linux/arch/xtensa/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 * include/asm-xtensa/pgtable.h
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 as
   6 * published by the Free Software Foundation.
   7 *
   8 * Copyright (C) 2001 - 2013 Tensilica Inc.
   9 */
  10
  11#ifndef _XTENSA_PGTABLE_H
  12#define _XTENSA_PGTABLE_H
  13
  14#include <asm-generic/pgtable-nopmd.h>
  15#include <asm/page.h>
  16
  17/*
  18 * We only use two ring levels, user and kernel space.
  19 */
  20
  21#define USER_RING               1       /* user ring level */
  22#define KERNEL_RING             0       /* kernel ring level */
  23
  24/*
  25 * The Xtensa architecture port of Linux has a two-level page table system,
  26 * i.e. the logical three-level Linux page table layout is folded.
  27 * Each task has the following memory page tables:
  28 *
  29 *   PGD table (page directory), ie. 3rd-level page table:
  30 *      One page (4 kB) of 1024 (PTRS_PER_PGD) pointers to PTE tables
  31 *      (Architectures that don't have the PMD folded point to the PMD tables)
  32 *
  33 *      The pointer to the PGD table for a given task can be retrieved from
  34 *      the task structure (struct task_struct*) t, e.g. current():
  35 *        (t->mm ? t->mm : t->active_mm)->pgd
  36 *
  37 *   PMD tables (page middle-directory), ie. 2nd-level page tables:
  38 *      Absent for the Xtensa architecture (folded, PTRS_PER_PMD == 1).
  39 *
  40 *   PTE tables (page table entry), ie. 1st-level page tables:
  41 *      One page (4 kB) of 1024 (PTRS_PER_PTE) PTEs with a special PTE
  42 *      invalid_pte_table for absent mappings.
  43 *
  44 * The individual pages are 4 kB big with special pages for the empty_zero_page.
  45 */
  46
  47#define PGDIR_SHIFT     22
  48#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  49#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  50
  51/*
  52 * Entries per page directory level: we use two-level, so
  53 * we don't really have any PMD directory physically.
  54 */
  55#define PTRS_PER_PTE            1024
  56#define PTRS_PER_PTE_SHIFT      10
  57#define PTRS_PER_PGD            1024
  58#define PGD_ORDER               0
  59#define USER_PTRS_PER_PGD       (TASK_SIZE/PGDIR_SIZE)
  60#define FIRST_USER_ADDRESS      0UL
  61#define FIRST_USER_PGD_NR       (FIRST_USER_ADDRESS >> PGDIR_SHIFT)
  62
  63/*
  64 * Virtual memory area. We keep a distance to other memory regions to be
  65 * on the safe side. We also use this area for cache aliasing.
  66 */
  67#define VMALLOC_START           0xC0000000
  68#define VMALLOC_END             0xC7FEFFFF
  69#define TLBTEMP_BASE_1          0xC7FF0000
  70#define TLBTEMP_BASE_2          (TLBTEMP_BASE_1 + DCACHE_WAY_SIZE)
  71#if 2 * DCACHE_WAY_SIZE > ICACHE_WAY_SIZE
  72#define TLBTEMP_SIZE            (2 * DCACHE_WAY_SIZE)
  73#else
  74#define TLBTEMP_SIZE            ICACHE_WAY_SIZE
  75#endif
  76
  77/*
  78 * For the Xtensa architecture, the PTE layout is as follows:
  79 *
  80 *              31------12  11  10-9   8-6  5-4  3-2  1-0
  81 *              +-----------------------------------------+
  82 *              |           |   Software   |   HARDWARE   |
  83 *              |    PPN    |          ADW | RI |Attribute|
  84 *              +-----------------------------------------+
  85 *   pte_none   |             MBZ          | 01 | 11 | 00 |
  86 *              +-----------------------------------------+
  87 *   present    |    PPN    | 0 | 00 | ADW | RI | CA | wx |
  88 *              +- - - - - - - - - - - - - - - - - - - - -+
  89 *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 11 | 11 |
  90 *              +-----------------------------------------+
  91 *   swap       |     index     |   type   | 01 | 11 | 00 |
  92 *              +-----------------------------------------+
  93 *
  94 * For T1050 hardware and earlier the layout differs for present and (PAGE_NONE)
  95 *              +-----------------------------------------+
  96 *   present    |    PPN    | 0 | 00 | ADW | RI | CA | w1 |
  97 *              +-----------------------------------------+
  98 *   (PAGE_NONE)|    PPN    | 0 | 00 | ADW | 01 | 01 | 00 |
  99 *              +-----------------------------------------+
 100 *
 101 *  Legend:
 102 *   PPN        Physical Page Number
 103 *   ADW        software: accessed (young) / dirty / writable
 104 *   RI         ring (0=privileged, 1=user, 2 and 3 are unused)
 105 *   CA         cache attribute: 00 bypass, 01 writeback, 10 writethrough
 106 *              (11 is invalid and used to mark pages that are not present)
 107 *   w          page is writable (hw)
 108 *   x          page is executable (hw)
 109 *   index      swap offset / PAGE_SIZE (bit 11-31: 21 bits -> 8 GB)
 110 *              (note that the index is always non-zero)
 111 *   type       swap type (5 bits -> 32 types)
 112 *
 113 *  Notes:
 114 *   - (PROT_NONE) is a special case of 'present' but causes an exception for
 115 *     any access (read, write, and execute).
