linux/drivers/clk/ti/fapll.c
<<
>>
Prefs
   1/*
   2 * This program is free software; you can redistribute it and/or
   3 * modify it under the terms of the GNU General Public License as
   4 * published by the Free Software Foundation version 2.
   5 *
   6 * This program is distributed "as is" WITHOUT ANY WARRANTY of any
   7 * kind, whether express or implied; without even the implied warranty
   8 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
   9 * GNU General Public License for more details.
  10 */
  11
  12#include <linux/clk-provider.h>
  13#include <linux/delay.h>
  14#include <linux/err.h>
  15#include <linux/math64.h>
  16#include <linux/of.h>
  17#include <linux/of_address.h>
  18#include <linux/clk/ti.h>
  19
  20/* FAPLL Control Register PLL_CTRL */
  21#define FAPLL_MAIN_MULT_N_SHIFT 16
  22#define FAPLL_MAIN_DIV_P_SHIFT  8
  23#define FAPLL_MAIN_LOCK         BIT(7)
  24#define FAPLL_MAIN_PLLEN        BIT(3)
  25#define FAPLL_MAIN_BP           BIT(2)
  26#define FAPLL_MAIN_LOC_CTL      BIT(0)
  27
  28#define FAPLL_MAIN_MAX_MULT_N   0xffff
  29#define FAPLL_MAIN_MAX_DIV_P    0xff
  30#define FAPLL_MAIN_CLEAR_MASK   \
  31        ((FAPLL_MAIN_MAX_MULT_N << FAPLL_MAIN_MULT_N_SHIFT) | \
  32         (FAPLL_MAIN_DIV_P_SHIFT << FAPLL_MAIN_DIV_P_SHIFT) | \
  33         FAPLL_MAIN_LOC_CTL)
  34
  35/* FAPLL powerdown register PWD */
  36#define FAPLL_PWD_OFFSET        4
  37
  38#define MAX_FAPLL_OUTPUTS       7
  39#define FAPLL_MAX_RETRIES       1000
  40
  41#define to_fapll(_hw)           container_of(_hw, struct fapll_data, hw)
  42#define to_synth(_hw)           container_of(_hw, struct fapll_synth, hw)
  43
  44/* The bypass bit is inverted on the ddr_pll.. */
  45#define fapll_is_ddr_pll(va)    (((u32)(va) & 0xffff) == 0x0440)
  46
  47/*
  48 * The audio_pll_clk1 input is hard wired to the 27MHz bypass clock,
  49 * and the audio_pll_clk1 synthesizer is hardwared to 32KiHz output.
  50 */
  51#define is_ddr_pll_clk1(va)     (((u32)(va) & 0xffff) == 0x044c)
  52#define is_audio_pll_clk1(va)   (((u32)(va) & 0xffff) == 0x04a8)
  53
  54/* Synthesizer divider register */
  55#define SYNTH_LDMDIV1           BIT(8)
  56
  57/* Synthesizer frequency register */
  58#define SYNTH_LDFREQ            BIT(31)
  59
  60#define SYNTH_PHASE_K           8
  61#define SYNTH_MAX_INT_DIV       0xf
  62#define SYNTH_MAX_DIV_M         0xff
  63
  64struct fapll_data {
  65        struct clk_hw hw;
  66        void __iomem *base;
  67        const char *name;
  68        struct clk *clk_ref;
  69        struct clk *clk_bypass;
  70        struct clk_onecell_data outputs;
  71        bool bypass_bit_inverted;
  72};
  73
  74struct fapll_synth {
  75        struct clk_hw hw;
  76        struct fapll_data *fd;
  77        int index;
  78        void __iomem *freq;
  79        void __iomem *div;
  80        const char *name;
  81        struct clk *clk_pll;
  82};
  83
  84static bool ti_fapll_clock_is_bypass(struct fapll_data *fd)
  85{
  86        u32 v = readl_relaxed(fd->base);
  87
  88        if (fd->bypass_bit_inverted)
  89                return !(v & FAPLL_MAIN_BP);
  90        else
  91                return !!(v & FAPLL_MAIN_BP);
  92}
  93
  94static void ti_fapll_set_bypass(struct fapll_data *fd)
