linux/drivers/base/regmap/regmap.c
<<
>>
Prefs
   1/*
   2 * Register map access API
   3 *
   4 * Copyright 2011 Wolfson Microelectronics plc
   5 *
   6 * Author: Mark Brown <broonie@opensource.wolfsonmicro.com>
   7 *
   8 * This program is free software; you can redistribute it and/or modify
   9 * it under the terms of the GNU General Public License version 2 as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/device.h>
  14#include <linux/slab.h>
  15#include <linux/export.h>
  16#include <linux/mutex.h>
  17#include <linux/err.h>
  18#include <linux/of.h>
  19#include <linux/rbtree.h>
  20#include <linux/sched.h>
  21
  22#define CREATE_TRACE_POINTS
  23#include "trace.h"
  24
  25#include "internal.h"
  26
  27/*
  28 * Sometimes for failures during very early init the trace
  29 * infrastructure isn't available early enough to be used.  For this
  30 * sort of problem defining LOG_DEVICE will add printks for basic
  31 * register I/O on a specific device.
  32 */
  33#undef LOG_DEVICE
  34
  35static int _regmap_update_bits(struct regmap *map, unsigned int reg,
  36                               unsigned int mask, unsigned int val,
  37                               bool *change);
  38
  39static int _regmap_bus_reg_read(void *context, unsigned int reg,
  40                                unsigned int *val);
  41static int _regmap_bus_read(void *context, unsigned int reg,
  42                            unsigned int *val);
  43static int _regmap_bus_formatted_write(void *context, unsigned int reg,
  44                                       unsigned int val);
  45static int _regmap_bus_reg_write(void *context, unsigned int reg,
  46                                 unsigned int val);
  47static int _regmap_bus_raw_write(void *context, unsigned int reg,
  48                                 unsigned int val);
  49
  50bool regmap_reg_in_ranges(unsigned int reg,
  51                          const struct regmap_range *ranges,
  52                          unsigned int nranges)
  53{
  54        const struct regmap_range *r;
  55        int i;
  56
  57        for (i = 0, r = ranges; i < nranges; i++, r++)
  58                if (regmap_reg_in_range(reg, r))
  59                        return true;
  60        return false;
  61}
  62EXPORT_SYMBOL_GPL(regmap_reg_in_ranges);
  63
  64bool regmap_check_range_table(struct regmap *map, unsigned int reg,
  65                              const struct regmap_access_table *table)
  66{
  67        /* Check "no ranges" first */
  68        if (regmap_reg_in_ranges(reg, table->no_ranges, table->n_no_ranges))
  69                return false;
  70
  71        /* In case zero "yes ranges" are supplied, any reg is OK */
  72        if (!table->n_yes_ranges)
  73                return true;
  74
  75        return regmap_reg_in_ranges(reg, table->yes_ranges,
  76                                    table->n_yes_ranges);
  77}
  78EXPORT_SYMBOL_GPL(regmap_check_range_table);
  79
  80bool regmap_writeable(struct regmap *map, unsigned int reg)
  81{
  82        if (map->max_register && reg > map->max_register)
  83                return false;
  84
  85        if (map->writeable_reg)
  86                return map->writeable_reg(map->dev, reg);
  87
  88        if (map->wr_table)
  89                return regmap_check_range_table(map, reg, map->wr_table);
  90
  91        return true;
  92}
  93
  94bool regmap_readable(struct regmap *map, unsigned int reg)
  95{
  96        if (map->max_register && reg > map->max_register)
  97                return false;
  98
  99        if (map->format.format_write)
 100                return false;
 101
 102        if (map->readable_reg)
 103                return map->readable_reg(map->dev, reg);
 104
 105        if (map->rd_table)
 106                return regmap_check_range_table(map, reg, map->rd_table);
 107
 108        return true;
 109}
 110
 111bool regmap_volatile(struct regmap *map, unsigned int reg)
 112{
 113        if (!map->format.format_write && !regmap_readable(map, reg))
 114                return false;
 115
 116        if (map->volatile_reg)
 117                return map->volatile_reg(map->dev, reg);
 118
 119        if (map->volatile_table)
 120                return regmap_check_range_table(map, reg, map->volatile_table);
 121
 122        if (map->cache_ops)
 123                return false;
 124        else
 125                return true;
 126}
 127
 128bool regmap_precious(struct regmap *map, unsigned int reg)
 129{
 130        if (!regmap_readable(map, reg))
 131                return false;
 132
 133        if (map->precious_reg)
 134                return map->precious_reg(map->dev, reg);
 135
 136        if (map->precious_table)
 137                return regmap_check_range_table(map, reg, map->precious_table);
 138
 139        return false;
 140}
 141
 142static bool regmap_volatile_range(struct regmap *map, unsigned int reg,
 143        size_t num)
 144{
 145        unsigned int i;
 146
 147        for (i = 0; i < num; i++)
 148                if (!regmap_volatile(map, reg + i))
 149                        return false;
 150
 151        return true;
 152}
 153
 154static void regmap_format_2_6_write(struct regmap *map,
 155                                     unsigned int reg, unsigned int val)
 156{
 157        u8 *out = map->work_buf;
 158
 159        *out = (reg << 6) | val;
 160}
 161
 162static void regmap_format_4_12_write(struct regmap *map,
 163                                     unsigned int reg, unsigned int val)
 164{
 165        __be16 *out = map->work_buf;
 166        *out = cpu_to_be16((reg << 12) | val);
 167}
 168
 169static void regmap_format_7_9_write(struct regmap *map,
 170                                    unsigned int reg, unsigned int val)
 171{
 172        __be16 *out = map->work_buf;
 173        *out = cpu_to_be16((reg << 9) | val);
 174}
 175
 176static void regmap_format_10_14_write(struct regmap *map,
 177                                    unsigned int reg, unsigned int val)
 178{
 179        u8 *out = map->work_buf;
 180
 181        out[2] = val;
 182        out[1] = (val >> 8) | (reg << 6);
 183        out[0] = reg >> 2;
 184}
 185
 186static void regmap_format_8(void *buf, unsigned int val, unsigned int shift)
 187{
 188        u8 *b = buf;
 189
 190        b[0] = val << shift;
 191}
 192
 193static void regmap_format_16_be(void *buf, unsigned int val, unsigned int shift)
 194{
 195        __be16 *b = buf;
 196
 197        b[0] = cpu_to_be16(val << shift);
 198}
 199
 200static void regmap_format_16_le(void *buf, unsigned int val, unsigned int shift)
 201{
 202        __le16 *b = buf;
 203
 204        b[0] = cpu_to_le16(val << shift);
 205}
 206
 207static void regmap_format_16_native(void *buf, unsigned int val,
 208                                    unsigned int shift)
 209{
 210        *(u16 *)buf = val << shift;
 211}
 212
 213static void regmap_format_24(void *buf, unsigned int val, unsigned int shift)
 214{
 215        u8 *b = buf;
 216
 217        val <<= shift;
 218
 219        b[0] = val >> 16;
 220        b[1] = val >> 8;
 221        b[2] = val;
 222}
 223
 224static void regmap_format_32_be(void *buf, unsigned int val, unsigned int shift)
 225{
 226        __be32 *b = buf;
 227
 228        b[0] = cpu_to_be32(val << shift);
 229}
 230
 231static void regmap_format_32_le(void *buf, unsigned int val, unsigned int shift)
 232{
 233        __le32 *b = buf;
 234
 235        b[0] = cpu_to_le32(val << shift);
 236}
 237
 238static void regmap_format_32_native(void *buf, unsigned int val,
 239                                    unsigned int shift)
 240{
 241        *(u32 *)buf = val << shift;
 242}
 243
 244static void regmap_parse_inplace_noop(void *buf)
 245{
 246}
 247
 248static unsigned int regmap_parse_8(const void *buf)
 249{
 250        const u8 *b = buf;
 251
 252        return b[0];
 253}
 254
 255static unsigned int regmap_parse_16_be(const void *buf)
 256{
 257        const __be16 *b = buf;
 258
 259        return be16_to_cpu(b[0]);
 260}
 261
 262static unsigned int regmap_parse_16_le(const void *buf)
 263{
 264        const __le16 *b = buf;
 265
 266        return le16_to_cpu(b[0]);
 267}
 268
 269static void regmap_parse_16_be_inplace(void *buf)
 270{
 271        __be16 *b = buf;
 272
 273        b[0] = be16_to_cpu(b[0]);
 274}
 275
 276static void regmap_parse_16_le_inplace(void *buf)
 277{
 278        __le16 *b = buf;
 279
 280        b[0] = le16_to_cpu(b[0]);
 281}
 282
 283static unsigned int regmap_parse_16_native(const void *buf)
 284{
 285        return *(u16 *)buf;
 286}
 287
 288static unsigned int regmap_parse_24(const void *buf)
 289{
 290        const u8 *b = buf;
 291        unsigned int ret = b[2];
 292        ret |= ((unsigned int)b[1]) << 8;
 293        ret |= ((unsigned int)b[0]) << 16;
 294
 295        return ret;
 296}
 297
 298static unsigned int regmap_parse_32_be(const void *buf)
 299{
 300        const __be32 *b = buf;
 301
 302        return be32_to_cpu(b[0]);
 303}
 304
 305static unsigned int regmap_parse_32_le(const void *buf)
 306{
 307        const __le32 *b = buf;
 308
 309        return le32_to_cpu(b[0]);
 310}
 311
 312static void regmap_parse_32_be_inplace(void *buf)
 313{
 314        __be32 *b = buf;
 315
 316        b[0] = be32_to_cpu(b[0]);
 317}
 318
 319static void regmap_parse_32_le_inplace(void *buf)
 320{
 321        __le32 *b = buf;
 322
 323        b[0] = le32_to_cpu(b[0]);
 324}
 325
 326static unsigned int regmap_parse_32_native(const void *buf)
 327{
 328        return *(u32 *)buf;
 329}
 330
 331static void regmap_lock_mutex(void *__map)
 332{
 333        struct regmap *map = __map;
 334        mutex_lock(&map->mutex);
 335}
 336
 337static void regmap_unlock_mutex(void *__map)
 338{
 339        struct regmap *map = __map;
 340        mutex_unlock(&map->mutex);
 341}
 342
 343static void regmap_lock_spinlock(void *__map)
 344__acquires(&map->spinlock)
 345{
 346        struct regmap *map = __map;
 347        unsigned long flags;
 348
 349        spin_lock_irqsave(&map->spinlock, flags);
 350        map->spinlock_flags = flags;
 351}
 352
 353static void regmap_unlock_spinlock(void *__map)
 354__releases(&map->spinlock)
 355{
 356        struct regmap *map = __map;
 357        spin_unlock_irqrestore(&map->spinlock, map->spinlock_flags);
 358}
 359
 360static void dev_get_regmap_release(struct device *dev, void *res)
 361{
 362        /*
 363         * We don't actually have anything to do here; the goal here
 364         * is not to manage the regmap but to provide a simple way to
 365         * get the regmap back given a struct device.
