linux/arch/x86/kernel/cpu/common.c
<<
>>
Prefs
   1#include <linux/bootmem.h>
   2#include <linux/linkage.h>
   3#include <linux/bitops.h>
   4#include <linux/kernel.h>
   5#include <linux/module.h>
   6#include <linux/percpu.h>
   7#include <linux/string.h>
   8#include <linux/ctype.h>
   9#include <linux/delay.h>
  10#include <linux/sched.h>
  11#include <linux/init.h>
  12#include <linux/kprobes.h>
  13#include <linux/kgdb.h>
  14#include <linux/smp.h>
  15#include <linux/io.h>
  16
  17#include <asm/stackprotector.h>
  18#include <asm/perf_event.h>
  19#include <asm/mmu_context.h>
  20#include <asm/archrandom.h>
  21#include <asm/hypervisor.h>
  22#include <asm/processor.h>
  23#include <asm/tlbflush.h>
  24#include <asm/debugreg.h>
  25#include <asm/sections.h>
  26#include <asm/vsyscall.h>
  27#include <linux/topology.h>
  28#include <linux/cpumask.h>
  29#include <asm/pgtable.h>
  30#include <linux/atomic.h>
  31#include <asm/proto.h>
  32#include <asm/setup.h>
  33#include <asm/apic.h>
  34#include <asm/desc.h>
  35#include <asm/fpu/internal.h>
  36#include <asm/mtrr.h>
  37#include <linux/numa.h>
  38#include <asm/asm.h>
  39#include <asm/cpu.h>
  40#include <asm/mce.h>
  41#include <asm/msr.h>
  42#include <asm/pat.h>
  43#include <asm/microcode.h>
  44#include <asm/microcode_intel.h>
  45
  46#ifdef CONFIG_X86_LOCAL_APIC
  47#include <asm/uv/uv.h>
  48#endif
  49
  50#include "cpu.h"
  51
  52/* all of these masks are initialized in setup_cpu_local_masks() */
  53cpumask_var_t cpu_initialized_mask;
  54cpumask_var_t cpu_callout_mask;
  55cpumask_var_t cpu_callin_mask;
  56
  57/* representing cpus for which sibling maps can be computed */
  58cpumask_var_t cpu_sibling_setup_mask;
  59
  60/* correctly size the local cpu masks */
  61void __init setup_cpu_local_masks(void)
  62{
  63        alloc_bootmem_cpumask_var(&cpu_initialized_mask);
  64        alloc_bootmem_cpumask_var(&cpu_callin_mask);
  65        alloc_bootmem_cpumask_var(&cpu_callout_mask);
  66        alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
  67}
  68
  69static void default_init(struct cpuinfo_x86 *c)
  70{
  71#ifdef CONFIG_X86_64
  72        cpu_detect_cache_sizes(c);
  73#else
  74        /* Not much we can do here... */
  75        /* Check if at least it has cpuid */
  76        if (c->cpuid_level == -1) {
  77                /* No cpuid. It must be an ancient CPU */
  78                if (c->x86 == 4)
  79                        strcpy(c->x86_model_id, "486");
  80                else if (c->x86 == 3)
  81                        strcpy(c->x86_model_id, "386");
  82        }
  83#endif
  84}
  85
  86static const struct cpu_dev default_cpu = {
  87        .c_init         = default_init,
  88        .c_vendor       = "Unknown",
  89        .c_x86_vendor   = X86_VENDOR_UNKNOWN,
  90};
  91
  92static const struct cpu_dev *this_cpu = &default_cpu;
  93
  94DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
  95#ifdef CONFIG_X86_64
  96        /*
  97         * We need valid kernel segments for data and code in long mode too
  98         * IRET will check the segment types  kkeil 2000/10/28
  99         * Also sysret mandates a special GDT layout
 100         *
 101         * TLS descriptors are currently at a different place compared to i386.
 102         * Hopefully nobody expects them at a fixed place (Wine?)
 103         */
 104        [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
 105        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
 106        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
 107        [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
 108        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
 109        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
 110#else
 111        [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
 112        [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 113        [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
 114        [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
 115        /*
 116         * Segments used for calling PnP BIOS have byte granularity.
 117         * They code segments and data segments have fixed 64k limits,
 118         * the transfer segment sizes are set at run time.
 119         */
 120        /* 32-bit code */
 121        [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 122        /* 16-bit code */
 123        [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 124        /* 16-bit data */
 125        [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
 126        /* 16-bit data */
 127        [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 128        /* 16-bit data */
 129        [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
 130        /*
 131         * The APM segments have byte granularity and their bases
 132         * are set at run time.  All have 64k limits.
 133         */
 134        /* 32-bit code */
 135        [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
 136        /* 16-bit code */
 137        [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
 138        /* data */
 139        [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
 140
 141        [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 142        [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
 143        GDT_STACK_CANARY_INIT
 144#endif
 145} };
 146EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
 147
 148static int __init x86_mpx_setup(char *s)
 149{
 150        /* require an exact match without trailing characters */
 151        if (strlen(s))
 152                return 0;
 153
 154        /* do not emit a message if the feature is not present */
 155        if (!boot_cpu_has(X86_FEATURE_MPX))
 156                return 1;
 157
 158        setup_clear_cpu_cap(X86_FEATURE_MPX);
 159        pr_info("nompx: Intel Memory Protection Extensions (MPX) disabled\n");
 160        return 1;
 161}
 162__setup("nompx", x86_mpx_setup);
 163
 164#ifdef CONFIG_X86_32
 165static int cachesize_override = -1;
 166static int disable_x86_serial_nr = 1;
 167
 168static int __init cachesize_setup(char *str)
 169{
 170        get_option(&str, &cachesize_override);
 171        return 1;
 172}
 173__setup("cachesize=", cachesize_setup);
 174
 175static int __init x86_sep_setup(char *s)
 176{
 177        setup_clear_cpu_cap(X86_FEATURE_SEP);
 178        return 1;
 179}
 180__setup("nosep", x86_sep_setup);
 181
 182/* Standard macro to see if a specific flag is changeable */
 183static inline int flag_is_changeable_p(u32 flag)
 184{
 185        u32 f1, f2;
 186
 187        /*
 188         * Cyrix and IDT cpus allow disabling of CPUID
 189         * so the code below may return different results
 190         * when it is executed before and after enabling
 191         * the CPUID. Add "volatile" to not allow gcc to
 192         * optimize the subsequent calls to this function.
