linux/drivers/char/ipmi/ipmi_msghandler.c
<<
>>
Prefs
   1/*
   2 * ipmi_msghandler.c
   3 *
   4 * Incoming and outgoing message routing for an IPMI interface.
   5 *
   6 * Author: MontaVista Software, Inc.
   7 *         Corey Minyard <minyard@mvista.com>
   8 *         source@mvista.com
   9 *
  10 * Copyright 2002 MontaVista Software Inc.
  11 *
  12 *  This program is free software; you can redistribute it and/or modify it
  13 *  under the terms of the GNU General Public License as published by the
  14 *  Free Software Foundation; either version 2 of the License, or (at your
  15 *  option) any later version.
  16 *
  17 *
  18 *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
  19 *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
  20 *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
  21 *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
  22 *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
  23 *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
  24 *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
  25 *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
  26 *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
  27 *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
  28 *
  29 *  You should have received a copy of the GNU General Public License along
  30 *  with this program; if not, write to the Free Software Foundation, Inc.,
  31 *  675 Mass Ave, Cambridge, MA 02139, USA.
  32 */
  33
  34#include <linux/module.h>
  35#include <linux/errno.h>
  36#include <linux/poll.h>
  37#include <linux/sched.h>
  38#include <linux/seq_file.h>
  39#include <linux/spinlock.h>
  40#include <linux/mutex.h>
  41#include <linux/slab.h>
  42#include <linux/ipmi.h>
  43#include <linux/ipmi_smi.h>
  44#include <linux/notifier.h>
  45#include <linux/init.h>
  46#include <linux/proc_fs.h>
  47#include <linux/rcupdate.h>
  48#include <linux/interrupt.h>
  49
  50#define PFX "IPMI message handler: "
  51
  52#define IPMI_DRIVER_VERSION "39.2"
  53
  54static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void);
  55static int ipmi_init_msghandler(void);
  56static void smi_recv_tasklet(unsigned long);
  57static void handle_new_recv_msgs(ipmi_smi_t intf);
  58static void need_waiter(ipmi_smi_t intf);
  59static int handle_one_recv_msg(ipmi_smi_t          intf,
  60                               struct ipmi_smi_msg *msg);
  61
  62static int initialized;
  63
  64#ifdef CONFIG_PROC_FS
  65static struct proc_dir_entry *proc_ipmi_root;
  66#endif /* CONFIG_PROC_FS */
  67
  68/* Remain in auto-maintenance mode for this amount of time (in ms). */
  69#define IPMI_MAINTENANCE_MODE_TIMEOUT 30000
  70
  71#define MAX_EVENTS_IN_QUEUE     25
  72
  73/*
  74 * Don't let a message sit in a queue forever, always time it with at lest
  75 * the max message timer.  This is in milliseconds.
  76 */
  77#define MAX_MSG_TIMEOUT         60000
  78
  79/* Call every ~1000 ms. */
  80#define IPMI_TIMEOUT_TIME       1000
  81
  82/* How many jiffies does it take to get to the timeout time. */
  83#define IPMI_TIMEOUT_JIFFIES    ((IPMI_TIMEOUT_TIME * HZ) / 1000)
  84
  85/*
  86 * Request events from the queue every second (this is the number of
  87 * IPMI_TIMEOUT_TIMES between event requests).  Hopefully, in the
  88 * future, IPMI will add a way to know immediately if an event is in
  89 * the queue and this silliness can go away.
  90 */
  91#define IPMI_REQUEST_EV_TIME    (1000 / (IPMI_TIMEOUT_TIME))
  92
  93/*
  94 * The main "user" data structure.
  95 */
  96struct ipmi_user {
  97        struct list_head link;
  98
  99        /* Set to false when the user is destroyed. */
 100        bool valid;
 101
 102        struct kref refcount;
 103
 104        /* The upper layer that handles receive messages. */
 105        struct ipmi_user_hndl *handler;
 106        void             *handler_data;
 107
 108        /* The interface this user is bound to. */
 109        ipmi_smi_t intf;
 110
 111        /* Does this interface receive IPMI events? */
 112        bool gets_events;
 113};
 114
 115struct cmd_rcvr {
 116        struct list_head link;
 117
 118        ipmi_user_t   user;
 119        unsigned char netfn;
 120        unsigned char cmd;
 121        unsigned int  chans;
 122
 123        /*
 124         * This is used to form a linked lised during mass deletion.
 125         * Since this is in an RCU list, we cannot use the link above
 126         * or change any data until the RCU period completes.  So we
 127         * use this next variable during mass deletion so we can have
 128         * a list and don't have to wait and restart the search on
 129         * every individual deletion of a command.
 130         */
 131        struct cmd_rcvr *next;
 132};
 133
 134struct seq_table {
 135        unsigned int         inuse : 1;
 136        unsigned int         broadcast : 1;
 137
 138        unsigned long        timeout;
 139        unsigned long        orig_timeout;
 140        unsigned int         retries_left;
 141
 142        /*
 143         * To verify on an incoming send message response that this is
 144         * the message that the response is for, we keep a sequence id
 145         * and increment it every time we send a message.
 146         */
 147        long                 seqid;
 148
 149        /*
 150         * This is held so we can properly respond to the message on a
 151         * timeout, and it is used to hold the temporary data for
 152         * retransmission, too.
 153         */
 154        struct ipmi_recv_msg *recv_msg;
 155};
 156
 157/*
 158 * Store the information in a msgid (long) to allow us to find a
 159 * sequence table entry from the msgid.
 160 */
 161#define STORE_SEQ_IN_MSGID(seq, seqid) (((seq&0xff)<<26) | (seqid&0x3ffffff))
 162
 163#define GET_SEQ_FROM_MSGID(msgid, seq, seqid) \
 164        do {                                                            \
 165                seq = ((msgid >> 26) & 0x3f);                           \
 166                seqid = (msgid & 0x3fffff);                             \
 167        } while (0)
 168
 169#define NEXT_SEQID(seqid) (((seqid) + 1) & 0x3fffff)
 170
 171struct ipmi_channel {
 172        unsigned char medium;
 173        unsigned char protocol;
 174
 175        /*
 176         * My slave address.  This is initialized to IPMI_BMC_SLAVE_ADDR,
 177         * but may be changed by the user.
 178         */
 179        unsigned char address;
 180
 181        /*
 182         * My LUN.  This should generally stay the SMS LUN, but just in
 183         * case...
 184         */
 185        unsigned char lun;
 186};
 187
 188#ifdef CONFIG_PROC_FS
 189struct ipmi_proc_entry {
 190        char                   *name;
 191        struct ipmi_proc_entry *next;
 192};
 193#endif
 194
 195struct bmc_device {
 196        struct platform_device pdev;
 197        struct ipmi_device_id  id;
 198        unsigned char          guid[16];
 199        int                    guid_set;
 200        char                   name[16];
 201        struct kref            usecount;
 202};
 203#define to_bmc_device(x) container_of((x), struct bmc_device, pdev.dev)
 204
 205/*
 206 * Various statistics for IPMI, these index stats[] in the ipmi_smi
 207 * structure.
 208 */
 209enum ipmi_stat_indexes {
 210        /* Commands we got from the user that were invalid. */
 211        IPMI_STAT_sent_invalid_commands = 0,
 212
 213        /* Commands we sent to the MC. */
 214        IPMI_STAT_sent_local_commands,
 215
 216        /* Responses from the MC that were delivered to a user. */
 217        IPMI_STAT_handled_local_responses,
 218
 219        /* Responses from the MC that were not delivered to a user. */
 220        IPMI_STAT_unhandled_local_responses,
 221
 222        /* Commands we sent out to the IPMB bus. */
 223        IPMI_STAT_sent_ipmb_commands,
 224
 225        /* Commands sent on the IPMB that had errors on the SEND CMD */
 226        IPMI_STAT_sent_ipmb_command_errs,
 227
 228        /* Each retransmit increments this count. */
 229        IPMI_STAT_retransmitted_ipmb_commands,
 230
 231        /*
 232         * When a message times out (runs out of retransmits) this is
 233         * incremented.
 234         */
 235        IPMI_STAT_timed_out_ipmb_commands,
 236
 237        /*
 238         * This is like above, but for broadcasts.  Broadcasts are
 239         * *not* included in the above count (they are expected to
 240         * time out).
 241         */
 242        IPMI_STAT_timed_out_ipmb_broadcasts,
 243
 244        /* Responses I have sent to the IPMB bus. */
 245        IPMI_STAT_sent_ipmb_responses,
 246
 247        /* The response was delivered to the user. */
 248        IPMI_STAT_handled_ipmb_responses,
 249
 250        /* The response had invalid data in it. */
 251        IPMI_STAT_invalid_ipmb_responses,
 252
 253        /* The response didn't have anyone waiting for it. */
 254        IPMI_STAT_unhandled_ipmb_responses,
 255
 256        /* Commands we sent out to the IPMB bus. */
 257        IPMI_STAT_sent_lan_commands,
 258
 259        /* Commands sent on the IPMB that had errors on the SEND CMD */
 260        IPMI_STAT_sent_lan_command_errs,
 261
 262        /* Each retransmit increments this count. */
 263        IPMI_STAT_retransmitted_lan_commands,
 264
 265        /*
 266         * When a message times out (runs out of retransmits) this is
 267         * incremented.
 268         */
 269        IPMI_STAT_timed_out_lan_commands,
 270
 271        /* Responses I have sent to the IPMB bus. */
 272        IPMI_STAT_sent_lan_responses,
 273
 274        /* The response was delivered to the user. */
 275        IPMI_STAT_handled_lan_responses,
 276
 277        /* The response had invalid data in it. */
 278        IPMI_STAT_invalid_lan_responses,
 279
 280        /* The response didn't have anyone waiting for it. */
 281        IPMI_STAT_unhandled_lan_responses,
 282
 283        /* The command was delivered to the user. */
 284        IPMI_STAT_handled_commands,
 285
 286        /* The command had invalid data in it. */
 287        IPMI_STAT_invalid_commands,
 288
 289        /* The command didn't have anyone waiting for it. */
 290        IPMI_STAT_unhandled_commands,
 291
 292        /* Invalid data in an event. */
 293        IPMI_STAT_invalid_events,
 294
 295        /* Events that were received with the proper format. */
 296        IPMI_STAT_events,
 297
 298        /* Retransmissions on IPMB that failed. */
 299        IPMI_STAT_dropped_rexmit_ipmb_commands,
 300
 301        /* Retransmissions on LAN that failed. */
 302        IPMI_STAT_dropped_rexmit_lan_commands,
 303
 304        /* This *must* remain last, add new values above this. */
 305        IPMI_NUM_STATS
 306};
 307
 308
 309#define IPMI_IPMB_NUM_SEQ       64
 310#define IPMI_MAX_CHANNELS       16
 311struct ipmi_smi {
 312        /* What interface number are we? */
 313        int intf_num;
 314
 315        struct kref refcount;
 316
 317        /* Set when the interface is being unregistered. */
 318        bool in_shutdown;
 319
 320        /* Used for a list of interfaces. */
 321        struct list_head link;
 322
 323        /*
 324         * The list of upper layers that are using me.  seq_lock
 325         * protects this.
 326         */
 327        struct list_head users;
 328
 329        /* Information to supply to users. */
 330        unsigned char ipmi_version_major;
 331        unsigned char ipmi_version_minor;
 332
 333        /* Used for wake ups at startup. */
 334        wait_queue_head_t waitq;
 335
 336        struct bmc_device *bmc;
 337        char *my_dev_name;
 338
 339        /*
 340         * This is the lower-layer's sender routine.  Note that you
 341         * must either be holding the ipmi_interfaces_mutex or be in
 342         * an umpreemptible region to use this.  You must fetch the
 343         * value into a local variable and make sure it is not NULL.
 344         */
 345        struct ipmi_smi_handlers *handlers;
 346        void                     *send_info;
 347
 348#ifdef CONFIG_PROC_FS
 349        /* A list of proc entries for this interface. */
 350        struct mutex           proc_entry_lock;
 351        struct ipmi_proc_entry *proc_entries;
 352#endif
 353
 354        /* Driver-model device for the system interface. */
 355        struct device          *si_dev;
 356
 357        /*
 358         * A table of sequence numbers for this interface.  We use the
 359         * sequence numbers for IPMB messages that go out of the
 360         * interface to match them up with their responses.  A routine
 361         * is called periodically to time the items in this list.
 362         */
 363        spinlock_t       seq_lock;
 364        struct seq_table seq_table[IPMI_IPMB_NUM_SEQ];
 365        int curr_seq;
 366
 367        /*
 368         * Messages queued for delivery.  If delivery fails (out of memory
 369         * for instance), They will stay in here to be processed later in a
 370         * periodic timer interrupt.  The tasklet is for handling received
 371         * messages directly from the handler.
 372         */
 373        spinlock_t       waiting_rcv_msgs_lock;
 374        struct list_head waiting_rcv_msgs;
 375        atomic_t         watchdog_pretimeouts_to_deliver;
 376        struct tasklet_struct recv_tasklet;
 377
 378        spinlock_t             xmit_msgs_lock;
 379        struct list_head       xmit_msgs;
 380        struct ipmi_smi_msg    *curr_msg;
 381        struct list_head       hp_xmit_msgs;
 382
 383        /*
 384         * The list of command receivers that are registered for commands
 385         * on this interface.
 386         */
 387        struct mutex     cmd_rcvrs_mutex;
 388        struct list_head cmd_rcvrs;
 389
 390        /*
 391         * Events that were queues because no one was there to receive
 392         * them.
 393         */
 394        spinlock_t       events_lock; /* For dealing with event stuff. */
 395        struct list_head waiting_events;
 396        unsigned int     waiting_events_count; /* How many events in queue? */
 397        char             delivering_events;
 398        char             event_msg_printed;
 399        atomic_t         event_waiters;
 400        unsigned int     ticks_to_req_ev;
 401        int              last_needs_timer;
 402
 403        /*
 404         * The event receiver for my BMC, only really used at panic
 405         * shutdown as a place to store this.
 406         */
 407        unsigned char event_receiver;
 408        unsigned char event_receiver_lun;
 409        unsigned char local_sel_device;
 410        unsigned char local_event_generator;
 411
 412        /* For handling of maintenance mode. */
 413        int maintenance_mode;
 414        bool maintenance_mode_enable;
 415        int auto_maintenance_timeout;
 416        spinlock_t maintenance_mode_lock; /* Used in a timer... */
 417
 418        /*
 419         * A cheap hack, if this is non-null and a message to an
 420         * interface comes in with a NULL user, call this routine with
 421         * it.  Note that the message will still be freed by the
 422         * caller.  This only works on the system interface.
 423         */
 424        void (*null_user_handler)(ipmi_smi_t intf, struct ipmi_recv_msg *msg);
 425
 426        /*
 427         * When we are scanning the channels for an SMI, this will
 428         * tell which channel we are scanning.
 429         */
 430        int curr_channel;
 431
 432        /* Channel information */
 433        struct ipmi_channel channels[IPMI_MAX_CHANNELS];
 434
 435        /* Proc FS stuff. */
 436        struct proc_dir_entry *proc_dir;
 437        char                  proc_dir_name[10];
 438
 439        atomic_t stats[IPMI_NUM_STATS];
 440
 441        /*
 442         * run_to_completion duplicate of smb_info, smi_info
 443         * and ipmi_serial_info structures. Used to decrease numbers of
 444         * parameters passed by "low" level IPMI code.
 445         */
 446        int run_to_completion;
 447};
 448#define to_si_intf_from_dev(device) container_of(device, struct ipmi_smi, dev)
 449
 450/**
 451 * The driver model view of the IPMI messaging driver.
 452 */
 453static struct platform_driver ipmidriver = {
 454        .driver = {
 455                .name = "ipmi",
 456                .bus = &platform_bus_type
 457        }
 458};
 459static DEFINE_MUTEX(ipmidriver_mutex);
 460
 461static LIST_HEAD(ipmi_interfaces);
 462static DEFINE_MUTEX(ipmi_interfaces_mutex);
 463
 464/*
 465 * List of watchers that want to know when smi's are added and deleted.
 466 */
 467static LIST_HEAD(smi_watchers);
 468static DEFINE_MUTEX(smi_watchers_mutex);
 469
 470#define ipmi_inc_stat(intf, stat) \
 471        atomic_inc(&(intf)->stats[IPMI_STAT_ ## stat])
 472#define ipmi_get_stat(intf, stat) \
 473        ((unsigned int) atomic_read(&(intf)->stats[IPMI_STAT_ ## stat]))
 474
 475static char *addr_src_to_str[] = { "invalid", "hotmod", "hardcoded", "SPMI",
 476                                   "ACPI", "SMBIOS", "PCI",
 477                                   "device-tree", "default" };
 478
 479const char *ipmi_addr_src_to_str(enum ipmi_addr_src src)
 480{
 481        if (src > SI_DEFAULT)
 482                src = 0; /* Invalid */
 483        return addr_src_to_str[src];
 484}
 485EXPORT_SYMBOL(ipmi_addr_src_to_str);
 486
 487static int is_lan_addr(struct ipmi_addr *addr)
 488{
 489        return addr->addr_type == IPMI_LAN_ADDR_TYPE;
 490}
 491
 492static int is_ipmb_addr(struct ipmi_addr *addr)
 493{
 494        return addr->addr_type == IPMI_IPMB_ADDR_TYPE;
 495}
 496
 497static int is_ipmb_bcast_addr(struct ipmi_addr *addr)
 498{
 499        return addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE;
 500}
 501
 502static void free_recv_msg_list(struct list_head *q)
 503{
 504        struct ipmi_recv_msg *msg, *msg2;
 505
 506        list_for_each_entry_safe(msg, msg2, q, link) {
 507                list_del(&msg->link);
 508                ipmi_free_recv_msg(msg);
 509        }
 510}
 511
 512static void free_smi_msg_list(struct list_head *q)
 513{
 514        struct ipmi_smi_msg *msg, *msg2;
 515
 516        list_for_each_entry_safe(msg, msg2, q, link) {
 517                list_del(&msg->link);
 518                ipmi_free_smi_msg(msg);
 519        }
 520}
 521
 522static void clean_up_interface_data(ipmi_smi_t intf)
 523{
 524        int              i;
 525        struct cmd_rcvr  *rcvr, *rcvr2;
 526        struct list_head list;
 527
 528        tasklet_kill(&intf->recv_tasklet);
 529
 530        free_smi_msg_list(&intf->waiting_rcv_msgs);
 531        free_recv_msg_list(&intf->waiting_events);
 532
 533        /*
 534         * Wholesale remove all the entries from the list in the
 535         * interface and wait for RCU to know that none are in use.
 536         */
 537        mutex_lock(&intf->cmd_rcvrs_mutex);
 538        INIT_LIST_HEAD(&list);
 539        list_splice_init_rcu(&intf->cmd_rcvrs, &list, synchronize_rcu);
 540        mutex_unlock(&intf->cmd_rcvrs_mutex);
 541
 542        list_for_each_entry_safe(rcvr, rcvr2, &list, link)
 543                kfree(rcvr);
 544
 545        for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
 546                if ((intf->seq_table[i].inuse)
 547                                        && (intf->seq_table[i].recv_msg))
 548                        ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
 549        }
 550}
 551
 552static void intf_free(struct kref *ref)
 553{
 554        ipmi_smi_t intf = container_of(ref, struct ipmi_smi, refcount);
 555
 556        clean_up_interface_data(intf);
 557        kfree(intf);
 558}
 559
 560struct watcher_entry {
 561        int              intf_num;
 562        ipmi_smi_t       intf;
 563        struct list_head link;
 564};
 565
 566int ipmi_smi_watcher_register(struct ipmi_smi_watcher *watcher)
 567{
 568        ipmi_smi_t intf;
 569        LIST_HEAD(to_deliver);
 570        struct watcher_entry *e, *e2;
 571
 572        mutex_lock(&smi_watchers_mutex);
 573
 574        mutex_lock(&ipmi_interfaces_mutex);
 575
 576        /* Build a list of things to deliver. */
 577        list_for_each_entry(intf, &ipmi_interfaces, link) {
 578                if (intf->intf_num == -1)
 579                        continue;
 580                e = kmalloc(sizeof(*e), GFP_KERNEL);
 581                if (!e)
 582                        goto out_err;
 583                kref_get(&intf->refcount);
 584                e->intf = intf;
 585                e->intf_num = intf->intf_num;
 586                list_add_tail(&e->link, &to_deliver);
 587        }
 588
 589        /* We will succeed, so add it to the list. */
 590        list_add(&watcher->link, &smi_watchers);
 591
 592        mutex_unlock(&ipmi_interfaces_mutex);
 593
 594        list_for_each_entry_safe(e, e2, &to_deliver, link) {
 595                list_del(&e->link);
 596                watcher->new_smi(e->intf_num, e->intf->si_dev);
 597                kref_put(&e->intf->refcount, intf_free);
 598                kfree(e);
 599        }
 600
 601        mutex_unlock(&smi_watchers_mutex);
 602
 603        return 0;
 604
 605 out_err:
 606        mutex_unlock(&ipmi_interfaces_mutex);
 607        mutex_unlock(&smi_watchers_mutex);
 608        list_for_each_entry_safe(e, e2, &to_deliver, link) {
 609                list_del(&e->link);
 610                kref_put(&e->intf->refcount, intf_free);
 611                kfree(e);
 612        }
 613        return -ENOMEM;
 614}
 615EXPORT_SYMBOL(ipmi_smi_watcher_register);
 616
 617int ipmi_smi_watcher_unregister(struct ipmi_smi_watcher *watcher)
 618{
 619        mutex_lock(&smi_watchers_mutex);
 620        list_del(&(watcher->link));
 621        mutex_unlock(&smi_watchers_mutex);
 622        return 0;
 623}
 624EXPORT_SYMBOL(ipmi_smi_watcher_unregister);
 625
 626/*
 627 * Must be called with smi_watchers_mutex held.
