linux/arch/mips/kernel/traps.c
<<
>>
Prefs
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1994 - 1999, 2000, 01, 06 Ralf Baechle
   7 * Copyright (C) 1995, 1996 Paul M. Antoine
   8 * Copyright (C) 1998 Ulf Carlsson
   9 * Copyright (C) 1999 Silicon Graphics, Inc.
  10 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
  11 * Copyright (C) 2002, 2003, 2004, 2005, 2007  Maciej W. Rozycki
  12 * Copyright (C) 2000, 2001, 2012 MIPS Technologies, Inc.  All rights reserved.
  13 * Copyright (C) 2014, Imagination Technologies Ltd.
  14 */
  15#include <linux/bitops.h>
  16#include <linux/bug.h>
  17#include <linux/compiler.h>
  18#include <linux/context_tracking.h>
  19#include <linux/cpu_pm.h>
  20#include <linux/kexec.h>
  21#include <linux/init.h>
  22#include <linux/kernel.h>
  23#include <linux/module.h>
  24#include <linux/mm.h>
  25#include <linux/sched.h>
  26#include <linux/smp.h>
  27#include <linux/spinlock.h>
  28#include <linux/kallsyms.h>
  29#include <linux/bootmem.h>
  30#include <linux/interrupt.h>
  31#include <linux/ptrace.h>
  32#include <linux/kgdb.h>
  33#include <linux/kdebug.h>
  34#include <linux/kprobes.h>
  35#include <linux/notifier.h>
  36#include <linux/kdb.h>
  37#include <linux/irq.h>
  38#include <linux/perf_event.h>
  39
  40#include <asm/bootinfo.h>
  41#include <asm/branch.h>
  42#include <asm/break.h>
  43#include <asm/cop2.h>
  44#include <asm/cpu.h>
  45#include <asm/cpu-type.h>
  46#include <asm/dsp.h>
  47#include <asm/fpu.h>
  48#include <asm/fpu_emulator.h>
  49#include <asm/idle.h>
  50#include <asm/mips-r2-to-r6-emul.h>
  51#include <asm/mipsregs.h>
  52#include <asm/mipsmtregs.h>
  53#include <asm/module.h>
  54#include <asm/msa.h>
  55#include <asm/pgtable.h>
  56#include <asm/ptrace.h>
  57#include <asm/sections.h>
  58#include <asm/tlbdebug.h>
  59#include <asm/traps.h>
  60#include <asm/uaccess.h>
  61#include <asm/watch.h>
  62#include <asm/mmu_context.h>
  63#include <asm/types.h>
  64#include <asm/stacktrace.h>
  65#include <asm/uasm.h>
  66
  67extern void check_wait(void);
  68extern asmlinkage void rollback_handle_int(void);
  69extern asmlinkage void handle_int(void);
  70extern u32 handle_tlbl[];
  71extern u32 handle_tlbs[];
  72extern u32 handle_tlbm[];
  73extern asmlinkage void handle_adel(void);
  74extern asmlinkage void handle_ades(void);
  75extern asmlinkage void handle_ibe(void);
  76extern asmlinkage void handle_dbe(void);
  77extern asmlinkage void handle_sys(void);
  78extern asmlinkage void handle_bp(void);
  79extern asmlinkage void handle_ri(void);
  80extern asmlinkage void handle_ri_rdhwr_vivt(void);
  81extern asmlinkage void handle_ri_rdhwr(void);
  82extern asmlinkage void handle_cpu(void);
  83extern asmlinkage void handle_ov(void);
  84extern asmlinkage void handle_tr(void);
  85extern asmlinkage void handle_msa_fpe(void);
  86extern asmlinkage void handle_fpe(void);
  87extern asmlinkage void handle_ftlb(void);
  88extern asmlinkage void handle_msa(void);
  89extern asmlinkage void handle_mdmx(void);
  90extern asmlinkage void handle_watch(void);
  91extern asmlinkage void handle_mt(void);
  92extern asmlinkage void handle_dsp(void);
  93extern asmlinkage void handle_mcheck(void);
  94extern asmlinkage void handle_reserved(void);
  95extern void tlb_do_page_fault_0(void);
  96
  97void (*board_be_init)(void);
  98int (*board_be_handler)(struct pt_regs *regs, int is_fixup);
  99void (*board_nmi_handler_setup)(void);
 100void (*board_ejtag_handler_setup)(void);
 101void (*board_bind_eic_interrupt)(int irq, int regset);
 102void (*board_ebase_setup)(void);
 103void(*board_cache_error_setup)(void);
 104
 105static void show_raw_backtrace(unsigned long reg29)
 106{
 107        unsigned long *sp = (unsigned long *)(reg29 & ~3);
 108        unsigned long addr;
 109
 110        printk("Call Trace:");
 111#ifdef CONFIG_KALLSYMS
 112        printk("\n");
 113#endif
 114        while (!kstack_end(sp)) {
 115                unsigned long __user *p =
 116                        (unsigned long __user *)(unsigned long)sp++;
 117                if (__get_user(addr, p)) {
 118                        printk(" (Bad stack address)");
 119                        break;
 120                }
 121                if (__kernel_text_address(addr))
 122                        print_ip_sym(addr);
 123        }
 124        printk("\n");
 125}
 126
 127#ifdef CONFIG_KALLSYMS
 128int raw_show_trace;
 129static int __init set_raw_show_trace(char *str)
 130{
 131        raw_show_trace = 1;
 132        return 1;
 133}
 134__setup("raw_show_trace", set_raw_show_trace);
 135#endif
 136
 137static void show_backtrace(struct task_struct *task, const struct pt_regs *regs)
 138{
 139        unsigned long sp = regs->regs[29];
 140        unsigned long ra = regs->regs[31];
 141        unsigned long pc = regs->cp0_epc;
 142
 143        if (!task)
 144                task = current;
 145
 146        if (raw_show_trace || !__kernel_text_address(pc)) {
 147                show_raw_backtrace(sp);
 148                return;
 149        }
 150        printk("Call Trace:\n");
 151        do {
 152                print_ip_sym(pc);
 153                pc = unwind_stack(task, &sp, pc, &ra);
 154        } while (pc);
 155        printk("\n");
 156}
 157
 158/*
 159 * This routine abuses get_user()/put_user() to reference pointers
 160 * with at least a bit of error checking ...
 161 */
 162static void show_stacktrace(struct task_struct *task,
 163        const struct pt_regs *regs)
 164{
 165        const int field = 2 * sizeof(unsigned long);
 166        long stackdata;
 167        int i;
 168        unsigned long __user *sp = (unsigned long __user *)regs->regs[29];
 169
 170        printk("Stack :");
 171        i = 0;
 172        while ((unsigned long) sp & (PAGE_SIZE - 1)) {
 173                if (i && ((i % (64 / field)) == 0))
 174                        printk("\n       ");
 175                if (i > 39) {
 176                        printk(" ...");
 177                        break;
 178                }
 179
 180                if (__get_user(stackdata, sp++)) {
 181                        printk(" (Bad stack address)");
 182                        break;
 183                }
 184
 185                printk(" %0*lx", field, stackdata);
 186                i++;
 187        }
 188        printk("\n");
 189        show_backtrace(task, regs);
 190}
 191
 192void show_stack(struct task_struct *task, unsigned long *sp)
 193{
 194        struct pt_regs regs;
 195        mm_segment_t old_fs = get_fs();
 196        if (sp) {
 197                regs.regs[29] = (unsigned long)sp;
 198                regs.regs[31] = 0;
 199                regs.cp0_epc = 0;
 200        } else {
 201                if (task && task != current) {
 202                        regs.regs[29] = task->thread.reg29;
 203                        regs.regs[31] = 0;
 204                        regs.cp0_epc = task->thread.reg31;
 205#ifdef CONFIG_KGDB_KDB
 206                } else if (atomic_read(&kgdb_active) != -1 &&
 207                           kdb_current_regs) {
 208                        memcpy(&regs, kdb_current_regs, sizeof(regs));
 209#endif /* CONFIG_KGDB_KDB */
 210                } else {
 211                        prepare_frametrace(&regs);
 212                }
 213        }
 214        /*
 215         * show_stack() deals exclusively with kernel mode, so be sure to access
 216         * the stack in the kernel (not user) address space.
 217         */
 218        set_fs(KERNEL_DS);
 219        show_stacktrace(task, &regs);
 220        set_fs(old_fs);
 221}
 222
 223static void show_code(unsigned int __user *pc)
 224{
 225        long i;
 226        unsigned short __user *pc16 = NULL;
 227
 228        printk("\nCode:");
 229
 230        if ((unsigned long)pc & 1)
 231                pc16 = (unsigned short __user *)((unsigned long)pc & ~1);
 232        for(i = -3 ; i < 6 ; i++) {
 233                unsigned int insn;
 234                if (pc16 ? __get_user(insn, pc16 + i) : __get_user(insn, pc + i)) {
 235                        printk(" (Bad address in epc)\n");
 236                        break;
 237                }
 238                printk("%c%0*x%c", (i?' ':'<'), pc16 ? 4 : 8, insn, (i?' ':'>'));
 239        }
 240}
 241
 242static void __show_regs(const struct pt_regs *regs)
 243{
 244        const int field = 2 * sizeof(unsigned long);
 245        unsigned int cause = regs->cp0_cause;
 246        unsigned int exccode;
 247        int i;
 248
 249        show_regs_print_info(KERN_DEFAULT);
 250
 251        /*
 252         * Saved main processor registers
 253         */
 254        for (i = 0; i < 32; ) {
 255                if ((i % 4) == 0)
 256                        printk("$%2d   :", i);
 257                if (i == 0)
 258                        printk(" %0*lx", field, 0UL);
 259                else if (i == 26 || i == 27)
 260                        printk(" %*s", field, "");
 261                else
 262                        printk(" %0*lx", field, regs->regs[i]);
 263
 264                i++;
 265                if ((i % 4) == 0)
 266                        printk("\n");
 267        }
 268
 269#ifdef CONFIG_CPU_HAS_SMARTMIPS
 270        printk("Acx    : %0*lx\n", field, regs->acx);
 271#endif
 272        printk("Hi    : %0*lx\n", field, regs->hi);
 273        printk("Lo    : %0*lx\n", field, regs->lo);
 274
 275        /*
 276         * Saved cp0 registers
 277         */
 278        printk("epc   : %0*lx %pS\n", field, regs->cp0_epc,
 279               (void *) regs->cp0_epc);
 280        printk("ra    : %0*lx %pS\n", field, regs->regs[31],
 281               (void *) regs->regs[31]);
 282
 283        printk("Status: %08x    ", (uint32_t) regs->cp0_status);
 284
 285        if (cpu_has_3kex) {
 286                if (regs->cp0_status & ST0_KUO)
 287                        printk("KUo ");
 288                if (regs->cp0_status & ST0_IEO)
 289                        printk("IEo ");
 290                if (regs->cp0_status & ST0_KUP)
 291                        printk("KUp ");
 292                if (regs->cp0_status & ST0_IEP)
 293                        printk("IEp ");
 294                if (regs->cp0_status & ST0_KUC)
 295                        printk("KUc ");
 296                if (regs->cp0_status & ST0_IEC)
 297                        printk("IEc ");
 298        } else if (cpu_has_4kex) {
 299                if (regs->cp0_status & ST0_KX)
 300                        printk("KX ");
 301                if (regs->cp0_status & ST0_SX)
 302                        printk("SX ");
 303                if (regs->cp0_status & ST0_UX)
 304                        printk("UX ");
 305                switch (regs->cp0_status & ST0_KSU) {
 306                case KSU_USER:
 307                        printk("USER ");
 308                        break;
 309                case KSU_SUPERVISOR:
 310                        printk("SUPERVISOR ");
 311                        break;
 312                case KSU_KERNEL:
 313                        printk("KERNEL ");
 314                        break;
 315                default:
 316                        printk("BAD_MODE ");
 317                        break;
 318                }
 319                if (regs->cp0_status & ST0_ERL)
 320                        printk("ERL ");
 321                if (regs->cp0_status & ST0_EXL)
 322                        printk("EXL ");
 323                if (regs->cp0_status & ST0_IE)
 324                        printk("IE ");
 325        }
 326        printk("\n");
 327
 328        exccode = (cause & CAUSEF_EXCCODE) >> CAUSEB_EXCCODE;
 329        printk("Cause : %08x (ExcCode %02x)\n", cause, exccode);
 330
 331        if (1 <= exccode && exccode <= 5)
 332                printk("BadVA : %0*lx\n", field, regs->cp0_badvaddr);
 333
 334        printk("PrId  : %08x (%s)\n", read_c0_prid(),
 335               cpu_name_string());
 336}
 337
 338/*
 339 * FIXME: really the generic show_regs should take a const pointer argument.
