linux/arch/powerpc/perf/core-book3s.c
<<
>>
Prefs
   1/*
   2 * Performance event support - powerpc architecture code
   3 *
   4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/hardirq.h>
  16#include <linux/uaccess.h>
  17#include <asm/reg.h>
  18#include <asm/pmc.h>
  19#include <asm/machdep.h>
  20#include <asm/firmware.h>
  21#include <asm/ptrace.h>
  22#include <asm/code-patching.h>
  23
  24#define BHRB_MAX_ENTRIES        32
  25#define BHRB_TARGET             0x0000000000000002
  26#define BHRB_PREDICTION         0x0000000000000001
  27#define BHRB_EA                 0xFFFFFFFFFFFFFFFCUL
  28
  29struct cpu_hw_events {
  30        int n_events;
  31        int n_percpu;
  32        int disabled;
  33        int n_added;
  34        int n_limited;
  35        u8  pmcs_enabled;
  36        struct perf_event *event[MAX_HWEVENTS];
  37        u64 events[MAX_HWEVENTS];
  38        unsigned int flags[MAX_HWEVENTS];
  39        /*
  40         * The order of the MMCR array is:
  41         *  - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
  42         *  - 32-bit, MMCR0, MMCR1, MMCR2
  43         */
  44        unsigned long mmcr[4];
  45        struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
  46        u8  limited_hwidx[MAX_LIMITED_HWCOUNTERS];
  47        u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  48        unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  49        unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
  50
  51        unsigned int group_flag;
  52        int n_txn_start;
  53
  54        /* BHRB bits */
  55        u64                             bhrb_filter;    /* BHRB HW branch filter */
  56        int                             bhrb_users;
  57        void                            *bhrb_context;
  58        struct  perf_branch_stack       bhrb_stack;
  59        struct  perf_branch_entry       bhrb_entries[BHRB_MAX_ENTRIES];
  60};
  61
  62static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
  63
  64static struct power_pmu *ppmu;
  65
  66/*
  67 * Normally, to ignore kernel events we set the FCS (freeze counters
  68 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
  69 * hypervisor bit set in the MSR, or if we are running on a processor
  70 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
  71 * then we need to use the FCHV bit to ignore kernel events.
  72 */
  73static unsigned int freeze_events_kernel = MMCR0_FCS;
  74
  75/*
  76 * 32-bit doesn't have MMCRA but does have an MMCR2,
  77 * and a few other names are different.
  78 */
  79#ifdef CONFIG_PPC32
  80
  81#define MMCR0_FCHV              0
  82#define MMCR0_PMCjCE            MMCR0_PMCnCE
  83#define MMCR0_FC56              0
  84#define MMCR0_PMAO              0
  85#define MMCR0_EBE               0
  86#define MMCR0_BHRBA             0
  87#define MMCR0_PMCC              0
  88#define MMCR0_PMCC_U6           0
  89
  90#define SPRN_MMCRA              SPRN_MMCR2
  91#define MMCRA_SAMPLE_ENABLE     0
  92
  93static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
  94{
  95        return 0;
  96}
  97static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
  98static inline u32 perf_get_misc_flags(struct pt_regs *regs)
  99{
 100        return 0;
 101}
 102static inline void perf_read_regs(struct pt_regs *regs)
 103{
 104        regs->result = 0;
 105}
 106static inline int perf_intr_is_nmi(struct pt_regs *regs)
 107{
 108        return 0;
 109}
 110
 111static inline int siar_valid(struct pt_regs *regs)
 112{
 113        return 1;
 114}
 115
 116static bool is_ebb_event(struct perf_event *event) { return false; }
 117static int ebb_event_check(struct perf_event *event) { return 0; }
 118static void ebb_event_add(struct perf_event *event) { }
 119static void ebb_switch_out(unsigned long mmcr0) { }
 120static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 121{
 122        return cpuhw->mmcr[0];
 123}
 124
 125static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
 126static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
 127static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
 128static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
 129static void pmao_restore_workaround(bool ebb) { }
 130#endif /* CONFIG_PPC32 */
 131
 132static bool regs_use_siar(struct pt_regs *regs)
 133{
 134        /*
 135         * When we take a performance monitor exception the regs are setup
 136         * using perf_read_regs() which overloads some fields, in particular
 137         * regs->result to tell us whether to use SIAR.
 138         *
 139         * However if the regs are from another exception, eg. a syscall, then
 140         * they have not been setup using perf_read_regs() and so regs->result
 141         * is something random.
 142         */
 143        return ((TRAP(regs) == 0xf00) && regs->result);
 144}
 145
 146/*
 147 * Things that are specific to 64-bit implementations.
 148 */
 149#ifdef CONFIG_PPC64
 150
 151static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
 152{
 153        unsigned long mmcra = regs->dsisr;
 154
 155        if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
 156                unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
 157                if (slot > 1)
 158                        return 4 * (slot - 1);
 159        }
 160
 161        return 0;
 162}
 163
 164/*
 165 * The user wants a data address recorded.
 166 * If we're not doing instruction sampling, give them the SDAR
 167 * (sampled data address).  If we are doing instruction sampling, then
 168 * only give them the SDAR if it corresponds to the instruction
 169 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
 170 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
 171 */
 172static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
 173{
 174        unsigned long mmcra = regs->dsisr;
 175        bool sdar_valid;
 176
 177        if (ppmu->flags & PPMU_HAS_SIER)
 178                sdar_valid = regs->dar & SIER_SDAR_VALID;
 179        else {
 180                unsigned long sdsync;
 181
 182                if (ppmu->flags & PPMU_SIAR_VALID)
 183                        sdsync = POWER7P_MMCRA_SDAR_VALID;
 184                else if (ppmu->flags & PPMU_ALT_SIPR)
 185                        sdsync = POWER6_MMCRA_SDSYNC;
 186                else
 187                        sdsync = MMCRA_SDSYNC;
 188
 189                sdar_valid = mmcra & sdsync;
 190        }
 191
 192        if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
 193                *addrp = mfspr(SPRN_SDAR);
 194}
 195
 196static bool regs_sihv(struct pt_regs *regs)
 197{
 198        unsigned long sihv = MMCRA_SIHV;
 199
 200        if (ppmu->flags & PPMU_HAS_SIER)
 201                return !!(regs->dar & SIER_SIHV);
 202
 203        if (ppmu->flags & PPMU_ALT_SIPR)
 204                sihv = POWER6_MMCRA_SIHV;
 205
 206        return !!(regs->dsisr & sihv);
 207}
 208
 209static bool regs_sipr(struct pt_regs *regs)
 210{
 211        unsigned long sipr = MMCRA_SIPR;
 212
 213        if (ppmu->flags & PPMU_HAS_SIER)
 214                return !!(regs->dar & SIER_SIPR);
 215
 216        if (ppmu->flags & PPMU_ALT_SIPR)
 217                sipr = POWER6_MMCRA_SIPR;
 218
 219        return !!(regs->dsisr & sipr);
 220}
 221
 222static inline u32 perf_flags_from_msr(struct pt_regs *regs)
 223{
 224        if (regs->msr & MSR_PR)
 225                return PERF_RECORD_MISC_USER;
 226        if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
 227                return PERF_RECORD_MISC_HYPERVISOR;
 228        return PERF_RECORD_MISC_KERNEL;
 229}
 230
 231static inline u32 perf_get_misc_flags(struct pt_regs *regs)
 232{
 233        bool use_siar = regs_use_siar(regs);
 234
 235        if (!use_siar)
 236                return perf_flags_from_msr(regs);
 237
 238        /*
 239         * If we don't have flags in MMCRA, rather than using
 240         * the MSR, we intuit the flags from the address in
 241         * SIAR which should give slightly more reliable
 242         * results
 243         */
 244        if (ppmu->flags & PPMU_NO_SIPR) {
 245                unsigned long siar = mfspr(SPRN_SIAR);
 246                if (siar >= PAGE_OFFSET)
 247                        return PERF_RECORD_MISC_KERNEL;
 248                return PERF_RECORD_MISC_USER;
 249        }
 250
 251        /* PR has priority over HV, so order below is important */
 252        if (regs_sipr(regs))
 253                return PERF_RECORD_MISC_USER;
 254
 255        if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
 256                return PERF_RECORD_MISC_HYPERVISOR;
 257
 258        return PERF_RECORD_MISC_KERNEL;
 259}
 260
 261/*
 262 * Overload regs->dsisr to store MMCRA so we only need to read it once
 263 * on each interrupt.
 264 * Overload regs->dar to store SIER if we have it.
 265 * Overload regs->result to specify whether we should use the MSR (result
 266 * is zero) or the SIAR (result is non zero).
 267 */
 268static inline void perf_read_regs(struct pt_regs *regs)
 269{
 270        unsigned long mmcra = mfspr(SPRN_MMCRA);
 271        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 272        int use_siar;
 273
 274        regs->dsisr = mmcra;
 275
 276        if (ppmu->flags & PPMU_HAS_SIER)
 277                regs->dar = mfspr(SPRN_SIER);
 278
 279        /*
 280         * If this isn't a PMU exception (eg a software event) the SIAR is
 281         * not valid. Use pt_regs.