 193         */
 194        asm volatile ("pushfl           \n\t"
 195                      "pushfl           \n\t"
 196                      "popl %0          \n\t"
 197                      "movl %0, %1      \n\t"
 198                      "xorl %2, %0      \n\t"
 199                      "pushl %0         \n\t"
 200                      "popfl            \n\t"
 201                      "pushfl           \n\t"
 202                      "popl %0          \n\t"
 203                      "popfl            \n\t"
 204
 205                      : "=&r" (f1), "=&r" (f2)
 206                      : "ir" (flag));
 207
 208        return ((f1^f2) & flag) != 0;
 209}
 210
 211/* Probe for the CPUID instruction */
 212int have_cpuid_p(void)
 213{
 214        return flag_is_changeable_p(X86_EFLAGS_ID);
 215}
 216
 217static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 218{
 219        unsigned long lo, hi;
 220
 221        if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
 222                return;
 223
 224        /* Disable processor serial number: */
 225
 226        rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 227        lo |= 0x200000;
 228        wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
 229
 230        printk(KERN_NOTICE "CPU serial number disabled.\n");
 231        clear_cpu_cap(c, X86_FEATURE_PN);
 232
 233        /* Disabling the serial number may affect the cpuid level */
 234        c->cpuid_level = cpuid_eax(0);
 235}
 236
 237static int __init x86_serial_nr_setup(char *s)
 238{
 239        disable_x86_serial_nr = 0;
 240        return 1;
 241}
 242__setup("serialnumber", x86_serial_nr_setup);
 243#else
 244static inline int flag_is_changeable_p(u32 flag)
 245{
 246        return 1;
 247}
 248static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
 249{
 250}
 251#endif
 252
 253static __init int setup_disable_smep(char *arg)
 254{
 255        setup_clear_cpu_cap(X86_FEATURE_SMEP);
 256        return 1;
 257}
 258__setup("nosmep", setup_disable_smep);
 259
 260static __always_inline void setup_smep(struct cpuinfo_x86 *c)
 261{
 262        if (cpu_has(c, X86_FEATURE_SMEP))
 263                cr4_set_bits(X86_CR4_SMEP);
 264}
 265
 266static __init int setup_disable_smap(char *arg)
 267{
 268        setup_clear_cpu_cap(X86_FEATURE_SMAP);
 269        return 1;
 270}
 271__setup("nosmap", setup_disable_smap);
 272
 273static __always_inline void setup_smap(struct cpuinfo_x86 *c)
 274{
 275        unsigned long eflags;
 276
 277        /* This should have been cleared long ago */
 278        raw_local_save_flags(eflags);
 279        BUG_ON(eflags & X86_EFLAGS_AC);
 280
 281        if (cpu_has(c, X86_FEATURE_SMAP)) {
 282#ifdef CONFIG_X86_SMAP
 283                cr4_set_bits(X86_CR4_SMAP);
 284#else
 285                cr4_clear_bits(X86_CR4_SMAP);
 286#endif
 287        }
 288}
 289
 290/*
 291 * Some CPU features depend on higher CPUID levels, which may not always
 292 * be available due to CPUID level capping or broken virtualization
 293 * software.  Add those features to this table to auto-disable them.
 294 */
 295struct cpuid_dependent_feature {
 296        u32 feature;
 297        u32 level;
 298};
 299
 300static const struct cpuid_dependent_feature
 301cpuid_dependent_features[] = {
 302        { X86_FEATURE_MWAIT,            0x00000005 },
 303        { X86_FEATURE_DCA,              0x00000009 },
 304        { X86_FEATURE_XSAVE,            0x0000000d },
 305        { 0, 0 }
 306};
 307
 308static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
 309{
 310        const struct cpuid_dependent_feature *df;
 311
 312        for (df = cpuid_dependent_features; df->feature; df++) {
 313
 314                if (!cpu_has(c, df->feature))
 315                        continue;
 316                /*
 317                 * Note: cpuid_level is set to -1 if unavailable, but
 318                 * extended_extended_level is set to 0 if unavailable
 319                 * and the legitimate extended levels are all negative
 320                 * when signed; hence the weird messing around with
 321                 * signs here...
 322                 */
 323                if (!((s32)df->level < 0 ?
 324                     (u32)df->level > (u32)c->extended_cpuid_level :
 325                     (s32)df->level > (s32)c->cpuid_level))
 326                        continue;
 327
 328                clear_cpu_cap(c, df->feature);
 329                if (!warn)
 330                        continue;
 331
 332                printk(KERN_WARNING
 333                       "CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
 334                                x86_cap_flag(df->feature), df->level);
 335        }
 336}
 337
 338/*
 339 * Naming convention should be: <Name> [(<Codename>)]
 340 * This table only is used unless init_<vendor>() below doesn't set it;
 341 * in particular, if CPUID levels 0x80000002..4 are supported, this
 342 * isn't used
 343 */
 344
 345/* Look up CPU names by table lookup. */
 346static const char *table_lookup_model(struct cpuinfo_x86 *c)
 347{
 348#ifdef CONFIG_X86_32
 349        const struct legacy_cpu_model_info *info;
 350
 351        if (c->x86_model >= 16)
 352                return NULL;    /* Range check */
 353
 354        if (!this_cpu)
 355                return NULL;
 356
 357        info = this_cpu->legacy_models;
 358
 359        while (info->family) {
 360                if (info->family == c->x86)
 361                        return info->model_names[c->x86_model];
 362                info++;
 363        }
 364#endif
 365        return NULL;            /* Not found */
 366}
 367
 368__u32 cpu_caps_cleared[NCAPINTS];
 369__u32 cpu_caps_set[NCAPINTS];
 370
 371void load_percpu_segment(int cpu)
 372{
 373#ifdef CONFIG_X86_32
 374        loadsegment(fs, __KERNEL_PERCPU);
 375#else
 376        loadsegment(gs, 0);
 377        wrmsrl(MSR_GS_BASE, (unsigned long)per_cpu(irq_stack_union.gs_base, cpu));
 378#endif
 379        load_stack_canary_segment();
 380}
 381
 382/*
 383 * Current gdt points %fs at the "master" per-cpu area: after this,
 384 * it's on the real one.
