linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/compat.h>
  67#include <linux/suspend.h>
  68#include <linux/freezer.h>
  69#include <linux/mutex.h>
  70#include <linux/writeback.h>
  71#include <linux/completion.h>
  72#include <linux/highmem.h>
  73#include <linux/kthread.h>
  74#include <linux/splice.h>
  75#include <linux/sysfs.h>
  76#include <linux/miscdevice.h>
  77#include <linux/falloc.h>
  78#include <linux/uio.h>
  79#include "loop.h"
  80
  81#include <asm/uaccess.h>
  82
  83static DEFINE_IDR(loop_index_idr);
  84static DEFINE_MUTEX(loop_index_mutex);
  85
  86static int max_part;
  87static int part_shift;
  88
  89static int transfer_xor(struct loop_device *lo, int cmd,
  90                        struct page *raw_page, unsigned raw_off,
  91                        struct page *loop_page, unsigned loop_off,
  92                        int size, sector_t real_block)
  93{
  94        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  95        char *loop_buf = kmap_atomic(loop_page) + loop_off;
  96        char *in, *out, *key;
  97        int i, keysize;
  98
  99        if (cmd == READ) {
 100                in = raw_buf;
 101                out = loop_buf;
 102        } else {
 103                in = loop_buf;
 104                out = raw_buf;
 105        }
 106
 107        key = lo->lo_encrypt_key;
 108        keysize = lo->lo_encrypt_key_size;
 109        for (i = 0; i < size; i++)
 110                *out++ = *in++ ^ key[(i & 511) % keysize];
 111
 112        kunmap_atomic(loop_buf);
 113        kunmap_atomic(raw_buf);
 114        cond_resched();
 115        return 0;
 116}
 117
 118static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 119{
 120        if (unlikely(info->lo_encrypt_key_size <= 0))
 121                return -EINVAL;
 122        return 0;
 123}
 124
 125static struct loop_func_table none_funcs = {
 126        .number = LO_CRYPT_NONE,
 127}; 
 128
 129static struct loop_func_table xor_funcs = {
 130        .number = LO_CRYPT_XOR,
 131        .transfer = transfer_xor,
 132        .init = xor_init
 133}; 
 134
 135/* xfer_funcs[0] is special - its release function is never called */
 136static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 137        &none_funcs,
 138        &xor_funcs
 139};
 140
 141static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 142{
 143        loff_t loopsize;
 144
 145        /* Compute loopsize in bytes */
 146        loopsize = i_size_read(file->f_mapping->host);
 147        if (offset > 0)
 148                loopsize -= offset;
 149        /* offset is beyond i_size, weird but possible */
 150        if (loopsize < 0)
 151                return 0;
 152
 153        if (sizelimit > 0 && sizelimit < loopsize)
 154                loopsize = sizelimit;
 155        /*
 156         * Unfortunately, if we want to do I/O on the device,
 157         * the number of 512-byte sectors has to fit into a sector_t.
 158         */
 159        return loopsize >> 9;
 160}
 161
 162static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 163{
 164        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 165}
 166
 167static int
 168figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 169{
 170        loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 171        sector_t x = (sector_t)size;
 172        struct block_device *bdev = lo->lo_device;
 173
 174        if (unlikely((loff_t)x != size))
 175                return -EFBIG;
 176        if (lo->lo_offset != offset)
 177                lo->lo_offset = offset;
 178        if (lo->lo_sizelimit != sizelimit)
 179                lo->lo_sizelimit = sizelimit;
 180        set_capacity(lo->lo_disk, x);
 181        bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 182        /* let user-space know about the new size */
 183        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 184        return 0;
 185}
 186
 187static inline int
 188lo_do_transfer(struct loop_device *lo, int cmd,
 189               struct page *rpage, unsigned roffs,
 190               struct page *lpage, unsigned loffs,
 191               int size, sector_t rblock)
 192{
 193        int ret;
 194
 195        ret = lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 196        if (likely(!ret))
 197                return 0;
 198
 199        printk_ratelimited(KERN_ERR
 200                "loop: Transfer error at byte offset %llu, length %i.\n",
 201                (unsigned long long)rblock << 9, size);
 202        return ret;
 203}
 204
 205static int lo_write_bvec(struct file *file, struct bio_vec *bvec, loff_t *ppos)
 206{
 207        struct iov_iter i;
 208        ssize_t bw;
 209
 210        iov_iter_bvec(&i, ITER_BVEC, bvec, 1, bvec->bv_len);
 211
 212        file_start_write(file);
 213        bw = vfs_iter_write(file, &i, ppos);
 214        file_end_write(file);
 215
 216        if (likely(bw ==  bvec->bv_len))
 217                return 0;
 218
 219        printk_ratelimited(KERN_ERR
 220                "loop: Write error at byte offset %llu, length %i.\n",
 221                (unsigned long long)*ppos, bvec->bv_len);
 222        if (bw >= 0)
 223                bw = -EIO;
 224        return bw;
 225}
 226
 227static int lo_write_simple(struct loop_device *lo, struct request *rq,
 228                loff_t pos)
 229{
 230        struct bio_vec bvec;
 231        struct req_iterator iter;
 232        int ret = 0;
 233
 234        rq_for_each_segment(bvec, rq, iter) {
 235                ret = lo_write_bvec(lo->lo_backing_file, &bvec, &pos);
 236                if (ret < 0)
 237                        break;
 238                cond_resched();
 239        }
 240
 241        return ret;
 242}
 243
 244/*
 245 * This is the slow, transforming version that needs to double buffer the
 246 * data as it cannot do the transformations in place without having direct
 247 * access to the destination pages of the backing file.