 366         */
 367}
 368
 369static bool _regmap_range_add(struct regmap *map,
 370                              struct regmap_range_node *data)
 371{
 372        struct rb_root *root = &map->range_tree;
 373        struct rb_node **new = &(root->rb_node), *parent = NULL;
 374
 375        while (*new) {
 376                struct regmap_range_node *this =
 377                        container_of(*new, struct regmap_range_node, node);
 378
 379                parent = *new;
 380                if (data->range_max < this->range_min)
 381                        new = &((*new)->rb_left);
 382                else if (data->range_min > this->range_max)
 383                        new = &((*new)->rb_right);
 384                else
 385                        return false;
 386        }
 387
 388        rb_link_node(&data->node, parent, new);
 389        rb_insert_color(&data->node, root);
 390
 391        return true;
 392}
 393
 394static struct regmap_range_node *_regmap_range_lookup(struct regmap *map,
 395                                                      unsigned int reg)
 396{
 397        struct rb_node *node = map->range_tree.rb_node;
 398
 399        while (node) {
 400                struct regmap_range_node *this =
 401                        container_of(node, struct regmap_range_node, node);
 402
 403                if (reg < this->range_min)
 404                        node = node->rb_left;
 405                else if (reg > this->range_max)
 406                        node = node->rb_right;
 407                else
 408                        return this;
 409        }
 410
 411        return NULL;
 412}
 413
 414static void regmap_range_exit(struct regmap *map)
 415{
 416        struct rb_node *next;
 417        struct regmap_range_node *range_node;
 418
 419        next = rb_first(&map->range_tree);
 420        while (next) {
 421                range_node = rb_entry(next, struct regmap_range_node, node);
 422                next = rb_next(&range_node->node);
 423                rb_erase(&range_node->node, &map->range_tree);
 424                kfree(range_node);
 425        }
 426
 427        kfree(map->selector_work_buf);
 428}
 429
 430int regmap_attach_dev(struct device *dev, struct regmap *map,
 431                      const struct regmap_config *config)
 432{
 433        struct regmap **m;
 434
 435        map->dev = dev;
 436
 437        regmap_debugfs_init(map, config->name);
 438
 439        /* Add a devres resource for dev_get_regmap() */
 440        m = devres_alloc(dev_get_regmap_release, sizeof(*m), GFP_KERNEL);
 441        if (!m) {
 442                regmap_debugfs_exit(map);
 443                return -ENOMEM;
 444        }
 445        *m = map;
 446        devres_add(dev, m);
 447
 448        return 0;
 449}
 450EXPORT_SYMBOL_GPL(regmap_attach_dev);
 451
 452static enum regmap_endian regmap_get_reg_endian(const struct regmap_bus *bus,
 453                                        const struct regmap_config *config)
 454{
 455        enum regmap_endian endian;
 456
 457        /* Retrieve the endianness specification from the regmap config */
 458        endian = config->reg_format_endian;
 459
 460        /* If the regmap config specified a non-default value, use that */
 461        if (endian != REGMAP_ENDIAN_DEFAULT)
 462                return endian;
 463
 464        /* Retrieve the endianness specification from the bus config */
 465        if (bus && bus->reg_format_endian_default)
 466                endian = bus->reg_format_endian_default;
 467
 468        /* If the bus specified a non-default value, use that */
 469        if (endian != REGMAP_ENDIAN_DEFAULT)
 470                return endian;
 471
 472        /* Use this if no other value was found */
 473        return REGMAP_ENDIAN_BIG;
 474}
 475
 476enum regmap_endian regmap_get_val_endian(struct device *dev,
 477                                         const struct regmap_bus *bus,
 478                                         const struct regmap_config *config)
 479{
 480        struct device_node *np;
 481        enum regmap_endian endian;
 482
 483        /* Retrieve the endianness specification from the regmap config */
 484        endian = config->val_format_endian;
 485
 486        /* If the regmap config specified a non-default value, use that */
 487        if (endian != REGMAP_ENDIAN_DEFAULT)
 488                return endian;
 489
 490        /* If the dev and dev->of_node exist try to get endianness from DT */
 491        if (dev && dev->of_node) {
 492                np = dev->of_node;
 493
 494                /* Parse the device's DT node for an endianness specification */
 495                if (of_property_read_bool(np, "big-endian"))
 496                        endian = REGMAP_ENDIAN_BIG;
 497                else if (of_property_read_bool(np, "little-endian"))
 498                        endian = REGMAP_ENDIAN_LITTLE;
 499
 500                /* If the endianness was specified in DT, use that */
 501                if (endian != REGMAP_ENDIAN_DEFAULT)
 502                        return endian;
 503        }
 504
 505        /* Retrieve the endianness specification from the bus config */
 506        if (bus && bus->val_format_endian_default)
 507                endian = bus->val_format_endian_default;
 508
 509        /* If the bus specified a non-default value, use that */
 510        if (endian != REGMAP_ENDIAN_DEFAULT)
 511                return endian;
 512
 513        /* Use this if no other value was found */
 514        return REGMAP_ENDIAN_BIG;
 515}
 516EXPORT_SYMBOL_GPL(regmap_get_val_endian);
 517
 518/**
 519 * regmap_init(): Initialise register map
 520 *
 521 * @dev: Device that will be interacted with
 522 * @bus: Bus-specific callbacks to use with device
 523 * @bus_context: Data passed to bus-specific callbacks
 524 * @config: Configuration for register map
 525 *
 526 * The return value will be an ERR_PTR() on error or a valid pointer to
 527 * a struct regmap.  This function should generally not be called
 528 * directly, it should be called by bus-specific init functions.
 529 */
 530struct regmap *regmap_init(struct device *dev,
 531                           const struct regmap_bus *bus,
 532                           void *bus_context,
 533                           const struct regmap_config *config)
 534{
 535        struct regmap *map;
 536        int ret = -EINVAL;
 537        enum regmap_endian reg_endian, val_endian;
 538        int i, j;
 539
 540        if (!config)
 541                goto err;
 542
 543        map = kzalloc(sizeof(*map), GFP_KERNEL);
 544        if (map == NULL) {
 545                ret = -ENOMEM;
 546                goto err;
 547        }
 548
 549        if (config->lock && config->unlock) {
 550                map->lock = config->lock;
 551                map->unlock = config->unlock;
 552                map->lock_arg = config->lock_arg;
 553        } else {
 554                if ((bus && bus->fast_io) ||
 555                    config->fast_io) {
 556                        spin_lock_init(&map->spinlock);
 557                        map->lock = regmap_lock_spinlock;
 558                        map->unlock = regmap_unlock_spinlock;
 559                } else {
 560                        mutex_init(&map->mutex);
 561                        map->lock = regmap_lock_mutex;
 562                        map->unlock = regmap_unlock_mutex;
 563                }
 564                map->lock_arg = map;
 565        }
 566        map->format.reg_bytes = DIV_ROUND_UP(config->reg_bits, 8);
 567        map->format.pad_bytes = config->pad_bits / 8;
 568        map->format.val_bytes = DIV_ROUND_UP(config->val_bits, 8);
 569        map->format.buf_size = DIV_ROUND_UP(config->reg_bits +
 570                        config->val_bits + config->pad_bits, 8);
 571        map->reg_shift = config->pad_bits % 8;
 572        if (config->reg_stride)
 573                map->reg_stride = config->reg_stride;
 574        else
 575                map->reg_stride = 1;
 576        map->use_single_rw = config->use_single_rw;
 577        map->can_multi_write = config->can_multi_write;
 578        map->dev = dev;
 579        map->bus = bus;
 580        map->bus_context = bus_context;
 581        map->max_register = config->max_register;
 582        map->wr_table = config->wr_table;
 583        map->rd_table = config->rd_table;
 584        map->volatile_table = config->volatile_table;
 585        map->precious_table = config->precious_table;
 586        map->writeable_reg = config->writeable_reg;
 587        map->readable_reg = config->readable_reg;
 588        map->volatile_reg = config->volatile_reg;
 589        map->precious_reg = config->precious_reg;
 590        map->cache_type = config->cache_type;
 591        map->name = config->name;
 592
 593        spin_lock_init(&map->async_lock);
 594        INIT_LIST_HEAD(&map->async_list);
 595        INIT_LIST_HEAD(&map->async_free);
 596        init_waitqueue_head(&map->async_waitq);
 597
 598        if (config->read_flag_mask || config->write_flag_mask) {
 599                map->read_flag_mask = config->read_flag_mask;
 600                map->write_flag_mask = config->write_flag_mask;
 601        } else if (bus) {
 602                map->read_flag_mask = bus->read_flag_mask;
 603        }
 604
 605        if (!bus) {
 606                map->reg_read  = config->reg_read;
 607                map->reg_write = config->reg_write;
 608
 609                map->defer_caching = false;
 610                goto skip_format_initialization;
 611        } else if (!bus->read || !bus->write) {
 612                map->reg_read = _regmap_bus_reg_read;
 613                map->reg_write = _regmap_bus_reg_write;
 614
 615                map->defer_caching = false;
 616                goto skip_format_initialization;
 617        } else {
 618                map->reg_read  = _regmap_bus_read;
 619        }
 620
 621        reg_endian = regmap_get_reg_endian(bus, config);
 622        val_endian = regmap_get_val_endian(dev, bus, config);
 623
 624        switch (config->reg_bits + map->reg_shift) {
 625        case 2:
 626                switch (config->val_bits) {
 627                case 6:
 628                        map->format.format_write = regmap_format_2_6_write;
 629                        break;
 630                default:
 631                        goto err_map;
 632                }
 633                break;
 634
 635        case 4:
 636                switch (config->val_bits) {
 637                case 12:
 638                        map->format.format_write = regmap_format_4_12_write;
 639                        break;
 640                default:
 641                        goto err_map;
 642                }
 643                break;
 644
 645        case 7:
 646                switch (config->val_bits) {
 647                case 9:
 648                        map->format.format_write = regmap_format_7_9_write;
 649                        break;
 650                default:
 651                        goto err_map;
 652                }
 653                break;
 654
 655        case 10:
 656                switch (config->val_bits) {
 657                case 14:
 658                        map->format.format_write = regmap_format_10_14_write;
 659                        break;
 660                default:
 661                        goto err_map;
 662                }
 663                break;
 664
 665        case 8:
 666                map->format.format_reg = regmap_format_8;
 667                break;
 668
 669        case 16:
 670                switch (reg_endian) {
 671                case REGMAP_ENDIAN_BIG:
 672                        map->format.format_reg = regmap_format_16_be;
 673                        break;
 674                case REGMAP_ENDIAN_NATIVE:
 675                        map->format.format_reg = regmap_format_16_native;
 676                        break;
 677                default:
 678                        goto err_map;
 679                }
 680                break;
 681
 682        case 24:
 683                if (reg_endian != REGMAP_ENDIAN_BIG)
 684                        goto err_map;
 685                map->format.format_reg = regmap_format_24;
 686                break;
 687
 688        case 32:
 689                switch (reg_endian) {
