linux/arch/x86/kernel/process.c
<<
>>
Prefs
   1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   2
   3#include <linux/errno.h>
   4#include <linux/kernel.h>
   5#include <linux/mm.h>
   6#include <linux/smp.h>
   7#include <linux/prctl.h>
   8#include <linux/slab.h>
   9#include <linux/sched.h>
  10#include <linux/module.h>
  11#include <linux/pm.h>
  12#include <linux/tick.h>
  13#include <linux/random.h>
  14#include <linux/user-return-notifier.h>
  15#include <linux/dmi.h>
  16#include <linux/utsname.h>
  17#include <linux/stackprotector.h>
  18#include <linux/tick.h>
  19#include <linux/cpuidle.h>
  20#include <trace/events/power.h>
  21#include <linux/hw_breakpoint.h>
  22#include <asm/cpu.h>
  23#include <asm/apic.h>
  24#include <asm/syscalls.h>
  25#include <asm/idle.h>
  26#include <asm/uaccess.h>
  27#include <asm/mwait.h>
  28#include <asm/fpu/internal.h>
  29#include <asm/debugreg.h>
  30#include <asm/nmi.h>
  31#include <asm/tlbflush.h>
  32
  33/*
  34 * per-CPU TSS segments. Threads are completely 'soft' on Linux,
  35 * no more per-task TSS's. The TSS size is kept cacheline-aligned
  36 * so they are allowed to end up in the .data..cacheline_aligned
  37 * section. Since TSS's are completely CPU-local, we want them
  38 * on exact cacheline boundaries, to eliminate cacheline ping-pong.
  39 */
  40__visible DEFINE_PER_CPU_SHARED_ALIGNED(struct tss_struct, cpu_tss) = {
  41        .x86_tss = {
  42                .sp0 = TOP_OF_INIT_STACK,
  43#ifdef CONFIG_X86_32
  44                .ss0 = __KERNEL_DS,
  45                .ss1 = __KERNEL_CS,
  46                .io_bitmap_base = INVALID_IO_BITMAP_OFFSET,
  47#endif
  48         },
  49#ifdef CONFIG_X86_32
  50         /*
  51          * Note that the .io_bitmap member must be extra-big. This is because
  52          * the CPU will access an additional byte beyond the end of the IO
  53          * permission bitmap. The extra byte must be all 1 bits, and must
  54          * be within the limit.
  55          */
  56        .io_bitmap              = { [0 ... IO_BITMAP_LONGS] = ~0 },
  57#endif
  58};
  59EXPORT_PER_CPU_SYMBOL(cpu_tss);
  60
  61#ifdef CONFIG_X86_64
  62static DEFINE_PER_CPU(unsigned char, is_idle);
  63static ATOMIC_NOTIFIER_HEAD(idle_notifier);
  64
  65void idle_notifier_register(struct notifier_block *n)
  66{
  67        atomic_notifier_chain_register(&idle_notifier, n);
  68}
  69EXPORT_SYMBOL_GPL(idle_notifier_register);
  70
  71void idle_notifier_unregister(struct notifier_block *n)
  72{
  73        atomic_notifier_chain_unregister(&idle_notifier, n);
  74}
  75EXPORT_SYMBOL_GPL(idle_notifier_unregister);
  76#endif
  77
  78/*
  79 * this gets called so that we can store lazy state into memory and copy the
  80 * current task into the new thread.
  81 */
  82int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
  83{
  84        memcpy(dst, src, arch_task_struct_size);
  85
  86        return fpu__copy(&dst->thread.fpu, &src->thread.fpu);
  87}
  88
  89/*
  90 * Free current thread data structures etc..
  91 */
  92void exit_thread(void)
  93{
  94        struct task_struct *me = current;
  95        struct thread_struct *t = &me->thread;
  96        unsigned long *bp = t->io_bitmap_ptr;
  97        struct fpu *fpu = &t->fpu;
  98
  99        if (bp) {
 100                struct tss_struct *tss = &per_cpu(cpu_tss, get_cpu());
 101
 102                t->io_bitmap_ptr = NULL;
 103                clear_thread_flag(TIF_IO_BITMAP);
 104                /*
 105                 * Careful, clear this in the TSS too:
 106                 */
 107                memset(tss->io_bitmap, 0xff, t->io_bitmap_max);
 108                t->io_bitmap_max = 0;
 109                put_cpu();
 110                kfree(bp);
 111        }
 112
 113        fpu__drop(fpu);
 114}
 115
 116void flush_thread(void)
 117{
 118        struct task_struct *tsk = current;
 119
 120        flush_ptrace_hw_breakpoint(tsk);
 121        memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
 122
 123        fpu__clear(&tsk->thread.fpu);
 124}
 125
 126static void hard_disable_TSC(void)
 127{
 128        cr4_set_bits(X86_CR4_TSD);
 129}
 130
 131void disable_TSC(void)
 132{
 133        preempt_disable();
 134        if (!test_and_set_thread_flag(TIF_NOTSC))
 135                /*
 136                 * Must flip the CPU state synchronously with
 137                 * TIF_NOTSC in the current running context.
