linux/block/blk-throttle.c
<<
>>
Prefs
   1/*
   2 * Interface for controlling IO bandwidth on a request queue
   3 *
   4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
   5 */
   6
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/blkdev.h>
  10#include <linux/bio.h>
  11#include <linux/blktrace_api.h>
  12#include <linux/blk-cgroup.h>
  13#include "blk.h"
  14
  15/* Max dispatch from a group in 1 round */
  16static int throtl_grp_quantum = 8;
  17
  18/* Total max dispatch from all groups in one round */
  19static int throtl_quantum = 32;
  20
  21/* Throttling is performed over 100ms slice and after that slice is renewed */
  22static unsigned long throtl_slice = HZ/10;      /* 100 ms */
  23
  24static struct blkcg_policy blkcg_policy_throtl;
  25
  26/* A workqueue to queue throttle related work */
  27static struct workqueue_struct *kthrotld_workqueue;
  28
  29/*
  30 * To implement hierarchical throttling, throtl_grps form a tree and bios
  31 * are dispatched upwards level by level until they reach the top and get
  32 * issued.  When dispatching bios from the children and local group at each
  33 * level, if the bios are dispatched into a single bio_list, there's a risk
  34 * of a local or child group which can queue many bios at once filling up
  35 * the list starving others.
  36 *
  37 * To avoid such starvation, dispatched bios are queued separately
  38 * according to where they came from.  When they are again dispatched to
  39 * the parent, they're popped in round-robin order so that no single source
  40 * hogs the dispatch window.
  41 *
  42 * throtl_qnode is used to keep the queued bios separated by their sources.
  43 * Bios are queued to throtl_qnode which in turn is queued to
  44 * throtl_service_queue and then dispatched in round-robin order.
  45 *
  46 * It's also used to track the reference counts on blkg's.  A qnode always
  47 * belongs to a throtl_grp and gets queued on itself or the parent, so
  48 * incrementing the reference of the associated throtl_grp when a qnode is
  49 * queued and decrementing when dequeued is enough to keep the whole blkg
  50 * tree pinned while bios are in flight.
  51 */
  52struct throtl_qnode {
  53        struct list_head        node;           /* service_queue->queued[] */
  54        struct bio_list         bios;           /* queued bios */
  55        struct throtl_grp       *tg;            /* tg this qnode belongs to */
  56};
  57
  58struct throtl_service_queue {
  59        struct throtl_service_queue *parent_sq; /* the parent service_queue */
  60
  61        /*
  62         * Bios queued directly to this service_queue or dispatched from
  63         * children throtl_grp's.
  64         */
  65        struct list_head        queued[2];      /* throtl_qnode [READ/WRITE] */
  66        unsigned int            nr_queued[2];   /* number of queued bios */
  67
  68        /*
  69         * RB tree of active children throtl_grp's, which are sorted by
  70         * their ->disptime.
  71         */
  72        struct rb_root          pending_tree;   /* RB tree of active tgs */
  73        struct rb_node          *first_pending; /* first node in the tree */
  74        unsigned int            nr_pending;     /* # queued in the tree */
  75        unsigned long           first_pending_disptime; /* disptime of the first tg */
  76        struct timer_list       pending_timer;  /* fires on first_pending_disptime */
  77};
  78
  79enum tg_state_flags {
  80        THROTL_TG_PENDING       = 1 << 0,       /* on parent's pending tree */
  81        THROTL_TG_WAS_EMPTY     = 1 << 1,       /* bio_lists[] became non-empty */
  82};
  83
  84#define rb_entry_tg(node)       rb_entry((node), struct throtl_grp, rb_node)
  85
  86/* Per-cpu group stats */
  87struct tg_stats_cpu {
  88        /* total bytes transferred */
  89        struct blkg_rwstat              service_bytes;
  90        /* total IOs serviced, post merge */
  91        struct blkg_rwstat              serviced;
  92};
  93
  94struct throtl_grp {
  95        /* must be the first member */
  96        struct blkg_policy_data pd;
  97
  98        /* active throtl group service_queue member */
  99        struct rb_node rb_node;
 100
 101        /* throtl_data this group belongs to */
 102        struct throtl_data *td;
 103
 104        /* this group's service queue */
 105        struct throtl_service_queue service_queue;
 106
 107        /*
 108         * qnode_on_self is used when bios are directly queued to this
 109         * throtl_grp so that local bios compete fairly with bios
 110         * dispatched from children.  qnode_on_parent is used when bios are
 111         * dispatched from this throtl_grp into its parent and will compete
 112         * with the sibling qnode_on_parents and the parent's
 113         * qnode_on_self.
 114         */
 115        struct throtl_qnode qnode_on_self[2];
 116        struct throtl_qnode qnode_on_parent[2];
 117
 118        /*
 119         * Dispatch time in jiffies. This is the estimated time when group
 120         * will unthrottle and is ready to dispatch more bio. It is used as
 121         * key to sort active groups in service tree.
 122         */
 123        unsigned long disptime;
 124
 125        unsigned int flags;
 126
 127        /* are there any throtl rules between this group and td? */
 128        bool has_rules[2];
 129
 130        /* bytes per second rate limits */
 131        uint64_t bps[2];
 132
 133        /* IOPS limits */
 134        unsigned int iops[2];
 135
 136        /* Number of bytes disptached in current slice */
 137        uint64_t bytes_disp[2];
 138        /* Number of bio's dispatched in current slice */
 139        unsigned int io_disp[2];
 140
 141        /* When did we start a new slice */
 142        unsigned long slice_start[2];
 143        unsigned long slice_end[2];
 144
 145        /* Per cpu stats pointer */
 146        struct tg_stats_cpu __percpu *stats_cpu;
 147
 148        /* List of tgs waiting for per cpu stats memory to be allocated */
 149        struct list_head stats_alloc_node;
 150};
 151
 152struct throtl_data
 153{
 154        /* service tree for active throtl groups */
 155        struct throtl_service_queue service_queue;
 156
 157        struct request_queue *queue;
 158
 159        /* Total Number of queued bios on READ and WRITE lists */
 160        unsigned int nr_queued[2];
 161
 162        /*
 163         * number of total undestroyed groups
 164         */
 165        unsigned int nr_undestroyed_grps;
 166
 167        /* Work for dispatching throttled bios */
 168        struct work_struct dispatch_work;
 169};
 170
 171/* list and work item to allocate percpu group stats */
 172static DEFINE_SPINLOCK(tg_stats_alloc_lock);
 173static LIST_HEAD(tg_stats_alloc_list);
 174
 175static void tg_stats_alloc_fn(struct work_struct *);
 176static DECLARE_DELAYED_WORK(tg_stats_alloc_work, tg_stats_alloc_fn);
 177
 178static void throtl_pending_timer_fn(unsigned long arg);
 179
 180static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
 181{
 182        return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
 183}
 184
 185static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
 186{
 187        return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
 188}
 189
 190static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
 191{
 192        return pd_to_blkg(&tg->pd);
 193}
 194
 195static inline struct throtl_grp *td_root_tg(struct throtl_data *td)
 196{
 197        return blkg_to_tg(td->queue->root_blkg);
 198}
 199
 200/**
 201 * sq_to_tg - return the throl_grp the specified service queue belongs to
 202 * @sq: the throtl_service_queue of interest
 203 *
 204 * Return the throtl_grp @sq belongs to.  If @sq is the top-level one
 205 * embedded in throtl_data, %NULL is returned.