 340 */
 341void show_regs(struct pt_regs *regs)
 342{
 343        __show_regs((struct pt_regs *)regs);
 344}
 345
 346void show_registers(struct pt_regs *regs)
 347{
 348        const int field = 2 * sizeof(unsigned long);
 349        mm_segment_t old_fs = get_fs();
 350
 351        __show_regs(regs);
 352        print_modules();
 353        printk("Process %s (pid: %d, threadinfo=%p, task=%p, tls=%0*lx)\n",
 354               current->comm, current->pid, current_thread_info(), current,
 355              field, current_thread_info()->tp_value);
 356        if (cpu_has_userlocal) {
 357                unsigned long tls;
 358
 359                tls = read_c0_userlocal();
 360                if (tls != current_thread_info()->tp_value)
 361                        printk("*HwTLS: %0*lx\n", field, tls);
 362        }
 363
 364        if (!user_mode(regs))
 365                /* Necessary for getting the correct stack content */
 366                set_fs(KERNEL_DS);
 367        show_stacktrace(current, regs);
 368        show_code((unsigned int __user *) regs->cp0_epc);
 369        printk("\n");
 370        set_fs(old_fs);
 371}
 372
 373static int regs_to_trapnr(struct pt_regs *regs)
 374{
 375        return (regs->cp0_cause >> 2) & 0x1f;
 376}
 377
 378static DEFINE_RAW_SPINLOCK(die_lock);
 379
 380void __noreturn die(const char *str, struct pt_regs *regs)
 381{
 382        static int die_counter;
 383        int sig = SIGSEGV;
 384
 385        oops_enter();
 386
 387        if (notify_die(DIE_OOPS, str, regs, 0, regs_to_trapnr(regs),
 388                       SIGSEGV) == NOTIFY_STOP)
 389                sig = 0;
 390
 391        console_verbose();
 392        raw_spin_lock_irq(&die_lock);
 393        bust_spinlocks(1);
 394
 395        printk("%s[#%d]:\n", str, ++die_counter);
 396        show_registers(regs);
 397        add_taint(TAINT_DIE, LOCKDEP_NOW_UNRELIABLE);
 398        raw_spin_unlock_irq(&die_lock);
 399
 400        oops_exit();
 401
 402        if (in_interrupt())
 403                panic("Fatal exception in interrupt");
 404
 405        if (panic_on_oops) {
 406                printk(KERN_EMERG "Fatal exception: panic in 5 seconds");
 407                ssleep(5);
 408                panic("Fatal exception");
 409        }
 410
 411        if (regs && kexec_should_crash(current))
 412                crash_kexec(regs);
 413
 414        do_exit(sig);
 415}
 416
 417extern struct exception_table_entry __start___dbe_table[];
 418extern struct exception_table_entry __stop___dbe_table[];
 419
 420__asm__(
 421"       .section        __dbe_table, \"a\"\n"
 422"       .previous                       \n");
 423
 424/* Given an address, look for it in the exception tables. */
 425static const struct exception_table_entry *search_dbe_tables(unsigned long addr)
 426{
 427        const struct exception_table_entry *e;
 428
 429        e = search_extable(__start___dbe_table, __stop___dbe_table - 1, addr);
 430        if (!e)
 431                e = search_module_dbetables(addr);
 432        return e;
 433}
 434
 435asmlinkage void do_be(struct pt_regs *regs)
 436{
 437        const int field = 2 * sizeof(unsigned long);
 438        const struct exception_table_entry *fixup = NULL;
 439        int data = regs->cp0_cause & 4;
 440        int action = MIPS_BE_FATAL;
 441        enum ctx_state prev_state;
 442
 443        prev_state = exception_enter();
 444        /* XXX For now.  Fixme, this searches the wrong table ...  */
 445        if (data && !user_mode(regs))
 446                fixup = search_dbe_tables(exception_epc(regs));
 447
 448        if (fixup)
 449                action = MIPS_BE_FIXUP;
 450
 451        if (board_be_handler)
 452                action = board_be_handler(regs, fixup != NULL);
 453
 454        switch (action) {
 455        case MIPS_BE_DISCARD:
 456                goto out;
 457        case MIPS_BE_FIXUP:
 458                if (fixup) {
 459                        regs->cp0_epc = fixup->nextinsn;
 460                        goto out;
 461                }
 462                break;
 463        default:
 464                break;
 465        }
 466
 467        /*
 468         * Assume it would be too dangerous to continue ...
 469         */
 470        printk(KERN_ALERT "%s bus error, epc == %0*lx, ra == %0*lx\n",
 471               data ? "Data" : "Instruction",
 472               field, regs->cp0_epc, field, regs->regs[31]);
 473        if (notify_die(DIE_OOPS, "bus error", regs, 0, regs_to_trapnr(regs),
 474                       SIGBUS) == NOTIFY_STOP)
 475                goto out;
 476
 477        die_if_kernel("Oops", regs);
 478        force_sig(SIGBUS, current);
 479
 480out:
 481        exception_exit(prev_state);
 482}
 483
 484/*
 485 * ll/sc, rdhwr, sync emulation
 486 */
 487
 488#define OPCODE 0xfc000000
 489#define BASE   0x03e00000
 490#define RT     0x001f0000
 491#define OFFSET 0x0000ffff
 492#define LL     0xc0000000
 493#define SC     0xe0000000
 494#define SPEC0  0x00000000
 495#define SPEC3  0x7c000000
 496#define RD     0x0000f800
 497#define FUNC   0x0000003f
 498#define SYNC   0x0000000f
 499#define RDHWR  0x0000003b
 500
 501/*  microMIPS definitions   */
 502#define MM_POOL32A_FUNC 0xfc00ffff
 503#define MM_RDHWR        0x00006b3c
 504#define MM_RS           0x001f0000
 505#define MM_RT           0x03e00000
 506
 507/*
 508 * The ll_bit is cleared by r*_switch.S
 509 */
 510
 511unsigned int ll_bit;
 512struct task_struct *ll_task;
 513
 514static inline int simulate_ll(struct pt_regs *regs, unsigned int opcode)
 515{
 516        unsigned long value, __user *vaddr;
 517        long offset;
 518
 519        /*
 520         * analyse the ll instruction that just caused a ri exception
 521         * and put the referenced address to addr.
 522         */
 523
 524        /* sign extend offset */
 525        offset = opcode & OFFSET;
 526        offset <<= 16;
 527        offset >>= 16;
 528
 529        vaddr = (unsigned long __user *)
 530                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 531
 532        if ((unsigned long)vaddr & 3)
 533                return SIGBUS;
 534        if (get_user(value, vaddr))
 535                return SIGSEGV;
 536
 537        preempt_disable();
 538
 539        if (ll_task == NULL || ll_task == current) {
 540                ll_bit = 1;
 541        } else {
 542                ll_bit = 0;
 543        }
 544        ll_task = current;
 545
 546        preempt_enable();
 547
 548        regs->regs[(opcode & RT) >> 16] = value;
 549
 550        return 0;
 551}
 552
 553static inline int simulate_sc(struct pt_regs *regs, unsigned int opcode)
 554{
 555        unsigned long __user *vaddr;
 556        unsigned long reg;
 557        long offset;
 558
 559        /*
 560         * analyse the sc instruction that just caused a ri exception
 561         * and put the referenced address to addr.
 562         */
 563
 564        /* sign extend offset */
 565        offset = opcode & OFFSET;
 566        offset <<= 16;
 567        offset >>= 16;
 568
 569        vaddr = (unsigned long __user *)
 570                ((unsigned long)(regs->regs[(opcode & BASE) >> 21]) + offset);
 571        reg = (opcode & RT) >> 16;
 572
 573        if ((unsigned long)vaddr & 3)
 574                return SIGBUS;
 575
 576        preempt_disable();
 577
 578        if (ll_bit == 0 || ll_task != current) {
 579                regs->regs[reg] = 0;
 580                preempt_enable();
 581                return 0;
 582        }
 583
 584        preempt_enable();
 585
 586        if (put_user(regs->regs[reg], vaddr))
 587                return SIGSEGV;
 588
 589        regs->regs[reg] = 1;
 590
 591        return 0;
 592}
 593
 594/*
 595 * ll uses the opcode of lwc0 and sc uses the opcode of swc0.  That is both
 596 * opcodes are supposed to result in coprocessor unusable exceptions if
 597 * executed on ll/sc-less processors.  That's the theory.  In practice a
 598 * few processors such as NEC's VR4100 throw reserved instruction exceptions
 599 * instead, so we're doing the emulation thing in both exception handlers.
 600 */
 601static int simulate_llsc(struct pt_regs *regs, unsigned int opcode)
 602{
 603        if ((opcode & OPCODE) == LL) {
 604                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 605                                1, regs, 0);
 606                return simulate_ll(regs, opcode);
 607        }
 608        if ((opcode & OPCODE) == SC) {
 609                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 610                                1, regs, 0);
 611                return simulate_sc(regs, opcode);
 612        }
 613
 614        return -1;                      /* Must be something else ... */
 615}
 616
 617/*
 618 * Simulate trapping 'rdhwr' instructions to provide user accessible
 619 * registers not implemented in hardware.
