linux/arch/x86/kernel/hpet.c
<<
>>
Prefs
   1#include <linux/clocksource.h>
   2#include <linux/clockchips.h>
   3#include <linux/interrupt.h>
   4#include <linux/export.h>
   5#include <linux/delay.h>
   6#include <linux/errno.h>
   7#include <linux/i8253.h>
   8#include <linux/slab.h>
   9#include <linux/hpet.h>
  10#include <linux/init.h>
  11#include <linux/cpu.h>
  12#include <linux/pm.h>
  13#include <linux/io.h>
  14
  15#include <asm/irqdomain.h>
  16#include <asm/fixmap.h>
  17#include <asm/hpet.h>
  18#include <asm/time.h>
  19
  20#define HPET_MASK                       CLOCKSOURCE_MASK(32)
  21
  22/* FSEC = 10^-15
  23   NSEC = 10^-9 */
  24#define FSEC_PER_NSEC                   1000000L
  25
  26#define HPET_DEV_USED_BIT               2
  27#define HPET_DEV_USED                   (1 << HPET_DEV_USED_BIT)
  28#define HPET_DEV_VALID                  0x8
  29#define HPET_DEV_FSB_CAP                0x1000
  30#define HPET_DEV_PERI_CAP               0x2000
  31
  32#define HPET_MIN_CYCLES                 128
  33#define HPET_MIN_PROG_DELTA             (HPET_MIN_CYCLES + (HPET_MIN_CYCLES >> 1))
  34
  35/*
  36 * HPET address is set in acpi/boot.c, when an ACPI entry exists
  37 */
  38unsigned long                           hpet_address;
  39u8                                      hpet_blockid; /* OS timer block num */
  40u8                                      hpet_msi_disable;
  41
  42#ifdef CONFIG_PCI_MSI
  43static unsigned long                    hpet_num_timers;
  44#endif
  45static void __iomem                     *hpet_virt_address;
  46
  47struct hpet_dev {
  48        struct clock_event_device       evt;
  49        unsigned int                    num;
  50        int                             cpu;
  51        unsigned int                    irq;
  52        unsigned int                    flags;
  53        char                            name[10];
  54};
  55
  56inline struct hpet_dev *EVT_TO_HPET_DEV(struct clock_event_device *evtdev)
  57{
  58        return container_of(evtdev, struct hpet_dev, evt);
  59}
  60
  61inline unsigned int hpet_readl(unsigned int a)
  62{
  63        return readl(hpet_virt_address + a);
  64}
  65
  66static inline void hpet_writel(unsigned int d, unsigned int a)
  67{
  68        writel(d, hpet_virt_address + a);
  69}
  70
  71#ifdef CONFIG_X86_64
  72#include <asm/pgtable.h>
  73#endif
  74
  75static inline void hpet_set_mapping(void)
  76{
  77        hpet_virt_address = ioremap_nocache(hpet_address, HPET_MMAP_SIZE);
  78}
  79
  80static inline void hpet_clear_mapping(void)
  81{
  82        iounmap(hpet_virt_address);
  83        hpet_virt_address = NULL;
  84}
  85
  86/*
  87 * HPET command line enable / disable
  88 */
  89int boot_hpet_disable;
  90int hpet_force_user;
  91static int hpet_verbose;
  92
  93static int __init hpet_setup(char *str)
  94{
  95        while (str) {
  96                char *next = strchr(str, ',');
  97
  98                if (next)
  99                        *next++ = 0;
 100                if (!strncmp("disable", str, 7))
 101                        boot_hpet_disable = 1;
 102                if (!strncmp("force", str, 5))
 103                        hpet_force_user = 1;
 104                if (!strncmp("verbose", str, 7))
 105                        hpet_verbose = 1;
 106                str = next;
 107        }
 108        return 1;
 109}
 110__setup("hpet=", hpet_setup);
 111
 112static int __init disable_hpet(char *str)
 113{
 114        boot_hpet_disable = 1;
 115        return 1;
 116}
 117__setup("nohpet", disable_hpet);
 118
 119static inline int is_hpet_capable(void)
 120{
 121        return !boot_hpet_disable && hpet_address;
 122}
 123
 124/*
 125 * HPET timer interrupt enable / disable
 126 */
 127static int hpet_legacy_int_enabled;
 128
 129/**
 130 * is_hpet_enabled - check whether the hpet timer interrupt is enabled
 131 */
 132int is_hpet_enabled(void)
 133{
 134        return is_hpet_capable() && hpet_legacy_int_enabled;
 135}
 136EXPORT_SYMBOL_GPL(is_hpet_enabled);
 137
 138static void _hpet_print_config(const char *function, int line)
 139{
 140        u32 i, timers, l, h;
 141        printk(KERN_INFO "hpet: %s(%d):\n", function, line);
 142        l = hpet_readl(HPET_ID);
 143        h = hpet_readl(HPET_PERIOD);
 144        timers = ((l & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 145        printk(KERN_INFO "hpet: ID: 0x%x, PERIOD: 0x%x\n", l, h);
 146        l = hpet_readl(HPET_CFG);
 147        h = hpet_readl(HPET_STATUS);
 148        printk(KERN_INFO "hpet: CFG: 0x%x, STATUS: 0x%x\n", l, h);
 149        l = hpet_readl(HPET_COUNTER);
 150        h = hpet_readl(HPET_COUNTER+4);
 151        printk(KERN_INFO "hpet: COUNTER_l: 0x%x, COUNTER_h: 0x%x\n", l, h);
 152
 153        for (i = 0; i < timers; i++) {
 154                l = hpet_readl(HPET_Tn_CFG(i));
 155                h = hpet_readl(HPET_Tn_CFG(i)+4);
 156                printk(KERN_INFO "hpet: T%d: CFG_l: 0x%x, CFG_h: 0x%x\n",
 157                       i, l, h);
 158                l = hpet_readl(HPET_Tn_CMP(i));
 159                h = hpet_readl(HPET_Tn_CMP(i)+4);
 160                printk(KERN_INFO "hpet: T%d: CMP_l: 0x%x, CMP_h: 0x%x\n",
 161                       i, l, h);
 162                l = hpet_readl(HPET_Tn_ROUTE(i));
 163                h = hpet_readl(HPET_Tn_ROUTE(i)+4);
 164                printk(KERN_INFO "hpet: T%d ROUTE_l: 0x%x, ROUTE_h: 0x%x\n",
 165                       i, l, h);
 166        }
 167}
 168
 169#define hpet_print_config()                                     \
 170do {                                                            \
 171        if (hpet_verbose)                                       \
 172                _hpet_print_config(__func__, __LINE__); \
 173} while (0)
 174
 175/*
 176 * When the hpet driver (/dev/hpet) is enabled, we need to reserve
 177 * timer 0 and timer 1 in case of RTC emulation.