 248 */
 249static int lo_write_transfer(struct loop_device *lo, struct request *rq,
 250                loff_t pos)
 251{
 252        struct bio_vec bvec, b;
 253        struct req_iterator iter;
 254        struct page *page;
 255        int ret = 0;
 256
 257        page = alloc_page(GFP_NOIO);
 258        if (unlikely(!page))
 259                return -ENOMEM;
 260
 261        rq_for_each_segment(bvec, rq, iter) {
 262                ret = lo_do_transfer(lo, WRITE, page, 0, bvec.bv_page,
 263                        bvec.bv_offset, bvec.bv_len, pos >> 9);
 264                if (unlikely(ret))
 265                        break;
 266
 267                b.bv_page = page;
 268                b.bv_offset = 0;
 269                b.bv_len = bvec.bv_len;
 270                ret = lo_write_bvec(lo->lo_backing_file, &b, &pos);
 271                if (ret < 0)
 272                        break;
 273        }
 274
 275        __free_page(page);
 276        return ret;
 277}
 278
 279static int lo_read_simple(struct loop_device *lo, struct request *rq,
 280                loff_t pos)
 281{
 282        struct bio_vec bvec;
 283        struct req_iterator iter;
 284        struct iov_iter i;
 285        ssize_t len;
 286
 287        rq_for_each_segment(bvec, rq, iter) {
 288                iov_iter_bvec(&i, ITER_BVEC, &bvec, 1, bvec.bv_len);
 289                len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 290                if (len < 0)
 291                        return len;
 292
 293                flush_dcache_page(bvec.bv_page);
 294
 295                if (len != bvec.bv_len) {
 296                        struct bio *bio;
 297
 298                        __rq_for_each_bio(bio, rq)
 299                                zero_fill_bio(bio);
 300                        break;
 301                }
 302                cond_resched();
 303        }
 304
 305        return 0;
 306}
 307
 308static int lo_read_transfer(struct loop_device *lo, struct request *rq,
 309                loff_t pos)
 310{
 311        struct bio_vec bvec, b;
 312        struct req_iterator iter;
 313        struct iov_iter i;
 314        struct page *page;
 315        ssize_t len;
 316        int ret = 0;
 317
 318        page = alloc_page(GFP_NOIO);
 319        if (unlikely(!page))
 320                return -ENOMEM;
 321
 322        rq_for_each_segment(bvec, rq, iter) {
 323                loff_t offset = pos;
 324
 325                b.bv_page = page;
 326                b.bv_offset = 0;
 327                b.bv_len = bvec.bv_len;
 328
 329                iov_iter_bvec(&i, ITER_BVEC, &b, 1, b.bv_len);
 330                len = vfs_iter_read(lo->lo_backing_file, &i, &pos);
 331                if (len < 0) {
 332                        ret = len;
 333                        goto out_free_page;
 334                }
 335
 336                ret = lo_do_transfer(lo, READ, page, 0, bvec.bv_page,
 337                        bvec.bv_offset, len, offset >> 9);
 338                if (ret)
 339                        goto out_free_page;
 340
 341                flush_dcache_page(bvec.bv_page);
 342
 343                if (len != bvec.bv_len) {
 344                        struct bio *bio;
 345
 346                        __rq_for_each_bio(bio, rq)
 347                                zero_fill_bio(bio);
 348                        break;
 349                }
 350        }
 351
 352        ret = 0;
 353out_free_page:
 354        __free_page(page);
 355        return ret;
 356}
 357
 358static int lo_discard(struct loop_device *lo, struct request *rq, loff_t pos)
 359{
 360        /*
 361         * We use punch hole to reclaim the free space used by the
 362         * image a.k.a. discard. However we do not support discard if
 363         * encryption is enabled, because it may give an attacker
 364         * useful information.
 365         */
 366        struct file *file = lo->lo_backing_file;
 367        int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 368        int ret;
 369
 370        if ((!file->f_op->fallocate) || lo->lo_encrypt_key_size) {
 371                ret = -EOPNOTSUPP;
 372                goto out;
 373        }
 374
 375        ret = file->f_op->fallocate(file, mode, pos, blk_rq_bytes(rq));
 376        if (unlikely(ret && ret != -EINVAL && ret != -EOPNOTSUPP))
 377                ret = -EIO;
 378 out:
 379        return ret;
 380}
 381
 382static int lo_req_flush(struct loop_device *lo, struct request *rq)
 383{
 384        struct file *file = lo->lo_backing_file;
 385        int ret = vfs_fsync(file, 0);
 386        if (unlikely(ret && ret != -EINVAL))
 387                ret = -EIO;
 388
 389        return ret;
 390}
 391
 392static int do_req_filebacked(struct loop_device *lo, struct request *rq)
 393{
 394        loff_t pos;
 395        int ret;
 396
 397        pos = ((loff_t) blk_rq_pos(rq) << 9) + lo->lo_offset;
 398
 399        if (rq->cmd_flags & REQ_WRITE) {
 400                if (rq->cmd_flags & REQ_FLUSH)
 401                        ret = lo_req_flush(lo, rq);
 402                else if (rq->cmd_flags & REQ_DISCARD)
 403                        ret = lo_discard(lo, rq, pos);
 404                else if (lo->transfer)
 405                        ret = lo_write_transfer(lo, rq, pos);
 406                else
 407                        ret = lo_write_simple(lo, rq, pos);
 408
 409        } else {
 410                if (lo->transfer)
 411                        ret = lo_read_transfer(lo, rq, pos);
 412                else
 413                        ret = lo_read_simple(lo, rq, pos);
 414        }
 415
 416        return ret;
 417}
 418
 419struct switch_request {
 420        struct file *file;
 421        struct completion wait;
 422};
 423
 424/*
 425 * Do the actual switch; called from the BIO completion routine
 426 */
 427static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 428{
 429        struct file *file = p->file;
 430        struct file *old_file = lo->lo_backing_file;
 431        struct address_space *mapping;
 432
 433        /* if no new file, only flush of queued bios requested */
 434        if (!file)
 435                return;
 436
 437        mapping = file->f_mapping;
 438        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 439        lo->lo_backing_file = file;
 440        lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 441                mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 442        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 443        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 444}
 445
 446/*
 447 * loop_switch performs the hard work of switching a backing store.
 448 * First it needs to flush existing IO, it does this by sending a magic
 449 * BIO down the pipe. The completion of this BIO does the actual switch.
 450 */
 451static int loop_switch(struct loop_device *lo, struct file *file)
 452{
 453        struct switch_request w;
 454
 455        w.file = file;
 456
 457        /* freeze queue and wait for completion of scheduled requests */
 458        blk_mq_freeze_queue(lo->lo_queue);
 459
 460        /* do the switch action */
 461        do_loop_switch(lo, &w);
 462
 463        /* unfreeze */
 464        blk_mq_unfreeze_queue(lo->lo_queue);
 465
 466        return 0;
 467}
 468
 469/*
 470 * Helper to flush the IOs in loop, but keeping loop thread running
 471 */
 472static int loop_flush(struct loop_device *lo)
 473{
 474        return loop_switch(lo, NULL);
 475}
 476
 477static void loop_reread_partitions(struct loop_device *lo,
 478                                   struct block_device *bdev)
 479{
 480        int rc;
 481
 482        /*
 483         * bd_mutex has been held already in release path, so don't
 484         * acquire it if this function is called in such case.
 485         *
 486         * If the reread partition isn't from release path, lo_refcnt
 487         * must be at least one and it can only become zero when the
 488         * current holder is released.
 489         */
 490        if (!atomic_read(&lo->lo_refcnt))
 491                rc = __blkdev_reread_part(bdev);
 492        else
 493                rc = blkdev_reread_part(bdev);
 494        if (rc)
 495                pr_warn("%s: partition scan of loop%d (%s) failed (rc=%d)\n",
 496                        __func__, lo->lo_number, lo->lo_file_name, rc);
 497}
 498
 499/*
 500 * loop_change_fd switched the backing store of a loopback device to
 501 * a new file. This is useful for operating system installers to free up
 502 * the original file and in High Availability environments to switch to
 503 * an alternative location for the content in case of server meltdown.
 504 * This can only work if the loop device is used read-only, and if the
 505 * new backing store is the same size and type as the old backing store.