 206 */
 207static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
 208{
 209        if (sq && sq->parent_sq)
 210                return container_of(sq, struct throtl_grp, service_queue);
 211        else
 212                return NULL;
 213}
 214
 215/**
 216 * sq_to_td - return throtl_data the specified service queue belongs to
 217 * @sq: the throtl_service_queue of interest
 218 *
 219 * A service_queue can be embeded in either a throtl_grp or throtl_data.
 220 * Determine the associated throtl_data accordingly and return it.
 221 */
 222static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
 223{
 224        struct throtl_grp *tg = sq_to_tg(sq);
 225
 226        if (tg)
 227                return tg->td;
 228        else
 229                return container_of(sq, struct throtl_data, service_queue);
 230}
 231
 232/**
 233 * throtl_log - log debug message via blktrace
 234 * @sq: the service_queue being reported
 235 * @fmt: printf format string
 236 * @args: printf args
 237 *
 238 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
 239 * throtl_grp; otherwise, just "throtl".
 240 *
 241 * TODO: this should be made a function and name formatting should happen
 242 * after testing whether blktrace is enabled.
 243 */
 244#define throtl_log(sq, fmt, args...)    do {                            \
 245        struct throtl_grp *__tg = sq_to_tg((sq));                       \
 246        struct throtl_data *__td = sq_to_td((sq));                      \
 247                                                                        \
 248        (void)__td;                                                     \
 249        if ((__tg)) {                                                   \
 250                char __pbuf[128];                                       \
 251                                                                        \
 252                blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf));    \
 253                blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
 254        } else {                                                        \
 255                blk_add_trace_msg(__td->queue, "throtl " fmt, ##args);  \
 256        }                                                               \
 257} while (0)
 258
 259static void tg_stats_init(struct tg_stats_cpu *tg_stats)
 260{
 261        blkg_rwstat_init(&tg_stats->service_bytes);
 262        blkg_rwstat_init(&tg_stats->serviced);
 263}
 264
 265/*
 266 * Worker for allocating per cpu stat for tgs. This is scheduled on the
 267 * system_wq once there are some groups on the alloc_list waiting for
 268 * allocation.
 269 */
 270static void tg_stats_alloc_fn(struct work_struct *work)
 271{
 272        static struct tg_stats_cpu *stats_cpu;  /* this fn is non-reentrant */
 273        struct delayed_work *dwork = to_delayed_work(work);
 274        bool empty = false;
 275
 276alloc_stats:
 277        if (!stats_cpu) {
 278                int cpu;
 279
 280                stats_cpu = alloc_percpu(struct tg_stats_cpu);
 281                if (!stats_cpu) {
 282                        /* allocation failed, try again after some time */
 283                        schedule_delayed_work(dwork, msecs_to_jiffies(10));
 284                        return;
 285                }
 286                for_each_possible_cpu(cpu)
 287                        tg_stats_init(per_cpu_ptr(stats_cpu, cpu));
 288        }
 289
 290        spin_lock_irq(&tg_stats_alloc_lock);
 291
 292        if (!list_empty(&tg_stats_alloc_list)) {
 293                struct throtl_grp *tg = list_first_entry(&tg_stats_alloc_list,
 294                                                         struct throtl_grp,
 295                                                         stats_alloc_node);
 296                swap(tg->stats_cpu, stats_cpu);
 297                list_del_init(&tg->stats_alloc_node);
 298        }
 299
 300        empty = list_empty(&tg_stats_alloc_list);
 301        spin_unlock_irq(&tg_stats_alloc_lock);
 302        if (!empty)
 303                goto alloc_stats;
 304}
 305
 306static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
 307{
 308        INIT_LIST_HEAD(&qn->node);
 309        bio_list_init(&qn->bios);
 310        qn->tg = tg;
 311}
 312
 313/**
 314 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
 315 * @bio: bio being added
 316 * @qn: qnode to add bio to
 317 * @queued: the service_queue->queued[] list @qn belongs to
 318 *
 319 * Add @bio to @qn and put @qn on @queued if it's not already on.
 320 * @qn->tg's reference count is bumped when @qn is activated.  See the
 321 * comment on top of throtl_qnode definition for details.
 322 */
 323static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
 324                                 struct list_head *queued)
 325{
 326        bio_list_add(&qn->bios, bio);
 327        if (list_empty(&qn->node)) {
 328                list_add_tail(&qn->node, queued);
 329                blkg_get(tg_to_blkg(qn->tg));
 330        }
 331}
 332
 333/**
 334 * throtl_peek_queued - peek the first bio on a qnode list
 335 * @queued: the qnode list to peek
 336 */
 337static struct bio *throtl_peek_queued(struct list_head *queued)
 338{
 339        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 340        struct bio *bio;
 341
 342        if (list_empty(queued))
 343                return NULL;
 344
 345        bio = bio_list_peek(&qn->bios);
 346        WARN_ON_ONCE(!bio);
 347        return bio;
 348}
 349
 350/**
 351 * throtl_pop_queued - pop the first bio form a qnode list
 352 * @queued: the qnode list to pop a bio from
 353 * @tg_to_put: optional out argument for throtl_grp to put
 354 *
 355 * Pop the first bio from the qnode list @queued.  After popping, the first
 356 * qnode is removed from @queued if empty or moved to the end of @queued so
 357 * that the popping order is round-robin.
 358 *
 359 * When the first qnode is removed, its associated throtl_grp should be put
 360 * too.  If @tg_to_put is NULL, this function automatically puts it;
 361 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
 362 * responsible for putting it.
 363 */
 364static struct bio *throtl_pop_queued(struct list_head *queued,
 365                                     struct throtl_grp **tg_to_put)
 366{
 367        struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
 368        struct bio *bio;
 369
 370        if (list_empty(queued))
 371                return NULL;
 372
 373        bio = bio_list_pop(&qn->bios);
 374        WARN_ON_ONCE(!bio);
 375
 376        if (bio_list_empty(&qn->bios)) {
 377                list_del_init(&qn->node);
 378                if (tg_to_put)
 379                        *tg_to_put = qn->tg;
 380                else
 381                        blkg_put(tg_to_blkg(qn->tg));
 382        } else {
 383                list_move_tail(&qn->node, queued);
 384        }
 385
 386        return bio;
 387}
 388
 389/* init a service_queue, assumes the caller zeroed it */
 390static void throtl_service_queue_init(struct throtl_service_queue *sq,
 391                                      struct throtl_service_queue *parent_sq)
 392{
 393        INIT_LIST_HEAD(&sq->queued[0]);
 394        INIT_LIST_HEAD(&sq->queued[1]);
 395        sq->pending_tree = RB_ROOT;
 396        sq->parent_sq = parent_sq;
 397        setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
 398                    (unsigned long)sq);
 399}
 400
 401static void throtl_service_queue_exit(struct throtl_service_queue *sq)
 402{
 403        del_timer_sync(&sq->pending_timer);
 404}
 405
 406static void throtl_pd_init(struct blkcg_gq *blkg)
 407{
 408        struct throtl_grp *tg = blkg_to_tg(blkg);
 409        struct throtl_data *td = blkg->q->td;
 410        struct throtl_service_queue *parent_sq;
 411        unsigned long flags;
 412        int rw;
 413
 414        /*
 415         * If on the default hierarchy, we switch to properly hierarchical
 416         * behavior where limits on a given throtl_grp are applied to the
 417         * whole subtree rather than just the group itself.  e.g. If 16M
 418         * read_bps limit is set on the root group, the whole system can't
 419         * exceed 16M for the device.