 178 */
 179#ifdef CONFIG_HPET
 180
 181static void hpet_reserve_msi_timers(struct hpet_data *hd);
 182
 183static void hpet_reserve_platform_timers(unsigned int id)
 184{
 185        struct hpet __iomem *hpet = hpet_virt_address;
 186        struct hpet_timer __iomem *timer = &hpet->hpet_timers[2];
 187        unsigned int nrtimers, i;
 188        struct hpet_data hd;
 189
 190        nrtimers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT) + 1;
 191
 192        memset(&hd, 0, sizeof(hd));
 193        hd.hd_phys_address      = hpet_address;
 194        hd.hd_address           = hpet;
 195        hd.hd_nirqs             = nrtimers;
 196        hpet_reserve_timer(&hd, 0);
 197
 198#ifdef CONFIG_HPET_EMULATE_RTC
 199        hpet_reserve_timer(&hd, 1);
 200#endif
 201
 202        /*
 203         * NOTE that hd_irq[] reflects IOAPIC input pins (LEGACY_8254
 204         * is wrong for i8259!) not the output IRQ.  Many BIOS writers
 205         * don't bother configuring *any* comparator interrupts.
 206         */
 207        hd.hd_irq[0] = HPET_LEGACY_8254;
 208        hd.hd_irq[1] = HPET_LEGACY_RTC;
 209
 210        for (i = 2; i < nrtimers; timer++, i++) {
 211                hd.hd_irq[i] = (readl(&timer->hpet_config) &
 212                        Tn_INT_ROUTE_CNF_MASK) >> Tn_INT_ROUTE_CNF_SHIFT;
 213        }
 214
 215        hpet_reserve_msi_timers(&hd);
 216
 217        hpet_alloc(&hd);
 218
 219}
 220#else
 221static void hpet_reserve_platform_timers(unsigned int id) { }
 222#endif
 223
 224/*
 225 * Common hpet info
 226 */
 227static unsigned long hpet_freq;
 228
 229static void hpet_legacy_set_mode(enum clock_event_mode mode,
 230                          struct clock_event_device *evt);
 231static int hpet_legacy_next_event(unsigned long delta,
 232                           struct clock_event_device *evt);
 233
 234/*
 235 * The hpet clock event device
 236 */
 237static struct clock_event_device hpet_clockevent = {
 238        .name           = "hpet",
 239        .features       = CLOCK_EVT_FEAT_PERIODIC | CLOCK_EVT_FEAT_ONESHOT,
 240        .set_mode       = hpet_legacy_set_mode,
 241        .set_next_event = hpet_legacy_next_event,
 242        .irq            = 0,
 243        .rating         = 50,
 244};
 245
 246static void hpet_stop_counter(void)
 247{
 248        unsigned long cfg = hpet_readl(HPET_CFG);
 249        cfg &= ~HPET_CFG_ENABLE;
 250        hpet_writel(cfg, HPET_CFG);
 251}
 252
 253static void hpet_reset_counter(void)
 254{
 255        hpet_writel(0, HPET_COUNTER);
 256        hpet_writel(0, HPET_COUNTER + 4);
 257}
 258
 259static void hpet_start_counter(void)
 260{
 261        unsigned int cfg = hpet_readl(HPET_CFG);
 262        cfg |= HPET_CFG_ENABLE;
 263        hpet_writel(cfg, HPET_CFG);
 264}
 265
 266static void hpet_restart_counter(void)
 267{
 268        hpet_stop_counter();
 269        hpet_reset_counter();
 270        hpet_start_counter();
 271}
 272
 273static void hpet_resume_device(void)
 274{
 275        force_hpet_resume();
 276}
 277
 278static void hpet_resume_counter(struct clocksource *cs)
 279{
 280        hpet_resume_device();
 281        hpet_restart_counter();
 282}
 283
 284static void hpet_enable_legacy_int(void)
 285{
 286        unsigned int cfg = hpet_readl(HPET_CFG);
 287
 288        cfg |= HPET_CFG_LEGACY;
 289        hpet_writel(cfg, HPET_CFG);
 290        hpet_legacy_int_enabled = 1;
 291}
 292
 293static void hpet_legacy_clockevent_register(void)
 294{
 295        /* Start HPET legacy interrupts */
 296        hpet_enable_legacy_int();
 297
 298        /*
 299         * Start hpet with the boot cpu mask and make it
 300         * global after the IO_APIC has been initialized.