 506 */
 507static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 508                          unsigned int arg)
 509{
 510        struct file     *file, *old_file;
 511        struct inode    *inode;
 512        int             error;
 513
 514        error = -ENXIO;
 515        if (lo->lo_state != Lo_bound)
 516                goto out;
 517
 518        /* the loop device has to be read-only */
 519        error = -EINVAL;
 520        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 521                goto out;
 522
 523        error = -EBADF;
 524        file = fget(arg);
 525        if (!file)
 526                goto out;
 527
 528        inode = file->f_mapping->host;
 529        old_file = lo->lo_backing_file;
 530
 531        error = -EINVAL;
 532
 533        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 534                goto out_putf;
 535
 536        /* size of the new backing store needs to be the same */
 537        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 538                goto out_putf;
 539
 540        /* and ... switch */
 541        error = loop_switch(lo, file);
 542        if (error)
 543                goto out_putf;
 544
 545        fput(old_file);
 546        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 547                loop_reread_partitions(lo, bdev);
 548        return 0;
 549
 550 out_putf:
 551        fput(file);
 552 out:
 553        return error;
 554}
 555
 556static inline int is_loop_device(struct file *file)
 557{
 558        struct inode *i = file->f_mapping->host;
 559
 560        return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 561}
 562
 563/* loop sysfs attributes */
 564
 565static ssize_t loop_attr_show(struct device *dev, char *page,
 566                              ssize_t (*callback)(struct loop_device *, char *))
 567{
 568        struct gendisk *disk = dev_to_disk(dev);
 569        struct loop_device *lo = disk->private_data;
 570
 571        return callback(lo, page);
 572}
 573
 574#define LOOP_ATTR_RO(_name)                                             \
 575static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 576static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 577                                struct device_attribute *attr, char *b) \
 578{                                                                       \
 579        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 580}                                                                       \
 581static struct device_attribute loop_attr_##_name =                      \
 582        __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 583
 584static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 585{
 586        ssize_t ret;
 587        char *p = NULL;
 588
 589        spin_lock_irq(&lo->lo_lock);
 590        if (lo->lo_backing_file)
 591                p = file_path(lo->lo_backing_file, buf, PAGE_SIZE - 1);
 592        spin_unlock_irq(&lo->lo_lock);
 593
 594        if (IS_ERR_OR_NULL(p))
 595                ret = PTR_ERR(p);
 596        else {
 597                ret = strlen(p);
 598                memmove(buf, p, ret);
 599                buf[ret++] = '\n';
 600                buf[ret] = 0;
 601        }
 602
 603        return ret;
 604}
 605
 606static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 607{
 608        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 609}
 610
 611static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 612{
 613        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 614}
 615
 616static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 617{
 618        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 619
 620        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 621}
 622
 623static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 624{
 625        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 626
 627        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 628}
 629
 630LOOP_ATTR_RO(backing_file);
 631LOOP_ATTR_RO(offset);
 632LOOP_ATTR_RO(sizelimit);
 633LOOP_ATTR_RO(autoclear);
 634LOOP_ATTR_RO(partscan);
 635
 636static struct attribute *loop_attrs[] = {
 637        &loop_attr_backing_file.attr,
 638        &loop_attr_offset.attr,
 639        &loop_attr_sizelimit.attr,
 640        &loop_attr_autoclear.attr,
 641        &loop_attr_partscan.attr,
 642        NULL,
 643};
 644
 645static struct attribute_group loop_attribute_group = {
 646        .name = "loop",
 647        .attrs= loop_attrs,
 648};
 649
 650static int loop_sysfs_init(struct loop_device *lo)
 651{
 652        return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 653                                  &loop_attribute_group);
 654}
 655
 656static void loop_sysfs_exit(struct loop_device *lo)
 657{
 658        sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 659                           &loop_attribute_group);
 660}
 661
 662static void loop_config_discard(struct loop_device *lo)
 663{
 664        struct file *file = lo->lo_backing_file;
 665        struct inode *inode = file->f_mapping->host;
 666        struct request_queue *q = lo->lo_queue;
 667
 668        /*
 669         * We use punch hole to reclaim the free space used by the
 670         * image a.k.a. discard. However we do not support discard if
 671         * encryption is enabled, because it may give an attacker
 672         * useful information.
 673         */
 674        if ((!file->f_op->fallocate) ||
 675            lo->lo_encrypt_key_size) {
 676                q->limits.discard_granularity = 0;
 677                q->limits.discard_alignment = 0;
 678                q->limits.max_discard_sectors = 0;
 679                q->limits.discard_zeroes_data = 0;
 680                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 681                return;
 682        }
 683
 684        q->limits.discard_granularity = inode->i_sb->s_blocksize;
 685        q->limits.discard_alignment = 0;
 686        q->limits.max_discard_sectors = UINT_MAX >> 9;
 687        q->limits.discard_zeroes_data = 1;
 688        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 689}
 690
 691static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 692                       struct block_device *bdev, unsigned int arg)
 693{
 694        struct file     *file, *f;
 695        struct inode    *inode;
 696        struct address_space *mapping;
 697        unsigned lo_blocksize;
 698        int             lo_flags = 0;
 699        int             error;
 700        loff_t          size;
 701
 702        /* This is safe, since we have a reference from open(). */
 703        __module_get(THIS_MODULE);
 704
 705        error = -EBADF;
 706        file = fget(arg);
 707        if (!file)
 708                goto out;
 709
 710        error = -EBUSY;
 711        if (lo->lo_state != Lo_unbound)
 712                goto out_putf;
 713
 714        /* Avoid recursion */
 715        f = file;
 716        while (is_loop_device(f)) {
 717                struct loop_device *l;
 718
 719                if (f->f_mapping->host->i_bdev == bdev)
 720                        goto out_putf;
 721
 722                l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 723                if (l->lo_state == Lo_unbound) {
 724                        error = -EINVAL;
 725                        goto out_putf;
 726                }
 727                f = l->lo_backing_file;
 728        }
 729
 730        mapping = file->f_mapping;
 731        inode = mapping->host;
 732
 733        error = -EINVAL;
 734        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 735                goto out_putf;
 736
 737        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 738            !file->f_op->write_iter)
 739                lo_flags |= LO_FLAGS_READ_ONLY;
 740
 741        lo_blocksize = S_ISBLK(inode->i_mode) ?