 420         *
 421         * If not on the default hierarchy, the broken flat hierarchy
 422         * behavior is retained where all throtl_grps are treated as if
 423         * they're all separate root groups right below throtl_data.
 424         * Limits of a group don't interact with limits of other groups
 425         * regardless of the position of the group in the hierarchy.
 426         */
 427        parent_sq = &td->service_queue;
 428
 429        if (cgroup_on_dfl(blkg->blkcg->css.cgroup) && blkg->parent)
 430                parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
 431
 432        throtl_service_queue_init(&tg->service_queue, parent_sq);
 433
 434        for (rw = READ; rw <= WRITE; rw++) {
 435                throtl_qnode_init(&tg->qnode_on_self[rw], tg);
 436                throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
 437        }
 438
 439        RB_CLEAR_NODE(&tg->rb_node);
 440        tg->td = td;
 441
 442        tg->bps[READ] = -1;
 443        tg->bps[WRITE] = -1;
 444        tg->iops[READ] = -1;
 445        tg->iops[WRITE] = -1;
 446
 447        /*
 448         * Ugh... We need to perform per-cpu allocation for tg->stats_cpu
 449         * but percpu allocator can't be called from IO path.  Queue tg on
 450         * tg_stats_alloc_list and allocate from work item.
 451         */
 452        spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 453        list_add(&tg->stats_alloc_node, &tg_stats_alloc_list);
 454        schedule_delayed_work(&tg_stats_alloc_work, 0);
 455        spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 456}
 457
 458/*
 459 * Set has_rules[] if @tg or any of its parents have limits configured.
 460 * This doesn't require walking up to the top of the hierarchy as the
 461 * parent's has_rules[] is guaranteed to be correct.
 462 */
 463static void tg_update_has_rules(struct throtl_grp *tg)
 464{
 465        struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
 466        int rw;
 467
 468        for (rw = READ; rw <= WRITE; rw++)
 469                tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
 470                                    (tg->bps[rw] != -1 || tg->iops[rw] != -1);
 471}
 472
 473static void throtl_pd_online(struct blkcg_gq *blkg)
 474{
 475        /*
 476         * We don't want new groups to escape the limits of its ancestors.
 477         * Update has_rules[] after a new group is brought online.
 478         */
 479        tg_update_has_rules(blkg_to_tg(blkg));
 480}
 481
 482static void throtl_pd_exit(struct blkcg_gq *blkg)
 483{
 484        struct throtl_grp *tg = blkg_to_tg(blkg);
 485        unsigned long flags;
 486
 487        spin_lock_irqsave(&tg_stats_alloc_lock, flags);
 488        list_del_init(&tg->stats_alloc_node);
 489        spin_unlock_irqrestore(&tg_stats_alloc_lock, flags);
 490
 491        free_percpu(tg->stats_cpu);
 492
 493        throtl_service_queue_exit(&tg->service_queue);
 494}
 495
 496static void throtl_pd_reset_stats(struct blkcg_gq *blkg)
 497{
 498        struct throtl_grp *tg = blkg_to_tg(blkg);
 499        int cpu;
 500
 501        if (tg->stats_cpu == NULL)
 502                return;
 503
 504        for_each_possible_cpu(cpu) {
 505                struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
 506
 507                blkg_rwstat_reset(&sc->service_bytes);
 508                blkg_rwstat_reset(&sc->serviced);
 509        }
 510}
 511
 512static struct throtl_grp *throtl_lookup_tg(struct throtl_data *td,
 513                                           struct blkcg *blkcg)
 514{
 515        /*
 516         * This is the common case when there are no blkcgs.  Avoid lookup
 517         * in this case
 518         */
 519        if (blkcg == &blkcg_root)
 520                return td_root_tg(td);
 521
 522        return blkg_to_tg(blkg_lookup(blkcg, td->queue));
 523}
 524
 525static struct throtl_grp *throtl_lookup_create_tg(struct throtl_data *td,
 526                                                  struct blkcg *blkcg)
 527{
 528        struct request_queue *q = td->queue;
 529        struct throtl_grp *tg = NULL;
 530
 531        /*
 532         * This is the common case when there are no blkcgs.  Avoid lookup
 533         * in this case
 534         */
 535        if (blkcg == &blkcg_root) {
 536                tg = td_root_tg(td);
 537        } else {
 538                struct blkcg_gq *blkg;
 539
 540                blkg = blkg_lookup_create(blkcg, q);
 541
 542                /* if %NULL and @q is alive, fall back to root_tg */
 543                if (!IS_ERR(blkg))
 544                        tg = blkg_to_tg(blkg);
 545                else if (!blk_queue_dying(q))
 546                        tg = td_root_tg(td);
 547        }
 548
 549        return tg;
 550}
 551
 552static struct throtl_grp *
 553throtl_rb_first(struct throtl_service_queue *parent_sq)
 554{
 555        /* Service tree is empty */
 556        if (!parent_sq->nr_pending)
 557                return NULL;
 558
 559        if (!parent_sq->first_pending)
 560                parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
 561
 562        if (parent_sq->first_pending)
 563                return rb_entry_tg(parent_sq->first_pending);
 564
 565        return NULL;
 566}
 567
 568static void rb_erase_init(struct rb_node *n, struct rb_root *root)
 569{
 570        rb_erase(n, root);
 571        RB_CLEAR_NODE(n);
 572}
 573
 574static void throtl_rb_erase(struct rb_node *n,
 575                            struct throtl_service_queue *parent_sq)
 576{
 577        if (parent_sq->first_pending == n)
 578                parent_sq->first_pending = NULL;
 579        rb_erase_init(n, &parent_sq->pending_tree);
 580        --parent_sq->nr_pending;
 581}
 582
 583static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
 584{
 585        struct throtl_grp *tg;
 586
 587        tg = throtl_rb_first(parent_sq);
 588        if (!tg)
 589                return;
 590
 591        parent_sq->first_pending_disptime = tg->disptime;
 592}
 593
 594static void tg_service_queue_add(struct throtl_grp *tg)
 595{
 596        struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
 597        struct rb_node **node = &parent_sq->pending_tree.rb_node;
 598        struct rb_node *parent = NULL;
 599        struct throtl_grp *__tg;
 600        unsigned long key = tg->disptime;
 601        int left = 1;
 602
 603        while (*node != NULL) {
 604                parent = *node;
 605                __tg = rb_entry_tg(parent);
 606
 607                if (time_before(key, __tg->disptime))
 608                        node = &parent->rb_left;
 609                else {
 610                        node = &parent->rb_right;
 611                        left = 0;
 612                }
 613        }
 614
 615        if (left)
 616                parent_sq->first_pending = &tg->rb_node;
 617
 618        rb_link_node(&tg->rb_node, parent, node);
 619        rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
 620}
 621
 622static void __throtl_enqueue_tg(struct throtl_grp *tg)
 623{
 624        tg_service_queue_add(tg);
 625        tg->flags |= THROTL_TG_PENDING;
 626        tg->service_queue.parent_sq->nr_pending++;
 627}
 628
 629static void throtl_enqueue_tg(struct throtl_grp *tg)
 630{
 631        if (!(tg->flags & THROTL_TG_PENDING))
 632                __throtl_enqueue_tg(tg);
 633}
 634
 635static void __throtl_dequeue_tg(struct throtl_grp *tg)
 636{
 637        throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
 638        tg->flags &= ~THROTL_TG_PENDING;
 639}
 640
 641static void throtl_dequeue_tg(struct throtl_grp *tg)
 642{
 643        if (tg->flags & THROTL_TG_PENDING)
 644                __throtl_dequeue_tg(tg);
 645}
 646
 647/* Call with queue lock held */
 648static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
 649                                          unsigned long expires)
 650{
 651        mod_timer(&sq->pending_timer, expires);
 652        throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
 653                   expires - jiffies, jiffies);
 654}
 655
 656/**
 657 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
 658 * @sq: the service_queue to schedule dispatch for
 659 * @force: force scheduling
 660 *
 661 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
 662 * dispatch time of the first pending child.  Returns %true if either timer
 663 * is armed or there's no pending child left.  %false if the current
 664 * dispatch window is still open and the caller should continue
 665 * dispatching.