 301         */
 302        hpet_clockevent.cpumask = cpumask_of(smp_processor_id());
 303        clockevents_config_and_register(&hpet_clockevent, hpet_freq,
 304                                        HPET_MIN_PROG_DELTA, 0x7FFFFFFF);
 305        global_clock_event = &hpet_clockevent;
 306        printk(KERN_DEBUG "hpet clockevent registered\n");
 307}
 308
 309static void hpet_set_mode(enum clock_event_mode mode,
 310                          struct clock_event_device *evt, int timer)
 311{
 312        unsigned int cfg, cmp, now;
 313        uint64_t delta;
 314
 315        switch (mode) {
 316        case CLOCK_EVT_MODE_PERIODIC:
 317                hpet_stop_counter();
 318                delta = ((uint64_t)(NSEC_PER_SEC/HZ)) * evt->mult;
 319                delta >>= evt->shift;
 320                now = hpet_readl(HPET_COUNTER);
 321                cmp = now + (unsigned int) delta;
 322                cfg = hpet_readl(HPET_Tn_CFG(timer));
 323                cfg |= HPET_TN_ENABLE | HPET_TN_PERIODIC |
 324                       HPET_TN_SETVAL | HPET_TN_32BIT;
 325                hpet_writel(cfg, HPET_Tn_CFG(timer));
 326                hpet_writel(cmp, HPET_Tn_CMP(timer));
 327                udelay(1);
 328                /*
 329                 * HPET on AMD 81xx needs a second write (with HPET_TN_SETVAL
 330                 * cleared) to T0_CMP to set the period. The HPET_TN_SETVAL
 331                 * bit is automatically cleared after the first write.
 332                 * (See AMD-8111 HyperTransport I/O Hub Data Sheet,
 333                 * Publication # 24674)
 334                 */
 335                hpet_writel((unsigned int) delta, HPET_Tn_CMP(timer));
 336                hpet_start_counter();
 337                hpet_print_config();
 338                break;
 339
 340        case CLOCK_EVT_MODE_ONESHOT:
 341                cfg = hpet_readl(HPET_Tn_CFG(timer));
 342                cfg &= ~HPET_TN_PERIODIC;
 343                cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
 344                hpet_writel(cfg, HPET_Tn_CFG(timer));
 345                break;
 346
 347        case CLOCK_EVT_MODE_UNUSED:
 348        case CLOCK_EVT_MODE_SHUTDOWN:
 349                cfg = hpet_readl(HPET_Tn_CFG(timer));
 350                cfg &= ~HPET_TN_ENABLE;
 351                hpet_writel(cfg, HPET_Tn_CFG(timer));
 352                break;
 353
 354        case CLOCK_EVT_MODE_RESUME:
 355                if (timer == 0) {
 356                        hpet_enable_legacy_int();
 357                } else {
 358                        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 359                        irq_domain_activate_irq(irq_get_irq_data(hdev->irq));
 360                        disable_irq(hdev->irq);
 361                        irq_set_affinity(hdev->irq, cpumask_of(hdev->cpu));
 362                        enable_irq(hdev->irq);
 363                }
 364                hpet_print_config();
 365                break;
 366        }
 367}
 368
 369static int hpet_next_event(unsigned long delta,
 370                           struct clock_event_device *evt, int timer)
 371{
 372        u32 cnt;
 373        s32 res;
 374
 375        cnt = hpet_readl(HPET_COUNTER);
 376        cnt += (u32) delta;
 377        hpet_writel(cnt, HPET_Tn_CMP(timer));
 378
 379        /*
 380         * HPETs are a complete disaster. The compare register is
 381         * based on a equal comparison and neither provides a less
 382         * than or equal functionality (which would require to take
 383         * the wraparound into account) nor a simple count down event
 384         * mode. Further the write to the comparator register is
 385         * delayed internally up to two HPET clock cycles in certain
 386         * chipsets (ATI, ICH9,10). Some newer AMD chipsets have even
 387         * longer delays. We worked around that by reading back the
 388         * compare register, but that required another workaround for
 389         * ICH9,10 chips where the first readout after write can
 390         * return the old stale value. We already had a minimum
 391         * programming delta of 5us enforced, but a NMI or SMI hitting
 392         * between the counter readout and the comparator write can
 393         * move us behind that point easily. Now instead of reading
 394         * the compare register back several times, we make the ETIME
 395         * decision based on the following: Return ETIME if the
 396         * counter value after the write is less than HPET_MIN_CYCLES
 397         * away from the event or if the counter is already ahead of
 398         * the event. The minimum programming delta for the generic
 399         * clockevents code is set to 1.5 * HPET_MIN_CYCLES.
