries);
3104                break;
3105        }
3106#endif /* CONFIG_HAVE_KVM_IRQ_ROUTING */
3107        case KVM_CREATE_DEVICE: {
3108                struct kvm_create_device cd;
3109
3110                r = -EFAULT;
3111                if (copy_from_user(&cd, argp, sizeof(cd)))
3112                        goto out;
3113
3114                r = kvm_ioctl_create_device(kvm, &cd);
3115                if (r)
3116                        goto out;
3117
3118                r = -EFAULT;
3119                if (copy_to_user(argp, &cd, sizeof(cd)))
3120                        goto out;
3121
3122                r = 0;
3123                break;
3124        }
3125        case KVM_CHECK_EXTENSION:
3126                r = kvm_vm_ioctl_check_extension_generic(kvm, arg);
3127                break;
3128        default:
3129                r = kvm_arch_vm_ioctl(filp, ioctl, arg);
3130        }
3131out:
3132        return r;
3133}
3134
3135#ifdef CONFIG_KVM_COMPAT
3136struct compat_kvm_dirty_log {
3137        __u32 slot;
3138        __u32 padding1;
3139        union {
3140                compat_uptr_t dirty_bitmap; /* one bit per page */
3141                __u64 padding2;
3142        };
3143};
3144
3145static long kvm_vm_compat_ioctl(struct file *filp,
3146                           unsigned int ioctl, unsigned long arg)
3147{
3148        struct kvm *kvm = filp->private_data;
3149        int r;
3150
3151        if (kvm->mm != current->mm)
3152                return -EIO;
3153        switch (ioctl) {
3154        case KVM_GET_DIRTY_LOG: {
3155                struct compat_kvm_dirty_log compat_log;
3156                struct kvm_dirty_log log;
3157
3158                if (copy_from_user(&compat_log, (void __user *)arg,
3159                                   sizeof(compat_log)))
3160                        return -EFAULT;
3161                log.slot         = compat_log.slot;
3162                log.padding1     = compat_log.padding1;
3163                log.padding2     = compat_log.padding2;
3164                log.dirty_bitmap = compat_ptr(compat_log.dirty_bitmap);
3165
3166                r = kvm_vm_ioctl_get_dirty_log(kvm, &log);
3167                break;
3168        }
3169        default:
3170                r = kvm_vm_ioctl(filp, ioctl, arg);
3171        }
3172        return r;
3173}
3174#endif
3175
3176static struct file_operations kvm_vm_fops = {
3177        .release        = kvm_vm_release,
3178        .unlocked_ioctl = kvm_vm_ioctl,
3179        .llseek         = noop_llseek,
3180        KVM_COMPAT(kvm_vm_compat_ioctl),
3181};
3182
3183static int kvm_dev_ioctl_create_vm(unsigned long type)
3184{
3185        int r;
3186        struct kvm *kvm;
3187        struct file *file;
3188
3189        kvm = kvm_create_vm(type);
3190        if (IS_ERR(kvm))
3191                return PTR_ERR(kvm);
3192#ifdef CONFIG_KVM_MMIO
3193        r = kvm_coalesced_mmio_init(kvm);
3194        if (r < 0)
3195                goto put_kvm;
3196#endif
3197        r = get_unused_fd_flags(O_CLOEXEC);
3198        if (r < 0)
3199                goto put_kvm;
3200
3201        file = anon_inode_getfile("kvm-vm", &kvm_vm_fops, kvm, O_RDWR);
3202        if (IS_ERR(file)) {
3203                put_unused_fd(r);
3204                r = PTR_ERR(file);
3205                goto put_kvm;
3206        }
3207
3208        /*
3209         * Don't call kvm_put_kvm anymore at this point; file->f_op is
3210         * already set, with ->release() being kvm_vm_release().  In error
3211         * cases it will be called by the final fput(file) and will take
3212         * care of doing kvm_put_kvm(kvm).