 690                case REGMAP_ENDIAN_BIG:
 691                        map->format.format_reg = regmap_format_32_be;
 692                        break;
 693                case REGMAP_ENDIAN_NATIVE:
 694                        map->format.format_reg = regmap_format_32_native;
 695                        break;
 696                default:
 697                        goto err_map;
 698                }
 699                break;
 700
 701        default:
 702                goto err_map;
 703        }
 704
 705        if (val_endian == REGMAP_ENDIAN_NATIVE)
 706                map->format.parse_inplace = regmap_parse_inplace_noop;
 707
 708        switch (config->val_bits) {
 709        case 8:
 710                map->format.format_val = regmap_format_8;
 711                map->format.parse_val = regmap_parse_8;
 712                map->format.parse_inplace = regmap_parse_inplace_noop;
 713                break;
 714        case 16:
 715                switch (val_endian) {
 716                case REGMAP_ENDIAN_BIG:
 717                        map->format.format_val = regmap_format_16_be;
 718                        map->format.parse_val = regmap_parse_16_be;
 719                        map->format.parse_inplace = regmap_parse_16_be_inplace;
 720                        break;
 721                case REGMAP_ENDIAN_LITTLE:
 722                        map->format.format_val = regmap_format_16_le;
 723                        map->format.parse_val = regmap_parse_16_le;
 724                        map->format.parse_inplace = regmap_parse_16_le_inplace;
 725                        break;
 726                case REGMAP_ENDIAN_NATIVE:
 727                        map->format.format_val = regmap_format_16_native;
 728                        map->format.parse_val = regmap_parse_16_native;
 729                        break;
 730                default:
 731                        goto err_map;
 732                }
 733                break;
 734        case 24:
 735                if (val_endian != REGMAP_ENDIAN_BIG)
 736                        goto err_map;
 737                map->format.format_val = regmap_format_24;
 738                map->format.parse_val = regmap_parse_24;
 739                break;
 740        case 32:
 741                switch (val_endian) {
 742                case REGMAP_ENDIAN_BIG:
 743                        map->format.format_val = regmap_format_32_be;
 744                        map->format.parse_val = regmap_parse_32_be;
 745                        map->format.parse_inplace = regmap_parse_32_be_inplace;
 746                        break;
 747                case REGMAP_ENDIAN_LITTLE:
 748                        map->format.format_val = regmap_format_32_le;
 749                        map->format.parse_val = regmap_parse_32_le;
 750                        map->format.parse_inplace = regmap_parse_32_le_inplace;
 751                        break;
 752                case REGMAP_ENDIAN_NATIVE:
 753                        map->format.format_val = regmap_format_32_native;
 754                        map->format.parse_val = regmap_parse_32_native;
 755                        break;
 756                default:
 757                        goto err_map;
 758                }
 759                break;
 760        }
 761
 762        if (map->format.format_write) {
 763                if ((reg_endian != REGMAP_ENDIAN_BIG) ||
 764                    (val_endian != REGMAP_ENDIAN_BIG))
 765                        goto err_map;
 766                map->use_single_rw = true;
 767        }
 768
 769        if (!map->format.format_write &&
 770            !(map->format.format_reg && map->format.format_val))
 771                goto err_map;
 772
 773        map->work_buf = kzalloc(map->format.buf_size, GFP_KERNEL);
 774        if (map->work_buf == NULL) {
 775                ret = -ENOMEM;
 776                goto err_map;
 777        }
 778
 779        if (map->format.format_write) {
 780                map->defer_caching = false;
 781                map->reg_write = _regmap_bus_formatted_write;
 782        } else if (map->format.format_val) {
 783                map->defer_caching = true;
 784                map->reg_write = _regmap_bus_raw_write;
 785        }
 786
 787skip_format_initialization:
 788
 789        map->range_tree = RB_ROOT;
 790        for (i = 0; i < config->num_ranges; i++) {
 791                const struct regmap_range_cfg *range_cfg = &config->ranges[i];
 792                struct regmap_range_node *new;
 793
 794                /* Sanity check */
 795                if (range_cfg->range_max < range_cfg->range_min) {
 796                        dev_err(map->dev, "Invalid range %d: %d < %d\n", i,
 797                                range_cfg->range_max, range_cfg->range_min);
 798                        goto err_range;
 799                }
 800
 801                if (range_cfg->range_max > map->max_register) {
 802                        dev_err(map->dev, "Invalid range %d: %d > %d\n", i,
 803                                range_cfg->range_max, map->max_register);
 804                        goto err_range;
 805                }
 806
 807                if (range_cfg->selector_reg > map->max_register) {
 808                        dev_err(map->dev,
 809                                "Invalid range %d: selector out of map\n", i);
 810                        goto err_range;
 811                }
 812
 813                if (range_cfg->window_len == 0) {
 814                        dev_err(map->dev, "Invalid range %d: window_len 0\n",
 815                                i);
 816                        goto err_range;
 817                }
 818
 819                /* Make sure, that this register range has no selector
 820                   or data window within its boundary */
 821                for (j = 0; j < config->num_ranges; j++) {
 822                        unsigned sel_reg = config->ranges[j].selector_reg;
 823                        unsigned win_min = config->ranges[j].window_start;
 824                        unsigned win_max = win_min +
 825                                           config->ranges[j].window_len - 1;
 826
 827                        /* Allow data window inside its own virtual range */
 828                        if (j == i)
 829                                continue;
 830
 831                        if (range_cfg->range_min <= sel_reg &&
 832                            sel_reg <= range_cfg->range_max) {
 833                                dev_err(map->dev,
 834                                        "Range %d: selector for %d in window\n",
 835                                        i, j);
 836                                goto err_range;
 837                        }
 838
 839                        if (!(win_max < range_cfg->range_min ||
 840                              win_min > range_cfg->range_max)) {
 841                                dev_err(map->dev,
 842                                        "Range %d: window for %d in window\n",
 843                                        i, j);
 844                                goto err_range;
 845                        }
 846                }
 847
 848                new = kzalloc(sizeof(*new), GFP_KERNEL);
 849                if (new == NULL) {
 850                        ret = -ENOMEM;
 851                        goto err_range;
 852                }
 853
 854                new->map = map;
 855                new->name = range_cfg->name;
 856                new->range_min = range_cfg->range_min;
 857                new->range_max = range_cfg->range_max;
 858                new->selector_reg = range_cfg->selector_reg;
 859                new->selector_mask = range_cfg->selector_mask;
 860                new->selector_shift = range_cfg->selector_shift;
 861                new->window_start = range_cfg->window_start;
 862                new->window_len = range_cfg->window_len;
 863
 864                if (!_regmap_range_add(map, new)) {
 865                        dev_err(map->dev, "Failed to add range %d\n", i);
 866                        kfree(new);
 867                        goto err_range;
 868                }
 869
 870                if (map->selector_work_buf == NULL) {
 871                        map->selector_work_buf =
 872                                kzalloc(map->format.buf_size, GFP_KERNEL);
 873                        if (map->selector_work_buf == NULL) {
 874                                ret = -ENOMEM;
 875                                goto err_range;
 876                        }
 877                }
 878        }
 879
 880        ret = regcache_init(map, config);
 881        if (ret != 0)
 882                goto err_range;
 883
 884        if (dev) {
 885                ret = regmap_attach_dev(dev, map, config);
 886                if (ret != 0)
 887                        goto err_regcache;
 888        }
 889
 890        return map;
 891
 892err_regcache:
 893        regcache_exit(map);
 894err_range:
 895        regmap_range_exit(map);
 896        kfree(map->work_buf);
 897err_map:
 898        kfree(map);
 899err:
 900        return ERR_PTR(ret);
 901}
 902EXPORT_SYMBOL_GPL(regmap_init);
 903
 904static void devm_regmap_release(struct device *dev, void *res)
 905{
 906        regmap_exit(*(struct regmap **)res);
 907}
 908
 909/**
 910 * devm_regmap_init(): Initialise managed register map
 911 *
 912 * @dev: Device that will be interacted with
 913 * @bus: Bus-specific callbacks to use with device
 914 * @bus_context: Data passed to bus-specific callbacks
 915 * @config: Configuration for register map
 916 *
 917 * The return value will be an ERR_PTR() on error or a valid pointer
 918 * to a struct regmap.  This function should generally not be called
 919 * directly, it should be called by bus-specific init functions.  The
 920 * map will be automatically freed by the device management code.
 921 */
 922struct regmap *devm_regmap_init(struct device *dev,
 923                                const struct regmap_bus *bus,
 924                                void *bus_context,
 925                                const struct regmap_config *config)
 926{
 927        struct regmap **ptr, *regmap;
 928
 929        ptr = devres_alloc(devm_regmap_release, sizeof(*ptr), GFP_KERNEL);
 930        if (!ptr)
 931                return ERR_PTR(-ENOMEM);
 932
 933        regmap = regmap_init(dev, bus, bus_context, config);
 934        if (!IS_ERR(regmap)) {
 935                *ptr = regmap;
 936                devres_add(dev, ptr);
 937        } else {
 938                devres_free(ptr);
 939        }
 940
 941        return regmap;
 942}
 943EXPORT_SYMBOL_GPL(devm_regmap_init);
 944
 945static void regmap_field_init(struct regmap_field *rm_field,
 946        struct regmap *regmap, struct reg_field reg_field)
 947{
 948        rm_field->regmap = regmap;
 949        rm_field->reg = reg_field.reg;
 950        rm_field->shift = reg_field.lsb;
 951        rm_field->mask = GENMASK(reg_field.msb, reg_field.lsb);
 952        rm_field->id_size = reg_field.id_size;
 953        rm_field->id_offset = reg_field.id_offset;
 954}
 955
 956/**
 957 * devm_regmap_field_alloc(): Allocate and initialise a register field
 958 * in a register map.
 959 *
 960 * @dev: Device that will be interacted with
 961 * @regmap: regmap bank in which this register field is located.
 962 * @reg_field: Register field with in the bank.
 963 *
 964 * The return value will be an ERR_PTR() on error or a valid pointer
 965 * to a struct regmap_field. The regmap_field will be automatically freed
 966 * by the device management code.
 967 */
 968struct regmap_field *devm_regmap_field_alloc(struct device *dev,
 969                struct regmap *regmap, struct reg_field reg_field)
 970{
 971        struct regmap_field *rm_field = devm_kzalloc(dev,
 972                                        sizeof(*rm_field), GFP_KERNEL);
 973        if (!rm_field)
 974                return ERR_PTR(-ENOMEM);
 975
 976        regmap_field_init(rm_field, regmap, reg_field);
 977
 978        return rm_field;
 979
 980}
 981EXPORT_SYMBOL_GPL(devm_regmap_field_alloc);
 982
 983/**
 984 * devm_regmap_field_free(): Free register field allocated using
 985 * devm_regmap_field_alloc. Usally drivers need not call this function,
 986 * as the memory allocated via devm will be freed as per device-driver
 987 * life-cyle.
