linux/arch/x86/kernel/process_32.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1995  Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *      Gareth Hughes <gareth@valinux.com>, May 2000
   6 */
   7
   8/*
   9 * This file handles the architecture-dependent parts of process handling..
  10 */
  11
  12#include <linux/cpu.h>
  13#include <linux/errno.h>
  14#include <linux/sched.h>
  15#include <linux/fs.h>
  16#include <linux/kernel.h>
  17#include <linux/mm.h>
  18#include <linux/elfcore.h>
  19#include <linux/smp.h>
  20#include <linux/stddef.h>
  21#include <linux/slab.h>
  22#include <linux/vmalloc.h>
  23#include <linux/user.h>
  24#include <linux/interrupt.h>
  25#include <linux/delay.h>
  26#include <linux/reboot.h>
  27#include <linux/mc146818rtc.h>
  28#include <linux/module.h>
  29#include <linux/kallsyms.h>
  30#include <linux/ptrace.h>
  31#include <linux/personality.h>
  32#include <linux/percpu.h>
  33#include <linux/prctl.h>
  34#include <linux/ftrace.h>
  35#include <linux/uaccess.h>
  36#include <linux/io.h>
  37#include <linux/kdebug.h>
  38
  39#include <asm/pgtable.h>
  40#include <asm/ldt.h>
  41#include <asm/processor.h>
  42#include <asm/fpu/internal.h>
  43#include <asm/desc.h>
  44#ifdef CONFIG_MATH_EMULATION
  45#include <asm/math_emu.h>
  46#endif
  47
  48#include <linux/err.h>
  49
  50#include <asm/tlbflush.h>
  51#include <asm/cpu.h>
  52#include <asm/idle.h>
  53#include <asm/syscalls.h>
  54#include <asm/debugreg.h>
  55#include <asm/switch_to.h>
  56
  57asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
  58asmlinkage void ret_from_kernel_thread(void) __asm__("ret_from_kernel_thread");
  59
  60/*
  61 * Return saved PC of a blocked thread.
  62 */
  63unsigned long thread_saved_pc(struct task_struct *tsk)
  64{
  65        return ((unsigned long *)tsk->thread.sp)[3];
  66}
  67
  68void __show_regs(struct pt_regs *regs, int all)
  69{
  70        unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
  71        unsigned long d0, d1, d2, d3, d6, d7;
  72        unsigned long sp;
  73        unsigned short ss, gs;
  74
  75        if (user_mode(regs)) {
  76                sp = regs->sp;
  77                ss = regs->ss & 0xffff;
  78                gs = get_user_gs(regs);
  79        } else {
  80                sp = kernel_stack_pointer(regs);
  81                savesegment(ss, ss);
  82                savesegment(gs, gs);
  83        }
  84
  85        printk(KERN_DEFAULT "EIP: %04x:[<%08lx>] EFLAGS: %08lx CPU: %d\n",
  86                        (u16)regs->cs, regs->ip, regs->flags,
  87                        smp_processor_id());
  88        print_symbol("EIP is at %s\n", regs->ip);
  89
  90        printk(KERN_DEFAULT "EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
  91                regs->ax, regs->bx, regs->cx, regs->dx);
  92        printk(KERN_DEFAULT "ESI: %08lx EDI: %08lx EBP: %08lx ESP: %08lx\n",
  93                regs->si, regs->di, regs->bp, sp);
  94        printk(KERN_DEFAULT " DS: %04x ES: %04x FS: %04x GS: %04x SS: %04x\n",
  95               (u16)regs->ds, (u16)regs->es, (u16)regs->fs, gs, ss);
  96
  97        if (!all)
  98                return;
  99
 100        cr0 = read_cr0();
 101        cr2 = read_cr2();
 102        cr3 = read_cr3();
 103        cr4 = __read_cr4_safe();
 104        printk(KERN_DEFAULT "CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n",
 105                        cr0, cr2, cr3, cr4);
 106
 107        get_debugreg(d0, 0);
 108        get_debugreg(d1, 1);
 109        get_debugreg(d2, 2);
 110        get_debugreg(d3, 3);
 111        get_debugreg(d6, 6);
 112        get_debugreg(d7, 7);
 113
 114        /* Only print out debug registers if they are in their non-default state. */
 115        if ((d0 == 0) && (d1 == 0) && (d2 == 0) && (d3 == 0) &&
 116            (d6 == DR6_RESERVED) && (d7 == 0x400))
 117                return;
 118
 119        printk(KERN_DEFAULT "DR0: %08lx DR1: %08lx DR2: %08lx DR3: %08lx\n",
 120                        d0, d1, d2, d3);
 121        printk(KERN_DEFAULT "DR6: %08lx DR7: %08lx\n",
 122                        d6, d7);
 123}
 124
 125void release_thread(struct task_struct *dead_task)
 126{
 127        BUG_ON(dead_task->mm);
 128        release_vm86_irqs(dead_task);
 129}
 130
 131int copy_thread_tls(unsigned long clone_flags, unsigned long sp,