3213         */
3214        if (kvm_create_vm_debugfs(kvm, r) < 0) {
3215                put_unused_fd(r);
3216                fput(file);
3217                return -ENOMEM;
3218        }
3219        kvm_uevent_notify_change(KVM_EVENT_CREATE_VM, kvm);
3220
3221        fd_install(r, file);
3222        return r;
3223
3224put_kvm:
3225        kvm_put_kvm(kvm);
3226        return r;
3227}
3228
3229static long kvm_dev_ioctl(struct file *filp,
3230                          unsigned int ioctl, unsigned long arg)
3231{
3232        long r = -EINVAL;
3233
3234        switch (ioctl) {
3235        case KVM_GET_API_VERSION:
3236                if (arg)
3237                        goto out;
3238                r = KVM_API_VERSION;
3239                break;
3240        case KVM_CREATE_VM:
3241                r = kvm_dev_ioctl_create_vm(arg);
3242                break;
3243        case KVM_CHECK_EXTENSION:
3244                r = kvm_vm_ioctl_check_extension_generic(NULL, arg);
3245                break;
3246        case KVM_GET_VCPU_MMAP_SIZE:
3247                if (arg)
3248                        goto out;
3249                r = PAGE_SIZE;     /* struct kvm_run */
3250#ifdef CONFIG_X86
3251                r += PAGE_SIZE;    /* pio data page */
3252#endif
3253#ifdef CONFIG_KVM_MMIO
3254                r += PAGE_SIZE;    /* coalesced mmio ring page */
3255#endif
3256                break;
3257        case KVM_TRACE_ENABLE:
3258        case KVM_TRACE_PAUSE:
3259        case KVM_TRACE_DISABLE:
3260                r = -EOPNOTSUPP;
3261                break;
3262        default:
3263                return kvm_arch_dev_ioctl(filp, ioctl, arg);
3264        }
3265out:
3266        return r;
3267}
3268
3269static struct file_operations kvm_chardev_ops = {
3270        .unlocked_ioctl = kvm_dev_ioctl,
3271        .llseek         = noop_llseek,
3272        KVM_COMPAT(kvm_dev_ioctl),
3273};
3274
3275static struct miscdevice kvm_dev = {
3276        KVM_MINOR,
3277        "kvm",
3278        &kvm_chardev_ops,
3279};
3280
3281static void hardware_enable_nolock(void *junk)
3282{
3283        int cpu = raw_smp_processor_id();
3284        int r;
3285
3286        if (cpumask_test_cpu(cpu, cpus_hardware_enabled))
3287                return;
3288
3289        cpumask_set_cpu(cpu, cpus_hardware_enabled);
3290
3291        r = kvm_arch_hardware_enable();
3292
3293        if (r) {
3294                cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3295                atomic_inc(&hardware_enable_failed);
3296                pr_info("kvm: enabling virtualization on CPU%d failed\n", cpu);
3297        }
3298}
3299
3300static int kvm_starting_cpu(unsigned int cpu)
3301{
3302        raw_spin_lock(&kvm_count_lock);
3303        if (kvm_usage_count)
3304                hardware_enable_nolock(NULL);
3305        raw_spin_unlock(&kvm_count_lock);
3306        return 0;
3307}
3308
3309static void hardware_disable_nolock(void *junk)
3310{
3311        int cpu = raw_smp_processor_id();
3312
3313        if (!cpumask_test_cpu(cpu, cpus_hardware_enabled))
3314                return;
3315        cpumask_clear_cpu(cpu, cpus_hardware_enabled);
3316        kvm_arch_hardware_disable();
3317}
3318
3319static int kvm_dying_cpu(unsigned int cpu)
3320{
3321        raw_spin_lock(&kvm_count_lock);
3322        if (kvm_usage_count)
3323                hardware_disable_nolock(NULL);
3324        raw_spin_unlock(&kvm_count_lock);
3325        return 0;
3326}
3327
3328static void hardware_disable_all_nolock(void)
3329{
3330        BUG_ON(!kvm_usage_count);
3331
3332        kvm_usage_count--;
3333        if (!kvm_usage_count)
3334                on_each_cpu(hardware_disable_nolock, NULL, 1);
3335}
3336
3337static void hardware_disable_all(void)
3338{
3339        raw_spin_lock(&kvm_count_lock);
3340        hardware_disable_all_nolock();
3341        raw_spin_unlock(&kvm_count_lock);
3342}
3343
3344static int hardware_enable_all(void)
3345{
3346        int r = 0;
3347
3348        raw_spin_lock(&kvm_count_lock);
3349
3350        kvm_usage_count++;
3351        if (kvm_usage_count == 1) {
3352                atomic_set(&hardware_enable_failed, 0);
3353                on_each_cpu(hardware_enable_nolock, NULL, 1);
3354
3355                if (atomic_read(&hardware_enable_failed)) {
3356                        hardware_disable_all_nolock();
3357                        r = -EBUSY;
3358                }
3359        }
3360
3361        raw_spin_unlock(&kvm_count_lock);
3362
3363        return r;
3364}
3365
3366static int kvm_reboot(struct notifier_block *notifier, unsigned long val,
3367                      void *v)
3368{
3369        /*
3370         * Some (well, at least mine) BIOSes hang on reboot if
3371         * in vmx root mode.