 385 */
 386void switch_to_new_gdt(int cpu)
 387{
 388        struct desc_ptr gdt_descr;
 389
 390        gdt_descr.address = (long)get_cpu_gdt_table(cpu);
 391        gdt_descr.size = GDT_SIZE - 1;
 392        load_gdt(&gdt_descr);
 393        /* Reload the per-cpu base */
 394
 395        load_percpu_segment(cpu);
 396}
 397
 398static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
 399
 400static void get_model_name(struct cpuinfo_x86 *c)
 401{
 402        unsigned int *v;
 403        char *p, *q, *s;
 404
 405        if (c->extended_cpuid_level < 0x80000004)
 406                return;
 407
 408        v = (unsigned int *)c->x86_model_id;
 409        cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
 410        cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
 411        cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
 412        c->x86_model_id[48] = 0;
 413
 414        /* Trim whitespace */
 415        p = q = s = &c->x86_model_id[0];
 416
 417        while (*p == ' ')
 418                p++;
 419
 420        while (*p) {
 421                /* Note the last non-whitespace index */
 422                if (!isspace(*p))
 423                        s = q;
 424
 425                *q++ = *p++;
 426        }
 427
 428        *(s + 1) = '\0';
 429}
 430
 431void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
 432{
 433        unsigned int n, dummy, ebx, ecx, edx, l2size;
 434
 435        n = c->extended_cpuid_level;
 436
 437        if (n >= 0x80000005) {
 438                cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
 439                c->x86_cache_size = (ecx>>24) + (edx>>24);
 440#ifdef CONFIG_X86_64
 441                /* On K8 L1 TLB is inclusive, so don't count it */
 442                c->x86_tlbsize = 0;
 443#endif
 444        }
 445
 446        if (n < 0x80000006)     /* Some chips just has a large L1. */
 447                return;
 448
 449        cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
 450        l2size = ecx >> 16;
 451
 452#ifdef CONFIG_X86_64
 453        c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
 454#else
 455        /* do processor-specific cache resizing */
 456        if (this_cpu->legacy_cache_size)
 457                l2size = this_cpu->legacy_cache_size(c, l2size);
 458
 459        /* Allow user to override all this if necessary. */
 460        if (cachesize_override != -1)
 461                l2size = cachesize_override;
 462
 463        if (l2size == 0)
 464                return;         /* Again, no L2 cache is possible */
 465#endif
 466
 467        c->x86_cache_size = l2size;
 468}
 469
 470u16 __read_mostly tlb_lli_4k[NR_INFO];
 471u16 __read_mostly tlb_lli_2m[NR_INFO];
 472u16 __read_mostly tlb_lli_4m[NR_INFO];
 473u16 __read_mostly tlb_lld_4k[NR_INFO];
 474u16 __read_mostly tlb_lld_2m[NR_INFO];
 475u16 __read_mostly tlb_lld_4m[NR_INFO];
 476u16 __read_mostly tlb_lld_1g[NR_INFO];
 477
 478static void cpu_detect_tlb(struct cpuinfo_x86 *c)
 479{
 480        if (this_cpu->c_detect_tlb)
 481                this_cpu->c_detect_tlb(c);
 482
 483        pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
 484                tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
 485                tlb_lli_4m[ENTRIES]);
 486
 487        pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
 488                tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
 489                tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
 490}
 491
 492void detect_ht(struct cpuinfo_x86 *c)
 493{
 494#ifdef CONFIG_SMP
 495        u32 eax, ebx, ecx, edx;
 496        int index_msb, core_bits;
 497        static bool printed;
 498
 499        if (!cpu_has(c, X86_FEATURE_HT))
 500                return;
 501
 502        if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
 503                goto out;
 504
 505        if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
 506                return;
 507
 508        cpuid(1, &eax, &ebx, &ecx, &edx);
 509
 510        smp_num_siblings = (ebx & 0xff0000) >> 16;
 511
 512        if (smp_num_siblings == 1) {
 513                printk_once(KERN_INFO "CPU0: Hyper-Threading is disabled\n");
 514                goto out;
 515        }
 516
 517        if (smp_num_siblings <= 1)
 518                goto out;
 519
 520        index_msb = get_count_order(smp_num_siblings);
 521        c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
 522
 523        smp_num_siblings = smp_num_siblings / c->x86_max_cores;
 524
 525        index_msb = get_count_order(smp_num_siblings);
 526
 527        core_bits = get_count_order(c->x86_max_cores);
 528
 529        c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
 530                                       ((1 << core_bits) - 1);
 531
 532out:
 533        if (!printed && (c->x86_max_cores * smp_num_siblings) > 1) {
 534                printk(KERN_INFO  "CPU: Physical Processor ID: %d\n",
 535                       c->phys_proc_id);
 536                printk(KERN_INFO  "CPU: Processor Core ID: %d\n",
 537                       c->cpu_core_id);
 538                printed = 1;
 539        }
 540#endif
 541}
 542
 543static void get_cpu_vendor(struct cpuinfo_x86 *c)
 544{
 545        char *v = c->x86_vendor_id;
 546        int i;
 547
 548        for (i = 0; i < X86_VENDOR_NUM; i++) {
 549                if (!cpu_devs[i])
 550                        break;
 551
 552                if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
 553                    (cpu_devs[i]->c_ident[1] &&
 554                     !strcmp(v, cpu_devs[i]->c_ident[1]))) {
 555
 556                        this_cpu = cpu_devs[i];
 557                        c->x86_vendor = this_cpu->c_x86_vendor;
 558                        return;
 559                }
 560        }
 561
 562        printk_once(KERN_ERR