 742                inode->i_bdev->bd_block_size : PAGE_SIZE;
 743
 744        error = -EFBIG;
 745        size = get_loop_size(lo, file);
 746        if ((loff_t)(sector_t)size != size)
 747                goto out_putf;
 748        error = -ENOMEM;
 749        lo->wq = alloc_workqueue("kloopd%d",
 750                        WQ_MEM_RECLAIM | WQ_HIGHPRI | WQ_UNBOUND, 16,
 751                        lo->lo_number);
 752        if (!lo->wq)
 753                goto out_putf;
 754
 755        error = 0;
 756
 757        set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 758
 759        lo->lo_blocksize = lo_blocksize;
 760        lo->lo_device = bdev;
 761        lo->lo_flags = lo_flags;
 762        lo->lo_backing_file = file;
 763        lo->transfer = NULL;
 764        lo->ioctl = NULL;
 765        lo->lo_sizelimit = 0;
 766        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 767        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 768
 769        if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 770                blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 771
 772        set_capacity(lo->lo_disk, size);
 773        bd_set_size(bdev, size << 9);
 774        loop_sysfs_init(lo);
 775        /* let user-space know about the new size */
 776        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 777
 778        set_blocksize(bdev, lo_blocksize);
 779
 780        lo->lo_state = Lo_bound;
 781        if (part_shift)
 782                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 783        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 784                loop_reread_partitions(lo, bdev);
 785
 786        /* Grab the block_device to prevent its destruction after we
 787         * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 788         */
 789        bdgrab(bdev);
 790        return 0;
 791
 792 out_putf:
 793        fput(file);
 794 out:
 795        /* This is safe: open() is still holding a reference. */
 796        module_put(THIS_MODULE);
 797        return error;
 798}
 799
 800static int
 801loop_release_xfer(struct loop_device *lo)
 802{
 803        int err = 0;
 804        struct loop_func_table *xfer = lo->lo_encryption;
 805
 806        if (xfer) {
 807                if (xfer->release)
 808                        err = xfer->release(lo);
 809                lo->transfer = NULL;
 810                lo->lo_encryption = NULL;
 811                module_put(xfer->owner);
 812        }
 813        return err;
 814}
 815
 816static int
 817loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 818               const struct loop_info64 *i)
 819{
 820        int err = 0;
 821
 822        if (xfer) {
 823                struct module *owner = xfer->owner;
 824
 825                if (!try_module_get(owner))
 826                        return -EINVAL;
 827                if (xfer->init)
 828                        err = xfer->init(lo, i);
 829                if (err)
 830                        module_put(owner);
 831                else
 832                        lo->lo_encryption = xfer;
 833        }
 834        return err;
 835}
 836
 837static int loop_clr_fd(struct loop_device *lo)
 838{
 839        struct file *filp = lo->lo_backing_file;
 840        gfp_t gfp = lo->old_gfp_mask;
 841        struct block_device *bdev = lo->lo_device;
 842
 843        if (lo->lo_state != Lo_bound)
 844                return -ENXIO;
 845
 846        /*
 847         * If we've explicitly asked to tear down the loop device,
 848         * and it has an elevated reference count, set it for auto-teardown when
 849         * the last reference goes away. This stops $!~#$@ udev from
 850         * preventing teardown because it decided that it needs to run blkid on
 851         * the loopback device whenever they appear. xfstests is notorious for
 852         * failing tests because blkid via udev races with a losetup
 853         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
 854         * command to fail with EBUSY.
 855         */
 856        if (atomic_read(&lo->lo_refcnt) > 1) {
 857                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
 858                mutex_unlock(&lo->lo_ctl_mutex);
 859                return 0;
 860        }
 861
 862        if (filp == NULL)
 863                return -EINVAL;
 864
 865        /* freeze request queue during the transition */
 866        blk_mq_freeze_queue(lo->lo_queue);
 867
 868        spin_lock_irq(&lo->lo_lock);
 869        lo->lo_state = Lo_rundown;
 870        lo->lo_backing_file = NULL;
 871        spin_unlock_irq(&lo->lo_lock);
 872
 873        loop_release_xfer(lo);
 874        lo->transfer = NULL;
 875        lo->ioctl = NULL;
 876        lo->lo_device = NULL;
 877        lo->lo_encryption = NULL;
 878        lo->lo_offset = 0;
 879        lo->lo_sizelimit = 0;
 880        lo->lo_encrypt_key_size = 0;
 881        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
 882        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
 883        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
 884        if (bdev) {
 885                bdput(bdev);
 886                invalidate_bdev(bdev);
 887        }
 888        set_capacity(lo->lo_disk, 0);
 889        loop_sysfs_exit(lo);
 890        if (bdev) {
 891                bd_set_size(bdev, 0);
 892                /* let user-space know about this change */
 893                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 894        }
 895        mapping_set_gfp_mask(filp->f_mapping, gfp);
 896        lo->lo_state = Lo_unbound;
 897        /* This is safe: open() is still holding a reference. */
 898        module_put(THIS_MODULE);
 899        blk_mq_unfreeze_queue(lo->lo_queue);
 900
 901        if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
 902                loop_reread_partitions(lo, bdev);
 903        lo->lo_flags = 0;
 904        if (!part_shift)
 905                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
 906        destroy_workqueue(lo->wq);
 907        lo->wq = NULL;
 908        mutex_unlock(&lo->lo_ctl_mutex);
 909        /*
 910         * Need not hold lo_ctl_mutex to fput backing file.
 911         * Calling fput holding lo_ctl_mutex triggers a circular
 912         * lock dependency possibility warning as fput can take
 913         * bd_mutex which is usually taken before lo_ctl_mutex.
 914         */
 915        fput(filp);
 916        return 0;
 917}
 918
 919static int
 920loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
 921{
 922        int err;
 923        struct loop_func_table *xfer;
 924        kuid_t uid = current_uid();
 925
 926        if (lo->lo_encrypt_key_size &&
 927            !uid_eq(lo->lo_key_owner, uid) &&
 928            !capable(CAP_SYS_ADMIN))
 929                return -EPERM;
 930        if (lo->lo_state != Lo_bound)
 931                return -ENXIO;
 932        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
 933                return -EINVAL;
 934
 935        err = loop_release_xfer(lo);
 936        if (err)
 937                return err;
 938
 939        if (info->lo_encrypt_type) {
 940                unsigned int type = info->lo_encrypt_type;
 941
 942                if (type >= MAX_LO_CRYPT)
 943                        return -EINVAL;
 944                xfer = xfer_funcs[type];
 945                if (xfer == NULL)
 946                        return -EINVAL;
 947        } else
 948                xfer = NULL;
 949
 950        err = loop_init_xfer(lo, xfer, info);
 951        if (err)
 952                return err;
 953
 954        if (lo->lo_offset != info->lo_offset ||
 955            lo->lo_sizelimit != info->lo_sizelimit)
 956                if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
 957                        return -EFBIG;
 958
 959        loop_config_discard(lo);
 960
 961        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
 962        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
 963        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
 964        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
 965
 966        if (!xfer)
 967                xfer = &none_funcs;