3372         *
3373         * And Intel TXT required VMX off for all cpu when system shutdown.
3374         */
3375        pr_info("kvm: exiting hardware virtualization\n");
3376        kvm_rebooting = true;
3377        on_each_cpu(hardware_disable_nolock, NULL, 1);
3378        return NOTIFY_OK;
3379}
3380
3381static struct notifier_block kvm_reboot_notifier = {
3382        .notifier_call = kvm_reboot,
3383        .priority = 0,
3384};
3385
3386static void kvm_io_bus_destroy(struct kvm_io_bus *bus)
3387{
3388        int i;
3389
3390        for (i = 0; i < bus->dev_count; i++) {
3391                struct kvm_io_device *pos = bus->range[i].dev;
3392
3393                kvm_iodevice_destructor(pos);
3394        }
3395        kfree(bus);
3396}
3397
3398static inline int kvm_io_bus_cmp(const struct kvm_io_range *r1,
3399                                 const struct kvm_io_range *r2)
3400{
3401        gpa_t addr1 = r1->addr;
3402        gpa_t addr2 = r2->addr;
3403
3404        if (addr1 < addr2)
3405                return -1;
3406
3407        /* If r2->len == 0, match the exact address.  If r2->len != 0,
3408         * accept any overlapping write.  Any order is acceptable for
3409         * overlapping ranges, because kvm_io_bus_get_first_dev ensures
3410         * we process all of them.
3411         */
3412        if (r2->len) {
3413                addr1 += r1->len;
3414                addr2 += r2->len;
3415        }
3416
3417        if (addr1 > addr2)
3418                return 1;
3419
3420        return 0;
3421}
3422
3423static int kvm_io_bus_sort_cmp(const void *p1, const void *p2)
3424{
3425        return kvm_io_bus_cmp(p1, p2);
3426}
3427
3428static int kvm_io_bus_get_first_dev(struct kvm_io_bus *bus,
3429                             gpa_t addr, int len)
3430{
3431        struct kvm_io_range *range, key;
3432        int off;
3433
3434        key = (struct kvm_io_range) {
3435                .addr = addr,
3436                .len = len,
3437        };
3438
3439        range = bsearch(&key, bus->range, bus->dev_count,
3440                        sizeof(struct kvm_io_range), kvm_io_bus_sort_cmp);
3441        if (range == NULL)
3442                return -ENOENT;
3443
3444        off = range - bus->range;
3445
3446        while (off > 0 && kvm_io_bus_cmp(&key, &bus->range[off-1]) == 0)
3447                off--;
3448
3449        return off;
3450}
3451
3452static int __kvm_io_bus_write(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3453                              struct kvm_io_range *range, const void *val)
3454{
3455        int idx;
3456
3457        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3458        if (idx < 0)
3459                return -EOPNOTSUPP;
3460
3461        while (idx < bus->dev_count &&
3462                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3463                if (!kvm_iodevice_write(vcpu, bus->range[idx].dev, range->addr,
3464                                        range->len, val))
3465                        return idx;
3466                idx++;
3467        }
3468
3469        return -EOPNOTSUPP;
3470}
3471
3472/* kvm_io_bus_write - called under kvm->slots_lock */
3473int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3474                     int len, const void *val)
3475{
3476        struct kvm_io_bus *bus;
3477        struct kvm_io_range range;
3478        int r;
3479
3480        range = (struct kvm_io_range) {
3481                .addr = addr,
3482                .len = len,
3483        };
3484
3485        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3486        if (!bus)
3487                return -ENOMEM;
3488        r = __kvm_io_bus_write(vcpu, bus, &range, val);
3489        return r < 0 ? r : 0;
3490}
3491
3492/* kvm_io_bus_write_cookie - called under kvm->slots_lock */
3493int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
3494                            gpa_t addr, int len, const void *val, long cookie)
3495{
3496        struct kvm_io_bus *bus;
3497        struct kvm_io_range range;
3498
3499        range = (struct kvm_io_range) {
3500                .addr = addr,
3501                .len = len,
3502        };
3503
3504        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3505        if (!bus)
3506                return -ENOMEM;
3507
3508        /* First try the device referenced by cookie. */
3509        if ((cookie >= 0) && (cookie < bus->dev_count) &&
3510            (kvm_io_bus_cmp(&range, &bus->range[cookie]) == 0))
3511                if (!kvm_iodevice_write(vcpu, bus->range[cookie].dev, addr, len,
3512                                        val))
3513                        return cookie;
3514
3515        /*
3516         * cookie contained garbage; fall back to search and return the
3517         * correct cookie value.