 282         *
 283         * If it is a marked event use the SIAR.
 284         *
 285         * If the PMU doesn't update the SIAR for non marked events use
 286         * pt_regs.
 287         *
 288         * If the PMU has HV/PR flags then check to see if they
 289         * place the exception in userspace. If so, use pt_regs. In
 290         * continuous sampling mode the SIAR and the PMU exception are
 291         * not synchronised, so they may be many instructions apart.
 292         * This can result in confusing backtraces. We still want
 293         * hypervisor samples as well as samples in the kernel with
 294         * interrupts off hence the userspace check.
 295         */
 296        if (TRAP(regs) != 0xf00)
 297                use_siar = 0;
 298        else if (marked)
 299                use_siar = 1;
 300        else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
 301                use_siar = 0;
 302        else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
 303                use_siar = 0;
 304        else
 305                use_siar = 1;
 306
 307        regs->result = use_siar;
 308}
 309
 310/*
 311 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
 312 * it as an NMI.
 313 */
 314static inline int perf_intr_is_nmi(struct pt_regs *regs)
 315{
 316        return !regs->softe;
 317}
 318
 319/*
 320 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
 321 * must be sampled only if the SIAR-valid bit is set.
 322 *
 323 * For unmarked instructions and for processors that don't have the SIAR-Valid
 324 * bit, assume that SIAR is valid.
 325 */
 326static inline int siar_valid(struct pt_regs *regs)
 327{
 328        unsigned long mmcra = regs->dsisr;
 329        int marked = mmcra & MMCRA_SAMPLE_ENABLE;
 330
 331        if (marked) {
 332                if (ppmu->flags & PPMU_HAS_SIER)
 333                        return regs->dar & SIER_SIAR_VALID;
 334
 335                if (ppmu->flags & PPMU_SIAR_VALID)
 336                        return mmcra & POWER7P_MMCRA_SIAR_VALID;
 337        }
 338
 339        return 1;
 340}
 341
 342
 343/* Reset all possible BHRB entries */
 344static void power_pmu_bhrb_reset(void)
 345{
 346        asm volatile(PPC_CLRBHRB);
 347}
 348
 349static void power_pmu_bhrb_enable(struct perf_event *event)
 350{
 351        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 352
 353        if (!ppmu->bhrb_nr)
 354                return;
 355
 356        /* Clear BHRB if we changed task context to avoid data leaks */
 357        if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
 358                power_pmu_bhrb_reset();
 359                cpuhw->bhrb_context = event->ctx;
 360        }
 361        cpuhw->bhrb_users++;
 362        perf_sched_cb_inc(event->ctx->pmu);
 363}
 364
 365static void power_pmu_bhrb_disable(struct perf_event *event)
 366{
 367        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
 368
 369        if (!ppmu->bhrb_nr)
 370                return;
 371
 372        cpuhw->bhrb_users--;
 373        WARN_ON_ONCE(cpuhw->bhrb_users < 0);
 374        perf_sched_cb_dec(event->ctx->pmu);
 375
 376        if (!cpuhw->disabled && !cpuhw->bhrb_users) {
 377                /* BHRB cannot be turned off when other
 378                 * events are active on the PMU.
 379                 */
 380
 381                /* avoid stale pointer */
 382                cpuhw->bhrb_context = NULL;
 383        }
 384}
 385
 386/* Called from ctxsw to prevent one process's branch entries to
 387 * mingle with the other process's entries during context switch.
 388 */
 389static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
 390{
 391        if (!ppmu->bhrb_nr)
 392                return;
 393
 394        if (sched_in)
 395                power_pmu_bhrb_reset();
 396}
 397/* Calculate the to address for a branch */
 398static __u64 power_pmu_bhrb_to(u64 addr)
 399{
 400        unsigned int instr;
 401        int ret;
 402        __u64 target;
 403
 404        if (is_kernel_addr(addr))
 405                return branch_target((unsigned int *)addr);
 406
 407        /* Userspace: need copy instruction here then translate it */
 408        pagefault_disable();
 409        ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
 410        if (ret) {
 411                pagefault_enable();
 412                return 0;
 413        }
 414        pagefault_enable();
 415
 416        target = branch_target(&instr);
 417        if ((!target) || (instr & BRANCH_ABSOLUTE))
 418                return target;
 419
 420        /* Translate relative branch target from kernel to user address */
 421        return target - (unsigned long)&instr + addr;
 422}
 423
 424/* Processing BHRB entries */
 425static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
 426{
 427        u64 val;
 428        u64 addr;
 429        int r_index, u_index, pred;
 430
 431        r_index = 0;
 432        u_index = 0;
 433        while (r_index < ppmu->bhrb_nr) {
 434                /* Assembly read function */
 435                val = read_bhrb(r_index++);
 436                if (!val)
 437                        /* Terminal marker: End of valid BHRB entries */
 438                        break;
 439                else {
 440                        addr = val & BHRB_EA;
 441                        pred = val & BHRB_PREDICTION;
 442
 443                        if (!addr)
 444                                /* invalid entry */
 445                                continue;
 446
 447                        /* Branches are read most recent first (ie. mfbhrb 0 is
 448                         * the most recent branch).
 449                         * There are two types of valid entries:
 450                         * 1) a target entry which is the to address of a
 451                         *    computed goto like a blr,bctr,btar.  The next
 452                         *    entry read from the bhrb will be branch
 453                         *    corresponding to this target (ie. the actual
 454                         *    blr/bctr/btar instruction).
 455                         * 2) a from address which is an actual branch.  If a
 456                         *    target entry proceeds this, then this is the
 457                         *    matching branch for that target.  If this is not
 458                         *    following a target entry, then this is a branch
 459                         *    where the target is given as an immediate field
 460                         *    in the instruction (ie. an i or b form branch).
 461                         *    In this case we need to read the instruction from
 462                         *    memory to determine the target/to address.
 463                         */
 464
 465                        if (val & BHRB_TARGET) {
 466                                /* Target branches use two entries
 467                                 * (ie. computed gotos/XL form)
 468                                 */
 469                                cpuhw->bhrb_entries[u_index].to = addr;
 470                                cpuhw->bhrb_entries[u_index].mispred = pred;
 471                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 472
 473                                /* Get from address in next entry */
 474                                val = read_bhrb(r_index++);
 475                                addr = val & BHRB_EA;
 476                                if (val & BHRB_TARGET) {
 477                                        /* Shouldn't have two targets in a
 478                                           row.. Reset index and try again */
 479                                        r_index--;
 480                                        addr = 0;
 481                                }
 482                                cpuhw->bhrb_entries[u_index].from = addr;
 483                        } else {
 484                                /* Branches to immediate field 
 485                                   (ie I or B form) */
 486                                cpuhw->bhrb_entries[u_index].from = addr;
 487                                cpuhw->bhrb_entries[u_index].to =
 488                                        power_pmu_bhrb_to(addr);
 489                                cpuhw->bhrb_entries[u_index].mispred = pred;
 490                                cpuhw->bhrb_entries[u_index].predicted = ~pred;
 491                        }
 492                        u_index++;
 493
 494                }
 495        }
 496        cpuhw->bhrb_stack.nr = u_index;
 497        return;
 498}
 499
 500static bool is_ebb_event(struct perf_event *event)
 501{
 502        /*
 503         * This could be a per-PMU callback, but we'd rather avoid the cost. We
 504         * check that the PMU supports EBB, meaning those that don't can still
 505         * use bit 63 of the event code for something else if they wish.
 506         */
 507        return (ppmu->flags & PPMU_ARCH_207S) &&
 508               ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
 509}
 510
 511static int ebb_event_check(struct perf_event *event)
 512{
 513        struct perf_event *leader = event->group_leader;
 514
 515        /* Event and group leader must agree on EBB */
 516        if (is_ebb_event(leader) != is_ebb_event(event))
 517                return -EINVAL;
 518
 519        if (is_ebb_event(event)) {
 520                if (!(event->attach_state & PERF_ATTACH_TASK))
 521                        return -EINVAL;
 522
 523                if (!leader->attr.pinned || !leader->attr.exclusive)
 524                        return -EINVAL;
 525
 526                if (event->attr.freq ||
 527                    event->attr.inherit ||
 528                    event->attr.sample_type ||
 529                    event->attr.sample_period ||
 530                    event->attr.enable_on_exec)
 531                        return -EINVAL;
 532        }
 533
 534        return 0;
 535}
 536
 537static void ebb_event_add(struct perf_event *event)
 538{
 539        if (!is_ebb_event(event) || current->thread.used_ebb)
 540                return;
 541
 542        /*
 543         * IFF this is the first time we've added an EBB event, set
 544         * PMXE in the user MMCR0 so we can detect when it's cleared by
 545         * userspace. We need this so that we can context switch while
 546         * userspace is in the EBB handler (where PMXE is 0).