 138                 */
 139                hard_disable_TSC();
 140        preempt_enable();
 141}
 142
 143static void hard_enable_TSC(void)
 144{
 145        cr4_clear_bits(X86_CR4_TSD);
 146}
 147
 148static void enable_TSC(void)
 149{
 150        preempt_disable();
 151        if (test_and_clear_thread_flag(TIF_NOTSC))
 152                /*
 153                 * Must flip the CPU state synchronously with
 154                 * TIF_NOTSC in the current running context.
 155                 */
 156                hard_enable_TSC();
 157        preempt_enable();
 158}
 159
 160int get_tsc_mode(unsigned long adr)
 161{
 162        unsigned int val;
 163
 164        if (test_thread_flag(TIF_NOTSC))
 165                val = PR_TSC_SIGSEGV;
 166        else
 167                val = PR_TSC_ENABLE;
 168
 169        return put_user(val, (unsigned int __user *)adr);
 170}
 171
 172int set_tsc_mode(unsigned int val)
 173{
 174        if (val == PR_TSC_SIGSEGV)
 175                disable_TSC();
 176        else if (val == PR_TSC_ENABLE)
 177                enable_TSC();
 178        else
 179                return -EINVAL;
 180
 181        return 0;
 182}
 183
 184void __switch_to_xtra(struct task_struct *prev_p, struct task_struct *next_p,
 185                      struct tss_struct *tss)
 186{
 187        struct thread_struct *prev, *next;
 188
 189        prev = &prev_p->thread;
 190        next = &next_p->thread;
 191
 192        if (test_tsk_thread_flag(prev_p, TIF_BLOCKSTEP) ^
 193            test_tsk_thread_flag(next_p, TIF_BLOCKSTEP)) {
 194                unsigned long debugctl = get_debugctlmsr();
 195
 196                debugctl &= ~DEBUGCTLMSR_BTF;
 197                if (test_tsk_thread_flag(next_p, TIF_BLOCKSTEP))
 198                        debugctl |= DEBUGCTLMSR_BTF;
 199
 200                update_debugctlmsr(debugctl);
 201        }
 202
 203        if (test_tsk_thread_flag(prev_p, TIF_NOTSC) ^
 204            test_tsk_thread_flag(next_p, TIF_NOTSC)) {
 205                /* prev and next are different */
 206                if (test_tsk_thread_flag(next_p, TIF_NOTSC))
 207                        hard_disable_TSC();
 208                else
 209                        hard_enable_TSC();
 210        }
 211
 212        if (test_tsk_thread_flag(next_p, TIF_IO_BITMAP)) {
 213                /*
 214                 * Copy the relevant range of the IO bitmap.
 215                 * Normally this is 128 bytes or less:
 216                 */
 217                memcpy(tss->io_bitmap, next->io_bitmap_ptr,
 218                       max(prev->io_bitmap_max, next->io_bitmap_max));
 219        } else if (test_tsk_thread_flag(prev_p, TIF_IO_BITMAP)) {
 220                /*
 221                 * Clear any possible leftover bits:
 222                 */
 223                memset(tss->io_bitmap, 0xff, prev->io_bitmap_max);
 224        }
 225        propagate_user_return_notify(prev_p, next_p);
 226}
 227
 228/*
 229 * Idle related variables and functions
 230 */
 231unsigned long boot_option_idle_override = IDLE_NO_OVERRIDE;
 232EXPORT_SYMBOL(boot_option_idle_override);
 233
 234static void (*x86_idle)(void);
 235
 236#ifndef CONFIG_SMP
 237static inline void play_dead(void)
 238{
 239        BUG();
 240}
 241#endif
 242
 243#ifdef CONFIG_X86_64
 244void enter_idle(void)
 245{
 246        this_cpu_write(is_idle, 1);
 247        atomic_notifier_call_chain(&idle_notifier, IDLE_START, NULL);
 248}
 249
 250static void __exit_idle(void)
 251{
 252        if (x86_test_and_clear_bit_percpu(0, is_idle) == 0)
 253                return;
 254        atomic_notifier_call_chain(&idle_notifier, IDLE_END, NULL);
 255}
 256
 257/* Called from interrupts to signify idle end */
 258void exit_idle(void)
 259{
 260        /* idle loop has pid 0 */
 261        if (current->pid)
 262                return;
 263        __exit_idle();
 264}
 265#endif
 266
 267void arch_cpu_idle_enter(void)
 268{
 269        local_touch_nmi();
 270        enter_idle();
 271}
 272
 273void arch_cpu_idle_exit(void)
 274{
 275        __exit_idle();
 276}
 277
 278void arch_cpu_idle_dead(void)
 279{
 280        play_dead();
 281}
 282
 283/*
 284 * Called from the generic idle code.