 628 */
 629static void
 630call_smi_watchers(int i, struct device *dev)
 631{
 632        struct ipmi_smi_watcher *w;
 633
 634        list_for_each_entry(w, &smi_watchers, link) {
 635                if (try_module_get(w->owner)) {
 636                        w->new_smi(i, dev);
 637                        module_put(w->owner);
 638                }
 639        }
 640}
 641
 642static int
 643ipmi_addr_equal(struct ipmi_addr *addr1, struct ipmi_addr *addr2)
 644{
 645        if (addr1->addr_type != addr2->addr_type)
 646                return 0;
 647
 648        if (addr1->channel != addr2->channel)
 649                return 0;
 650
 651        if (addr1->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
 652                struct ipmi_system_interface_addr *smi_addr1
 653                    = (struct ipmi_system_interface_addr *) addr1;
 654                struct ipmi_system_interface_addr *smi_addr2
 655                    = (struct ipmi_system_interface_addr *) addr2;
 656                return (smi_addr1->lun == smi_addr2->lun);
 657        }
 658
 659        if (is_ipmb_addr(addr1) || is_ipmb_bcast_addr(addr1)) {
 660                struct ipmi_ipmb_addr *ipmb_addr1
 661                    = (struct ipmi_ipmb_addr *) addr1;
 662                struct ipmi_ipmb_addr *ipmb_addr2
 663                    = (struct ipmi_ipmb_addr *) addr2;
 664
 665                return ((ipmb_addr1->slave_addr == ipmb_addr2->slave_addr)
 666                        && (ipmb_addr1->lun == ipmb_addr2->lun));
 667        }
 668
 669        if (is_lan_addr(addr1)) {
 670                struct ipmi_lan_addr *lan_addr1
 671                        = (struct ipmi_lan_addr *) addr1;
 672                struct ipmi_lan_addr *lan_addr2
 673                    = (struct ipmi_lan_addr *) addr2;
 674
 675                return ((lan_addr1->remote_SWID == lan_addr2->remote_SWID)
 676                        && (lan_addr1->local_SWID == lan_addr2->local_SWID)
 677                        && (lan_addr1->session_handle
 678                            == lan_addr2->session_handle)
 679                        && (lan_addr1->lun == lan_addr2->lun));
 680        }
 681
 682        return 1;
 683}
 684
 685int ipmi_validate_addr(struct ipmi_addr *addr, int len)
 686{
 687        if (len < sizeof(struct ipmi_system_interface_addr))
 688                return -EINVAL;
 689
 690        if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
 691                if (addr->channel != IPMI_BMC_CHANNEL)
 692                        return -EINVAL;
 693                return 0;
 694        }
 695
 696        if ((addr->channel == IPMI_BMC_CHANNEL)
 697            || (addr->channel >= IPMI_MAX_CHANNELS)
 698            || (addr->channel < 0))
 699                return -EINVAL;
 700
 701        if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
 702                if (len < sizeof(struct ipmi_ipmb_addr))
 703                        return -EINVAL;
 704                return 0;
 705        }
 706
 707        if (is_lan_addr(addr)) {
 708                if (len < sizeof(struct ipmi_lan_addr))
 709                        return -EINVAL;
 710                return 0;
 711        }
 712
 713        return -EINVAL;
 714}
 715EXPORT_SYMBOL(ipmi_validate_addr);
 716
 717unsigned int ipmi_addr_length(int addr_type)
 718{
 719        if (addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
 720                return sizeof(struct ipmi_system_interface_addr);
 721
 722        if ((addr_type == IPMI_IPMB_ADDR_TYPE)
 723                        || (addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE))
 724                return sizeof(struct ipmi_ipmb_addr);
 725
 726        if (addr_type == IPMI_LAN_ADDR_TYPE)
 727                return sizeof(struct ipmi_lan_addr);
 728
 729        return 0;
 730}
 731EXPORT_SYMBOL(ipmi_addr_length);
 732
 733static void deliver_response(struct ipmi_recv_msg *msg)
 734{
 735        if (!msg->user) {
 736                ipmi_smi_t    intf = msg->user_msg_data;
 737
 738                /* Special handling for NULL users. */
 739                if (intf->null_user_handler) {
 740                        intf->null_user_handler(intf, msg);
 741                        ipmi_inc_stat(intf, handled_local_responses);
 742                } else {
 743                        /* No handler, so give up. */
 744                        ipmi_inc_stat(intf, unhandled_local_responses);
 745                }
 746                ipmi_free_recv_msg(msg);
 747        } else {
 748                ipmi_user_t user = msg->user;
 749                user->handler->ipmi_recv_hndl(msg, user->handler_data);
 750        }
 751}
 752
 753static void
 754deliver_err_response(struct ipmi_recv_msg *msg, int err)
 755{
 756        msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
 757        msg->msg_data[0] = err;
 758        msg->msg.netfn |= 1; /* Convert to a response. */
 759        msg->msg.data_len = 1;
 760        msg->msg.data = msg->msg_data;
 761        deliver_response(msg);
 762}
 763
 764/*
 765 * Find the next sequence number not being used and add the given
 766 * message with the given timeout to the sequence table.  This must be
 767 * called with the interface's seq_lock held.
 768 */
 769static int intf_next_seq(ipmi_smi_t           intf,
 770                         struct ipmi_recv_msg *recv_msg,
 771                         unsigned long        timeout,
 772                         int                  retries,
 773                         int                  broadcast,
 774                         unsigned char        *seq,
 775                         long                 *seqid)
 776{
 777        int          rv = 0;
 778        unsigned int i;
 779
 780        for (i = intf->curr_seq; (i+1)%IPMI_IPMB_NUM_SEQ != intf->curr_seq;
 781                                        i = (i+1)%IPMI_IPMB_NUM_SEQ) {
 782                if (!intf->seq_table[i].inuse)
 783                        break;
 784        }
 785
 786        if (!intf->seq_table[i].inuse) {
 787                intf->seq_table[i].recv_msg = recv_msg;
 788
 789                /*
 790                 * Start with the maximum timeout, when the send response
 791                 * comes in we will start the real timer.
 792                 */
 793                intf->seq_table[i].timeout = MAX_MSG_TIMEOUT;
 794                intf->seq_table[i].orig_timeout = timeout;
 795                intf->seq_table[i].retries_left = retries;
 796                intf->seq_table[i].broadcast = broadcast;
 797                intf->seq_table[i].inuse = 1;
 798                intf->seq_table[i].seqid = NEXT_SEQID(intf->seq_table[i].seqid);
 799                *seq = i;
 800                *seqid = intf->seq_table[i].seqid;
 801                intf->curr_seq = (i+1)%IPMI_IPMB_NUM_SEQ;
 802                need_waiter(intf);
 803        } else {
 804                rv = -EAGAIN;
 805        }
 806
 807        return rv;
 808}
 809
 810/*
 811 * Return the receive message for the given sequence number and
 812 * release the sequence number so it can be reused.  Some other data
 813 * is passed in to be sure the message matches up correctly (to help
 814 * guard against message coming in after their timeout and the
 815 * sequence number being reused).
 816 */
 817static int intf_find_seq(ipmi_smi_t           intf,
 818                         unsigned char        seq,
 819                         short                channel,
 820                         unsigned char        cmd,
 821                         unsigned char        netfn,
 822                         struct ipmi_addr     *addr,
 823                         struct ipmi_recv_msg **recv_msg)
 824{
 825        int           rv = -ENODEV;
 826        unsigned long flags;
 827
 828        if (seq >= IPMI_IPMB_NUM_SEQ)
 829                return -EINVAL;
 830
 831        spin_lock_irqsave(&(intf->seq_lock), flags);
 832        if (intf->seq_table[seq].inuse) {
 833                struct ipmi_recv_msg *msg = intf->seq_table[seq].recv_msg;
 834
 835                if ((msg->addr.channel == channel) && (msg->msg.cmd == cmd)
 836                                && (msg->msg.netfn == netfn)
 837                                && (ipmi_addr_equal(addr, &(msg->addr)))) {
 838                        *recv_msg = msg;
 839                        intf->seq_table[seq].inuse = 0;
 840                        rv = 0;
 841                }
 842        }
 843        spin_unlock_irqrestore(&(intf->seq_lock), flags);
 844
 845        return rv;
 846}
 847
 848
 849/* Start the timer for a specific sequence table entry. */
 850static int intf_start_seq_timer(ipmi_smi_t intf,
 851                                long       msgid)
 852{
 853        int           rv = -ENODEV;
 854        unsigned long flags;
 855        unsigned char seq;
 856        unsigned long seqid;
 857
 858
 859        GET_SEQ_FROM_MSGID(msgid, seq, seqid);
 860
 861        spin_lock_irqsave(&(intf->seq_lock), flags);
 862        /*
 863         * We do this verification because the user can be deleted
 864         * while a message is outstanding.
 865         */
 866        if ((intf->seq_table[seq].inuse)
 867                                && (intf->seq_table[seq].seqid == seqid)) {
 868                struct seq_table *ent = &(intf->seq_table[seq]);
 869                ent->timeout = ent->orig_timeout;
 870                rv = 0;
 871        }
 872        spin_unlock_irqrestore(&(intf->seq_lock), flags);
 873
 874        return rv;
 875}
 876
 877/* Got an error for the send message for a specific sequence number. */
 878static int intf_err_seq(ipmi_smi_t   intf,
 879                        long         msgid,
 880                        unsigned int err)
 881{
 882        int                  rv = -ENODEV;
 883        unsigned long        flags;
 884        unsigned char        seq;
 885        unsigned long        seqid;
 886        struct ipmi_recv_msg *msg = NULL;
 887
 888
 889        GET_SEQ_FROM_MSGID(msgid, seq, seqid);
 890
 891        spin_lock_irqsave(&(intf->seq_lock), flags);
 892        /*
 893         * We do this verification because the user can be deleted
 894         * while a message is outstanding.
 895         */
 896        if ((intf->seq_table[seq].inuse)
 897                                && (intf->seq_table[seq].seqid == seqid)) {
 898                struct seq_table *ent = &(intf->seq_table[seq]);
 899
 900                ent->inuse = 0;
 901                msg = ent->recv_msg;
 902                rv = 0;
 903        }
 904        spin_unlock_irqrestore(&(intf->seq_lock), flags);
 905
 906        if (msg)
 907                deliver_err_response(msg, err);
 908
 909        return rv;
 910}
 911
 912
 913int ipmi_create_user(unsigned int          if_num,
 914                     struct ipmi_user_hndl *handler,
 915                     void                  *handler_data,
 916                     ipmi_user_t           *user)
 917{
 918        unsigned long flags;
 919        ipmi_user_t   new_user;
 920        int           rv = 0;
 921        ipmi_smi_t    intf;
 922
 923        /*
 924         * There is no module usecount here, because it's not
 925         * required.  Since this can only be used by and called from
 926         * other modules, they will implicitly use this module, and
 927         * thus this can't be removed unless the other modules are
 928         * removed.
 929         */
 930
 931        if (handler == NULL)
 932                return -EINVAL;
 933
 934        /*
 935         * Make sure the driver is actually initialized, this handles
 936         * problems with initialization order.
 937         */
 938        if (!initialized) {
 939                rv = ipmi_init_msghandler();
 940                if (rv)
 941                        return rv;
 942
 943                /*
 944                 * The init code doesn't return an error if it was turned
 945                 * off, but it won't initialize.  Check that.
 946                 */
 947                if (!initialized)
 948                        return -ENODEV;
 949        }
 950
 951        new_user = kmalloc(sizeof(*new_user), GFP_KERNEL);
 952        if (!new_user)
 953                return -ENOMEM;
 954
 955        mutex_lock(&ipmi_interfaces_mutex);
 956        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
 957                if (intf->intf_num == if_num)
 958                        goto found;
 959        }
 960        /* Not found, return an error */
 961        rv = -EINVAL;
 962        goto out_kfree;
 963
 964 found:
 965        /* Note that each existing user holds a refcount to the interface. */
 966        kref_get(&intf->refcount);
 967
 968        kref_init(&new_user->refcount);
 969        new_user->handler = handler;
 970        new_user->handler_data = handler_data;
 971        new_user->intf = intf;
 972        new_user->gets_events = false;
 973
 974        if (!try_module_get(intf->handlers->owner)) {
 975                rv = -ENODEV;
 976                goto out_kref;
 977        }
 978
 979        if (intf->handlers->inc_usecount) {
 980                rv = intf->handlers->inc_usecount(intf->send_info);
 981                if (rv) {
 982                        module_put(intf->handlers->owner);
 983                        goto out_kref;
 984                }
 985        }
 986
 987        /*
 988         * Hold the lock so intf->handlers is guaranteed to be good
 989         * until now
 990         */
 991        mutex_unlock(&ipmi_interfaces_mutex);
 992
 993        new_user->valid = true;
 994        spin_lock_irqsave(&intf->seq_lock, flags);
 995        list_add_rcu(&new_user->link, &intf->users);
 996        spin_unlock_irqrestore(&intf->seq_lock, flags);
 997        if (handler->ipmi_watchdog_pretimeout) {
 998                /* User wants pretimeouts, so make sure to watch for them. */
 999                if (atomic_inc_return(&intf->event_waiters) == 1)
1000                        need_waiter(intf);
1001        }
1002        *user = new_user;
1003        return 0;
1004
1005out_kref:
1006        kref_put(&intf->refcount, intf_free);
1007out_kfree:
1008        mutex_unlock(&ipmi_interfaces_mutex);
1009        kfree(new_user);
1010        return rv;
1011}
1012EXPORT_SYMBOL(ipmi_create_user);
1013
1014int ipmi_get_smi_info(int if_num, struct ipmi_smi_info *data)
1015{
1016        int           rv = 0;
1017        ipmi_smi_t    intf;
1018        struct ipmi_smi_handlers *handlers;
1019
1020        mutex_lock(&ipmi_interfaces_mutex);
1021        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
1022                if (intf->intf_num == if_num)
1023                        goto found;
1024        }
1025        /* Not found, return an error */
1026        rv = -EINVAL;
1027        mutex_unlock(&ipmi_interfaces_mutex);
1028        return rv;
1029
1030found:
1031        handlers = intf->handlers;
1032        rv = -ENOSYS;
1033        if (handlers->get_smi_info)
1034                rv = handlers->get_smi_info(intf->send_info, data);
1035        mutex_unlock(&ipmi_interfaces_mutex);
1036
1037        return rv;
1038}
1039EXPORT_SYMBOL(ipmi_get_smi_info);
1040
1041static void free_user(struct kref *ref)
1042{
1043        ipmi_user_t user = container_of(ref, struct ipmi_user, refcount);
1044        kfree(user);
1045}
1046
1047int ipmi_destroy_user(ipmi_user_t user)
1048{
1049        ipmi_smi_t       intf = user->intf;
1050        int              i;
1051        unsigned long    flags;
1052        struct cmd_rcvr  *rcvr;
1053        struct cmd_rcvr  *rcvrs = NULL;
1054
1055        user->valid = false;
1056
1057        if (user->handler->ipmi_watchdog_pretimeout)
1058                atomic_dec(&intf->event_waiters);
1059
1060        if (user->gets_events)
1061                atomic_dec(&intf->event_waiters);
1062
1063        /* Remove the user from the interface's sequence table. */
1064        spin_lock_irqsave(&intf->seq_lock, flags);
1065        list_del_rcu(&user->link);
1066
1067        for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
1068                if (intf->seq_table[i].inuse
1069                    && (intf->seq_table[i].recv_msg->user == user)) {
1070                        intf->seq_table[i].inuse = 0;
1071                        ipmi_free_recv_msg(intf->seq_table[i].recv_msg);
1072                }
1073        }
1074        spin_unlock_irqrestore(&intf->seq_lock, flags);
1075
1076        /*
1077         * Remove the user from the command receiver's table.  First
1078         * we build a list of everything (not using the standard link,
1079         * since other things may be using it till we do
1080         * synchronize_rcu()) then free everything in that list.
1081         */
1082        mutex_lock(&intf->cmd_rcvrs_mutex);
1083        list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1084                if (rcvr->user == user) {
1085                        list_del_rcu(&rcvr->link);
1086                        rcvr->next = rcvrs;
1087                        rcvrs = rcvr;
1088                }
1089        }
1090        mutex_unlock(&intf->cmd_rcvrs_mutex);
1091        synchronize_rcu();
1092        while (rcvrs) {
1093                rcvr = rcvrs;
1094                rcvrs = rcvr->next;
1095                kfree(rcvr);
1096        }
1097
1098        mutex_lock(&ipmi_interfaces_mutex);
1099        if (intf->handlers) {
1100                module_put(intf->handlers->owner);
1101                if (intf->handlers->dec_usecount)
1102                        intf->handlers->dec_usecount(intf->send_info);
1103        }
1104        mutex_unlock(&ipmi_interfaces_mutex);
1105
1106        kref_put(&intf->refcount, intf_free);
1107
1108        kref_put(&user->refcount, free_user);
1109
1110        return 0;
1111}
1112EXPORT_SYMBOL(ipmi_destroy_user);
1113
1114void ipmi_get_version(ipmi_user_t   user,
1115                      unsigned char *major,
1116                      unsigned char *minor)
1117{
1118        *major = user->intf->ipmi_version_major;
1119        *minor = user->intf->ipmi_version_minor;
1120}
1121EXPORT_SYMBOL(ipmi_get_version);
1122
1123int ipmi_set_my_address(ipmi_user_t   user,
1124                        unsigned int  channel,
1125                        unsigned char address)
1126{
1127        if (channel >= IPMI_MAX_CHANNELS)
1128                return -EINVAL;
1129        user->intf->channels[channel].address = address;
1130        return 0;
1131}
1132EXPORT_SYMBOL(ipmi_set_my_address);
1133
1134int ipmi_get_my_address(ipmi_user_t   user,
1135                        unsigned int  channel,
1136                        unsigned char *address)
1137{
1138        if (channel >= IPMI_MAX_CHANNELS)
1139                return -EINVAL;
1140        *address = user->intf->channels[channel].address;
1141        return 0;
1142}
1143EXPORT_SYMBOL(ipmi_get_my_address);
1144
1145int ipmi_set_my_LUN(ipmi_user_t   user,
1146                    unsigned int  channel,
1147                    unsigned char LUN)
1148{
1149        if (channel >= IPMI_MAX_CHANNELS)
1150                return -EINVAL;
1151        user->intf->channels[channel].lun = LUN & 0x3;
1152        return 0;
1153}
1154EXPORT_SYMBOL(ipmi_set_my_LUN);
1155
1156int ipmi_get_my_LUN(ipmi_user_t   user,
1157                    unsigned int  channel,
1158                    unsigned char *address)
1159{
1160        if (channel >= IPMI_MAX_CHANNELS)
1161                return -EINVAL;
1162        *address = user->intf->channels[channel].lun;
1163        return 0;
1164}
1165EXPORT_SYMBOL(ipmi_get_my_LUN);
1166
1167int ipmi_get_maintenance_mode(ipmi_user_t user)
1168{
1169        int           mode;
1170        unsigned long flags;
1171
1172        spin_lock_irqsave(&user->intf->maintenance_mode_lock, flags);
1173        mode = user->intf->maintenance_mode;
1174        spin_unlock_irqrestore(&user->intf->maintenance_mode_lock, flags);
1175
1176        return mode;
1177}
1178EXPORT_SYMBOL(ipmi_get_maintenance_mode);
1179
1180static void maintenance_mode_update(ipmi_smi_t intf)
1181{
1182        if (intf->handlers->set_maintenance_mode)
1183                intf->handlers->set_maintenance_mode(
1184                        intf->send_info, intf->maintenance_mode_enable);
1185}
1186
1187int ipmi_set_maintenance_mode(ipmi_user_t user, int mode)
1188{
1189        int           rv = 0;
1190        unsigned long flags;
1191        ipmi_smi_t    intf = user->intf;
1192
1193        spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1194        if (intf->maintenance_mode != mode) {
1195                switch (mode) {
1196                case IPMI_MAINTENANCE_MODE_AUTO:
1197                        intf->maintenance_mode_enable
1198                                = (intf->auto_maintenance_timeout > 0);
1199                        break;
1200
1201                case IPMI_MAINTENANCE_MODE_OFF:
1202                        intf->maintenance_mode_enable = false;
1203                        break;
1204
1205                case IPMI_MAINTENANCE_MODE_ON:
1206                        intf->maintenance_mode_enable = true;
1207                        break;
1208
1209                default:
1210                        rv = -EINVAL;
1211                        goto out_unlock;
1212                }
1213                intf->maintenance_mode = mode;
1214
1215                maintenance_mode_update(intf);
1216        }
1217 out_unlock:
1218        spin_unlock_irqrestore(&intf->maintenance_mode_lock, flags);
1219
1220        return rv;
1221}
1222EXPORT_SYMBOL(ipmi_set_maintenance_mode);
1223
1224int ipmi_set_gets_events(ipmi_user_t user, bool val)
1225{
1226        unsigned long        flags;
1227        ipmi_smi_t           intf = user->intf;
1228        struct ipmi_recv_msg *msg, *msg2;
1229        struct list_head     msgs;
1230
1231        INIT_LIST_HEAD(&msgs);
1232
1233        spin_lock_irqsave(&intf->events_lock, flags);
1234        if (user->gets_events == val)
1235                goto out;
1236
1237        user->gets_events = val;
1238
1239        if (val) {
1240                if (atomic_inc_return(&intf->event_waiters) == 1)
1241                        need_waiter(intf);
1242        } else {
1243                atomic_dec(&intf->event_waiters);
1244        }
1245
1246        if (intf->delivering_events)
1247                /*
1248                 * Another thread is delivering events for this, so
1249                 * let it handle any new events.
