linux/arch/tile/kernel/pci-dma.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Tilera Corporation. All Rights Reserved.
   3 *
   4 *   This program is free software; you can redistribute it and/or
   5 *   modify it under the terms of the GNU General Public License
   6 *   as published by the Free Software Foundation, version 2.
   7 *
   8 *   This program is distributed in the hope that it will be useful, but
   9 *   WITHOUT ANY WARRANTY; without even the implied warranty of
  10 *   MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
  11 *   NON INFRINGEMENT.  See the GNU General Public License for
  12 *   more details.
  13 */
  14
  15#include <linux/mm.h>
  16#include <linux/dma-mapping.h>
  17#include <linux/swiotlb.h>
  18#include <linux/vmalloc.h>
  19#include <linux/export.h>
  20#include <asm/tlbflush.h>
  21#include <asm/homecache.h>
  22
  23/* Generic DMA mapping functions: */
  24
  25/*
  26 * Allocate what Linux calls "coherent" memory.  On TILEPro this is
  27 * uncached memory; on TILE-Gx it is hash-for-home memory.
  28 */
  29#ifdef __tilepro__
  30#define PAGE_HOME_DMA PAGE_HOME_UNCACHED
  31#else
  32#define PAGE_HOME_DMA PAGE_HOME_HASH
  33#endif
  34
  35static void *tile_dma_alloc_coherent(struct device *dev, size_t size,
  36                                     dma_addr_t *dma_handle, gfp_t gfp,
  37                                     struct dma_attrs *attrs)
  38{
  39        u64 dma_mask = (dev && dev->coherent_dma_mask) ?
  40                dev->coherent_dma_mask : DMA_BIT_MASK(32);
  41        int node = dev ? dev_to_node(dev) : 0;
  42        int order = get_order(size);
  43        struct page *pg;
  44        dma_addr_t addr;
  45
  46        gfp |= __GFP_ZERO;
  47
  48        /*
  49         * If the mask specifies that the memory be in the first 4 GB, then
  50         * we force the allocation to come from the DMA zone.  We also
  51         * force the node to 0 since that's the only node where the DMA
  52         * zone isn't empty.  If the mask size is smaller than 32 bits, we
  53         * may still not be able to guarantee a suitable memory address, in
  54         * which case we will return NULL.  But such devices are uncommon.
  55         */
  56        if (dma_mask <= DMA_BIT_MASK(32)) {
  57                gfp |= GFP_DMA;
  58                node = 0;
  59        }
  60
  61        pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
  62        if (pg == NULL)
  63                return NULL;
  64
  65        addr = page_to_phys(pg);
  66        if (addr + size > dma_mask) {
  67                __homecache_free_pages(pg, order);
  68                return NULL;
  69        }
  70
  71        *dma_handle = addr;
  72
  73        return page_address(pg);
  74}
  75
  76/*
  77 * Free memory that was allocated with tile_dma_alloc_coherent.
  78 */
  79static void tile_dma_free_coherent(struct device *dev, size_t size,
  80                                   void *vaddr, dma_addr_t dma_handle,
  81                                   struct dma_attrs *attrs)
  82{
  83        homecache_free_pages((unsigned long)vaddr, get_order(size));
  84}
  85
  86/*
  87 * The map routines "map" the specified address range for DMA
  88 * accesses.  The memory belongs to the device after this call is
  89 * issued, until it is unmapped with dma_unmap_single.
  90 *
  91 * We don't need to do any mapping, we just flush the address range
  92 * out of the cache and return a DMA address.
  93 *
  94 * The unmap routines do whatever is necessary before the processor
  95 * accesses the memory again, and must be called before the driver
  96 * touches the memory.  We can get away with a cache invalidate if we
  97 * can count on nothing having been touched.
  98 */
  99
 100/* Set up a single page for DMA access. */
 101static void __dma_prep_page(struct page *page, unsigned long offset,
 102                            size_t size, enum dma_data_direction direction)
 103{
 104        /*
 105         * Flush the page from cache if necessary.
 106         * On tilegx, data is delivered to hash-for-home L3; on tilepro,
 107         * data is delivered direct to memory.