 116 *   - 'multihit-exception' has the highest priority of all MMU exceptions,
 117 *     so the ring must be set to 'RING_USER' even for 'non-present' pages.
 118 *   - on older hardware, the exectuable flag was not supported and
 119 *     used as a 'valid' flag, so it needs to be always set.
 120 *   - we need to keep track of certain flags in software (dirty and young)
 121 *     to do this, we use write exceptions and have a separate software w-flag.
 122 *   - attribute value 1101 (and 1111 on T1050 and earlier) is reserved
 123 */
 124
 125#define _PAGE_ATTRIB_MASK       0xf
 126
 127#define _PAGE_HW_EXEC           (1<<0)  /* hardware: page is executable */
 128#define _PAGE_HW_WRITE          (1<<1)  /* hardware: page is writable */
 129
 130#define _PAGE_CA_BYPASS         (0<<2)  /* bypass, non-speculative */
 131#define _PAGE_CA_WB             (1<<2)  /* write-back */
 132#define _PAGE_CA_WT             (2<<2)  /* write-through */
 133#define _PAGE_CA_MASK           (3<<2)
 134#define _PAGE_CA_INVALID        (3<<2)
 135
 136/* We use invalid attribute values to distinguish special pte entries */
 137#if XCHAL_HW_VERSION_MAJOR < 2000
 138#define _PAGE_HW_VALID          0x01    /* older HW needed this bit set */
 139#define _PAGE_NONE              0x04
 140#else
 141#define _PAGE_HW_VALID          0x00
 142#define _PAGE_NONE              0x0f
 143#endif
 144
 145#define _PAGE_USER              (1<<4)  /* user access (ring=1) */
 146
 147/* Software */
 148#define _PAGE_WRITABLE_BIT      6
 149#define _PAGE_WRITABLE          (1<<6)  /* software: page writable */
 150#define _PAGE_DIRTY             (1<<7)  /* software: page dirty */
 151#define _PAGE_ACCESSED          (1<<8)  /* software: page accessed (read) */
 152
 153#ifdef CONFIG_MMU
 154
 155#define _PAGE_CHG_MASK     (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 156#define _PAGE_PRESENT      (_PAGE_HW_VALID | _PAGE_CA_WB | _PAGE_ACCESSED)
 157
 158#define PAGE_NONE          __pgprot(_PAGE_NONE | _PAGE_USER)
 159#define PAGE_COPY          __pgprot(_PAGE_PRESENT | _PAGE_USER)
 160#define PAGE_COPY_EXEC     __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
 161#define PAGE_READONLY      __pgprot(_PAGE_PRESENT | _PAGE_USER)
 162#define PAGE_READONLY_EXEC __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_HW_EXEC)
 163#define PAGE_SHARED        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE)
 164#define PAGE_SHARED_EXEC \
 165        __pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_WRITABLE | _PAGE_HW_EXEC)
 166#define PAGE_KERNEL        __pgprot(_PAGE_PRESENT | _PAGE_HW_WRITE)
 167#define PAGE_KERNEL_EXEC   __pgprot(_PAGE_PRESENT|_PAGE_HW_WRITE|_PAGE_HW_EXEC)
 168
 169#if (DCACHE_WAY_SIZE > PAGE_SIZE)
 170# define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_BYPASS)
 171#else
 172# define _PAGE_DIRECTORY   (_PAGE_HW_VALID | _PAGE_ACCESSED | _PAGE_CA_WB)
 173#endif
 174
 175#else /* no mmu */
 176
 177# define _PAGE_CHG_MASK  (PAGE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
 178# define PAGE_NONE       __pgprot(0)
 179# define PAGE_SHARED     __pgprot(0)
 180# define PAGE_COPY       __pgprot(0)
 181# define PAGE_READONLY   __pgprot(0)
 182# define PAGE_KERNEL     __pgprot(0)
 183
 184#endif
 185
 186/*
 187 * On certain configurations of Xtensa MMUs (eg. the initial Linux config),
 188 * the MMU can't do page protection for execute, and considers that the same as
 189 * read.  Also, write permissions may imply read permissions.