 563                        "CPU: vendor_id '%s' unknown, using generic init.\n" \
 564                        "CPU: Your system may be unstable.\n", v);
 565
 566        c->x86_vendor = X86_VENDOR_UNKNOWN;
 567        this_cpu = &default_cpu;
 568}
 569
 570void cpu_detect(struct cpuinfo_x86 *c)
 571{
 572        /* Get vendor name */
 573        cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
 574              (unsigned int *)&c->x86_vendor_id[0],
 575              (unsigned int *)&c->x86_vendor_id[8],
 576              (unsigned int *)&c->x86_vendor_id[4]);
 577
 578        c->x86 = 4;
 579        /* Intel-defined flags: level 0x00000001 */
 580        if (c->cpuid_level >= 0x00000001) {
 581                u32 junk, tfms, cap0, misc;
 582
 583                cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
 584                c->x86 = (tfms >> 8) & 0xf;
 585                c->x86_model = (tfms >> 4) & 0xf;
 586                c->x86_mask = tfms & 0xf;
 587
 588                if (c->x86 == 0xf)
 589                        c->x86 += (tfms >> 20) & 0xff;
 590                if (c->x86 >= 0x6)
 591                        c->x86_model += ((tfms >> 16) & 0xf) << 4;
 592
 593                if (cap0 & (1<<19)) {
 594                        c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
 595                        c->x86_cache_alignment = c->x86_clflush_size;
 596                }
 597        }
 598}
 599
 600void get_cpu_cap(struct cpuinfo_x86 *c)
 601{
 602        u32 tfms, xlvl;
 603        u32 ebx;
 604
 605        /* Intel-defined flags: level 0x00000001 */
 606        if (c->cpuid_level >= 0x00000001) {
 607                u32 capability, excap;
 608
 609                cpuid(0x00000001, &tfms, &ebx, &excap, &capability);
 610                c->x86_capability[0] = capability;
 611                c->x86_capability[4] = excap;
 612        }
 613
 614        /* Additional Intel-defined flags: level 0x00000007 */
 615        if (c->cpuid_level >= 0x00000007) {
 616                u32 eax, ebx, ecx, edx;
 617
 618                cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
 619
 620                c->x86_capability[9] = ebx;
 621        }
 622
 623        /* Extended state features: level 0x0000000d */
 624        if (c->cpuid_level >= 0x0000000d) {
 625                u32 eax, ebx, ecx, edx;
 626
 627                cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
 628
 629                c->x86_capability[10] = eax;
 630        }
 631
 632        /* Additional Intel-defined flags: level 0x0000000F */
 633        if (c->cpuid_level >= 0x0000000F) {
 634                u32 eax, ebx, ecx, edx;
 635
 636                /* QoS sub-leaf, EAX=0Fh, ECX=0 */
 637                cpuid_count(0x0000000F, 0, &eax, &ebx, &ecx, &edx);
 638                c->x86_capability[11] = edx;
 639                if (cpu_has(c, X86_FEATURE_CQM_LLC)) {
 640                        /* will be overridden if occupancy monitoring exists */
 641                        c->x86_cache_max_rmid = ebx;
 642
 643                        /* QoS sub-leaf, EAX=0Fh, ECX=1 */
 644                        cpuid_count(0x0000000F, 1, &eax, &ebx, &ecx, &edx);
 645                        c->x86_capability[12] = edx;
 646                        if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC)) {
 647                                c->x86_cache_max_rmid = ecx;
 648                                c->x86_cache_occ_scale = ebx;
 649                        }
 650                } else {
 651                        c->x86_cache_max_rmid = -1;
 652                        c->x86_cache_occ_scale = -1;
 653                }
 654        }
 655
 656        /* AMD-defined flags: level 0x80000001 */
 657        xlvl = cpuid_eax(0x80000000);
 658        c->extended_cpuid_level = xlvl;
 659
 660        if ((xlvl & 0xffff0000) == 0x80000000) {
 661                if (xlvl >= 0x80000001) {
 662                        c->x86_capability[1] = cpuid_edx(0x80000001);
 663                        c->x86_capability[6] = cpuid_ecx(0x80000001);
 664                }
 665        }
 666
 667        if (c->extended_cpuid_level >= 0x80000008) {
 668                u32 eax = cpuid_eax(0x80000008);
 669
 670                c->x86_virt_bits = (eax >> 8) & 0xff;
 671                c->x86_phys_bits = eax & 0xff;
 672        }
 673#ifdef CONFIG_X86_32
 674        else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
 675                c->x86_phys_bits = 36;
 676#endif
 677
 678        if (c->extended_cpuid_level >= 0x80000007)
 679                c->x86_power = cpuid_edx(0x80000007);
 680
 681        init_scattered_cpuid_features(c);
 682}
 683
 684static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
 685{
 686#ifdef CONFIG_X86_32
 687        int i;
 688
 689        /*
 690         * First of all, decide if this is a 486 or higher
 691         * It's a 486 if we can modify the AC flag
 692         */
 693        if (flag_is_changeable_p(X86_EFLAGS_AC))
 694                c->x86 = 4;
 695        else
 696                c->x86 = 3;
 697
 698        for (i = 0; i < X86_VENDOR_NUM; i++)
 699                if (cpu_devs[i] && cpu_devs[i]->c_identify) {
 700                        c->x86_vendor_id[0] = 0;
 701                        cpu_devs[i]->c_identify(c);
 702                        if (c->x86_vendor_id[0]) {
 703                                get_cpu_vendor(c);
 704                                break;
 705                        }
 706                }
 707#endif
 708}
 709
 710/*
 711 * Do minimum CPU detection early.
 712 * Fields really needed: vendor, cpuid_level, family, model, mask,
 713 * cache alignment.
 714 * The others are not touched to avoid unwanted side effects.
 715 *
 716 * WARNING: this function is only called on the BP.  Don't add code here
 717 * that is supposed to run on all CPUs.