 108         *
 109         * NOTE: If we were just doing DMA_TO_DEVICE we could optimize
 110         * this to be a "flush" not a "finv" and keep some of the
 111         * state in cache across the DMA operation, but it doesn't seem
 112         * worth creating the necessary flush_buffer_xxx() infrastructure.
 113         */
 114        int home = page_home(page);
 115        switch (home) {
 116        case PAGE_HOME_HASH:
 117#ifdef __tilegx__
 118                return;
 119#endif
 120                break;
 121        case PAGE_HOME_UNCACHED:
 122#ifdef __tilepro__
 123                return;
 124#endif
 125                break;
 126        case PAGE_HOME_IMMUTABLE:
 127                /* Should be going to the device only. */
 128                BUG_ON(direction == DMA_FROM_DEVICE ||
 129                       direction == DMA_BIDIRECTIONAL);
 130                return;
 131        case PAGE_HOME_INCOHERENT:
 132                /* Incoherent anyway, so no need to work hard here. */
 133                return;
 134        default:
 135                BUG_ON(home < 0 || home >= NR_CPUS);
 136                break;
 137        }
 138        homecache_finv_page(page);
 139
 140#ifdef DEBUG_ALIGNMENT
 141        /* Warn if the region isn't cacheline aligned. */
 142        if (offset & (L2_CACHE_BYTES - 1) || (size & (L2_CACHE_BYTES - 1)))
 143                pr_warn("Unaligned DMA to non-hfh memory: PA %#llx/%#lx\n",
 144                        PFN_PHYS(page_to_pfn(page)) + offset, size);
 145#endif
 146}
 147
 148/* Make the page ready to be read by the core. */
 149static void __dma_complete_page(struct page *page, unsigned long offset,
 150                                size_t size, enum dma_data_direction direction)
 151{
 152#ifdef __tilegx__
 153        switch (page_home(page)) {
 154        case PAGE_HOME_HASH:
 155                /* I/O device delivered data the way the cpu wanted it. */
 156                break;
 157        case PAGE_HOME_INCOHERENT:
 158                /* Incoherent anyway, so no need to work hard here. */
 159                break;
 160        case PAGE_HOME_IMMUTABLE:
 161                /* Extra read-only copies are not a problem. */
 162                break;
 163        default:
 164                /* Flush the bogus hash-for-home I/O entries to memory. */
 165                homecache_finv_map_page(page, PAGE_HOME_HASH);
 166                break;
 167        }
 168#endif
 169}
 170
 171static void __dma_prep_pa_range(dma_addr_t dma_addr, size_t size,
 172                                enum dma_data_direction direction)
 173{
 174        struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 175        unsigned long offset = dma_addr & (PAGE_SIZE - 1);
 176        size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
 177
 178        while (size != 0) {
 179                __dma_prep_page(page, offset, bytes, direction);
 180                size -= bytes;
 181                ++page;
 182                offset = 0;
 183                bytes = min((size_t)PAGE_SIZE, size);
 184        }
 185}
 186
 187static void __dma_complete_pa_range(dma_addr_t dma_addr, size_t size,
 188                                    enum dma_data_direction direction)
 189{
 190        struct page *page = pfn_to_page(PFN_DOWN(dma_addr));
 191        unsigned long offset = dma_addr & (PAGE_SIZE - 1);
 192        size_t bytes = min(size, (size_t)(PAGE_SIZE - offset));
 193
 194        while (size != 0) {
 195                __dma_complete_page(page, offset, bytes, direction);
 196                size -= bytes;
 197                ++page;
 198                offset = 0;
 199                bytes = min((size_t)PAGE_SIZE, size);
 200        }
 201}
 202
 203static int tile_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 204                           int nents, enum dma_data_direction direction,
 205                           struct dma_attrs *attrs)
 206{
 207        struct scatterlist *sg;
 208        int i;
 209
 210        BUG_ON(!valid_dma_direction(direction));
 211
 212        WARN_ON(nents == 0 || sglist->length == 0);
 213
 214        for_each_sg(sglist, sg, nents, i) {
 215                sg->dma_address = sg_phys(sg);
 216                __dma_prep_pa_range(sg->dma_address, sg->length, direction);
 217#ifdef CONFIG_NEED_SG_DMA_LENGTH
 218                sg->dma_length = sg->length;
 219#endif
 220        }
 221
 222        return nents;
 223}
 224
 225static void tile_dma_unmap_sg(struct device *dev, struct scatterlist *sglist,
 226                              int nents, enum dma_data_direction direction,
 227                              struct dma_attrs *attrs)
 228{
 229        struct scatterlist *sg;
 230        int i;
 231
 232        BUG_ON(!valid_dma_direction(direction));
 233        for_each_sg(sglist, sg, nents, i) {
 234                sg->dma_address = sg_phys(sg);