 400         */
 401        res = (s32)(cnt - hpet_readl(HPET_COUNTER));
 402
 403        return res < HPET_MIN_CYCLES ? -ETIME : 0;
 404}
 405
 406static void hpet_legacy_set_mode(enum clock_event_mode mode,
 407                        struct clock_event_device *evt)
 408{
 409        hpet_set_mode(mode, evt, 0);
 410}
 411
 412static int hpet_legacy_next_event(unsigned long delta,
 413                        struct clock_event_device *evt)
 414{
 415        return hpet_next_event(delta, evt, 0);
 416}
 417
 418/*
 419 * HPET MSI Support
 420 */
 421#ifdef CONFIG_PCI_MSI
 422
 423static DEFINE_PER_CPU(struct hpet_dev *, cpu_hpet_dev);
 424static struct hpet_dev  *hpet_devs;
 425static struct irq_domain *hpet_domain;
 426
 427void hpet_msi_unmask(struct irq_data *data)
 428{
 429        struct hpet_dev *hdev = data->handler_data;
 430        unsigned int cfg;
 431
 432        /* unmask it */
 433        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 434        cfg |= HPET_TN_ENABLE | HPET_TN_FSB;
 435        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 436}
 437
 438void hpet_msi_mask(struct irq_data *data)
 439{
 440        struct hpet_dev *hdev = data->handler_data;
 441        unsigned int cfg;
 442
 443        /* mask it */
 444        cfg = hpet_readl(HPET_Tn_CFG(hdev->num));
 445        cfg &= ~(HPET_TN_ENABLE | HPET_TN_FSB);
 446        hpet_writel(cfg, HPET_Tn_CFG(hdev->num));
 447}
 448
 449void hpet_msi_write(struct hpet_dev *hdev, struct msi_msg *msg)
 450{
 451        hpet_writel(msg->data, HPET_Tn_ROUTE(hdev->num));
 452        hpet_writel(msg->address_lo, HPET_Tn_ROUTE(hdev->num) + 4);
 453}
 454
 455void hpet_msi_read(struct hpet_dev *hdev, struct msi_msg *msg)
 456{
 457        msg->data = hpet_readl(HPET_Tn_ROUTE(hdev->num));
 458        msg->address_lo = hpet_readl(HPET_Tn_ROUTE(hdev->num) + 4);
 459        msg->address_hi = 0;
 460}
 461
 462static void hpet_msi_set_mode(enum clock_event_mode mode,
 463                                struct clock_event_device *evt)
 464{
 465        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 466        hpet_set_mode(mode, evt, hdev->num);
 467}
 468
 469static int hpet_msi_next_event(unsigned long delta,
 470                                struct clock_event_device *evt)
 471{
 472        struct hpet_dev *hdev = EVT_TO_HPET_DEV(evt);
 473        return hpet_next_event(delta, evt, hdev->num);
 474}
 475
 476static irqreturn_t hpet_interrupt_handler(int irq, void *data)
 477{
 478        struct hpet_dev *dev = (struct hpet_dev *)data;
 479        struct clock_event_device *hevt = &dev->evt;
 480
 481        if (!hevt->event_handler) {
 482                printk(KERN_INFO "Spurious HPET timer interrupt on HPET timer %d\n",
 483                                dev->num);
 484                return IRQ_HANDLED;
 485        }
 486
 487        hevt->event_handler(hevt);
 488        return IRQ_HANDLED;
 489}
 490
 491static int hpet_setup_irq(struct hpet_dev *dev)
 492{
 493
 494        if (request_irq(dev->irq, hpet_interrupt_handler,
 495                        IRQF_TIMER | IRQF_NOBALANCING,
 496                        dev->name, dev))
 497                return -1;
 498
 499        disable_irq(dev->irq);
 500        irq_set_affinity(dev->irq, cpumask_of(dev->cpu));
 501        enable_irq(dev->irq);
 502
 503        printk(KERN_DEBUG "hpet: %s irq %d for MSI\n",
 504                         dev->name, dev->irq);
 505
 506        return 0;
 507}
 508
 509/* This should be called in specific @cpu */
 510static void init_one_hpet_msi_clockevent(struct hpet_dev *hdev, int cpu)
 511{
 512        struct clock_event_device *evt = &hdev->evt;
 513
 514        WARN_ON(cpu != smp_processor_id());
 515        if (!(hdev->flags & HPET_DEV_VALID))
 516                return;
 517
 518        hdev->cpu = cpu;
 519        per_cpu(cpu_hpet_dev, cpu) = hdev;
 520        evt->name = hdev->name;
 521        hpet_setup_irq(hdev);
 522        evt->irq = hdev->irq;
 523
 524        evt->rating = 110;
 525        evt->features = CLOCK_EVT_FEAT_ONESHOT;
 526        if (hdev->flags & HPET_DEV_PERI_CAP)
 527                evt->features |= CLOCK_EVT_FEAT_PERIODIC;
 528
 529        evt->set_mode = hpet_msi_set_mode;
 530        evt->set_next_event = hpet_msi_next_event;
 531        evt->cpumask = cpumask_of(hdev->cpu);
 532
 533        clockevents_config_and_register(evt, hpet_freq, HPET_MIN_PROG_DELTA,
 534                                        0x7FFFFFFF);
 535}
 536
 537#ifdef CONFIG_HPET
 538/* Reserve at least one timer for userspace (/dev/hpet) */
 539#define RESERVE_TIMERS 1
 540#else
 541#define RESERVE_TIMERS 0
 542#endif
 543
 544static void hpet_msi_capability_lookup(unsigned int start_timer)
 545{
 546        unsigned int id;
 547        unsigned int num_timers;
 548        unsigned int num_timers_used = 0;
 549        int i, irq;
 550
 551        if (hpet_msi_disable)
 552                return;
 553
 554        if (boot_cpu_has(X86_FEATURE_ARAT))
 555                return;
 556        id = hpet_readl(HPET_ID);
 557
 558        num_timers = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 559        num_timers++; /* Value read out starts from 0 */
 560        hpet_print_config();
 561
 562        hpet_domain = hpet_create_irq_domain(hpet_blockid);
 563        if (!hpet_domain)
 564                return;
 565
 566        hpet_devs = kzalloc(sizeof(struct hpet_dev) * num_timers, GFP_KERNEL);
 567        if (!hpet_devs)
 568                return;
 569
 570        hpet_num_timers = num_timers;
 571
 572        for (i = start_timer; i < num_timers - RESERVE_TIMERS; i++) {
 573                struct hpet_dev *hdev = &hpet_devs[num_timers_used];
 574                unsigned int cfg = hpet_readl(HPET_Tn_CFG(i));
 575
 576                /* Only consider HPET timer with MSI support */