1250                 */
1251                goto out;
1252
1253        /* Deliver any queued events. */
1254        while (user->gets_events && !list_empty(&intf->waiting_events)) {
1255                list_for_each_entry_safe(msg, msg2, &intf->waiting_events, link)
1256                        list_move_tail(&msg->link, &msgs);
1257                intf->waiting_events_count = 0;
1258                if (intf->event_msg_printed) {
1259                        printk(KERN_WARNING PFX "Event queue no longer"
1260                               " full\n");
1261                        intf->event_msg_printed = 0;
1262                }
1263
1264                intf->delivering_events = 1;
1265                spin_unlock_irqrestore(&intf->events_lock, flags);
1266
1267                list_for_each_entry_safe(msg, msg2, &msgs, link) {
1268                        msg->user = user;
1269                        kref_get(&user->refcount);
1270                        deliver_response(msg);
1271                }
1272
1273                spin_lock_irqsave(&intf->events_lock, flags);
1274                intf->delivering_events = 0;
1275        }
1276
1277 out:
1278        spin_unlock_irqrestore(&intf->events_lock, flags);
1279
1280        return 0;
1281}
1282EXPORT_SYMBOL(ipmi_set_gets_events);
1283
1284static struct cmd_rcvr *find_cmd_rcvr(ipmi_smi_t    intf,
1285                                      unsigned char netfn,
1286                                      unsigned char cmd,
1287                                      unsigned char chan)
1288{
1289        struct cmd_rcvr *rcvr;
1290
1291        list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1292                if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1293                                        && (rcvr->chans & (1 << chan)))
1294                        return rcvr;
1295        }
1296        return NULL;
1297}
1298
1299static int is_cmd_rcvr_exclusive(ipmi_smi_t    intf,
1300                                 unsigned char netfn,
1301                                 unsigned char cmd,
1302                                 unsigned int  chans)
1303{
1304        struct cmd_rcvr *rcvr;
1305
1306        list_for_each_entry_rcu(rcvr, &intf->cmd_rcvrs, link) {
1307                if ((rcvr->netfn == netfn) && (rcvr->cmd == cmd)
1308                                        && (rcvr->chans & chans))
1309                        return 0;
1310        }
1311        return 1;
1312}
1313
1314int ipmi_register_for_cmd(ipmi_user_t   user,
1315                          unsigned char netfn,
1316                          unsigned char cmd,
1317                          unsigned int  chans)
1318{
1319        ipmi_smi_t      intf = user->intf;
1320        struct cmd_rcvr *rcvr;
1321        int             rv = 0;
1322
1323
1324        rcvr = kmalloc(sizeof(*rcvr), GFP_KERNEL);
1325        if (!rcvr)
1326                return -ENOMEM;
1327        rcvr->cmd = cmd;
1328        rcvr->netfn = netfn;
1329        rcvr->chans = chans;
1330        rcvr->user = user;
1331
1332        mutex_lock(&intf->cmd_rcvrs_mutex);
1333        /* Make sure the command/netfn is not already registered. */
1334        if (!is_cmd_rcvr_exclusive(intf, netfn, cmd, chans)) {
1335                rv = -EBUSY;
1336                goto out_unlock;
1337        }
1338
1339        if (atomic_inc_return(&intf->event_waiters) == 1)
1340                need_waiter(intf);
1341
1342        list_add_rcu(&rcvr->link, &intf->cmd_rcvrs);
1343
1344 out_unlock:
1345        mutex_unlock(&intf->cmd_rcvrs_mutex);
1346        if (rv)
1347                kfree(rcvr);
1348
1349        return rv;
1350}
1351EXPORT_SYMBOL(ipmi_register_for_cmd);
1352
1353int ipmi_unregister_for_cmd(ipmi_user_t   user,
1354                            unsigned char netfn,
1355                            unsigned char cmd,
1356                            unsigned int  chans)
1357{
1358        ipmi_smi_t      intf = user->intf;
1359        struct cmd_rcvr *rcvr;
1360        struct cmd_rcvr *rcvrs = NULL;
1361        int i, rv = -ENOENT;
1362
1363        mutex_lock(&intf->cmd_rcvrs_mutex);
1364        for (i = 0; i < IPMI_NUM_CHANNELS; i++) {
1365                if (((1 << i) & chans) == 0)
1366                        continue;
1367                rcvr = find_cmd_rcvr(intf, netfn, cmd, i);
1368                if (rcvr == NULL)
1369                        continue;
1370                if (rcvr->user == user) {
1371                        rv = 0;
1372                        rcvr->chans &= ~chans;
1373                        if (rcvr->chans == 0) {
1374                                list_del_rcu(&rcvr->link);
1375                                rcvr->next = rcvrs;
1376                                rcvrs = rcvr;
1377                        }
1378                }
1379        }
1380        mutex_unlock(&intf->cmd_rcvrs_mutex);
1381        synchronize_rcu();
1382        while (rcvrs) {
1383                atomic_dec(&intf->event_waiters);
1384                rcvr = rcvrs;
1385                rcvrs = rcvr->next;
1386                kfree(rcvr);
1387        }
1388        return rv;
1389}
1390EXPORT_SYMBOL(ipmi_unregister_for_cmd);
1391
1392static unsigned char
1393ipmb_checksum(unsigned char *data, int size)
1394{
1395        unsigned char csum = 0;
1396
1397        for (; size > 0; size--, data++)
1398                csum += *data;
1399
1400        return -csum;
1401}
1402
1403static inline void format_ipmb_msg(struct ipmi_smi_msg   *smi_msg,
1404                                   struct kernel_ipmi_msg *msg,
1405                                   struct ipmi_ipmb_addr *ipmb_addr,
1406                                   long                  msgid,
1407                                   unsigned char         ipmb_seq,
1408                                   int                   broadcast,
1409                                   unsigned char         source_address,
1410                                   unsigned char         source_lun)
1411{
1412        int i = broadcast;
1413
1414        /* Format the IPMB header data. */
1415        smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1416        smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1417        smi_msg->data[2] = ipmb_addr->channel;
1418        if (broadcast)
1419                smi_msg->data[3] = 0;
1420        smi_msg->data[i+3] = ipmb_addr->slave_addr;
1421        smi_msg->data[i+4] = (msg->netfn << 2) | (ipmb_addr->lun & 0x3);
1422        smi_msg->data[i+5] = ipmb_checksum(&(smi_msg->data[i+3]), 2);
1423        smi_msg->data[i+6] = source_address;
1424        smi_msg->data[i+7] = (ipmb_seq << 2) | source_lun;
1425        smi_msg->data[i+8] = msg->cmd;
1426
1427        /* Now tack on the data to the message. */
1428        if (msg->data_len > 0)
1429                memcpy(&(smi_msg->data[i+9]), msg->data,
1430                       msg->data_len);
1431        smi_msg->data_size = msg->data_len + 9;
1432
1433        /* Now calculate the checksum and tack it on. */
1434        smi_msg->data[i+smi_msg->data_size]
1435                = ipmb_checksum(&(smi_msg->data[i+6]),
1436                                smi_msg->data_size-6);
1437
1438        /*
1439         * Add on the checksum size and the offset from the
1440         * broadcast.
1441         */
1442        smi_msg->data_size += 1 + i;
1443
1444        smi_msg->msgid = msgid;
1445}
1446
1447static inline void format_lan_msg(struct ipmi_smi_msg   *smi_msg,
1448                                  struct kernel_ipmi_msg *msg,
1449                                  struct ipmi_lan_addr  *lan_addr,
1450                                  long                  msgid,
1451                                  unsigned char         ipmb_seq,
1452                                  unsigned char         source_lun)
1453{
1454        /* Format the IPMB header data. */
1455        smi_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
1456        smi_msg->data[1] = IPMI_SEND_MSG_CMD;
1457        smi_msg->data[2] = lan_addr->channel;
1458        smi_msg->data[3] = lan_addr->session_handle;
1459        smi_msg->data[4] = lan_addr->remote_SWID;
1460        smi_msg->data[5] = (msg->netfn << 2) | (lan_addr->lun & 0x3);
1461        smi_msg->data[6] = ipmb_checksum(&(smi_msg->data[4]), 2);
1462        smi_msg->data[7] = lan_addr->local_SWID;
1463        smi_msg->data[8] = (ipmb_seq << 2) | source_lun;
1464        smi_msg->data[9] = msg->cmd;
1465
1466        /* Now tack on the data to the message. */
1467        if (msg->data_len > 0)
1468                memcpy(&(smi_msg->data[10]), msg->data,
1469                       msg->data_len);
1470        smi_msg->data_size = msg->data_len + 10;
1471
1472        /* Now calculate the checksum and tack it on. */
1473        smi_msg->data[smi_msg->data_size]
1474                = ipmb_checksum(&(smi_msg->data[7]),
1475                                smi_msg->data_size-7);
1476
1477        /*
1478         * Add on the checksum size and the offset from the
1479         * broadcast.
1480         */
1481        smi_msg->data_size += 1;
1482
1483        smi_msg->msgid = msgid;
1484}
1485
1486static struct ipmi_smi_msg *smi_add_send_msg(ipmi_smi_t intf,
1487                                             struct ipmi_smi_msg *smi_msg,
1488                                             int priority)
1489{
1490        if (intf->curr_msg) {
1491                if (priority > 0)
1492                        list_add_tail(&smi_msg->link, &intf->hp_xmit_msgs);
1493                else
1494                        list_add_tail(&smi_msg->link, &intf->xmit_msgs);
1495                smi_msg = NULL;
1496        } else {
1497                intf->curr_msg = smi_msg;
1498        }
1499
1500        return smi_msg;
1501}
1502
1503
1504static void smi_send(ipmi_smi_t intf, struct ipmi_smi_handlers *handlers,
1505                     struct ipmi_smi_msg *smi_msg, int priority)
1506{
1507        int run_to_completion = intf->run_to_completion;
1508
1509        if (run_to_completion) {
1510                smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1511        } else {
1512                unsigned long flags;
1513
1514                spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
1515                smi_msg = smi_add_send_msg(intf, smi_msg, priority);
1516                spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
1517        }
1518
1519        if (smi_msg)
1520                handlers->sender(intf->send_info, smi_msg);
1521}
1522
1523/*
1524 * Separate from ipmi_request so that the user does not have to be
1525 * supplied in certain circumstances (mainly at panic time).  If
1526 * messages are supplied, they will be freed, even if an error
1527 * occurs.
1528 */
1529static int i_ipmi_request(ipmi_user_t          user,
1530                          ipmi_smi_t           intf,
1531                          struct ipmi_addr     *addr,
1532                          long                 msgid,
1533                          struct kernel_ipmi_msg *msg,
1534                          void                 *user_msg_data,
1535                          void                 *supplied_smi,
1536                          struct ipmi_recv_msg *supplied_recv,
1537                          int                  priority,
1538                          unsigned char        source_address,
1539                          unsigned char        source_lun,
1540                          int                  retries,
1541                          unsigned int         retry_time_ms)
1542{
1543        int                      rv = 0;
1544        struct ipmi_smi_msg      *smi_msg;
1545        struct ipmi_recv_msg     *recv_msg;
1546        unsigned long            flags;
1547
1548
1549        if (supplied_recv)
1550                recv_msg = supplied_recv;
1551        else {
1552                recv_msg = ipmi_alloc_recv_msg();
1553                if (recv_msg == NULL)
1554                        return -ENOMEM;
1555        }
1556        recv_msg->user_msg_data = user_msg_data;
1557
1558        if (supplied_smi)
1559                smi_msg = (struct ipmi_smi_msg *) supplied_smi;
1560        else {
1561                smi_msg = ipmi_alloc_smi_msg();
1562                if (smi_msg == NULL) {
1563                        ipmi_free_recv_msg(recv_msg);
1564                        return -ENOMEM;
1565                }
1566        }
1567
1568        rcu_read_lock();
1569        if (intf->in_shutdown) {
1570                rv = -ENODEV;
1571                goto out_err;
1572        }
1573
1574        recv_msg->user = user;
1575        if (user)
1576                kref_get(&user->refcount);
1577        recv_msg->msgid = msgid;
1578        /*
1579         * Store the message to send in the receive message so timeout
1580         * responses can get the proper response data.
1581         */
1582        recv_msg->msg = *msg;
1583
1584        if (addr->addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE) {
1585                struct ipmi_system_interface_addr *smi_addr;
1586
1587                if (msg->netfn & 1) {
1588                        /* Responses are not allowed to the SMI. */
1589                        rv = -EINVAL;
1590                        goto out_err;
1591                }
1592
1593                smi_addr = (struct ipmi_system_interface_addr *) addr;
1594                if (smi_addr->lun > 3) {
1595                        ipmi_inc_stat(intf, sent_invalid_commands);
1596                        rv = -EINVAL;
1597                        goto out_err;
1598                }
1599
1600                memcpy(&recv_msg->addr, smi_addr, sizeof(*smi_addr));
1601
1602                if ((msg->netfn == IPMI_NETFN_APP_REQUEST)
1603                    && ((msg->cmd == IPMI_SEND_MSG_CMD)
1604                        || (msg->cmd == IPMI_GET_MSG_CMD)
1605                        || (msg->cmd == IPMI_READ_EVENT_MSG_BUFFER_CMD))) {
1606                        /*
1607                         * We don't let the user do these, since we manage
1608                         * the sequence numbers.
1609                         */
1610                        ipmi_inc_stat(intf, sent_invalid_commands);
1611                        rv = -EINVAL;
1612                        goto out_err;
1613                }
1614
1615                if (((msg->netfn == IPMI_NETFN_APP_REQUEST)
1616                      && ((msg->cmd == IPMI_COLD_RESET_CMD)
1617                          || (msg->cmd == IPMI_WARM_RESET_CMD)))
1618                     || (msg->netfn == IPMI_NETFN_FIRMWARE_REQUEST)) {
1619                        spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
1620                        intf->auto_maintenance_timeout
1621                                = IPMI_MAINTENANCE_MODE_TIMEOUT;
1622                        if (!intf->maintenance_mode
1623                            && !intf->maintenance_mode_enable) {
1624                                intf->maintenance_mode_enable = true;
1625                                maintenance_mode_update(intf);
1626                        }
1627                        spin_unlock_irqrestore(&intf->maintenance_mode_lock,
1628                                               flags);
1629                }
1630
1631                if ((msg->data_len + 2) > IPMI_MAX_MSG_LENGTH) {
1632                        ipmi_inc_stat(intf, sent_invalid_commands);
1633                        rv = -EMSGSIZE;
1634                        goto out_err;
1635                }
1636
1637                smi_msg->data[0] = (msg->netfn << 2) | (smi_addr->lun & 0x3);
1638                smi_msg->data[1] = msg->cmd;
1639                smi_msg->msgid = msgid;
1640                smi_msg->user_data = recv_msg;
1641                if (msg->data_len > 0)
1642                        memcpy(&(smi_msg->data[2]), msg->data, msg->data_len);
1643                smi_msg->data_size = msg->data_len + 2;
1644                ipmi_inc_stat(intf, sent_local_commands);
1645        } else if (is_ipmb_addr(addr) || is_ipmb_bcast_addr(addr)) {
1646                struct ipmi_ipmb_addr *ipmb_addr;
1647                unsigned char         ipmb_seq;
1648                long                  seqid;
1649                int                   broadcast = 0;
1650
1651                if (addr->channel >= IPMI_MAX_CHANNELS) {
1652                        ipmi_inc_stat(intf, sent_invalid_commands);
1653                        rv = -EINVAL;
1654                        goto out_err;
1655                }
1656
1657                if (intf->channels[addr->channel].medium
1658                                        != IPMI_CHANNEL_MEDIUM_IPMB) {
1659                        ipmi_inc_stat(intf, sent_invalid_commands);
1660                        rv = -EINVAL;
1661                        goto out_err;
1662                }
1663
1664                if (retries < 0) {
1665                    if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE)
1666                        retries = 0; /* Don't retry broadcasts. */
1667                    else
1668                        retries = 4;
1669                }
1670                if (addr->addr_type == IPMI_IPMB_BROADCAST_ADDR_TYPE) {
1671                    /*
1672                     * Broadcasts add a zero at the beginning of the
1673                     * message, but otherwise is the same as an IPMB
1674                     * address.
1675                     */
1676                    addr->addr_type = IPMI_IPMB_ADDR_TYPE;
1677                    broadcast = 1;
1678                }
1679
1680
1681                /* Default to 1 second retries. */
1682                if (retry_time_ms == 0)
1683                    retry_time_ms = 1000;
1684
1685                /*
1686                 * 9 for the header and 1 for the checksum, plus
1687                 * possibly one for the broadcast.
1688                 */
1689                if ((msg->data_len + 10 + broadcast) > IPMI_MAX_MSG_LENGTH) {
1690                        ipmi_inc_stat(intf, sent_invalid_commands);
1691                        rv = -EMSGSIZE;
1692                        goto out_err;
1693                }
1694
1695                ipmb_addr = (struct ipmi_ipmb_addr *) addr;
1696                if (ipmb_addr->lun > 3) {
1697                        ipmi_inc_stat(intf, sent_invalid_commands);
1698                        rv = -EINVAL;
1699                        goto out_err;
1700                }
1701
1702                memcpy(&recv_msg->addr, ipmb_addr, sizeof(*ipmb_addr));
1703
1704                if (recv_msg->msg.netfn & 0x1) {
1705                        /*
1706                         * It's a response, so use the user's sequence
1707                         * from msgid.
1708                         */
1709                        ipmi_inc_stat(intf, sent_ipmb_responses);
1710                        format_ipmb_msg(smi_msg, msg, ipmb_addr, msgid,
1711                                        msgid, broadcast,
1712                                        source_address, source_lun);
1713
1714                        /*
1715                         * Save the receive message so we can use it
1716                         * to deliver the response.
1717                         */
1718                        smi_msg->user_data = recv_msg;
1719                } else {
1720                        /* It's a command, so get a sequence for it. */
1721
1722                        spin_lock_irqsave(&(intf->seq_lock), flags);
1723
1724                        /*
1725                         * Create a sequence number with a 1 second
1726                         * timeout and 4 retries.
1727                         */
1728                        rv = intf_next_seq(intf,
1729                                           recv_msg,
1730                                           retry_time_ms,
1731                                           retries,
1732                                           broadcast,
1733                                           &ipmb_seq,
1734                                           &seqid);
1735                        if (rv) {
1736                                /*
1737                                 * We have used up all the sequence numbers,
1738                                 * probably, so abort.
1739                                 */
1740                                spin_unlock_irqrestore(&(intf->seq_lock),
1741                                                       flags);
1742                                goto out_err;
1743                        }
1744
1745                        ipmi_inc_stat(intf, sent_ipmb_commands);
1746
1747                        /*
1748                         * Store the sequence number in the message,
1749                         * so that when the send message response
1750                         * comes back we can start the timer.
1751                         */
1752                        format_ipmb_msg(smi_msg, msg, ipmb_addr,
1753                                        STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1754                                        ipmb_seq, broadcast,
1755                                        source_address, source_lun);
1756
1757                        /*
1758                         * Copy the message into the recv message data, so we
1759                         * can retransmit it later if necessary.
1760                         */
1761                        memcpy(recv_msg->msg_data, smi_msg->data,
1762                               smi_msg->data_size);
1763                        recv_msg->msg.data = recv_msg->msg_data;
1764                        recv_msg->msg.data_len = smi_msg->data_size;
1765
1766                        /*
1767                         * We don't unlock until here, because we need
1768                         * to copy the completed message into the
1769                         * recv_msg before we release the lock.
1770                         * Otherwise, race conditions may bite us.  I
1771                         * know that's pretty paranoid, but I prefer
1772                         * to be correct.