 235                __dma_complete_pa_range(sg->dma_address, sg->length,
 236                                        direction);
 237        }
 238}
 239
 240static dma_addr_t tile_dma_map_page(struct device *dev, struct page *page,
 241                                    unsigned long offset, size_t size,
 242                                    enum dma_data_direction direction,
 243                                    struct dma_attrs *attrs)
 244{
 245        BUG_ON(!valid_dma_direction(direction));
 246
 247        BUG_ON(offset + size > PAGE_SIZE);
 248        __dma_prep_page(page, offset, size, direction);
 249
 250        return page_to_pa(page) + offset;
 251}
 252
 253static void tile_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
 254                                size_t size, enum dma_data_direction direction,
 255                                struct dma_attrs *attrs)
 256{
 257        BUG_ON(!valid_dma_direction(direction));
 258
 259        __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
 260                            dma_address & (PAGE_SIZE - 1), size, direction);
 261}
 262
 263static void tile_dma_sync_single_for_cpu(struct device *dev,
 264                                         dma_addr_t dma_handle,
 265                                         size_t size,
 266                                         enum dma_data_direction direction)
 267{
 268        BUG_ON(!valid_dma_direction(direction));
 269
 270        __dma_complete_pa_range(dma_handle, size, direction);
 271}
 272
 273static void tile_dma_sync_single_for_device(struct device *dev,
 274                                            dma_addr_t dma_handle, size_t size,
 275                                            enum dma_data_direction direction)
 276{
 277        __dma_prep_pa_range(dma_handle, size, direction);
 278}
 279
 280static void tile_dma_sync_sg_for_cpu(struct device *dev,
 281                                     struct scatterlist *sglist, int nelems,
 282                                     enum dma_data_direction direction)
 283{
 284        struct scatterlist *sg;
 285        int i;
 286
 287        BUG_ON(!valid_dma_direction(direction));
 288        WARN_ON(nelems == 0 || sglist->length == 0);
 289
 290        for_each_sg(sglist, sg, nelems, i) {
 291                dma_sync_single_for_cpu(dev, sg->dma_address,
 292                                        sg_dma_len(sg), direction);
 293        }
 294}
 295
 296static void tile_dma_sync_sg_for_device(struct device *dev,
 297                                        struct scatterlist *sglist, int nelems,
 298                                        enum dma_data_direction direction)
 299{
 300        struct scatterlist *sg;
 301        int i;
 302
 303        BUG_ON(!valid_dma_direction(direction));
 304        WARN_ON(nelems == 0 || sglist->length == 0);
 305
 306        for_each_sg(sglist, sg, nelems, i) {
 307                dma_sync_single_for_device(dev, sg->dma_address,
 308                                           sg_dma_len(sg), direction);
 309        }
 310}
 311
 312static inline int
 313tile_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 314{
 315        return 0;
 316}
 317
 318static inline int
 319tile_dma_supported(struct device *dev, u64 mask)
 320{
 321        return 1;
 322}
 323
 324static struct dma_map_ops tile_default_dma_map_ops = {
 325        .alloc = tile_dma_alloc_coherent,
 326        .free = tile_dma_free_coherent,
 327        .map_page = tile_dma_map_page,
 328        .unmap_page = tile_dma_unmap_page,
 329        .map_sg = tile_dma_map_sg,
 330        .unmap_sg = tile_dma_unmap_sg,
 331        .sync_single_for_cpu = tile_dma_sync_single_for_cpu,
 332        .sync_single_for_device = tile_dma_sync_single_for_device,
 333        .sync_sg_for_cpu = tile_dma_sync_sg_for_cpu,
 334        .sync_sg_for_device = tile_dma_sync_sg_for_device,
 335        .mapping_error = tile_dma_mapping_error,
 336        .dma_supported = tile_dma_supported
 337};
 338
 339struct dma_map_ops *tile_dma_map_ops = &tile_default_dma_map_ops;
 340EXPORT_SYMBOL(tile_dma_map_ops);
 341
 342/* Generic PCI DMA mapping functions */
 343
 344static void *tile_pci_dma_alloc_coherent(struct device *dev, size_t size,
 345                                         dma_addr_t *dma_handle, gfp_t gfp,
 346                                         struct dma_attrs *attrs)
 347{
 348        int node = dev_to_node(dev);
 349        int order = get_order(size);
 350        struct page *pg;
 351        dma_addr_t addr;
 352
 353        gfp |= __GFP_ZERO;
 354
 355        pg = homecache_alloc_pages_node(node, gfp, order, PAGE_HOME_DMA);
 356        if (pg == NULL)
 357                return NULL;
 358
 359        addr = page_to_phys(pg);
 360
 361        *dma_handle = addr + get_dma_offset(dev);
 362
 363        return page_address(pg);
 364}
 365
 366/*
 367 * Free memory that was allocated with tile_pci_dma_alloc_coherent.