 968        lo->transfer = xfer->transfer;
 969        lo->ioctl = xfer->ioctl;
 970
 971        if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
 972             (info->lo_flags & LO_FLAGS_AUTOCLEAR))
 973                lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
 974
 975        if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
 976             !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
 977                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 978                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
 979                loop_reread_partitions(lo, lo->lo_device);
 980        }
 981
 982        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
 983        lo->lo_init[0] = info->lo_init[0];
 984        lo->lo_init[1] = info->lo_init[1];
 985        if (info->lo_encrypt_key_size) {
 986                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
 987                       info->lo_encrypt_key_size);
 988                lo->lo_key_owner = uid;
 989        }
 990
 991        return 0;
 992}
 993
 994static int
 995loop_get_status(struct loop_device *lo, struct loop_info64 *info)
 996{
 997        struct file *file = lo->lo_backing_file;
 998        struct kstat stat;
 999        int error;
1000
1001        if (lo->lo_state != Lo_bound)
1002                return -ENXIO;
1003        error = vfs_getattr(&file->f_path, &stat);
1004        if (error)
1005                return error;
1006        memset(info, 0, sizeof(*info));
1007        info->lo_number = lo->lo_number;
1008        info->lo_device = huge_encode_dev(stat.dev);
1009        info->lo_inode = stat.ino;
1010        info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1011        info->lo_offset = lo->lo_offset;
1012        info->lo_sizelimit = lo->lo_sizelimit;
1013        info->lo_flags = lo->lo_flags;
1014        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1015        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1016        info->lo_encrypt_type =
1017                lo->lo_encryption ? lo->lo_encryption->number : 0;
1018        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1019                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1020                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1021                       lo->lo_encrypt_key_size);
1022        }
1023        return 0;
1024}
1025
1026static void
1027loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1028{
1029        memset(info64, 0, sizeof(*info64));
1030        info64->lo_number = info->lo_number;
1031        info64->lo_device = info->lo_device;
1032        info64->lo_inode = info->lo_inode;
1033        info64->lo_rdevice = info->lo_rdevice;
1034        info64->lo_offset = info->lo_offset;
1035        info64->lo_sizelimit = 0;
1036        info64->lo_encrypt_type = info->lo_encrypt_type;
1037        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1038        info64->lo_flags = info->lo_flags;
1039        info64->lo_init[0] = info->lo_init[0];
1040        info64->lo_init[1] = info->lo_init[1];
1041        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1042                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1043        else
1044                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1045        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1046}
1047
1048static int
1049loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1050{
1051        memset(info, 0, sizeof(*info));
1052        info->lo_number = info64->lo_number;
1053        info->lo_device = info64->lo_device;
1054        info->lo_inode = info64->lo_inode;
1055        info->lo_rdevice = info64->lo_rdevice;
1056        info->lo_offset = info64->lo_offset;
1057        info->lo_encrypt_type = info64->lo_encrypt_type;
1058        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1059        info->lo_flags = info64->lo_flags;
1060        info->lo_init[0] = info64->lo_init[0];
1061        info->lo_init[1] = info64->lo_init[1];
1062        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1063                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1064        else
1065                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1066        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1067
1068        /* error in case values were truncated */
1069        if (info->lo_device != info64->lo_device ||
1070            info->lo_rdevice != info64->lo_rdevice ||
1071            info->lo_inode != info64->lo_inode ||
1072            info->lo_offset != info64->lo_offset)
1073                return -EOVERFLOW;
1074
1075        return 0;
1076}
1077
1078static int
1079loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1080{
1081        struct loop_info info;
1082        struct loop_info64 info64;
1083
1084        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1085                return -EFAULT;
1086        loop_info64_from_old(&info, &info64);
1087        return loop_set_status(lo, &info64);
1088}
1089
1090static int
1091loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1092{
1093        struct loop_info64 info64;
1094
1095        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1096                return -EFAULT;
1097        return loop_set_status(lo, &info64);
1098}
1099
1100static int
1101loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1102        struct loop_info info;
1103        struct loop_info64 info64;
1104        int err = 0;
1105
1106        if (!arg)
1107                err = -EINVAL;
1108        if (!err)
1109                err = loop_get_status(lo, &info64);
1110        if (!err)
1111                err = loop_info64_to_old(&info64, &info);
1112        if (!err && copy_to_user(arg, &info, sizeof(info)))
1113                err = -EFAULT;
1114
1115        return err;
1116}
1117
1118static int
1119loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1120        struct loop_info64 info64;
1121        int err = 0;
1122
1123        if (!arg)
1124                err = -EINVAL;
1125        if (!err)
1126                err = loop_get_status(lo, &info64);
1127        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1128                err = -EFAULT;
1129
1130        return err;
1131}
1132
1133static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1134{
1135        if (unlikely(lo->lo_state != Lo_bound))
1136                return -ENXIO;
1137
1138        return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1139}
1140
1141static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1142        unsigned int cmd, unsigned long arg)
1143{
1144        struct loop_device *lo = bdev->bd_disk->private_data;
1145        int err;
1146
1147        mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1148        switch (cmd) {
1149        case LOOP_SET_FD:
1150                err = loop_set_fd(lo, mode, bdev, arg);
1151                break;
1152        case LOOP_CHANGE_FD:
1153                err = loop_change_fd(lo, bdev, arg);
1154                break;
1155        case LOOP_CLR_FD:
1156                /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1157                err = loop_clr_fd(lo);
1158                if (!err)
1159                        goto out_unlocked;
1160                break;
1161        case LOOP_SET_STATUS:
1162                err = -EPERM;
1163                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1164                        err = loop_set_status_old(lo,
1165                                        (struct loop_info __user *)arg);
1166                break;
1167        case LOOP_GET_STATUS:
1168                err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1169                break;
1170        case LOOP_SET_STATUS64:
1171                err = -EPERM;
1172                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1173                        err = loop_set_status64(lo,
1174                                        (struct loop_info64 __user *) arg);
1175                break;
1176        case LOOP_GET_STATUS64:
1177                err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1178                break;