 190 * What follows is the closest we can get by reasonable means..
 191 * See linux/mm/mmap.c for protection_map[] array that uses these definitions.
 192 */
 193#define __P000  PAGE_NONE               /* private --- */
 194#define __P001  PAGE_READONLY           /* private --r */
 195#define __P010  PAGE_COPY               /* private -w- */
 196#define __P011  PAGE_COPY               /* private -wr */
 197#define __P100  PAGE_READONLY_EXEC      /* private x-- */
 198#define __P101  PAGE_READONLY_EXEC      /* private x-r */
 199#define __P110  PAGE_COPY_EXEC          /* private xw- */
 200#define __P111  PAGE_COPY_EXEC          /* private xwr */
 201
 202#define __S000  PAGE_NONE               /* shared  --- */
 203#define __S001  PAGE_READONLY           /* shared  --r */
 204#define __S010  PAGE_SHARED             /* shared  -w- */
 205#define __S011  PAGE_SHARED             /* shared  -wr */
 206#define __S100  PAGE_READONLY_EXEC      /* shared  x-- */
 207#define __S101  PAGE_READONLY_EXEC      /* shared  x-r */
 208#define __S110  PAGE_SHARED_EXEC        /* shared  xw- */
 209#define __S111  PAGE_SHARED_EXEC        /* shared  xwr */
 210
 211#ifndef __ASSEMBLY__
 212
 213#define pte_ERROR(e) \
 214        printk("%s:%d: bad pte %08lx.\n", __FILE__, __LINE__, pte_val(e))
 215#define pgd_ERROR(e) \
 216        printk("%s:%d: bad pgd entry %08lx.\n", __FILE__, __LINE__, pgd_val(e))
 217
 218extern unsigned long empty_zero_page[1024];
 219
 220#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
 221
 222#ifdef CONFIG_MMU
 223extern pgd_t swapper_pg_dir[PAGE_SIZE/sizeof(pgd_t)];
 224extern void paging_init(void);
 225#else
 226# define swapper_pg_dir NULL
 227static inline void paging_init(void) { }
 228#endif
 229static inline void pgtable_cache_init(void) { }
 230
 231/*
 232 * The pmd contains the kernel virtual address of the pte page.
 233 */
 234#define pmd_page_vaddr(pmd) ((unsigned long)(pmd_val(pmd) & PAGE_MASK))
 235#define pmd_page(pmd) virt_to_page(pmd_val(pmd))
 236
 237/*
 238 * pte status.