 718 */
 719static void __init early_identify_cpu(struct cpuinfo_x86 *c)
 720{
 721#ifdef CONFIG_X86_64
 722        c->x86_clflush_size = 64;
 723        c->x86_phys_bits = 36;
 724        c->x86_virt_bits = 48;
 725#else
 726        c->x86_clflush_size = 32;
 727        c->x86_phys_bits = 32;
 728        c->x86_virt_bits = 32;
 729#endif
 730        c->x86_cache_alignment = c->x86_clflush_size;
 731
 732        memset(&c->x86_capability, 0, sizeof c->x86_capability);
 733        c->extended_cpuid_level = 0;
 734
 735        if (!have_cpuid_p())
 736                identify_cpu_without_cpuid(c);
 737
 738        /* cyrix could have cpuid enabled via c_identify()*/
 739        if (!have_cpuid_p())
 740                return;
 741
 742        cpu_detect(c);
 743        get_cpu_vendor(c);
 744        get_cpu_cap(c);
 745
 746        if (this_cpu->c_early_init)
 747                this_cpu->c_early_init(c);
 748
 749        c->cpu_index = 0;
 750        filter_cpuid_features(c, false);
 751
 752        if (this_cpu->c_bsp_init)
 753                this_cpu->c_bsp_init(c);
 754
 755        setup_force_cpu_cap(X86_FEATURE_ALWAYS);
 756        fpu__init_system(c);
 757}
 758
 759void __init early_cpu_init(void)
 760{
 761        const struct cpu_dev *const *cdev;
 762        int count = 0;
 763
 764#ifdef CONFIG_PROCESSOR_SELECT
 765        printk(KERN_INFO "KERNEL supported cpus:\n");
 766#endif
 767
 768        for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
 769                const struct cpu_dev *cpudev = *cdev;
 770
 771                if (count >= X86_VENDOR_NUM)
 772                        break;
 773                cpu_devs[count] = cpudev;
 774                count++;
 775
 776#ifdef CONFIG_PROCESSOR_SELECT
 777                {
 778                        unsigned int j;
 779
 780                        for (j = 0; j < 2; j++) {
 781                                if (!cpudev->c_ident[j])
 782                                        continue;
 783                                printk(KERN_INFO "  %s %s\n", cpudev->c_vendor,
 784                                        cpudev->c_ident[j]);
 785                        }
 786                }
 787#endif
 788        }
 789        early_identify_cpu(&boot_cpu_data);
 790}
 791
 792/*
 793 * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
 794 * unfortunately, that's not true in practice because of early VIA
 795 * chips and (more importantly) broken virtualizers that are not easy
 796 * to detect. In the latter case it doesn't even *fail* reliably, so
 797 * probing for it doesn't even work. Disable it completely on 32-bit
 798 * unless we can find a reliable way to detect all the broken cases.
 799 * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
 800 */
 801static void detect_nopl(struct cpuinfo_x86 *c)
 802{
 803#ifdef CONFIG_X86_32
 804        clear_cpu_cap(c, X86_FEATURE_NOPL);
 805#else
 806        set_cpu_cap(c, X86_FEATURE_NOPL);
 807#endif
 808}
 809
 810static void generic_identify(struct cpuinfo_x86 *c)
 811{
 812        c->extended_cpuid_level = 0;
 813
 814        if (!have_cpuid_p())
 815                identify_cpu_without_cpuid(c);
 816
 817        /* cyrix could have cpuid enabled via c_identify()*/
 818        if (!have_cpuid_p())
 819                return;
 820
 821        cpu_detect(c);
 822
 823        get_cpu_vendor(c);
 824
 825        get_cpu_cap(c);
 826
 827        if (c->cpuid_level >= 0x00000001) {
 828                c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
 829#ifdef CONFIG_X86_32
 830# ifdef CONFIG_SMP
 831                c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 832# else
 833                c->apicid = c->initial_apicid;
 834# endif
 835#endif
 836                c->phys_proc_id = c->initial_apicid;
 837        }
 838
 839        get_model_name(c); /* Default name */
 840
 841        detect_nopl(c);
 842}
 843
 844static void x86_init_cache_qos(struct cpuinfo_x86 *c)
 845{
 846        /*
 847         * The heavy lifting of max_rmid and cache_occ_scale are handled
 848         * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
 849         * in case CQM bits really aren't there in this CPU.
 850         */
 851        if (c != &boot_cpu_data) {
 852                boot_cpu_data.x86_cache_max_rmid =
 853                        min(boot_cpu_data.x86_cache_max_rmid,
 854                            c->x86_cache_max_rmid);
 855        }
 856}
 857
 858/*
 859 * This does the hard work of actually picking apart the CPU stuff...
 860 */
 861static void identify_cpu(struct cpuinfo_x86 *c)
 862{
 863        int i;
 864
 865        c->loops_per_jiffy = loops_per_jiffy;
 866        c->x86_cache_size = -1;
 867        c->x86_vendor = X86_VENDOR_UNKNOWN;
 868        c->x86_model = c->x86_mask = 0; /* So far unknown... */
 869        c->x86_vendor_id[0] = '\0'; /* Unset */
 870        c->x86_model_id[0] = '\0';  /* Unset */
 871        c->x86_max_cores = 1;
 872        c->x86_coreid_bits = 0;
 873#ifdef CONFIG_X86_64
 874        c->x86_clflush_size = 64;
 875        c->x86_phys_bits = 36;
 876        c->x86_virt_bits = 48;
 877#else
 878        c->cpuid_level = -1;    /* CPUID not detected */
 879        c->x86_clflush_size = 32;
 880        c->x86_phys_bits = 32;
 881        c->x86_virt_bits = 32;
 882#endif
 883        c->x86_cache_alignment = c->x86_clflush_size;
 884        memset(&c->x86_capability, 0, sizeof c->x86_capability);
 885
 886        generic_identify(c);
 887
 888        if (this_cpu->c_identify)
 889                this_cpu->c_identify(c);
 890
 891        /* Clear/Set all flags overriden by options, after probe */
 892        for (i = 0; i < NCAPINTS; i++) {
 893                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 894                c->x86_capability[i] |= cpu_caps_set[i];
 895        }
 896
 897#ifdef CONFIG_X86_64
 898        c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
 899#endif
 900
 901        /*
 902         * Vendor-specific initialization.  In this section we
 903         * canonicalize the feature flags, meaning if there are
 904         * features a certain CPU supports which CPUID doesn't
 905         * tell us, CPUID claiming incorrect flags, or other bugs,
 906         * we handle them here.
 907         *
 908         * At the end of this section, c->x86_capability better
 909         * indicate the features this CPU genuinely supports!
 910         */
 911        if (this_cpu->c_init)
 912                this_cpu->c_init(c);
 913
 914        /* Disable the PN if appropriate */
 915        squash_the_stupid_serial_number(c);
 916
 917        /* Set up SMEP/SMAP */
 918        setup_smep(c);
 919        setup_smap(c);
 920
 921        /*
 922         * The vendor-specific functions might have changed features.
 923         * Now we do "generic changes."