 547         */
 548        current->thread.used_ebb = 1;
 549        current->thread.mmcr0 |= MMCR0_PMXE;
 550}
 551
 552static void ebb_switch_out(unsigned long mmcr0)
 553{
 554        if (!(mmcr0 & MMCR0_EBE))
 555                return;
 556
 557        current->thread.siar  = mfspr(SPRN_SIAR);
 558        current->thread.sier  = mfspr(SPRN_SIER);
 559        current->thread.sdar  = mfspr(SPRN_SDAR);
 560        current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
 561        current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
 562}
 563
 564static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
 565{
 566        unsigned long mmcr0 = cpuhw->mmcr[0];
 567
 568        if (!ebb)
 569                goto out;
 570
 571        /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
 572        mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
 573
 574        /*
 575         * Add any bits from the user MMCR0, FC or PMAO. This is compatible
 576         * with pmao_restore_workaround() because we may add PMAO but we never
 577         * clear it here.
 578         */
 579        mmcr0 |= current->thread.mmcr0;
 580
 581        /*
 582         * Be careful not to set PMXE if userspace had it cleared. This is also
 583         * compatible with pmao_restore_workaround() because it has already
 584         * cleared PMXE and we leave PMAO alone.
 585         */
 586        if (!(current->thread.mmcr0 & MMCR0_PMXE))
 587                mmcr0 &= ~MMCR0_PMXE;
 588
 589        mtspr(SPRN_SIAR, current->thread.siar);
 590        mtspr(SPRN_SIER, current->thread.sier);
 591        mtspr(SPRN_SDAR, current->thread.sdar);
 592
 593        /*
 594         * Merge the kernel & user values of MMCR2. The semantics we implement
 595         * are that the user MMCR2 can set bits, ie. cause counters to freeze,
 596         * but not clear bits. If a task wants to be able to clear bits, ie.
 597         * unfreeze counters, it should not set exclude_xxx in its events and
 598         * instead manage the MMCR2 entirely by itself.
 599         */
 600        mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
 601out:
 602        return mmcr0;
 603}
 604
 605static void pmao_restore_workaround(bool ebb)
 606{
 607        unsigned pmcs[6];
 608
 609        if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
 610                return;
 611
 612        /*
 613         * On POWER8E there is a hardware defect which affects the PMU context
 614         * switch logic, ie. power_pmu_disable/enable().
 615         *
 616         * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
 617         * by the hardware. Sometime later the actual PMU exception is
 618         * delivered.
 619         *
 620         * If we context switch, or simply disable/enable, the PMU prior to the
 621         * exception arriving, the exception will be lost when we clear PMAO.
 622         *
 623         * When we reenable the PMU, we will write the saved MMCR0 with PMAO
 624         * set, and this _should_ generate an exception. However because of the
 625         * defect no exception is generated when we write PMAO, and we get
 626         * stuck with no counters counting but no exception delivered.
 627         *
 628         * The workaround is to detect this case and tweak the hardware to
 629         * create another pending PMU exception.
 630         *
 631         * We do that by setting up PMC6 (cycles) for an imminent overflow and
 632         * enabling the PMU. That causes a new exception to be generated in the
 633         * chip, but we don't take it yet because we have interrupts hard
 634         * disabled. We then write back the PMU state as we want it to be seen
 635         * by the exception handler. When we reenable interrupts the exception
 636         * handler will be called and see the correct state.
 637         *
 638         * The logic is the same for EBB, except that the exception is gated by
 639         * us having interrupts hard disabled as well as the fact that we are
 640         * not in userspace. The exception is finally delivered when we return
 641         * to userspace.
 642         */
 643
 644        /* Only if PMAO is set and PMAO_SYNC is clear */
 645        if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
 646                return;
 647
 648        /* If we're doing EBB, only if BESCR[GE] is set */
 649        if (ebb && !(current->thread.bescr & BESCR_GE))
 650                return;
 651
 652        /*
 653         * We are already soft-disabled in power_pmu_enable(). We need to hard
 654         * enable to actually prevent the PMU exception from firing.
 655         */
 656        hard_irq_disable();
 657
 658        /*
 659         * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
 660         * Using read/write_pmc() in a for loop adds 12 function calls and
 661         * almost doubles our code size.
 662         */
 663        pmcs[0] = mfspr(SPRN_PMC1);
 664        pmcs[1] = mfspr(SPRN_PMC2);
 665        pmcs[2] = mfspr(SPRN_PMC3);
 666        pmcs[3] = mfspr(SPRN_PMC4);
 667        pmcs[4] = mfspr(SPRN_PMC5);
 668        pmcs[5] = mfspr(SPRN_PMC6);
 669
 670        /* Ensure all freeze bits are unset */
 671        mtspr(SPRN_MMCR2, 0);
 672
 673        /* Set up PMC6 to overflow in one cycle */
 674        mtspr(SPRN_PMC6, 0x7FFFFFFE);
 675
 676        /* Enable exceptions and unfreeze PMC6 */
 677        mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
 678
 679        /* Now we need to refreeze and restore the PMCs */
 680        mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
 681
 682        mtspr(SPRN_PMC1, pmcs[0]);
 683        mtspr(SPRN_PMC2, pmcs[1]);
 684        mtspr(SPRN_PMC3, pmcs[2]);
 685        mtspr(SPRN_PMC4, pmcs[3]);
 686        mtspr(SPRN_PMC5, pmcs[4]);
 687        mtspr(SPRN_PMC6, pmcs[5]);
 688}
 689#endif /* CONFIG_PPC64 */
 690
 691static void perf_event_interrupt(struct pt_regs *regs);
 692
 693/*
 694 * Read one performance monitor counter (PMC).
 695 */
 696static unsigned long read_pmc(int idx)
 697{
 698        unsigned long val;
 699
 700        switch (idx) {
 701        case 1:
 702                val = mfspr(SPRN_PMC1);
 703                break;
 704        case 2:
 705                val = mfspr(SPRN_PMC2);
 706                break;
 707        case 3:
 708                val = mfspr(SPRN_PMC3);
 709                break;
 710        case 4:
 711                val = mfspr(SPRN_PMC4);
 712                break;
 713        case 5:
 714                val = mfspr(SPRN_PMC5);
 715                break;
 716        case 6:
 717                val = mfspr(SPRN_PMC6);
 718                break;
 719#ifdef CONFIG_PPC64
 720        case 7:
 721                val = mfspr(SPRN_PMC7);
 722                break;
 723        case 8:
 724                val = mfspr(SPRN_PMC8);
 725                break;
 726#endif /* CONFIG_PPC64 */
 727        default:
 728                printk(KERN_ERR "oops trying to read PMC%d\n", idx);
 729                val = 0;
 730        }
 731        return val;
 732}
 733
 734/*
 735 * Write one PMC.
 736 */
 737static void write_pmc(int idx, unsigned long val)
 738{
 739        switch (idx) {
 740        case 1:
 741                mtspr(SPRN_PMC1, val);
 742                break;
 743        case 2:
 744                mtspr(SPRN_PMC2, val);
 745                break;
 746        case 3:
 747                mtspr(SPRN_PMC3, val);
 748                break;
 749        case 4:
 750                mtspr(SPRN_PMC4, val);
 751                break;
 752        case 5:
 753                mtspr(SPRN_PMC5, val);
 754                break;
 755        case 6:
 756                mtspr(SPRN_PMC6, val);
 757                break;
 758#ifdef CONFIG_PPC64
 759        case 7:
 760                mtspr(SPRN_PMC7, val);
 761                break;
 762        case 8:
 763                mtspr(SPRN_PMC8, val);
 764                break;
 765#endif /* CONFIG_PPC64 */
 766        default:
 767                printk(KERN_ERR "oops trying to write PMC%d\n", idx);
 768        }
 769}
 770
 771/* Called from sysrq_handle_showregs() */
 772void perf_event_print_debug(void)
 773{
 774        unsigned long sdar, sier, flags;
 775        u32 pmcs[MAX_HWEVENTS];
 776        int i;
 777
 778        if (!ppmu->n_counter)
 779                return;
 780
 781        local_irq_save(flags);
 782
 783        pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
 784                 smp_processor_id(), ppmu->name, ppmu->n_counter);
 785
 786        for (i = 0; i < ppmu->n_counter; i++)
 787                pmcs[i] = read_pmc(i + 1);
 788
 789        for (; i < MAX_HWEVENTS; i++)
 790                pmcs[i] = 0xdeadbeef;
 791
 792        pr_info("PMC1:  %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
 793                 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
 794
 795        if (ppmu->n_counter > 4)
 796                pr_info("PMC5:  %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
 797                         pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
 798
 799        pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
 800                mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
 801
 802        sdar = sier = 0;
 803#ifdef CONFIG_PPC64
 804        sdar = mfspr(SPRN_SDAR);
 805
 806        if (ppmu->flags & PPMU_HAS_SIER)
 807                sier = mfspr(SPRN_SIER);
 808
 809        if (ppmu->flags & PPMU_ARCH_207S) {
 810                pr_info("MMCR2: %016lx EBBHR: %016lx\n",
 811                        mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
 812                pr_info("EBBRR: %016lx BESCR: %016lx\n",
 813                        mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
 814        }
 815#endif
 816        pr_info("SIAR:  %016lx SDAR:  %016lx SIER:  %016lx\n",
 817                mfspr(SPRN_SIAR), sdar, sier);
 818
 819        local_irq_restore(flags);
 820}
 821
 822/*
 823 * Check if a set of events can all go on the PMU at once.