 988 *
 989 * @dev: Device that will be interacted with
 990 * @field: regmap field which should be freed.
 991 */
 992void devm_regmap_field_free(struct device *dev,
 993        struct regmap_field *field)
 994{
 995        devm_kfree(dev, field);
 996}
 997EXPORT_SYMBOL_GPL(devm_regmap_field_free);
 998
 999/**
1000 * regmap_field_alloc(): Allocate and initialise a register field
1001 * in a register map.
1002 *
1003 * @regmap: regmap bank in which this register field is located.
1004 * @reg_field: Register field with in the bank.
1005 *
1006 * The return value will be an ERR_PTR() on error or a valid pointer
1007 * to a struct regmap_field. The regmap_field should be freed by the
1008 * user once its finished working with it using regmap_field_free().
1009 */
1010struct regmap_field *regmap_field_alloc(struct regmap *regmap,
1011                struct reg_field reg_field)
1012{
1013        struct regmap_field *rm_field = kzalloc(sizeof(*rm_field), GFP_KERNEL);
1014
1015        if (!rm_field)
1016                return ERR_PTR(-ENOMEM);
1017
1018        regmap_field_init(rm_field, regmap, reg_field);
1019
1020        return rm_field;
1021}
1022EXPORT_SYMBOL_GPL(regmap_field_alloc);
1023
1024/**
1025 * regmap_field_free(): Free register field allocated using regmap_field_alloc
1026 *
1027 * @field: regmap field which should be freed.
1028 */
1029void regmap_field_free(struct regmap_field *field)
1030{
1031        kfree(field);
1032}
1033EXPORT_SYMBOL_GPL(regmap_field_free);
1034
1035/**
1036 * regmap_reinit_cache(): Reinitialise the current register cache
1037 *
1038 * @map: Register map to operate on.
1039 * @config: New configuration.  Only the cache data will be used.
1040 *
1041 * Discard any existing register cache for the map and initialize a
1042 * new cache.  This can be used to restore the cache to defaults or to
1043 * update the cache configuration to reflect runtime discovery of the
1044 * hardware.
1045 *
1046 * No explicit locking is done here, the user needs to ensure that
1047 * this function will not race with other calls to regmap.
1048 */
1049int regmap_reinit_cache(struct regmap *map, const struct regmap_config *config)
1050{
1051        regcache_exit(map);
1052        regmap_debugfs_exit(map);
1053
1054        map->max_register = config->max_register;
1055        map->writeable_reg = config->writeable_reg;
1056        map->readable_reg = config->readable_reg;
1057        map->volatile_reg = config->volatile_reg;
1058        map->precious_reg = config->precious_reg;
1059        map->cache_type = config->cache_type;
1060
1061        regmap_debugfs_init(map, config->name);
1062
1063        map->cache_bypass = false;
1064        map->cache_only = false;
1065
1066        return regcache_init(map, config);
1067}
1068EXPORT_SYMBOL_GPL(regmap_reinit_cache);
1069
1070/**
1071 * regmap_exit(): Free a previously allocated register map
1072 */
1073void regmap_exit(struct regmap *map)
1074{
1075        struct regmap_async *async;
1076
1077        regcache_exit(map);
1078        regmap_debugfs_exit(map);
1079        regmap_range_exit(map);
1080        if (map->bus && map->bus->free_context)
1081                map->bus->free_context(map->bus_context);
1082        kfree(map->work_buf);
1083        while (!list_empty(&map->async_free)) {
1084                async = list_first_entry_or_null(&map->async_free,
1085                                                 struct regmap_async,
1086                                                 list);
1087                list_del(&async->list);
1088                kfree(async->work_buf);
1089                kfree(async);
1090        }
1091        kfree(map);
1092}
1093EXPORT_SYMBOL_GPL(regmap_exit);
1094
1095static int dev_get_regmap_match(struct device *dev, void *res, void *data)
1096{
1097        struct regmap **r = res;
1098        if (!r || !*r) {
1099                WARN_ON(!r || !*r);
1100                return 0;
1101        }
1102
1103        /* If the user didn't specify a name match any */
1104        if (data)
1105                return (*r)->name == data;
1106        else
1107                return 1;
1108}
1109
1110/**
1111 * dev_get_regmap(): Obtain the regmap (if any) for a device
1112 *
1113 * @dev: Device to retrieve the map for
1114 * @name: Optional name for the register map, usually NULL.
1115 *
1116 * Returns the regmap for the device if one is present, or NULL.  If
1117 * name is specified then it must match the name specified when
1118 * registering the device, if it is NULL then the first regmap found
1119 * will be used.  Devices with multiple register maps are very rare,
1120 * generic code should normally not need to specify a name.
1121 */
1122struct regmap *dev_get_regmap(struct device *dev, const char *name)
1123{
1124        struct regmap **r = devres_find(dev, dev_get_regmap_release,
1125                                        dev_get_regmap_match, (void *)name);
1126
1127        if (!r)
1128                return NULL;
1129        return *r;
1130}
1131EXPORT_SYMBOL_GPL(dev_get_regmap);
1132
1133/**
1134 * regmap_get_device(): Obtain the device from a regmap
1135 *
1136 * @map: Register map to operate on.
1137 *
1138 * Returns the underlying device that the regmap has been created for.
1139 */
1140struct device *regmap_get_device(struct regmap *map)
1141{
1142        return map->dev;
1143}
1144EXPORT_SYMBOL_GPL(regmap_get_device);
1145
1146static int _regmap_select_page(struct regmap *map, unsigned int *reg,
1147                               struct regmap_range_node *range,
1148                               unsigned int val_num)
1149{
1150        void *orig_work_buf;
1151        unsigned int win_offset;
1152        unsigned int win_page;
1153        bool page_chg;
1154        int ret;
1155
1156        win_offset = (*reg - range->range_min) % range->window_len;
1157        win_page = (*reg - range->range_min) / range->window_len;
1158
1159        if (val_num > 1) {
1160                /* Bulk write shouldn't cross range boundary */
1161                if (*reg + val_num - 1 > range->range_max)
1162                        return -EINVAL;
1163
1164                /* ... or single page boundary */
1165                if (val_num > range->window_len - win_offset)
1166                        return -EINVAL;
1167        }
1168
1169        /* It is possible to have selector register inside data window.
1170           In that case, selector register is located on every page and
1171           it needs no page switching, when accessed alone. */
1172        if (val_num > 1 ||
1173            range->window_start + win_offset != range->selector_reg) {
1174                /* Use separate work_buf during page switching */
1175                orig_work_buf = map->work_buf;
1176                map->work_buf = map->selector_work_buf;
1177
1178                ret = _regmap_update_bits(map, range->selector_reg,
1179                                          range->selector_mask,
1180                                          win_page << range->selector_shift,
1181                                          &page_chg);
1182
1183                map->work_buf = orig_work_buf;
1184
1185                if (ret != 0)
1186                        return ret;
1187        }
1188
1189        *reg = range->window_start + win_offset;
1190
1191        return 0;
1192}
1193
1194int _regmap_raw_write(struct regmap *map, unsigned int reg,
1195                      const void *val, size_t val_len)
1196{
1197        struct regmap_range_node *range;
1198        unsigned long flags;
1199        u8 *u8 = map->work_buf;
1200        void *work_val = map->work_buf + map->format.reg_bytes +
1201                map->format.pad_bytes;
1202        void *buf;
1203        int ret = -ENOTSUPP;
1204        size_t len;
1205        int i;
1206
1207        WARN_ON(!map->bus);
1208
1209        /* Check for unwritable registers before we start */
1210        if (map->writeable_reg)
1211                for (i = 0; i < val_len / map->format.val_bytes; i++)
1212                        if (!map->writeable_reg(map->dev,
1213                                                reg + (i * map->reg_stride)))
1214                                return -EINVAL;
1215
1216        if (!map->cache_bypass && map->format.parse_val) {
1217                unsigned int ival;
1218                int val_bytes = map->format.val_bytes;
1219                for (i = 0; i < val_len / val_bytes; i++) {
1220                        ival = map->format.parse_val(val + (i * val_bytes));
1221                        ret = regcache_write(map, reg + (i * map->reg_stride),
1222                                             ival);
1223                        if (ret) {
1224                                dev_err(map->dev,
1225                                        "Error in caching of register: %x ret: %d\n",
1226                                        reg + i, ret);
1227                                return ret;
1228                        }
1229                }
1230                if (map->cache_only) {
1231                        map->cache_dirty = true;
1232                        return 0;
1233                }
1234        }
1235
1236        range = _regmap_range_lookup(map, reg);
1237        if (range) {
1238                int val_num = val_len / map->format.val_bytes;
1239                int win_offset = (reg - range->range_min) % range->window_len;
1240                int win_residue = range->window_len - win_offset;
1241
1242                /* If the write goes beyond the end of the window split it */
1243                while (val_num > win_residue) {
1244                        dev_dbg(map->dev, "Writing window %d/%zu\n",
1245                                win_residue, val_len / map->format.val_bytes);
1246                        ret = _regmap_raw_write(map, reg, val, win_residue *
1247                                                map->format.val_bytes);
1248                        if (ret != 0)
1249                                return ret;
1250
1251                        reg += win_residue;
1252                        val_num -= win_residue;
1253                        val += win_residue * map->format.val_bytes;
1254                        val_len -= win_residue * map->format.val_bytes;
1255
1256                        win_offset = (reg - range->range_min) %
1257                                range->window_len;
1258                        win_residue = range->window_len - win_offset;
1259                }
1260
1261                ret = _regmap_select_page(map, &reg, range, val_num);
1262                if (ret != 0)
1263                        return ret;
1264        }
1265
1266        map->format.format_reg(map->work_buf, reg, map->reg_shift);
1267
1268        u8[0] |= map->write_flag_mask;
1269
1270        /*
1271         * Essentially all I/O mechanisms will be faster with a single
1272         * buffer to write.  Since register syncs often generate raw
1273         * writes of single registers optimise that case.