1179        case LOOP_SET_CAPACITY:
1180                err = -EPERM;
1181                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1182                        err = loop_set_capacity(lo, bdev);
1183                break;
1184        default:
1185                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1186        }
1187        mutex_unlock(&lo->lo_ctl_mutex);
1188
1189out_unlocked:
1190        return err;
1191}
1192
1193#ifdef CONFIG_COMPAT
1194struct compat_loop_info {
1195        compat_int_t    lo_number;      /* ioctl r/o */
1196        compat_dev_t    lo_device;      /* ioctl r/o */
1197        compat_ulong_t  lo_inode;       /* ioctl r/o */
1198        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1199        compat_int_t    lo_offset;
1200        compat_int_t    lo_encrypt_type;
1201        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1202        compat_int_t    lo_flags;       /* ioctl r/o */
1203        char            lo_name[LO_NAME_SIZE];
1204        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1205        compat_ulong_t  lo_init[2];
1206        char            reserved[4];
1207};
1208
1209/*
1210 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1211 * - noinlined to reduce stack space usage in main part of driver
1212 */
1213static noinline int
1214loop_info64_from_compat(const struct compat_loop_info __user *arg,
1215                        struct loop_info64 *info64)
1216{
1217        struct compat_loop_info info;
1218
1219        if (copy_from_user(&info, arg, sizeof(info)))
1220                return -EFAULT;
1221
1222        memset(info64, 0, sizeof(*info64));
1223        info64->lo_number = info.lo_number;
1224        info64->lo_device = info.lo_device;
1225        info64->lo_inode = info.lo_inode;
1226        info64->lo_rdevice = info.lo_rdevice;
1227        info64->lo_offset = info.lo_offset;
1228        info64->lo_sizelimit = 0;
1229        info64->lo_encrypt_type = info.lo_encrypt_type;
1230        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1231        info64->lo_flags = info.lo_flags;
1232        info64->lo_init[0] = info.lo_init[0];
1233        info64->lo_init[1] = info.lo_init[1];
1234        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1235                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1236        else
1237                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1238        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1239        return 0;
1240}
1241
1242/*
1243 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1244 * - noinlined to reduce stack space usage in main part of driver
1245 */
1246static noinline int
1247loop_info64_to_compat(const struct loop_info64 *info64,
1248                      struct compat_loop_info __user *arg)
1249{
1250        struct compat_loop_info info;
1251
1252        memset(&info, 0, sizeof(info));
1253        info.lo_number = info64->lo_number;
1254        info.lo_device = info64->lo_device;
1255        info.lo_inode = info64->lo_inode;
1256        info.lo_rdevice = info64->lo_rdevice;
1257        info.lo_offset = info64->lo_offset;
1258        info.lo_encrypt_type = info64->lo_encrypt_type;
1259        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1260        info.lo_flags = info64->lo_flags;
1261        info.lo_init[0] = info64->lo_init[0];
1262        info.lo_init[1] = info64->lo_init[1];
1263        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1264                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1265        else
1266                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1267        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1268
1269        /* error in case values were truncated */
1270        if (info.lo_device != info64->lo_device ||
1271            info.lo_rdevice != info64->lo_rdevice ||
1272            info.lo_inode != info64->lo_inode ||
1273            info.lo_offset != info64->lo_offset ||
1274            info.lo_init[0] != info64->lo_init[0] ||
1275            info.lo_init[1] != info64->lo_init[1])
1276                return -EOVERFLOW;
1277
1278        if (copy_to_user(arg, &info, sizeof(info)))
1279                return -EFAULT;
1280        return 0;
1281}
1282
1283static int
1284loop_set_status_compat(struct loop_device *lo,
1285                       const struct compat_loop_info __user *arg)
1286{
1287        struct loop_info64 info64;
1288        int ret;
1289
1290        ret = loop_info64_from_compat(arg, &info64);
1291        if (ret < 0)
1292                return ret;
1293        return loop_set_status(lo, &info64);
1294}
1295
1296static int
1297loop_get_status_compat(struct loop_device *lo,
1298                       struct compat_loop_info __user *arg)
1299{
1300        struct loop_info64 info64;
1301        int err = 0;
1302
1303        if (!arg)
1304                err = -EINVAL;
1305        if (!err)
1306                err = loop_get_status(lo, &info64);
1307        if (!err)
1308                err = loop_info64_to_compat(&info64, arg);
1309        return err;
1310}
1311
1312static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1313                           unsigned int cmd, unsigned long arg)
1314{
1315        struct loop_device *lo = bdev->bd_disk->private_data;
1316        int err;
1317
1318        switch(cmd) {
1319        case LOOP_SET_STATUS:
1320                mutex_lock(&lo->lo_ctl_mutex);
1321                err = loop_set_status_compat(
1322                        lo, (const struct compat_loop_info __user *) arg);
1323                mutex_unlock(&lo->lo_ctl_mutex);
1324                break;
1325        case LOOP_GET_STATUS:
1326                mutex_lock(&lo->lo_ctl_mutex);
1327                err = loop_get_status_compat(
1328                        lo, (struct compat_loop_info __user *) arg);
1329                mutex_unlock(&lo->lo_ctl_mutex);
1330                break;
1331        case LOOP_SET_CAPACITY:
1332        case LOOP_CLR_FD:
1333        case LOOP_GET_STATUS64:
1334        case LOOP_SET_STATUS64:
1335                arg = (unsigned long) compat_ptr(arg);
1336        case LOOP_SET_FD:
1337        case LOOP_CHANGE_FD:
1338                err = lo_ioctl(bdev, mode, cmd, arg);
1339                break;
1340        default:
1341                err = -ENOIOCTLCMD;
1342                break;
1343        }
1344        return err;
1345}
1346#endif
1347
1348static int lo_open(struct block_device *bdev, fmode_t mode)
1349{
1350        struct loop_device *lo;
1351        int err = 0;
1352
1353        mutex_lock(&loop_index_mutex);
1354        lo = bdev->bd_disk->private_data;
1355        if (!lo) {
1356                err = -ENXIO;
1357                goto out;
1358        }
1359
1360        atomic_inc(&lo->lo_refcnt);
1361out:
1362        mutex_unlock(&loop_index_mutex);
1363        return err;
1364}
1365
1366static void lo_release(struct gendisk *disk, fmode_t mode)
1367{
1368        struct loop_device *lo = disk->private_data;
1369        int err;
1370
1371        if (atomic_dec_return(&lo->lo_refcnt))
1372                return;
1373
1374        mutex_lock(&lo->lo_ctl_mutex);
1375        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1376                /*
1377                 * In autoclear mode, stop the loop thread
1378                 * and remove configuration after last close.
1379                 */
1380                err = loop_clr_fd(lo);
1381                if (!err)
1382                        return;
1383        } else {
1384                /*
1385                 * Otherwise keep thread (if running) and config,
1386                 * but flush possible ongoing bios in thread.
1387                 */
1388                loop_flush(lo);
1389        }
1390
1391        mutex_unlock(&lo->lo_ctl_mutex);
1392}
1393
1394static const struct block_device_operations lo_fops = {
1395        .owner =        THIS_MODULE,
1396        .open =         lo_open,
1397        .release =      lo_release,
1398        .ioctl =        lo_ioctl,
1399#ifdef CONFIG_COMPAT
1400        .compat_ioctl = lo_compat_ioctl,
1401#endif
1402};
1403
1404/*
1405 * And now the modules code and kernel interface.
