linux/arch/arm64/include/asm/cacheflush.h
<<
>>
Prefs
   1/*
   2 * Based on arch/arm/include/asm/cacheflush.h
   3 *
   4 * Copyright (C) 1999-2002 Russell King.
   5 * Copyright (C) 2012 ARM Ltd.
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 * You should have received a copy of the GNU General Public License
  17 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  18 */
  19#ifndef __ASM_CACHEFLUSH_H
  20#define __ASM_CACHEFLUSH_H
  21
  22#include <linux/mm.h>
  23
  24/*
  25 * This flag is used to indicate that the page pointed to by a pte is clean
  26 * and does not require cleaning before returning it to the user.
  27 */
  28#define PG_dcache_clean PG_arch_1
  29
  30/*
  31 *      MM Cache Management
  32 *      ===================
  33 *
  34 *      The arch/arm64/mm/cache.S implements these methods.
  35 *
  36 *      Start addresses are inclusive and end addresses are exclusive; start
  37 *      addresses should be rounded down, end addresses up.
  38 *
  39 *      See Documentation/cachetlb.txt for more information. Please note that
  40 *      the implementation assumes non-aliasing VIPT D-cache and (aliasing)
  41 *      VIPT or ASID-tagged VIVT I-cache.
  42 *
  43 *      flush_cache_mm(mm)
  44 *
  45 *              Clean and invalidate all user space cache entries
  46 *              before a change of page tables.
  47 *
  48 *      flush_icache_range(start, end)
  49 *
  50 *              Ensure coherency between the I-cache and the D-cache in the
  51 *              region described by start, end.
  52 *              - start  - virtual start address
  53 *              - end    - virtual end address
  54 *
  55 *      __flush_cache_user_range(start, end)
  56 *
  57 *              Ensure coherency between the I-cache and the D-cache in the
  58 *              region described by start, end.
  59 *              - start  - virtual start address
  60 *              - end    - virtual end address
  61 *
  62 *      __flush_dcache_area(kaddr, size)
  63 *
  64 *              Ensure that the data held in page is written back.
  65 *              - kaddr  - page address
  66 *              - size   - region size
  67 */
  68extern void flush_cache_range(struct vm_area_struct *vma, unsigned long start, unsigned long end);
  69extern void flush_icache_range(unsigned long start, unsigned long end);
  70extern void __flush_dcache_area(void *addr, size_t len);
  71extern long __flush_cache_user_range(unsigned long start, unsigned long end);
  72
  73static inline void flush_cache_mm(struct mm_struct *mm)
  74{
  75}
  76
  77static inline void flush_cache_page(struct vm_area_struct *vma,
  78                                    unsigned long user_addr, unsigned long pfn)
  79{
  80}
  81
  82/*
  83 * Cache maintenance functions used by the DMA API. No to be used directly.
  84 */
  85extern void __dma_map_area(const void *, size_t, int);
  86extern void __dma_unmap_area(const void *, size_t, int);
  87extern void __dma_flush_range(const void *, const void *);
  88
  89/*
  90 * Copy user data from/to a page which is mapped into a different
  91 * processes address space.  Really, we want to allow our "user
  92 * space" model to handle this.
  93 */
  94extern void copy_to_user_page(struct vm_area_struct *, struct page *,
  95        unsigned long, void *, const void *, unsigned long);
  96#define copy_from_user_page(vma, page, vaddr, dst, src, len) \
  97        do {                                                    \
  98                memcpy(dst, src, len);                          \
  99        } while (0)
 100
 101#define flush_cache_dup_mm(mm) flush_cache_mm(mm)
 102
 103/*
 104 * flush_dcache_page is used when the kernel has written to the page
 105 * cache page at virtual address page->virtual.
 106 *
 107 * If this page isn't mapped (ie, page_mapping == NULL), or it might
 108 * have userspace mappings, then we _must_ always clean + invalidate
 109 * the dcache entries associated with the kernel mapping.
 110 *
 111 * Otherwise we can defer the operation, and clean the cache when we are
 112 * about to change to user space.  This is the same method as used on SPARC64.
 113 * See update_mmu_cache for the user space part.
 114 */
 115#define ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE 1
 116extern void flush_dcache_page(struct page *);
 117
 118static inline void __flush_icache_all(void)
 119{
 120        asm("ic ialluis");
 121        dsb(ish);
 122}
 123
 124#define flush_dcache_mmap_lock(mapping) \
 125        spin_lock_irq(&(mapping)->tree_lock)
 126#define flush_dcache_mmap_unlock(mapping) \
 127        spin_unlock_irq(&(mapping)->tree_lock)
 128
 129/*
 130 * We don't appear to need to do anything here.  In fact, if we did, we'd
 131 * duplicate cache flushing elsewhere performed by flush_dcache_page().
 132 */
 133#define flush_icache_page(vma,page)     do { } while (0)
 134
 135/*
 136 * Not required on AArch64 (PIPT or VIPT non-aliasing D-cache).
 137 */
 138static inline void flush_cache_vmap(unsigned long start, unsigned long end)
 139{
 140}
 141
 142static inline void flush_cache_vunmap(unsigned long start, unsigned long end)
 143{
 144}
 145
 146int set_memory_ro(unsigned long addr, int numpages);
 147int set_memory_rw(unsigned long addr, int numpages);
 148int set_memory_x(unsigned long addr, int numpages);
 149int set_memory_nx(unsigned long addr, int numpages);
 150
 151#ifdef CONFIG_DEBUG_RODATA
 152void mark_rodata_ro(void);
 153#endif
 154
 155#endif
 156