 620 */
 621static int simulate_rdhwr(struct pt_regs *regs, int rd, int rt)
 622{
 623        struct thread_info *ti = task_thread_info(current);
 624
 625        perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 626                        1, regs, 0);
 627        switch (rd) {
 628        case 0:         /* CPU number */
 629                regs->regs[rt] = smp_processor_id();
 630                return 0;
 631        case 1:         /* SYNCI length */
 632                regs->regs[rt] = min(current_cpu_data.dcache.linesz,
 633                                     current_cpu_data.icache.linesz);
 634                return 0;
 635        case 2:         /* Read count register */
 636                regs->regs[rt] = read_c0_count();
 637                return 0;
 638        case 3:         /* Count register resolution */
 639                switch (current_cpu_type()) {
 640                case CPU_20KC:
 641                case CPU_25KF:
 642                        regs->regs[rt] = 1;
 643                        break;
 644                default:
 645                        regs->regs[rt] = 2;
 646                }
 647                return 0;
 648        case 29:
 649                regs->regs[rt] = ti->tp_value;
 650                return 0;
 651        default:
 652                return -1;
 653        }
 654}
 655
 656static int simulate_rdhwr_normal(struct pt_regs *regs, unsigned int opcode)
 657{
 658        if ((opcode & OPCODE) == SPEC3 && (opcode & FUNC) == RDHWR) {
 659                int rd = (opcode & RD) >> 11;
 660                int rt = (opcode & RT) >> 16;
 661
 662                simulate_rdhwr(regs, rd, rt);
 663                return 0;
 664        }
 665
 666        /* Not ours.  */
 667        return -1;
 668}
 669
 670static int simulate_rdhwr_mm(struct pt_regs *regs, unsigned short opcode)
 671{
 672        if ((opcode & MM_POOL32A_FUNC) == MM_RDHWR) {
 673                int rd = (opcode & MM_RS) >> 16;
 674                int rt = (opcode & MM_RT) >> 21;
 675                simulate_rdhwr(regs, rd, rt);
 676                return 0;
 677        }
 678
 679        /* Not ours.  */
 680        return -1;
 681}
 682
 683static int simulate_sync(struct pt_regs *regs, unsigned int opcode)
 684{
 685        if ((opcode & OPCODE) == SPEC0 && (opcode & FUNC) == SYNC) {
 686                perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS,
 687                                1, regs, 0);
 688                return 0;
 689        }
 690
 691        return -1;                      /* Must be something else ... */
 692}
 693
 694asmlinkage void do_ov(struct pt_regs *regs)
 695{
 696        enum ctx_state prev_state;
 697        siginfo_t info;
 698
 699        prev_state = exception_enter();
 700        die_if_kernel("Integer overflow", regs);
 701
 702        info.si_code = FPE_INTOVF;
 703        info.si_signo = SIGFPE;
 704        info.si_errno = 0;
 705        info.si_addr = (void __user *) regs->cp0_epc;
 706        force_sig_info(SIGFPE, &info, current);
 707        exception_exit(prev_state);
 708}
 709
 710int process_fpemu_return(int sig, void __user *fault_addr, unsigned long fcr31)
 711{
 712        struct siginfo si = { 0 };
 713
 714        switch (sig) {
 715        case 0:
 716                return 0;
 717
 718        case SIGFPE:
 719                si.si_addr = fault_addr;
 720                si.si_signo = sig;
 721                /*
 722                 * Inexact can happen together with Overflow or Underflow.
 723                 * Respect the mask to deliver the correct exception.
 724                 */
 725                fcr31 &= (fcr31 & FPU_CSR_ALL_E) <<
 726                         (ffs(FPU_CSR_ALL_X) - ffs(FPU_CSR_ALL_E));
 727                if (fcr31 & FPU_CSR_INV_X)
 728                        si.si_code = FPE_FLTINV;
 729                else if (fcr31 & FPU_CSR_DIV_X)
 730                        si.si_code = FPE_FLTDIV;
 731                else if (fcr31 & FPU_CSR_OVF_X)
 732                        si.si_code = FPE_FLTOVF;
 733                else if (fcr31 & FPU_CSR_UDF_X)
 734                        si.si_code = FPE_FLTUND;
 735                else if (fcr31 & FPU_CSR_INE_X)
 736                        si.si_code = FPE_FLTRES;
 737                else
 738                        si.si_code = __SI_FAULT;
 739                force_sig_info(sig, &si, current);
 740                return 1;
 741
 742        case SIGBUS:
 743                si.si_addr = fault_addr;
 744                si.si_signo = sig;
 745                si.si_code = BUS_ADRERR;
 746                force_sig_info(sig, &si, current);
 747                return 1;
 748
 749        case SIGSEGV:
 750                si.si_addr = fault_addr;
 751                si.si_signo = sig;
 752                down_read(&current->mm->mmap_sem);
 753                if (find_vma(current->mm, (unsigned long)fault_addr))
 754                        si.si_code = SEGV_ACCERR;
 755                else
 756                        si.si_code = SEGV_MAPERR;
 757                up_read(&current->mm->mmap_sem);
 758                force_sig_info(sig, &si, current);
 759                return 1;
 760
 761        default:
 762                force_sig(sig, current);
 763                return 1;
 764        }
 765}
 766
 767static int simulate_fp(struct pt_regs *regs, unsigned int opcode,
 768                       unsigned long old_epc, unsigned long old_ra)
 769{
 770        union mips_instruction inst = { .word = opcode };
 771        void __user *fault_addr;
 772        unsigned long fcr31;
 773        int sig;
 774
 775        /* If it's obviously not an FP instruction, skip it */
 776        switch (inst.i_format.opcode) {
 777        case cop1_op:
 778        case cop1x_op:
 779        case lwc1_op:
 780        case ldc1_op:
 781        case swc1_op:
 782        case sdc1_op:
 783                break;
 784
 785        default:
 786                return -1;
 787        }
 788
 789        /*
 790         * do_ri skipped over the instruction via compute_return_epc, undo
 791         * that for the FPU emulator.
 792         */
 793        regs->cp0_epc = old_epc;
 794        regs->regs[31] = old_ra;
 795
 796        /* Save the FP context to struct thread_struct */
 797        lose_fpu(1);
 798
 799        /* Run the emulator */
 800        sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 801                                       &fault_addr);
 802        fcr31 = current->thread.fpu.fcr31;
 803
 804        /*
 805         * We can't allow the emulated instruction to leave any of
 806         * the cause bits set in $fcr31.
 807         */
 808        current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 809
 810        /* Restore the hardware register state */
 811        own_fpu(1);
 812
 813        /* Send a signal if required.  */
 814        process_fpemu_return(sig, fault_addr, fcr31);
 815
 816        return 0;
 817}
 818
 819/*
 820 * XXX Delayed fp exceptions when doing a lazy ctx switch XXX
 821 */
 822asmlinkage void do_fpe(struct pt_regs *regs, unsigned long fcr31)
 823{
 824        enum ctx_state prev_state;
 825        void __user *fault_addr;
 826        int sig;
 827
 828        prev_state = exception_enter();
 829        if (notify_die(DIE_FP, "FP exception", regs, 0, regs_to_trapnr(regs),
 830                       SIGFPE) == NOTIFY_STOP)
 831                goto out;
 832
 833        /* Clear FCSR.Cause before enabling interrupts */
 834        write_32bit_cp1_register(CP1_STATUS, fcr31 & ~FPU_CSR_ALL_X);
 835        local_irq_enable();
 836
 837        die_if_kernel("FP exception in kernel code", regs);
 838
 839        if (fcr31 & FPU_CSR_UNI_X) {
 840                /*
 841                 * Unimplemented operation exception.  If we've got the full
 842                 * software emulator on-board, let's use it...
 843                 *
 844                 * Force FPU to dump state into task/thread context.  We're
 845                 * moving a lot of data here for what is probably a single
 846                 * instruction, but the alternative is to pre-decode the FP
 847                 * register operands before invoking the emulator, which seems
 848                 * a bit extreme for what should be an infrequent event.
 849                 */
 850                /* Ensure 'resume' not overwrite saved fp context again. */
 851                lose_fpu(1);
 852
 853                /* Run the emulator */
 854                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 1,
 855                                               &fault_addr);
 856                fcr31 = current->thread.fpu.fcr31;
 857
 858                /*
 859                 * We can't allow the emulated instruction to leave any of
 860                 * the cause bits set in $fcr31.
 861                 */
 862                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
 863
 864                /* Restore the hardware register state */
 865                own_fpu(1);     /* Using the FPU again.  */
 866        } else {
 867                sig = SIGFPE;
 868                fault_addr = (void __user *) regs->cp0_epc;
 869        }
 870
 871        /* Send a signal if required.  */
 872        process_fpemu_return(sig, fault_addr, fcr31);
 873
 874out:
 875        exception_exit(prev_state);
 876}
 877
 878void do_trap_or_bp(struct pt_regs *regs, unsigned int code,
 879        const char *str)
 880{
 881        siginfo_t info;
 882        char b[40];
 883
 884#ifdef CONFIG_KGDB_LOW_LEVEL_TRAP
 885        if (kgdb_ll_trap(DIE_TRAP, str, regs, code, regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 886                return;
 887#endif /* CONFIG_KGDB_LOW_LEVEL_TRAP */
 888
 889        if (notify_die(DIE_TRAP, str, regs, code, regs_to_trapnr(regs),
 890                       SIGTRAP) == NOTIFY_STOP)
 891                return;
 892
 893        /*
 894         * A short test says that IRIX 5.3 sends SIGTRAP for all trap
 895         * insns, even for trap and break codes that indicate arithmetic
 896         * failures.  Weird ...
 897         * But should we continue the brokenness???  --macro
 898         */
 899        switch (code) {
 900        case BRK_OVERFLOW:
 901        case BRK_DIVZERO:
 902                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 903                die_if_kernel(b, regs);
 904                if (code == BRK_DIVZERO)
 905                        info.si_code = FPE_INTDIV;
 906                else
 907                        info.si_code = FPE_INTOVF;
 908                info.si_signo = SIGFPE;
 909                info.si_errno = 0;
 910                info.si_addr = (void __user *) regs->cp0_epc;
 911                force_sig_info(SIGFPE, &info, current);
 912                break;
 913        case BRK_BUG:
 914                die_if_kernel("Kernel bug detected", regs);
 915                force_sig(SIGTRAP, current);
 916                break;
 917        case BRK_MEMU:
 918                /*
 919                 * This breakpoint code is used by the FPU emulator to retake
 920                 * control of the CPU after executing the instruction from the
 921                 * delay slot of an emulated branch.
 922                 *
 923                 * Terminate if exception was recognized as a delay slot return
 924                 * otherwise handle as normal.