 824 * If they can't, this will look at alternative codes for the events
 825 * and see if any combination of alternative codes is feasible.
 826 * The feasible set is returned in event_id[].
 827 */
 828static int power_check_constraints(struct cpu_hw_events *cpuhw,
 829                                   u64 event_id[], unsigned int cflags[],
 830                                   int n_ev)
 831{
 832        unsigned long mask, value, nv;
 833        unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
 834        int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
 835        int i, j;
 836        unsigned long addf = ppmu->add_fields;
 837        unsigned long tadd = ppmu->test_adder;
 838
 839        if (n_ev > ppmu->n_counter)
 840                return -1;
 841
 842        /* First see if the events will go on as-is */
 843        for (i = 0; i < n_ev; ++i) {
 844                if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
 845                    && !ppmu->limited_pmc_event(event_id[i])) {
 846                        ppmu->get_alternatives(event_id[i], cflags[i],
 847                                               cpuhw->alternatives[i]);
 848                        event_id[i] = cpuhw->alternatives[i][0];
 849                }
 850                if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
 851                                         &cpuhw->avalues[i][0]))
 852                        return -1;
 853        }
 854        value = mask = 0;
 855        for (i = 0; i < n_ev; ++i) {
 856                nv = (value | cpuhw->avalues[i][0]) +
 857                        (value & cpuhw->avalues[i][0] & addf);
 858                if ((((nv + tadd) ^ value) & mask) != 0 ||
 859                    (((nv + tadd) ^ cpuhw->avalues[i][0]) &
 860                     cpuhw->amasks[i][0]) != 0)
 861                        break;
 862                value = nv;
 863                mask |= cpuhw->amasks[i][0];
 864        }
 865        if (i == n_ev)
 866                return 0;       /* all OK */
 867
 868        /* doesn't work, gather alternatives... */
 869        if (!ppmu->get_alternatives)
 870                return -1;
 871        for (i = 0; i < n_ev; ++i) {
 872                choice[i] = 0;
 873                n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
 874                                                  cpuhw->alternatives[i]);
 875                for (j = 1; j < n_alt[i]; ++j)
 876                        ppmu->get_constraint(cpuhw->alternatives[i][j],
 877                                             &cpuhw->amasks[i][j],
 878                                             &cpuhw->avalues[i][j]);
 879        }
 880
 881        /* enumerate all possibilities and see if any will work */
 882        i = 0;
 883        j = -1;
 884        value = mask = nv = 0;
 885        while (i < n_ev) {
 886                if (j >= 0) {
 887                        /* we're backtracking, restore context */
 888                        value = svalues[i];
 889                        mask = smasks[i];
 890                        j = choice[i];
 891                }
 892                /*
 893                 * See if any alternative k for event_id i,
 894                 * where k > j, will satisfy the constraints.
 895                 */
 896                while (++j < n_alt[i]) {
 897                        nv = (value | cpuhw->avalues[i][j]) +
 898                                (value & cpuhw->avalues[i][j] & addf);
 899                        if ((((nv + tadd) ^ value) & mask) == 0 &&
 900                            (((nv + tadd) ^ cpuhw->avalues[i][j])
 901                             & cpuhw->amasks[i][j]) == 0)
 902                                break;
 903                }
 904                if (j >= n_alt[i]) {
 905                        /*
 906                         * No feasible alternative, backtrack
 907                         * to event_id i-1 and continue enumerating its
 908                         * alternatives from where we got up to.
 909                         */
 910                        if (--i < 0)
 911                                return -1;
 912                } else {
 913                        /*
 914                         * Found a feasible alternative for event_id i,
 915                         * remember where we got up to with this event_id,
 916                         * go on to the next event_id, and start with
 917                         * the first alternative for it.
 918                         */
 919                        choice[i] = j;
 920                        svalues[i] = value;
 921                        smasks[i] = mask;
 922                        value = nv;
 923                        mask |= cpuhw->amasks[i][j];
 924                        ++i;
 925                        j = -1;
 926                }
 927        }
 928
 929        /* OK, we have a feasible combination, tell the caller the solution */
 930        for (i = 0; i < n_ev; ++i)
 931                event_id[i] = cpuhw->alternatives[i][choice[i]];
 932        return 0;
 933}
 934
 935/*
 936 * Check if newly-added events have consistent settings for
 937 * exclude_{user,kernel,hv} with each other and any previously
 938 * added events.
 939 */
 940static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
 941                          int n_prev, int n_new)
 942{
 943        int eu = 0, ek = 0, eh = 0;
 944        int i, n, first;
 945        struct perf_event *event;
 946
 947        /*
 948         * If the PMU we're on supports per event exclude settings then we
 949         * don't need to do any of this logic. NB. This assumes no PMU has both
 950         * per event exclude and limited PMCs.
 951         */
 952        if (ppmu->flags & PPMU_ARCH_207S)
 953                return 0;
 954
 955        n = n_prev + n_new;
 956        if (n <= 1)
 957                return 0;
 958
 959        first = 1;
 960        for (i = 0; i < n; ++i) {
 961                if (cflags[i] & PPMU_LIMITED_PMC_OK) {
 962                        cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
 963                        continue;
 964                }
 965                event = ctrs[i];
 966                if (first) {
 967                        eu = event->attr.exclude_user;
 968                        ek = event->attr.exclude_kernel;
 969                        eh = event->attr.exclude_hv;
 970                        first = 0;
 971                } else if (event->attr.exclude_user != eu ||
 972                           event->attr.exclude_kernel != ek ||
 973                           event->attr.exclude_hv != eh) {
 974                        return -EAGAIN;
 975                }
 976        }
 977
 978        if (eu || ek || eh)
 979                for (i = 0; i < n; ++i)
 980                        if (cflags[i] & PPMU_LIMITED_PMC_OK)
 981                                cflags[i] |= PPMU_LIMITED_PMC_REQD;
 982
 983        return 0;
 984}
 985
 986static u64 check_and_compute_delta(u64 prev, u64 val)
 987{
 988        u64 delta = (val - prev) & 0xfffffffful;
 989
 990        /*
 991         * POWER7 can roll back counter values, if the new value is smaller
 992         * than the previous value it will cause the delta and the counter to
 993         * have bogus values unless we rolled a counter over.  If a coutner is
 994         * rolled back, it will be smaller, but within 256, which is the maximum
 995         * number of events to rollback at once.  If we dectect a rollback
 996         * return 0.  This can lead to a small lack of precision in the
 997         * counters.
 998         */
 999        if (prev > val && (prev - val) < 256)
1000                delta = 0;
1001
1002        return delta;
1003}
1004
1005static void power_pmu_read(struct perf_event *event)
1006{
1007        s64 val, delta, prev;
1008
1009        if (event->hw.state & PERF_HES_STOPPED)
1010                return;
1011
1012        if (!event->hw.idx)
1013                return;
1014
1015        if (is_ebb_event(event)) {
1016                val = read_pmc(event->hw.idx);
1017                local64_set(&event->hw.prev_count, val);
1018                return;
1019        }
1020
1021        /*
1022         * Performance monitor interrupts come even when interrupts
1023         * are soft-disabled, as long as interrupts are hard-enabled.
1024         * Therefore we treat them like NMIs.
1025         */
1026        do {
1027                prev = local64_read(&event->hw.prev_count);
1028                barrier();
1029                val = read_pmc(event->hw.idx);
1030                delta = check_and_compute_delta(prev, val);
1031                if (!delta)
1032                        return;
1033        } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1034
1035        local64_add(delta, &event->count);
1036
1037        /*
1038         * A number of places program the PMC with (0x80000000 - period_left).
1039         * We never want period_left to be less than 1 because we will program
1040         * the PMC with a value >= 0x800000000 and an edge detected PMC will
1041         * roll around to 0 before taking an exception. We have seen this
1042         * on POWER8.
1043         *
1044         * To fix this, clamp the minimum value of period_left to 1.
1045         */
1046        do {
1047                prev = local64_read(&event->hw.period_left);
1048                val = prev - delta;
1049                if (val < 1)
1050                        val = 1;
1051        } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1052}
1053
1054/*
1055 * On some machines, PMC5 and PMC6 can't be written, don't respect
1056 * the freeze conditions, and don't generate interrupts.  This tells
1057 * us if `event' is using such a PMC.