 924         */
 925
 926        /* Filter out anything that depends on CPUID levels we don't have */
 927        filter_cpuid_features(c, true);
 928
 929        /* If the model name is still unset, do table lookup. */
 930        if (!c->x86_model_id[0]) {
 931                const char *p;
 932                p = table_lookup_model(c);
 933                if (p)
 934                        strcpy(c->x86_model_id, p);
 935                else
 936                        /* Last resort... */
 937                        sprintf(c->x86_model_id, "%02x/%02x",
 938                                c->x86, c->x86_model);
 939        }
 940
 941#ifdef CONFIG_X86_64
 942        detect_ht(c);
 943#endif
 944
 945        init_hypervisor(c);
 946        x86_init_rdrand(c);
 947        x86_init_cache_qos(c);
 948
 949        /*
 950         * Clear/Set all flags overriden by options, need do it
 951         * before following smp all cpus cap AND.
 952         */
 953        for (i = 0; i < NCAPINTS; i++) {
 954                c->x86_capability[i] &= ~cpu_caps_cleared[i];
 955                c->x86_capability[i] |= cpu_caps_set[i];
 956        }
 957
 958        /*
 959         * On SMP, boot_cpu_data holds the common feature set between
 960         * all CPUs; so make sure that we indicate which features are
 961         * common between the CPUs.  The first time this routine gets
 962         * executed, c == &boot_cpu_data.
 963         */
 964        if (c != &boot_cpu_data) {
 965                /* AND the already accumulated flags with these */
 966                for (i = 0; i < NCAPINTS; i++)
 967                        boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
 968
 969                /* OR, i.e. replicate the bug flags */
 970                for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
 971                        c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
 972        }
 973
 974        /* Init Machine Check Exception if available. */
 975        mcheck_cpu_init(c);
 976
 977        select_idle_routine(c);
 978
 979#ifdef CONFIG_NUMA
 980        numa_add_cpu(smp_processor_id());
 981#endif
 982}
 983
 984/*
 985 * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
 986 * on 32-bit kernels:
 987 */
 988#ifdef CONFIG_X86_32
 989void enable_sep_cpu(void)
 990{
 991        struct tss_struct *tss;
 992        int cpu;
 993
 994        cpu = get_cpu();
 995        tss = &per_cpu(cpu_tss, cpu);
 996
 997        if (!boot_cpu_has(X86_FEATURE_SEP))
 998                goto out;
 999
1000        /*
1001         * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1002         * see the big comment in struct x86_hw_tss's definition.
1003         */
1004
1005        tss->x86_tss.ss1 = __KERNEL_CS;
1006        wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1007
1008        wrmsr(MSR_IA32_SYSENTER_ESP,
1009              (unsigned long)tss + offsetofend(struct tss_struct, SYSENTER_stack),
1010              0);
1011
1012        wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1013
1014out:
1015        put_cpu();
1016}
1017#endif
1018
1019void __init identify_boot_cpu(void)
1020{
1021        identify_cpu(&boot_cpu_data);
1022        init_amd_e400_c1e_mask();
1023#ifdef CONFIG_X86_32
1024        sysenter_setup();
1025        enable_sep_cpu();
1026#endif
1027        cpu_detect_tlb(&boot_cpu_data);
1028}
1029
1030void identify_secondary_cpu(struct cpuinfo_x86 *c)
1031{
1032        BUG_ON(c == &boot_cpu_data);
1033        identify_cpu(c);
1034#ifdef CONFIG_X86_32
1035        enable_sep_cpu();
1036#endif
1037        mtrr_ap_init();
1038}
1039
1040struct msr_range {
1041        unsigned        min;
1042        unsigned        max;
1043};
1044
1045static const struct msr_range msr_range_array[] = {
1046        { 0x00000000, 0x00000418},
1047        { 0xc0000000, 0xc000040b},
1048        { 0xc0010000, 0xc0010142},
1049        { 0xc0011000, 0xc001103b},
1050};
1051
1052static void __print_cpu_msr(void)
1053{
1054        unsigned index_min, index_max;
1055        unsigned index;
1056        u64 val;
1057        int i;
1058
1059        for (i = 0; i < ARRAY_SIZE(msr_range_array); i++) {
1060                index_min = msr_range_array[i].min;
1061                index_max = msr_range_array[i].max;
1062
1063                for (index = index_min; index < index_max; index++) {
1064                        if (rdmsrl_safe(index, &val))
1065                                continue;
1066                        printk(KERN_INFO " MSR%08x: %016llx\n", index, val);
1067                }
1068        }
1069}
1070
1071static int show_msr;
1072
1073static __init int setup_show_msr(char *arg)
1074{
1075        int num;
1076
1077        get_option(&arg, &num);
1078
1079        if (num > 0)
1080                show_msr = num;
1081        return 1;
1082}
1083__setup("show_msr=", setup_show_msr);
1084
1085static __init int setup_noclflush(char *arg)
1086{
1087        setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1088        setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1089        return 1;
1090}
1091__setup("noclflush", setup_noclflush);
1092
1093void print_cpu_info(struct cpuinfo_x86 *c)
1094{
1095        const char *vendor = NULL;
1096
1097        if (c->x86_vendor < X86_VENDOR_NUM) {
1098                vendor = this_cpu->c_vendor;
1099        } else {
1100                if (c->cpuid_level >= 0)
1101                        vendor = c->x86_vendor_id;
1102        }
1103
1104        if (vendor && !strstr(c->x86_model_id, vendor))
1105                printk(KERN_CONT "%s ", vendor);
1106
1107        if (c->x86_model_id[0])
1108                printk(KERN_CONT "%s", c->x86_model_id);
1109        else
1110                printk(KERN_CONT "%d86", c->x86);
1111
1112        printk(KERN_CONT " (fam: %02x, model: %02x", c->x86, c->x86_model);
1113
1114        if (c->x86_mask || c->cpuid_level >= 0)
1115                printk(KERN_CONT ", stepping: %02x)\n", c->x86_mask);
1116        else
1117                printk(KERN_CONT ")\n");
1118
1119        print_cpu_msr(c);
1120}
1121
1122void print_cpu_msr(struct cpuinfo_x86 *c)
1123{
1124        if (c->cpu_index < show_msr)
1125                __print_cpu_msr();
1126}
1127
1128static __init int setup_disablecpuid(char *arg)
1129{
1130        int bit;
1131
1132        if (get_option(&arg, &bit) && bit < NCAPINTS*32)
1133                setup_clear_cpu_cap(bit);
1134        else
1135                return 0;
1136
1137        return 1;
1138}
1139__setup("clearcpuid=", setup_disablecpuid);
1140
1141#ifdef CONFIG_X86_64
1142struct desc_ptr idt_descr = { NR_VECTORS * 16 - 1, (unsigned long) idt_table };
1143struct desc_ptr debug_idt_descr = { NR_VECTORS * 16 - 1,
1144                                    (unsigned long) debug_idt_table };
1145
1146DEFINE_PER_CPU_FIRST(union irq_stack_union,
1147                     irq_stack_union) __aligned(PAGE_SIZE) __visible;
1148
1149/*
1150 * The following percpu variables are hot.  Align current_task to
1151 * cacheline size such that they fall in the same cacheline.