3518         */
3519        return __kvm_io_bus_write(vcpu, bus, &range, val);
3520}
3521
3522static int __kvm_io_bus_read(struct kvm_vcpu *vcpu, struct kvm_io_bus *bus,
3523                             struct kvm_io_range *range, void *val)
3524{
3525        int idx;
3526
3527        idx = kvm_io_bus_get_first_dev(bus, range->addr, range->len);
3528        if (idx < 0)
3529                return -EOPNOTSUPP;
3530
3531        while (idx < bus->dev_count &&
3532                kvm_io_bus_cmp(range, &bus->range[idx]) == 0) {
3533                if (!kvm_iodevice_read(vcpu, bus->range[idx].dev, range->addr,
3534                                       range->len, val))
3535                        return idx;
3536                idx++;
3537        }
3538
3539        return -EOPNOTSUPP;
3540}
3541EXPORT_SYMBOL_GPL(kvm_io_bus_write);
3542
3543/* kvm_io_bus_read - called under kvm->slots_lock */
3544int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
3545                    int len, void *val)
3546{
3547        struct kvm_io_bus *bus;
3548        struct kvm_io_range range;
3549        int r;
3550
3551        range = (struct kvm_io_range) {
3552                .addr = addr,
3553                .len = len,
3554        };
3555
3556        bus = srcu_dereference(vcpu->kvm->buses[bus_idx], &vcpu->kvm->srcu);
3557        if (!bus)
3558                return -ENOMEM;
3559        r = __kvm_io_bus_read(vcpu, bus, &range, val);
3560        return r < 0 ? r : 0;
3561}
3562
3563
3564/* Caller must hold slots_lock. */
3565int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
3566                            int len, struct kvm_io_device *dev)
3567{
3568        int i;
3569        struct kvm_io_bus *new_bus, *bus;
3570        struct kvm_io_range range;
3571
3572        bus = kvm_get_bus(kvm, bus_idx);
3573        if (!bus)
3574                return -ENOMEM;
3575
3576        /* exclude ioeventfd which is limited by maximum fd */
3577        if (bus->dev_count - bus->ioeventfd_count > NR_IOBUS_DEVS - 1)
3578                return -ENOSPC;
3579
3580        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count + 1) *
3581                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3582        if (!new_bus)
3583                return -ENOMEM;
3584
3585        range = (struct kvm_io_range) {
3586                .addr = addr,
3587                .len = len,
3588                .dev = dev,
3589        };
3590
3591        for (i = 0; i < bus->dev_count; i++)
3592                if (kvm_io_bus_cmp(&bus->range[i], &range) > 0)
3593                        break;
3594
3595        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3596        new_bus->dev_count++;
3597        new_bus->range[i] = range;
3598        memcpy(new_bus->range + i + 1, bus->range + i,
3599                (bus->dev_count - i) * sizeof(struct kvm_io_range));
3600        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3601        synchronize_srcu_expedited(&kvm->srcu);
3602        kfree(bus);
3603
3604        return 0;
3605}
3606
3607/* Caller must hold slots_lock. */
3608void kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3609                               struct kvm_io_device *dev)
3610{
3611        int i;
3612        struct kvm_io_bus *new_bus, *bus;
3613
3614        bus = kvm_get_bus(kvm, bus_idx);
3615        if (!bus)
3616                return;
3617
3618        for (i = 0; i < bus->dev_count; i++)
3619                if (bus->range[i].dev == dev) {
3620                        break;
3621                }
3622
3623        if (i == bus->dev_count)
3624                return;
3625
3626        new_bus = kmalloc(sizeof(*bus) + ((bus->dev_count - 1) *
3627                          sizeof(struct kvm_io_range)), GFP_KERNEL);
3628        if (!new_bus)  {
3629                pr_err("kvm: failed to shrink bus, removing it completely\n");
3630                goto broken;
3631        }
3632
3633        memcpy(new_bus, bus, sizeof(*bus) + i * sizeof(struct kvm_io_range));