1773                         */
1774                        spin_unlock_irqrestore(&(intf->seq_lock), flags);
1775                }
1776        } else if (is_lan_addr(addr)) {
1777                struct ipmi_lan_addr  *lan_addr;
1778                unsigned char         ipmb_seq;
1779                long                  seqid;
1780
1781                if (addr->channel >= IPMI_MAX_CHANNELS) {
1782                        ipmi_inc_stat(intf, sent_invalid_commands);
1783                        rv = -EINVAL;
1784                        goto out_err;
1785                }
1786
1787                if ((intf->channels[addr->channel].medium
1788                                != IPMI_CHANNEL_MEDIUM_8023LAN)
1789                    && (intf->channels[addr->channel].medium
1790                                != IPMI_CHANNEL_MEDIUM_ASYNC)) {
1791                        ipmi_inc_stat(intf, sent_invalid_commands);
1792                        rv = -EINVAL;
1793                        goto out_err;
1794                }
1795
1796                retries = 4;
1797
1798                /* Default to 1 second retries. */
1799                if (retry_time_ms == 0)
1800                    retry_time_ms = 1000;
1801
1802                /* 11 for the header and 1 for the checksum. */
1803                if ((msg->data_len + 12) > IPMI_MAX_MSG_LENGTH) {
1804                        ipmi_inc_stat(intf, sent_invalid_commands);
1805                        rv = -EMSGSIZE;
1806                        goto out_err;
1807                }
1808
1809                lan_addr = (struct ipmi_lan_addr *) addr;
1810                if (lan_addr->lun > 3) {
1811                        ipmi_inc_stat(intf, sent_invalid_commands);
1812                        rv = -EINVAL;
1813                        goto out_err;
1814                }
1815
1816                memcpy(&recv_msg->addr, lan_addr, sizeof(*lan_addr));
1817
1818                if (recv_msg->msg.netfn & 0x1) {
1819                        /*
1820                         * It's a response, so use the user's sequence
1821                         * from msgid.
1822                         */
1823                        ipmi_inc_stat(intf, sent_lan_responses);
1824                        format_lan_msg(smi_msg, msg, lan_addr, msgid,
1825                                       msgid, source_lun);
1826
1827                        /*
1828                         * Save the receive message so we can use it
1829                         * to deliver the response.
1830                         */
1831                        smi_msg->user_data = recv_msg;
1832                } else {
1833                        /* It's a command, so get a sequence for it. */
1834
1835                        spin_lock_irqsave(&(intf->seq_lock), flags);
1836
1837                        /*
1838                         * Create a sequence number with a 1 second
1839                         * timeout and 4 retries.
1840                         */
1841                        rv = intf_next_seq(intf,
1842                                           recv_msg,
1843                                           retry_time_ms,
1844                                           retries,
1845                                           0,
1846                                           &ipmb_seq,
1847                                           &seqid);
1848                        if (rv) {
1849                                /*
1850                                 * We have used up all the sequence numbers,
1851                                 * probably, so abort.
1852                                 */
1853                                spin_unlock_irqrestore(&(intf->seq_lock),
1854                                                       flags);
1855                                goto out_err;
1856                        }
1857
1858                        ipmi_inc_stat(intf, sent_lan_commands);
1859
1860                        /*
1861                         * Store the sequence number in the message,
1862                         * so that when the send message response
1863                         * comes back we can start the timer.
1864                         */
1865                        format_lan_msg(smi_msg, msg, lan_addr,
1866                                       STORE_SEQ_IN_MSGID(ipmb_seq, seqid),
1867                                       ipmb_seq, source_lun);
1868
1869                        /*
1870                         * Copy the message into the recv message data, so we
1871                         * can retransmit it later if necessary.
1872                         */
1873                        memcpy(recv_msg->msg_data, smi_msg->data,
1874                               smi_msg->data_size);
1875                        recv_msg->msg.data = recv_msg->msg_data;
1876                        recv_msg->msg.data_len = smi_msg->data_size;
1877
1878                        /*
1879                         * We don't unlock until here, because we need
1880                         * to copy the completed message into the
1881                         * recv_msg before we release the lock.
1882                         * Otherwise, race conditions may bite us.  I
1883                         * know that's pretty paranoid, but I prefer
1884                         * to be correct.
1885                         */
1886                        spin_unlock_irqrestore(&(intf->seq_lock), flags);
1887                }
1888        } else {
1889            /* Unknown address type. */
1890                ipmi_inc_stat(intf, sent_invalid_commands);
1891                rv = -EINVAL;
1892                goto out_err;
1893        }
1894
1895#ifdef DEBUG_MSGING
1896        {
1897                int m;
1898                for (m = 0; m < smi_msg->data_size; m++)
1899                        printk(" %2.2x", smi_msg->data[m]);
1900                printk("\n");
1901        }
1902#endif
1903
1904        smi_send(intf, intf->handlers, smi_msg, priority);
1905        rcu_read_unlock();
1906
1907        return 0;
1908
1909 out_err:
1910        rcu_read_unlock();
1911        ipmi_free_smi_msg(smi_msg);
1912        ipmi_free_recv_msg(recv_msg);
1913        return rv;
1914}
1915
1916static int check_addr(ipmi_smi_t       intf,
1917                      struct ipmi_addr *addr,
1918                      unsigned char    *saddr,
1919                      unsigned char    *lun)
1920{
1921        if (addr->channel >= IPMI_MAX_CHANNELS)
1922                return -EINVAL;
1923        *lun = intf->channels[addr->channel].lun;
1924        *saddr = intf->channels[addr->channel].address;
1925        return 0;
1926}
1927
1928int ipmi_request_settime(ipmi_user_t      user,
1929                         struct ipmi_addr *addr,
1930                         long             msgid,
1931                         struct kernel_ipmi_msg  *msg,
1932                         void             *user_msg_data,
1933                         int              priority,
1934                         int              retries,
1935                         unsigned int     retry_time_ms)
1936{
1937        unsigned char saddr = 0, lun = 0;
1938        int           rv;
1939
1940        if (!user)
1941                return -EINVAL;
1942        rv = check_addr(user->intf, addr, &saddr, &lun);
1943        if (rv)
1944                return rv;
1945        return i_ipmi_request(user,
1946                              user->intf,
1947                              addr,
1948                              msgid,
1949                              msg,
1950                              user_msg_data,
1951                              NULL, NULL,
1952                              priority,
1953                              saddr,
1954                              lun,
1955                              retries,
1956                              retry_time_ms);
1957}
1958EXPORT_SYMBOL(ipmi_request_settime);
1959
1960int ipmi_request_supply_msgs(ipmi_user_t          user,
1961                             struct ipmi_addr     *addr,
1962                             long                 msgid,
1963                             struct kernel_ipmi_msg *msg,
1964                             void                 *user_msg_data,
1965                             void                 *supplied_smi,
1966                             struct ipmi_recv_msg *supplied_recv,
1967                             int                  priority)
1968{
1969        unsigned char saddr = 0, lun = 0;
1970        int           rv;
1971
1972        if (!user)
1973                return -EINVAL;
1974        rv = check_addr(user->intf, addr, &saddr, &lun);
1975        if (rv)
1976                return rv;
1977        return i_ipmi_request(user,
1978                              user->intf,
1979                              addr,
1980                              msgid,
1981                              msg,
1982                              user_msg_data,
1983                              supplied_smi,
1984                              supplied_recv,
1985                              priority,
1986                              saddr,
1987                              lun,
1988                              -1, 0);
1989}
1990EXPORT_SYMBOL(ipmi_request_supply_msgs);
1991
1992#ifdef CONFIG_PROC_FS
1993static int smi_ipmb_proc_show(struct seq_file *m, void *v)
1994{
1995        ipmi_smi_t intf = m->private;
1996        int        i;
1997
1998        seq_printf(m, "%x", intf->channels[0].address);
1999        for (i = 1; i < IPMI_MAX_CHANNELS; i++)
2000                seq_printf(m, " %x", intf->channels[i].address);
2001        seq_putc(m, '\n');
2002
2003        return 0;
2004}
2005
2006static int smi_ipmb_proc_open(struct inode *inode, struct file *file)
2007{
2008        return single_open(file, smi_ipmb_proc_show, PDE_DATA(inode));
2009}
2010
2011static const struct file_operations smi_ipmb_proc_ops = {
2012        .open           = smi_ipmb_proc_open,
2013        .read           = seq_read,
2014        .llseek         = seq_lseek,
2015        .release        = single_release,
2016};
2017
2018static int smi_version_proc_show(struct seq_file *m, void *v)
2019{
2020        ipmi_smi_t intf = m->private;
2021
2022        seq_printf(m, "%u.%u\n",
2023                   ipmi_version_major(&intf->bmc->id),
2024                   ipmi_version_minor(&intf->bmc->id));
2025
2026        return 0;
2027}
2028
2029static int smi_version_proc_open(struct inode *inode, struct file *file)
2030{
2031        return single_open(file, smi_version_proc_show, PDE_DATA(inode));
2032}
2033
2034static const struct file_operations smi_version_proc_ops = {
2035        .open           = smi_version_proc_open,
2036        .read           = seq_read,
2037        .llseek         = seq_lseek,
2038        .release        = single_release,
2039};
2040
2041static int smi_stats_proc_show(struct seq_file *m, void *v)
2042{
2043        ipmi_smi_t intf = m->private;
2044
2045        seq_printf(m, "sent_invalid_commands:       %u\n",
2046                       ipmi_get_stat(intf, sent_invalid_commands));
2047        seq_printf(m, "sent_local_commands:         %u\n",
2048                       ipmi_get_stat(intf, sent_local_commands));
2049        seq_printf(m, "handled_local_responses:     %u\n",
2050                       ipmi_get_stat(intf, handled_local_responses));
2051        seq_printf(m, "unhandled_local_responses:   %u\n",
2052                       ipmi_get_stat(intf, unhandled_local_responses));
2053        seq_printf(m, "sent_ipmb_commands:          %u\n",
2054                       ipmi_get_stat(intf, sent_ipmb_commands));
2055        seq_printf(m, "sent_ipmb_command_errs:      %u\n",
2056                       ipmi_get_stat(intf, sent_ipmb_command_errs));
2057        seq_printf(m, "retransmitted_ipmb_commands: %u\n",
2058                       ipmi_get_stat(intf, retransmitted_ipmb_commands));
2059        seq_printf(m, "timed_out_ipmb_commands:     %u\n",
2060                       ipmi_get_stat(intf, timed_out_ipmb_commands));
2061        seq_printf(m, "timed_out_ipmb_broadcasts:   %u\n",
2062                       ipmi_get_stat(intf, timed_out_ipmb_broadcasts));
2063        seq_printf(m, "sent_ipmb_responses:         %u\n",
2064                       ipmi_get_stat(intf, sent_ipmb_responses));
2065        seq_printf(m, "handled_ipmb_responses:      %u\n",
2066                       ipmi_get_stat(intf, handled_ipmb_responses));
2067        seq_printf(m, "invalid_ipmb_responses:      %u\n",
2068                       ipmi_get_stat(intf, invalid_ipmb_responses));
2069        seq_printf(m, "unhandled_ipmb_responses:    %u\n",
2070                       ipmi_get_stat(intf, unhandled_ipmb_responses));
2071        seq_printf(m, "sent_lan_commands:           %u\n",
2072                       ipmi_get_stat(intf, sent_lan_commands));
2073        seq_printf(m, "sent_lan_command_errs:       %u\n",
2074                       ipmi_get_stat(intf, sent_lan_command_errs));
2075        seq_printf(m, "retransmitted_lan_commands:  %u\n",
2076                       ipmi_get_stat(intf, retransmitted_lan_commands));
2077        seq_printf(m, "timed_out_lan_commands:      %u\n",
2078                       ipmi_get_stat(intf, timed_out_lan_commands));
2079        seq_printf(m, "sent_lan_responses:          %u\n",
2080                       ipmi_get_stat(intf, sent_lan_responses));
2081        seq_printf(m, "handled_lan_responses:       %u\n",
2082                       ipmi_get_stat(intf, handled_lan_responses));
2083        seq_printf(m, "invalid_lan_responses:       %u\n",
2084                       ipmi_get_stat(intf, invalid_lan_responses));
2085        seq_printf(m, "unhandled_lan_responses:     %u\n",
2086                       ipmi_get_stat(intf, unhandled_lan_responses));
2087        seq_printf(m, "handled_commands:            %u\n",
2088                       ipmi_get_stat(intf, handled_commands));
2089        seq_printf(m, "invalid_commands:            %u\n",
2090                       ipmi_get_stat(intf, invalid_commands));
2091        seq_printf(m, "unhandled_commands:          %u\n",
2092                       ipmi_get_stat(intf, unhandled_commands));
2093        seq_printf(m, "invalid_events:              %u\n",
2094                       ipmi_get_stat(intf, invalid_events));
2095        seq_printf(m, "events:                      %u\n",
2096                       ipmi_get_stat(intf, events));
2097        seq_printf(m, "failed rexmit LAN msgs:      %u\n",
2098                       ipmi_get_stat(intf, dropped_rexmit_lan_commands));
2099        seq_printf(m, "failed rexmit IPMB msgs:     %u\n",
2100                       ipmi_get_stat(intf, dropped_rexmit_ipmb_commands));
2101        return 0;
2102}
2103
2104static int smi_stats_proc_open(struct inode *inode, struct file *file)
2105{
2106        return single_open(file, smi_stats_proc_show, PDE_DATA(inode));
2107}
2108
2109static const struct file_operations smi_stats_proc_ops = {
2110        .open           = smi_stats_proc_open,
2111        .read           = seq_read,
2112        .llseek         = seq_lseek,
2113        .release        = single_release,
2114};
2115#endif /* CONFIG_PROC_FS */
2116
2117int ipmi_smi_add_proc_entry(ipmi_smi_t smi, char *name,
2118                            const struct file_operations *proc_ops,
2119                            void *data)
2120{
2121        int                    rv = 0;
2122#ifdef CONFIG_PROC_FS
2123        struct proc_dir_entry  *file;
2124        struct ipmi_proc_entry *entry;
2125
2126        /* Create a list element. */
2127        entry = kmalloc(sizeof(*entry), GFP_KERNEL);
2128        if (!entry)
2129                return -ENOMEM;
2130        entry->name = kstrdup(name, GFP_KERNEL);
2131        if (!entry->name) {
2132                kfree(entry);
2133                return -ENOMEM;
2134        }
2135
2136        file = proc_create_data(name, 0, smi->proc_dir, proc_ops, data);
2137        if (!file) {
2138                kfree(entry->name);
2139                kfree(entry);
2140                rv = -ENOMEM;
2141        } else {
2142                mutex_lock(&smi->proc_entry_lock);
2143                /* Stick it on the list. */
2144                entry->next = smi->proc_entries;
2145                smi->proc_entries = entry;
2146                mutex_unlock(&smi->proc_entry_lock);
2147        }
2148#endif /* CONFIG_PROC_FS */
2149
2150        return rv;
2151}
2152EXPORT_SYMBOL(ipmi_smi_add_proc_entry);
2153
2154static int add_proc_entries(ipmi_smi_t smi, int num)
2155{
2156        int rv = 0;
2157
2158#ifdef CONFIG_PROC_FS
2159        sprintf(smi->proc_dir_name, "%d", num);
2160        smi->proc_dir = proc_mkdir(smi->proc_dir_name, proc_ipmi_root);
2161        if (!smi->proc_dir)
2162                rv = -ENOMEM;
2163
2164        if (rv == 0)
2165                rv = ipmi_smi_add_proc_entry(smi, "stats",
2166                                             &smi_stats_proc_ops,
2167                                             smi);
2168
2169        if (rv == 0)
2170                rv = ipmi_smi_add_proc_entry(smi, "ipmb",
2171                                             &smi_ipmb_proc_ops,
2172                                             smi);
2173
2174        if (rv == 0)
2175                rv = ipmi_smi_add_proc_entry(smi, "version",
2176                                             &smi_version_proc_ops,
2177                                             smi);
2178#endif /* CONFIG_PROC_FS */
2179
2180        return rv;
2181}
2182
2183static void remove_proc_entries(ipmi_smi_t smi)
2184{
2185#ifdef CONFIG_PROC_FS
2186        struct ipmi_proc_entry *entry;
2187
2188        mutex_lock(&smi->proc_entry_lock);
2189        while (smi->proc_entries) {
2190                entry = smi->proc_entries;
2191                smi->proc_entries = entry->next;
2192
2193                remove_proc_entry(entry->name, smi->proc_dir);
2194                kfree(entry->name);
2195                kfree(entry);
2196        }
2197        mutex_unlock(&smi->proc_entry_lock);
2198        remove_proc_entry(smi->proc_dir_name, proc_ipmi_root);
2199#endif /* CONFIG_PROC_FS */
2200}
2201
2202static int __find_bmc_guid(struct device *dev, void *data)
2203{
2204        unsigned char *id = data;
2205        struct bmc_device *bmc = to_bmc_device(dev);
2206        return memcmp(bmc->guid, id, 16) == 0;
2207}
2208
2209static struct bmc_device *ipmi_find_bmc_guid(struct device_driver *drv,
2210                                             unsigned char *guid)
2211{
2212        struct device *dev;
2213
2214        dev = driver_find_device(drv, NULL, guid, __find_bmc_guid);
2215        if (dev)
2216                return to_bmc_device(dev);
2217        else
2218                return NULL;
2219}
2220
2221struct prod_dev_id {
2222        unsigned int  product_id;
2223        unsigned char device_id;
2224};
2225
2226static int __find_bmc_prod_dev_id(struct device *dev, void *data)
2227{
2228        struct prod_dev_id *id = data;
2229        struct bmc_device *bmc = to_bmc_device(dev);
2230
2231        return (bmc->id.product_id == id->product_id
2232                && bmc->id.device_id == id->device_id);
2233}
2234
2235static struct bmc_device *ipmi_find_bmc_prod_dev_id(
2236        struct device_driver *drv,
2237        unsigned int product_id, unsigned char device_id)
2238{
2239        struct prod_dev_id id = {
2240                .product_id = product_id,
2241                .device_id = device_id,
2242        };
2243        struct device *dev;
2244
2245        dev = driver_find_device(drv, NULL, &id, __find_bmc_prod_dev_id);
2246        if (dev)
2247                return to_bmc_device(dev);
2248        else
2249                return NULL;
2250}
2251
2252static ssize_t device_id_show(struct device *dev,
2253                              struct device_attribute *attr,
2254                              char *buf)
2255{
2256        struct bmc_device *bmc = to_bmc_device(dev);
2257
2258        return snprintf(buf, 10, "%u\n", bmc->id.device_id);
2259}
2260static DEVICE_ATTR(device_id, S_IRUGO, device_id_show, NULL);
2261
2262static ssize_t provides_device_sdrs_show(struct device *dev,
2263                                         struct device_attribute *attr,
2264                                         char *buf)
2265{
2266        struct bmc_device *bmc = to_bmc_device(dev);
2267
2268        return snprintf(buf, 10, "%u\n",
2269                        (bmc->id.device_revision & 0x80) >> 7);
2270}
2271static DEVICE_ATTR(provides_device_sdrs, S_IRUGO, provides_device_sdrs_show,
2272                   NULL);
2273
2274static ssize_t revision_show(struct device *dev, struct device_attribute *attr,
2275                             char *buf)
2276{
2277        struct bmc_device *bmc = to_bmc_device(dev);
2278
2279        return snprintf(buf, 20, "%u\n",
2280                        bmc->id.device_revision & 0x0F);
2281}
2282static DEVICE_ATTR(revision, S_IRUGO, revision_show, NULL);
2283
2284static ssize_t firmware_revision_show(struct device *dev,
2285                                      struct device_attribute *attr,
2286                                      char *buf)
2287{
2288        struct bmc_device *bmc = to_bmc_device(dev);
2289
2290        return snprintf(buf, 20, "%u.%x\n", bmc->id.firmware_revision_1,
2291                        bmc->id.firmware_revision_2);
2292}
2293static DEVICE_ATTR(firmware_revision, S_IRUGO, firmware_revision_show, NULL);
2294
2295static ssize_t ipmi_version_show(struct device *dev,
2296                                 struct device_attribute *attr,
2297                                 char *buf)
2298{
2299        struct bmc_device *bmc = to_bmc_device(dev);
2300
2301        return snprintf(buf, 20, "%u.%u\n",
2302                        ipmi_version_major(&bmc->id),
2303                        ipmi_version_minor(&bmc->id));
2304}
2305static DEVICE_ATTR(ipmi_version, S_IRUGO, ipmi_version_show, NULL);
2306
2307static ssize_t add_dev_support_show(struct device *dev,
2308                                    struct device_attribute *attr,
2309                                    char *buf)
2310{
2311        struct bmc_device *bmc = to_bmc_device(dev);
2312
2313        return snprintf(buf, 10, "0x%02x\n",
2314                        bmc->id.additional_device_support);
2315}
2316static DEVICE_ATTR(additional_device_support, S_IRUGO, add_dev_support_show,
2317                   NULL);
2318
2319static ssize_t manufacturer_id_show(struct device *dev,
2320                                    struct device_attribute *attr,
2321                                    char *buf)
2322{
2323        struct bmc_device *bmc = to_bmc_device(dev);
2324
2325        return snprintf(buf, 20, "0x%6.6x\n", bmc->id.manufacturer_id);
2326}
2327static DEVICE_ATTR(manufacturer_id, S_IRUGO, manufacturer_id_show, NULL);
2328
2329static ssize_t product_id_show(struct device *dev,
2330                               struct device_attribute *attr,
2331                               char *buf)
2332{
2333        struct bmc_device *bmc = to_bmc_device(dev);
2334
2335        return snprintf(buf, 10, "0x%4.4x\n", bmc->id.product_id);
2336}
2337static DEVICE_ATTR(product_id, S_IRUGO, product_id_show, NULL);
2338
2339static ssize_t aux_firmware_rev_show(struct device *dev,
2340                                     struct device_attribute *attr,
2341                                     char *buf)
2342{
2343        struct bmc_device *bmc = to_bmc_device(dev);
2344
2345        return snprintf(buf, 21, "0x%02x 0x%02x 0x%02x 0x%02x\n",
2346                        bmc->id.aux_firmware_revision[3],
2347                        bmc->id.aux_firmware_revision[2],
2348                        bmc->id.aux_firmware_revision[1],
2349                        bmc->id.aux_firmware_revision[0]);
2350}
2351static DEVICE_ATTR(aux_firmware_revision, S_IRUGO, aux_firmware_rev_show, NULL);
2352
2353static ssize_t guid_show(struct device *dev, struct device_attribute *attr,
2354                         char *buf)
2355{
2356        struct bmc_device *bmc = to_bmc_device(dev);
2357
2358        return snprintf(buf, 100, "%Lx%Lx\n",
2359                        (long long) bmc->guid[0],
2360                        (long long) bmc->guid[8]);
2361}
2362static DEVICE_ATTR(guid, S_IRUGO, guid_show, NULL);
2363
2364static struct attribute *bmc_dev_attrs[] = {
2365        &dev_attr_device_id.attr,
2366        &dev_attr_provides_device_sdrs.attr,
2367        &dev_attr_revision.attr,
2368        &dev_attr_firmware_revision.attr,
2369        &dev_attr_ipmi_version.attr,
2370        &dev_attr_additional_device_support.attr,
2371        &dev_attr_manufacturer_id.attr,
2372        &dev_attr_product_id.attr,
2373        &dev_attr_aux_firmware_revision.attr,
2374        &dev_attr_guid.attr,
2375        NULL
2376};
2377
2378static umode_t bmc_dev_attr_is_visible(struct kobject *kobj,
2379                                       struct attribute *attr, int idx)
2380{
2381        struct device *dev = kobj_to_dev(kobj);
2382        struct bmc_device *bmc = to_bmc_device(dev);
2383        umode_t mode = attr->mode;
2384
2385        if (attr == &dev_attr_aux_firmware_revision.attr)
2386                return bmc->id.aux_firmware_revision_set ? mode : 0;
2387        if (attr == &dev_attr_guid.attr)
2388                return bmc->guid_set ? mode : 0;
2389        return mode;
2390}
2391
2392static struct attribute_group bmc_dev_attr_group = {
2393        .attrs          = bmc_dev_attrs,
2394        .is_visible     = bmc_dev_attr_is_visible,
2395};
2396
2397static const struct attribute_group *bmc_dev_attr_groups[] = {
2398        &bmc_dev_attr_group,
2399        NULL
2400};
2401
2402static struct device_type bmc_device_type = {
2403        .groups         = bmc_dev_attr_groups,
2404};
2405
2406static void
2407release_bmc_device(struct device *dev)
2408{
2409        kfree(to_bmc_device(dev));
2410}
2411
2412static void
2413cleanup_bmc_device(struct kref *ref)
2414{
2415        struct bmc_device *bmc = container_of(ref, struct bmc_device, usecount);
2416
2417        platform_device_unregister(&bmc->pdev);
2418}
2419
2420static void ipmi_bmc_unregister(ipmi_smi_t intf)
2421{
2422        struct bmc_device *bmc = intf->bmc;
2423
2424        sysfs_remove_link(&intf->si_dev->kobj, "bmc");
2425        if (intf->my_dev_name) {
2426                sysfs_remove_link(&bmc->pdev.dev.kobj, intf->my_dev_name);
2427                kfree(intf->my_dev_name);
2428                intf->my_dev_name = NULL;
2429        }
2430
2431        mutex_lock(&ipmidriver_mutex);
2432        kref_put(&bmc->usecount, cleanup_bmc_device);
2433        intf->bmc = NULL;
2434        mutex_unlock(&ipmidriver_mutex);
2435}
2436
2437static int ipmi_bmc_register(ipmi_smi_t intf, int ifnum)
2438{
2439        int               rv;
2440        struct bmc_device *bmc = intf->bmc;
2441        struct bmc_device *old_bmc;
2442
2443        mutex_lock(&ipmidriver_mutex);
2444
2445        /*
2446         * Try to find if there is an bmc_device struct
2447         * representing the interfaced BMC already
2448         */
2449        if (bmc->guid_set)
2450                old_bmc = ipmi_find_bmc_guid(&ipmidriver.driver, bmc->guid);
2451        else
2452                old_bmc = ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2453                                                    bmc->id.product_id,
2454                                                    bmc->id.device_id);
2455
2456        /*
2457         * If there is already an bmc_device, free the new one,
2458         * otherwise register the new BMC device
2459         */
2460        if (old_bmc) {
2461                kfree(bmc);
2462                intf->bmc = old_bmc;
2463                bmc = old_bmc;
2464
2465                kref_get(&bmc->usecount);
2466                mutex_unlock(&ipmidriver_mutex);
2467
2468                printk(KERN_INFO
2469                       "ipmi: interfacing existing BMC (man_id: 0x%6.6x,"
2470                       " prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2471                       bmc->id.manufacturer_id,
2472                       bmc->id.product_id,
2473                       bmc->id.device_id);
2474        } else {
2475                unsigned char orig_dev_id = bmc->id.device_id;
2476                int warn_printed = 0;
2477
2478                snprintf(bmc->name, sizeof(bmc->name),
2479                         "ipmi_bmc.%4.4x", bmc->id.product_id);
2480                bmc->pdev.name = bmc->name;
2481
2482                while (ipmi_find_bmc_prod_dev_id(&ipmidriver.driver,
2483                                                 bmc->id.product_id,
2484                                                 bmc->id.device_id)) {
2485                        if (!warn_printed) {
2486                                printk(KERN_WARNING PFX
2487                                       "This machine has two different BMCs"
2488                                       " with the same product id and device"
2489                                       " id.  This is an error in the"
2490                                       " firmware, but incrementing the"
2491                                       " device id to work around the problem."