 666 *
 667 * If @force is %true, the dispatch timer is always scheduled and this
 668 * function is guaranteed to return %true.  This is to be used when the
 669 * caller can't dispatch itself and needs to invoke pending_timer
 670 * unconditionally.  Note that forced scheduling is likely to induce short
 671 * delay before dispatch starts even if @sq->first_pending_disptime is not
 672 * in the future and thus shouldn't be used in hot paths.
 673 */
 674static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
 675                                          bool force)
 676{
 677        /* any pending children left? */
 678        if (!sq->nr_pending)
 679                return true;
 680
 681        update_min_dispatch_time(sq);
 682
 683        /* is the next dispatch time in the future? */
 684        if (force || time_after(sq->first_pending_disptime, jiffies)) {
 685                throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
 686                return true;
 687        }
 688
 689        /* tell the caller to continue dispatching */
 690        return false;
 691}
 692
 693static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
 694                bool rw, unsigned long start)
 695{
 696        tg->bytes_disp[rw] = 0;
 697        tg->io_disp[rw] = 0;
 698
 699        /*
 700         * Previous slice has expired. We must have trimmed it after last
 701         * bio dispatch. That means since start of last slice, we never used
 702         * that bandwidth. Do try to make use of that bandwidth while giving
 703         * credit.
 704         */
 705        if (time_after_eq(start, tg->slice_start[rw]))
 706                tg->slice_start[rw] = start;
 707
 708        tg->slice_end[rw] = jiffies + throtl_slice;
 709        throtl_log(&tg->service_queue,
 710                   "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
 711                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 712                   tg->slice_end[rw], jiffies);
 713}
 714
 715static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
 716{
 717        tg->bytes_disp[rw] = 0;
 718        tg->io_disp[rw] = 0;
 719        tg->slice_start[rw] = jiffies;
 720        tg->slice_end[rw] = jiffies + throtl_slice;
 721        throtl_log(&tg->service_queue,
 722                   "[%c] new slice start=%lu end=%lu jiffies=%lu",
 723                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 724                   tg->slice_end[rw], jiffies);
 725}
 726
 727static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
 728                                        unsigned long jiffy_end)
 729{
 730        tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 731}
 732
 733static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
 734                                       unsigned long jiffy_end)
 735{
 736        tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
 737        throtl_log(&tg->service_queue,
 738                   "[%c] extend slice start=%lu end=%lu jiffies=%lu",
 739                   rw == READ ? 'R' : 'W', tg->slice_start[rw],
 740                   tg->slice_end[rw], jiffies);
 741}
 742
 743/* Determine if previously allocated or extended slice is complete or not */
 744static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
 745{
 746        if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
 747                return false;
 748
 749        return 1;
 750}
 751
 752/* Trim the used slices and adjust slice start accordingly */
 753static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
 754{
 755        unsigned long nr_slices, time_elapsed, io_trim;
 756        u64 bytes_trim, tmp;
 757
 758        BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
 759
 760        /*
 761         * If bps are unlimited (-1), then time slice don't get
 762         * renewed. Don't try to trim the slice if slice is used. A new
 763         * slice will start when appropriate.
 764         */
 765        if (throtl_slice_used(tg, rw))
 766                return;
 767
 768        /*
 769         * A bio has been dispatched. Also adjust slice_end. It might happen
 770         * that initially cgroup limit was very low resulting in high
 771         * slice_end, but later limit was bumped up and bio was dispached
 772         * sooner, then we need to reduce slice_end. A high bogus slice_end
 773         * is bad because it does not allow new slice to start.
 774         */
 775
 776        throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
 777
 778        time_elapsed = jiffies - tg->slice_start[rw];
 779
 780        nr_slices = time_elapsed / throtl_slice;
 781
 782        if (!nr_slices)
 783                return;
 784        tmp = tg->bps[rw] * throtl_slice * nr_slices;
 785        do_div(tmp, HZ);
 786        bytes_trim = tmp;
 787
 788        io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
 789
 790        if (!bytes_trim && !io_trim)
 791                return;
 792
 793        if (tg->bytes_disp[rw] >= bytes_trim)
 794                tg->bytes_disp[rw] -= bytes_trim;
 795        else
 796                tg->bytes_disp[rw] = 0;
 797
 798        if (tg->io_disp[rw] >= io_trim)
 799                tg->io_disp[rw] -= io_trim;
 800        else
 801                tg->io_disp[rw] = 0;
 802
 803        tg->slice_start[rw] += nr_slices * throtl_slice;
 804
 805        throtl_log(&tg->service_queue,
 806                   "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
 807                   rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
 808                   tg->slice_start[rw], tg->slice_end[rw], jiffies);
 809}
 810
 811static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
 812                                  unsigned long *wait)
 813{
 814        bool rw = bio_data_dir(bio);
 815        unsigned int io_allowed;
 816        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 817        u64 tmp;
 818
 819        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 820
 821        /* Slice has just started. Consider one slice interval */
 822        if (!jiffy_elapsed)
 823                jiffy_elapsed_rnd = throtl_slice;
 824
 825        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 826
 827        /*
 828         * jiffy_elapsed_rnd should not be a big value as minimum iops can be
 829         * 1 then at max jiffy elapsed should be equivalent of 1 second as we
 830         * will allow dispatch after 1 second and after that slice should
 831         * have been trimmed.