3634        new_bus->dev_count--;
3635        memcpy(new_bus->range + i, bus->range + i + 1,
3636               (new_bus->dev_count - i) * sizeof(struct kvm_io_range));
3637
3638broken:
3639        rcu_assign_pointer(kvm->buses[bus_idx], new_bus);
3640        synchronize_srcu_expedited(&kvm->srcu);
3641        kfree(bus);
3642        return;
3643}
3644
3645struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
3646                                         gpa_t addr)
3647{
3648        struct kvm_io_bus *bus;
3649        int dev_idx, srcu_idx;
3650        struct kvm_io_device *iodev = NULL;
3651
3652        srcu_idx = srcu_read_lock(&kvm->srcu);
3653
3654        bus = srcu_dereference(kvm->buses[bus_idx], &kvm->srcu);
3655        if (!bus)
3656                goto out_unlock;
3657
3658        dev_idx = kvm_io_bus_get_first_dev(bus, addr, 1);
3659        if (dev_idx < 0)
3660                goto out_unlock;
3661
3662        iodev = bus->range[dev_idx].dev;
3663
3664out_unlock:
3665        srcu_read_unlock(&kvm->srcu, srcu_idx);
3666
3667        return iodev;
3668}
3669EXPORT_SYMBOL_GPL(kvm_io_bus_get_dev);
3670
3671static int kvm_debugfs_open(struct inode *inode, struct file *file,
3672                           int (*get)(void *, u64 *), int (*set)(void *, u64),
3673                           const char *fmt)
3674{
3675        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3676                                          inode->i_private;
3677
3678        /* The debugfs files are a reference to the kvm struct which
3679         * is still valid when kvm_destroy_vm is called.
3680         * To avoid the race between open and the removal of the debugfs
3681         * directory we test against the users count.
3682         */
3683        if (!refcount_inc_not_zero(&stat_data->kvm->users_count))
3684                return -ENOENT;
3685
3686        if (simple_attr_open(inode, file, get, set, fmt)) {
3687                kvm_put_kvm(stat_data->kvm);
3688                return -ENOMEM;
3689        }
3690
3691        return 0;
3692}
3693
3694static int kvm_debugfs_release(struct inode *inode, struct file *file)
3695{
3696        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)
3697                                          inode->i_private;
3698
3699        simple_attr_release(inode, file);
3700        kvm_put_kvm(stat_data->kvm);
3701
3702        return 0;
3703}
3704
3705static int vm_stat_get_per_vm(void *data, u64 *val)
3706{
3707        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3708
3709        *val = *(ulong *)((void *)stat_data->kvm + stat_data->offset);
3710
3711        return 0;
3712}
3713
3714static int vm_stat_clear_per_vm(void *data, u64 val)
3715{
3716        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3717
3718        if (val)
3719                return -EINVAL;
3720
3721        *(ulong *)((void *)stat_data->kvm + stat_data->offset) = 0;
3722
3723        return 0;
3724}
3725
3726static int vm_stat_get_per_vm_open(struct inode *inode, struct file *file)
3727{
3728        __simple_attr_check_format("%llu\n", 0ull);
3729        return kvm_debugfs_open(inode, file, vm_stat_get_per_vm,
3730                                vm_stat_clear_per_vm, "%llu\n");
3731}
3732
3733static const struct file_operations vm_stat_get_per_vm_fops = {
3734        .owner   = THIS_MODULE,
3735        .open    = vm_stat_get_per_vm_open,
3736        .release = kvm_debugfs_release,
3737        .read    = simple_attr_read,
3738        .write   = simple_attr_write,
3739        .llseek  = no_llseek,
3740};
3741
3742static int vcpu_stat_get_per_vm(void *data, u64 *val)
3743{
3744        int i;
3745        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3746        struct kvm_vcpu *vcpu;
3747
3748        *val = 0;
3749
3750        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3751                *val += *(u64 *)((void *)vcpu + stat_data->offset);
3752
3753        return 0;
3754}
3755
3756static int vcpu_stat_clear_per_vm(void *data, u64 val)