1058 */
1059static int is_limited_pmc(int pmcnum)
1060{
1061        return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1062                && (pmcnum == 5 || pmcnum == 6);
1063}
1064
1065static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1066                                    unsigned long pmc5, unsigned long pmc6)
1067{
1068        struct perf_event *event;
1069        u64 val, prev, delta;
1070        int i;
1071
1072        for (i = 0; i < cpuhw->n_limited; ++i) {
1073                event = cpuhw->limited_counter[i];
1074                if (!event->hw.idx)
1075                        continue;
1076                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1077                prev = local64_read(&event->hw.prev_count);
1078                event->hw.idx = 0;
1079                delta = check_and_compute_delta(prev, val);
1080                if (delta)
1081                        local64_add(delta, &event->count);
1082        }
1083}
1084
1085static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1086                                  unsigned long pmc5, unsigned long pmc6)
1087{
1088        struct perf_event *event;
1089        u64 val, prev;
1090        int i;
1091
1092        for (i = 0; i < cpuhw->n_limited; ++i) {
1093                event = cpuhw->limited_counter[i];
1094                event->hw.idx = cpuhw->limited_hwidx[i];
1095                val = (event->hw.idx == 5) ? pmc5 : pmc6;
1096                prev = local64_read(&event->hw.prev_count);
1097                if (check_and_compute_delta(prev, val))
1098                        local64_set(&event->hw.prev_count, val);
1099                perf_event_update_userpage(event);
1100        }
1101}
1102
1103/*
1104 * Since limited events don't respect the freeze conditions, we
1105 * have to read them immediately after freezing or unfreezing the
1106 * other events.  We try to keep the values from the limited
1107 * events as consistent as possible by keeping the delay (in
1108 * cycles and instructions) between freezing/unfreezing and reading
1109 * the limited events as small and consistent as possible.
1110 * Therefore, if any limited events are in use, we read them
1111 * both, and always in the same order, to minimize variability,
1112 * and do it inside the same asm that writes MMCR0.
1113 */
1114static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1115{
1116        unsigned long pmc5, pmc6;
1117
1118        if (!cpuhw->n_limited) {
1119                mtspr(SPRN_MMCR0, mmcr0);
1120                return;
1121        }
1122
1123        /*
1124         * Write MMCR0, then read PMC5 and PMC6 immediately.
1125         * To ensure we don't get a performance monitor interrupt
1126         * between writing MMCR0 and freezing/thawing the limited
1127         * events, we first write MMCR0 with the event overflow
1128         * interrupt enable bits turned off.
1129         */
1130        asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1131                     : "=&r" (pmc5), "=&r" (pmc6)
1132                     : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1133                       "i" (SPRN_MMCR0),
1134                       "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1135
1136        if (mmcr0 & MMCR0_FC)
1137                freeze_limited_counters(cpuhw, pmc5, pmc6);
1138        else
1139                thaw_limited_counters(cpuhw, pmc5, pmc6);
1140
1141        /*
1142         * Write the full MMCR0 including the event overflow interrupt
1143         * enable bits, if necessary.
1144         */
1145        if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1146                mtspr(SPRN_MMCR0, mmcr0);
1147}
1148
1149/*
1150 * Disable all events to prevent PMU interrupts and to allow
1151 * events to be added or removed.
1152 */
1153static void power_pmu_disable(struct pmu *pmu)
1154{
1155        struct cpu_hw_events *cpuhw;
1156        unsigned long flags, mmcr0, val;
1157
1158        if (!ppmu)
1159                return;
1160        local_irq_save(flags);
1161        cpuhw = this_cpu_ptr(&cpu_hw_events);
1162
1163        if (!cpuhw->disabled) {
1164                /*
1165                 * Check if we ever enabled the PMU on this cpu.
1166                 */
1167                if (!cpuhw->pmcs_enabled) {
1168                        ppc_enable_pmcs();
1169                        cpuhw->pmcs_enabled = 1;
1170                }
1171
1172                /*
1173                 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1174                 */
1175                val  = mmcr0 = mfspr(SPRN_MMCR0);
1176                val |= MMCR0_FC;
1177                val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1178                         MMCR0_FC56);
1179
1180                /*
1181                 * The barrier is to make sure the mtspr has been
1182                 * executed and the PMU has frozen the events etc.
1183                 * before we return.
1184                 */
1185                write_mmcr0(cpuhw, val);
1186                mb();
1187
1188                /*
1189                 * Disable instruction sampling if it was enabled
1190                 */
1191                if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1192                        mtspr(SPRN_MMCRA,
1193                              cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1194                        mb();
1195                }
1196
1197                cpuhw->disabled = 1;
1198                cpuhw->n_added = 0;
1199
1200                ebb_switch_out(mmcr0);
1201        }
1202
1203        local_irq_restore(flags);
1204}
1205
1206/*
1207 * Re-enable all events if disable == 0.
1208 * If we were previously disabled and events were added, then
1209 * put the new config on the PMU.
1210 */
1211static void power_pmu_enable(struct pmu *pmu)
1212{
1213        struct perf_event *event;
1214        struct cpu_hw_events *cpuhw;
1215        unsigned long flags;
1216        long i;
1217        unsigned long val, mmcr0;
1218        s64 left;
1219        unsigned int hwc_index[MAX_HWEVENTS];
1220        int n_lim;
1221        int idx;
1222        bool ebb;
1223
1224        if (!ppmu)
1225                return;
1226        local_irq_save(flags);
1227
1228        cpuhw = this_cpu_ptr(&cpu_hw_events);
1229        if (!cpuhw->disabled)
1230                goto out;
1231
1232        if (cpuhw->n_events == 0) {
1233                ppc_set_pmu_inuse(0);
1234                goto out;
1235        }
1236
1237        cpuhw->disabled = 0;
1238
1239        /*
1240         * EBB requires an exclusive group and all events must have the EBB
1241         * flag set, or not set, so we can just check a single event. Also we
1242         * know we have at least one event.
1243         */
1244        ebb = is_ebb_event(cpuhw->event[0]);
1245
1246        /*
1247         * If we didn't change anything, or only removed events,
1248         * no need to recalculate MMCR* settings and reset the PMCs.
1249         * Just reenable the PMU with the current MMCR* settings
1250         * (possibly updated for removal of events).
1251         */
1252        if (!cpuhw->n_added) {
1253                mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1254                mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1255                goto out_enable;
1256        }
1257
1258        /*
1259         * Clear all MMCR settings and recompute them for the new set of events.
1260         */
1261        memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1262
1263        if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1264                               cpuhw->mmcr, cpuhw->event)) {
1265                /* shouldn't ever get here */
1266                printk(KERN_ERR "oops compute_mmcr failed\n");
1267                goto out;
1268        }
1269
1270        if (!(ppmu->flags & PPMU_ARCH_207S)) {
1271                /*
1272                 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1273                 * bits for the first event. We have already checked that all
1274                 * events have the same value for these bits as the first event.
1275                 */
1276                event = cpuhw->event[0];
1277                if (event->attr.exclude_user)
1278                        cpuhw->mmcr[0] |= MMCR0_FCP;
1279                if (event->attr.exclude_kernel)
1280                        cpuhw->mmcr[0] |= freeze_events_kernel;
1281                if (event->attr.exclude_hv)
1282                        cpuhw->mmcr[0] |= MMCR0_FCHV;
1283        }
1284
1285        /*
1286         * Write the new configuration to MMCR* with the freeze
1287         * bit set and set the hardware events to their initial values.
1288         * Then unfreeze the events.
1289         */
1290        ppc_set_pmu_inuse(1);
1291        mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292        mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1293        mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1294                                | MMCR0_FC);
1295        if (ppmu->flags & PPMU_ARCH_207S)
1296                mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1297
1298        /*
1299         * Read off any pre-existing events that need to move
1300         * to another PMC.
1301         */
1302        for (i = 0; i < cpuhw->n_events; ++i) {
1303                event = cpuhw->event[i];
1304                if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1305                        power_pmu_read(event);
1306                        write_pmc(event->hw.idx, 0);
1307                        event->hw.idx = 0;
1308                }
1309        }
1310
1311        /*
1312         * Initialize the PMCs for all the new and moved events.