 577                if (!(cfg & HPET_TN_FSB_CAP))
 578                        continue;
 579
 580                hdev->flags = 0;
 581                if (cfg & HPET_TN_PERIODIC_CAP)
 582                        hdev->flags |= HPET_DEV_PERI_CAP;
 583                sprintf(hdev->name, "hpet%d", i);
 584                hdev->num = i;
 585
 586                irq = hpet_assign_irq(hpet_domain, hdev, hdev->num);
 587                if (irq <= 0)
 588                        continue;
 589
 590                hdev->irq = irq;
 591                hdev->flags |= HPET_DEV_FSB_CAP;
 592                hdev->flags |= HPET_DEV_VALID;
 593                num_timers_used++;
 594                if (num_timers_used == num_possible_cpus())
 595                        break;
 596        }
 597
 598        printk(KERN_INFO "HPET: %d timers in total, %d timers will be used for per-cpu timer\n",
 599                num_timers, num_timers_used);
 600}
 601
 602#ifdef CONFIG_HPET
 603static void hpet_reserve_msi_timers(struct hpet_data *hd)
 604{
 605        int i;
 606
 607        if (!hpet_devs)
 608                return;
 609
 610        for (i = 0; i < hpet_num_timers; i++) {
 611                struct hpet_dev *hdev = &hpet_devs[i];
 612
 613                if (!(hdev->flags & HPET_DEV_VALID))
 614                        continue;
 615
 616                hd->hd_irq[hdev->num] = hdev->irq;
 617                hpet_reserve_timer(hd, hdev->num);
 618        }
 619}
 620#endif
 621
 622static struct hpet_dev *hpet_get_unused_timer(void)
 623{
 624        int i;
 625
 626        if (!hpet_devs)
 627                return NULL;
 628
 629        for (i = 0; i < hpet_num_timers; i++) {
 630                struct hpet_dev *hdev = &hpet_devs[i];
 631
 632                if (!(hdev->flags & HPET_DEV_VALID))
 633                        continue;
 634                if (test_and_set_bit(HPET_DEV_USED_BIT,
 635                        (unsigned long *)&hdev->flags))
 636                        continue;
 637                return hdev;
 638        }
 639        return NULL;
 640}
 641
 642struct hpet_work_struct {
 643        struct delayed_work work;
 644        struct completion complete;
 645};
 646
 647static void hpet_work(struct work_struct *w)
 648{
 649        struct hpet_dev *hdev;
 650        int cpu = smp_processor_id();
 651        struct hpet_work_struct *hpet_work;
 652
 653        hpet_work = container_of(w, struct hpet_work_struct, work.work);
 654
 655        hdev = hpet_get_unused_timer();
 656        if (hdev)
 657                init_one_hpet_msi_clockevent(hdev, cpu);
 658
 659        complete(&hpet_work->complete);
 660}
 661
 662static int hpet_cpuhp_notify(struct notifier_block *n,
 663                unsigned long action, void *hcpu)
 664{
 665        unsigned long cpu = (unsigned long)hcpu;
 666        struct hpet_work_struct work;
 667        struct hpet_dev *hdev = per_cpu(cpu_hpet_dev, cpu);
 668
 669        switch (action & 0xf) {
 670        case CPU_ONLINE:
 671                INIT_DELAYED_WORK_ONSTACK(&work.work, hpet_work);
 672                init_completion(&work.complete);
 673                /* FIXME: add schedule_work_on() */
 674                schedule_delayed_work_on(cpu, &work.work, 0);
 675                wait_for_completion(&work.complete);
 676                destroy_delayed_work_on_stack(&work.work);
 677                break;
 678        case CPU_DEAD:
 679                if (hdev) {
 680                        free_irq(hdev->irq, hdev);
 681                        hdev->flags &= ~HPET_DEV_USED;
 682                        per_cpu(cpu_hpet_dev, cpu) = NULL;
 683                }
 684                break;
 685        }
 686        return NOTIFY_OK;
 687}
 688#else
 689
 690static void hpet_msi_capability_lookup(unsigned int start_timer)
 691{
 692        return;
 693}
 694
 695#ifdef CONFIG_HPET
 696static void hpet_reserve_msi_timers(struct hpet_data *hd)
 697{
 698        return;
 699}
 700#endif
 701
 702static int hpet_cpuhp_notify(struct notifier_block *n,
 703                unsigned long action, void *hcpu)
 704{
 705        return NOTIFY_OK;
 706}
 707
 708#endif
 709
 710/*
 711 * Clock source related code
 712 */
 713static cycle_t read_hpet(struct clocksource *cs)
 714{
 715        return (cycle_t)hpet_readl(HPET_COUNTER);
 716}
 717
 718static struct clocksource clocksource_hpet = {
 719        .name           = "hpet",
 720        .rating         = 250,
 721        .read           = read_hpet,
 722        .mask           = HPET_MASK,
 723        .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
 724        .resume         = hpet_resume_counter,
 725        .archdata       = { .vclock_mode = VCLOCK_HPET },
 726};
 727
 728static int hpet_clocksource_register(void)
 729{
 730        u64 start, now;
 731        cycle_t t1;
 732
 733        /* Start the counter */
 734        hpet_restart_counter();
 735
 736        /* Verify whether hpet counter works */
 737        t1 = hpet_readl(HPET_COUNTER);
 738        rdtscll(start);
 739
 740        /*
 741         * We don't know the TSC frequency yet, but waiting for
 742         * 200000 TSC cycles is safe:
 743         * 4 GHz == 50us
 744         * 1 GHz == 200us
 745         */
 746        do {
 747                rep_nop();
 748                rdtscll(now);
 749        } while ((now - start) < 200000UL);
 750
 751        if (t1 == hpet_readl(HPET_COUNTER)) {
 752                printk(KERN_WARNING
 753                       "HPET counter not counting. HPET disabled\n");
 754                return -ENODEV;
 755        }
 756
 757        clocksource_register_hz(&clocksource_hpet, (u32)hpet_freq);
 758        return 0;
 759}
 760
 761static u32 *hpet_boot_cfg;
 762
 763/**
 764 * hpet_enable - Try to setup the HPET timer. Returns 1 on success.