 285 */
 286void arch_cpu_idle(void)
 287{
 288        x86_idle();
 289}
 290
 291/*
 292 * We use this if we don't have any better idle routine..
 293 */
 294void default_idle(void)
 295{
 296        trace_cpu_idle_rcuidle(1, smp_processor_id());
 297        safe_halt();
 298        trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 299}
 300#ifdef CONFIG_APM_MODULE
 301EXPORT_SYMBOL(default_idle);
 302#endif
 303
 304#ifdef CONFIG_XEN
 305bool xen_set_default_idle(void)
 306{
 307        bool ret = !!x86_idle;
 308
 309        x86_idle = default_idle;
 310
 311        return ret;
 312}
 313#endif
 314void stop_this_cpu(void *dummy)
 315{
 316        local_irq_disable();
 317        /*
 318         * Remove this CPU:
 319         */
 320        set_cpu_online(smp_processor_id(), false);
 321        disable_local_APIC();
 322
 323        for (;;)
 324                halt();
 325}
 326
 327bool amd_e400_c1e_detected;
 328EXPORT_SYMBOL(amd_e400_c1e_detected);
 329
 330static cpumask_var_t amd_e400_c1e_mask;
 331
 332void amd_e400_remove_cpu(int cpu)
 333{
 334        if (amd_e400_c1e_mask != NULL)
 335                cpumask_clear_cpu(cpu, amd_e400_c1e_mask);
 336}
 337
 338/*
 339 * AMD Erratum 400 aware idle routine. We check for C1E active in the interrupt
 340 * pending message MSR. If we detect C1E, then we handle it the same
 341 * way as C3 power states (local apic timer and TSC stop)
 342 */
 343static void amd_e400_idle(void)
 344{
 345        if (!amd_e400_c1e_detected) {
 346                u32 lo, hi;
 347
 348                rdmsr(MSR_K8_INT_PENDING_MSG, lo, hi);
 349
 350                if (lo & K8_INTP_C1E_ACTIVE_MASK) {
 351                        amd_e400_c1e_detected = true;
 352                        if (!boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
 353                                mark_tsc_unstable("TSC halt in AMD C1E");
 354                        pr_info("System has AMD C1E enabled\n");
 355                }
 356        }
 357
 358        if (amd_e400_c1e_detected) {
 359                int cpu = smp_processor_id();
 360
 361                if (!cpumask_test_cpu(cpu, amd_e400_c1e_mask)) {
 362                        cpumask_set_cpu(cpu, amd_e400_c1e_mask);
 363                        /* Force broadcast so ACPI can not interfere. */
 364                        tick_broadcast_force();
 365                        pr_info("Switch to broadcast mode on CPU%d\n", cpu);
 366                }
 367                tick_broadcast_enter();
 368
 369                default_idle();
 370
 371                /*
 372                 * The switch back from broadcast mode needs to be
 373                 * called with interrupts disabled.
 374                 */
 375                local_irq_disable();
 376                tick_broadcast_exit();
 377                local_irq_enable();
 378        } else
 379                default_idle();
 380}
 381
 382/*
 383 * Intel Core2 and older machines prefer MWAIT over HALT for C1.
 384 * We can't rely on cpuidle installing MWAIT, because it will not load
 385 * on systems that support only C1 -- so the boot default must be MWAIT.
 386 *
 387 * Some AMD machines are the opposite, they depend on using HALT.