1274         */
1275        if (val != work_val && val_len == map->format.val_bytes) {
1276                memcpy(work_val, val, map->format.val_bytes);
1277                val = work_val;
1278        }
1279
1280        if (map->async && map->bus->async_write) {
1281                struct regmap_async *async;
1282
1283                trace_regmap_async_write_start(map, reg, val_len);
1284
1285                spin_lock_irqsave(&map->async_lock, flags);
1286                async = list_first_entry_or_null(&map->async_free,
1287                                                 struct regmap_async,
1288                                                 list);
1289                if (async)
1290                        list_del(&async->list);
1291                spin_unlock_irqrestore(&map->async_lock, flags);
1292
1293                if (!async) {
1294                        async = map->bus->async_alloc();
1295                        if (!async)
1296                                return -ENOMEM;
1297
1298                        async->work_buf = kzalloc(map->format.buf_size,
1299                                                  GFP_KERNEL | GFP_DMA);
1300                        if (!async->work_buf) {
1301                                kfree(async);
1302                                return -ENOMEM;
1303                        }
1304                }
1305
1306                async->map = map;
1307
1308                /* If the caller supplied the value we can use it safely. */
1309                memcpy(async->work_buf, map->work_buf, map->format.pad_bytes +
1310                       map->format.reg_bytes + map->format.val_bytes);
1311
1312                spin_lock_irqsave(&map->async_lock, flags);
1313                list_add_tail(&async->list, &map->async_list);
1314                spin_unlock_irqrestore(&map->async_lock, flags);
1315
1316                if (val != work_val)
1317                        ret = map->bus->async_write(map->bus_context,
1318                                                    async->work_buf,
1319                                                    map->format.reg_bytes +
1320                                                    map->format.pad_bytes,
1321                                                    val, val_len, async);
1322                else
1323                        ret = map->bus->async_write(map->bus_context,
1324                                                    async->work_buf,
1325                                                    map->format.reg_bytes +
1326                                                    map->format.pad_bytes +
1327                                                    val_len, NULL, 0, async);
1328
1329                if (ret != 0) {
1330                        dev_err(map->dev, "Failed to schedule write: %d\n",
1331                                ret);
1332
1333                        spin_lock_irqsave(&map->async_lock, flags);
1334                        list_move(&async->list, &map->async_free);
1335                        spin_unlock_irqrestore(&map->async_lock, flags);
1336                }
1337
1338                return ret;
1339        }
1340
1341        trace_regmap_hw_write_start(map, reg, val_len / map->format.val_bytes);
1342
1343        /* If we're doing a single register write we can probably just
1344         * send the work_buf directly, otherwise try to do a gather
1345         * write.
1346         */
1347        if (val == work_val)
1348                ret = map->bus->write(map->bus_context, map->work_buf,
1349                                      map->format.reg_bytes +
1350                                      map->format.pad_bytes +
1351                                      val_len);
1352        else if (map->bus->gather_write)
1353                ret = map->bus->gather_write(map->bus_context, map->work_buf,
1354                                             map->format.reg_bytes +
1355                                             map->format.pad_bytes,
1356                                             val, val_len);
1357
1358        /* If that didn't work fall back on linearising by hand. */
1359        if (ret == -ENOTSUPP) {
1360                len = map->format.reg_bytes + map->format.pad_bytes + val_len;
1361                buf = kzalloc(len, GFP_KERNEL);
1362                if (!buf)
1363                        return -ENOMEM;
1364
1365                memcpy(buf, map->work_buf, map->format.reg_bytes);
1366                memcpy(buf + map->format.reg_bytes + map->format.pad_bytes,
1367                       val, val_len);
1368                ret = map->bus->write(map->bus_context, buf, len);
1369
1370                kfree(buf);
1371        }
1372
1373        trace_regmap_hw_write_done(map, reg, val_len / map->format.val_bytes);
1374
1375        return ret;
1376}
1377
1378/**
1379 * regmap_can_raw_write - Test if regmap_raw_write() is supported
1380 *
1381 * @map: Map to check.
1382 */
1383bool regmap_can_raw_write(struct regmap *map)
1384{
1385        return map->bus && map->format.format_val && map->format.format_reg;
1386}
1387EXPORT_SYMBOL_GPL(regmap_can_raw_write);
1388
1389static int _regmap_bus_formatted_write(void *context, unsigned int reg,
1390                                       unsigned int val)
1391{
1392        int ret;
1393        struct regmap_range_node *range;
1394        struct regmap *map = context;
1395
1396        WARN_ON(!map->bus || !map->format.format_write);
1397
1398        range = _regmap_range_lookup(map, reg);
1399        if (range) {
1400                ret = _regmap_select_page(map, &reg, range, 1);
1401                if (ret != 0)
1402                        return ret;
1403        }
1404
1405        map->format.format_write(map, reg, val);
1406
1407        trace_regmap_hw_write_start(map, reg, 1);
1408
1409        ret = map->bus->write(map->bus_context, map->work_buf,
1410                              map->format.buf_size);
1411
1412        trace_regmap_hw_write_done(map, reg, 1);
1413
1414        return ret;
1415}
1416
1417static int _regmap_bus_reg_write(void *context, unsigned int reg,
1418                                 unsigned int val)
1419{
1420        struct regmap *map = context;
1421
1422        return map->bus->reg_write(map->bus_context, reg, val);
1423}
1424
1425static int _regmap_bus_raw_write(void *context, unsigned int reg,
1426                                 unsigned int val)
1427{
1428        struct regmap *map = context;
1429
1430        WARN_ON(!map->bus || !map->format.format_val);
1431
1432        map->format.format_val(map->work_buf + map->format.reg_bytes
1433                               + map->format.pad_bytes, val, 0);
1434        return _regmap_raw_write(map, reg,
1435                                 map->work_buf +
1436                                 map->format.reg_bytes +
1437                                 map->format.pad_bytes,
1438                                 map->format.val_bytes);
1439}
1440
1441static inline void *_regmap_map_get_context(struct regmap *map)
1442{
1443        return (map->bus) ? map : map->bus_context;
1444}
1445
1446int _regmap_write(struct regmap *map, unsigned int reg,
1447                  unsigned int val)
1448{
1449        int ret;
1450        void *context = _regmap_map_get_context(map);
1451
1452        if (!regmap_writeable(map, reg))
1453                return -EIO;
1454
1455        if (!map->cache_bypass && !map->defer_caching) {
1456                ret = regcache_write(map, reg, val);
1457                if (ret != 0)
1458                        return ret;
1459                if (map->cache_only) {
1460                        map->cache_dirty = true;
1461                        return 0;
1462                }
1463        }
1464
1465#ifdef LOG_DEVICE
1466        if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
1467                dev_info(map->dev, "%x <= %x\n", reg, val);
1468#endif
1469
1470        trace_regmap_reg_write(map, reg, val);
1471
1472        return map->reg_write(context, reg, val);
1473}
1474
1475/**
1476 * regmap_write(): Write a value to a single register
1477 *
1478 * @map: Register map to write to
1479 * @reg: Register to write to
1480 * @val: Value to be written
1481 *
1482 * A value of zero will be returned on success, a negative errno will
1483 * be returned in error cases.
1484 */
1485int regmap_write(struct regmap *map, unsigned int reg, unsigned int val)
1486{
1487        int ret;
1488
1489        if (reg % map->reg_stride)
1490                return -EINVAL;
1491
1492        map->lock(map->lock_arg);
1493
1494        ret = _regmap_write(map, reg, val);
1495
1496        map->unlock(map->lock_arg);
1497
1498        return ret;
1499}
1500EXPORT_SYMBOL_GPL(regmap_write);
1501
1502/**
1503 * regmap_write_async(): Write a value to a single register asynchronously
1504 *
1505 * @map: Register map to write to
1506 * @reg: Register to write to
1507 * @val: Value to be written
1508 *
1509 * A value of zero will be returned on success, a negative errno will
1510 * be returned in error cases.
1511 */
1512int regmap_write_async(struct regmap *map, unsigned int reg, unsigned int val)
1513{
1514        int ret;
1515
1516        if (reg % map->reg_stride)
1517                return -EINVAL;
1518
1519        map->lock(map->lock_arg);
1520
1521        map->async = true;
1522
1523        ret = _regmap_write(map, reg, val);
1524
1525        map->async = false;
1526
1527        map->unlock(map->lock_arg);
1528
1529        return ret;
1530}
1531EXPORT_SYMBOL_GPL(regmap_write_async);
1532
1533/**
1534 * regmap_raw_write(): Write raw values to one or more registers
1535 *
1536 * @map: Register map to write to
1537 * @reg: Initial register to write to
1538 * @val: Block of data to be written, laid out for direct transmission to the
1539 *       device
1540 * @val_len: Length of data pointed to by val.
1541 *
1542 * This function is intended to be used for things like firmware
1543 * download where a large block of data needs to be transferred to the
1544 * device.  No formatting will be done on the data provided.
1545 *
1546 * A value of zero will be returned on success, a negative errno will
1547 * be returned in error cases.
1548 */
1549int regmap_raw_write(struct regmap *map, unsigned int reg,
1550                     const void *val, size_t val_len)
1551{
1552        int ret;
1553
1554        if (!regmap_can_raw_write(map))
1555                return -EINVAL;
1556        if (val_len % map->format.val_bytes)
1557                return -EINVAL;
1558
1559        map->lock(map->lock_arg);
1560
1561        ret = _regmap_raw_write(map, reg, val, val_len);
1562
1563        map->unlock(map->lock_arg);
1564
1565        return ret;
1566}
1567EXPORT_SYMBOL_GPL(regmap_raw_write);
1568
1569/**
1570 * regmap_field_write(): Write a value to a single register field
1571 *
1572 * @field: Register field to write to
1573 * @val: Value to be written
1574 *
1575 * A value of zero will be returned on success, a negative errno will
1576 * be returned in error cases.
1577 */
1578int regmap_field_write(struct regmap_field *field, unsigned int val)
1579{
1580        return regmap_update_bits(field->regmap, field->reg,
1581                                field->mask, val << field->shift);
1582}
1583EXPORT_SYMBOL_GPL(regmap_field_write);
1584
1585/**
1586 * regmap_field_update_bits():  Perform a read/modify/write cycle
1587 *                              on the register field
1588 *
1589 * @field: Register field to write to
1590 * @mask: Bitmask to change
1591 * @val: Value to be written
1592 *
1593 * A value of zero will be returned on success, a negative errno will
1594 * be returned in error cases.
1595 */
1596int regmap_field_update_bits(struct regmap_field *field, unsigned int mask, unsigned int val)
1597{
1598        mask = (mask << field->shift) & field->mask;
1599
1600        return regmap_update_bits(field->regmap, field->reg,
1601                                  mask, val << field->shift);
1602}
1603EXPORT_SYMBOL_GPL(regmap_field_update_bits);
1604
1605/**
1606 * regmap_fields_write(): Write a value to a single register field with port ID
1607 *
1608 * @field: Register field to write to
1609 * @id: port ID
1610 * @val: Value to be written
1611 *
1612 * A value of zero will be returned on success, a negative errno will
1613 * be returned in error cases.
1614 */
1615int regmap_fields_write(struct regmap_field *field, unsigned int id,
1616                        unsigned int val)
1617{
1618        if (id >= field->id_size)
1619                return -EINVAL;
1620
1621        return regmap_update_bits(field->regmap,
1622                                  field->reg + (field->id_offset * id),
1623                                  field->mask, val << field->shift);
1624}
1625EXPORT_SYMBOL_GPL(regmap_fields_write);
1626
1627/**
1628 * regmap_fields_update_bits(): Perform a read/modify/write cycle
1629 *                              on the register field
1630 *
1631 * @field: Register field to write to
1632 * @id: port ID
1633 * @mask: Bitmask to change
1634 * @val: Value to be written
1635 *
1636 * A value of zero will be returned on success, a negative errno will
1637 * be returned in error cases.