 368 */
 369static void tile_pci_dma_free_coherent(struct device *dev, size_t size,
 370                                       void *vaddr, dma_addr_t dma_handle,
 371                                       struct dma_attrs *attrs)
 372{
 373        homecache_free_pages((unsigned long)vaddr, get_order(size));
 374}
 375
 376static int tile_pci_dma_map_sg(struct device *dev, struct scatterlist *sglist,
 377                               int nents, enum dma_data_direction direction,
 378                               struct dma_attrs *attrs)
 379{
 380        struct scatterlist *sg;
 381        int i;
 382
 383        BUG_ON(!valid_dma_direction(direction));
 384
 385        WARN_ON(nents == 0 || sglist->length == 0);
 386
 387        for_each_sg(sglist, sg, nents, i) {
 388                sg->dma_address = sg_phys(sg);
 389                __dma_prep_pa_range(sg->dma_address, sg->length, direction);
 390
 391                sg->dma_address = sg->dma_address + get_dma_offset(dev);
 392#ifdef CONFIG_NEED_SG_DMA_LENGTH
 393                sg->dma_length = sg->length;
 394#endif
 395        }
 396
 397        return nents;
 398}
 399
 400static void tile_pci_dma_unmap_sg(struct device *dev,
 401                                  struct scatterlist *sglist, int nents,
 402                                  enum dma_data_direction direction,
 403                                  struct dma_attrs *attrs)
 404{
 405        struct scatterlist *sg;
 406        int i;
 407
 408        BUG_ON(!valid_dma_direction(direction));
 409        for_each_sg(sglist, sg, nents, i) {
 410                sg->dma_address = sg_phys(sg);
 411                __dma_complete_pa_range(sg->dma_address, sg->length,
 412                                        direction);
 413        }
 414}
 415
 416static dma_addr_t tile_pci_dma_map_page(struct device *dev, struct page *page,
 417                                        unsigned long offset, size_t size,
 418                                        enum dma_data_direction direction,
 419                                        struct dma_attrs *attrs)
 420{
 421        BUG_ON(!valid_dma_direction(direction));
 422
 423        BUG_ON(offset + size > PAGE_SIZE);
 424        __dma_prep_page(page, offset, size, direction);
 425
 426        return page_to_pa(page) + offset + get_dma_offset(dev);
 427}
 428
 429static void tile_pci_dma_unmap_page(struct device *dev, dma_addr_t dma_address,
 430                                    size_t size,
 431                                    enum dma_data_direction direction,
 432                                    struct dma_attrs *attrs)
 433{
 434        BUG_ON(!valid_dma_direction(direction));
 435
 436        dma_address -= get_dma_offset(dev);
 437
 438        __dma_complete_page(pfn_to_page(PFN_DOWN(dma_address)),
 439                            dma_address & (PAGE_SIZE - 1), size, direction);
 440}
 441
 442static void tile_pci_dma_sync_single_for_cpu(struct device *dev,
 443                                             dma_addr_t dma_handle,
 444                                             size_t size,
 445                                             enum dma_data_direction direction)
 446{
 447        BUG_ON(!valid_dma_direction(direction));
 448
 449        dma_handle -= get_dma_offset(dev);
 450
 451        __dma_complete_pa_range(dma_handle, size, direction);
 452}
 453
 454static void tile_pci_dma_sync_single_for_device(struct device *dev,
 455                                                dma_addr_t dma_handle,
 456                                                size_t size,