2492                                       " Prod ID = 0x%x, Dev ID = 0x%x\n",
2493                                       bmc->id.product_id, bmc->id.device_id);
2494                                warn_printed = 1;
2495                        }
2496                        bmc->id.device_id++; /* Wraps at 255 */
2497                        if (bmc->id.device_id == orig_dev_id) {
2498                                printk(KERN_ERR PFX
2499                                       "Out of device ids!\n");
2500                                break;
2501                        }
2502                }
2503
2504                bmc->pdev.dev.driver = &ipmidriver.driver;
2505                bmc->pdev.id = bmc->id.device_id;
2506                bmc->pdev.dev.release = release_bmc_device;
2507                bmc->pdev.dev.type = &bmc_device_type;
2508                kref_init(&bmc->usecount);
2509
2510                rv = platform_device_register(&bmc->pdev);
2511                mutex_unlock(&ipmidriver_mutex);
2512                if (rv) {
2513                        put_device(&bmc->pdev.dev);
2514                        printk(KERN_ERR
2515                               "ipmi_msghandler:"
2516                               " Unable to register bmc device: %d\n",
2517                               rv);
2518                        /*
2519                         * Don't go to out_err, you can only do that if
2520                         * the device is registered already.
2521                         */
2522                        return rv;
2523                }
2524
2525                dev_info(intf->si_dev, "Found new BMC (man_id: 0x%6.6x, "
2526                         "prod_id: 0x%4.4x, dev_id: 0x%2.2x)\n",
2527                         bmc->id.manufacturer_id,
2528                         bmc->id.product_id,
2529                         bmc->id.device_id);
2530        }
2531
2532        /*
2533         * create symlink from system interface device to bmc device
2534         * and back.
2535         */
2536        rv = sysfs_create_link(&intf->si_dev->kobj, &bmc->pdev.dev.kobj, "bmc");
2537        if (rv) {
2538                printk(KERN_ERR
2539                       "ipmi_msghandler: Unable to create bmc symlink: %d\n",
2540                       rv);
2541                goto out_err;
2542        }
2543
2544        intf->my_dev_name = kasprintf(GFP_KERNEL, "ipmi%d", ifnum);
2545        if (!intf->my_dev_name) {
2546                rv = -ENOMEM;
2547                printk(KERN_ERR
2548                       "ipmi_msghandler: allocate link from BMC: %d\n",
2549                       rv);
2550                goto out_err;
2551        }
2552
2553        rv = sysfs_create_link(&bmc->pdev.dev.kobj, &intf->si_dev->kobj,
2554                               intf->my_dev_name);
2555        if (rv) {
2556                kfree(intf->my_dev_name);
2557                intf->my_dev_name = NULL;
2558                printk(KERN_ERR
2559                       "ipmi_msghandler:"
2560                       " Unable to create symlink to bmc: %d\n",
2561                       rv);
2562                goto out_err;
2563        }
2564
2565        return 0;
2566
2567out_err:
2568        ipmi_bmc_unregister(intf);
2569        return rv;
2570}
2571
2572static int
2573send_guid_cmd(ipmi_smi_t intf, int chan)
2574{
2575        struct kernel_ipmi_msg            msg;
2576        struct ipmi_system_interface_addr si;
2577
2578        si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2579        si.channel = IPMI_BMC_CHANNEL;
2580        si.lun = 0;
2581
2582        msg.netfn = IPMI_NETFN_APP_REQUEST;
2583        msg.cmd = IPMI_GET_DEVICE_GUID_CMD;
2584        msg.data = NULL;
2585        msg.data_len = 0;
2586        return i_ipmi_request(NULL,
2587                              intf,
2588                              (struct ipmi_addr *) &si,
2589                              0,
2590                              &msg,
2591                              intf,
2592                              NULL,
2593                              NULL,
2594                              0,
2595                              intf->channels[0].address,
2596                              intf->channels[0].lun,
2597                              -1, 0);
2598}
2599
2600static void
2601guid_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2602{
2603        if ((msg->addr.addr_type != IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2604            || (msg->msg.netfn != IPMI_NETFN_APP_RESPONSE)
2605            || (msg->msg.cmd != IPMI_GET_DEVICE_GUID_CMD))
2606                /* Not for me */
2607                return;
2608
2609        if (msg->msg.data[0] != 0) {
2610                /* Error from getting the GUID, the BMC doesn't have one. */
2611                intf->bmc->guid_set = 0;
2612                goto out;
2613        }
2614
2615        if (msg->msg.data_len < 17) {
2616                intf->bmc->guid_set = 0;
2617                printk(KERN_WARNING PFX
2618                       "guid_handler: The GUID response from the BMC was too"
2619                       " short, it was %d but should have been 17.  Assuming"
2620                       " GUID is not available.\n",
2621                       msg->msg.data_len);
2622                goto out;
2623        }
2624
2625        memcpy(intf->bmc->guid, msg->msg.data, 16);
2626        intf->bmc->guid_set = 1;
2627 out:
2628        wake_up(&intf->waitq);
2629}
2630
2631static void
2632get_guid(ipmi_smi_t intf)
2633{
2634        int rv;
2635
2636        intf->bmc->guid_set = 0x2;
2637        intf->null_user_handler = guid_handler;
2638        rv = send_guid_cmd(intf, 0);
2639        if (rv)
2640                /* Send failed, no GUID available. */
2641                intf->bmc->guid_set = 0;
2642        wait_event(intf->waitq, intf->bmc->guid_set != 2);
2643        intf->null_user_handler = NULL;
2644}
2645
2646static int
2647send_channel_info_cmd(ipmi_smi_t intf, int chan)
2648{
2649        struct kernel_ipmi_msg            msg;
2650        unsigned char                     data[1];
2651        struct ipmi_system_interface_addr si;
2652
2653        si.addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
2654        si.channel = IPMI_BMC_CHANNEL;
2655        si.lun = 0;
2656
2657        msg.netfn = IPMI_NETFN_APP_REQUEST;
2658        msg.cmd = IPMI_GET_CHANNEL_INFO_CMD;
2659        msg.data = data;
2660        msg.data_len = 1;
2661        data[0] = chan;
2662        return i_ipmi_request(NULL,
2663                              intf,
2664                              (struct ipmi_addr *) &si,
2665                              0,
2666                              &msg,
2667                              intf,
2668                              NULL,
2669                              NULL,
2670                              0,
2671                              intf->channels[0].address,
2672                              intf->channels[0].lun,
2673                              -1, 0);
2674}
2675
2676static void
2677channel_handler(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
2678{
2679        int rv = 0;
2680        int chan;
2681
2682        if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
2683            && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
2684            && (msg->msg.cmd == IPMI_GET_CHANNEL_INFO_CMD)) {
2685                /* It's the one we want */
2686                if (msg->msg.data[0] != 0) {
2687                        /* Got an error from the channel, just go on. */
2688
2689                        if (msg->msg.data[0] == IPMI_INVALID_COMMAND_ERR) {
2690                                /*
2691                                 * If the MC does not support this
2692                                 * command, that is legal.  We just
2693                                 * assume it has one IPMB at channel
2694                                 * zero.
2695                                 */
2696                                intf->channels[0].medium
2697                                        = IPMI_CHANNEL_MEDIUM_IPMB;
2698                                intf->channels[0].protocol
2699                                        = IPMI_CHANNEL_PROTOCOL_IPMB;
2700
2701                                intf->curr_channel = IPMI_MAX_CHANNELS;
2702                                wake_up(&intf->waitq);
2703                                goto out;
2704                        }
2705                        goto next_channel;
2706                }
2707                if (msg->msg.data_len < 4) {
2708                        /* Message not big enough, just go on. */
2709                        goto next_channel;
2710                }
2711                chan = intf->curr_channel;
2712                intf->channels[chan].medium = msg->msg.data[2] & 0x7f;
2713                intf->channels[chan].protocol = msg->msg.data[3] & 0x1f;
2714
2715 next_channel:
2716                intf->curr_channel++;
2717                if (intf->curr_channel >= IPMI_MAX_CHANNELS)
2718                        wake_up(&intf->waitq);
2719                else
2720                        rv = send_channel_info_cmd(intf, intf->curr_channel);
2721
2722                if (rv) {
2723                        /* Got an error somehow, just give up. */
2724                        printk(KERN_WARNING PFX
2725                               "Error sending channel information for channel"
2726                               " %d: %d\n", intf->curr_channel, rv);
2727
2728                        intf->curr_channel = IPMI_MAX_CHANNELS;
2729                        wake_up(&intf->waitq);
2730                }
2731        }
2732 out:
2733        return;
2734}
2735
2736static void ipmi_poll(ipmi_smi_t intf)
2737{
2738        if (intf->handlers->poll)
2739                intf->handlers->poll(intf->send_info);
2740        /* In case something came in */
2741        handle_new_recv_msgs(intf);
2742}
2743
2744void ipmi_poll_interface(ipmi_user_t user)
2745{
2746        ipmi_poll(user->intf);
2747}
2748EXPORT_SYMBOL(ipmi_poll_interface);
2749
2750int ipmi_register_smi(struct ipmi_smi_handlers *handlers,
2751                      void                     *send_info,
2752                      struct ipmi_device_id    *device_id,
2753                      struct device            *si_dev,
2754                      unsigned char            slave_addr)
2755{
2756        int              i, j;
2757        int              rv;
2758        ipmi_smi_t       intf;
2759        ipmi_smi_t       tintf;
2760        struct list_head *link;
2761
2762        /*
2763         * Make sure the driver is actually initialized, this handles
2764         * problems with initialization order.
2765         */
2766        if (!initialized) {
2767                rv = ipmi_init_msghandler();
2768                if (rv)
2769                        return rv;
2770                /*
2771                 * The init code doesn't return an error if it was turned
2772                 * off, but it won't initialize.  Check that.
2773                 */
2774                if (!initialized)
2775                        return -ENODEV;
2776        }
2777
2778        intf = kzalloc(sizeof(*intf), GFP_KERNEL);
2779        if (!intf)
2780                return -ENOMEM;
2781
2782        intf->ipmi_version_major = ipmi_version_major(device_id);
2783        intf->ipmi_version_minor = ipmi_version_minor(device_id);
2784
2785        intf->bmc = kzalloc(sizeof(*intf->bmc), GFP_KERNEL);
2786        if (!intf->bmc) {
2787                kfree(intf);
2788                return -ENOMEM;
2789        }
2790        intf->intf_num = -1; /* Mark it invalid for now. */
2791        kref_init(&intf->refcount);
2792        intf->bmc->id = *device_id;
2793        intf->si_dev = si_dev;
2794        for (j = 0; j < IPMI_MAX_CHANNELS; j++) {
2795                intf->channels[j].address = IPMI_BMC_SLAVE_ADDR;
2796                intf->channels[j].lun = 2;
2797        }
2798        if (slave_addr != 0)
2799                intf->channels[0].address = slave_addr;
2800        INIT_LIST_HEAD(&intf->users);
2801        intf->handlers = handlers;
2802        intf->send_info = send_info;
2803        spin_lock_init(&intf->seq_lock);
2804        for (j = 0; j < IPMI_IPMB_NUM_SEQ; j++) {
2805                intf->seq_table[j].inuse = 0;
2806                intf->seq_table[j].seqid = 0;
2807        }
2808        intf->curr_seq = 0;
2809#ifdef CONFIG_PROC_FS
2810        mutex_init(&intf->proc_entry_lock);
2811#endif
2812        spin_lock_init(&intf->waiting_rcv_msgs_lock);
2813        INIT_LIST_HEAD(&intf->waiting_rcv_msgs);
2814        tasklet_init(&intf->recv_tasklet,
2815                     smi_recv_tasklet,
2816                     (unsigned long) intf);
2817        atomic_set(&intf->watchdog_pretimeouts_to_deliver, 0);
2818        spin_lock_init(&intf->xmit_msgs_lock);
2819        INIT_LIST_HEAD(&intf->xmit_msgs);
2820        INIT_LIST_HEAD(&intf->hp_xmit_msgs);
2821        spin_lock_init(&intf->events_lock);
2822        atomic_set(&intf->event_waiters, 0);
2823        intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
2824        INIT_LIST_HEAD(&intf->waiting_events);
2825        intf->waiting_events_count = 0;
2826        mutex_init(&intf->cmd_rcvrs_mutex);
2827        spin_lock_init(&intf->maintenance_mode_lock);
2828        INIT_LIST_HEAD(&intf->cmd_rcvrs);
2829        init_waitqueue_head(&intf->waitq);
2830        for (i = 0; i < IPMI_NUM_STATS; i++)
2831                atomic_set(&intf->stats[i], 0);
2832
2833        intf->proc_dir = NULL;
2834
2835        mutex_lock(&smi_watchers_mutex);
2836        mutex_lock(&ipmi_interfaces_mutex);
2837        /* Look for a hole in the numbers. */
2838        i = 0;
2839        link = &ipmi_interfaces;
2840        list_for_each_entry_rcu(tintf, &ipmi_interfaces, link) {
2841                if (tintf->intf_num != i) {
2842                        link = &tintf->link;
2843                        break;
2844                }
2845                i++;
2846        }
2847        /* Add the new interface in numeric order. */
2848        if (i == 0)
2849                list_add_rcu(&intf->link, &ipmi_interfaces);
2850        else
2851                list_add_tail_rcu(&intf->link, link);
2852
2853        rv = handlers->start_processing(send_info, intf);
2854        if (rv)
2855                goto out;
2856
2857        get_guid(intf);
2858
2859        if ((intf->ipmi_version_major > 1)
2860                        || ((intf->ipmi_version_major == 1)
2861                            && (intf->ipmi_version_minor >= 5))) {
2862                /*
2863                 * Start scanning the channels to see what is
2864                 * available.
2865                 */
2866                intf->null_user_handler = channel_handler;
2867                intf->curr_channel = 0;
2868                rv = send_channel_info_cmd(intf, 0);
2869                if (rv) {
2870                        printk(KERN_WARNING PFX
2871                               "Error sending channel information for channel"
2872                               " 0, %d\n", rv);
2873                        goto out;
2874                }
2875
2876                /* Wait for the channel info to be read. */
2877                wait_event(intf->waitq,
2878                           intf->curr_channel >= IPMI_MAX_CHANNELS);
2879                intf->null_user_handler = NULL;
2880        } else {
2881                /* Assume a single IPMB channel at zero. */
2882                intf->channels[0].medium = IPMI_CHANNEL_MEDIUM_IPMB;
2883                intf->channels[0].protocol = IPMI_CHANNEL_PROTOCOL_IPMB;
2884                intf->curr_channel = IPMI_MAX_CHANNELS;
2885        }
2886
2887        if (rv == 0)
2888                rv = add_proc_entries(intf, i);
2889
2890        rv = ipmi_bmc_register(intf, i);
2891
2892 out:
2893        if (rv) {
2894                if (intf->proc_dir)
2895                        remove_proc_entries(intf);
2896                intf->handlers = NULL;
2897                list_del_rcu(&intf->link);
2898                mutex_unlock(&ipmi_interfaces_mutex);
2899                mutex_unlock(&smi_watchers_mutex);
2900                synchronize_rcu();
2901                kref_put(&intf->refcount, intf_free);
2902        } else {
2903                /*
2904                 * Keep memory order straight for RCU readers.  Make
2905                 * sure everything else is committed to memory before
2906                 * setting intf_num to mark the interface valid.