 765 */
 766int __init hpet_enable(void)
 767{
 768        u32 hpet_period, cfg, id;
 769        u64 freq;
 770        unsigned int i, last;
 771
 772        if (!is_hpet_capable())
 773                return 0;
 774
 775        hpet_set_mapping();
 776
 777        /*
 778         * Read the period and check for a sane value:
 779         */
 780        hpet_period = hpet_readl(HPET_PERIOD);
 781
 782        /*
 783         * AMD SB700 based systems with spread spectrum enabled use a
 784         * SMM based HPET emulation to provide proper frequency
 785         * setting. The SMM code is initialized with the first HPET
 786         * register access and takes some time to complete. During
 787         * this time the config register reads 0xffffffff. We check
 788         * for max. 1000 loops whether the config register reads a non
 789         * 0xffffffff value to make sure that HPET is up and running
 790         * before we go further. A counting loop is safe, as the HPET
 791         * access takes thousands of CPU cycles. On non SB700 based
 792         * machines this check is only done once and has no side
 793         * effects.
 794         */
 795        for (i = 0; hpet_readl(HPET_CFG) == 0xFFFFFFFF; i++) {
 796                if (i == 1000) {
 797                        printk(KERN_WARNING
 798                               "HPET config register value = 0xFFFFFFFF. "
 799                               "Disabling HPET\n");
 800                        goto out_nohpet;
 801                }
 802        }
 803
 804        if (hpet_period < HPET_MIN_PERIOD || hpet_period > HPET_MAX_PERIOD)
 805                goto out_nohpet;
 806
 807        /*
 808         * The period is a femto seconds value. Convert it to a
 809         * frequency.
 810         */
 811        freq = FSEC_PER_SEC;
 812        do_div(freq, hpet_period);
 813        hpet_freq = freq;
 814
 815        /*
 816         * Read the HPET ID register to retrieve the IRQ routing
 817         * information and the number of channels
 818         */
 819        id = hpet_readl(HPET_ID);
 820        hpet_print_config();
 821
 822        last = (id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
 823
 824#ifdef CONFIG_HPET_EMULATE_RTC
 825        /*
 826         * The legacy routing mode needs at least two channels, tick timer
 827         * and the rtc emulation channel.
 828         */
 829        if (!last)
 830                goto out_nohpet;
 831#endif
 832
 833        cfg = hpet_readl(HPET_CFG);
 834        hpet_boot_cfg = kmalloc((last + 2) * sizeof(*hpet_boot_cfg),
 835                                GFP_KERNEL);
 836        if (hpet_boot_cfg)
 837                *hpet_boot_cfg = cfg;
 838        else
 839                pr_warn("HPET initial state will not be saved\n");
 840        cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
 841        hpet_writel(cfg, HPET_CFG);
 842        if (cfg)
 843                pr_warn("HPET: Unrecognized bits %#x set in global cfg\n",
 844                        cfg);
 845
 846        for (i = 0; i <= last; ++i) {
 847                cfg = hpet_readl(HPET_Tn_CFG(i));
 848                if (hpet_boot_cfg)
 849                        hpet_boot_cfg[i + 1] = cfg;
 850                cfg &= ~(HPET_TN_ENABLE | HPET_TN_LEVEL | HPET_TN_FSB);
 851                hpet_writel(cfg, HPET_Tn_CFG(i));
 852                cfg &= ~(HPET_TN_PERIODIC | HPET_TN_PERIODIC_CAP
 853                         | HPET_TN_64BIT_CAP | HPET_TN_32BIT | HPET_TN_ROUTE
 854                         | HPET_TN_FSB | HPET_TN_FSB_CAP);
 855                if (cfg)
 856                        pr_warn("HPET: Unrecognized bits %#x set in cfg#%u\n",
 857                                cfg, i);
 858        }
 859        hpet_print_config();
 860
 861        if (hpet_clocksource_register())
 862                goto out_nohpet;
 863
 864        if (id & HPET_ID_LEGSUP) {
 865                hpet_legacy_clockevent_register();
 866                return 1;
 867        }
 868        return 0;
 869
 870out_nohpet:
 871        hpet_clear_mapping();
 872        hpet_address = 0;
 873        return 0;
 874}
 875
 876/*
 877 * Needs to be late, as the reserve_timer code calls kalloc !
 878 *
 879 * Not a problem on i386 as hpet_enable is called from late_time_init,
 880 * but on x86_64 it is necessary !