1638 */
1639int regmap_fields_update_bits(struct regmap_field *field,  unsigned int id,
1640                              unsigned int mask, unsigned int val)
1641{
1642        if (id >= field->id_size)
1643                return -EINVAL;
1644
1645        mask = (mask << field->shift) & field->mask;
1646
1647        return regmap_update_bits(field->regmap,
1648                                  field->reg + (field->id_offset * id),
1649                                  mask, val << field->shift);
1650}
1651EXPORT_SYMBOL_GPL(regmap_fields_update_bits);
1652
1653/*
1654 * regmap_bulk_write(): Write multiple registers to the device
1655 *
1656 * @map: Register map to write to
1657 * @reg: First register to be write from
1658 * @val: Block of data to be written, in native register size for device
1659 * @val_count: Number of registers to write
1660 *
1661 * This function is intended to be used for writing a large block of
1662 * data to the device either in single transfer or multiple transfer.
1663 *
1664 * A value of zero will be returned on success, a negative errno will
1665 * be returned in error cases.
1666 */
1667int regmap_bulk_write(struct regmap *map, unsigned int reg, const void *val,
1668                     size_t val_count)
1669{
1670        int ret = 0, i;
1671        size_t val_bytes = map->format.val_bytes;
1672
1673        if (map->bus && !map->format.parse_inplace)
1674                return -EINVAL;
1675        if (reg % map->reg_stride)
1676                return -EINVAL;
1677
1678        /*
1679         * Some devices don't support bulk write, for
1680         * them we have a series of single write operations.
1681         */
1682        if (!map->bus || map->use_single_rw) {
1683                map->lock(map->lock_arg);
1684                for (i = 0; i < val_count; i++) {
1685                        unsigned int ival;
1686
1687                        switch (val_bytes) {
1688                        case 1:
1689                                ival = *(u8 *)(val + (i * val_bytes));
1690                                break;
1691                        case 2:
1692                                ival = *(u16 *)(val + (i * val_bytes));
1693                                break;
1694                        case 4:
1695                                ival = *(u32 *)(val + (i * val_bytes));
1696                                break;
1697#ifdef CONFIG_64BIT
1698                        case 8:
1699                                ival = *(u64 *)(val + (i * val_bytes));
1700                                break;
1701#endif
1702                        default:
1703                                ret = -EINVAL;
1704                                goto out;
1705                        }
1706
1707                        ret = _regmap_write(map, reg + (i * map->reg_stride),
1708                                        ival);
1709                        if (ret != 0)
1710                                goto out;
1711                }
1712out:
1713                map->unlock(map->lock_arg);
1714        } else {
1715                void *wval;
1716
1717                if (!val_count)
1718                        return -EINVAL;
1719
1720                wval = kmemdup(val, val_count * val_bytes, GFP_KERNEL);
1721                if (!wval) {
1722                        dev_err(map->dev, "Error in memory allocation\n");
1723                        return -ENOMEM;
1724                }
1725                for (i = 0; i < val_count * val_bytes; i += val_bytes)
1726                        map->format.parse_inplace(wval + i);
1727
1728                map->lock(map->lock_arg);
1729                ret = _regmap_raw_write(map, reg, wval, val_bytes * val_count);
1730                map->unlock(map->lock_arg);
1731
1732                kfree(wval);
1733        }
1734        return ret;
1735}
1736EXPORT_SYMBOL_GPL(regmap_bulk_write);
1737
1738/*
1739 * _regmap_raw_multi_reg_write()
1740 *
1741 * the (register,newvalue) pairs in regs have not been formatted, but
1742 * they are all in the same page and have been changed to being page
1743 * relative. The page register has been written if that was neccessary.
1744 */
1745static int _regmap_raw_multi_reg_write(struct regmap *map,
1746                                       const struct reg_default *regs,
1747                                       size_t num_regs)
1748{
1749        int ret;
1750        void *buf;
1751        int i;
1752        u8 *u8;
1753        size_t val_bytes = map->format.val_bytes;
1754        size_t reg_bytes = map->format.reg_bytes;
1755        size_t pad_bytes = map->format.pad_bytes;
1756        size_t pair_size = reg_bytes + pad_bytes + val_bytes;
1757        size_t len = pair_size * num_regs;
1758
1759        if (!len)
1760                return -EINVAL;
1761
1762        buf = kzalloc(len, GFP_KERNEL);
1763        if (!buf)
1764                return -ENOMEM;
1765
1766        /* We have to linearise by hand. */
1767
1768        u8 = buf;
1769
1770        for (i = 0; i < num_regs; i++) {
1771                int reg = regs[i].reg;
1772                int val = regs[i].def;
1773                trace_regmap_hw_write_start(map, reg, 1);
1774                map->format.format_reg(u8, reg, map->reg_shift);
1775                u8 += reg_bytes + pad_bytes;
1776                map->format.format_val(u8, val, 0);
1777                u8 += val_bytes;
1778        }
1779        u8 = buf;
1780        *u8 |= map->write_flag_mask;
1781
1782        ret = map->bus->write(map->bus_context, buf, len);
1783
1784        kfree(buf);
1785
1786        for (i = 0; i < num_regs; i++) {
1787                int reg = regs[i].reg;
1788                trace_regmap_hw_write_done(map, reg, 1);
1789        }
1790        return ret;
1791}
1792
1793static unsigned int _regmap_register_page(struct regmap *map,
1794                                          unsigned int reg,
1795                                          struct regmap_range_node *range)
1796{
1797        unsigned int win_page = (reg - range->range_min) / range->window_len;
1798
1799        return win_page;
1800}
1801
1802static int _regmap_range_multi_paged_reg_write(struct regmap *map,
1803                                               struct reg_default *regs,
1804                                               size_t num_regs)
1805{
1806        int ret;
1807        int i, n;
1808        struct reg_default *base;
1809        unsigned int this_page = 0;
1810        /*
1811         * the set of registers are not neccessarily in order, but
1812         * since the order of write must be preserved this algorithm
1813         * chops the set each time the page changes
1814         */
1815        base = regs;
1816        for (i = 0, n = 0; i < num_regs; i++, n++) {
1817                unsigned int reg = regs[i].reg;
1818                struct regmap_range_node *range;
1819
1820                range = _regmap_range_lookup(map, reg);
1821                if (range) {
1822                        unsigned int win_page = _regmap_register_page(map, reg,
1823                                                                      range);
1824
1825                        if (i == 0)
1826                                this_page = win_page;
1827                        if (win_page != this_page) {
1828                                this_page = win_page;
1829                                ret = _regmap_raw_multi_reg_write(map, base, n);
1830                                if (ret != 0)
1831                                        return ret;
1832                                base += n;
1833                                n = 0;
1834                        }
1835                        ret = _regmap_select_page(map, &base[n].reg, range, 1);
1836                        if (ret != 0)
1837                                return ret;
1838                }
1839        }
1840        if (n > 0)
1841                return _regmap_raw_multi_reg_write(map, base, n);
1842        return 0;
1843}
1844
1845static int _regmap_multi_reg_write(struct regmap *map,
1846                                   const struct reg_default *regs,
1847                                   size_t num_regs)
1848{
1849        int i;
1850        int ret;
1851
1852        if (!map->can_multi_write) {
1853                for (i = 0; i < num_regs; i++) {
1854                        ret = _regmap_write(map, regs[i].reg, regs[i].def);
1855                        if (ret != 0)
1856                                return ret;
1857                }
1858                return 0;
1859        }
1860
1861        if (!map->format.parse_inplace)
1862                return -EINVAL;
1863
1864        if (map->writeable_reg)
1865                for (i = 0; i < num_regs; i++) {
1866                        int reg = regs[i].reg;
1867                        if (!map->writeable_reg(map->dev, reg))
1868                                return -EINVAL;
1869                        if (reg % map->reg_stride)
1870                                return -EINVAL;
1871                }
1872
1873        if (!map->cache_bypass) {
1874                for (i = 0; i < num_regs; i++) {
1875                        unsigned int val = regs[i].def;
1876                        unsigned int reg = regs[i].reg;
1877                        ret = regcache_write(map, reg, val);
1878                        if (ret) {
1879                                dev_err(map->dev,
1880                                "Error in caching of register: %x ret: %d\n",
1881                                                                reg, ret);
1882                                return ret;
1883                        }
1884                }
1885                if (map->cache_only) {
1886                        map->cache_dirty = true;
1887                        return 0;
1888                }
1889        }
1890
1891        WARN_ON(!map->bus);
1892
1893        for (i = 0; i < num_regs; i++) {
1894                unsigned int reg = regs[i].reg;
1895                struct regmap_range_node *range;
1896                range = _regmap_range_lookup(map, reg);
1897                if (range) {
1898                        size_t len = sizeof(struct reg_default)*num_regs;
1899                        struct reg_default *base = kmemdup(regs, len,
1900                                                           GFP_KERNEL);
1901                        if (!base)
1902                                return -ENOMEM;
1903                        ret = _regmap_range_multi_paged_reg_write(map, base,
1904                                                                  num_regs);
1905                        kfree(base);
1906
1907                        return ret;
1908                }
1909        }
1910        return _regmap_raw_multi_reg_write(map, regs, num_regs);
1911}
1912
1913/*
1914 * regmap_multi_reg_write(): Write multiple registers to the device
1915 *
1916 * where the set of register,value pairs are supplied in any order,
1917 * possibly not all in a single range.
1918 *
1919 * @map: Register map to write to
1920 * @regs: Array of structures containing register,value to be written
1921 * @num_regs: Number of registers to write
1922 *
1923 * The 'normal' block write mode will send ultimately send data on the
1924 * target bus as R,V1,V2,V3,..,Vn where successively higer registers are
1925 * addressed. However, this alternative block multi write mode will send
1926 * the data as R1,V1,R2,V2,..,Rn,Vn on the target bus. The target device
1927 * must of course support the mode.
1928 *
1929 * A value of zero will be returned on success, a negative errno will be
1930 * returned in error cases.
1931 */
1932int regmap_multi_reg_write(struct regmap *map, const struct reg_default *regs,
1933                           int num_regs)
1934{
1935        int ret;
1936
1937        map->lock(map->lock_arg);
1938
1939        ret = _regmap_multi_reg_write(map, regs, num_regs);
1940
1941        map->unlock(map->lock_arg);
1942
1943        return ret;
1944}
1945EXPORT_SYMBOL_GPL(regmap_multi_reg_write);
1946
1947/*
1948 * regmap_multi_reg_write_bypassed(): Write multiple registers to the
1949 *                                    device but not the cache
1950 *
1951 * where the set of register are supplied in any order
1952 *
1953 * @map: Register map to write to
1954 * @regs: Array of structures containing register,value to be written
1955 * @num_regs: Number of registers to write
1956 *
1957 * This function is intended to be used for writing a large block of data
1958 * atomically to the device in single transfer for those I2C client devices
1959 * that implement this alternative block write mode.
1960 *
1961 * A value of zero will be returned on success, a negative errno will
1962 * be returned in error cases.