3757{
3758        int i;
3759        struct kvm_stat_data *stat_data = (struct kvm_stat_data *)data;
3760        struct kvm_vcpu *vcpu;
3761
3762        if (val)
3763                return -EINVAL;
3764
3765        kvm_for_each_vcpu(i, vcpu, stat_data->kvm)
3766                *(u64 *)((void *)vcpu + stat_data->offset) = 0;
3767
3768        return 0;
3769}
3770
3771static int vcpu_stat_get_per_vm_open(struct inode *inode, struct file *file)
3772{
3773        __simple_attr_check_format("%llu\n", 0ull);
3774        return kvm_debugfs_open(inode, file, vcpu_stat_get_per_vm,
3775                                 vcpu_stat_clear_per_vm, "%llu\n");
3776}
3777
3778static const struct file_operations vcpu_stat_get_per_vm_fops = {
3779        .owner   = THIS_MODULE,
3780        .open    = vcpu_stat_get_per_vm_open,
3781        .release = kvm_debugfs_release,
3782        .read    = simple_attr_read,
3783        .write   = simple_attr_write,
3784        .llseek  = no_llseek,
3785};
3786
3787static const struct file_operations *stat_fops_per_vm[] = {
3788        [KVM_STAT_VCPU] = &vcpu_stat_get_per_vm_fops,
3789        [KVM_STAT_VM]   = &vm_stat_get_per_vm_fops,
3790};
3791
3792static int vm_stat_get(void *_offset, u64 *val)
3793{
3794        unsigned offset = (long)_offset;
3795        struct kvm *kvm;
3796        struct kvm_stat_data stat_tmp = {.offset = offset};
3797        u64 tmp_val;
3798
3799        *val = 0;
3800        spin_lock(&kvm_lock);
3801        list_for_each_entry(kvm, &vm_list, vm_list) {
3802                stat_tmp.kvm = kvm;
3803                vm_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3804                *val += tmp_val;
3805        }
3806        spin_unlock(&kvm_lock);
3807        return 0;
3808}
3809
3810static int vm_stat_clear(void *_offset, u64 val)
3811{
3812        unsigned offset = (long)_offset;
3813        struct kvm *kvm;
3814        struct kvm_stat_data stat_tmp = {.offset = offset};
3815
3816        if (val)
3817                return -EINVAL;
3818
3819        spin_lock(&kvm_lock);
3820        list_for_each_entry(kvm, &vm_list, vm_list) {
3821                stat_tmp.kvm = kvm;
3822                vm_stat_clear_per_vm((void *)&stat_tmp, 0);
3823        }
3824        spin_unlock(&kvm_lock);
3825
3826        return 0;
3827}
3828
3829DEFINE_SIMPLE_ATTRIBUTE(vm_stat_fops, vm_stat_get, vm_stat_clear, "%llu\n");
3830
3831static int vcpu_stat_get(void *_offset, u64 *val)
3832{
3833        unsigned offset = (long)_offset;
3834        struct kvm *kvm;
3835        struct kvm_stat_data stat_tmp = {.offset = offset};
3836        u64 tmp_val;
3837
3838        *val = 0;
3839        spin_lock(&kvm_lock);
3840        list_for_each_entry(kvm, &vm_list, vm_list) {
3841                stat_tmp.kvm = kvm;
3842                vcpu_stat_get_per_vm((void *)&stat_tmp, &tmp_val);
3843                *val += tmp_val;
3844        }
3845        spin_unlock(&kvm_lock);
3846        return 0;
3847}
3848
3849static int vcpu_stat_clear(void *_offset, u64 val)
3850{
3851        unsigned offset = (long)_offset;
3852        struct kvm *kvm;
3853        struct kvm_stat_data stat_tmp = {.offset = offset};
3854
3855        if (val)
3856                return -EINVAL;
3857
3858        spin_lock(&kvm_lock);
3859        list_for_each_entry(kvm, &vm_list, vm_list) {
3860                stat_tmp.kvm = kvm;
3861                vcpu_stat_clear_per_vm((void *)&stat_tmp, 0);
3862        }
3863        spin_unlock(&kvm_lock);
3864
3865        return 0;
3866}
3867
3868DEFINE_SIMPLE_ATTRIBUTE(vcpu_stat_fops, vcpu_stat_get, vcpu_stat_clear,
3869                        "%llu\n");
3870
3871static const struct file_operations *stat_fops[] = {
3872        [KVM_STAT_VCPU] = &vcpu_stat_fops,
3873        [KVM_STAT_VM]   = &vm_stat_fops,
3874};
3875
3876static void kvm_uevent_notify_change(unsigned int type, struct kvm *kvm)
3877{
3878        struct kobj_uevent_env *env;
3879        unsigned long long created, active;
3880