1313         */
1314        cpuhw->n_limited = n_lim = 0;
1315        for (i = 0; i < cpuhw->n_events; ++i) {
1316                event = cpuhw->event[i];
1317                if (event->hw.idx)
1318                        continue;
1319                idx = hwc_index[i] + 1;
1320                if (is_limited_pmc(idx)) {
1321                        cpuhw->limited_counter[n_lim] = event;
1322                        cpuhw->limited_hwidx[n_lim] = idx;
1323                        ++n_lim;
1324                        continue;
1325                }
1326
1327                if (ebb)
1328                        val = local64_read(&event->hw.prev_count);
1329                else {
1330                        val = 0;
1331                        if (event->hw.sample_period) {
1332                                left = local64_read(&event->hw.period_left);
1333                                if (left < 0x80000000L)
1334                                        val = 0x80000000L - left;
1335                        }
1336                        local64_set(&event->hw.prev_count, val);
1337                }
1338
1339                event->hw.idx = idx;
1340                if (event->hw.state & PERF_HES_STOPPED)
1341                        val = 0;
1342                write_pmc(idx, val);
1343
1344                perf_event_update_userpage(event);
1345        }
1346        cpuhw->n_limited = n_lim;
1347        cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1348
1349 out_enable:
1350        pmao_restore_workaround(ebb);
1351
1352        mmcr0 = ebb_switch_in(ebb, cpuhw);
1353
1354        mb();
1355        if (cpuhw->bhrb_users)
1356                ppmu->config_bhrb(cpuhw->bhrb_filter);
1357
1358        write_mmcr0(cpuhw, mmcr0);
1359
1360        /*
1361         * Enable instruction sampling if necessary
1362         */
1363        if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1364                mb();
1365                mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1366        }
1367
1368 out:
1369
1370        local_irq_restore(flags);
1371}
1372
1373static int collect_events(struct perf_event *group, int max_count,
1374                          struct perf_event *ctrs[], u64 *events,
1375                          unsigned int *flags)
1376{
1377        int n = 0;
1378        struct perf_event *event;
1379
1380        if (!is_software_event(group)) {
1381                if (n >= max_count)
1382                        return -1;
1383                ctrs[n] = group;
1384                flags[n] = group->hw.event_base;
1385                events[n++] = group->hw.config;
1386        }
1387        list_for_each_entry(event, &group->sibling_list, group_entry) {
1388                if (!is_software_event(event) &&
1389                    event->state != PERF_EVENT_STATE_OFF) {
1390                        if (n >= max_count)
1391                                return -1;
1392                        ctrs[n] = event;
1393                        flags[n] = event->hw.event_base;
1394                        events[n++] = event->hw.config;
1395                }
1396        }
1397        return n;
1398}
1399
1400/*
1401 * Add a event to the PMU.
1402 * If all events are not already frozen, then we disable and
1403 * re-enable the PMU in order to get hw_perf_enable to do the
1404 * actual work of reconfiguring the PMU.
1405 */
1406static int power_pmu_add(struct perf_event *event, int ef_flags)
1407{
1408        struct cpu_hw_events *cpuhw;
1409        unsigned long flags;
1410        int n0;
1411        int ret = -EAGAIN;
1412
1413        local_irq_save(flags);
1414        perf_pmu_disable(event->pmu);
1415
1416        /*
1417         * Add the event to the list (if there is room)
1418         * and check whether the total set is still feasible.
1419         */
1420        cpuhw = this_cpu_ptr(&cpu_hw_events);
1421        n0 = cpuhw->n_events;
1422        if (n0 >= ppmu->n_counter)
1423                goto out;
1424        cpuhw->event[n0] = event;
1425        cpuhw->events[n0] = event->hw.config;
1426        cpuhw->flags[n0] = event->hw.event_base;
1427
1428        /*
1429         * This event may have been disabled/stopped in record_and_restart()
1430         * because we exceeded the ->event_limit. If re-starting the event,
1431         * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1432         * notification is re-enabled.
1433         */
1434        if (!(ef_flags & PERF_EF_START))
1435                event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1436        else
1437                event->hw.state = 0;
1438
1439        /*
1440         * If group events scheduling transaction was started,
1441         * skip the schedulability test here, it will be performed
1442         * at commit time(->commit_txn) as a whole
1443         */
1444        if (cpuhw->group_flag & PERF_EVENT_TXN)
1445                goto nocheck;
1446
1447        if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1448                goto out;
1449        if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1450                goto out;
1451        event->hw.config = cpuhw->events[n0];
1452
1453nocheck:
1454        ebb_event_add(event);
1455
1456        ++cpuhw->n_events;
1457        ++cpuhw->n_added;
1458
1459        ret = 0;
1460 out:
1461        if (has_branch_stack(event)) {
1462                power_pmu_bhrb_enable(event);
1463                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1464                                        event->attr.branch_sample_type);
1465        }
1466
1467        perf_pmu_enable(event->pmu);
1468        local_irq_restore(flags);
1469        return ret;
1470}
1471
1472/*
1473 * Remove a event from the PMU.
1474 */
1475static void power_pmu_del(struct perf_event *event, int ef_flags)
1476{
1477        struct cpu_hw_events *cpuhw;
1478        long i;
1479        unsigned long flags;
1480
1481        local_irq_save(flags);
1482        perf_pmu_disable(event->pmu);
1483
1484        power_pmu_read(event);
1485
1486        cpuhw = this_cpu_ptr(&cpu_hw_events);
1487        for (i = 0; i < cpuhw->n_events; ++i) {
1488                if (event == cpuhw->event[i]) {
1489                        while (++i < cpuhw->n_events) {
1490                                cpuhw->event[i-1] = cpuhw->event[i];
1491                                cpuhw->events[i-1] = cpuhw->events[i];
1492                                cpuhw->flags[i-1] = cpuhw->flags[i];
1493                        }
1494                        --cpuhw->n_events;
1495                        ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1496                        if (event->hw.idx) {
1497                                write_pmc(event->hw.idx, 0);
1498                                event->hw.idx = 0;
1499                        }
1500                        perf_event_update_userpage(event);
1501                        break;
1502                }
1503        }
1504        for (i = 0; i < cpuhw->n_limited; ++i)
1505                if (event == cpuhw->limited_counter[i])
1506                        break;
1507        if (i < cpuhw->n_limited) {
1508                while (++i < cpuhw->n_limited) {
1509                        cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1510                        cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1511                }
1512                --cpuhw->n_limited;
1513        }
1514        if (cpuhw->n_events == 0) {
1515                /* disable exceptions if no events are running */
1516                cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1517        }
1518
1519        if (has_branch_stack(event))
1520                power_pmu_bhrb_disable(event);
1521
1522        perf_pmu_enable(event->pmu);
1523        local_irq_restore(flags);
1524}
1525
1526/*
1527 * POWER-PMU does not support disabling individual counters, hence
1528 * program their cycle counter to their max value and ignore the interrupts.
1529 */
1530
1531static void power_pmu_start(struct perf_event *event, int ef_flags)
1532{
1533        unsigned long flags;
1534        s64 left;
1535        unsigned long val;
1536
1537        if (!event->hw.idx || !event->hw.sample_period)
1538                return;
1539
1540        if (!(event->hw.state & PERF_HES_STOPPED))
1541                return;
1542
1543        if (ef_flags & PERF_EF_RELOAD)
1544                WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1545
1546        local_irq_save(flags);
1547        perf_pmu_disable(event->pmu);
1548
1549        event->hw.state = 0;
1550        left = local64_read(&event->hw.period_left);
1551
1552        val = 0;
1553        if (left < 0x80000000L)
1554                val = 0x80000000L - left;
1555
1556        write_pmc(event->hw.idx, val);
1557
1558        perf_event_update_userpage(event);
1559        perf_pmu_enable(event->pmu);
1560        local_irq_restore(flags);
1561}
1562
1563static void power_pmu_stop(struct perf_event *event, int ef_flags)
1564{
1565        unsigned long flags;
1566
1567        if (!event->hw.idx || !event->hw.sample_period)
1568                return;
1569
1570        if (event->hw.state & PERF_HES_STOPPED)
1571                return;
1572
1573        local_irq_save(flags);
1574        perf_pmu_disable(event->pmu);
1575
1576        power_pmu_read(event);
1577        event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1578        write_pmc(event->hw.idx, 0);
1579
1580        perf_event_update_userpage(event);
1581        perf_pmu_enable(event->pmu);
1582        local_irq_restore(flags);
1583}
1584
1585/*
1586 * Start group events scheduling transaction
1587 * Set the flag to make pmu::enable() not perform the
1588 * schedulability test, it will be performed at commit time
1589 */
1590static void power_pmu_start_txn(struct pmu *pmu)
1591{
1592        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1593
1594        perf_pmu_disable(pmu);
1595        cpuhw->group_flag |= PERF_EVENT_TXN;
1596        cpuhw->n_txn_start = cpuhw->n_events;
1597}
1598
1599/*
1600 * Stop group events scheduling transaction
1601 * Clear the flag and pmu::enable() will perform the
1602 * schedulability test.
1603 */
1604static void power_pmu_cancel_txn(struct pmu *pmu)
1605{
1606        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1607
1608        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1609        perf_pmu_enable(pmu);
1610}
1611
1612/*
1613 * Commit group events scheduling transaction
1614 * Perform the group schedulability test as a whole
1615 * Return 0 if success
1616 */
1617static int power_pmu_commit_txn(struct pmu *pmu)
1618{
1619        struct cpu_hw_events *cpuhw;
1620        long i, n;
1621
1622        if (!ppmu)
1623                return -EAGAIN;
1624        cpuhw = this_cpu_ptr(&cpu_hw_events);
1625        n = cpuhw->n_events;
1626        if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1627                return -EAGAIN;
1628        i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1629        if (i < 0)
1630                return -EAGAIN;
1631
1632        for (i = cpuhw->n_txn_start; i < n; ++i)
1633                cpuhw->event[i]->hw.config = cpuhw->events[i];
1634
1635        cpuhw->group_flag &= ~PERF_EVENT_TXN;
1636        perf_pmu_enable(pmu);
1637        return 0;
1638}
1639
1640/*
1641 * Return 1 if we might be able to put event on a limited PMC,
1642 * or 0 if not.