 239 */
 240# define pte_none(pte)   (pte_val(pte) == (_PAGE_CA_INVALID | _PAGE_USER))
 241#if XCHAL_HW_VERSION_MAJOR < 2000
 242# define pte_present(pte) ((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)
 243#else
 244# define pte_present(pte)                                               \
 245        (((pte_val(pte) & _PAGE_CA_MASK) != _PAGE_CA_INVALID)           \
 246         || ((pte_val(pte) & _PAGE_ATTRIB_MASK) == _PAGE_NONE))
 247#endif
 248#define pte_clear(mm,addr,ptep)                                         \
 249        do { update_pte(ptep, __pte(_PAGE_CA_INVALID | _PAGE_USER)); } while (0)
 250
 251#define pmd_none(pmd)    (!pmd_val(pmd))
 252#define pmd_present(pmd) (pmd_val(pmd) & PAGE_MASK)
 253#define pmd_bad(pmd)     (pmd_val(pmd) & ~PAGE_MASK)
 254#define pmd_clear(pmdp)  do { set_pmd(pmdp, __pmd(0)); } while (0)
 255
 256static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITABLE; }
 257static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_DIRTY; }
 258static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
 259static inline int pte_special(pte_t pte) { return 0; }
 260
 261static inline pte_t pte_wrprotect(pte_t pte)    
 262        { pte_val(pte) &= ~(_PAGE_WRITABLE | _PAGE_HW_WRITE); return pte; }
 263static inline pte_t pte_mkclean(pte_t pte)
 264        { pte_val(pte) &= ~(_PAGE_DIRTY | _PAGE_HW_WRITE); return pte; }
 265static inline pte_t pte_mkold(pte_t pte)
 266        { pte_val(pte) &= ~_PAGE_ACCESSED; return pte; }
 267static inline pte_t pte_mkdirty(pte_t pte)
 268        { pte_val(pte) |= _PAGE_DIRTY; return pte; }
 269static inline pte_t pte_mkyoung(pte_t pte)
 270        { pte_val(pte) |= _PAGE_ACCESSED; return pte; }
 271static inline pte_t pte_mkwrite(pte_t pte)
 272        { pte_val(pte) |= _PAGE_WRITABLE; return pte; }
 273static inline pte_t pte_mkspecial(pte_t pte)
 274        { return pte; }
 275
 276#define pgprot_noncached(prot) (__pgprot(pgprot_val(prot) & ~_PAGE_CA_MASK))
 277
 278/*
 279 * Conversion functions: convert a page and protection to a page entry,
 280 * and a page entry and page directory to the page they refer to.
 281 */
 282
 283#define pte_pfn(pte)            (pte_val(pte) >> PAGE_SHIFT)
 284#define pte_same(a,b)           (pte_val(a) == pte_val(b))
 285#define pte_page(x)             pfn_to_page(pte_pfn(x))
 286#define pfn_pte(pfn, prot)      __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
 287#define mk_pte(page, prot)      pfn_pte(page_to_pfn(page), prot)
 288
 289static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 290{
 291        return __pte((pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot));
 292}
 293
 294/*
 295 * Certain architectures need to do special things when pte's
 296 * within a page table are directly modified.  Thus, the following
 297 * hook is made available.
 298 */
 299static inline void update_pte(pte_t *ptep, pte_t pteval)
 300{
 301        *ptep = pteval;
 302#if (DCACHE_WAY_SIZE > PAGE_SIZE) && XCHAL_DCACHE_IS_WRITEBACK
 303        __asm__ __volatile__ ("dhwb %0, 0" :: "a" (ptep));
 304#endif
 305
 306}
 307
 308struct mm_struct;
 309
 310static inline void
 311set_pte_at(struct mm_struct *mm, unsigned long addr, pte_t *ptep, pte_t pteval)
 312{
 313        update_pte(ptep, pteval);
 314}
 315
 316static inline void set_pte(pte_t *ptep, pte_t pteval)
 317{
 318        update_pte(ptep, pteval);
 319}
 320
 321static inline void
 322set_pmd(pmd_t *pmdp, pmd_t pmdval)
 323{
 324        *pmdp = pmdval;
 325}
 326
 327struct vm_area_struct;
 328
 329static inline int
 330ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr,
 331                          pte_t *ptep)
 332{
 333        pte_t pte = *ptep;
 334        if (!pte_young(pte))
 335                return 0;
 336        update_pte(ptep, pte_mkold(pte));
 337        return 1;
 338}
 339
 340static inline pte_t
 341ptep_get_and_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 342{
 343        pte_t pte = *ptep;
 344        pte_clear(mm, addr, ptep);
 345        return pte;
 346}
 347
 348static inline void
 349ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 350{
 351        pte_t pte = *ptep;
 352        update_pte(ptep, pte_wrprotect(pte));
 353}
 354
 355/* to find an entry in a kernel page-table-directory */
 356#define pgd_offset_k(address)   pgd_offset(&init_mm, address)
 357
 358/* to find an entry in a page-table-directory */
 359#define pgd_offset(mm,address)  ((mm)->pgd + pgd_index(address))
 360
 361#define pgd_index(address)      ((address) >> PGDIR_SHIFT)
 362
 363/* Find an entry in the second-level page table.. */
 364#define pmd_offset(dir,address) ((pmd_t*)(dir))
 365
 366/* Find an entry in the third-level page table.. */
 367#define pte_index(address)      (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
 368#define pte_offset_kernel(dir,addr)                                     \
 369        ((pte_t*) pmd_page_vaddr(*(dir)) + pte_index(addr))
 370#define pte_offset_map(dir,addr)        pte_offset_kernel((dir),(addr))
 371#define pte_unmap(pte)          do { } while (0)
 372
 373
 374/*
 375 * Encode and decode a swap and file entry.