  95{
  96        u32 v = readl_relaxed(fd->base);
  97
  98        if (fd->bypass_bit_inverted)
  99                v &= ~FAPLL_MAIN_BP;
 100        else
 101                v |= FAPLL_MAIN_BP;
 102        writel_relaxed(v, fd->base);
 103}
 104
 105static void ti_fapll_clear_bypass(struct fapll_data *fd)
 106{
 107        u32 v = readl_relaxed(fd->base);
 108
 109        if (fd->bypass_bit_inverted)
 110                v |= FAPLL_MAIN_BP;
 111        else
 112                v &= ~FAPLL_MAIN_BP;
 113        writel_relaxed(v, fd->base);
 114}
 115
 116static int ti_fapll_wait_lock(struct fapll_data *fd)
 117{
 118        int retries = FAPLL_MAX_RETRIES;
 119        u32 v;
 120
 121        while ((v = readl_relaxed(fd->base))) {
 122                if (v & FAPLL_MAIN_LOCK)
 123                        return 0;
 124
 125                if (retries-- <= 0)
 126                        break;
 127
 128                udelay(1);
 129        }
 130
 131        pr_err("%s failed to lock\n", fd->name);
 132
 133        return -ETIMEDOUT;
 134}
 135
 136static int ti_fapll_enable(struct clk_hw *hw)
 137{
 138        struct fapll_data *fd = to_fapll(hw);
 139        u32 v = readl_relaxed(fd->base);
 140
 141        v |= FAPLL_MAIN_PLLEN;
 142        writel_relaxed(v, fd->base);
 143        ti_fapll_wait_lock(fd);
 144
 145        return 0;
 146}
 147
 148static void ti_fapll_disable(struct clk_hw *hw)
 149{
 150        struct fapll_data *fd = to_fapll(hw);
 151        u32 v = readl_relaxed(fd->base);
 152
 153        v &= ~FAPLL_MAIN_PLLEN;
 154        writel_relaxed(v, fd->base);
 155}
 156
 157static int ti_fapll_is_enabled(struct clk_hw *hw)
 158{
 159        struct fapll_data *fd = to_fapll(hw);
 160        u32 v = readl_relaxed(fd->base);
 161
 162        return v & FAPLL_MAIN_PLLEN;
 163}
 164
 165static unsigned long ti_fapll_recalc_rate(struct clk_hw *hw,
 166                                          unsigned long parent_rate)
 167{
 168        struct fapll_data *fd = to_fapll(hw);
 169        u32 fapll_n, fapll_p, v;
 170        long long rate;
 171
 172        if (ti_fapll_clock_is_bypass(fd))
 173                return parent_rate;
 174
 175        rate = parent_rate;
 176
 177        /* PLL pre-divider is P and multiplier is N */
 178        v = readl_relaxed(fd->base);
 179        fapll_p = (v >> 8) & 0xff;
 180        if (fapll_p)
 181                do_div(rate, fapll_p);
 182        fapll_n = v >> 16;
 183        if (fapll_n)
 184                rate *= fapll_n;
 185
 186        return rate;
 187}
 188
 189static u8 ti_fapll_get_parent(struct clk_hw *hw)
 190{
 191        struct fapll_data *fd = to_fapll(hw);
 192
 193        if (ti_fapll_clock_is_bypass(fd))
 194                return 1;
 195
 196        return 0;
 197}
 198
 199static int ti_fapll_set_div_mult(unsigned long rate,
 200                                 unsigned long parent_rate,
 201                                 u32 *pre_div_p, u32 *mult_n)
 202{
 203        /*
 204         * So far no luck getting decent clock with PLL divider,
 205         * PLL does not seem to lock and the signal does not look
 206         * right. It seems the divider can only be used together
 207         * with the multiplier?