 832         */
 833
 834        tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
 835        do_div(tmp, HZ);
 836
 837        if (tmp > UINT_MAX)
 838                io_allowed = UINT_MAX;
 839        else
 840                io_allowed = tmp;
 841
 842        if (tg->io_disp[rw] + 1 <= io_allowed) {
 843                if (wait)
 844                        *wait = 0;
 845                return true;
 846        }
 847
 848        /* Calc approx time to dispatch */
 849        jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
 850
 851        if (jiffy_wait > jiffy_elapsed)
 852                jiffy_wait = jiffy_wait - jiffy_elapsed;
 853        else
 854                jiffy_wait = 1;
 855
 856        if (wait)
 857                *wait = jiffy_wait;
 858        return 0;
 859}
 860
 861static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
 862                                 unsigned long *wait)
 863{
 864        bool rw = bio_data_dir(bio);
 865        u64 bytes_allowed, extra_bytes, tmp;
 866        unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
 867
 868        jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
 869
 870        /* Slice has just started. Consider one slice interval */
 871        if (!jiffy_elapsed)
 872                jiffy_elapsed_rnd = throtl_slice;
 873
 874        jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
 875
 876        tmp = tg->bps[rw] * jiffy_elapsed_rnd;
 877        do_div(tmp, HZ);
 878        bytes_allowed = tmp;
 879
 880        if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
 881                if (wait)
 882                        *wait = 0;
 883                return true;
 884        }
 885
 886        /* Calc approx time to dispatch */
 887        extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
 888        jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
 889
 890        if (!jiffy_wait)
 891                jiffy_wait = 1;
 892
 893        /*
 894         * This wait time is without taking into consideration the rounding
 895         * up we did. Add that time also.
 896         */
 897        jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
 898        if (wait)
 899                *wait = jiffy_wait;
 900        return 0;
 901}
 902
 903/*
 904 * Returns whether one can dispatch a bio or not. Also returns approx number
 905 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
 906 */
 907static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
 908                            unsigned long *wait)
 909{
 910        bool rw = bio_data_dir(bio);
 911        unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
 912
 913        /*
 914         * Currently whole state machine of group depends on first bio
 915         * queued in the group bio list. So one should not be calling
 916         * this function with a different bio if there are other bios
 917         * queued.
 918         */
 919        BUG_ON(tg->service_queue.nr_queued[rw] &&
 920               bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
 921
 922        /* If tg->bps = -1, then BW is unlimited */
 923        if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
 924                if (wait)
 925                        *wait = 0;
 926                return true;
 927        }
 928
 929        /*
 930         * If previous slice expired, start a new one otherwise renew/extend
 931         * existing slice to make sure it is at least throtl_slice interval
 932         * long since now.
 933         */
 934        if (throtl_slice_used(tg, rw))
 935                throtl_start_new_slice(tg, rw);
 936        else {
 937                if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
 938                        throtl_extend_slice(tg, rw, jiffies + throtl_slice);
 939        }
 940
 941        if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
 942            tg_with_in_iops_limit(tg, bio, &iops_wait)) {
 943                if (wait)
 944                        *wait = 0;
 945                return 1;
 946        }
 947
 948        max_wait = max(bps_wait, iops_wait);
 949
 950        if (wait)
 951                *wait = max_wait;
 952
 953        if (time_before(tg->slice_end[rw], jiffies + max_wait))
 954                throtl_extend_slice(tg, rw, jiffies + max_wait);
 955
 956        return 0;
 957}
 958
 959static void throtl_update_dispatch_stats(struct blkcg_gq *blkg, u64 bytes,
 960                                         int rw)
 961{
 962        struct throtl_grp *tg = blkg_to_tg(blkg);
 963        struct tg_stats_cpu *stats_cpu;
 964        unsigned long flags;
 965
 966        /* If per cpu stats are not allocated yet, don't do any accounting. */
 967        if (tg->stats_cpu == NULL)
 968                return;
 969
 970        /*
 971         * Disabling interrupts to provide mutual exclusion between two
 972         * writes on same cpu. It probably is not needed for 64bit. Not
 973         * optimizing that case yet.
 974         */
 975        local_irq_save(flags);
 976
 977        stats_cpu = this_cpu_ptr(tg->stats_cpu);
 978
 979        blkg_rwstat_add(&stats_cpu->serviced, rw, 1);
 980        blkg_rwstat_add(&stats_cpu->service_bytes, rw, bytes);
 981
 982        local_irq_restore(flags);
 983}
 984
 985static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
 986{
 987        bool rw = bio_data_dir(bio);
 988
 989        /* Charge the bio to the group */
 990        tg->bytes_disp[rw] += bio->bi_iter.bi_size;
 991        tg->io_disp[rw]++;
 992
 993        /*
 994         * REQ_THROTTLED is used to prevent the same bio to be throttled
 995         * more than once as a throttled bio will go through blk-throtl the
 996         * second time when it eventually gets issued.  Set it when a bio
 997         * is being charged to a tg.
 998         *
 999         * Dispatch stats aren't recursive and each @bio should only be
1000         * accounted by the @tg it was originally associated with.  Let's
1001         * update the stats when setting REQ_THROTTLED for the first time
1002         * which is guaranteed to be for the @bio's original tg.
1003         */
1004        if (!(bio->bi_rw & REQ_THROTTLED)) {
1005                bio->bi_rw |= REQ_THROTTLED;
1006                throtl_update_dispatch_stats(tg_to_blkg(tg),
1007                                             bio->bi_iter.bi_size, bio->bi_rw);
1008        }
1009}
1010
1011/**
1012 * throtl_add_bio_tg - add a bio to the specified throtl_grp
1013 * @bio: bio to add
1014 * @qn: qnode to use
1015 * @tg: the target throtl_grp
1016 *
1017 * Add @bio to @tg's service_queue using @qn.  If @qn is not specified,
1018 * tg->qnode_on_self[] is used.
1019 */
1020static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
1021                              struct throtl_grp *tg)
1022{
1023        struct throtl_service_queue *sq = &tg->service_queue;
1024        bool rw = bio_data_dir(bio);
1025
1026        if (!qn)
1027                qn = &tg->qnode_on_self[rw];
1028
1029        /*
1030         * If @tg doesn't currently have any bios queued in the same
1031         * direction, queueing @bio can change when @tg should be
1032         * dispatched.  Mark that @tg was empty.  This is automatically
1033         * cleaered on the next tg_update_disptime().
1034         */
1035        if (!sq->nr_queued[rw])
1036                tg->flags |= THROTL_TG_WAS_EMPTY;
1037
1038        throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
1039
1040        sq->nr_queued[rw]++;
1041        throtl_enqueue_tg(tg);
1042}
1043
1044static void tg_update_disptime(struct throtl_grp *tg)
1045{
1046        struct throtl_service_queue *sq = &tg->service_queue;
1047        unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
1048        struct bio *bio;
1049
1050        if ((bio = throtl_peek_queued(&sq->queued[READ])))
1051                tg_may_dispatch(tg, bio, &read_wait);
1052
1053        if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1054                tg_may_dispatch(tg, bio, &write_wait);
1055
1056        min_wait = min(read_wait, write_wait);
1057        disptime = jiffies + min_wait;
1058
1059        /* Update dispatch time */
1060        throtl_dequeue_tg(tg);
1061        tg->disptime = disptime;
1062        throtl_enqueue_tg(tg);
1063
1064        /* see throtl_add_bio_tg() */
1065        tg->flags &= ~THROTL_TG_WAS_EMPTY;
1066}
1067
1068static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
1069                                        struct throtl_grp *parent_tg, bool rw)
1070{
1071        if (throtl_slice_used(parent_tg, rw)) {
1072                throtl_start_new_slice_with_credit(parent_tg, rw,
1073                                child_tg->slice_start[rw]);
1074        }
1075
1076}
1077
1078static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
1079{
1080        struct throtl_service_queue *sq = &tg->service_queue;
1081        struct throtl_service_queue *parent_sq = sq->parent_sq;
1082        struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
1083        struct throtl_grp *tg_to_put = NULL;
1084        struct bio *bio;
1085
1086        /*
1087         * @bio is being transferred from @tg to @parent_sq.  Popping a bio
1088         * from @tg may put its reference and @parent_sq might end up
1089         * getting released prematurely.  Remember the tg to put and put it
1090         * after @bio is transferred to @parent_sq.