 132        unsigned long arg, struct task_struct *p, unsigned long tls)
 133{
 134        struct pt_regs *childregs = task_pt_regs(p);
 135        struct task_struct *tsk;
 136        int err;
 137
 138        p->thread.sp = (unsigned long) childregs;
 139        p->thread.sp0 = (unsigned long) (childregs+1);
 140        memset(p->thread.ptrace_bps, 0, sizeof(p->thread.ptrace_bps));
 141
 142        if (unlikely(p->flags & PF_KTHREAD)) {
 143                /* kernel thread */
 144                memset(childregs, 0, sizeof(struct pt_regs));
 145                p->thread.ip = (unsigned long) ret_from_kernel_thread;
 146                task_user_gs(p) = __KERNEL_STACK_CANARY;
 147                childregs->ds = __USER_DS;
 148                childregs->es = __USER_DS;
 149                childregs->fs = __KERNEL_PERCPU;
 150                childregs->bx = sp;     /* function */
 151                childregs->bp = arg;
 152                childregs->orig_ax = -1;
 153                childregs->cs = __KERNEL_CS | get_kernel_rpl();
 154                childregs->flags = X86_EFLAGS_IF | X86_EFLAGS_FIXED;
 155                p->thread.io_bitmap_ptr = NULL;
 156                return 0;
 157        }
 158        *childregs = *current_pt_regs();
 159        childregs->ax = 0;
 160        if (sp)
 161                childregs->sp = sp;
 162
 163        p->thread.ip = (unsigned long) ret_from_fork;
 164        task_user_gs(p) = get_user_gs(current_pt_regs());
 165
 166        p->thread.io_bitmap_ptr = NULL;
 167        tsk = current;
 168        err = -ENOMEM;
 169
 170        if (unlikely(test_tsk_thread_flag(tsk, TIF_IO_BITMAP))) {
 171                p->thread.io_bitmap_ptr = kmemdup(tsk->thread.io_bitmap_ptr,
 172                                                IO_BITMAP_BYTES, GFP_KERNEL);
 173                if (!p->thread.io_bitmap_ptr) {
 174                        p->thread.io_bitmap_max = 0;
 175                        return -ENOMEM;
 176                }
 177                set_tsk_thread_flag(p, TIF_IO_BITMAP);
 178        }
 179
 180        err = 0;
 181
 182        /*
 183         * Set a new TLS for the child thread?
 184         */
 185        if (clone_flags & CLONE_SETTLS)
 186                err = do_set_thread_area(p, -1,
 187                        (struct user_desc __user *)tls, 0);
 188
 189        if (err && p->thread.io_bitmap_ptr) {
 190                kfree(p->thread.io_bitmap_ptr);
 191                p->thread.io_bitmap_max = 0;
 192        }
 193        return err;
 194}
 195
 196void
 197start_thread(struct pt_regs *regs, unsigned long new_ip, unsigned long new_sp)
 198{
 199        set_user_gs(regs, 0);
 200        regs->fs                = 0;
 201        regs->ds                = __USER_DS;
 202        regs->es                = __USER_DS;
 203        regs->ss                = __USER_DS;
 204        regs->cs                = __USER_CS;
 205        regs->ip                = new_ip;
 206        regs->sp                = new_sp;
 207        regs->flags             = X86_EFLAGS_IF;
 208        force_iret();
 209}
 210EXPORT_SYMBOL_GPL(start_thread);
 211
 212
 213/*
 214 *      switch_to(x,y) should switch tasks from x to y.
 215 *
 216 * We fsave/fwait so that an exception goes off at the right time
 217 * (as a call from the fsave or fwait in effect) rather than to
 218 * the wrong process. Lazy FP saving no longer makes any sense
 219 * with modern CPU's, and this simplifies a lot of things (SMP
 220 * and UP become the same).
 221 *
 222 * NOTE! We used to use the x86 hardware context switching. The
 223 * reason for not using it any more becomes apparent when you
 224 * try to recover gracefully from saved state that is no longer
 225 * valid (stale segment register values in particular). With the
 226 * hardware task-switch, there is no way to fix up bad state in
 227 * a reasonable manner.
 228 *
 229 * The fact that Intel documents the hardware task-switching to
 230 * be slow is a fairly red herring - this code is not noticeably
 231 * faster. However, there _is_ some room for improvement here,
 232 * so the performance issues may eventually be a valid point.
 233 * More important, however, is the fact that this allows us much
 234 * more flexibility.
 235 *
 236 * The return value (in %ax) will be the "prev" task after
 237 * the task-switch, and shows up in ret_from_fork in entry.S,
 238 * for example.