1406 */
1407static int max_loop;
1408module_param(max_loop, int, S_IRUGO);
1409MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1410module_param(max_part, int, S_IRUGO);
1411MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1412MODULE_LICENSE("GPL");
1413MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1414
1415int loop_register_transfer(struct loop_func_table *funcs)
1416{
1417        unsigned int n = funcs->number;
1418
1419        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1420                return -EINVAL;
1421        xfer_funcs[n] = funcs;
1422        return 0;
1423}
1424
1425static int unregister_transfer_cb(int id, void *ptr, void *data)
1426{
1427        struct loop_device *lo = ptr;
1428        struct loop_func_table *xfer = data;
1429
1430        mutex_lock(&lo->lo_ctl_mutex);
1431        if (lo->lo_encryption == xfer)
1432                loop_release_xfer(lo);
1433        mutex_unlock(&lo->lo_ctl_mutex);
1434        return 0;
1435}
1436
1437int loop_unregister_transfer(int number)
1438{
1439        unsigned int n = number;
1440        struct loop_func_table *xfer;
1441
1442        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1443                return -EINVAL;
1444
1445        xfer_funcs[n] = NULL;
1446        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1447        return 0;
1448}
1449
1450EXPORT_SYMBOL(loop_register_transfer);
1451EXPORT_SYMBOL(loop_unregister_transfer);
1452
1453static int loop_queue_rq(struct blk_mq_hw_ctx *hctx,
1454                const struct blk_mq_queue_data *bd)
1455{
1456        struct loop_cmd *cmd = blk_mq_rq_to_pdu(bd->rq);
1457        struct loop_device *lo = cmd->rq->q->queuedata;
1458
1459        blk_mq_start_request(bd->rq);
1460
1461        if (lo->lo_state != Lo_bound)
1462                return -EIO;
1463
1464        if (cmd->rq->cmd_flags & REQ_WRITE) {
1465                struct loop_device *lo = cmd->rq->q->queuedata;
1466                bool need_sched = true;
1467
1468                spin_lock_irq(&lo->lo_lock);
1469                if (lo->write_started)
1470                        need_sched = false;
1471                else
1472                        lo->write_started = true;
1473                list_add_tail(&cmd->list, &lo->write_cmd_head);
1474                spin_unlock_irq(&lo->lo_lock);
1475
1476                if (need_sched)
1477                        queue_work(lo->wq, &lo->write_work);
1478        } else {
1479                queue_work(lo->wq, &cmd->read_work);
1480        }
1481
1482        return BLK_MQ_RQ_QUEUE_OK;
1483}
1484
1485static void loop_handle_cmd(struct loop_cmd *cmd)
1486{
1487        const bool write = cmd->rq->cmd_flags & REQ_WRITE;
1488        struct loop_device *lo = cmd->rq->q->queuedata;
1489        int ret = -EIO;
1490
1491        if (write && (lo->lo_flags & LO_FLAGS_READ_ONLY))
1492                goto failed;
1493
1494        ret = do_req_filebacked(lo, cmd->rq);
1495
1496 failed:
1497        if (ret)
1498                cmd->rq->errors = -EIO;
1499        blk_mq_complete_request(cmd->rq);
1500}
1501
1502static void loop_queue_write_work(struct work_struct *work)
1503{
1504        struct loop_device *lo =
1505                container_of(work, struct loop_device, write_work);
1506        LIST_HEAD(cmd_list);
1507
1508        spin_lock_irq(&lo->lo_lock);
1509 repeat:
1510        list_splice_init(&lo->write_cmd_head, &cmd_list);
1511        spin_unlock_irq(&lo->lo_lock);
1512
1513        while (!list_empty(&cmd_list)) {
1514                struct loop_cmd *cmd = list_first_entry(&cmd_list,
1515                                struct loop_cmd, list);
1516                list_del_init(&cmd->list);
1517                loop_handle_cmd(cmd);
1518        }
1519
1520        spin_lock_irq(&lo->lo_lock);
1521        if (!list_empty(&lo->write_cmd_head))
1522                goto repeat;
1523        lo->write_started = false;
1524        spin_unlock_irq(&lo->lo_lock);
1525}
1526
1527static void loop_queue_read_work(struct work_struct *work)
1528{
1529        struct loop_cmd *cmd =
1530                container_of(work, struct loop_cmd, read_work);
1531
1532        loop_handle_cmd(cmd);
1533}
1534
1535static int loop_init_request(void *data, struct request *rq,
1536                unsigned int hctx_idx, unsigned int request_idx,
1537                unsigned int numa_node)
1538{
1539        struct loop_cmd *cmd = blk_mq_rq_to_pdu(rq);
1540
1541        cmd->rq = rq;
1542        INIT_WORK(&cmd->read_work, loop_queue_read_work);
1543
1544        return 0;
1545}
1546
1547static struct blk_mq_ops loop_mq_ops = {
1548        .queue_rq       = loop_queue_rq,
1549        .map_queue      = blk_mq_map_queue,
1550        .init_request   = loop_init_request,
1551};
1552
1553static int loop_add(struct loop_device **l, int i)
1554{
1555        struct loop_device *lo;
1556        struct gendisk *disk;
1557        int err;
1558
1559        err = -ENOMEM;
1560        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1561        if (!lo)
1562                goto out;
1563
1564        lo->lo_state = Lo_unbound;
1565
1566        /* allocate id, if @id >= 0, we're requesting that specific id */
1567        if (i >= 0) {
1568                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1569                if (err == -ENOSPC)
1570                        err = -EEXIST;
1571        } else {
1572                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1573        }
1574        if (err < 0)
1575                goto out_free_dev;
1576        i = err;
1577
1578        err = -ENOMEM;
1579        lo->tag_set.ops = &loop_mq_ops;
1580        lo->tag_set.nr_hw_queues = 1;
1581        lo->tag_set.queue_depth = 128;
1582        lo->tag_set.numa_node = NUMA_NO_NODE;
1583        lo->tag_set.cmd_size = sizeof(struct loop_cmd);
1584        lo->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
1585        lo->tag_set.driver_data = lo;
1586
1587        err = blk_mq_alloc_tag_set(&lo->tag_set);
1588        if (err)
1589                goto out_free_idr;
1590
1591        lo->lo_queue = blk_mq_init_queue(&lo->tag_set);
1592        if (IS_ERR_OR_NULL(lo->lo_queue)) {
1593                err = PTR_ERR(lo->lo_queue);
1594                goto out_cleanup_tags;
1595        }
1596        lo->lo_queue->queuedata = lo;
1597
1598        INIT_LIST_HEAD(&lo->write_cmd_head);
1599        INIT_WORK(&lo->write_work, loop_queue_write_work);
1600
1601        disk = lo->lo_disk = alloc_disk(1 << part_shift);
1602        if (!disk)
1603                goto out_free_queue;
1604
1605        /*
1606         * Disable partition scanning by default. The in-kernel partition
1607         * scanning can be requested individually per-device during its
1608         * setup. Userspace can always add and remove partitions from all
1609         * devices. The needed partition minors are allocated from the
1610         * extended minor space, the main loop device numbers will continue
1611         * to match the loop minors, regardless of the number of partitions
1612         * used.
1613         *
1614         * If max_part is given, partition scanning is globally enabled for
1615         * all loop devices. The minors for the main loop devices will be
1616         * multiples of max_part.
1617         *
1618         * Note: Global-for-all-devices, set-only-at-init, read-only module
1619         * parameteters like 'max_loop' and 'max_part' make things needlessly
1620         * complicated, are too static, inflexible and may surprise
1621         * userspace tools. Parameters like this in general should be avoided.