 376 */
 377#define SWP_TYPE_BITS           5
 378#define MAX_SWAPFILES_CHECK() BUILD_BUG_ON(MAX_SWAPFILES_SHIFT > SWP_TYPE_BITS)
 379
 380#define __swp_type(entry)       (((entry).val >> 6) & 0x1f)
 381#define __swp_offset(entry)     ((entry).val >> 11)
 382#define __swp_entry(type,offs)  \
 383        ((swp_entry_t){((type) << 6) | ((offs) << 11) | \
 384         _PAGE_CA_INVALID | _PAGE_USER})
 385#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
 386#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
 387
 388#endif /*  !defined (__ASSEMBLY__) */
 389
 390
 391#ifdef __ASSEMBLY__
 392
 393/* Assembly macro _PGD_INDEX is the same as C pgd_index(unsigned long),
 394 *                _PGD_OFFSET as C pgd_offset(struct mm_struct*, unsigned long),
 395 *                _PMD_OFFSET as C pmd_offset(pgd_t*, unsigned long)
 396 *                _PTE_OFFSET as C pte_offset(pmd_t*, unsigned long)
 397 *
 398 * Note: We require an additional temporary register which can be the same as
 399 *       the register that holds the address.
 400 *
 401 * ((pte_t*) ((unsigned long)(pmd_val(*pmd) & PAGE_MASK)) + pte_index(addr))
 402 *
 403 */
 404#define _PGD_INDEX(rt,rs)       extui   rt, rs, PGDIR_SHIFT, 32-PGDIR_SHIFT
 405#define _PTE_INDEX(rt,rs)       extui   rt, rs, PAGE_SHIFT, PTRS_PER_PTE_SHIFT
 406
 407#define _PGD_OFFSET(mm,adr,tmp)         l32i    mm, mm, MM_PGD;         \
 408                                        _PGD_INDEX(tmp, adr);           \
 409                                        addx4   mm, tmp, mm
 410
 411#define _PTE_OFFSET(pmd,adr,tmp)        _PTE_INDEX(tmp, adr);           \
 412                                        srli    pmd, pmd, PAGE_SHIFT;   \
 413                                        slli    pmd, pmd, PAGE_SHIFT;   \
 414                                        addx4   pmd, tmp, pmd
 415
 416#else
 417
 418#define kern_addr_valid(addr)   (1)
 419
 420extern  void update_mmu_cache(struct vm_area_struct * vma,
 421                              unsigned long address, pte_t *ptep);
 422
 423typedef pte_t *pte_addr_t;
 424
 425#endif /* !defined (__ASSEMBLY__) */
 426
 427#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
 428#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
 429#define __HAVE_ARCH_PTEP_SET_WRPROTECT
 430#define __HAVE_ARCH_PTEP_MKDIRTY
 431#define __HAVE_ARCH_PTE_SAME
 432/* We provide our own get_unmapped_area to cope with
 433 * SHM area cache aliasing for userland.
 434 */
 435#define HAVE_ARCH_UNMAPPED_AREA
 436
 437#include <asm-generic/pgtable.h>
 438
 439#endif /* _XTENSA_PGTABLE_H */
 440