1643 * A event can only go on a limited PMC if it counts something
1644 * that a limited PMC can count, doesn't require interrupts, and
1645 * doesn't exclude any processor mode.
1646 */
1647static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1648                                 unsigned int flags)
1649{
1650        int n;
1651        u64 alt[MAX_EVENT_ALTERNATIVES];
1652
1653        if (event->attr.exclude_user
1654            || event->attr.exclude_kernel
1655            || event->attr.exclude_hv
1656            || event->attr.sample_period)
1657                return 0;
1658
1659        if (ppmu->limited_pmc_event(ev))
1660                return 1;
1661
1662        /*
1663         * The requested event_id isn't on a limited PMC already;
1664         * see if any alternative code goes on a limited PMC.
1665         */
1666        if (!ppmu->get_alternatives)
1667                return 0;
1668
1669        flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1670        n = ppmu->get_alternatives(ev, flags, alt);
1671
1672        return n > 0;
1673}
1674
1675/*
1676 * Find an alternative event_id that goes on a normal PMC, if possible,
1677 * and return the event_id code, or 0 if there is no such alternative.
1678 * (Note: event_id code 0 is "don't count" on all machines.)
1679 */
1680static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1681{
1682        u64 alt[MAX_EVENT_ALTERNATIVES];
1683        int n;
1684
1685        flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1686        n = ppmu->get_alternatives(ev, flags, alt);
1687        if (!n)
1688                return 0;
1689        return alt[0];
1690}
1691
1692/* Number of perf_events counting hardware events */
1693static atomic_t num_events;
1694/* Used to avoid races in calling reserve/release_pmc_hardware */
1695static DEFINE_MUTEX(pmc_reserve_mutex);
1696
1697/*
1698 * Release the PMU if this is the last perf_event.
1699 */
1700static void hw_perf_event_destroy(struct perf_event *event)
1701{
1702        if (!atomic_add_unless(&num_events, -1, 1)) {
1703                mutex_lock(&pmc_reserve_mutex);
1704                if (atomic_dec_return(&num_events) == 0)
1705                        release_pmc_hardware();
1706                mutex_unlock(&pmc_reserve_mutex);
1707        }
1708}
1709
1710/*
1711 * Translate a generic cache event_id config to a raw event_id code.
1712 */
1713static int hw_perf_cache_event(u64 config, u64 *eventp)
1714{
1715        unsigned long type, op, result;
1716        int ev;
1717
1718        if (!ppmu->cache_events)
1719                return -EINVAL;
1720
1721        /* unpack config */
1722        type = config & 0xff;
1723        op = (config >> 8) & 0xff;
1724        result = (config >> 16) & 0xff;
1725
1726        if (type >= PERF_COUNT_HW_CACHE_MAX ||
1727            op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1728            result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1729                return -EINVAL;
1730
1731        ev = (*ppmu->cache_events)[type][op][result];
1732        if (ev == 0)
1733                return -EOPNOTSUPP;
1734        if (ev == -1)
1735                return -EINVAL;
1736        *eventp = ev;
1737        return 0;
1738}
1739
1740static int power_pmu_event_init(struct perf_event *event)
1741{
1742        u64 ev;
1743        unsigned long flags;
1744        struct perf_event *ctrs[MAX_HWEVENTS];
1745        u64 events[MAX_HWEVENTS];
1746        unsigned int cflags[MAX_HWEVENTS];
1747        int n;
1748        int err;
1749        struct cpu_hw_events *cpuhw;
1750
1751        if (!ppmu)
1752                return -ENOENT;
1753
1754        if (has_branch_stack(event)) {
1755                /* PMU has BHRB enabled */
1756                if (!(ppmu->flags & PPMU_ARCH_207S))
1757                        return -EOPNOTSUPP;
1758        }
1759
1760        switch (event->attr.type) {
1761        case PERF_TYPE_HARDWARE:
1762                ev = event->attr.config;
1763                if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1764                        return -EOPNOTSUPP;
1765                ev = ppmu->generic_events[ev];
1766                break;
1767        case PERF_TYPE_HW_CACHE:
1768                err = hw_perf_cache_event(event->attr.config, &ev);
1769                if (err)
1770                        return err;
1771                break;
1772        case PERF_TYPE_RAW:
1773                ev = event->attr.config;
1774                break;
1775        default:
1776                return -ENOENT;
1777        }
1778
1779        event->hw.config_base = ev;
1780        event->hw.idx = 0;
1781
1782        /*
1783         * If we are not running on a hypervisor, force the
1784         * exclude_hv bit to 0 so that we don't care what
1785         * the user set it to.
1786         */
1787        if (!firmware_has_feature(FW_FEATURE_LPAR))
1788                event->attr.exclude_hv = 0;
1789
1790        /*
1791         * If this is a per-task event, then we can use
1792         * PM_RUN_* events interchangeably with their non RUN_*
1793         * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1794         * XXX we should check if the task is an idle task.
1795         */
1796        flags = 0;
1797        if (event->attach_state & PERF_ATTACH_TASK)
1798                flags |= PPMU_ONLY_COUNT_RUN;
1799
1800        /*
1801         * If this machine has limited events, check whether this
1802         * event_id could go on a limited event.
1803         */
1804        if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1805                if (can_go_on_limited_pmc(event, ev, flags)) {
1806                        flags |= PPMU_LIMITED_PMC_OK;
1807                } else if (ppmu->limited_pmc_event(ev)) {
1808                        /*
1809                         * The requested event_id is on a limited PMC,
1810                         * but we can't use a limited PMC; see if any
1811                         * alternative goes on a normal PMC.
1812                         */
1813                        ev = normal_pmc_alternative(ev, flags);
1814                        if (!ev)
1815                                return -EINVAL;
1816                }
1817        }
1818
1819        /* Extra checks for EBB */
1820        err = ebb_event_check(event);
1821        if (err)
1822                return err;
1823
1824        /*
1825         * If this is in a group, check if it can go on with all the
1826         * other hardware events in the group.  We assume the event
1827         * hasn't been linked into its leader's sibling list at this point.
1828         */
1829        n = 0;
1830        if (event->group_leader != event) {
1831                n = collect_events(event->group_leader, ppmu->n_counter - 1,
1832                                   ctrs, events, cflags);
1833                if (n < 0)
1834                        return -EINVAL;
1835        }
1836        events[n] = ev;
1837        ctrs[n] = event;
1838        cflags[n] = flags;
1839        if (check_excludes(ctrs, cflags, n, 1))
1840                return -EINVAL;
1841
1842        cpuhw = &get_cpu_var(cpu_hw_events);
1843        err = power_check_constraints(cpuhw, events, cflags, n + 1);
1844
1845        if (has_branch_stack(event)) {
1846                cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1847                                        event->attr.branch_sample_type);
1848
1849                if (cpuhw->bhrb_filter == -1) {
1850                        put_cpu_var(cpu_hw_events);
1851                        return -EOPNOTSUPP;
1852                }
1853        }
1854
1855        put_cpu_var(cpu_hw_events);
1856        if (err)
1857                return -EINVAL;
1858
1859        event->hw.config = events[n];
1860        event->hw.event_base = cflags[n];
1861        event->hw.last_period = event->hw.sample_period;
1862        local64_set(&event->hw.period_left, event->hw.last_period);
1863
1864        /*
1865         * For EBB events we just context switch the PMC value, we don't do any
1866         * of the sample_period logic. We use hw.prev_count for this.
1867         */
1868        if (is_ebb_event(event))
1869                local64_set(&event->hw.prev_count, 0);
1870
1871        /*
1872         * See if we need to reserve the PMU.
1873         * If no events are currently in use, then we have to take a
1874         * mutex to ensure that we don't race with another task doing
1875         * reserve_pmc_hardware or release_pmc_hardware.