 388 *
 389 * So for default C1, which is used during boot until cpuidle loads,
 390 * use MWAIT-C1 on Intel HW that has it, else use HALT.
 391 */
 392static int prefer_mwait_c1_over_halt(const struct cpuinfo_x86 *c)
 393{
 394        if (c->x86_vendor != X86_VENDOR_INTEL)
 395                return 0;
 396
 397        if (!cpu_has(c, X86_FEATURE_MWAIT))
 398                return 0;
 399
 400        return 1;
 401}
 402
 403/*
 404 * MONITOR/MWAIT with no hints, used for default C1 state. This invokes MWAIT
 405 * with interrupts enabled and no flags, which is backwards compatible with the
 406 * original MWAIT implementation.
 407 */
 408static void mwait_idle(void)
 409{
 410        if (!current_set_polling_and_test()) {
 411                trace_cpu_idle_rcuidle(1, smp_processor_id());
 412                if (this_cpu_has(X86_BUG_CLFLUSH_MONITOR)) {
 413                        smp_mb(); /* quirk */
 414                        clflush((void *)&current_thread_info()->flags);
 415                        smp_mb(); /* quirk */
 416                }
 417
 418                __monitor((void *)&current_thread_info()->flags, 0, 0);
 419                if (!need_resched())
 420                        __sti_mwait(0, 0);
 421                else
 422                        local_irq_enable();
 423                trace_cpu_idle_rcuidle(PWR_EVENT_EXIT, smp_processor_id());
 424        } else {
 425                local_irq_enable();
 426        }
 427        __current_clr_polling();
 428}
 429
 430void select_idle_routine(const struct cpuinfo_x86 *c)
 431{
 432#ifdef CONFIG_SMP
 433        if (boot_option_idle_override == IDLE_POLL && smp_num_siblings > 1)
 434                pr_warn_once("WARNING: polling idle and HT enabled, performance may degrade\n");
 435#endif
 436        if (x86_idle || boot_option_idle_override == IDLE_POLL)
 437                return;
 438
 439        if (cpu_has_bug(c, X86_BUG_AMD_APIC_C1E)) {
 440                /* E400: APIC timer interrupt does not wake up CPU from C1e */
 441                pr_info("using AMD E400 aware idle routine\n");
 442                x86_idle = amd_e400_idle;
 443        } else if (prefer_mwait_c1_over_halt(c)) {
 444                pr_info("using mwait in idle threads\n");
 445                x86_idle = mwait_idle;
 446        } else
 447                x86_idle = default_idle;
 448}
 449
 450void __init init_amd_e400_c1e_mask(void)
 451{
 452        /* If we're using amd_e400_idle, we need to allocate amd_e400_c1e_mask. */
 453        if (x86_idle == amd_e400_idle)
 454                zalloc_cpumask_var(&amd_e400_c1e_mask, GFP_KERNEL);
 455}
 456
 457static int __init idle_setup(char *str)
 458{
 459        if (!str)
 460                return -EINVAL;
 461
 462        if (!strcmp(str, "poll")) {
 463                pr_info("using polling idle threads\n");
 464                boot_option_idle_override = IDLE_POLL;
 465                cpu_idle_poll_ctrl(true);
 466        } else if (!strcmp(str, "halt")) {
 467                /*
 468                 * When the boot option of idle=halt is added, halt is
 469                 * forced to be used for CPU idle. In such case CPU C2/C3
 470                 * won't be used again.
 471                 * To continue to load the CPU idle driver, don't touch
 472                 * the boot_option_idle_override.
 473                 */
 474                x86_idle = default_idle;
 475                boot_option_idle_override = IDLE_HALT;
 476        } else if (!strcmp(str, "nomwait")) {
 477                /*
 478                 * If the boot option of "idle=nomwait" is added,
 479                 * it means that mwait will be disabled for CPU C2/C3
 480                 * states. In such case it won't touch the variable
 481                 * of boot_option_idle_override.
 482                 */
 483                boot_option_idle_override = IDLE_NOMWAIT;
 484        } else
 485                return -1;
 486
 487        return 0;
 488}
 489early_param("idle", idle_setup);
 490
 491unsigned long arch_align_stack(unsigned long sp)
 492{
 493        if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
 494                sp -= get_random_int() % 8192;
 495        return sp & ~0xf;
 496}
 497
 498unsigned long arch_randomize_brk(struct mm_struct *mm)
 499{
 500        unsigned long range_end = mm->brk + 0x02000000;
 501        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 502}
 503
 504