 925                 */
 926                if (do_dsemulret(regs))
 927                        return;
 928
 929                die_if_kernel("Math emu break/trap", regs);
 930                force_sig(SIGTRAP, current);
 931                break;
 932        default:
 933                scnprintf(b, sizeof(b), "%s instruction in kernel code", str);
 934                die_if_kernel(b, regs);
 935                force_sig(SIGTRAP, current);
 936        }
 937}
 938
 939asmlinkage void do_bp(struct pt_regs *regs)
 940{
 941        unsigned long epc = msk_isa16_mode(exception_epc(regs));
 942        unsigned int opcode, bcode;
 943        enum ctx_state prev_state;
 944        mm_segment_t seg;
 945
 946        seg = get_fs();
 947        if (!user_mode(regs))
 948                set_fs(KERNEL_DS);
 949
 950        prev_state = exception_enter();
 951        if (get_isa16_mode(regs->cp0_epc)) {
 952                u16 instr[2];
 953
 954                if (__get_user(instr[0], (u16 __user *)epc))
 955                        goto out_sigsegv;
 956
 957                if (!cpu_has_mmips) {
 958                        /* MIPS16e mode */
 959                        bcode = (instr[0] >> 5) & 0x3f;
 960                } else if (mm_insn_16bit(instr[0])) {
 961                        /* 16-bit microMIPS BREAK */
 962                        bcode = instr[0] & 0xf;
 963                } else {
 964                        /* 32-bit microMIPS BREAK */
 965                        if (__get_user(instr[1], (u16 __user *)(epc + 2)))
 966                                goto out_sigsegv;
 967                        opcode = (instr[0] << 16) | instr[1];
 968                        bcode = (opcode >> 6) & ((1 << 20) - 1);
 969                }
 970        } else {
 971                if (__get_user(opcode, (unsigned int __user *)epc))
 972                        goto out_sigsegv;
 973                bcode = (opcode >> 6) & ((1 << 20) - 1);
 974        }
 975
 976        /*
 977         * There is the ancient bug in the MIPS assemblers that the break
 978         * code starts left to bit 16 instead to bit 6 in the opcode.
 979         * Gas is bug-compatible, but not always, grrr...
 980         * We handle both cases with a simple heuristics.  --macro
 981         */
 982        if (bcode >= (1 << 10))
 983                bcode = ((bcode & ((1 << 10) - 1)) << 10) | (bcode >> 10);
 984
 985        /*
 986         * notify the kprobe handlers, if instruction is likely to
 987         * pertain to them.
 988         */
 989        switch (bcode) {
 990        case BRK_KPROBE_BP:
 991                if (notify_die(DIE_BREAK, "debug", regs, bcode,
 992                               regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 993                        goto out;
 994                else
 995                        break;
 996        case BRK_KPROBE_SSTEPBP:
 997                if (notify_die(DIE_SSTEPBP, "single_step", regs, bcode,
 998                               regs_to_trapnr(regs), SIGTRAP) == NOTIFY_STOP)
 999                        goto out;
1000                else
1001                        break;
1002        default:
1003                break;
1004        }
1005
1006        do_trap_or_bp(regs, bcode, "Break");
1007
1008out:
1009        set_fs(seg);
1010        exception_exit(prev_state);
1011        return;
1012
1013out_sigsegv:
1014        force_sig(SIGSEGV, current);
1015        goto out;
1016}
1017
1018asmlinkage void do_tr(struct pt_regs *regs)
1019{
1020        u32 opcode, tcode = 0;
1021        enum ctx_state prev_state;
1022        u16 instr[2];
1023        mm_segment_t seg;
1024        unsigned long epc = msk_isa16_mode(exception_epc(regs));
1025
1026        seg = get_fs();
1027        if (!user_mode(regs))
1028                set_fs(get_ds());
1029
1030        prev_state = exception_enter();
1031        if (get_isa16_mode(regs->cp0_epc)) {
1032                if (__get_user(instr[0], (u16 __user *)(epc + 0)) ||
1033                    __get_user(instr[1], (u16 __user *)(epc + 2)))
1034                        goto out_sigsegv;
1035                opcode = (instr[0] << 16) | instr[1];
1036                /* Immediate versions don't provide a code.  */
1037                if (!(opcode & OPCODE))
1038                        tcode = (opcode >> 12) & ((1 << 4) - 1);
1039        } else {
1040                if (__get_user(opcode, (u32 __user *)epc))
1041                        goto out_sigsegv;
1042                /* Immediate versions don't provide a code.  */
1043                if (!(opcode & OPCODE))
1044                        tcode = (opcode >> 6) & ((1 << 10) - 1);
1045        }
1046
1047        do_trap_or_bp(regs, tcode, "Trap");
1048
1049out:
1050        set_fs(seg);
1051        exception_exit(prev_state);
1052        return;
1053
1054out_sigsegv:
1055        force_sig(SIGSEGV, current);
1056        goto out;
1057}
1058
1059asmlinkage void do_ri(struct pt_regs *regs)
1060{
1061        unsigned int __user *epc = (unsigned int __user *)exception_epc(regs);
1062        unsigned long old_epc = regs->cp0_epc;
1063        unsigned long old31 = regs->regs[31];
1064        enum ctx_state prev_state;
1065        unsigned int opcode = 0;
1066        int status = -1;
1067
1068        /*
1069         * Avoid any kernel code. Just emulate the R2 instruction
1070         * as quickly as possible.
1071         */
1072        if (mipsr2_emulation && cpu_has_mips_r6 &&
1073            likely(user_mode(regs)) &&
1074            likely(get_user(opcode, epc) >= 0)) {
1075                unsigned long fcr31 = 0;
1076
1077                status = mipsr2_decoder(regs, opcode, &fcr31);
1078                switch (status) {
1079                case 0:
1080                case SIGEMT:
1081                        task_thread_info(current)->r2_emul_return = 1;
1082                        return;
1083                case SIGILL:
1084                        goto no_r2_instr;
1085                default:
1086                        process_fpemu_return(status,
1087                                             &current->thread.cp0_baduaddr,
1088                                             fcr31);
1089                        task_thread_info(current)->r2_emul_return = 1;
1090                        return;
1091                }
1092        }
1093
1094no_r2_instr:
1095
1096        prev_state = exception_enter();
1097
1098        if (notify_die(DIE_RI, "RI Fault", regs, 0, regs_to_trapnr(regs),
1099                       SIGILL) == NOTIFY_STOP)
1100                goto out;
1101
1102        die_if_kernel("Reserved instruction in kernel code", regs);
1103
1104        if (unlikely(compute_return_epc(regs) < 0))
1105                goto out;
1106
1107        if (get_isa16_mode(regs->cp0_epc)) {
1108                unsigned short mmop[2] = { 0 };
1109
1110                if (unlikely(get_user(mmop[0], epc) < 0))
1111                        status = SIGSEGV;
1112                if (unlikely(get_user(mmop[1], epc) < 0))
1113                        status = SIGSEGV;
1114                opcode = (mmop[0] << 16) | mmop[1];
1115
1116                if (status < 0)
1117                        status = simulate_rdhwr_mm(regs, opcode);
1118        } else {
1119                if (unlikely(get_user(opcode, epc) < 0))
1120                        status = SIGSEGV;
1121
1122                if (!cpu_has_llsc && status < 0)
1123                        status = simulate_llsc(regs, opcode);
1124
1125                if (status < 0)
1126                        status = simulate_rdhwr_normal(regs, opcode);
1127
1128                if (status < 0)
1129                        status = simulate_sync(regs, opcode);
1130
1131                if (status < 0)
1132                        status = simulate_fp(regs, opcode, old_epc, old31);
1133        }
1134
1135        if (status < 0)
1136                status = SIGILL;
1137
1138        if (unlikely(status > 0)) {
1139                regs->cp0_epc = old_epc;                /* Undo skip-over.  */
1140                regs->regs[31] = old31;
1141                force_sig(status, current);
1142        }
1143
1144out:
1145        exception_exit(prev_state);
1146}
1147
1148/*
1149 * MIPS MT processors may have fewer FPU contexts than CPU threads. If we've
1150 * emulated more than some threshold number of instructions, force migration to
1151 * a "CPU" that has FP support.
1152 */
1153static void mt_ase_fp_affinity(void)
1154{
1155#ifdef CONFIG_MIPS_MT_FPAFF
1156        if (mt_fpemul_threshold > 0 &&
1157             ((current->thread.emulated_fp++ > mt_fpemul_threshold))) {
1158                /*
1159                 * If there's no FPU present, or if the application has already
1160                 * restricted the allowed set to exclude any CPUs with FPUs,
1161                 * we'll skip the procedure.
1162                 */
1163                if (cpumask_intersects(&current->cpus_allowed, &mt_fpu_cpumask)) {
1164                        cpumask_t tmask;
1165
1166                        current->thread.user_cpus_allowed
1167                                = current->cpus_allowed;
1168                        cpumask_and(&tmask, &current->cpus_allowed,
1169                                    &mt_fpu_cpumask);
1170                        set_cpus_allowed_ptr(current, &tmask);
1171                        set_thread_flag(TIF_FPUBOUND);
1172                }
1173        }
1174#endif /* CONFIG_MIPS_MT_FPAFF */
1175}
1176
1177/*
1178 * No lock; only written during early bootup by CPU 0.
1179 */
1180static RAW_NOTIFIER_HEAD(cu2_chain);
1181
1182int __ref register_cu2_notifier(struct notifier_block *nb)
1183{
1184        return raw_notifier_chain_register(&cu2_chain, nb);
1185}
1186
1187int cu2_notifier_call_chain(unsigned long val, void *v)
1188{
1189        return raw_notifier_call_chain(&cu2_chain, val, v);
1190}
1191
1192static int default_cu2_call(struct notifier_block *nfb, unsigned long action,
1193        void *data)
1194{
1195        struct pt_regs *regs = data;
1196
1197        die_if_kernel("COP2: Unhandled kernel unaligned access or invalid "
1198                              "instruction", regs);
1199        force_sig(SIGILL, current);
1200
1201        return NOTIFY_OK;
1202}
1203
1204static int wait_on_fp_mode_switch(atomic_t *p)
1205{
1206        /*
1207         * The FP mode for this task is currently being switched. That may
1208         * involve modifications to the format of this tasks FP context which
1209         * make it unsafe to proceed with execution for the moment. Instead,
1210         * schedule some other task.
1211         */
1212        schedule();
1213        return 0;
1214}
1215
1216static int enable_restore_fp_context(int msa)
1217{
1218        int err, was_fpu_owner, prior_msa;
1219
1220        /*
1221         * If an FP mode switch is currently underway, wait for it to
1222         * complete before proceeding.