1876         */
1877        err = 0;
1878        if (!atomic_inc_not_zero(&num_events)) {
1879                mutex_lock(&pmc_reserve_mutex);
1880                if (atomic_read(&num_events) == 0 &&
1881                    reserve_pmc_hardware(perf_event_interrupt))
1882                        err = -EBUSY;
1883                else
1884                        atomic_inc(&num_events);
1885                mutex_unlock(&pmc_reserve_mutex);
1886        }
1887        event->destroy = hw_perf_event_destroy;
1888
1889        return err;
1890}
1891
1892static int power_pmu_event_idx(struct perf_event *event)
1893{
1894        return event->hw.idx;
1895}
1896
1897ssize_t power_events_sysfs_show(struct device *dev,
1898                                struct device_attribute *attr, char *page)
1899{
1900        struct perf_pmu_events_attr *pmu_attr;
1901
1902        pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1903
1904        return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1905}
1906
1907static struct pmu power_pmu = {
1908        .pmu_enable     = power_pmu_enable,
1909        .pmu_disable    = power_pmu_disable,
1910        .event_init     = power_pmu_event_init,
1911        .add            = power_pmu_add,
1912        .del            = power_pmu_del,
1913        .start          = power_pmu_start,
1914        .stop           = power_pmu_stop,
1915        .read           = power_pmu_read,
1916        .start_txn      = power_pmu_start_txn,
1917        .cancel_txn     = power_pmu_cancel_txn,
1918        .commit_txn     = power_pmu_commit_txn,
1919        .event_idx      = power_pmu_event_idx,
1920        .sched_task     = power_pmu_sched_task,
1921};
1922
1923/*
1924 * A counter has overflowed; update its count and record
1925 * things if requested.  Note that interrupts are hard-disabled
1926 * here so there is no possibility of being interrupted.
1927 */
1928static void record_and_restart(struct perf_event *event, unsigned long val,
1929                               struct pt_regs *regs)
1930{
1931        u64 period = event->hw.sample_period;
1932        s64 prev, delta, left;
1933        int record = 0;
1934
1935        if (event->hw.state & PERF_HES_STOPPED) {
1936                write_pmc(event->hw.idx, 0);
1937                return;
1938        }
1939
1940        /* we don't have to worry about interrupts here */
1941        prev = local64_read(&event->hw.prev_count);
1942        delta = check_and_compute_delta(prev, val);
1943        local64_add(delta, &event->count);
1944
1945        /*
1946         * See if the total period for this event has expired,
1947         * and update for the next period.
1948         */
1949        val = 0;
1950        left = local64_read(&event->hw.period_left) - delta;
1951        if (delta == 0)
1952                left++;
1953        if (period) {
1954                if (left <= 0) {
1955                        left += period;
1956                        if (left <= 0)
1957                                left = period;
1958                        record = siar_valid(regs);
1959                        event->hw.last_period = event->hw.sample_period;
1960                }
1961                if (left < 0x80000000LL)
1962                        val = 0x80000000LL - left;
1963        }
1964
1965        write_pmc(event->hw.idx, val);
1966        local64_set(&event->hw.prev_count, val);
1967        local64_set(&event->hw.period_left, left);
1968        perf_event_update_userpage(event);
1969
1970        /*
1971         * Finally record data if requested.
1972         */
1973        if (record) {
1974                struct perf_sample_data data;
1975
1976                perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
1977
1978                if (event->attr.sample_type & PERF_SAMPLE_ADDR)
1979                        perf_get_data_addr(regs, &data.addr);
1980
1981                if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
1982                        struct cpu_hw_events *cpuhw;
1983                        cpuhw = this_cpu_ptr(&cpu_hw_events);
1984                        power_pmu_bhrb_read(cpuhw);
1985                        data.br_stack = &cpuhw->bhrb_stack;
1986                }
1987
1988                if (perf_event_overflow(event, &data, regs))
1989                        power_pmu_stop(event, 0);
1990        }
1991}
1992
1993/*
1994 * Called from generic code to get the misc flags (i.e. processor mode)
1995 * for an event_id.
1996 */
1997unsigned long perf_misc_flags(struct pt_regs *regs)
1998{
1999        u32 flags = perf_get_misc_flags(regs);
2000
2001        if (flags)
2002                return flags;
2003        return user_mode(regs) ? PERF_RECORD_MISC_USER :
2004                PERF_RECORD_MISC_KERNEL;
2005}
2006
2007/*
2008 * Called from generic code to get the instruction pointer
2009 * for an event_id.
2010 */
2011unsigned long perf_instruction_pointer(struct pt_regs *regs)
2012{
2013        bool use_siar = regs_use_siar(regs);
2014
2015        if (use_siar && siar_valid(regs))
2016                return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2017        else if (use_siar)
2018                return 0;               // no valid instruction pointer
2019        else
2020                return regs->nip;
2021}
2022
2023static bool pmc_overflow_power7(unsigned long val)
2024{
2025        /*
2026         * Events on POWER7 can roll back if a speculative event doesn't
2027         * eventually complete. Unfortunately in some rare cases they will
2028         * raise a performance monitor exception. We need to catch this to
2029         * ensure we reset the PMC. In all cases the PMC will be 256 or less
2030         * cycles from overflow.
2031         *
2032         * We only do this if the first pass fails to find any overflowing
2033         * PMCs because a user might set a period of less than 256 and we
2034         * don't want to mistakenly reset them.
2035         */
2036        if ((0x80000000 - val) <= 256)
2037                return true;
2038
2039        return false;
2040}
2041
2042static bool pmc_overflow(unsigned long val)
2043{
2044        if ((int)val < 0)
2045                return true;
2046
2047        return false;
2048}
2049
2050/*
2051 * Performance monitor interrupt stuff
2052 */
2053static void perf_event_interrupt(struct pt_regs *regs)
2054{
2055        int i, j;
2056        struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2057        struct perf_event *event;
2058        unsigned long val[8];
2059        int found, active;
2060        int nmi;
2061
2062        if (cpuhw->n_limited)
2063                freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2064                                        mfspr(SPRN_PMC6));
2065
2066        perf_read_regs(regs);
2067
2068        nmi = perf_intr_is_nmi(regs);
2069        if (nmi)
2070                nmi_enter();
2071        else
2072                irq_enter();
2073
2074        /* Read all the PMCs since we'll need them a bunch of times */
2075        for (i = 0; i < ppmu->n_counter; ++i)
2076                val[i] = read_pmc(i + 1);
2077
2078        /* Try to find what caused the IRQ */
2079        found = 0;
2080        for (i = 0; i < ppmu->n_counter; ++i) {
2081                if (!pmc_overflow(val[i]))
2082                        continue;
2083                if (is_limited_pmc(i + 1))
2084                        continue; /* these won't generate IRQs */
2085                /*
2086                 * We've found one that's overflowed.  For active
2087                 * counters we need to log this.  For inactive
2088                 * counters, we need to reset it anyway
2089                 */
2090                found = 1;
2091                active = 0;
2092                for (j = 0; j < cpuhw->n_events; ++j) {
2093                        event = cpuhw->event[j];
2094                        if (event->hw.idx == (i + 1)) {
2095                                active = 1;
2096                                record_and_restart(event, val[i], regs);
2097                                break;
2098                        }
2099                }
2100                if (!active)
2101                        /* reset non active counters that have overflowed */
2102                        write_pmc(i + 1, 0);
2103        }
2104        if (!found && pvr_version_is(PVR_POWER7)) {
2105                /* check active counters for special buggy p7 overflow */
2106                for (i = 0; i < cpuhw->n_events; ++i) {
2107                        event = cpuhw->event[i];
2108                        if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2109                                continue;
2110                        if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2111                                /* event has overflowed in a buggy way*/
2112                                found = 1;
2113                                record_and_restart(event,
2114                                                   val[event->hw.idx - 1],
2115                                                   regs);
2116                        }
2117                }
2118        }
2119        if (!found && !nmi && printk_ratelimit())
2120                printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2121
2122        /*
2123         * Reset MMCR0 to its normal value.  This will set PMXE and
2124         * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2125         * and thus allow interrupts to occur again.
2126         * XXX might want to use MSR.PM to keep the events frozen until
2127         * we get back out of this interrupt.
2128         */
2129        write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2130
2131        if (nmi)
2132                nmi_exit();
2133        else
2134                irq_exit();
2135}
2136
2137static void power_pmu_setup(int cpu)
2138{
2139        struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2140
2141        if (!ppmu)
2142                return;
2143        memset(cpuhw, 0, sizeof(*cpuhw));
2144        cpuhw->mmcr[0] = MMCR0_FC;
2145}
2146
2147static int
2148power_pmu_notifier(struct notifier_block *self, unsigned long action, void *hcpu)
2149{
2150        unsigned int cpu = (long)hcpu;
2151
2152        switch (action & ~CPU_TASKS_FROZEN) {
2153        case CPU_UP_PREPARE:
2154                power_pmu_setup(cpu);
2155                break;
2156
2157        default:
2158                break;
2159        }
2160
2161        return NOTIFY_OK;
2162}
2163
2164int register_power_pmu(struct power_pmu *pmu)
2165{
2166        if (ppmu)
2167                return -EBUSY;          /* something's already registered */
2168
2169        ppmu = pmu;
2170        pr_info("%s performance monitor hardware support registered\n",
2171                pmu->name);
2172
2173        power_pmu.attr_groups = ppmu->attr_groups;
2174
2175#ifdef MSR_HV
2176        /*
2177         * Use FCHV to ignore kernel events if MSR.HV is set.
2178         */
2179        if (mfmsr() & MSR_HV)
2180                freeze_events_kernel = MMCR0_FCHV;
2181#endif /* CONFIG_PPC64 */
2182
2183        perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2184        perf_cpu_notifier(power_pmu_notifier);
2185
2186        return 0;
2187}
2188