 881 */
 882static __init int hpet_late_init(void)
 883{
 884        int cpu;
 885
 886        if (boot_hpet_disable)
 887                return -ENODEV;
 888
 889        if (!hpet_address) {
 890                if (!force_hpet_address)
 891                        return -ENODEV;
 892
 893                hpet_address = force_hpet_address;
 894                hpet_enable();
 895        }
 896
 897        if (!hpet_virt_address)
 898                return -ENODEV;
 899
 900        if (hpet_readl(HPET_ID) & HPET_ID_LEGSUP)
 901                hpet_msi_capability_lookup(2);
 902        else
 903                hpet_msi_capability_lookup(0);
 904
 905        hpet_reserve_platform_timers(hpet_readl(HPET_ID));
 906        hpet_print_config();
 907
 908        if (hpet_msi_disable)
 909                return 0;
 910
 911        if (boot_cpu_has(X86_FEATURE_ARAT))
 912                return 0;
 913
 914        cpu_notifier_register_begin();
 915        for_each_online_cpu(cpu) {
 916                hpet_cpuhp_notify(NULL, CPU_ONLINE, (void *)(long)cpu);
 917        }
 918
 919        /* This notifier should be called after workqueue is ready */
 920        __hotcpu_notifier(hpet_cpuhp_notify, -20);
 921        cpu_notifier_register_done();
 922
 923        return 0;
 924}
 925fs_initcall(hpet_late_init);
 926
 927void hpet_disable(void)
 928{
 929        if (is_hpet_capable() && hpet_virt_address) {
 930                unsigned int cfg = hpet_readl(HPET_CFG), id, last;
 931
 932                if (hpet_boot_cfg)
 933                        cfg = *hpet_boot_cfg;
 934                else if (hpet_legacy_int_enabled) {
 935                        cfg &= ~HPET_CFG_LEGACY;
 936                        hpet_legacy_int_enabled = 0;
 937                }
 938                cfg &= ~HPET_CFG_ENABLE;
 939                hpet_writel(cfg, HPET_CFG);
 940
 941                if (!hpet_boot_cfg)
 942                        return;
 943
 944                id = hpet_readl(HPET_ID);
 945                last = ((id & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT);
 946
 947                for (id = 0; id <= last; ++id)
 948                        hpet_writel(hpet_boot_cfg[id + 1], HPET_Tn_CFG(id));
 949
 950                if (*hpet_boot_cfg & HPET_CFG_ENABLE)
 951                        hpet_writel(*hpet_boot_cfg, HPET_CFG);
 952        }
 953}
 954
 955#ifdef CONFIG_HPET_EMULATE_RTC
 956
 957/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
 958 * is enabled, we support RTC interrupt functionality in software.
 959 * RTC has 3 kinds of interrupts:
 960 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
 961 *    is updated
 962 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
 963 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
 964 *    2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
 965 * (1) and (2) above are implemented using polling at a frequency of
 966 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
 967 * overhead. (DEFAULT_RTC_INT_FREQ)
 968 * For (3), we use interrupts at 64Hz or user specified periodic
 969 * frequency, whichever is higher.
 970 */
 971#include <linux/mc146818rtc.h>
 972#include <linux/rtc.h>
 973#include <asm/rtc.h>
 974
 975#define DEFAULT_RTC_INT_FREQ    64
 976#define DEFAULT_RTC_SHIFT       6
 977#define RTC_NUM_INTS            1
 978
 979static unsigned long hpet_rtc_flags;
 980static int hpet_prev_update_sec;
 981static struct rtc_time hpet_alarm_time;
 982static unsigned long hpet_pie_count;
 983static u32 hpet_t1_cmp;
 984static u32 hpet_default_delta;
 985static u32 hpet_pie_delta;
 986static unsigned long hpet_pie_limit;
 987
 988static rtc_irq_handler irq_handler;
 989
 990/*
 991 * Check that the hpet counter c1 is ahead of the c2
 992 */
 993static inline int hpet_cnt_ahead(u32 c1, u32 c2)
 994{
 995        return (s32)(c2 - c1) < 0;
 996}
 997
 998/*
 999 * Registers a IRQ handler.
1000 */
1001int hpet_register_irq_handler(rtc_irq_handler handler)
1002{
1003        if (!is_hpet_enabled())
1004                return -ENODEV;
1005        if (irq_handler)
1006                return -EBUSY;
1007
1008        irq_handler = handler;
1009
1010        return 0;
1011}
1012EXPORT_SYMBOL_GPL(hpet_register_irq_handler);
1013
1014/*
1015 * Deregisters the IRQ handler registered with hpet_register_irq_handler()
1016 * and does cleanup.
1017 */
1018void hpet_unregister_irq_handler(rtc_irq_handler handler)
1019{
1020        if (!is_hpet_enabled())
1021                return;
1022
1023        irq_handler = NULL;
1024        hpet_rtc_flags = 0;
1025}
1026EXPORT_SYMBOL_GPL(hpet_unregister_irq_handler);
1027
1028/*
1029 * Timer 1 for RTC emulation. We use one shot mode, as periodic mode
1030 * is not supported by all HPET implementations for timer 1.
1031 *
1032 * hpet_rtc_timer_init() is called when the rtc is initialized.
1033 */
1034int hpet_rtc_timer_init(void)
1035{
1036        unsigned int cfg, cnt, delta;
1037        unsigned long flags;
1038
1039        if (!is_hpet_enabled())
1040                return 0;
1041
1042        if (!hpet_default_delta) {
1043                uint64_t clc;
1044
1045                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1046                clc >>= hpet_clockevent.shift + DEFAULT_RTC_SHIFT;
1047                hpet_default_delta = clc;
1048        }
1049
1050        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1051                delta = hpet_default_delta;
1052        else
1053                delta = hpet_pie_delta;
1054
1055        local_irq_save(flags);
1056
1057        cnt = delta + hpet_readl(HPET_COUNTER);
1058        hpet_writel(cnt, HPET_T1_CMP);
1059        hpet_t1_cmp = cnt;
1060
1061        cfg = hpet_readl(HPET_T1_CFG);
1062        cfg &= ~HPET_TN_PERIODIC;
1063        cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1064        hpet_writel(cfg, HPET_T1_CFG);
1065
1066        local_irq_restore(flags);
1067
1068        return 1;
1069}
1070EXPORT_SYMBOL_GPL(hpet_rtc_timer_init);
1071
1072static void hpet_disable_rtc_channel(void)
1073{
1074        unsigned long cfg;
1075        cfg = hpet_readl(HPET_T1_CFG);
1076        cfg &= ~HPET_TN_ENABLE;
1077        hpet_writel(cfg, HPET_T1_CFG);
1078}
1079
1080/*
1081 * The functions below are called from rtc driver.