1152 */
1153DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1154        &init_task;
1155EXPORT_PER_CPU_SYMBOL(current_task);
1156
1157DEFINE_PER_CPU(char *, irq_stack_ptr) =
1158        init_per_cpu_var(irq_stack_union.irq_stack) + IRQ_STACK_SIZE - 64;
1159
1160DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1161
1162DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1163EXPORT_PER_CPU_SYMBOL(__preempt_count);
1164
1165/*
1166 * Special IST stacks which the CPU switches to when it calls
1167 * an IST-marked descriptor entry. Up to 7 stacks (hardware
1168 * limit), all of them are 4K, except the debug stack which
1169 * is 8K.
1170 */
1171static const unsigned int exception_stack_sizes[N_EXCEPTION_STACKS] = {
1172          [0 ... N_EXCEPTION_STACKS - 1]        = EXCEPTION_STKSZ,
1173          [DEBUG_STACK - 1]                     = DEBUG_STKSZ
1174};
1175
1176static DEFINE_PER_CPU_PAGE_ALIGNED(char, exception_stacks
1177        [(N_EXCEPTION_STACKS - 1) * EXCEPTION_STKSZ + DEBUG_STKSZ]);
1178
1179/* May not be marked __init: used by software suspend */
1180void syscall_init(void)
1181{
1182        /*
1183         * LSTAR and STAR live in a bit strange symbiosis.
1184         * They both write to the same internal register. STAR allows to
1185         * set CS/DS but only a 32bit target. LSTAR sets the 64bit rip.
1186         */
1187        wrmsrl(MSR_STAR,  ((u64)__USER32_CS)<<48  | ((u64)__KERNEL_CS)<<32);
1188        wrmsrl(MSR_LSTAR, entry_SYSCALL_64);
1189
1190#ifdef CONFIG_IA32_EMULATION
1191        wrmsrl(MSR_CSTAR, entry_SYSCALL_compat);
1192        /*
1193         * This only works on Intel CPUs.
1194         * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1195         * This does not cause SYSENTER to jump to the wrong location, because
1196         * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1197         */
1198        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1199        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1200        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1201#else
1202        wrmsrl(MSR_CSTAR, ignore_sysret);
1203        wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1204        wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1205        wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1206#endif
1207
1208        /* Flags to clear on syscall */
1209        wrmsrl(MSR_SYSCALL_MASK,
1210               X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1211               X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1212}
1213
1214/*
1215 * Copies of the original ist values from the tss are only accessed during
1216 * debugging, no special alignment required.
1217 */
1218DEFINE_PER_CPU(struct orig_ist, orig_ist);
1219
1220static DEFINE_PER_CPU(unsigned long, debug_stack_addr);
1221DEFINE_PER_CPU(int, debug_stack_usage);
1222
1223int is_debug_stack(unsigned long addr)
1224{
1225        return __this_cpu_read(debug_stack_usage) ||
1226                (addr <= __this_cpu_read(debug_stack_addr) &&
1227                 addr > (__this_cpu_read(debug_stack_addr) - DEBUG_STKSZ));
1228}
1229NOKPROBE_SYMBOL(is_debug_stack);
1230
1231DEFINE_PER_CPU(u32, debug_idt_ctr);
1232
1233void debug_stack_set_zero(void)
1234{
1235        this_cpu_inc(debug_idt_ctr);
1236        load_current_idt();
1237}
1238NOKPROBE_SYMBOL(debug_stack_set_zero);
1239
1240void debug_stack_reset(void)
1241{
1242        if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1243                return;
1244        if (this_cpu_dec_return(debug_idt_ctr) == 0)
1245                load_current_idt();
1246}
1247NOKPROBE_SYMBOL(debug_stack_reset);
1248
1249#else   /* CONFIG_X86_64 */
1250
1251DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1252EXPORT_PER_CPU_SYMBOL(current_task);
1253DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1254EXPORT_PER_CPU_SYMBOL(__preempt_count);
1255
1256/*
1257 * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1258 * the top of the kernel stack.  Use an extra percpu variable to track the
1259 * top of the kernel stack directly.
1260 */
1261DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1262        (unsigned long)&init_thread_union + THREAD_SIZE;
1263EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1264
1265#ifdef CONFIG_CC_STACKPROTECTOR
1266DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1267#endif
1268
1269#endif  /* CONFIG_X86_64 */
1270
1271/*
1272 * Clear all 6 debug registers:
1273 */
1274static void clear_all_debug_regs(void)
1275{
1276        int i;
1277
1278        for (i = 0; i < 8; i++) {
1279                /* Ignore db4, db5 */
1280                if ((i == 4) || (i == 5))
1281                        continue;
1282
1283                set_debugreg(0, i);
1284        }
1285}
1286
1287#ifdef CONFIG_KGDB
1288/*
1289 * Restore debug regs if using kgdbwait and you have a kernel debugger
1290 * connection established.