1622         */
1623        if (!part_shift)
1624                disk->flags |= GENHD_FL_NO_PART_SCAN;
1625        disk->flags |= GENHD_FL_EXT_DEVT;
1626        mutex_init(&lo->lo_ctl_mutex);
1627        atomic_set(&lo->lo_refcnt, 0);
1628        lo->lo_number           = i;
1629        spin_lock_init(&lo->lo_lock);
1630        disk->major             = LOOP_MAJOR;
1631        disk->first_minor       = i << part_shift;
1632        disk->fops              = &lo_fops;
1633        disk->private_data      = lo;
1634        disk->queue             = lo->lo_queue;
1635        sprintf(disk->disk_name, "loop%d", i);
1636        add_disk(disk);
1637        *l = lo;
1638        return lo->lo_number;
1639
1640out_free_queue:
1641        blk_cleanup_queue(lo->lo_queue);
1642out_cleanup_tags:
1643        blk_mq_free_tag_set(&lo->tag_set);
1644out_free_idr:
1645        idr_remove(&loop_index_idr, i);
1646out_free_dev:
1647        kfree(lo);
1648out:
1649        return err;
1650}
1651
1652static void loop_remove(struct loop_device *lo)
1653{
1654        blk_cleanup_queue(lo->lo_queue);
1655        del_gendisk(lo->lo_disk);
1656        blk_mq_free_tag_set(&lo->tag_set);
1657        put_disk(lo->lo_disk);
1658        kfree(lo);
1659}
1660
1661static int find_free_cb(int id, void *ptr, void *data)
1662{
1663        struct loop_device *lo = ptr;
1664        struct loop_device **l = data;
1665
1666        if (lo->lo_state == Lo_unbound) {
1667                *l = lo;
1668                return 1;
1669        }
1670        return 0;
1671}
1672
1673static int loop_lookup(struct loop_device **l, int i)
1674{
1675        struct loop_device *lo;
1676        int ret = -ENODEV;
1677
1678        if (i < 0) {
1679                int err;
1680
1681                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1682                if (err == 1) {
1683                        *l = lo;
1684                        ret = lo->lo_number;
1685                }
1686                goto out;
1687        }
1688
1689        /* lookup and return a specific i */
1690        lo = idr_find(&loop_index_idr, i);
1691        if (lo) {
1692                *l = lo;
1693                ret = lo->lo_number;
1694        }
1695out:
1696        return ret;
1697}
1698
1699static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1700{
1701        struct loop_device *lo;
1702        struct kobject *kobj;
1703        int err;
1704
1705        mutex_lock(&loop_index_mutex);
1706        err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1707        if (err < 0)
1708                err = loop_add(&lo, MINOR(dev) >> part_shift);
1709        if (err < 0)
1710                kobj = NULL;
1711        else
1712                kobj = get_disk(lo->lo_disk);
1713        mutex_unlock(&loop_index_mutex);
1714
1715        *part = 0;
1716        return kobj;
1717}
1718
1719static long loop_control_ioctl(struct file *file, unsigned int cmd,
1720                               unsigned long parm)
1721{
1722        struct loop_device *lo;
1723        int ret = -ENOSYS;
1724
1725        mutex_lock(&loop_index_mutex);
1726        switch (cmd) {
1727        case LOOP_CTL_ADD:
1728                ret = loop_lookup(&lo, parm);
1729                if (ret >= 0) {
1730                        ret = -EEXIST;
1731                        break;
1732                }
1733                ret = loop_add(&lo, parm);
1734                break;
1735        case LOOP_CTL_REMOVE:
1736                ret = loop_lookup(&lo, parm);
1737                if (ret < 0)
1738                        break;
1739                mutex_lock(&lo->lo_ctl_mutex);
1740                if (lo->lo_state != Lo_unbound) {
1741                        ret = -EBUSY;
1742                        mutex_unlock(&lo->lo_ctl_mutex);
1743                        break;
1744                }
1745                if (atomic_read(&lo->lo_refcnt) > 0) {
1746                        ret = -EBUSY;
1747                        mutex_unlock(&lo->lo_ctl_mutex);
1748                        break;
1749                }
1750                lo->lo_disk->private_data = NULL;
1751                mutex_unlock(&lo->lo_ctl_mutex);
1752                idr_remove(&loop_index_idr, lo->lo_number);
1753                loop_remove(lo);
1754                break;
1755        case LOOP_CTL_GET_FREE:
1756                ret = loop_lookup(&lo, -1);
1757                if (ret >= 0)
1758                        break;
1759                ret = loop_add(&lo, -1);
1760        }
1761        mutex_unlock(&loop_index_mutex);
1762
1763        return ret;
1764}
1765
1766static const struct file_operations loop_ctl_fops = {
1767        .open           = nonseekable_open,
1768        .unlocked_ioctl = loop_control_ioctl,
1769        .compat_ioctl   = loop_control_ioctl,
1770        .owner          = THIS_MODULE,
1771        .llseek         = noop_llseek,
1772};
1773
1774static struct miscdevice loop_misc = {
1775        .minor          = LOOP_CTRL_MINOR,
1776        .name           = "loop-control",
1777        .fops           = &loop_ctl_fops,
1778};
1779
1780MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1781MODULE_ALIAS("devname:loop-control");
1782
1783static int __init loop_init(void)
1784{
1785        int i, nr;
1786        unsigned long range;
1787        struct loop_device *lo;
1788        int err;
1789
1790        err = misc_register(&loop_misc);
1791        if (err < 0)
1792                return err;
1793
1794        part_shift = 0;
1795        if (max_part > 0) {
1796                part_shift = fls(max_part);
1797
1798                /*
1799                 * Adjust max_part according to part_shift as it is exported
1800                 * to user space so that user can decide correct minor number
1801                 * if [s]he want to create more devices.
1802                 *
1803                 * Note that -1 is required because partition 0 is reserved
1804                 * for the whole disk.
1805                 */
1806                max_part = (1UL << part_shift) - 1;
1807        }
1808
1809        if ((1UL << part_shift) > DISK_MAX_PARTS) {
1810                err = -EINVAL;
1811                goto misc_out;
1812        }
1813
1814        if (max_loop > 1UL << (MINORBITS - part_shift)) {
1815                err = -EINVAL;
1816                goto misc_out;
1817        }
1818
1819        /*
1820         * If max_loop is specified, create that many devices upfront.
1821         * This also becomes a hard limit. If max_loop is not specified,
1822         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1823         * init time. Loop devices can be requested on-demand with the
1824         * /dev/loop-control interface, or be instantiated by accessing
1825         * a 'dead' device node.
1826         */
1827        if (max_loop) {
1828                nr = max_loop;
1829                range = max_loop << part_shift;
1830        } else {
1831                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1832                range = 1UL << MINORBITS;
1833        }
1834
1835        if (register_blkdev(LOOP_MAJOR, "loop")) {
1836                err = -EIO;
1837                goto misc_out;
1838        }
1839
1840        blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1841                                  THIS_MODULE, loop_probe, NULL, NULL);
1842
1843        /* pre-create number of devices given by config or max_loop */
1844        mutex_lock(&loop_index_mutex);
1845        for (i = 0; i < nr; i++)
1846                loop_add(&lo, i);
1847        mutex_unlock(&loop_index_mutex);
1848
1849        printk(KERN_INFO "loop: module loaded\n");
1850        return 0;
1851
1852misc_out:
1853        misc_deregister(&loop_misc);
1854        return err;
1855}
1856
1857static int loop_exit_cb(int id, void *ptr, void *data)
1858{
1859        struct loop_device *lo = ptr;
1860
1861        loop_remove(lo);
1862        return 0;
1863}
1864
1865static void __exit loop_exit(void)
1866{
1867        unsigned long range;
1868
1869        range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1870
1871        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1872        idr_destroy(&loop_index_idr);
1873
1874        blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1875        unregister_blkdev(LOOP_MAJOR, "loop");
1876
1877        misc_deregister(&loop_misc);
1878}
1879
1880module_init(loop_init);
1881module_exit(loop_exit);
1882
1883#ifndef MODULE
1884static int __init max_loop_setup(char *str)
1885{
1886        max_loop = simple_strtol(str, NULL, 0);
1887        return 1;
1888}
1889
1890__setup("max_loop=", max_loop_setup);
1891#endif
1892