1091         */
1092        bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
1093        sq->nr_queued[rw]--;
1094
1095        throtl_charge_bio(tg, bio);
1096
1097        /*
1098         * If our parent is another tg, we just need to transfer @bio to
1099         * the parent using throtl_add_bio_tg().  If our parent is
1100         * @td->service_queue, @bio is ready to be issued.  Put it on its
1101         * bio_lists[] and decrease total number queued.  The caller is
1102         * responsible for issuing these bios.
1103         */
1104        if (parent_tg) {
1105                throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
1106                start_parent_slice_with_credit(tg, parent_tg, rw);
1107        } else {
1108                throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
1109                                     &parent_sq->queued[rw]);
1110                BUG_ON(tg->td->nr_queued[rw] <= 0);
1111                tg->td->nr_queued[rw]--;
1112        }
1113
1114        throtl_trim_slice(tg, rw);
1115
1116        if (tg_to_put)
1117                blkg_put(tg_to_blkg(tg_to_put));
1118}
1119
1120static int throtl_dispatch_tg(struct throtl_grp *tg)
1121{
1122        struct throtl_service_queue *sq = &tg->service_queue;
1123        unsigned int nr_reads = 0, nr_writes = 0;
1124        unsigned int max_nr_reads = throtl_grp_quantum*3/4;
1125        unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
1126        struct bio *bio;
1127
1128        /* Try to dispatch 75% READS and 25% WRITES */
1129
1130        while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
1131               tg_may_dispatch(tg, bio, NULL)) {
1132
1133                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1134                nr_reads++;
1135
1136                if (nr_reads >= max_nr_reads)
1137                        break;
1138        }
1139
1140        while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
1141               tg_may_dispatch(tg, bio, NULL)) {
1142
1143                tg_dispatch_one_bio(tg, bio_data_dir(bio));
1144                nr_writes++;
1145
1146                if (nr_writes >= max_nr_writes)
1147                        break;
1148        }
1149
1150        return nr_reads + nr_writes;
1151}
1152
1153static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
1154{
1155        unsigned int nr_disp = 0;
1156
1157        while (1) {
1158                struct throtl_grp *tg = throtl_rb_first(parent_sq);
1159                struct throtl_service_queue *sq = &tg->service_queue;
1160
1161                if (!tg)
1162                        break;
1163
1164                if (time_before(jiffies, tg->disptime))
1165                        break;
1166
1167                throtl_dequeue_tg(tg);
1168
1169                nr_disp += throtl_dispatch_tg(tg);
1170
1171                if (sq->nr_queued[0] || sq->nr_queued[1])
1172                        tg_update_disptime(tg);
1173
1174                if (nr_disp >= throtl_quantum)
1175                        break;
1176        }
1177
1178        return nr_disp;
1179}
1180
1181/**
1182 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1183 * @arg: the throtl_service_queue being serviced
1184 *
1185 * This timer is armed when a child throtl_grp with active bio's become
1186 * pending and queued on the service_queue's pending_tree and expires when
1187 * the first child throtl_grp should be dispatched.  This function
1188 * dispatches bio's from the children throtl_grps to the parent
1189 * service_queue.
1190 *
1191 * If the parent's parent is another throtl_grp, dispatching is propagated
1192 * by either arming its pending_timer or repeating dispatch directly.  If
1193 * the top-level service_tree is reached, throtl_data->dispatch_work is
1194 * kicked so that the ready bio's are issued.
1195 */
1196static void throtl_pending_timer_fn(unsigned long arg)
1197{
1198        struct throtl_service_queue *sq = (void *)arg;
1199        struct throtl_grp *tg = sq_to_tg(sq);
1200        struct throtl_data *td = sq_to_td(sq);
1201        struct request_queue *q = td->queue;
1202        struct throtl_service_queue *parent_sq;
1203        bool dispatched;
1204        int ret;
1205
1206        spin_lock_irq(q->queue_lock);
1207again:
1208        parent_sq = sq->parent_sq;
1209        dispatched = false;
1210
1211        while (true) {
1212                throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
1213                           sq->nr_queued[READ] + sq->nr_queued[WRITE],
1214                           sq->nr_queued[READ], sq->nr_queued[WRITE]);
1215
1216                ret = throtl_select_dispatch(sq);
1217                if (ret) {
1218                        throtl_log(sq, "bios disp=%u", ret);
1219                        dispatched = true;
1220                }
1221
1222                if (throtl_schedule_next_dispatch(sq, false))
1223                        break;
1224
1225                /* this dispatch windows is still open, relax and repeat */
1226                spin_unlock_irq(q->queue_lock);
1227                cpu_relax();
1228                spin_lock_irq(q->queue_lock);
1229        }
1230
1231        if (!dispatched)
1232                goto out_unlock;
1233
1234        if (parent_sq) {
1235                /* @parent_sq is another throl_grp, propagate dispatch */
1236                if (tg->flags & THROTL_TG_WAS_EMPTY) {
1237                        tg_update_disptime(tg);
1238                        if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1239                                /* window is already open, repeat dispatching */
1240                                sq = parent_sq;
1241                                tg = sq_to_tg(sq);
1242                                goto again;
1243                        }
1244                }
1245        } else {
1246                /* reached the top-level, queue issueing */
1247                queue_work(kthrotld_workqueue, &td->dispatch_work);
1248        }
1249out_unlock:
1250        spin_unlock_irq(q->queue_lock);
1251}
1252
1253/**
1254 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1255 * @work: work item being executed
1256 *
1257 * This function is queued for execution when bio's reach the bio_lists[]
1258 * of throtl_data->service_queue.  Those bio's are ready and issued by this
1259 * function.