3881        if (!kvm_dev.this_device || !kvm)
3882                return;
3883
3884        spin_lock(&kvm_lock);
3885        if (type == KVM_EVENT_CREATE_VM) {
3886                kvm_createvm_count++;
3887                kvm_active_vms++;
3888        } else if (type == KVM_EVENT_DESTROY_VM) {
3889                kvm_active_vms--;
3890        }
3891        created = kvm_createvm_count;
3892        active = kvm_active_vms;
3893        spin_unlock(&kvm_lock);
3894
3895        env = kzalloc(sizeof(*env), GFP_KERNEL);
3896        if (!env)
3897                return;
3898
3899        add_uevent_var(env, "CREATED=%llu", created);
3900        add_uevent_var(env, "COUNT=%llu", active);
3901
3902        if (type == KVM_EVENT_CREATE_VM) {
3903                add_uevent_var(env, "EVENT=create");
3904                kvm->userspace_pid = task_pid_nr(current);
3905        } else if (type == KVM_EVENT_DESTROY_VM) {
3906                add_uevent_var(env, "EVENT=destroy");
3907        }
3908        add_uevent_var(env, "PID=%d", kvm->userspace_pid);
3909
3910        if (kvm->debugfs_dentry) {
3911                char *tmp, *p = kmalloc(PATH_MAX, GFP_KERNEL);
3912
3913                if (p) {
3914                        tmp = dentry_path_raw(kvm->debugfs_dentry, p, PATH_MAX);
3915                        if (!IS_ERR(tmp))
3916                                add_uevent_var(env, "STATS_PATH=%s", tmp);
3917                        kfree(p);
3918                }
3919        }
3920        /* no need for checks, since we are adding at most only 5 keys */
3921        env->envp[env->envp_idx++] = NULL;
3922        kobject_uevent_env(&kvm_dev.this_device->kobj, KOBJ_CHANGE, env->envp);
3923        kfree(env);
3924}
3925
3926static void kvm_init_debug(void)
3927{
3928        struct kvm_stats_debugfs_item *p;
3929
3930        kvm_debugfs_dir = debugfs_create_dir("kvm", NULL);
3931
3932        kvm_debugfs_num_entries = 0;
3933        for (p = debugfs_entries; p->name; ++p, kvm_debugfs_num_entries++) {
3934                debugfs_create_file(p->name, 0644, kvm_debugfs_dir,
3935                                    (void *)(long)p->offset,
3936                                    stat_fops[p->kind]);
3937        }
3938}
3939
3940static int kvm_suspend(void)
3941{
3942        if (kvm_usage_count)
3943                hardware_disable_nolock(NULL);
3944        return 0;
3945}
3946
3947static void kvm_resume(void)
3948{
3949        if (kvm_usage_count) {
3950                WARN_ON(raw_spin_is_locked(&kvm_count_lock));
3951                hardware_enable_nolock(NULL);
3952        }
3953}
3954
3955static struct syscore_ops kvm_syscore_ops = {
3956        .suspend = kvm_suspend,
3957        .resume = kvm_resume,
3958};
3959
3960static inline
3961struct kvm_vcpu *preempt_notifier_to_vcpu(struct preempt_notifier *pn)
3962{
3963        return container_of(pn, struct kvm_vcpu, preempt_notifier);
3964}
3965
3966static void kvm_sched_in(struct preempt_notifier *pn, int cpu)
3967{
3968        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3969
3970        if (vcpu->preempted)
3971                vcpu->preempted = false;
3972
3973        kvm_arch_sched_in(vcpu, cpu);
3974
3975        kvm_arch_vcpu_load(vcpu, cpu);
3976}
3977
3978static void kvm_sched_out(struct preempt_notifier *pn,
3979                          struct task_struct *next)
3980{
3981        struct kvm_vcpu *vcpu = preempt_notifier_to_vcpu(pn);
3982
3983        if (current->state == TASK_RUNNING)
3984                vcpu->preempted = true;
3985        kvm_arch_vcpu_put(vcpu);
3986}
3987
3988int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
3989                  struct module *module)
3990{
3991        int r;
3992        int cpu;
3993
3994        r = kvm_arch_init(opaque);
3995        if (r)
3996                goto out_fail;
3997
3998        /*
3999         * kvm_arch_init makes sure there's at most one caller
4000         * for architectures that support multiple implementations,
4001         * like intel and amd on x86.