1291 */
1292static void dbg_restore_debug_regs(void)
1293{
1294        if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1295                arch_kgdb_ops.correct_hw_break();
1296}
1297#else /* ! CONFIG_KGDB */
1298#define dbg_restore_debug_regs()
1299#endif /* ! CONFIG_KGDB */
1300
1301static void wait_for_master_cpu(int cpu)
1302{
1303#ifdef CONFIG_SMP
1304        /*
1305         * wait for ACK from master CPU before continuing
1306         * with AP initialization
1307         */
1308        WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1309        while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1310                cpu_relax();
1311#endif
1312}
1313
1314/*
1315 * cpu_init() initializes state that is per-CPU. Some data is already
1316 * initialized (naturally) in the bootstrap process, such as the GDT
1317 * and IDT. We reload them nevertheless, this function acts as a
1318 * 'CPU state barrier', nothing should get across.
1319 * A lot of state is already set up in PDA init for 64 bit
1320 */
1321#ifdef CONFIG_X86_64
1322
1323void cpu_init(void)
1324{
1325        struct orig_ist *oist;
1326        struct task_struct *me;
1327        struct tss_struct *t;
1328        unsigned long v;
1329        int cpu = stack_smp_processor_id();
1330        int i;
1331
1332        wait_for_master_cpu(cpu);
1333
1334        /*
1335         * Initialize the CR4 shadow before doing anything that could
1336         * try to read it.
1337         */
1338        cr4_init_shadow();
1339
1340        /*
1341         * Load microcode on this cpu if a valid microcode is available.
1342         * This is early microcode loading procedure.
1343         */
1344        load_ucode_ap();
1345
1346        t = &per_cpu(cpu_tss, cpu);
1347        oist = &per_cpu(orig_ist, cpu);
1348
1349#ifdef CONFIG_NUMA
1350        if (this_cpu_read(numa_node) == 0 &&
1351            early_cpu_to_node(cpu) != NUMA_NO_NODE)
1352                set_numa_node(early_cpu_to_node(cpu));
1353#endif
1354
1355        me = current;
1356
1357        pr_debug("Initializing CPU#%d\n", cpu);
1358
1359        cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1360
1361        /*
1362         * Initialize the per-CPU GDT with the boot GDT,
1363         * and set up the GDT descriptor:
1364         */
1365
1366        switch_to_new_gdt(cpu);
1367        loadsegment(fs, 0);
1368
1369        load_current_idt();
1370
1371        memset(me->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1372        syscall_init();
1373
1374        wrmsrl(MSR_FS_BASE, 0);
1375        wrmsrl(MSR_KERNEL_GS_BASE, 0);
1376        barrier();
1377
1378        x86_configure_nx();
1379        x2apic_setup();
1380
1381        /*
1382         * set up and load the per-CPU TSS
1383         */
1384        if (!oist->ist[0]) {
1385                char *estacks = per_cpu(exception_stacks, cpu);
1386
1387                for (v = 0; v < N_EXCEPTION_STACKS; v++) {
1388                        estacks += exception_stack_sizes[v];
1389                        oist->ist[v] = t->x86_tss.ist[v] =
1390                                        (unsigned long)estacks;
1391                        if (v == DEBUG_STACK-1)
1392                                per_cpu(debug_stack_addr, cpu) = (unsigned long)estacks;
1393                }
1394        }
1395
1396        t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1397
1398        /*
1399         * <= is required because the CPU will access up to
1400         * 8 bits beyond the end of the IO permission bitmap.
1401         */
1402        for (i = 0; i <= IO_BITMAP_LONGS; i++)
1403                t->io_bitmap[i] = ~0UL;
1404
1405        atomic_inc(&init_mm.mm_count);
1406        me->active_mm = &init_mm;
1407        BUG_ON(me->mm);
1408        enter_lazy_tlb(&init_mm, me);
1409
1410        load_sp0(t, &current->thread);
1411        set_tss_desc(cpu, t);
1412        load_TR_desc();
1413        load_mm_ldt(&init_mm);
1414
1415        clear_all_debug_regs();
1416        dbg_restore_debug_regs();
1417
1418        fpu__init_cpu();
1419
1420        if (is_uv_system())
1421                uv_cpu_init();
1422}
1423
1424#else
1425
1426void cpu_init(void)
1427{
1428        int cpu = smp_processor_id();
1429        struct task_struct *curr = current;
1430        struct tss_struct *t = &per_cpu(cpu_tss, cpu);
1431        struct thread_struct *thread = &curr->thread;
1432
1433        wait_for_master_cpu(cpu);
1434
1435        /*
1436         * Initialize the CR4 shadow before doing anything that could
1437         * try to read it.
1438         */
1439        cr4_init_shadow();
1440
1441        show_ucode_info_early();
1442
1443        printk(KERN_INFO "Initializing CPU#%d\n", cpu);
1444
1445        if (cpu_feature_enabled(X86_FEATURE_VME) || cpu_has_tsc || cpu_has_de)
1446                cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1447
1448        load_current_idt();
1449        switch_to_new_gdt(cpu);
1450
1451        /*
1452         * Set up and load the per-CPU TSS and LDT
1453         */
1454        atomic_inc(&init_mm.mm_count);
1455        curr->active_mm = &init_mm;
1456        BUG_ON(curr->mm);
1457        enter_lazy_tlb(&init_mm, curr);
1458
1459        load_sp0(t, thread);
1460        set_tss_desc(cpu, t);
1461        load_TR_desc();
1462        load_mm_ldt(&init_mm);
1463
1464        t->x86_tss.io_bitmap_base = offsetof(struct tss_struct, io_bitmap);
1465
1466#ifdef CONFIG_DOUBLEFAULT
1467        /* Set up doublefault TSS pointer in the GDT */
1468        __set_tss_desc(cpu, GDT_ENTRY_DOUBLEFAULT_TSS, &doublefault_tss);
1469#endif
1470
1471        clear_all_debug_regs();
1472        dbg_restore_debug_regs();
1473
1474        fpu__init_cpu();
1475}
1476#endif
1477
1478#ifdef CONFIG_X86_DEBUG_STATIC_CPU_HAS
1479void warn_pre_alternatives(void)
1480{
1481        WARN(1, "You're using static_cpu_has before alternatives have run!\n");
1482}
1483EXPORT_SYMBOL_GPL(warn_pre_alternatives);
1484#endif
1485
1486inline bool __static_cpu_has_safe(u16 bit)
1487{
1488        return boot_cpu_has(bit);
1489}
1490EXPORT_SYMBOL_GPL(__static_cpu_has_safe);
1491