1260 */
1261static void blk_throtl_dispatch_work_fn(struct work_struct *work)
1262{
1263        struct throtl_data *td = container_of(work, struct throtl_data,
1264                                              dispatch_work);
1265        struct throtl_service_queue *td_sq = &td->service_queue;
1266        struct request_queue *q = td->queue;
1267        struct bio_list bio_list_on_stack;
1268        struct bio *bio;
1269        struct blk_plug plug;
1270        int rw;
1271
1272        bio_list_init(&bio_list_on_stack);
1273
1274        spin_lock_irq(q->queue_lock);
1275        for (rw = READ; rw <= WRITE; rw++)
1276                while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1277                        bio_list_add(&bio_list_on_stack, bio);
1278        spin_unlock_irq(q->queue_lock);
1279
1280        if (!bio_list_empty(&bio_list_on_stack)) {
1281                blk_start_plug(&plug);
1282                while((bio = bio_list_pop(&bio_list_on_stack)))
1283                        generic_make_request(bio);
1284                blk_finish_plug(&plug);
1285        }
1286}
1287
1288static u64 tg_prfill_cpu_rwstat(struct seq_file *sf,
1289                                struct blkg_policy_data *pd, int off)
1290{
1291        struct throtl_grp *tg = pd_to_tg(pd);
1292        struct blkg_rwstat rwstat = { }, tmp;
1293        int i, cpu;
1294
1295        if (tg->stats_cpu == NULL)
1296                return 0;
1297
1298        for_each_possible_cpu(cpu) {
1299                struct tg_stats_cpu *sc = per_cpu_ptr(tg->stats_cpu, cpu);
1300
1301                tmp = blkg_rwstat_read((void *)sc + off);
1302                for (i = 0; i < BLKG_RWSTAT_NR; i++)
1303                        rwstat.cnt[i] += tmp.cnt[i];
1304        }
1305
1306        return __blkg_prfill_rwstat(sf, pd, &rwstat);
1307}
1308
1309static int tg_print_cpu_rwstat(struct seq_file *sf, void *v)
1310{
1311        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_cpu_rwstat,
1312                          &blkcg_policy_throtl, seq_cft(sf)->private, true);
1313        return 0;
1314}
1315
1316static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1317                              int off)
1318{
1319        struct throtl_grp *tg = pd_to_tg(pd);
1320        u64 v = *(u64 *)((void *)tg + off);
1321
1322        if (v == -1)
1323                return 0;
1324        return __blkg_prfill_u64(sf, pd, v);
1325}
1326
1327static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1328                               int off)
1329{
1330        struct throtl_grp *tg = pd_to_tg(pd);
1331        unsigned int v = *(unsigned int *)((void *)tg + off);
1332
1333        if (v == -1)
1334                return 0;
1335        return __blkg_prfill_u64(sf, pd, v);
1336}
1337
1338static int tg_print_conf_u64(struct seq_file *sf, void *v)
1339{
1340        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1341                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1342        return 0;
1343}
1344
1345static int tg_print_conf_uint(struct seq_file *sf, void *v)
1346{
1347        blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1348                          &blkcg_policy_throtl, seq_cft(sf)->private, false);
1349        return 0;
1350}
1351
1352static ssize_t tg_set_conf(struct kernfs_open_file *of,
1353                           char *buf, size_t nbytes, loff_t off, bool is_u64)
1354{
1355        struct blkcg *blkcg = css_to_blkcg(of_css(of));
1356        struct blkg_conf_ctx ctx;
1357        struct throtl_grp *tg;
1358        struct throtl_service_queue *sq;
1359        struct blkcg_gq *blkg;
1360        struct cgroup_subsys_state *pos_css;
1361        int ret;
1362
1363        ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1364        if (ret)
1365                return ret;
1366
1367        tg = blkg_to_tg(ctx.blkg);
1368        sq = &tg->service_queue;
1369
1370        if (!ctx.v)
1371                ctx.v = -1;
1372
1373        if (is_u64)
1374                *(u64 *)((void *)tg + of_cft(of)->private) = ctx.v;
1375        else
1376                *(unsigned int *)((void *)tg + of_cft(of)->private) = ctx.v;
1377
1378        throtl_log(&tg->service_queue,
1379                   "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1380                   tg->bps[READ], tg->bps[WRITE],
1381                   tg->iops[READ], tg->iops[WRITE]);
1382
1383        /*
1384         * Update has_rules[] flags for the updated tg's subtree.  A tg is
1385         * considered to have rules if either the tg itself or any of its
1386         * ancestors has rules.  This identifies groups without any
1387         * restrictions in the whole hierarchy and allows them to bypass
1388         * blk-throttle.
1389         */
1390        blkg_for_each_descendant_pre(blkg, pos_css, ctx.blkg)
1391                tg_update_has_rules(blkg_to_tg(blkg));
1392
1393        /*
1394         * We're already holding queue_lock and know @tg is valid.  Let's
1395         * apply the new config directly.
1396         *
1397         * Restart the slices for both READ and WRITES. It might happen
1398         * that a group's limit are dropped suddenly and we don't want to
1399         * account recently dispatched IO with new low rate.
1400         */
1401        throtl_start_new_slice(tg, 0);
1402        throtl_start_new_slice(tg, 1);
1403
1404        if (tg->flags & THROTL_TG_PENDING) {
1405                tg_update_disptime(tg);
1406                throtl_schedule_next_dispatch(sq->parent_sq, true);
1407        }
1408
1409        blkg_conf_finish(&ctx);
1410        return nbytes;
1411}
1412
1413static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1414                               char *buf, size_t nbytes, loff_t off)
1415{
1416        return tg_set_conf(of, buf, nbytes, off, true);
1417}
1418
1419static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1420                                char *buf, size_t nbytes, loff_t off)
1421{
1422        return tg_set_conf(of, buf, nbytes, off, false);
1423}
1424
1425static struct cftype throtl_files[] = {
1426        {
1427                .name = "throttle.read_bps_device",
1428                .private = offsetof(struct throtl_grp, bps[READ]),
1429                .seq_show = tg_print_conf_u64,
1430                .write = tg_set_conf_u64,
1431        },
1432        {
1433                .name = "throttle.write_bps_device",
1434                .private = offsetof(struct throtl_grp, bps[WRITE]),
1435                .seq_show = tg_print_conf_u64,
1436                .write = tg_set_conf_u64,
1437        },
1438        {
1439                .name = "throttle.read_iops_device",
1440                .private = offsetof(struct throtl_grp, iops[READ]),
1441                .seq_show = tg_print_conf_uint,
1442                .write = tg_set_conf_uint,
1443        },
1444        {
1445                .name = "throttle.write_iops_device",
1446                .private = offsetof(struct throtl_grp, iops[WRITE]),
1447                .seq_show = tg_print_conf_uint,
1448                .write = tg_set_conf_uint,
1449        },
1450        {
1451                .name = "throttle.io_service_bytes",
1452                .private = offsetof(struct tg_stats_cpu, service_bytes),
1453                .seq_show = tg_print_cpu_rwstat,
1454        },
1455        {
1456                .name = "throttle.io_serviced",
1457                .private = offsetof(struct tg_stats_cpu, serviced),
1458                .seq_show = tg_print_cpu_rwstat,
1459        },
1460        { }     /* terminate */
1461};
1462
1463static void throtl_shutdown_wq(struct request_queue *q)
1464{
1465        struct throtl_data *td = q->td;
1466
1467        cancel_work_sync(&td->dispatch_work);
1468}
1469
1470static struct blkcg_policy blkcg_policy_throtl = {
1471        .pd_size                = sizeof(struct throtl_grp),
1472        .cftypes                = throtl_files,
1473
1474        .pd_init_fn             = throtl_pd_init,
1475        .pd_online_fn           = throtl_pd_online,
1476        .pd_exit_fn             = throtl_pd_exit,
1477        .pd_reset_stats_fn      = throtl_pd_reset_stats,
1478};
1479
1480bool blk_throtl_bio(struct request_queue *q, struct bio *bio)
1481{
1482        struct throtl_data *td = q->td;
1483        struct throtl_qnode *qn = NULL;
1484        struct throtl_grp *tg;
1485        struct throtl_service_queue *sq;
1486        bool rw = bio_data_dir(bio);
1487        struct blkcg *blkcg;
1488        bool throttled = false;
1489
1490        /* see throtl_charge_bio() */
1491        if (bio->bi_rw & REQ_THROTTLED)
1492                goto out;
1493
1494        /*
1495         * A throtl_grp pointer retrieved under rcu can be used to access
1496         * basic fields like stats and io rates. If a group has no rules,
1497         * just update the dispatch stats in lockless manner and return.