1223         */
1224        wait_on_atomic_t(&current->mm->context.fp_mode_switching,
1225                         wait_on_fp_mode_switch, TASK_KILLABLE);
1226
1227        if (!used_math()) {
1228                /* First time FP context user. */
1229                preempt_disable();
1230                err = init_fpu();
1231                if (msa && !err) {
1232                        enable_msa();
1233                        _init_msa_upper();
1234                        set_thread_flag(TIF_USEDMSA);
1235                        set_thread_flag(TIF_MSA_CTX_LIVE);
1236                }
1237                preempt_enable();
1238                if (!err)
1239                        set_used_math();
1240                return err;
1241        }
1242
1243        /*
1244         * This task has formerly used the FP context.
1245         *
1246         * If this thread has no live MSA vector context then we can simply
1247         * restore the scalar FP context. If it has live MSA vector context
1248         * (that is, it has or may have used MSA since last performing a
1249         * function call) then we'll need to restore the vector context. This
1250         * applies even if we're currently only executing a scalar FP
1251         * instruction. This is because if we were to later execute an MSA
1252         * instruction then we'd either have to:
1253         *
1254         *  - Restore the vector context & clobber any registers modified by
1255         *    scalar FP instructions between now & then.
1256         *
1257         * or
1258         *
1259         *  - Not restore the vector context & lose the most significant bits
1260         *    of all vector registers.
1261         *
1262         * Neither of those options is acceptable. We cannot restore the least
1263         * significant bits of the registers now & only restore the most
1264         * significant bits later because the most significant bits of any
1265         * vector registers whose aliased FP register is modified now will have
1266         * been zeroed. We'd have no way to know that when restoring the vector
1267         * context & thus may load an outdated value for the most significant
1268         * bits of a vector register.
1269         */
1270        if (!msa && !thread_msa_context_live())
1271                return own_fpu(1);
1272
1273        /*
1274         * This task is using or has previously used MSA. Thus we require
1275         * that Status.FR == 1.
1276         */
1277        preempt_disable();
1278        was_fpu_owner = is_fpu_owner();
1279        err = own_fpu_inatomic(0);
1280        if (err)
1281                goto out;
1282
1283        enable_msa();
1284        write_msa_csr(current->thread.fpu.msacsr);
1285        set_thread_flag(TIF_USEDMSA);
1286
1287        /*
1288         * If this is the first time that the task is using MSA and it has
1289         * previously used scalar FP in this time slice then we already nave
1290         * FP context which we shouldn't clobber. We do however need to clear
1291         * the upper 64b of each vector register so that this task has no
1292         * opportunity to see data left behind by another.
1293         */
1294        prior_msa = test_and_set_thread_flag(TIF_MSA_CTX_LIVE);
1295        if (!prior_msa && was_fpu_owner) {
1296                _init_msa_upper();
1297
1298                goto out;
1299        }
1300
1301        if (!prior_msa) {
1302                /*
1303                 * Restore the least significant 64b of each vector register
1304                 * from the existing scalar FP context.
1305                 */
1306                _restore_fp(current);
1307
1308                /*
1309                 * The task has not formerly used MSA, so clear the upper 64b
1310                 * of each vector register such that it cannot see data left
1311                 * behind by another task.
1312                 */
1313                _init_msa_upper();
1314        } else {
1315                /* We need to restore the vector context. */
1316                restore_msa(current);
1317
1318                /* Restore the scalar FP control & status register */
1319                if (!was_fpu_owner)
1320                        write_32bit_cp1_register(CP1_STATUS,
1321                                                 current->thread.fpu.fcr31);
1322        }
1323
1324out:
1325        preempt_enable();
1326
1327        return 0;
1328}
1329
1330asmlinkage void do_cpu(struct pt_regs *regs)
1331{
1332        enum ctx_state prev_state;
1333        unsigned int __user *epc;
1334        unsigned long old_epc, old31;
1335        void __user *fault_addr;
1336        unsigned int opcode;
1337        unsigned long fcr31;
1338        unsigned int cpid;
1339        int status, err;
1340        unsigned long __maybe_unused flags;
1341        int sig;
1342
1343        prev_state = exception_enter();
1344        cpid = (regs->cp0_cause >> CAUSEB_CE) & 3;
1345
1346        if (cpid != 2)
1347                die_if_kernel("do_cpu invoked from kernel context!", regs);
1348
1349        switch (cpid) {
1350        case 0:
1351                epc = (unsigned int __user *)exception_epc(regs);
1352                old_epc = regs->cp0_epc;
1353                old31 = regs->regs[31];
1354                opcode = 0;
1355                status = -1;
1356
1357                if (unlikely(compute_return_epc(regs) < 0))
1358                        break;
1359
1360                if (get_isa16_mode(regs->cp0_epc)) {
1361                        unsigned short mmop[2] = { 0 };
1362
1363                        if (unlikely(get_user(mmop[0], epc) < 0))
1364                                status = SIGSEGV;
1365                        if (unlikely(get_user(mmop[1], epc) < 0))
1366                                status = SIGSEGV;
1367                        opcode = (mmop[0] << 16) | mmop[1];
1368
1369                        if (status < 0)
1370                                status = simulate_rdhwr_mm(regs, opcode);
1371                } else {
1372                        if (unlikely(get_user(opcode, epc) < 0))
1373                                status = SIGSEGV;
1374
1375                        if (!cpu_has_llsc && status < 0)
1376                                status = simulate_llsc(regs, opcode);
1377
1378                        if (status < 0)
1379                                status = simulate_rdhwr_normal(regs, opcode);
1380                }
1381
1382                if (status < 0)
1383                        status = SIGILL;
1384
1385                if (unlikely(status > 0)) {
1386                        regs->cp0_epc = old_epc;        /* Undo skip-over.  */
1387                        regs->regs[31] = old31;
1388                        force_sig(status, current);
1389                }
1390
1391                break;
1392
1393        case 3:
1394                /*
1395                 * The COP3 opcode space and consequently the CP0.Status.CU3
1396                 * bit and the CP0.Cause.CE=3 encoding have been removed as
1397                 * of the MIPS III ISA.  From the MIPS IV and MIPS32r2 ISAs
1398                 * up the space has been reused for COP1X instructions, that
1399                 * are enabled by the CP0.Status.CU1 bit and consequently
1400                 * use the CP0.Cause.CE=1 encoding for Coprocessor Unusable
1401                 * exceptions.  Some FPU-less processors that implement one
1402                 * of these ISAs however use this code erroneously for COP1X
1403                 * instructions.  Therefore we redirect this trap to the FP
1404                 * emulator too.
1405                 */
1406                if (raw_cpu_has_fpu || !cpu_has_mips_4_5_64_r2_r6) {
1407                        force_sig(SIGILL, current);
1408                        break;
1409                }
1410                /* Fall through.  */
1411
1412        case 1:
1413                err = enable_restore_fp_context(0);
1414
1415                if (raw_cpu_has_fpu && !err)
1416                        break;
1417
1418                sig = fpu_emulator_cop1Handler(regs, &current->thread.fpu, 0,
1419                                               &fault_addr);
1420                fcr31 = current->thread.fpu.fcr31;
1421
1422                /*
1423                 * We can't allow the emulated instruction to leave
1424                 * any of the cause bits set in $fcr31.
1425                 */
1426                current->thread.fpu.fcr31 &= ~FPU_CSR_ALL_X;
1427
1428                /* Send a signal if required.  */
1429                if (!process_fpemu_return(sig, fault_addr, fcr31) && !err)
1430                        mt_ase_fp_affinity();
1431
1432                break;
1433
1434        case 2:
1435                raw_notifier_call_chain(&cu2_chain, CU2_EXCEPTION, regs);
1436                break;
1437        }
1438
1439        exception_exit(prev_state);
1440}
1441
1442asmlinkage void do_msa_fpe(struct pt_regs *regs, unsigned int msacsr)
1443{
1444        enum ctx_state prev_state;
1445
1446        prev_state = exception_enter();
1447        if (notify_die(DIE_MSAFP, "MSA FP exception", regs, 0,
1448                       regs_to_trapnr(regs), SIGFPE) == NOTIFY_STOP)
1449                goto out;
1450
1451        /* Clear MSACSR.Cause before enabling interrupts */
1452        write_msa_csr(msacsr & ~MSA_CSR_CAUSEF);
1453        local_irq_enable();
1454
1455        die_if_kernel("do_msa_fpe invoked from kernel context!", regs);
1456        force_sig(SIGFPE, current);
1457out:
1458        exception_exit(prev_state);
1459}
1460
1461asmlinkage void do_msa(struct pt_regs *regs)
1462{
1463        enum ctx_state prev_state;
1464        int err;
1465
1466        prev_state = exception_enter();
1467
1468        if (!cpu_has_msa || test_thread_flag(TIF_32BIT_FPREGS)) {
1469                force_sig(SIGILL, current);
1470                goto out;
1471        }
1472
1473        die_if_kernel("do_msa invoked from kernel context!", regs);
1474
1475        err = enable_restore_fp_context(1);
1476        if (err)
1477                force_sig(SIGILL, current);
1478out:
1479        exception_exit(prev_state);
1480}
1481
1482asmlinkage void do_mdmx(struct pt_regs *regs)
1483{
1484        enum ctx_state prev_state;
1485
1486        prev_state = exception_enter();
1487        force_sig(SIGILL, current);
1488        exception_exit(prev_state);
1489}
1490
1491/*
1492 * Called with interrupts disabled.
1493 */
1494asmlinkage void do_watch(struct pt_regs *regs)
1495{
1496        enum ctx_state prev_state;
1497        u32 cause;
1498
1499        prev_state = exception_enter();
1500        /*
1501         * Clear WP (bit 22) bit of cause register so we don't loop
1502         * forever.
1503         */
1504        cause = read_c0_cause();
1505        cause &= ~(1 << 22);
1506        write_c0_cause(cause);
1507
1508        /*
1509         * If the current thread has the watch registers loaded, save
1510         * their values and send SIGTRAP.  Otherwise another thread
1511         * left the registers set, clear them and continue.