2907                 */
2908                smp_wmb();
2909                intf->intf_num = i;
2910                mutex_unlock(&ipmi_interfaces_mutex);
2911                /* After this point the interface is legal to use. */
2912                call_smi_watchers(i, intf->si_dev);
2913                mutex_unlock(&smi_watchers_mutex);
2914        }
2915
2916        return rv;
2917}
2918EXPORT_SYMBOL(ipmi_register_smi);
2919
2920static void deliver_smi_err_response(ipmi_smi_t intf,
2921                                     struct ipmi_smi_msg *msg,
2922                                     unsigned char err)
2923{
2924        msg->rsp[0] = msg->data[0] | 4;
2925        msg->rsp[1] = msg->data[1];
2926        msg->rsp[2] = err;
2927        msg->rsp_size = 3;
2928        /* It's an error, so it will never requeue, no need to check return. */
2929        handle_one_recv_msg(intf, msg);
2930}
2931
2932static void cleanup_smi_msgs(ipmi_smi_t intf)
2933{
2934        int              i;
2935        struct seq_table *ent;
2936        struct ipmi_smi_msg *msg;
2937        struct list_head *entry;
2938        struct list_head tmplist;
2939
2940        /* Clear out our transmit queues and hold the messages. */
2941        INIT_LIST_HEAD(&tmplist);
2942        list_splice_tail(&intf->hp_xmit_msgs, &tmplist);
2943        list_splice_tail(&intf->xmit_msgs, &tmplist);
2944
2945        /* Current message first, to preserve order */
2946        while (intf->curr_msg && !list_empty(&intf->waiting_rcv_msgs)) {
2947                /* Wait for the message to clear out. */
2948                schedule_timeout(1);
2949        }
2950
2951        /* No need for locks, the interface is down. */
2952
2953        /*
2954         * Return errors for all pending messages in queue and in the
2955         * tables waiting for remote responses.
2956         */
2957        while (!list_empty(&tmplist)) {
2958                entry = tmplist.next;
2959                list_del(entry);
2960                msg = list_entry(entry, struct ipmi_smi_msg, link);
2961                deliver_smi_err_response(intf, msg, IPMI_ERR_UNSPECIFIED);
2962        }
2963
2964        for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++) {
2965                ent = &(intf->seq_table[i]);
2966                if (!ent->inuse)
2967                        continue;
2968                deliver_err_response(ent->recv_msg, IPMI_ERR_UNSPECIFIED);
2969        }
2970}
2971
2972int ipmi_unregister_smi(ipmi_smi_t intf)
2973{
2974        struct ipmi_smi_watcher *w;
2975        int intf_num = intf->intf_num;
2976        ipmi_user_t user;
2977
2978        ipmi_bmc_unregister(intf);
2979
2980        mutex_lock(&smi_watchers_mutex);
2981        mutex_lock(&ipmi_interfaces_mutex);
2982        intf->intf_num = -1;
2983        intf->in_shutdown = true;
2984        list_del_rcu(&intf->link);
2985        mutex_unlock(&ipmi_interfaces_mutex);
2986        synchronize_rcu();
2987
2988        cleanup_smi_msgs(intf);
2989
2990        /* Clean up the effects of users on the lower-level software. */
2991        mutex_lock(&ipmi_interfaces_mutex);
2992        rcu_read_lock();
2993        list_for_each_entry_rcu(user, &intf->users, link) {
2994                module_put(intf->handlers->owner);
2995                if (intf->handlers->dec_usecount)
2996                        intf->handlers->dec_usecount(intf->send_info);
2997        }
2998        rcu_read_unlock();
2999        intf->handlers = NULL;
3000        mutex_unlock(&ipmi_interfaces_mutex);
3001
3002        remove_proc_entries(intf);
3003
3004        /*
3005         * Call all the watcher interfaces to tell them that
3006         * an interface is gone.
3007         */
3008        list_for_each_entry(w, &smi_watchers, link)
3009                w->smi_gone(intf_num);
3010        mutex_unlock(&smi_watchers_mutex);
3011
3012        kref_put(&intf->refcount, intf_free);
3013        return 0;
3014}
3015EXPORT_SYMBOL(ipmi_unregister_smi);
3016
3017static int handle_ipmb_get_msg_rsp(ipmi_smi_t          intf,
3018                                   struct ipmi_smi_msg *msg)
3019{
3020        struct ipmi_ipmb_addr ipmb_addr;
3021        struct ipmi_recv_msg  *recv_msg;
3022
3023        /*
3024         * This is 11, not 10, because the response must contain a
3025         * completion code.
3026         */
3027        if (msg->rsp_size < 11) {
3028                /* Message not big enough, just ignore it. */
3029                ipmi_inc_stat(intf, invalid_ipmb_responses);
3030                return 0;
3031        }
3032
3033        if (msg->rsp[2] != 0) {
3034                /* An error getting the response, just ignore it. */
3035                return 0;
3036        }
3037
3038        ipmb_addr.addr_type = IPMI_IPMB_ADDR_TYPE;
3039        ipmb_addr.slave_addr = msg->rsp[6];
3040        ipmb_addr.channel = msg->rsp[3] & 0x0f;
3041        ipmb_addr.lun = msg->rsp[7] & 3;
3042
3043        /*
3044         * It's a response from a remote entity.  Look up the sequence
3045         * number and handle the response.
3046         */
3047        if (intf_find_seq(intf,
3048                          msg->rsp[7] >> 2,
3049                          msg->rsp[3] & 0x0f,
3050                          msg->rsp[8],
3051                          (msg->rsp[4] >> 2) & (~1),
3052                          (struct ipmi_addr *) &(ipmb_addr),
3053                          &recv_msg)) {
3054                /*
3055                 * We were unable to find the sequence number,
3056                 * so just nuke the message.
3057                 */
3058                ipmi_inc_stat(intf, unhandled_ipmb_responses);
3059                return 0;
3060        }
3061
3062        memcpy(recv_msg->msg_data,
3063               &(msg->rsp[9]),
3064               msg->rsp_size - 9);
3065        /*
3066         * The other fields matched, so no need to set them, except
3067         * for netfn, which needs to be the response that was
3068         * returned, not the request value.
3069         */
3070        recv_msg->msg.netfn = msg->rsp[4] >> 2;
3071        recv_msg->msg.data = recv_msg->msg_data;
3072        recv_msg->msg.data_len = msg->rsp_size - 10;
3073        recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3074        ipmi_inc_stat(intf, handled_ipmb_responses);
3075        deliver_response(recv_msg);
3076
3077        return 0;
3078}
3079
3080static int handle_ipmb_get_msg_cmd(ipmi_smi_t          intf,
3081                                   struct ipmi_smi_msg *msg)
3082{
3083        struct cmd_rcvr          *rcvr;
3084        int                      rv = 0;
3085        unsigned char            netfn;
3086        unsigned char            cmd;
3087        unsigned char            chan;
3088        ipmi_user_t              user = NULL;
3089        struct ipmi_ipmb_addr    *ipmb_addr;
3090        struct ipmi_recv_msg     *recv_msg;
3091
3092        if (msg->rsp_size < 10) {
3093                /* Message not big enough, just ignore it. */
3094                ipmi_inc_stat(intf, invalid_commands);
3095                return 0;
3096        }
3097
3098        if (msg->rsp[2] != 0) {
3099                /* An error getting the response, just ignore it. */
3100                return 0;
3101        }
3102
3103        netfn = msg->rsp[4] >> 2;
3104        cmd = msg->rsp[8];
3105        chan = msg->rsp[3] & 0xf;
3106
3107        rcu_read_lock();
3108        rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3109        if (rcvr) {
3110                user = rcvr->user;
3111                kref_get(&user->refcount);
3112        } else
3113                user = NULL;
3114        rcu_read_unlock();
3115
3116        if (user == NULL) {
3117                /* We didn't find a user, deliver an error response. */
3118                ipmi_inc_stat(intf, unhandled_commands);
3119
3120                msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
3121                msg->data[1] = IPMI_SEND_MSG_CMD;
3122                msg->data[2] = msg->rsp[3];
3123                msg->data[3] = msg->rsp[6];
3124                msg->data[4] = ((netfn + 1) << 2) | (msg->rsp[7] & 0x3);
3125                msg->data[5] = ipmb_checksum(&(msg->data[3]), 2);
3126                msg->data[6] = intf->channels[msg->rsp[3] & 0xf].address;
3127                /* rqseq/lun */
3128                msg->data[7] = (msg->rsp[7] & 0xfc) | (msg->rsp[4] & 0x3);
3129                msg->data[8] = msg->rsp[8]; /* cmd */
3130                msg->data[9] = IPMI_INVALID_CMD_COMPLETION_CODE;
3131                msg->data[10] = ipmb_checksum(&(msg->data[6]), 4);
3132                msg->data_size = 11;
3133
3134#ifdef DEBUG_MSGING
3135        {
3136                int m;
3137                printk("Invalid command:");
3138                for (m = 0; m < msg->data_size; m++)
3139                        printk(" %2.2x", msg->data[m]);
3140                printk("\n");
3141        }
3142#endif
3143                rcu_read_lock();
3144                if (!intf->in_shutdown) {
3145                        smi_send(intf, intf->handlers, msg, 0);
3146                        /*
3147                         * We used the message, so return the value
3148                         * that causes it to not be freed or
3149                         * queued.
3150                         */
3151                        rv = -1;
3152                }
3153                rcu_read_unlock();
3154        } else {
3155                /* Deliver the message to the user. */
3156                ipmi_inc_stat(intf, handled_commands);
3157
3158                recv_msg = ipmi_alloc_recv_msg();
3159                if (!recv_msg) {
3160                        /*
3161                         * We couldn't allocate memory for the
3162                         * message, so requeue it for handling
3163                         * later.
3164                         */
3165                        rv = 1;
3166                        kref_put(&user->refcount, free_user);
3167                } else {
3168                        /* Extract the source address from the data. */
3169                        ipmb_addr = (struct ipmi_ipmb_addr *) &recv_msg->addr;
3170                        ipmb_addr->addr_type = IPMI_IPMB_ADDR_TYPE;
3171                        ipmb_addr->slave_addr = msg->rsp[6];
3172                        ipmb_addr->lun = msg->rsp[7] & 3;
3173                        ipmb_addr->channel = msg->rsp[3] & 0xf;
3174
3175                        /*
3176                         * Extract the rest of the message information
3177                         * from the IPMB header.
3178                         */
3179                        recv_msg->user = user;
3180                        recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3181                        recv_msg->msgid = msg->rsp[7] >> 2;
3182                        recv_msg->msg.netfn = msg->rsp[4] >> 2;
3183                        recv_msg->msg.cmd = msg->rsp[8];
3184                        recv_msg->msg.data = recv_msg->msg_data;
3185
3186                        /*
3187                         * We chop off 10, not 9 bytes because the checksum
3188                         * at the end also needs to be removed.
3189                         */
3190                        recv_msg->msg.data_len = msg->rsp_size - 10;
3191                        memcpy(recv_msg->msg_data,
3192                               &(msg->rsp[9]),
3193                               msg->rsp_size - 10);
3194                        deliver_response(recv_msg);
3195                }
3196        }
3197
3198        return rv;
3199}
3200
3201static int handle_lan_get_msg_rsp(ipmi_smi_t          intf,
3202                                  struct ipmi_smi_msg *msg)
3203{
3204        struct ipmi_lan_addr  lan_addr;
3205        struct ipmi_recv_msg  *recv_msg;
3206
3207
3208        /*
3209         * This is 13, not 12, because the response must contain a
3210         * completion code.
3211         */
3212        if (msg->rsp_size < 13) {
3213                /* Message not big enough, just ignore it. */
3214                ipmi_inc_stat(intf, invalid_lan_responses);
3215                return 0;
3216        }
3217
3218        if (msg->rsp[2] != 0) {
3219                /* An error getting the response, just ignore it. */
3220                return 0;
3221        }
3222
3223        lan_addr.addr_type = IPMI_LAN_ADDR_TYPE;
3224        lan_addr.session_handle = msg->rsp[4];
3225        lan_addr.remote_SWID = msg->rsp[8];
3226        lan_addr.local_SWID = msg->rsp[5];
3227        lan_addr.channel = msg->rsp[3] & 0x0f;
3228        lan_addr.privilege = msg->rsp[3] >> 4;
3229        lan_addr.lun = msg->rsp[9] & 3;
3230
3231        /*
3232         * It's a response from a remote entity.  Look up the sequence
3233         * number and handle the response.
3234         */
3235        if (intf_find_seq(intf,
3236                          msg->rsp[9] >> 2,
3237                          msg->rsp[3] & 0x0f,
3238                          msg->rsp[10],
3239                          (msg->rsp[6] >> 2) & (~1),
3240                          (struct ipmi_addr *) &(lan_addr),
3241                          &recv_msg)) {
3242                /*
3243                 * We were unable to find the sequence number,
3244                 * so just nuke the message.
3245                 */
3246                ipmi_inc_stat(intf, unhandled_lan_responses);
3247                return 0;
3248        }
3249
3250        memcpy(recv_msg->msg_data,
3251               &(msg->rsp[11]),
3252               msg->rsp_size - 11);
3253        /*
3254         * The other fields matched, so no need to set them, except
3255         * for netfn, which needs to be the response that was
3256         * returned, not the request value.
3257         */
3258        recv_msg->msg.netfn = msg->rsp[6] >> 2;
3259        recv_msg->msg.data = recv_msg->msg_data;
3260        recv_msg->msg.data_len = msg->rsp_size - 12;
3261        recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3262        ipmi_inc_stat(intf, handled_lan_responses);
3263        deliver_response(recv_msg);
3264
3265        return 0;
3266}
3267
3268static int handle_lan_get_msg_cmd(ipmi_smi_t          intf,
3269                                  struct ipmi_smi_msg *msg)
3270{
3271        struct cmd_rcvr          *rcvr;
3272        int                      rv = 0;
3273        unsigned char            netfn;
3274        unsigned char            cmd;
3275        unsigned char            chan;
3276        ipmi_user_t              user = NULL;
3277        struct ipmi_lan_addr     *lan_addr;
3278        struct ipmi_recv_msg     *recv_msg;
3279
3280        if (msg->rsp_size < 12) {
3281                /* Message not big enough, just ignore it. */
3282                ipmi_inc_stat(intf, invalid_commands);
3283                return 0;
3284        }
3285
3286        if (msg->rsp[2] != 0) {
3287                /* An error getting the response, just ignore it. */
3288                return 0;
3289        }
3290
3291        netfn = msg->rsp[6] >> 2;
3292        cmd = msg->rsp[10];
3293        chan = msg->rsp[3] & 0xf;
3294
3295        rcu_read_lock();
3296        rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3297        if (rcvr) {
3298                user = rcvr->user;
3299                kref_get(&user->refcount);
3300        } else
3301                user = NULL;
3302        rcu_read_unlock();
3303
3304        if (user == NULL) {
3305                /* We didn't find a user, just give up. */
3306                ipmi_inc_stat(intf, unhandled_commands);
3307
3308                /*
3309                 * Don't do anything with these messages, just allow
3310                 * them to be freed.
3311                 */
3312                rv = 0;
3313        } else {
3314                /* Deliver the message to the user. */
3315                ipmi_inc_stat(intf, handled_commands);
3316
3317                recv_msg = ipmi_alloc_recv_msg();
3318                if (!recv_msg) {
3319                        /*
3320                         * We couldn't allocate memory for the
3321                         * message, so requeue it for handling later.
3322                         */
3323                        rv = 1;
3324                        kref_put(&user->refcount, free_user);
3325                } else {
3326                        /* Extract the source address from the data. */
3327                        lan_addr = (struct ipmi_lan_addr *) &recv_msg->addr;
3328                        lan_addr->addr_type = IPMI_LAN_ADDR_TYPE;
3329                        lan_addr->session_handle = msg->rsp[4];
3330                        lan_addr->remote_SWID = msg->rsp[8];
3331                        lan_addr->local_SWID = msg->rsp[5];
3332                        lan_addr->lun = msg->rsp[9] & 3;
3333                        lan_addr->channel = msg->rsp[3] & 0xf;
3334                        lan_addr->privilege = msg->rsp[3] >> 4;
3335
3336                        /*
3337                         * Extract the rest of the message information
3338                         * from the IPMB header.
3339                         */
3340                        recv_msg->user = user;
3341                        recv_msg->recv_type = IPMI_CMD_RECV_TYPE;
3342                        recv_msg->msgid = msg->rsp[9] >> 2;
3343                        recv_msg->msg.netfn = msg->rsp[6] >> 2;
3344                        recv_msg->msg.cmd = msg->rsp[10];
3345                        recv_msg->msg.data = recv_msg->msg_data;
3346
3347                        /*
3348                         * We chop off 12, not 11 bytes because the checksum
3349                         * at the end also needs to be removed.
3350                         */
3351                        recv_msg->msg.data_len = msg->rsp_size - 12;
3352                        memcpy(recv_msg->msg_data,
3353                               &(msg->rsp[11]),
3354                               msg->rsp_size - 12);
3355                        deliver_response(recv_msg);
3356                }
3357        }
3358
3359        return rv;
3360}
3361
3362/*
3363 * This routine will handle "Get Message" command responses with
3364 * channels that use an OEM Medium. The message format belongs to
3365 * the OEM.  See IPMI 2.0 specification, Chapter 6 and
3366 * Chapter 22, sections 22.6 and 22.24 for more details.
3367 */
3368static int handle_oem_get_msg_cmd(ipmi_smi_t          intf,
3369                                  struct ipmi_smi_msg *msg)
3370{
3371        struct cmd_rcvr       *rcvr;
3372        int                   rv = 0;
3373        unsigned char         netfn;
3374        unsigned char         cmd;
3375        unsigned char         chan;
3376        ipmi_user_t           user = NULL;
3377        struct ipmi_system_interface_addr *smi_addr;
3378        struct ipmi_recv_msg  *recv_msg;
3379
3380        /*
3381         * We expect the OEM SW to perform error checking
3382         * so we just do some basic sanity checks
3383         */
3384        if (msg->rsp_size < 4) {
3385                /* Message not big enough, just ignore it. */
3386                ipmi_inc_stat(intf, invalid_commands);
3387                return 0;
3388        }
3389
3390        if (msg->rsp[2] != 0) {
3391                /* An error getting the response, just ignore it. */
3392                return 0;
3393        }
3394
3395        /*
3396         * This is an OEM Message so the OEM needs to know how
3397         * handle the message. We do no interpretation.
3398         */
3399        netfn = msg->rsp[0] >> 2;
3400        cmd = msg->rsp[1];
3401        chan = msg->rsp[3] & 0xf;
3402
3403        rcu_read_lock();
3404        rcvr = find_cmd_rcvr(intf, netfn, cmd, chan);
3405        if (rcvr) {
3406                user = rcvr->user;
3407                kref_get(&user->refcount);
3408        } else
3409                user = NULL;
3410        rcu_read_unlock();
3411
3412        if (user == NULL) {
3413                /* We didn't find a user, just give up. */
3414                ipmi_inc_stat(intf, unhandled_commands);
3415
3416                /*
3417                 * Don't do anything with these messages, just allow
3418                 * them to be freed.
3419                 */
3420
3421                rv = 0;
3422        } else {
3423                /* Deliver the message to the user. */
3424                ipmi_inc_stat(intf, handled_commands);
3425
3426                recv_msg = ipmi_alloc_recv_msg();
3427                if (!recv_msg) {
3428                        /*
3429                         * We couldn't allocate memory for the
3430                         * message, so requeue it for handling
3431                         * later.
3432                         */
3433                        rv = 1;
3434                        kref_put(&user->refcount, free_user);
3435                } else {
3436                        /*
3437                         * OEM Messages are expected to be delivered via
3438                         * the system interface to SMS software.  We might
3439                         * need to visit this again depending on OEM
3440                         * requirements
3441                         */
3442                        smi_addr = ((struct ipmi_system_interface_addr *)
3443                                    &(recv_msg->addr));
3444                        smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3445                        smi_addr->channel = IPMI_BMC_CHANNEL;
3446                        smi_addr->lun = msg->rsp[0] & 3;
3447
3448                        recv_msg->user = user;
3449                        recv_msg->user_msg_data = NULL;
3450                        recv_msg->recv_type = IPMI_OEM_RECV_TYPE;
3451                        recv_msg->msg.netfn = msg->rsp[0] >> 2;
3452                        recv_msg->msg.cmd = msg->rsp[1];
3453                        recv_msg->msg.data = recv_msg->msg_data;
3454
3455                        /*
3456                         * The message starts at byte 4 which follows the
3457                         * the Channel Byte in the "GET MESSAGE" command
3458                         */
3459                        recv_msg->msg.data_len = msg->rsp_size - 4;
3460                        memcpy(recv_msg->msg_data,
3461                               &(msg->rsp[4]),
3462                               msg->rsp_size - 4);
3463                        deliver_response(recv_msg);
3464                }
3465        }
3466
3467        return rv;
3468}
3469
3470static void copy_event_into_recv_msg(struct ipmi_recv_msg *recv_msg,
3471                                     struct ipmi_smi_msg  *msg)
3472{
3473        struct ipmi_system_interface_addr *smi_addr;
3474
3475        recv_msg->msgid = 0;
3476        smi_addr = (struct ipmi_system_interface_addr *) &(recv_msg->addr);
3477        smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3478        smi_addr->channel = IPMI_BMC_CHANNEL;
3479        smi_addr->lun = msg->rsp[0] & 3;
3480        recv_msg->recv_type = IPMI_ASYNC_EVENT_RECV_TYPE;
3481        recv_msg->msg.netfn = msg->rsp[0] >> 2;
3482        recv_msg->msg.cmd = msg->rsp[1];
3483        memcpy(recv_msg->msg_data, &(msg->rsp[3]), msg->rsp_size - 3);
3484        recv_msg->msg.data = recv_msg->msg_data;
3485        recv_msg->msg.data_len = msg->rsp_size - 3;
3486}
3487
3488static int handle_read_event_rsp(ipmi_smi_t          intf,
3489                                 struct ipmi_smi_msg *msg)
3490{
3491        struct ipmi_recv_msg *recv_msg, *recv_msg2;
3492        struct list_head     msgs;
3493        ipmi_user_t          user;
3494        int                  rv = 0;
3495        int                  deliver_count = 0;
3496        unsigned long        flags;
3497
3498        if (msg->rsp_size < 19) {
3499                /* Message is too small to be an IPMB event. */
3500                ipmi_inc_stat(intf, invalid_events);
3501                return 0;
3502        }
3503
3504        if (msg->rsp[2] != 0) {
3505                /* An error getting the event, just ignore it. */
3506                return 0;
3507        }
3508
3509        INIT_LIST_HEAD(&msgs);
3510
3511        spin_lock_irqsave(&intf->events_lock, flags);
3512
3513        ipmi_inc_stat(intf, events);
3514
3515        /*
3516         * Allocate and fill in one message for every user that is
3517         * getting events.