1498         */
1499        rcu_read_lock();
1500        blkcg = bio_blkcg(bio);
1501        tg = throtl_lookup_tg(td, blkcg);
1502        if (tg) {
1503                if (!tg->has_rules[rw]) {
1504                        throtl_update_dispatch_stats(tg_to_blkg(tg),
1505                                        bio->bi_iter.bi_size, bio->bi_rw);
1506                        goto out_unlock_rcu;
1507                }
1508        }
1509
1510        /*
1511         * Either group has not been allocated yet or it is not an unlimited
1512         * IO group
1513         */
1514        spin_lock_irq(q->queue_lock);
1515        tg = throtl_lookup_create_tg(td, blkcg);
1516        if (unlikely(!tg))
1517                goto out_unlock;
1518
1519        sq = &tg->service_queue;
1520
1521        while (true) {
1522                /* throtl is FIFO - if bios are already queued, should queue */
1523                if (sq->nr_queued[rw])
1524                        break;
1525
1526                /* if above limits, break to queue */
1527                if (!tg_may_dispatch(tg, bio, NULL))
1528                        break;
1529
1530                /* within limits, let's charge and dispatch directly */
1531                throtl_charge_bio(tg, bio);
1532
1533                /*
1534                 * We need to trim slice even when bios are not being queued
1535                 * otherwise it might happen that a bio is not queued for
1536                 * a long time and slice keeps on extending and trim is not
1537                 * called for a long time. Now if limits are reduced suddenly
1538                 * we take into account all the IO dispatched so far at new
1539                 * low rate and * newly queued IO gets a really long dispatch
1540                 * time.
1541                 *
1542                 * So keep on trimming slice even if bio is not queued.
1543                 */
1544                throtl_trim_slice(tg, rw);
1545
1546                /*
1547                 * @bio passed through this layer without being throttled.
1548                 * Climb up the ladder.  If we''re already at the top, it
1549                 * can be executed directly.
1550                 */
1551                qn = &tg->qnode_on_parent[rw];
1552                sq = sq->parent_sq;
1553                tg = sq_to_tg(sq);
1554                if (!tg)
1555                        goto out_unlock;
1556        }
1557
1558        /* out-of-limit, queue to @tg */
1559        throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1560                   rw == READ ? 'R' : 'W',
1561                   tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
1562                   tg->io_disp[rw], tg->iops[rw],
1563                   sq->nr_queued[READ], sq->nr_queued[WRITE]);
1564
1565        bio_associate_current(bio);
1566        tg->td->nr_queued[rw]++;
1567        throtl_add_bio_tg(bio, qn, tg);
1568        throttled = true;
1569
1570        /*
1571         * Update @tg's dispatch time and force schedule dispatch if @tg
1572         * was empty before @bio.  The forced scheduling isn't likely to
1573         * cause undue delay as @bio is likely to be dispatched directly if
1574         * its @tg's disptime is not in the future.
1575         */
1576        if (tg->flags & THROTL_TG_WAS_EMPTY) {
1577                tg_update_disptime(tg);
1578                throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
1579        }
1580
1581out_unlock:
1582        spin_unlock_irq(q->queue_lock);
1583out_unlock_rcu:
1584        rcu_read_unlock();
1585out:
1586        /*
1587         * As multiple blk-throtls may stack in the same issue path, we
1588         * don't want bios to leave with the flag set.  Clear the flag if
1589         * being issued.
1590         */
1591        if (!throttled)
1592                bio->bi_rw &= ~REQ_THROTTLED;
1593        return throttled;
1594}
1595
1596/*
1597 * Dispatch all bios from all children tg's queued on @parent_sq.  On
1598 * return, @parent_sq is guaranteed to not have any active children tg's
1599 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1600 */
1601static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1602{
1603        struct throtl_grp *tg;
1604
1605        while ((tg = throtl_rb_first(parent_sq))) {
1606                struct throtl_service_queue *sq = &tg->service_queue;
1607                struct bio *bio;
1608
1609                throtl_dequeue_tg(tg);
1610
1611                while ((bio = throtl_peek_queued(&sq->queued[READ])))
1612                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
1613                while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
1614                        tg_dispatch_one_bio(tg, bio_data_dir(bio));
1615        }
1616}
1617
1618/**
1619 * blk_throtl_drain - drain throttled bios
1620 * @q: request_queue to drain throttled bios for
1621 *
1622 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1623 */
1624void blk_throtl_drain(struct request_queue *q)
1625        __releases(q->queue_lock) __acquires(q->queue_lock)
1626{
1627        struct throtl_data *td = q->td;
1628        struct blkcg_gq *blkg;
1629        struct cgroup_subsys_state *pos_css;
1630        struct bio *bio;
1631        int rw;
1632
1633        queue_lockdep_assert_held(q);
1634        rcu_read_lock();
1635
1636        /*
1637         * Drain each tg while doing post-order walk on the blkg tree, so
1638         * that all bios are propagated to td->service_queue.  It'd be
1639         * better to walk service_queue tree directly but blkg walk is
1640         * easier.
1641         */
1642        blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
1643                tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
1644
1645        /* finally, transfer bios from top-level tg's into the td */
1646        tg_drain_bios(&td->service_queue);
1647
1648        rcu_read_unlock();
1649        spin_unlock_irq(q->queue_lock);
1650
1651        /* all bios now should be in td->service_queue, issue them */
1652        for (rw = READ; rw <= WRITE; rw++)
1653                while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1654                                                NULL)))
1655                        generic_make_request(bio);
1656
1657        spin_lock_irq(q->queue_lock);
1658}
1659
1660int blk_throtl_init(struct request_queue *q)
1661{
1662        struct throtl_data *td;
1663        int ret;
1664
1665        td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1666        if (!td)
1667                return -ENOMEM;
1668
1669        INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
1670        throtl_service_queue_init(&td->service_queue, NULL);
1671
1672        q->td = td;
1673        td->queue = q;
1674
1675        /* activate policy */
1676        ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
1677        if (ret)
1678                kfree(td);
1679        return ret;
1680}
1681
1682void blk_throtl_exit(struct request_queue *q)
1683{
1684        BUG_ON(!q->td);
1685        throtl_shutdown_wq(q);
1686        blkcg_deactivate_policy(q, &blkcg_policy_throtl);
1687        kfree(q->td);
1688}
1689
1690static int __init throtl_init(void)
1691{
1692        kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1693        if (!kthrotld_workqueue)
1694                panic("Failed to create kthrotld\n");
1695
1696        return blkcg_policy_register(&blkcg_policy_throtl);
1697}
1698
1699module_init(throtl_init);
1700