1512         */
1513        if (test_tsk_thread_flag(current, TIF_LOAD_WATCH)) {
1514                mips_read_watch_registers();
1515                local_irq_enable();
1516                force_sig(SIGTRAP, current);
1517        } else {
1518                mips_clear_watch_registers();
1519                local_irq_enable();
1520        }
1521        exception_exit(prev_state);
1522}
1523
1524asmlinkage void do_mcheck(struct pt_regs *regs)
1525{
1526        const int field = 2 * sizeof(unsigned long);
1527        int multi_match = regs->cp0_status & ST0_TS;
1528        enum ctx_state prev_state;
1529        mm_segment_t old_fs = get_fs();
1530
1531        prev_state = exception_enter();
1532        show_regs(regs);
1533
1534        if (multi_match) {
1535                pr_err("Index   : %0x\n", read_c0_index());
1536                pr_err("Pagemask: %0x\n", read_c0_pagemask());
1537                pr_err("EntryHi : %0*lx\n", field, read_c0_entryhi());
1538                pr_err("EntryLo0: %0*lx\n", field, read_c0_entrylo0());
1539                pr_err("EntryLo1: %0*lx\n", field, read_c0_entrylo1());
1540                pr_err("Wired   : %0x\n", read_c0_wired());
1541                pr_err("Pagegrain: %0x\n", read_c0_pagegrain());
1542                if (cpu_has_htw) {
1543                        pr_err("PWField : %0*lx\n", field, read_c0_pwfield());
1544                        pr_err("PWSize  : %0*lx\n", field, read_c0_pwsize());
1545                        pr_err("PWCtl   : %0x\n", read_c0_pwctl());
1546                }
1547                pr_err("\n");
1548                dump_tlb_all();
1549        }
1550
1551        if (!user_mode(regs))
1552                set_fs(KERNEL_DS);
1553
1554        show_code((unsigned int __user *) regs->cp0_epc);
1555
1556        set_fs(old_fs);
1557
1558        /*
1559         * Some chips may have other causes of machine check (e.g. SB1
1560         * graduation timer)
1561         */
1562        panic("Caught Machine Check exception - %scaused by multiple "
1563              "matching entries in the TLB.",
1564              (multi_match) ? "" : "not ");
1565}
1566
1567asmlinkage void do_mt(struct pt_regs *regs)
1568{
1569        int subcode;
1570
1571        subcode = (read_vpe_c0_vpecontrol() & VPECONTROL_EXCPT)
1572                        >> VPECONTROL_EXCPT_SHIFT;
1573        switch (subcode) {
1574        case 0:
1575                printk(KERN_DEBUG "Thread Underflow\n");
1576                break;
1577        case 1:
1578                printk(KERN_DEBUG "Thread Overflow\n");
1579                break;
1580        case 2:
1581                printk(KERN_DEBUG "Invalid YIELD Qualifier\n");
1582                break;
1583        case 3:
1584                printk(KERN_DEBUG "Gating Storage Exception\n");
1585                break;
1586        case 4:
1587                printk(KERN_DEBUG "YIELD Scheduler Exception\n");
1588                break;
1589        case 5:
1590                printk(KERN_DEBUG "Gating Storage Scheduler Exception\n");
1591                break;
1592        default:
1593                printk(KERN_DEBUG "*** UNKNOWN THREAD EXCEPTION %d ***\n",
1594                        subcode);
1595                break;
1596        }
1597        die_if_kernel("MIPS MT Thread exception in kernel", regs);
1598
1599        force_sig(SIGILL, current);
1600}
1601
1602
1603asmlinkage void do_dsp(struct pt_regs *regs)
1604{
1605        if (cpu_has_dsp)
1606                panic("Unexpected DSP exception");
1607
1608        force_sig(SIGILL, current);
1609}
1610
1611asmlinkage void do_reserved(struct pt_regs *regs)
1612{
1613        /*
1614         * Game over - no way to handle this if it ever occurs.  Most probably
1615         * caused by a new unknown cpu type or after another deadly
1616         * hard/software error.
1617         */
1618        show_regs(regs);
1619        panic("Caught reserved exception %ld - should not happen.",
1620              (regs->cp0_cause & 0x7f) >> 2);
1621}
1622
1623static int __initdata l1parity = 1;
1624static int __init nol1parity(char *s)
1625{
1626        l1parity = 0;
1627        return 1;
1628}
1629__setup("nol1par", nol1parity);
1630static int __initdata l2parity = 1;
1631static int __init nol2parity(char *s)
1632{
1633        l2parity = 0;
1634        return 1;
1635}
1636__setup("nol2par", nol2parity);
1637
1638/*
1639 * Some MIPS CPUs can enable/disable for cache parity detection, but do
1640 * it different ways.
1641 */
1642static inline void parity_protection_init(void)
1643{
1644        switch (current_cpu_type()) {
1645        case CPU_24K:
1646        case CPU_34K:
1647        case CPU_74K:
1648        case CPU_1004K:
1649        case CPU_1074K:
1650        case CPU_INTERAPTIV:
1651        case CPU_PROAPTIV:
1652        case CPU_P5600:
1653        case CPU_QEMU_GENERIC:
1654                {
1655#define ERRCTL_PE       0x80000000
1656#define ERRCTL_L2P      0x00800000
1657                        unsigned long errctl;
1658                        unsigned int l1parity_present, l2parity_present;
1659
1660                        errctl = read_c0_ecc();
1661                        errctl &= ~(ERRCTL_PE|ERRCTL_L2P);
1662
1663                        /* probe L1 parity support */
1664                        write_c0_ecc(errctl | ERRCTL_PE);
1665                        back_to_back_c0_hazard();
1666                        l1parity_present = (read_c0_ecc() & ERRCTL_PE);
1667
1668                        /* probe L2 parity support */
1669                        write_c0_ecc(errctl|ERRCTL_L2P);
1670                        back_to_back_c0_hazard();
1671                        l2parity_present = (read_c0_ecc() & ERRCTL_L2P);
1672
1673                        if (l1parity_present && l2parity_present) {
1674                                if (l1parity)
1675                                        errctl |= ERRCTL_PE;
1676                                if (l1parity ^ l2parity)
1677                                        errctl |= ERRCTL_L2P;
1678                        } else if (l1parity_present) {
1679                                if (l1parity)
1680                                        errctl |= ERRCTL_PE;
1681                        } else if (l2parity_present) {
1682                                if (l2parity)
1683                                        errctl |= ERRCTL_L2P;
1684                        } else {
1685                                /* No parity available */
1686                        }
1687
1688                        printk(KERN_INFO "Writing ErrCtl register=%08lx\n", errctl);
1689
1690                        write_c0_ecc(errctl);
1691                        back_to_back_c0_hazard();
1692                        errctl = read_c0_ecc();
1693                        printk(KERN_INFO "Readback ErrCtl register=%08lx\n", errctl);
1694
1695                        if (l1parity_present)
1696                                printk(KERN_INFO "Cache parity protection %sabled\n",
1697                                       (errctl & ERRCTL_PE) ? "en" : "dis");
1698
1699                        if (l2parity_present) {
1700                                if (l1parity_present && l1parity)
1701                                        errctl ^= ERRCTL_L2P;
1702                                printk(KERN_INFO "L2 cache parity protection %sabled\n",
1703                                       (errctl & ERRCTL_L2P) ? "en" : "dis");
1704                        }
1705                }
1706                break;
1707
1708        case CPU_5KC:
1709        case CPU_5KE:
1710        case CPU_LOONGSON1:
1711                write_c0_ecc(0x80000000);
1712                back_to_back_c0_hazard();
1713                /* Set the PE bit (bit 31) in the c0_errctl register. */
1714                printk(KERN_INFO "Cache parity protection %sabled\n",
1715                       (read_c0_ecc() & 0x80000000) ? "en" : "dis");
1716                break;
1717        case CPU_20KC:
1718        case CPU_25KF:
1719                /* Clear the DE bit (bit 16) in the c0_status register. */
1720                printk(KERN_INFO "Enable cache parity protection for "
1721                       "MIPS 20KC/25KF CPUs.\n");
1722                clear_c0_status(ST0_DE);
1723                break;
1724        default:
1725                break;
1726        }
1727}
1728
1729asmlinkage void cache_parity_error(void)
1730{
1731        const int field = 2 * sizeof(unsigned long);
1732        unsigned int reg_val;
1733
1734        /* For the moment, report the problem and hang. */
1735        printk("Cache error exception:\n");
1736        printk("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1737        reg_val = read_c0_cacheerr();
1738        printk("c0_cacheerr == %08x\n", reg_val);
1739
1740        printk("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1741               reg_val & (1<<30) ? "secondary" : "primary",
1742               reg_val & (1<<31) ? "data" : "insn");
1743        if ((cpu_has_mips_r2_r6) &&
1744            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1745                pr_err("Error bits: %s%s%s%s%s%s%s%s\n",
1746                        reg_val & (1<<29) ? "ED " : "",
1747                        reg_val & (1<<28) ? "ET " : "",
1748                        reg_val & (1<<27) ? "ES " : "",
1749                        reg_val & (1<<26) ? "EE " : "",
1750                        reg_val & (1<<25) ? "EB " : "",
1751                        reg_val & (1<<24) ? "EI " : "",
1752                        reg_val & (1<<23) ? "E1 " : "",
1753                        reg_val & (1<<22) ? "E0 " : "");
1754        } else {
1755                pr_err("Error bits: %s%s%s%s%s%s%s\n",
1756                        reg_val & (1<<29) ? "ED " : "",
1757                        reg_val & (1<<28) ? "ET " : "",
1758                        reg_val & (1<<26) ? "EE " : "",
1759                        reg_val & (1<<25) ? "EB " : "",
1760                        reg_val & (1<<24) ? "EI " : "",
1761                        reg_val & (1<<23) ? "E1 " : "",
1762                        reg_val & (1<<22) ? "E0 " : "");
1763        }
1764        printk("IDX: 0x%08x\n", reg_val & ((1<<22)-1));
1765
1766#if defined(CONFIG_CPU_MIPS32) || defined(CONFIG_CPU_MIPS64)
1767        if (reg_val & (1<<22))
1768                printk("DErrAddr0: 0x%0*lx\n", field, read_c0_derraddr0());
1769
1770        if (reg_val & (1<<23))
1771                printk("DErrAddr1: 0x%0*lx\n", field, read_c0_derraddr1());
1772#endif
1773
1774        panic("Can't handle the cache error!");
1775}
1776
1777asmlinkage void do_ftlb(void)
1778{
1779        const int field = 2 * sizeof(unsigned long);
1780        unsigned int reg_val;
1781
1782        /* For the moment, report the problem and hang. */
1783        if ((cpu_has_mips_r2_r6) &&
1784            ((current_cpu_data.processor_id & 0xff0000) == PRID_COMP_MIPS)) {
1785                pr_err("FTLB error exception, cp0_ecc=0x%08x:\n",
1786                       read_c0_ecc());
1787                pr_err("cp0_errorepc == %0*lx\n", field, read_c0_errorepc());
1788                reg_val = read_c0_cacheerr();
1789                pr_err("c0_cacheerr == %08x\n", reg_val);
1790
1791                if ((reg_val & 0xc0000000) == 0xc0000000) {
1792                        pr_err("Decoded c0_cacheerr: FTLB parity error\n");
1793                } else {
1794                        pr_err("Decoded c0_cacheerr: %s cache fault in %s reference.\n",
1795                               reg_val & (1<<30) ? "secondary" : "primary",
1796                               reg_val & (1<<31) ? "data" : "insn");
1797                }
1798        } else {
1799                pr_err("FTLB error exception\n");
1800        }
1801        /* Just print the cacheerr bits for now */
1802        cache_parity_error();
1803}
1804
1805/*
1806 * SDBBP EJTAG debug exception handler.