1963 */
1964int regmap_multi_reg_write_bypassed(struct regmap *map,
1965                                    const struct reg_default *regs,
1966                                    int num_regs)
1967{
1968        int ret;
1969        bool bypass;
1970
1971        map->lock(map->lock_arg);
1972
1973        bypass = map->cache_bypass;
1974        map->cache_bypass = true;
1975
1976        ret = _regmap_multi_reg_write(map, regs, num_regs);
1977
1978        map->cache_bypass = bypass;
1979
1980        map->unlock(map->lock_arg);
1981
1982        return ret;
1983}
1984EXPORT_SYMBOL_GPL(regmap_multi_reg_write_bypassed);
1985
1986/**
1987 * regmap_raw_write_async(): Write raw values to one or more registers
1988 *                           asynchronously
1989 *
1990 * @map: Register map to write to
1991 * @reg: Initial register to write to
1992 * @val: Block of data to be written, laid out for direct transmission to the
1993 *       device.  Must be valid until regmap_async_complete() is called.
1994 * @val_len: Length of data pointed to by val.
1995 *
1996 * This function is intended to be used for things like firmware
1997 * download where a large block of data needs to be transferred to the
1998 * device.  No formatting will be done on the data provided.
1999 *
2000 * If supported by the underlying bus the write will be scheduled
2001 * asynchronously, helping maximise I/O speed on higher speed buses
2002 * like SPI.  regmap_async_complete() can be called to ensure that all
2003 * asynchrnous writes have been completed.
2004 *
2005 * A value of zero will be returned on success, a negative errno will
2006 * be returned in error cases.
2007 */
2008int regmap_raw_write_async(struct regmap *map, unsigned int reg,
2009                           const void *val, size_t val_len)
2010{
2011        int ret;
2012
2013        if (val_len % map->format.val_bytes)
2014                return -EINVAL;
2015        if (reg % map->reg_stride)
2016                return -EINVAL;
2017
2018        map->lock(map->lock_arg);
2019
2020        map->async = true;
2021
2022        ret = _regmap_raw_write(map, reg, val, val_len);
2023
2024        map->async = false;
2025
2026        map->unlock(map->lock_arg);
2027
2028        return ret;
2029}
2030EXPORT_SYMBOL_GPL(regmap_raw_write_async);
2031
2032static int _regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2033                            unsigned int val_len)
2034{
2035        struct regmap_range_node *range;
2036        u8 *u8 = map->work_buf;
2037        int ret;
2038
2039        WARN_ON(!map->bus);
2040
2041        range = _regmap_range_lookup(map, reg);
2042        if (range) {
2043                ret = _regmap_select_page(map, &reg, range,
2044                                          val_len / map->format.val_bytes);
2045                if (ret != 0)
2046                        return ret;
2047        }
2048
2049        map->format.format_reg(map->work_buf, reg, map->reg_shift);
2050
2051        /*
2052         * Some buses or devices flag reads by setting the high bits in the
2053         * register addresss; since it's always the high bits for all
2054         * current formats we can do this here rather than in
2055         * formatting.  This may break if we get interesting formats.
2056         */
2057        u8[0] |= map->read_flag_mask;
2058
2059        trace_regmap_hw_read_start(map, reg, val_len / map->format.val_bytes);
2060
2061        ret = map->bus->read(map->bus_context, map->work_buf,
2062                             map->format.reg_bytes + map->format.pad_bytes,
2063                             val, val_len);
2064
2065        trace_regmap_hw_read_done(map, reg, val_len / map->format.val_bytes);
2066
2067        return ret;
2068}
2069
2070static int _regmap_bus_reg_read(void *context, unsigned int reg,
2071                                unsigned int *val)
2072{
2073        struct regmap *map = context;
2074
2075        return map->bus->reg_read(map->bus_context, reg, val);
2076}
2077
2078static int _regmap_bus_read(void *context, unsigned int reg,
2079                            unsigned int *val)
2080{
2081        int ret;
2082        struct regmap *map = context;
2083
2084        if (!map->format.parse_val)
2085                return -EINVAL;
2086
2087        ret = _regmap_raw_read(map, reg, map->work_buf, map->format.val_bytes);
2088        if (ret == 0)
2089                *val = map->format.parse_val(map->work_buf);
2090
2091        return ret;
2092}
2093
2094static int _regmap_read(struct regmap *map, unsigned int reg,
2095                        unsigned int *val)
2096{
2097        int ret;
2098        void *context = _regmap_map_get_context(map);
2099
2100        WARN_ON(!map->reg_read);
2101
2102        if (!map->cache_bypass) {
2103                ret = regcache_read(map, reg, val);
2104                if (ret == 0)
2105                        return 0;
2106        }
2107
2108        if (map->cache_only)
2109                return -EBUSY;
2110
2111        if (!regmap_readable(map, reg))
2112                return -EIO;
2113
2114        ret = map->reg_read(context, reg, val);
2115        if (ret == 0) {
2116#ifdef LOG_DEVICE
2117                if (map->dev && strcmp(dev_name(map->dev), LOG_DEVICE) == 0)
2118                        dev_info(map->dev, "%x => %x\n", reg, *val);
2119#endif
2120
2121                trace_regmap_reg_read(map, reg, *val);
2122
2123                if (!map->cache_bypass)
2124                        regcache_write(map, reg, *val);
2125        }
2126
2127        return ret;
2128}
2129
2130/**
2131 * regmap_read(): Read a value from a single register
2132 *
2133 * @map: Register map to read from
2134 * @reg: Register to be read from
2135 * @val: Pointer to store read value
2136 *
2137 * A value of zero will be returned on success, a negative errno will
2138 * be returned in error cases.
2139 */
2140int regmap_read(struct regmap *map, unsigned int reg, unsigned int *val)
2141{
2142        int ret;
2143
2144        if (reg % map->reg_stride)
2145                return -EINVAL;
2146
2147        map->lock(map->lock_arg);
2148
2149        ret = _regmap_read(map, reg, val);
2150
2151        map->unlock(map->lock_arg);
2152
2153        return ret;
2154}
2155EXPORT_SYMBOL_GPL(regmap_read);
2156
2157/**
2158 * regmap_raw_read(): Read raw data from the device
2159 *
2160 * @map: Register map to read from
2161 * @reg: First register to be read from
2162 * @val: Pointer to store read value
2163 * @val_len: Size of data to read
2164 *
2165 * A value of zero will be returned on success, a negative errno will
2166 * be returned in error cases.
2167 */
2168int regmap_raw_read(struct regmap *map, unsigned int reg, void *val,
2169                    size_t val_len)
2170{
2171        size_t val_bytes = map->format.val_bytes;
2172        size_t val_count = val_len / val_bytes;
2173        unsigned int v;
2174        int ret, i;
2175
2176        if (!map->bus)
2177                return -EINVAL;
2178        if (val_len % map->format.val_bytes)
2179                return -EINVAL;
2180        if (reg % map->reg_stride)
2181                return -EINVAL;
2182
2183        map->lock(map->lock_arg);
2184
2185        if (regmap_volatile_range(map, reg, val_count) || map->cache_bypass ||
2186            map->cache_type == REGCACHE_NONE) {
2187                /* Physical block read if there's no cache involved */
2188                ret = _regmap_raw_read(map, reg, val, val_len);
2189
2190        } else {
2191                /* Otherwise go word by word for the cache; should be low
2192                 * cost as we expect to hit the cache.
2193                 */
2194                for (i = 0; i < val_count; i++) {
2195                        ret = _regmap_read(map, reg + (i * map->reg_stride),
2196                                           &v);
2197                        if (ret != 0)
2198                                goto out;
2199
2200                        map->format.format_val(val + (i * val_bytes), v, 0);
2201                }
2202        }
2203
2204 out:
2205        map->unlock(map->lock_arg);
2206
2207        return ret;
2208}
2209EXPORT_SYMBOL_GPL(regmap_raw_read);
2210
2211/**
2212 * regmap_field_read(): Read a value to a single register field
2213 *
2214 * @field: Register field to read from
2215 * @val: Pointer to store read value
2216 *
2217 * A value of zero will be returned on success, a negative errno will
2218 * be returned in error cases.
2219 */
2220int regmap_field_read(struct regmap_field *field, unsigned int *val)
2221{
2222        int ret;
2223        unsigned int reg_val;
2224        ret = regmap_read(field->regmap, field->reg, &reg_val);
2225        if (ret != 0)
2226                return ret;
2227
2228        reg_val &= field->mask;
2229        reg_val >>= field->shift;
2230        *val = reg_val;
2231
2232        return ret;
2233}
2234EXPORT_SYMBOL_GPL(regmap_field_read);
2235
2236/**
2237 * regmap_fields_read(): Read a value to a single register field with port ID
2238 *
2239 * @field: Register field to read from
2240 * @id: port ID
2241 * @val: Pointer to store read value
2242 *
2243 * A value of zero will be returned on success, a negative errno will
2244 * be returned in error cases.
2245 */
2246int regmap_fields_read(struct regmap_field *field, unsigned int id,
2247                       unsigned int *val)
2248{
2249        int ret;
2250        unsigned int reg_val;
2251
2252        if (id >= field->id_size)
2253                return -EINVAL;
2254
2255        ret = regmap_read(field->regmap,
2256                          field->reg + (field->id_offset * id),
2257                          &reg_val);
2258        if (ret != 0)
2259                return ret;
2260
2261        reg_val &= field->mask;
2262        reg_val >>= field->shift;
2263        *val = reg_val;
2264
2265        return ret;
2266}
2267EXPORT_SYMBOL_GPL(regmap_fields_read);
2268
2269/**
2270 * regmap_bulk_read(): Read multiple registers from the device
2271 *
2272 * @map: Register map to read from
2273 * @reg: First register to be read from
2274 * @val: Pointer to store read value, in native register size for device
2275 * @val_count: Number of registers to read
2276 *
2277 * A value of zero will be returned on success, a negative errno will
2278 * be returned in error cases.
2279 */
2280int regmap_bulk_read(struct regmap *map, unsigned int reg, void *val,
2281                     size_t val_count)
2282{
2283        int ret, i;
2284        size_t val_bytes = map->format.val_bytes;
2285        bool vol = regmap_volatile_range(map, reg, val_count);
2286
2287        if (reg % map->reg_stride)
2288                return -EINVAL;
2289
2290        if (map->bus && map->format.parse_inplace && (vol || map->cache_type == REGCACHE_NONE)) {
2291                /*
2292                 * Some devices does not support bulk read, for
2293                 * them we have a series of single read operations.