4002         * kvm_arch_init must be called before kvm_irqfd_init to avoid creating
4003         * conflicts in case kvm is already setup for another implementation.
4004         */
4005        r = kvm_irqfd_init();
4006        if (r)
4007                goto out_irqfd;
4008
4009        if (!zalloc_cpumask_var(&cpus_hardware_enabled, GFP_KERNEL)) {
4010                r = -ENOMEM;
4011                goto out_free_0;
4012        }
4013
4014        r = kvm_arch_hardware_setup();
4015        if (r < 0)
4016                goto out_free_0a;
4017
4018        for_each_online_cpu(cpu) {
4019                smp_call_function_single(cpu,
4020                                kvm_arch_check_processor_compat,
4021                                &r, 1);
4022                if (r < 0)
4023                        goto out_free_1;
4024        }
4025
4026        r = cpuhp_setup_state_nocalls(CPUHP_AP_KVM_STARTING, "kvm/cpu:starting",
4027                                      kvm_starting_cpu, kvm_dying_cpu);
4028        if (r)
4029                goto out_free_2;
4030        register_reboot_notifier(&kvm_reboot_notifier);
4031
4032        /* A kmem cache lets us meet the alignment requirements of fx_save. */
4033        if (!vcpu_align)
4034                vcpu_align = __alignof__(struct kvm_vcpu);
4035        kvm_vcpu_cache =
4036                kmem_cache_create_usercopy("kvm_vcpu", vcpu_size, vcpu_align,
4037                                           SLAB_ACCOUNT,
4038                                           offsetof(struct kvm_vcpu, arch),
4039                                           sizeof_field(struct kvm_vcpu, arch),
4040                                           NULL);
4041        if (!kvm_vcpu_cache) {
4042                r = -ENOMEM;
4043                goto out_free_3;
4044        }
4045
4046        r = kvm_async_pf_init();
4047        if (r)
4048                goto out_free;
4049
4050        kvm_chardev_ops.owner = module;
4051        kvm_vm_fops.owner = module;
4052        kvm_vcpu_fops.owner = module;
4053
4054        r = misc_register(&kvm_dev);
4055        if (r) {
4056                pr_err("kvm: misc device register failed\n");
4057                goto out_unreg;
4058        }
4059
4060        register_syscore_ops(&kvm_syscore_ops);
4061
4062        kvm_preempt_ops.sched_in = kvm_sched_in;
4063        kvm_preempt_ops.sched_out = kvm_sched_out;
4064
4065        kvm_init_debug();
4066
4067        r = kvm_vfio_ops_init();
4068        WARN_ON(r);
4069
4070        return 0;
4071
4072out_unreg:
4073        kvm_async_pf_deinit();
4074out_free:
4075        kmem_cache_destroy(kvm_vcpu_cache);
4076out_free_3:
4077        unregister_reboot_notifier(&kvm_reboot_notifier);
4078        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4079out_free_2:
4080out_free_1:
4081        kvm_arch_hardware_unsetup();
4082out_free_0a:
4083        free_cpumask_var(cpus_hardware_enabled);
4084out_free_0:
4085        kvm_irqfd_exit();
4086out_irqfd:
4087        kvm_arch_exit();
4088out_fail:
4089        return r;
4090}
4091EXPORT_SYMBOL_GPL(kvm_init);
4092
4093void kvm_exit(void)
4094{
4095        debugfs_remove_recursive(kvm_debugfs_dir);
4096        misc_deregister(&kvm_dev);
4097        kmem_cache_destroy(kvm_vcpu_cache);
4098        kvm_async_pf_deinit();
4099        unregister_syscore_ops(&kvm_syscore_ops);
4100        unregister_reboot_notifier(&kvm_reboot_notifier);
4101        cpuhp_remove_state_nocalls(CPUHP_AP_KVM_STARTING);
4102        on_each_cpu(hardware_disable_nolock, NULL, 1);
4103        kvm_arch_hardware_unsetup();
4104        kvm_arch_exit();
4105        kvm_irqfd_exit();
4106        free_cpumask_var(cpus_hardware_enabled);
4107        kvm_vfio_ops_exit();
4108}
4109EXPORT_SYMBOL_GPL(kvm_exit);
4110