1807 * We skip the instruction and return to the next instruction.
1808 */
1809void ejtag_exception_handler(struct pt_regs *regs)
1810{
1811        const int field = 2 * sizeof(unsigned long);
1812        unsigned long depc, old_epc, old_ra;
1813        unsigned int debug;
1814
1815        printk(KERN_DEBUG "SDBBP EJTAG debug exception - not handled yet, just ignored!\n");
1816        depc = read_c0_depc();
1817        debug = read_c0_debug();
1818        printk(KERN_DEBUG "c0_depc = %0*lx, DEBUG = %08x\n", field, depc, debug);
1819        if (debug & 0x80000000) {
1820                /*
1821                 * In branch delay slot.
1822                 * We cheat a little bit here and use EPC to calculate the
1823                 * debug return address (DEPC). EPC is restored after the
1824                 * calculation.
1825                 */
1826                old_epc = regs->cp0_epc;
1827                old_ra = regs->regs[31];
1828                regs->cp0_epc = depc;
1829                compute_return_epc(regs);
1830                depc = regs->cp0_epc;
1831                regs->cp0_epc = old_epc;
1832                regs->regs[31] = old_ra;
1833        } else
1834                depc += 4;
1835        write_c0_depc(depc);
1836
1837#if 0
1838        printk(KERN_DEBUG "\n\n----- Enable EJTAG single stepping ----\n\n");
1839        write_c0_debug(debug | 0x100);
1840#endif
1841}
1842
1843/*
1844 * NMI exception handler.
1845 * No lock; only written during early bootup by CPU 0.
1846 */
1847static RAW_NOTIFIER_HEAD(nmi_chain);
1848
1849int register_nmi_notifier(struct notifier_block *nb)
1850{
1851        return raw_notifier_chain_register(&nmi_chain, nb);
1852}
1853
1854void __noreturn nmi_exception_handler(struct pt_regs *regs)
1855{
1856        char str[100];
1857
1858        raw_notifier_call_chain(&nmi_chain, 0, regs);
1859        bust_spinlocks(1);
1860        snprintf(str, 100, "CPU%d NMI taken, CP0_EPC=%lx\n",
1861                 smp_processor_id(), regs->cp0_epc);
1862        regs->cp0_epc = read_c0_errorepc();
1863        die(str, regs);
1864}
1865
1866#define VECTORSPACING 0x100     /* for EI/VI mode */
1867
1868unsigned long ebase;
1869unsigned long exception_handlers[32];
1870unsigned long vi_handlers[64];
1871
1872void __init *set_except_vector(int n, void *addr)
1873{
1874        unsigned long handler = (unsigned long) addr;
1875        unsigned long old_handler;
1876
1877#ifdef CONFIG_CPU_MICROMIPS
1878        /*
1879         * Only the TLB handlers are cache aligned with an even
1880         * address. All other handlers are on an odd address and
1881         * require no modification. Otherwise, MIPS32 mode will
1882         * be entered when handling any TLB exceptions. That
1883         * would be bad...since we must stay in microMIPS mode.
1884         */
1885        if (!(handler & 0x1))
1886                handler |= 1;
1887#endif
1888        old_handler = xchg(&exception_handlers[n], handler);
1889
1890        if (n == 0 && cpu_has_divec) {
1891#ifdef CONFIG_CPU_MICROMIPS
1892                unsigned long jump_mask = ~((1 << 27) - 1);
1893#else
1894                unsigned long jump_mask = ~((1 << 28) - 1);
1895#endif
1896                u32 *buf = (u32 *)(ebase + 0x200);
1897                unsigned int k0 = 26;
1898                if ((handler & jump_mask) == ((ebase + 0x200) & jump_mask)) {
1899                        uasm_i_j(&buf, handler & ~jump_mask);
1900                        uasm_i_nop(&buf);
1901                } else {
1902                        UASM_i_LA(&buf, k0, handler);
1903                        uasm_i_jr(&buf, k0);
1904                        uasm_i_nop(&buf);
1905                }
1906                local_flush_icache_range(ebase + 0x200, (unsigned long)buf);
1907        }
1908        return (void *)old_handler;
1909}
1910
1911static void do_default_vi(void)
1912{
1913        show_regs(get_irq_regs());
1914        panic("Caught unexpected vectored interrupt.");
1915}
1916
1917static void *set_vi_srs_handler(int n, vi_handler_t addr, int srs)
1918{
1919        unsigned long handler;
1920        unsigned long old_handler = vi_handlers[n];
1921        int srssets = current_cpu_data.srsets;
1922        u16 *h;
1923        unsigned char *b;
1924
1925        BUG_ON(!cpu_has_veic && !cpu_has_vint);
1926
1927        if (addr == NULL) {
1928                handler = (unsigned long) do_default_vi;
1929                srs = 0;
1930        } else
1931                handler = (unsigned long) addr;
1932        vi_handlers[n] = handler;
1933
1934        b = (unsigned char *)(ebase + 0x200 + n*VECTORSPACING);
1935
1936        if (srs >= srssets)
1937                panic("Shadow register set %d not supported", srs);
1938
1939        if (cpu_has_veic) {
1940                if (board_bind_eic_interrupt)
1941                        board_bind_eic_interrupt(n, srs);
1942        } else if (cpu_has_vint) {
1943                /* SRSMap is only defined if shadow sets are implemented */
1944                if (srssets > 1)
1945                        change_c0_srsmap(0xf << n*4, srs << n*4);
1946        }
1947
1948        if (srs == 0) {
1949                /*
1950                 * If no shadow set is selected then use the default handler
1951                 * that does normal register saving and standard interrupt exit
1952                 */
1953                extern char except_vec_vi, except_vec_vi_lui;
1954                extern char except_vec_vi_ori, except_vec_vi_end;
1955                extern char rollback_except_vec_vi;
1956                char *vec_start = using_rollback_handler() ?
1957                        &rollback_except_vec_vi : &except_vec_vi;
1958#if defined(CONFIG_CPU_MICROMIPS) || defined(CONFIG_CPU_BIG_ENDIAN)
1959                const int lui_offset = &except_vec_vi_lui - vec_start + 2;
1960                const int ori_offset = &except_vec_vi_ori - vec_start + 2;
1961#else
1962                const int lui_offset = &except_vec_vi_lui - vec_start;
1963                const int ori_offset = &except_vec_vi_ori - vec_start;
1964#endif
1965                const int handler_len = &except_vec_vi_end - vec_start;
1966
1967                if (handler_len > VECTORSPACING) {
1968                        /*
1969                         * Sigh... panicing won't help as the console
1970                         * is probably not configured :(
1971                         */
1972                        panic("VECTORSPACING too small");
1973                }
1974
1975                set_handler(((unsigned long)b - ebase), vec_start,
1976#ifdef CONFIG_CPU_MICROMIPS
1977                                (handler_len - 1));
1978#else
1979                                handler_len);
1980#endif
1981                h = (u16 *)(b + lui_offset);
1982                *h = (handler >> 16) & 0xffff;
1983                h = (u16 *)(b + ori_offset);
1984                *h = (handler & 0xffff);
1985                local_flush_icache_range((unsigned long)b,
1986                                         (unsigned long)(b+handler_len));
1987        }
1988        else {
1989                /*
1990                 * In other cases jump directly to the interrupt handler. It
1991                 * is the handler's responsibility to save registers if required
1992                 * (eg hi/lo) and return from the exception using "eret".
1993                 */
1994                u32 insn;
1995
1996                h = (u16 *)b;
1997                /* j handler */
1998#ifdef CONFIG_CPU_MICROMIPS
1999                insn = 0xd4000000 | (((u32)handler & 0x07ffffff) >> 1);
2000#else
2001                insn = 0x08000000 | (((u32)handler & 0x0fffffff) >> 2);
2002#endif
2003                h[0] = (insn >> 16) & 0xffff;
2004                h[1] = insn & 0xffff;
2005                h[2] = 0;
2006                h[3] = 0;
2007                local_flush_icache_range((unsigned long)b,
2008                                         (unsigned long)(b+8));
2009        }
2010
2011        return (void *)old_handler;
2012}
2013
2014void *set_vi_handler(int n, vi_handler_t addr)
2015{
2016        return set_vi_srs_handler(n, addr, 0);
2017}
2018
2019extern void tlb_init(void);
2020
2021/*
2022 * Timer interrupt
2023 */
2024int cp0_compare_irq;
2025EXPORT_SYMBOL_GPL(cp0_compare_irq);
2026int cp0_compare_irq_shift;
2027
2028/*
2029 * Performance counter IRQ or -1 if shared with timer
2030 */
2031int cp0_perfcount_irq;
2032EXPORT_SYMBOL_GPL(cp0_perfcount_irq);
2033
2034/*
2035 * Fast debug channel IRQ or -1 if not present
2036 */
2037int cp0_fdc_irq;
2038EXPORT_SYMBOL_GPL(cp0_fdc_irq);
2039
2040static int noulri;
2041
2042static int __init ulri_disable(char *s)
2043{
2044        pr_info("Disabling ulri\n");
2045        noulri = 1;
2046
2047        return 1;
2048}
2049__setup("noulri", ulri_disable);
2050
2051/* configure STATUS register */
2052static void configure_status(void)
2053{
2054        /*
2055         * Disable coprocessors and select 32-bit or 64-bit addressing
2056         * and the 16/32 or 32/32 FPR register model.  Reset the BEV
2057         * flag that some firmware may have left set and the TS bit (for
2058         * IP27).  Set XX for ISA IV code to work.