2294                 */
2295                if (map->use_single_rw) {
2296                        for (i = 0; i < val_count; i++) {
2297                                ret = regmap_raw_read(map,
2298                                                reg + (i * map->reg_stride),
2299                                                val + (i * val_bytes),
2300                                                val_bytes);
2301                                if (ret != 0)
2302                                        return ret;
2303                        }
2304                } else {
2305                        ret = regmap_raw_read(map, reg, val,
2306                                              val_bytes * val_count);
2307                        if (ret != 0)
2308                                return ret;
2309                }
2310
2311                for (i = 0; i < val_count * val_bytes; i += val_bytes)
2312                        map->format.parse_inplace(val + i);
2313        } else {
2314                for (i = 0; i < val_count; i++) {
2315                        unsigned int ival;
2316                        ret = regmap_read(map, reg + (i * map->reg_stride),
2317                                          &ival);
2318                        if (ret != 0)
2319                                return ret;
2320                        map->format.format_val(val + (i * val_bytes), ival, 0);
2321                }
2322        }
2323
2324        return 0;
2325}
2326EXPORT_SYMBOL_GPL(regmap_bulk_read);
2327
2328static int _regmap_update_bits(struct regmap *map, unsigned int reg,
2329                               unsigned int mask, unsigned int val,
2330                               bool *change)
2331{
2332        int ret;
2333        unsigned int tmp, orig;
2334
2335        ret = _regmap_read(map, reg, &orig);
2336        if (ret != 0)
2337                return ret;
2338
2339        tmp = orig & ~mask;
2340        tmp |= val & mask;
2341
2342        if (tmp != orig) {
2343                ret = _regmap_write(map, reg, tmp);
2344                if (change)
2345                        *change = true;
2346        } else {
2347                if (change)
2348                        *change = false;
2349        }
2350
2351        return ret;
2352}
2353
2354/**
2355 * regmap_update_bits: Perform a read/modify/write cycle on the register map
2356 *
2357 * @map: Register map to update
2358 * @reg: Register to update
2359 * @mask: Bitmask to change
2360 * @val: New value for bitmask
2361 *
2362 * Returns zero for success, a negative number on error.
2363 */
2364int regmap_update_bits(struct regmap *map, unsigned int reg,
2365                       unsigned int mask, unsigned int val)
2366{
2367        int ret;
2368
2369        map->lock(map->lock_arg);
2370        ret = _regmap_update_bits(map, reg, mask, val, NULL);
2371        map->unlock(map->lock_arg);
2372
2373        return ret;
2374}
2375EXPORT_SYMBOL_GPL(regmap_update_bits);
2376
2377/**
2378 * regmap_update_bits_async: Perform a read/modify/write cycle on the register
2379 *                           map asynchronously
2380 *
2381 * @map: Register map to update
2382 * @reg: Register to update
2383 * @mask: Bitmask to change
2384 * @val: New value for bitmask
2385 *
2386 * With most buses the read must be done synchronously so this is most
2387 * useful for devices with a cache which do not need to interact with
2388 * the hardware to determine the current register value.
2389 *
2390 * Returns zero for success, a negative number on error.
2391 */
2392int regmap_update_bits_async(struct regmap *map, unsigned int reg,
2393                             unsigned int mask, unsigned int val)
2394{
2395        int ret;
2396
2397        map->lock(map->lock_arg);
2398
2399        map->async = true;
2400
2401        ret = _regmap_update_bits(map, reg, mask, val, NULL);
2402
2403        map->async = false;
2404
2405        map->unlock(map->lock_arg);
2406
2407        return ret;
2408}
2409EXPORT_SYMBOL_GPL(regmap_update_bits_async);
2410
2411/**
2412 * regmap_update_bits_check: Perform a read/modify/write cycle on the
2413 *                           register map and report if updated
2414 *
2415 * @map: Register map to update
2416 * @reg: Register to update
2417 * @mask: Bitmask to change
2418 * @val: New value for bitmask
2419 * @change: Boolean indicating if a write was done
2420 *
2421 * Returns zero for success, a negative number on error.
2422 */
2423int regmap_update_bits_check(struct regmap *map, unsigned int reg,
2424                             unsigned int mask, unsigned int val,
2425                             bool *change)
2426{
2427        int ret;
2428
2429        map->lock(map->lock_arg);
2430        ret = _regmap_update_bits(map, reg, mask, val, change);
2431        map->unlock(map->lock_arg);
2432        return ret;
2433}
2434EXPORT_SYMBOL_GPL(regmap_update_bits_check);
2435
2436/**
2437 * regmap_update_bits_check_async: Perform a read/modify/write cycle on the
2438 *                                 register map asynchronously and report if
2439 *                                 updated
2440 *
2441 * @map: Register map to update
2442 * @reg: Register to update
2443 * @mask: Bitmask to change
2444 * @val: New value for bitmask
2445 * @change: Boolean indicating if a write was done
2446 *
2447 * With most buses the read must be done synchronously so this is most
2448 * useful for devices with a cache which do not need to interact with
2449 * the hardware to determine the current register value.
2450 *
2451 * Returns zero for success, a negative number on error.
2452 */
2453int regmap_update_bits_check_async(struct regmap *map, unsigned int reg,
2454                                   unsigned int mask, unsigned int val,
2455                                   bool *change)
2456{
2457        int ret;
2458
2459        map->lock(map->lock_arg);
2460
2461        map->async = true;
2462
2463        ret = _regmap_update_bits(map, reg, mask, val, change);
2464
2465        map->async = false;
2466
2467        map->unlock(map->lock_arg);
2468
2469        return ret;
2470}
2471EXPORT_SYMBOL_GPL(regmap_update_bits_check_async);
2472
2473void regmap_async_complete_cb(struct regmap_async *async, int ret)
2474{
2475        struct regmap *map = async->map;
2476        bool wake;
2477
2478        trace_regmap_async_io_complete(map);
2479
2480        spin_lock(&map->async_lock);
2481        list_move(&async->list, &map->async_free);
2482        wake = list_empty(&map->async_list);
2483
2484        if (ret != 0)
2485                map->async_ret = ret;
2486
2487        spin_unlock(&map->async_lock);
2488
2489        if (wake)
2490                wake_up(&map->async_waitq);
2491}
2492EXPORT_SYMBOL_GPL(regmap_async_complete_cb);
2493
2494static int regmap_async_is_done(struct regmap *map)
2495{
2496        unsigned long flags;
2497        int ret;
2498
2499        spin_lock_irqsave(&map->async_lock, flags);
2500        ret = list_empty(&map->async_list);
2501        spin_unlock_irqrestore(&map->async_lock, flags);
2502
2503        return ret;
2504}
2505
2506/**
2507 * regmap_async_complete: Ensure all asynchronous I/O has completed.
2508 *
2509 * @map: Map to operate on.
2510 *
2511 * Blocks until any pending asynchronous I/O has completed.  Returns
2512 * an error code for any failed I/O operations.
2513 */
2514int regmap_async_complete(struct regmap *map)
2515{
2516        unsigned long flags;
2517        int ret;
2518
2519        /* Nothing to do with no async support */
2520        if (!map->bus || !map->bus->async_write)
2521                return 0;
2522
2523        trace_regmap_async_complete_start(map);
2524
2525        wait_event(map->async_waitq, regmap_async_is_done(map));
2526
2527        spin_lock_irqsave(&map->async_lock, flags);
2528        ret = map->async_ret;
2529        map->async_ret = 0;
2530        spin_unlock_irqrestore(&map->async_lock, flags);
2531
2532        trace_regmap_async_complete_done(map);
2533
2534        return ret;
2535}
2536EXPORT_SYMBOL_GPL(regmap_async_complete);
2537
2538/**
2539 * regmap_register_patch: Register and apply register updates to be applied
2540 *                        on device initialistion
2541 *
2542 * @map: Register map to apply updates to.
2543 * @regs: Values to update.
2544 * @num_regs: Number of entries in regs.
2545 *
2546 * Register a set of register updates to be applied to the device
2547 * whenever the device registers are synchronised with the cache and
2548 * apply them immediately.  Typically this is used to apply
2549 * corrections to be applied to the device defaults on startup, such
2550 * as the updates some vendors provide to undocumented registers.
2551 *
2552 * The caller must ensure that this function cannot be called
2553 * concurrently with either itself or regcache_sync().
2554 */
2555int regmap_register_patch(struct regmap *map, const struct reg_default *regs,
2556                          int num_regs)
2557{
2558        struct reg_default *p;
2559        int ret;
2560        bool bypass;
2561
2562        if (WARN_ONCE(num_regs <= 0, "invalid registers number (%d)\n",
2563            num_regs))
2564                return 0;
2565
2566        p = krealloc(map->patch,
2567                     sizeof(struct reg_default) * (map->patch_regs + num_regs),
2568                     GFP_KERNEL);
2569        if (p) {
2570                memcpy(p + map->patch_regs, regs, num_regs * sizeof(*regs));
2571                map->patch = p;
2572                map->patch_regs += num_regs;
2573        } else {
2574                return -ENOMEM;
2575        }
2576
2577        map->lock(map->lock_arg);
2578
2579        bypass = map->cache_bypass;
2580
2581        map->cache_bypass = true;
2582        map->async = true;
2583
2584        ret = _regmap_multi_reg_write(map, regs, num_regs);
2585
2586        map->async = false;
2587        map->cache_bypass = bypass;
2588
2589        map->unlock(map->lock_arg);
2590
2591        regmap_async_complete(map);
2592
2593        return ret;
2594}
2595EXPORT_SYMBOL_GPL(regmap_register_patch);
2596
2597/*
2598 * regmap_get_val_bytes(): Report the size of a register value
2599 *
2600 * Report the size of a register value, mainly intended to for use by
2601 * generic infrastructure built on top of regmap.
2602 */
2603int regmap_get_val_bytes(struct regmap *map)
2604{
2605        if (map->format.format_write)
2606                return -EINVAL;
2607
2608        return map->format.val_bytes;
2609}
2610EXPORT_SYMBOL_GPL(regmap_get_val_bytes);
2611
2612/**
2613 * regmap_get_max_register(): Report the max register value
2614 *
2615 * Report the max register value, mainly intended to for use by
2616 * generic infrastructure built on top of regmap.
2617 */
2618int regmap_get_max_register(struct regmap *map)
2619{
2620        return map->max_register ? map->max_register : -EINVAL;
2621}
2622EXPORT_SYMBOL_GPL(regmap_get_max_register);
2623
2624/**
2625 * regmap_get_reg_stride(): Report the register address stride
2626 *
2627 * Report the register address stride, mainly intended to for use by
2628 * generic infrastructure built on top of regmap.
2629 */
2630int regmap_get_reg_stride(struct regmap *map)
2631{
2632        return map->reg_stride;
2633}
2634EXPORT_SYMBOL_GPL(regmap_get_reg_stride);
2635
2636int regmap_parse_val(struct regmap *map, const void *buf,
2637                        unsigned int *val)
2638{
2639        if (!map->format.parse_val)
2640                return -EINVAL;
2641
2642        *val = map->format.parse_val(buf);
2643
2644        return 0;
2645}
2646EXPORT_SYMBOL_GPL(regmap_parse_val);
2647
2648static int __init regmap_initcall(void)
2649{
2650        regmap_debugfs_initcall();
2651
2652        return 0;
2653}
2654postcore_initcall(regmap_initcall);
2655