 457                                                enum dma_data_direction
 458                                                direction)
 459{
 460        dma_handle -= get_dma_offset(dev);
 461
 462        __dma_prep_pa_range(dma_handle, size, direction);
 463}
 464
 465static void tile_pci_dma_sync_sg_for_cpu(struct device *dev,
 466                                         struct scatterlist *sglist,
 467                                         int nelems,
 468                                         enum dma_data_direction direction)
 469{
 470        struct scatterlist *sg;
 471        int i;
 472
 473        BUG_ON(!valid_dma_direction(direction));
 474        WARN_ON(nelems == 0 || sglist->length == 0);
 475
 476        for_each_sg(sglist, sg, nelems, i) {
 477                dma_sync_single_for_cpu(dev, sg->dma_address,
 478                                        sg_dma_len(sg), direction);
 479        }
 480}
 481
 482static void tile_pci_dma_sync_sg_for_device(struct device *dev,
 483                                            struct scatterlist *sglist,
 484                                            int nelems,
 485                                            enum dma_data_direction direction)
 486{
 487        struct scatterlist *sg;
 488        int i;
 489
 490        BUG_ON(!valid_dma_direction(direction));
 491        WARN_ON(nelems == 0 || sglist->length == 0);
 492
 493        for_each_sg(sglist, sg, nelems, i) {
 494                dma_sync_single_for_device(dev, sg->dma_address,
 495                                           sg_dma_len(sg), direction);
 496        }
 497}
 498
 499static inline int
 500tile_pci_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
 501{
 502        return 0;
 503}
 504
 505static inline int
 506tile_pci_dma_supported(struct device *dev, u64 mask)
 507{
 508        return 1;
 509}
 510
 511static struct dma_map_ops tile_pci_default_dma_map_ops = {
 512        .alloc = tile_pci_dma_alloc_coherent,
 513        .free = tile_pci_dma_free_coherent,
 514        .map_page = tile_pci_dma_map_page,
 515        .unmap_page = tile_pci_dma_unmap_page,
 516        .map_sg = tile_pci_dma_map_sg,
 517        .unmap_sg = tile_pci_dma_unmap_sg,
 518        .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
 519        .sync_single_for_device = tile_pci_dma_sync_single_for_device,
 520        .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
 521        .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
 522        .mapping_error = tile_pci_dma_mapping_error,
 523        .dma_supported = tile_pci_dma_supported
 524};
 525
 526struct dma_map_ops *gx_pci_dma_map_ops = &tile_pci_default_dma_map_ops;
 527EXPORT_SYMBOL(gx_pci_dma_map_ops);
 528
 529/* PCI DMA mapping functions for legacy PCI devices */
 530
 531#ifdef CONFIG_SWIOTLB
 532static void *tile_swiotlb_alloc_coherent(struct device *dev, size_t size,
 533                                         dma_addr_t *dma_handle, gfp_t gfp,
 534                                         struct dma_attrs *attrs)
 535{
 536        gfp |= GFP_DMA;
 537        return swiotlb_alloc_coherent(dev, size, dma_handle, gfp);
 538}
 539
 540static void tile_swiotlb_free_coherent(struct device *dev, size_t size,
 541                                       void *vaddr, dma_addr_t dma_addr,
 542                                       struct dma_attrs *attrs)
 543{
 544        swiotlb_free_coherent(dev, size, vaddr, dma_addr);
 545}
 546
 547static struct dma_map_ops pci_swiotlb_dma_ops = {
 548        .alloc = tile_swiotlb_alloc_coherent,
 549        .free = tile_swiotlb_free_coherent,