1082 * Return 0 if HPET is not being used.
1083 * Otherwise do the necessary changes and return 1.
1084 */
1085int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1086{
1087        if (!is_hpet_enabled())
1088                return 0;
1089
1090        hpet_rtc_flags &= ~bit_mask;
1091        if (unlikely(!hpet_rtc_flags))
1092                hpet_disable_rtc_channel();
1093
1094        return 1;
1095}
1096EXPORT_SYMBOL_GPL(hpet_mask_rtc_irq_bit);
1097
1098int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1099{
1100        unsigned long oldbits = hpet_rtc_flags;
1101
1102        if (!is_hpet_enabled())
1103                return 0;
1104
1105        hpet_rtc_flags |= bit_mask;
1106
1107        if ((bit_mask & RTC_UIE) && !(oldbits & RTC_UIE))
1108                hpet_prev_update_sec = -1;
1109
1110        if (!oldbits)
1111                hpet_rtc_timer_init();
1112
1113        return 1;
1114}
1115EXPORT_SYMBOL_GPL(hpet_set_rtc_irq_bit);
1116
1117int hpet_set_alarm_time(unsigned char hrs, unsigned char min,
1118                        unsigned char sec)
1119{
1120        if (!is_hpet_enabled())
1121                return 0;
1122
1123        hpet_alarm_time.tm_hour = hrs;
1124        hpet_alarm_time.tm_min = min;
1125        hpet_alarm_time.tm_sec = sec;
1126
1127        return 1;
1128}
1129EXPORT_SYMBOL_GPL(hpet_set_alarm_time);
1130
1131int hpet_set_periodic_freq(unsigned long freq)
1132{
1133        uint64_t clc;
1134
1135        if (!is_hpet_enabled())
1136                return 0;
1137
1138        if (freq <= DEFAULT_RTC_INT_FREQ)
1139                hpet_pie_limit = DEFAULT_RTC_INT_FREQ / freq;
1140        else {
1141                clc = (uint64_t) hpet_clockevent.mult * NSEC_PER_SEC;
1142                do_div(clc, freq);
1143                clc >>= hpet_clockevent.shift;
1144                hpet_pie_delta = clc;
1145                hpet_pie_limit = 0;
1146        }
1147        return 1;
1148}
1149EXPORT_SYMBOL_GPL(hpet_set_periodic_freq);
1150
1151int hpet_rtc_dropped_irq(void)
1152{
1153        return is_hpet_enabled();
1154}
1155EXPORT_SYMBOL_GPL(hpet_rtc_dropped_irq);
1156
1157static void hpet_rtc_timer_reinit(void)
1158{
1159        unsigned int delta;
1160        int lost_ints = -1;
1161
1162        if (unlikely(!hpet_rtc_flags))
1163                hpet_disable_rtc_channel();
1164
1165        if (!(hpet_rtc_flags & RTC_PIE) || hpet_pie_limit)
1166                delta = hpet_default_delta;
1167        else
1168                delta = hpet_pie_delta;
1169
1170        /*
1171         * Increment the comparator value until we are ahead of the
1172         * current count.
1173         */
1174        do {
1175                hpet_t1_cmp += delta;
1176                hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1177                lost_ints++;
1178        } while (!hpet_cnt_ahead(hpet_t1_cmp, hpet_readl(HPET_COUNTER)));
1179
1180        if (lost_ints) {
1181                if (hpet_rtc_flags & RTC_PIE)
1182                        hpet_pie_count += lost_ints;
1183                if (printk_ratelimit())
1184                        printk(KERN_WARNING "hpet1: lost %d rtc interrupts\n",
1185                                lost_ints);
1186        }
1187}
1188
1189irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
1190{
1191        struct rtc_time curr_time;
1192        unsigned long rtc_int_flag = 0;
1193
1194        hpet_rtc_timer_reinit();
1195        memset(&curr_time, 0, sizeof(struct rtc_time));
1196
1197        if (hpet_rtc_flags & (RTC_UIE | RTC_AIE))
1198                get_rtc_time(&curr_time);
1199
1200        if (hpet_rtc_flags & RTC_UIE &&
1201            curr_time.tm_sec != hpet_prev_update_sec) {
1202                if (hpet_prev_update_sec >= 0)
1203                        rtc_int_flag = RTC_UF;
1204                hpet_prev_update_sec = curr_time.tm_sec;
1205        }
1206
1207        if (hpet_rtc_flags & RTC_PIE &&
1208            ++hpet_pie_count >= hpet_pie_limit) {
1209                rtc_int_flag |= RTC_PF;
1210                hpet_pie_count = 0;
1211        }
1212
1213        if (hpet_rtc_flags & RTC_AIE &&
1214            (curr_time.tm_sec == hpet_alarm_time.tm_sec) &&
1215            (curr_time.tm_min == hpet_alarm_time.tm_min) &&
1216            (curr_time.tm_hour == hpet_alarm_time.tm_hour))
1217                        rtc_int_flag |= RTC_AF;
1218
1219        if (rtc_int_flag) {
1220                rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
1221                if (irq_handler)
1222                        irq_handler(rtc_int_flag, dev_id);
1223        }
1224        return IRQ_HANDLED;
1225}
1226EXPORT_SYMBOL_GPL(hpet_rtc_interrupt);
1227#endif
1228