3518         */
3519        rcu_read_lock();
3520        list_for_each_entry_rcu(user, &intf->users, link) {
3521                if (!user->gets_events)
3522                        continue;
3523
3524                recv_msg = ipmi_alloc_recv_msg();
3525                if (!recv_msg) {
3526                        rcu_read_unlock();
3527                        list_for_each_entry_safe(recv_msg, recv_msg2, &msgs,
3528                                                 link) {
3529                                list_del(&recv_msg->link);
3530                                ipmi_free_recv_msg(recv_msg);
3531                        }
3532                        /*
3533                         * We couldn't allocate memory for the
3534                         * message, so requeue it for handling
3535                         * later.
3536                         */
3537                        rv = 1;
3538                        goto out;
3539                }
3540
3541                deliver_count++;
3542
3543                copy_event_into_recv_msg(recv_msg, msg);
3544                recv_msg->user = user;
3545                kref_get(&user->refcount);
3546                list_add_tail(&(recv_msg->link), &msgs);
3547        }
3548        rcu_read_unlock();
3549
3550        if (deliver_count) {
3551                /* Now deliver all the messages. */
3552                list_for_each_entry_safe(recv_msg, recv_msg2, &msgs, link) {
3553                        list_del(&recv_msg->link);
3554                        deliver_response(recv_msg);
3555                }
3556        } else if (intf->waiting_events_count < MAX_EVENTS_IN_QUEUE) {
3557                /*
3558                 * No one to receive the message, put it in queue if there's
3559                 * not already too many things in the queue.
3560                 */
3561                recv_msg = ipmi_alloc_recv_msg();
3562                if (!recv_msg) {
3563                        /*
3564                         * We couldn't allocate memory for the
3565                         * message, so requeue it for handling
3566                         * later.
3567                         */
3568                        rv = 1;
3569                        goto out;
3570                }
3571
3572                copy_event_into_recv_msg(recv_msg, msg);
3573                list_add_tail(&(recv_msg->link), &(intf->waiting_events));
3574                intf->waiting_events_count++;
3575        } else if (!intf->event_msg_printed) {
3576                /*
3577                 * There's too many things in the queue, discard this
3578                 * message.
3579                 */
3580                printk(KERN_WARNING PFX "Event queue full, discarding"
3581                       " incoming events\n");
3582                intf->event_msg_printed = 1;
3583        }
3584
3585 out:
3586        spin_unlock_irqrestore(&(intf->events_lock), flags);
3587
3588        return rv;
3589}
3590
3591static int handle_bmc_rsp(ipmi_smi_t          intf,
3592                          struct ipmi_smi_msg *msg)
3593{
3594        struct ipmi_recv_msg *recv_msg;
3595        struct ipmi_user     *user;
3596
3597        recv_msg = (struct ipmi_recv_msg *) msg->user_data;
3598        if (recv_msg == NULL) {
3599                printk(KERN_WARNING
3600                       "IPMI message received with no owner. This\n"
3601                       "could be because of a malformed message, or\n"
3602                       "because of a hardware error.  Contact your\n"
3603                       "hardware vender for assistance\n");
3604                return 0;
3605        }
3606
3607        user = recv_msg->user;
3608        /* Make sure the user still exists. */
3609        if (user && !user->valid) {
3610                /* The user for the message went away, so give up. */
3611                ipmi_inc_stat(intf, unhandled_local_responses);
3612                ipmi_free_recv_msg(recv_msg);
3613        } else {
3614                struct ipmi_system_interface_addr *smi_addr;
3615
3616                ipmi_inc_stat(intf, handled_local_responses);
3617                recv_msg->recv_type = IPMI_RESPONSE_RECV_TYPE;
3618                recv_msg->msgid = msg->msgid;
3619                smi_addr = ((struct ipmi_system_interface_addr *)
3620                            &(recv_msg->addr));
3621                smi_addr->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
3622                smi_addr->channel = IPMI_BMC_CHANNEL;
3623                smi_addr->lun = msg->rsp[0] & 3;
3624                recv_msg->msg.netfn = msg->rsp[0] >> 2;
3625                recv_msg->msg.cmd = msg->rsp[1];
3626                memcpy(recv_msg->msg_data,
3627                       &(msg->rsp[2]),
3628                       msg->rsp_size - 2);
3629                recv_msg->msg.data = recv_msg->msg_data;
3630                recv_msg->msg.data_len = msg->rsp_size - 2;
3631                deliver_response(recv_msg);
3632        }
3633
3634        return 0;
3635}
3636
3637/*
3638 * Handle a received message.  Return 1 if the message should be requeued,
3639 * 0 if the message should be freed, or -1 if the message should not
3640 * be freed or requeued.
3641 */
3642static int handle_one_recv_msg(ipmi_smi_t          intf,
3643                               struct ipmi_smi_msg *msg)
3644{
3645        int requeue;
3646        int chan;
3647
3648#ifdef DEBUG_MSGING
3649        int m;
3650        printk("Recv:");
3651        for (m = 0; m < msg->rsp_size; m++)
3652                printk(" %2.2x", msg->rsp[m]);
3653        printk("\n");
3654#endif
3655        if (msg->rsp_size < 2) {
3656                /* Message is too small to be correct. */
3657                printk(KERN_WARNING PFX "BMC returned to small a message"
3658                       " for netfn %x cmd %x, got %d bytes\n",
3659                       (msg->data[0] >> 2) | 1, msg->data[1], msg->rsp_size);
3660
3661                /* Generate an error response for the message. */
3662                msg->rsp[0] = msg->data[0] | (1 << 2);
3663                msg->rsp[1] = msg->data[1];
3664                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3665                msg->rsp_size = 3;
3666        } else if (((msg->rsp[0] >> 2) != ((msg->data[0] >> 2) | 1))
3667                   || (msg->rsp[1] != msg->data[1])) {
3668                /*
3669                 * The NetFN and Command in the response is not even
3670                 * marginally correct.
3671                 */
3672                printk(KERN_WARNING PFX "BMC returned incorrect response,"
3673                       " expected netfn %x cmd %x, got netfn %x cmd %x\n",
3674                       (msg->data[0] >> 2) | 1, msg->data[1],
3675                       msg->rsp[0] >> 2, msg->rsp[1]);
3676
3677                /* Generate an error response for the message. */
3678                msg->rsp[0] = msg->data[0] | (1 << 2);
3679                msg->rsp[1] = msg->data[1];
3680                msg->rsp[2] = IPMI_ERR_UNSPECIFIED;
3681                msg->rsp_size = 3;
3682        }
3683
3684        if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3685            && (msg->rsp[1] == IPMI_SEND_MSG_CMD)
3686            && (msg->user_data != NULL)) {
3687                /*
3688                 * It's a response to a response we sent.  For this we
3689                 * deliver a send message response to the user.
3690                 */
3691                struct ipmi_recv_msg     *recv_msg = msg->user_data;
3692
3693                requeue = 0;
3694                if (msg->rsp_size < 2)
3695                        /* Message is too small to be correct. */
3696                        goto out;
3697
3698                chan = msg->data[2] & 0x0f;
3699                if (chan >= IPMI_MAX_CHANNELS)
3700                        /* Invalid channel number */
3701                        goto out;
3702
3703                if (!recv_msg)
3704                        goto out;
3705
3706                /* Make sure the user still exists. */
3707                if (!recv_msg->user || !recv_msg->user->valid)
3708                        goto out;
3709
3710                recv_msg->recv_type = IPMI_RESPONSE_RESPONSE_TYPE;
3711                recv_msg->msg.data = recv_msg->msg_data;
3712                recv_msg->msg.data_len = 1;
3713                recv_msg->msg_data[0] = msg->rsp[2];
3714                deliver_response(recv_msg);
3715        } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3716                   && (msg->rsp[1] == IPMI_GET_MSG_CMD)) {
3717                /* It's from the receive queue. */
3718                chan = msg->rsp[3] & 0xf;
3719                if (chan >= IPMI_MAX_CHANNELS) {
3720                        /* Invalid channel number */
3721                        requeue = 0;
3722                        goto out;
3723                }
3724
3725                /*
3726                 * We need to make sure the channels have been initialized.
3727                 * The channel_handler routine will set the "curr_channel"
3728                 * equal to or greater than IPMI_MAX_CHANNELS when all the
3729                 * channels for this interface have been initialized.
3730                 */
3731                if (intf->curr_channel < IPMI_MAX_CHANNELS) {
3732                        requeue = 0; /* Throw the message away */
3733                        goto out;
3734                }
3735
3736                switch (intf->channels[chan].medium) {
3737                case IPMI_CHANNEL_MEDIUM_IPMB:
3738                        if (msg->rsp[4] & 0x04) {
3739                                /*
3740                                 * It's a response, so find the
3741                                 * requesting message and send it up.
3742                                 */
3743                                requeue = handle_ipmb_get_msg_rsp(intf, msg);
3744                        } else {
3745                                /*
3746                                 * It's a command to the SMS from some other
3747                                 * entity.  Handle that.
3748                                 */
3749                                requeue = handle_ipmb_get_msg_cmd(intf, msg);
3750                        }
3751                        break;
3752
3753                case IPMI_CHANNEL_MEDIUM_8023LAN:
3754                case IPMI_CHANNEL_MEDIUM_ASYNC:
3755                        if (msg->rsp[6] & 0x04) {
3756                                /*
3757                                 * It's a response, so find the
3758                                 * requesting message and send it up.
3759                                 */
3760                                requeue = handle_lan_get_msg_rsp(intf, msg);
3761                        } else {
3762                                /*
3763                                 * It's a command to the SMS from some other
3764                                 * entity.  Handle that.
3765                                 */
3766                                requeue = handle_lan_get_msg_cmd(intf, msg);
3767                        }
3768                        break;
3769
3770                default:
3771                        /* Check for OEM Channels.  Clients had better
3772                           register for these commands. */
3773                        if ((intf->channels[chan].medium
3774                             >= IPMI_CHANNEL_MEDIUM_OEM_MIN)
3775                            && (intf->channels[chan].medium
3776                                <= IPMI_CHANNEL_MEDIUM_OEM_MAX)) {
3777                                requeue = handle_oem_get_msg_cmd(intf, msg);
3778                        } else {
3779                                /*
3780                                 * We don't handle the channel type, so just
3781                                 * free the message.
3782                                 */
3783                                requeue = 0;
3784                        }
3785                }
3786
3787        } else if ((msg->rsp[0] == ((IPMI_NETFN_APP_REQUEST|1) << 2))
3788                   && (msg->rsp[1] == IPMI_READ_EVENT_MSG_BUFFER_CMD)) {
3789                /* It's an asynchronous event. */
3790                requeue = handle_read_event_rsp(intf, msg);
3791        } else {
3792                /* It's a response from the local BMC. */
3793                requeue = handle_bmc_rsp(intf, msg);
3794        }
3795
3796 out:
3797        return requeue;
3798}
3799
3800/*
3801 * If there are messages in the queue or pretimeouts, handle them.
3802 */
3803static void handle_new_recv_msgs(ipmi_smi_t intf)
3804{
3805        struct ipmi_smi_msg  *smi_msg;
3806        unsigned long        flags = 0;
3807        int                  rv;
3808        int                  run_to_completion = intf->run_to_completion;
3809
3810        /* See if any waiting messages need to be processed. */
3811        if (!run_to_completion)
3812                spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3813        while (!list_empty(&intf->waiting_rcv_msgs)) {
3814                smi_msg = list_entry(intf->waiting_rcv_msgs.next,
3815                                     struct ipmi_smi_msg, link);
3816                if (!run_to_completion)
3817                        spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3818                                               flags);
3819                rv = handle_one_recv_msg(intf, smi_msg);
3820                if (!run_to_completion)
3821                        spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3822                if (rv > 0) {
3823                        /*
3824                         * To preserve message order, quit if we
3825                         * can't handle a message.
3826                         */
3827                        break;
3828                } else {
3829                        list_del(&smi_msg->link);
3830                        if (rv == 0)
3831                                /* Message handled */
3832                                ipmi_free_smi_msg(smi_msg);
3833                        /* If rv < 0, fatal error, del but don't free. */
3834                }
3835        }
3836        if (!run_to_completion)
3837                spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock, flags);
3838
3839        /*
3840         * If the pretimout count is non-zero, decrement one from it and
3841         * deliver pretimeouts to all the users.
3842         */
3843        if (atomic_add_unless(&intf->watchdog_pretimeouts_to_deliver, -1, 0)) {
3844                ipmi_user_t user;
3845
3846                rcu_read_lock();
3847                list_for_each_entry_rcu(user, &intf->users, link) {
3848                        if (user->handler->ipmi_watchdog_pretimeout)
3849                                user->handler->ipmi_watchdog_pretimeout(
3850                                        user->handler_data);
3851                }
3852                rcu_read_unlock();
3853        }
3854}
3855
3856static void smi_recv_tasklet(unsigned long val)
3857{
3858        unsigned long flags = 0; /* keep us warning-free. */
3859        ipmi_smi_t intf = (ipmi_smi_t) val;
3860        int run_to_completion = intf->run_to_completion;
3861        struct ipmi_smi_msg *newmsg = NULL;
3862
3863        /*
3864         * Start the next message if available.
3865         *
3866         * Do this here, not in the actual receiver, because we may deadlock
3867         * because the lower layer is allowed to hold locks while calling
3868         * message delivery.
3869         */
3870        if (!run_to_completion)
3871                spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3872        if (intf->curr_msg == NULL && !intf->in_shutdown) {
3873                struct list_head *entry = NULL;
3874
3875                /* Pick the high priority queue first. */
3876                if (!list_empty(&intf->hp_xmit_msgs))
3877                        entry = intf->hp_xmit_msgs.next;
3878                else if (!list_empty(&intf->xmit_msgs))
3879                        entry = intf->xmit_msgs.next;
3880
3881                if (entry) {
3882                        list_del(entry);
3883                        newmsg = list_entry(entry, struct ipmi_smi_msg, link);
3884                        intf->curr_msg = newmsg;
3885                }
3886        }
3887        if (!run_to_completion)
3888                spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3889        if (newmsg)
3890                intf->handlers->sender(intf->send_info, newmsg);
3891
3892        handle_new_recv_msgs(intf);
3893}
3894
3895/* Handle a new message from the lower layer. */
3896void ipmi_smi_msg_received(ipmi_smi_t          intf,
3897                           struct ipmi_smi_msg *msg)
3898{
3899        unsigned long flags = 0; /* keep us warning-free. */
3900        int run_to_completion = intf->run_to_completion;
3901
3902        if ((msg->data_size >= 2)
3903            && (msg->data[0] == (IPMI_NETFN_APP_REQUEST << 2))
3904            && (msg->data[1] == IPMI_SEND_MSG_CMD)
3905            && (msg->user_data == NULL)) {
3906
3907                if (intf->in_shutdown)
3908                        goto free_msg;
3909
3910                /*
3911                 * This is the local response to a command send, start
3912                 * the timer for these.  The user_data will not be
3913                 * NULL if this is a response send, and we will let
3914                 * response sends just go through.
3915                 */
3916
3917                /*
3918                 * Check for errors, if we get certain errors (ones
3919                 * that mean basically we can try again later), we
3920                 * ignore them and start the timer.  Otherwise we
3921                 * report the error immediately.
3922                 */
3923                if ((msg->rsp_size >= 3) && (msg->rsp[2] != 0)
3924                    && (msg->rsp[2] != IPMI_NODE_BUSY_ERR)
3925                    && (msg->rsp[2] != IPMI_LOST_ARBITRATION_ERR)
3926                    && (msg->rsp[2] != IPMI_BUS_ERR)
3927                    && (msg->rsp[2] != IPMI_NAK_ON_WRITE_ERR)) {
3928                        int chan = msg->rsp[3] & 0xf;
3929
3930                        /* Got an error sending the message, handle it. */
3931                        if (chan >= IPMI_MAX_CHANNELS)
3932                                ; /* This shouldn't happen */
3933                        else if ((intf->channels[chan].medium
3934                                  == IPMI_CHANNEL_MEDIUM_8023LAN)
3935                                 || (intf->channels[chan].medium
3936                                     == IPMI_CHANNEL_MEDIUM_ASYNC))
3937                                ipmi_inc_stat(intf, sent_lan_command_errs);
3938                        else
3939                                ipmi_inc_stat(intf, sent_ipmb_command_errs);
3940                        intf_err_seq(intf, msg->msgid, msg->rsp[2]);
3941                } else
3942                        /* The message was sent, start the timer. */
3943                        intf_start_seq_timer(intf, msg->msgid);
3944
3945free_msg:
3946                ipmi_free_smi_msg(msg);
3947        } else {
3948                /*
3949                 * To preserve message order, we keep a queue and deliver from
3950                 * a tasklet.
3951                 */
3952                if (!run_to_completion)
3953                        spin_lock_irqsave(&intf->waiting_rcv_msgs_lock, flags);
3954                list_add_tail(&msg->link, &intf->waiting_rcv_msgs);
3955                if (!run_to_completion)
3956                        spin_unlock_irqrestore(&intf->waiting_rcv_msgs_lock,
3957                                               flags);
3958        }
3959
3960        if (!run_to_completion)
3961                spin_lock_irqsave(&intf->xmit_msgs_lock, flags);
3962        if (msg == intf->curr_msg)
3963                intf->curr_msg = NULL;
3964        if (!run_to_completion)
3965                spin_unlock_irqrestore(&intf->xmit_msgs_lock, flags);
3966
3967        if (run_to_completion)
3968                smi_recv_tasklet((unsigned long) intf);
3969        else
3970                tasklet_schedule(&intf->recv_tasklet);
3971}
3972EXPORT_SYMBOL(ipmi_smi_msg_received);
3973
3974void ipmi_smi_watchdog_pretimeout(ipmi_smi_t intf)
3975{
3976        if (intf->in_shutdown)
3977                return;
3978
3979        atomic_set(&intf->watchdog_pretimeouts_to_deliver, 1);
3980        tasklet_schedule(&intf->recv_tasklet);
3981}
3982EXPORT_SYMBOL(ipmi_smi_watchdog_pretimeout);
3983
3984static struct ipmi_smi_msg *
3985smi_from_recv_msg(ipmi_smi_t intf, struct ipmi_recv_msg *recv_msg,
3986                  unsigned char seq, long seqid)
3987{
3988        struct ipmi_smi_msg *smi_msg = ipmi_alloc_smi_msg();
3989        if (!smi_msg)
3990                /*
3991                 * If we can't allocate the message, then just return, we
3992                 * get 4 retries, so this should be ok.
3993                 */
3994                return NULL;
3995
3996        memcpy(smi_msg->data, recv_msg->msg.data, recv_msg->msg.data_len);
3997        smi_msg->data_size = recv_msg->msg.data_len;
3998        smi_msg->msgid = STORE_SEQ_IN_MSGID(seq, seqid);
3999
4000#ifdef DEBUG_MSGING
4001        {
4002                int m;
4003                printk("Resend: ");
4004                for (m = 0; m < smi_msg->data_size; m++)
4005                        printk(" %2.2x", smi_msg->data[m]);
4006                printk("\n");
4007        }
4008#endif
4009        return smi_msg;
4010}
4011
4012static void check_msg_timeout(ipmi_smi_t intf, struct seq_table *ent,
4013                              struct list_head *timeouts, long timeout_period,
4014                              int slot, unsigned long *flags,
4015                              unsigned int *waiting_msgs)
4016{
4017        struct ipmi_recv_msg     *msg;
4018        struct ipmi_smi_handlers *handlers;
4019
4020        if (intf->in_shutdown)
4021                return;
4022
4023        if (!ent->inuse)
4024                return;
4025
4026        ent->timeout -= timeout_period;
4027        if (ent->timeout > 0) {
4028                (*waiting_msgs)++;
4029                return;
4030        }
4031
4032        if (ent->retries_left == 0) {
4033                /* The message has used all its retries. */
4034                ent->inuse = 0;
4035                msg = ent->recv_msg;
4036                list_add_tail(&msg->link, timeouts);
4037                if (ent->broadcast)
4038                        ipmi_inc_stat(intf, timed_out_ipmb_broadcasts);
4039                else if (is_lan_addr(&ent->recv_msg->addr))
4040                        ipmi_inc_stat(intf, timed_out_lan_commands);
4041                else
4042                        ipmi_inc_stat(intf, timed_out_ipmb_commands);
4043        } else {
4044                struct ipmi_smi_msg *smi_msg;
4045                /* More retries, send again. */
4046
4047                (*waiting_msgs)++;
4048
4049                /*
4050                 * Start with the max timer, set to normal timer after
4051                 * the message is sent.