 550        .map_page = swiotlb_map_page,
 551        .unmap_page = swiotlb_unmap_page,
 552        .map_sg = swiotlb_map_sg_attrs,
 553        .unmap_sg = swiotlb_unmap_sg_attrs,
 554        .sync_single_for_cpu = swiotlb_sync_single_for_cpu,
 555        .sync_single_for_device = swiotlb_sync_single_for_device,
 556        .sync_sg_for_cpu = swiotlb_sync_sg_for_cpu,
 557        .sync_sg_for_device = swiotlb_sync_sg_for_device,
 558        .dma_supported = swiotlb_dma_supported,
 559        .mapping_error = swiotlb_dma_mapping_error,
 560};
 561
 562static struct dma_map_ops pci_hybrid_dma_ops = {
 563        .alloc = tile_swiotlb_alloc_coherent,
 564        .free = tile_swiotlb_free_coherent,
 565        .map_page = tile_pci_dma_map_page,
 566        .unmap_page = tile_pci_dma_unmap_page,
 567        .map_sg = tile_pci_dma_map_sg,
 568        .unmap_sg = tile_pci_dma_unmap_sg,
 569        .sync_single_for_cpu = tile_pci_dma_sync_single_for_cpu,
 570        .sync_single_for_device = tile_pci_dma_sync_single_for_device,
 571        .sync_sg_for_cpu = tile_pci_dma_sync_sg_for_cpu,
 572        .sync_sg_for_device = tile_pci_dma_sync_sg_for_device,
 573        .mapping_error = tile_pci_dma_mapping_error,
 574        .dma_supported = tile_pci_dma_supported
 575};
 576
 577struct dma_map_ops *gx_legacy_pci_dma_map_ops = &pci_swiotlb_dma_ops;
 578struct dma_map_ops *gx_hybrid_pci_dma_map_ops = &pci_hybrid_dma_ops;
 579#else
 580struct dma_map_ops *gx_legacy_pci_dma_map_ops;
 581struct dma_map_ops *gx_hybrid_pci_dma_map_ops;
 582#endif
 583EXPORT_SYMBOL(gx_legacy_pci_dma_map_ops);
 584EXPORT_SYMBOL(gx_hybrid_pci_dma_map_ops);
 585
 586#ifdef CONFIG_ARCH_HAS_DMA_SET_COHERENT_MASK
 587int dma_set_coherent_mask(struct device *dev, u64 mask)
 588{
 589        struct dma_map_ops *dma_ops = get_dma_ops(dev);
 590
 591        /*
 592         * For PCI devices with 64-bit DMA addressing capability, promote
 593         * the dma_ops to full capability for both streams and consistent
 594         * memory access. For 32-bit capable devices, limit the consistent 
 595         * memory DMA range to max_direct_dma_addr.
 596         */
 597        if (dma_ops == gx_pci_dma_map_ops ||
 598            dma_ops == gx_hybrid_pci_dma_map_ops ||
 599            dma_ops == gx_legacy_pci_dma_map_ops) {
 600                if (mask == DMA_BIT_MASK(64))
 601                        set_dma_ops(dev, gx_pci_dma_map_ops);
 602                else if (mask > dev->archdata.max_direct_dma_addr)
 603                        mask = dev->archdata.max_direct_dma_addr;
 604        }
 605
 606        if (!dma_supported(dev, mask))
 607                return -EIO;
 608        dev->coherent_dma_mask = mask;
 609        return 0;
 610}
 611EXPORT_SYMBOL(dma_set_coherent_mask);
 612#endif
 613
 614#ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
 615/*
 616 * The generic dma_get_required_mask() uses the highest physical address
 617 * (max_pfn) to provide the hint to the PCI drivers regarding 32-bit or
 618 * 64-bit DMA configuration. Since TILEGx has I/O TLB/MMU, allowing the
 619 * DMAs to use the full 64-bit PCI address space and not limited by
 620 * the physical memory space, we always let the PCI devices use
 621 * 64-bit DMA if they have that capability, by returning the 64-bit
 622 * DMA mask here. The device driver has the option to use 32-bit DMA if
 623 * the device is not capable of 64-bit DMA.
 624 */
 625u64 dma_get_required_mask(struct device *dev)
 626{
 627        return DMA_BIT_MASK(64);
 628}
 629EXPORT_SYMBOL_GPL(dma_get_required_mask);
 630#endif
 631