 239 */
 240__visible __notrace_funcgraph struct task_struct *
 241__switch_to(struct task_struct *prev_p, struct task_struct *next_p)
 242{
 243        struct thread_struct *prev = &prev_p->thread,
 244                             *next = &next_p->thread;
 245        struct fpu *prev_fpu = &prev->fpu;
 246        struct fpu *next_fpu = &next->fpu;
 247        int cpu = smp_processor_id();
 248        struct tss_struct *tss = &per_cpu(cpu_tss, cpu);
 249        fpu_switch_t fpu_switch;
 250
 251        /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
 252
 253        fpu_switch = switch_fpu_prepare(prev_fpu, next_fpu, cpu);
 254
 255        /*
 256         * Save away %gs. No need to save %fs, as it was saved on the
 257         * stack on entry.  No need to save %es and %ds, as those are
 258         * always kernel segments while inside the kernel.  Doing this
 259         * before setting the new TLS descriptors avoids the situation
 260         * where we temporarily have non-reloadable segments in %fs
 261         * and %gs.  This could be an issue if the NMI handler ever
 262         * used %fs or %gs (it does not today), or if the kernel is
 263         * running inside of a hypervisor layer.
 264         */
 265        lazy_save_gs(prev->gs);
 266
 267        /*
 268         * Load the per-thread Thread-Local Storage descriptor.
 269         */
 270        load_TLS(next, cpu);
 271
 272        /*
 273         * Restore IOPL if needed.  In normal use, the flags restore
 274         * in the switch assembly will handle this.  But if the kernel
 275         * is running virtualized at a non-zero CPL, the popf will
 276         * not restore flags, so it must be done in a separate step.
 277         */
 278        if (get_kernel_rpl() && unlikely(prev->iopl != next->iopl))
 279                set_iopl_mask(next->iopl);
 280
 281        /*
 282         * If it were not for PREEMPT_ACTIVE we could guarantee that the
 283         * preempt_count of all tasks was equal here and this would not be
 284         * needed.
 285         */
 286        task_thread_info(prev_p)->saved_preempt_count = this_cpu_read(__preempt_count);
 287        this_cpu_write(__preempt_count, task_thread_info(next_p)->saved_preempt_count);
 288
 289        /*
 290         * Now maybe handle debug registers and/or IO bitmaps
 291         */
 292        if (unlikely(task_thread_info(prev_p)->flags & _TIF_WORK_CTXSW_PREV ||
 293                     task_thread_info(next_p)->flags & _TIF_WORK_CTXSW_NEXT))
 294                __switch_to_xtra(prev_p, next_p, tss);
 295
 296        /*
 297         * Leave lazy mode, flushing any hypercalls made here.
 298         * This must be done before restoring TLS segments so
 299         * the GDT and LDT are properly updated, and must be
 300         * done before fpu__restore(), so the TS bit is up
 301         * to date.
 302         */
 303        arch_end_context_switch(next_p);
 304
 305        /*
 306         * Reload esp0 and cpu_current_top_of_stack.  This changes
 307         * current_thread_info().
 308         */
 309        load_sp0(tss, next);
 310        this_cpu_write(cpu_current_top_of_stack,
 311                       (unsigned long)task_stack_page(next_p) +
 312                       THREAD_SIZE);
 313
 314        /*
 315         * Restore %gs if needed (which is common)
 316         */
 317        if (prev->gs | next->gs)
 318                lazy_load_gs(next->gs);
 319
 320        switch_fpu_finish(next_fpu, fpu_switch);
 321
 322        this_cpu_write(current_task, next_p);
 323
 324        return prev_p;
 325}
 326
 327#define top_esp                (THREAD_SIZE - sizeof(unsigned long))
 328#define top_ebp                (THREAD_SIZE - 2*sizeof(unsigned long))
 329
 330unsigned long get_wchan(struct task_struct *p)
 331{
 332        unsigned long bp, sp, ip;
 333        unsigned long stack_page;
 334        int count = 0;
 335        if (!p || p == current || p->state == TASK_RUNNING)
 336                return 0;
 337        stack_page = (unsigned long)task_stack_page(p);
 338        sp = p->thread.sp;
 339        if (!stack_page || sp < stack_page || sp > top_esp+stack_page)
 340                return 0;
 341        /* include/asm-i386/system.h:switch_to() pushes bp last. */
 342        bp = *(unsigned long *) sp;
 343        do {
 344                if (bp < stack_page || bp > top_ebp+stack_page)
 345                        return 0;
 346                ip = *(unsigned long *) (bp+4);
 347                if (!in_sched_functions(ip))
 348                        return ip;
 349                bp = *(unsigned long *) bp;
 350        } while (count++ < 16);
 351        return 0;
 352}
 353
 354