4052                 */
4053                ent->timeout = MAX_MSG_TIMEOUT;
4054                ent->retries_left--;
4055                smi_msg = smi_from_recv_msg(intf, ent->recv_msg, slot,
4056                                            ent->seqid);
4057                if (!smi_msg) {
4058                        if (is_lan_addr(&ent->recv_msg->addr))
4059                                ipmi_inc_stat(intf,
4060                                              dropped_rexmit_lan_commands);
4061                        else
4062                                ipmi_inc_stat(intf,
4063                                              dropped_rexmit_ipmb_commands);
4064                        return;
4065                }
4066
4067                spin_unlock_irqrestore(&intf->seq_lock, *flags);
4068
4069                /*
4070                 * Send the new message.  We send with a zero
4071                 * priority.  It timed out, I doubt time is that
4072                 * critical now, and high priority messages are really
4073                 * only for messages to the local MC, which don't get
4074                 * resent.
4075                 */
4076                handlers = intf->handlers;
4077                if (handlers) {
4078                        if (is_lan_addr(&ent->recv_msg->addr))
4079                                ipmi_inc_stat(intf,
4080                                              retransmitted_lan_commands);
4081                        else
4082                                ipmi_inc_stat(intf,
4083                                              retransmitted_ipmb_commands);
4084
4085                        smi_send(intf, intf->handlers, smi_msg, 0);
4086                } else
4087                        ipmi_free_smi_msg(smi_msg);
4088
4089                spin_lock_irqsave(&intf->seq_lock, *flags);
4090        }
4091}
4092
4093static unsigned int ipmi_timeout_handler(ipmi_smi_t intf, long timeout_period)
4094{
4095        struct list_head     timeouts;
4096        struct ipmi_recv_msg *msg, *msg2;
4097        unsigned long        flags;
4098        int                  i;
4099        unsigned int         waiting_msgs = 0;
4100
4101        /*
4102         * Go through the seq table and find any messages that
4103         * have timed out, putting them in the timeouts
4104         * list.
4105         */
4106        INIT_LIST_HEAD(&timeouts);
4107        spin_lock_irqsave(&intf->seq_lock, flags);
4108        for (i = 0; i < IPMI_IPMB_NUM_SEQ; i++)
4109                check_msg_timeout(intf, &(intf->seq_table[i]),
4110                                  &timeouts, timeout_period, i,
4111                                  &flags, &waiting_msgs);
4112        spin_unlock_irqrestore(&intf->seq_lock, flags);
4113
4114        list_for_each_entry_safe(msg, msg2, &timeouts, link)
4115                deliver_err_response(msg, IPMI_TIMEOUT_COMPLETION_CODE);
4116
4117        /*
4118         * Maintenance mode handling.  Check the timeout
4119         * optimistically before we claim the lock.  It may
4120         * mean a timeout gets missed occasionally, but that
4121         * only means the timeout gets extended by one period
4122         * in that case.  No big deal, and it avoids the lock
4123         * most of the time.
4124         */
4125        if (intf->auto_maintenance_timeout > 0) {
4126                spin_lock_irqsave(&intf->maintenance_mode_lock, flags);
4127                if (intf->auto_maintenance_timeout > 0) {
4128                        intf->auto_maintenance_timeout
4129                                -= timeout_period;
4130                        if (!intf->maintenance_mode
4131                            && (intf->auto_maintenance_timeout <= 0)) {
4132                                intf->maintenance_mode_enable = false;
4133                                maintenance_mode_update(intf);
4134                        }
4135                }
4136                spin_unlock_irqrestore(&intf->maintenance_mode_lock,
4137                                       flags);
4138        }
4139
4140        tasklet_schedule(&intf->recv_tasklet);
4141
4142        return waiting_msgs;
4143}
4144
4145static void ipmi_request_event(ipmi_smi_t intf)
4146{
4147        /* No event requests when in maintenance mode. */
4148        if (intf->maintenance_mode_enable)
4149                return;
4150
4151        if (!intf->in_shutdown)
4152                intf->handlers->request_events(intf->send_info);
4153}
4154
4155static struct timer_list ipmi_timer;
4156
4157static atomic_t stop_operation;
4158
4159static void ipmi_timeout(unsigned long data)
4160{
4161        ipmi_smi_t intf;
4162        int nt = 0;
4163
4164        if (atomic_read(&stop_operation))
4165                return;
4166
4167        rcu_read_lock();
4168        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4169                int lnt = 0;
4170
4171                if (atomic_read(&intf->event_waiters)) {
4172                        intf->ticks_to_req_ev--;
4173                        if (intf->ticks_to_req_ev == 0) {
4174                                ipmi_request_event(intf);
4175                                intf->ticks_to_req_ev = IPMI_REQUEST_EV_TIME;
4176                        }
4177                        lnt++;
4178                }
4179
4180                lnt += ipmi_timeout_handler(intf, IPMI_TIMEOUT_TIME);
4181
4182                lnt = !!lnt;
4183                if (lnt != intf->last_needs_timer &&
4184                                        intf->handlers->set_need_watch)
4185                        intf->handlers->set_need_watch(intf->send_info, lnt);
4186                intf->last_needs_timer = lnt;
4187
4188                nt += lnt;
4189        }
4190        rcu_read_unlock();
4191
4192        if (nt)
4193                mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4194}
4195
4196static void need_waiter(ipmi_smi_t intf)
4197{
4198        /* Racy, but worst case we start the timer twice. */
4199        if (!timer_pending(&ipmi_timer))
4200                mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4201}
4202
4203static atomic_t smi_msg_inuse_count = ATOMIC_INIT(0);
4204static atomic_t recv_msg_inuse_count = ATOMIC_INIT(0);
4205
4206static void free_smi_msg(struct ipmi_smi_msg *msg)
4207{
4208        atomic_dec(&smi_msg_inuse_count);
4209        kfree(msg);
4210}
4211
4212struct ipmi_smi_msg *ipmi_alloc_smi_msg(void)
4213{
4214        struct ipmi_smi_msg *rv;
4215        rv = kmalloc(sizeof(struct ipmi_smi_msg), GFP_ATOMIC);
4216        if (rv) {
4217                rv->done = free_smi_msg;
4218                rv->user_data = NULL;
4219                atomic_inc(&smi_msg_inuse_count);
4220        }
4221        return rv;
4222}
4223EXPORT_SYMBOL(ipmi_alloc_smi_msg);
4224
4225static void free_recv_msg(struct ipmi_recv_msg *msg)
4226{
4227        atomic_dec(&recv_msg_inuse_count);
4228        kfree(msg);
4229}
4230
4231static struct ipmi_recv_msg *ipmi_alloc_recv_msg(void)
4232{
4233        struct ipmi_recv_msg *rv;
4234
4235        rv = kmalloc(sizeof(struct ipmi_recv_msg), GFP_ATOMIC);
4236        if (rv) {
4237                rv->user = NULL;
4238                rv->done = free_recv_msg;
4239                atomic_inc(&recv_msg_inuse_count);
4240        }
4241        return rv;
4242}
4243
4244void ipmi_free_recv_msg(struct ipmi_recv_msg *msg)
4245{
4246        if (msg->user)
4247                kref_put(&msg->user->refcount, free_user);
4248        msg->done(msg);
4249}
4250EXPORT_SYMBOL(ipmi_free_recv_msg);
4251
4252#ifdef CONFIG_IPMI_PANIC_EVENT
4253
4254static atomic_t panic_done_count = ATOMIC_INIT(0);
4255
4256static void dummy_smi_done_handler(struct ipmi_smi_msg *msg)
4257{
4258        atomic_dec(&panic_done_count);
4259}
4260
4261static void dummy_recv_done_handler(struct ipmi_recv_msg *msg)
4262{
4263        atomic_dec(&panic_done_count);
4264}
4265
4266/*
4267 * Inside a panic, send a message and wait for a response.
4268 */
4269static void ipmi_panic_request_and_wait(ipmi_smi_t           intf,
4270                                        struct ipmi_addr     *addr,
4271                                        struct kernel_ipmi_msg *msg)
4272{
4273        struct ipmi_smi_msg  smi_msg;
4274        struct ipmi_recv_msg recv_msg;
4275        int rv;
4276
4277        smi_msg.done = dummy_smi_done_handler;
4278        recv_msg.done = dummy_recv_done_handler;
4279        atomic_add(2, &panic_done_count);
4280        rv = i_ipmi_request(NULL,
4281                            intf,
4282                            addr,
4283                            0,
4284                            msg,
4285                            intf,
4286                            &smi_msg,
4287                            &recv_msg,
4288                            0,
4289                            intf->channels[0].address,
4290                            intf->channels[0].lun,
4291                            0, 1); /* Don't retry, and don't wait. */
4292        if (rv)
4293                atomic_sub(2, &panic_done_count);
4294        while (atomic_read(&panic_done_count) != 0)
4295                ipmi_poll(intf);
4296}
4297
4298#ifdef CONFIG_IPMI_PANIC_STRING
4299static void event_receiver_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4300{
4301        if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4302            && (msg->msg.netfn == IPMI_NETFN_SENSOR_EVENT_RESPONSE)
4303            && (msg->msg.cmd == IPMI_GET_EVENT_RECEIVER_CMD)
4304            && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4305                /* A get event receiver command, save it. */
4306                intf->event_receiver = msg->msg.data[1];
4307                intf->event_receiver_lun = msg->msg.data[2] & 0x3;
4308        }
4309}
4310
4311static void device_id_fetcher(ipmi_smi_t intf, struct ipmi_recv_msg *msg)
4312{
4313        if ((msg->addr.addr_type == IPMI_SYSTEM_INTERFACE_ADDR_TYPE)
4314            && (msg->msg.netfn == IPMI_NETFN_APP_RESPONSE)
4315            && (msg->msg.cmd == IPMI_GET_DEVICE_ID_CMD)
4316            && (msg->msg.data[0] == IPMI_CC_NO_ERROR)) {
4317                /*
4318                 * A get device id command, save if we are an event
4319                 * receiver or generator.
4320                 */
4321                intf->local_sel_device = (msg->msg.data[6] >> 2) & 1;
4322                intf->local_event_generator = (msg->msg.data[6] >> 5) & 1;
4323        }
4324}
4325#endif
4326
4327static void send_panic_events(char *str)
4328{
4329        struct kernel_ipmi_msg            msg;
4330        ipmi_smi_t                        intf;
4331        unsigned char                     data[16];
4332        struct ipmi_system_interface_addr *si;
4333        struct ipmi_addr                  addr;
4334
4335        si = (struct ipmi_system_interface_addr *) &addr;
4336        si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4337        si->channel = IPMI_BMC_CHANNEL;
4338        si->lun = 0;
4339
4340        /* Fill in an event telling that we have failed. */
4341        msg.netfn = 0x04; /* Sensor or Event. */
4342        msg.cmd = 2; /* Platform event command. */
4343        msg.data = data;
4344        msg.data_len = 8;
4345        data[0] = 0x41; /* Kernel generator ID, IPMI table 5-4 */
4346        data[1] = 0x03; /* This is for IPMI 1.0. */
4347        data[2] = 0x20; /* OS Critical Stop, IPMI table 36-3 */
4348        data[4] = 0x6f; /* Sensor specific, IPMI table 36-1 */
4349        data[5] = 0xa1; /* Runtime stop OEM bytes 2 & 3. */
4350
4351        /*
4352         * Put a few breadcrumbs in.  Hopefully later we can add more things
4353         * to make the panic events more useful.
4354         */
4355        if (str) {
4356                data[3] = str[0];
4357                data[6] = str[1];
4358                data[7] = str[2];
4359        }
4360
4361        /* For every registered interface, send the event. */
4362        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4363                if (!intf->handlers)
4364                        /* Interface is not ready. */
4365                        continue;
4366
4367                intf->run_to_completion = 1;
4368                /* Send the event announcing the panic. */
4369                intf->handlers->set_run_to_completion(intf->send_info, 1);
4370                ipmi_panic_request_and_wait(intf, &addr, &msg);
4371        }
4372
4373#ifdef CONFIG_IPMI_PANIC_STRING
4374        /*
4375         * On every interface, dump a bunch of OEM event holding the
4376         * string.
4377         */
4378        if (!str)
4379                return;
4380
4381        /* For every registered interface, send the event. */
4382        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4383                char                  *p = str;
4384                struct ipmi_ipmb_addr *ipmb;
4385                int                   j;
4386
4387                if (intf->intf_num == -1)
4388                        /* Interface was not ready yet. */
4389                        continue;
4390
4391                /*
4392                 * intf_num is used as an marker to tell if the
4393                 * interface is valid.  Thus we need a read barrier to
4394                 * make sure data fetched before checking intf_num
4395                 * won't be used.
4396                 */
4397                smp_rmb();
4398
4399                /*
4400                 * First job here is to figure out where to send the
4401                 * OEM events.  There's no way in IPMI to send OEM
4402                 * events using an event send command, so we have to
4403                 * find the SEL to put them in and stick them in
4404                 * there.
4405                 */
4406
4407                /* Get capabilities from the get device id. */
4408                intf->local_sel_device = 0;
4409                intf->local_event_generator = 0;
4410                intf->event_receiver = 0;
4411
4412                /* Request the device info from the local MC. */
4413                msg.netfn = IPMI_NETFN_APP_REQUEST;
4414                msg.cmd = IPMI_GET_DEVICE_ID_CMD;
4415                msg.data = NULL;
4416                msg.data_len = 0;
4417                intf->null_user_handler = device_id_fetcher;
4418                ipmi_panic_request_and_wait(intf, &addr, &msg);
4419
4420                if (intf->local_event_generator) {
4421                        /* Request the event receiver from the local MC. */
4422                        msg.netfn = IPMI_NETFN_SENSOR_EVENT_REQUEST;
4423                        msg.cmd = IPMI_GET_EVENT_RECEIVER_CMD;
4424                        msg.data = NULL;
4425                        msg.data_len = 0;
4426                        intf->null_user_handler = event_receiver_fetcher;
4427                        ipmi_panic_request_and_wait(intf, &addr, &msg);
4428                }
4429                intf->null_user_handler = NULL;
4430
4431                /*
4432                 * Validate the event receiver.  The low bit must not
4433                 * be 1 (it must be a valid IPMB address), it cannot
4434                 * be zero, and it must not be my address.
4435                 */
4436                if (((intf->event_receiver & 1) == 0)
4437                    && (intf->event_receiver != 0)
4438                    && (intf->event_receiver != intf->channels[0].address)) {
4439                        /*
4440                         * The event receiver is valid, send an IPMB
4441                         * message.
4442                         */
4443                        ipmb = (struct ipmi_ipmb_addr *) &addr;
4444                        ipmb->addr_type = IPMI_IPMB_ADDR_TYPE;
4445                        ipmb->channel = 0; /* FIXME - is this right? */
4446                        ipmb->lun = intf->event_receiver_lun;
4447                        ipmb->slave_addr = intf->event_receiver;
4448                } else if (intf->local_sel_device) {
4449                        /*
4450                         * The event receiver was not valid (or was
4451                         * me), but I am an SEL device, just dump it
4452                         * in my SEL.
4453                         */
4454                        si = (struct ipmi_system_interface_addr *) &addr;
4455                        si->addr_type = IPMI_SYSTEM_INTERFACE_ADDR_TYPE;
4456                        si->channel = IPMI_BMC_CHANNEL;
4457                        si->lun = 0;
4458                } else
4459                        continue; /* No where to send the event. */
4460
4461                msg.netfn = IPMI_NETFN_STORAGE_REQUEST; /* Storage. */
4462                msg.cmd = IPMI_ADD_SEL_ENTRY_CMD;
4463                msg.data = data;
4464                msg.data_len = 16;
4465
4466                j = 0;
4467                while (*p) {
4468                        int size = strlen(p);
4469
4470                        if (size > 11)
4471                                size = 11;
4472                        data[0] = 0;
4473                        data[1] = 0;
4474                        data[2] = 0xf0; /* OEM event without timestamp. */
4475                        data[3] = intf->channels[0].address;
4476                        data[4] = j++; /* sequence # */
4477                        /*
4478                         * Always give 11 bytes, so strncpy will fill
4479                         * it with zeroes for me.
4480                         */
4481                        strncpy(data+5, p, 11);
4482                        p += size;
4483
4484                        ipmi_panic_request_and_wait(intf, &addr, &msg);
4485                }
4486        }
4487#endif /* CONFIG_IPMI_PANIC_STRING */
4488}
4489#endif /* CONFIG_IPMI_PANIC_EVENT */
4490
4491static int has_panicked;
4492
4493static int panic_event(struct notifier_block *this,
4494                       unsigned long         event,
4495                       void                  *ptr)
4496{
4497        ipmi_smi_t intf;
4498
4499        if (has_panicked)
4500                return NOTIFY_DONE;
4501        has_panicked = 1;
4502
4503        /* For every registered interface, set it to run to completion. */
4504        list_for_each_entry_rcu(intf, &ipmi_interfaces, link) {
4505                if (!intf->handlers)
4506                        /* Interface is not ready. */
4507                        continue;
4508
4509                intf->run_to_completion = 1;
4510                intf->handlers->set_run_to_completion(intf->send_info, 1);
4511        }
4512
4513#ifdef CONFIG_IPMI_PANIC_EVENT
4514        send_panic_events(ptr);
4515#endif
4516
4517        return NOTIFY_DONE;
4518}
4519
4520static struct notifier_block panic_block = {
4521        .notifier_call  = panic_event,
4522        .next           = NULL,
4523        .priority       = 200   /* priority: INT_MAX >= x >= 0 */
4524};
4525
4526static int ipmi_init_msghandler(void)
4527{
4528        int rv;
4529
4530        if (initialized)
4531                return 0;
4532
4533        rv = driver_register(&ipmidriver.driver);
4534        if (rv) {
4535                printk(KERN_ERR PFX "Could not register IPMI driver\n");
4536                return rv;
4537        }
4538
4539        printk(KERN_INFO "ipmi message handler version "
4540               IPMI_DRIVER_VERSION "\n");
4541
4542#ifdef CONFIG_PROC_FS
4543        proc_ipmi_root = proc_mkdir("ipmi", NULL);
4544        if (!proc_ipmi_root) {
4545            printk(KERN_ERR PFX "Unable to create IPMI proc dir");
4546            driver_unregister(&ipmidriver.driver);
4547            return -ENOMEM;
4548        }
4549
4550#endif /* CONFIG_PROC_FS */
4551
4552        setup_timer(&ipmi_timer, ipmi_timeout, 0);
4553        mod_timer(&ipmi_timer, jiffies + IPMI_TIMEOUT_JIFFIES);
4554
4555        atomic_notifier_chain_register(&panic_notifier_list, &panic_block);
4556
4557        initialized = 1;
4558
4559        return 0;
4560}
4561
4562static int __init ipmi_init_msghandler_mod(void)
4563{
4564        ipmi_init_msghandler();
4565        return 0;
4566}
4567
4568static void __exit cleanup_ipmi(void)
4569{
4570        int count;
4571
4572        if (!initialized)
4573                return;
4574
4575        atomic_notifier_chain_unregister(&panic_notifier_list, &panic_block);
4576
4577        /*
4578         * This can't be called if any interfaces exist, so no worry
4579         * about shutting down the interfaces.
4580         */
4581
4582        /*
4583         * Tell the timer to stop, then wait for it to stop.  This
4584         * avoids problems with race conditions removing the timer
4585         * here.
4586         */
4587        atomic_inc(&stop_operation);
4588        del_timer_sync(&ipmi_timer);
4589
4590#ifdef CONFIG_PROC_FS
4591        proc_remove(proc_ipmi_root);
4592#endif /* CONFIG_PROC_FS */
4593
4594        driver_unregister(&ipmidriver.driver);
4595
4596        initialized = 0;
4597
4598        /* Check for buffer leaks. */
4599        count = atomic_read(&smi_msg_inuse_count);
4600        if (count != 0)
4601                printk(KERN_WARNING PFX "SMI message count %d at exit\n",
4602                       count);
4603        count = atomic_read(&recv_msg_inuse_count);
4604        if (count != 0)
4605                printk(KERN_WARNING PFX "recv message count %d at exit\n",
4606                       count);
4607}
4608module_exit(cleanup_ipmi);
4609
4610module_init(ipmi_init_msghandler_mod);
4611MODULE_LICENSE("GPL");
4612MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
4613MODULE_DESCRIPTION("Incoming and outgoing message routing for an IPMI"
4614                   " interface.");
4615MODULE_VERSION(IPMI_DRIVER_VERSION);
4616