2059         */
2060        unsigned int status_set = ST0_CU0;
2061#ifdef CONFIG_64BIT
2062        status_set |= ST0_FR|ST0_KX|ST0_SX|ST0_UX;
2063#endif
2064        if (current_cpu_data.isa_level & MIPS_CPU_ISA_IV)
2065                status_set |= ST0_XX;
2066        if (cpu_has_dsp)
2067                status_set |= ST0_MX;
2068
2069        change_c0_status(ST0_CU|ST0_MX|ST0_RE|ST0_FR|ST0_BEV|ST0_TS|ST0_KX|ST0_SX|ST0_UX,
2070                         status_set);
2071}
2072
2073/* configure HWRENA register */
2074static void configure_hwrena(void)
2075{
2076        unsigned int hwrena = cpu_hwrena_impl_bits;
2077
2078        if (cpu_has_mips_r2_r6)
2079                hwrena |= 0x0000000f;
2080
2081        if (!noulri && cpu_has_userlocal)
2082                hwrena |= (1 << 29);
2083
2084        if (hwrena)
2085                write_c0_hwrena(hwrena);
2086}
2087
2088static void configure_exception_vector(void)
2089{
2090        if (cpu_has_veic || cpu_has_vint) {
2091                unsigned long sr = set_c0_status(ST0_BEV);
2092                write_c0_ebase(ebase);
2093                write_c0_status(sr);
2094                /* Setting vector spacing enables EI/VI mode  */
2095                change_c0_intctl(0x3e0, VECTORSPACING);
2096        }
2097        if (cpu_has_divec) {
2098                if (cpu_has_mipsmt) {
2099                        unsigned int vpflags = dvpe();
2100                        set_c0_cause(CAUSEF_IV);
2101                        evpe(vpflags);
2102                } else
2103                        set_c0_cause(CAUSEF_IV);
2104        }
2105}
2106
2107void per_cpu_trap_init(bool is_boot_cpu)
2108{
2109        unsigned int cpu = smp_processor_id();
2110
2111        configure_status();
2112        configure_hwrena();
2113
2114        configure_exception_vector();
2115
2116        /*
2117         * Before R2 both interrupt numbers were fixed to 7, so on R2 only:
2118         *
2119         *  o read IntCtl.IPTI to determine the timer interrupt
2120         *  o read IntCtl.IPPCI to determine the performance counter interrupt
2121         *  o read IntCtl.IPFDC to determine the fast debug channel interrupt
2122         */
2123        if (cpu_has_mips_r2_r6) {
2124                cp0_compare_irq_shift = CAUSEB_TI - CAUSEB_IP;
2125                cp0_compare_irq = (read_c0_intctl() >> INTCTLB_IPTI) & 7;
2126                cp0_perfcount_irq = (read_c0_intctl() >> INTCTLB_IPPCI) & 7;
2127                cp0_fdc_irq = (read_c0_intctl() >> INTCTLB_IPFDC) & 7;
2128                if (!cp0_fdc_irq)
2129                        cp0_fdc_irq = -1;
2130
2131        } else {
2132                cp0_compare_irq = CP0_LEGACY_COMPARE_IRQ;
2133                cp0_compare_irq_shift = CP0_LEGACY_PERFCNT_IRQ;
2134                cp0_perfcount_irq = -1;
2135                cp0_fdc_irq = -1;
2136        }
2137
2138        if (!cpu_data[cpu].asid_cache)
2139                cpu_data[cpu].asid_cache = ASID_FIRST_VERSION;
2140
2141        atomic_inc(&init_mm.mm_count);
2142        current->active_mm = &init_mm;
2143        BUG_ON(current->mm);
2144        enter_lazy_tlb(&init_mm, current);
2145
2146        /* Boot CPU's cache setup in setup_arch(). */
2147        if (!is_boot_cpu)
2148                cpu_cache_init();
2149        tlb_init();
2150        TLBMISS_HANDLER_SETUP();
2151}
2152
2153/* Install CPU exception handler */
2154void set_handler(unsigned long offset, void *addr, unsigned long size)
2155{
2156#ifdef CONFIG_CPU_MICROMIPS
2157        memcpy((void *)(ebase + offset), ((unsigned char *)addr - 1), size);
2158#else
2159        memcpy((void *)(ebase + offset), addr, size);
2160#endif
2161        local_flush_icache_range(ebase + offset, ebase + offset + size);
2162}
2163
2164static char panic_null_cerr[] =
2165        "Trying to set NULL cache error exception handler";
2166
2167/*
2168 * Install uncached CPU exception handler.
2169 * This is suitable only for the cache error exception which is the only
2170 * exception handler that is being run uncached.
2171 */
2172void set_uncached_handler(unsigned long offset, void *addr,
2173        unsigned long size)
2174{
2175        unsigned long uncached_ebase = CKSEG1ADDR(ebase);
2176
2177        if (!addr)
2178                panic(panic_null_cerr);
2179
2180        memcpy((void *)(uncached_ebase + offset), addr, size);
2181}
2182
2183static int __initdata rdhwr_noopt;
2184static int __init set_rdhwr_noopt(char *str)
2185{
2186        rdhwr_noopt = 1;
2187        return 1;
2188}
2189
2190__setup("rdhwr_noopt", set_rdhwr_noopt);
2191
2192void __init trap_init(void)
2193{
2194        extern char except_vec3_generic;
2195        extern char except_vec4;
2196        extern char except_vec3_r4000;
2197        unsigned long i;
2198
2199        check_wait();
2200
2201        if (cpu_has_veic || cpu_has_vint) {
2202                unsigned long size = 0x200 + VECTORSPACING*64;
2203                ebase = (unsigned long)
2204                        __alloc_bootmem(size, 1 << fls(size), 0);
2205        } else {
2206#ifdef CONFIG_KVM_GUEST
2207#define KVM_GUEST_KSEG0     0x40000000
2208        ebase = KVM_GUEST_KSEG0;
2209#else
2210        ebase = CKSEG0;
2211#endif
2212                if (cpu_has_mips_r2_r6)
2213                        ebase += (read_c0_ebase() & 0x3ffff000);
2214        }
2215
2216        if (cpu_has_mmips) {
2217                unsigned int config3 = read_c0_config3();
2218
2219                if (IS_ENABLED(CONFIG_CPU_MICROMIPS))
2220                        write_c0_config3(config3 | MIPS_CONF3_ISA_OE);
2221                else
2222                        write_c0_config3(config3 & ~MIPS_CONF3_ISA_OE);
2223        }
2224
2225        if (board_ebase_setup)
2226                board_ebase_setup();
2227        per_cpu_trap_init(true);
2228
2229        /*
2230         * Copy the generic exception handlers to their final destination.
2231         * This will be overriden later as suitable for a particular
2232         * configuration.
2233         */
2234        set_handler(0x180, &except_vec3_generic, 0x80);
2235
2236        /*
2237         * Setup default vectors
2238         */
2239        for (i = 0; i <= 31; i++)
2240                set_except_vector(i, handle_reserved);
2241
2242        /*
2243         * Copy the EJTAG debug exception vector handler code to it's final
2244         * destination.
2245         */
2246        if (cpu_has_ejtag && board_ejtag_handler_setup)
2247                board_ejtag_handler_setup();
2248
2249        /*
2250         * Only some CPUs have the watch exceptions.
2251         */
2252        if (cpu_has_watch)
2253                set_except_vector(23, handle_watch);
2254
2255        /*
2256         * Initialise interrupt handlers
2257         */
2258        if (cpu_has_veic || cpu_has_vint) {
2259                int nvec = cpu_has_veic ? 64 : 8;
2260                for (i = 0; i < nvec; i++)
2261                        set_vi_handler(i, NULL);
2262        }
2263        else if (cpu_has_divec)
2264                set_handler(0x200, &except_vec4, 0x8);
2265
2266        /*
2267         * Some CPUs can enable/disable for cache parity detection, but does
2268         * it different ways.
2269         */
2270        parity_protection_init();
2271
2272        /*
2273         * The Data Bus Errors / Instruction Bus Errors are signaled
2274         * by external hardware.  Therefore these two exceptions
2275         * may have board specific handlers.
2276         */
2277        if (board_be_init)
2278                board_be_init();
2279
2280        set_except_vector(0, using_rollback_handler() ? rollback_handle_int
2281                                                      : handle_int);
2282        set_except_vector(1, handle_tlbm);
2283        set_except_vector(2, handle_tlbl);
2284        set_except_vector(3, handle_tlbs);
2285
2286        set_except_vector(4, handle_adel);
2287        set_except_vector(5, handle_ades);
2288
2289        set_except_vector(6, handle_ibe);
2290        set_except_vector(7, handle_dbe);
2291
2292        set_except_vector(8, handle_sys);
2293        set_except_vector(9, handle_bp);
2294        set_except_vector(10, rdhwr_noopt ? handle_ri :
2295                          (cpu_has_vtag_icache ?
2296                           handle_ri_rdhwr_vivt : handle_ri_rdhwr));
2297        set_except_vector(11, handle_cpu);
2298        set_except_vector(12, handle_ov);
2299        set_except_vector(13, handle_tr);
2300        set_except_vector(14, handle_msa_fpe);
2301
2302        if (current_cpu_type() == CPU_R6000 ||
2303            current_cpu_type() == CPU_R6000A) {
2304                /*
2305                 * The R6000 is the only R-series CPU that features a machine
2306                 * check exception (similar to the R4000 cache error) and
2307                 * unaligned ldc1/sdc1 exception.  The handlers have not been
2308                 * written yet.  Well, anyway there is no R6000 machine on the
2309                 * current list of targets for Linux/MIPS.
2310                 * (Duh, crap, there is someone with a triple R6k machine)
2311                 */
2312                //set_except_vector(14, handle_mc);
2313                //set_except_vector(15, handle_ndc);
2314        }
2315
2316
2317        if (board_nmi_handler_setup)
2318                board_nmi_handler_setup();
2319
2320        if (cpu_has_fpu && !cpu_has_nofpuex)
2321                set_except_vector(15, handle_fpe);
2322
2323        set_except_vector(16, handle_ftlb);
2324
2325        if (cpu_has_rixiex) {
2326                set_except_vector(19, tlb_do_page_fault_0);
2327                set_except_vector(20, tlb_do_page_fault_0);
2328        }
2329
2330        set_except_vector(21, handle_msa);
2331        set_except_vector(22, handle_mdmx);
2332
2333        if (cpu_has_mcheck)
2334                set_except_vector(24, handle_mcheck);
2335
2336        if (cpu_has_mipsmt)
2337                set_except_vector(25, handle_mt);
2338
2339        set_except_vector(26, handle_dsp);
2340
2341        if (board_cache_error_setup)
2342                board_cache_error_setup();
2343
2344        if (cpu_has_vce)
2345                /* Special exception: R4[04]00 uses also the divec space. */
2346                set_handler(0x180, &except_vec3_r4000, 0x100);
2347        else if (cpu_has_4kex)
2348                set_handler(0x180, &except_vec3_generic, 0x80);
2349        else
2350                set_handler(0x080, &except_vec3_generic, 0x80);
2351
2352        local_flush_icache_range(ebase, ebase + 0x400);
2353
2354        sort_extable(__start___dbe_table, __stop___dbe_table);
2355
2356        cu2_notifier(default_cu2_call, 0x80000000);     /* Run last  */
2357}
2358
2359static int trap_pm_notifier(struct notifier_block *self, unsigned long cmd,
2360                            void *v)
2361{
2362        switch (cmd) {
2363        case CPU_PM_ENTER_FAILED:
2364        case CPU_PM_EXIT:
2365                configure_status();
2366                configure_hwrena();
2367                configure_exception_vector();
2368
2369                /* Restore register with CPU number for TLB handlers */
2370                TLBMISS_HANDLER_RESTORE();
2371
2372                break;
2373        }
2374
2375        return NOTIFY_OK;
2376}
2377
2378static struct notifier_block trap_pm_notifier_block = {
2379        .notifier_call = trap_pm_notifier,
2380};
2381
2382static int __init trap_pm_init(void)
2383{
2384        return cpu_pm_register_notifier(&trap_pm_notifier_block);
2385}
2386arch_initcall(trap_pm_init);
2387