 208         */
 209        if (rate < parent_rate) {
 210                pr_warn("FAPLL main divider rates unsupported\n");
 211                return -EINVAL;
 212        }
 213
 214        *mult_n = rate / parent_rate;
 215        if (*mult_n > FAPLL_MAIN_MAX_MULT_N)
 216                return -EINVAL;
 217        *pre_div_p = 1;
 218
 219        return 0;
 220}
 221
 222static long ti_fapll_round_rate(struct clk_hw *hw, unsigned long rate,
 223                                unsigned long *parent_rate)
 224{
 225        u32 pre_div_p, mult_n;
 226        int error;
 227
 228        if (!rate)
 229                return -EINVAL;
 230
 231        error = ti_fapll_set_div_mult(rate, *parent_rate,
 232                                      &pre_div_p, &mult_n);
 233        if (error)
 234                return error;
 235
 236        rate = *parent_rate / pre_div_p;
 237        rate *= mult_n;
 238
 239        return rate;
 240}
 241
 242static int ti_fapll_set_rate(struct clk_hw *hw, unsigned long rate,
 243                             unsigned long parent_rate)
 244{
 245        struct fapll_data *fd = to_fapll(hw);
 246        u32 pre_div_p, mult_n, v;
 247        int error;
 248
 249        if (!rate)
 250                return -EINVAL;
 251
 252        error = ti_fapll_set_div_mult(rate, parent_rate,
 253                                      &pre_div_p, &mult_n);
 254        if (error)
 255                return error;
 256
 257        ti_fapll_set_bypass(fd);
 258        v = readl_relaxed(fd->base);
 259        v &= ~FAPLL_MAIN_CLEAR_MASK;
 260        v |= pre_div_p << FAPLL_MAIN_DIV_P_SHIFT;
 261        v |= mult_n << FAPLL_MAIN_MULT_N_SHIFT;
 262        writel_relaxed(v, fd->base);
 263        if (ti_fapll_is_enabled(hw))
 264                ti_fapll_wait_lock(fd);
 265        ti_fapll_clear_bypass(fd);
 266
 267        return 0;
 268}
 269
 270static struct clk_ops ti_fapll_ops = {
 271        .enable = ti_fapll_enable,
 272        .disable = ti_fapll_disable,
 273        .is_enabled = ti_fapll_is_enabled,
 274        .recalc_rate = ti_fapll_recalc_rate,
 275        .get_parent = ti_fapll_get_parent,
 276        .round_rate = ti_fapll_round_rate,
 277        .set_rate = ti_fapll_set_rate,
 278};
 279
 280static int ti_fapll_synth_enable(struct clk_hw *hw)
 281{
 282        struct fapll_synth *synth = to_synth(hw);
 283        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 284
 285        v &= ~(1 << synth->index);
 286        writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
 287
 288        return 0;
 289}
 290
 291static void ti_fapll_synth_disable(struct clk_hw *hw)
 292{
 293        struct fapll_synth *synth = to_synth(hw);
 294        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 295
 296        v |= 1 << synth->index;
 297        writel_relaxed(v, synth->fd->base + FAPLL_PWD_OFFSET);
 298}
 299
 300static int ti_fapll_synth_is_enabled(struct clk_hw *hw)
 301{
 302        struct fapll_synth *synth = to_synth(hw);
 303        u32 v = readl_relaxed(synth->fd->base + FAPLL_PWD_OFFSET);
 304
 305        return !(v & (1 << synth->index));
 306}
 307
 308/*
 309 * See dm816x TRM chapter 1.10.3 Flying Adder PLL fore more info
 310 */
 311static unsigned long ti_fapll_synth_recalc_rate(struct clk_hw *hw,
 312                                                unsigned long parent_rate)
 313{
 314        struct fapll_synth *synth = to_synth(hw);
 315        u32 synth_div_m;
 316        long long rate;
 317
 318        /* The audio_pll_clk1 is hardwired to produce 32.768KiHz clock */
 319        if (!synth->div)
 320                return 32768;
 321
 322        /*
 323         * PLL in bypass sets the synths in bypass mode too. The PLL rate
 324         * can be also be set to 27MHz, so we can't use parent_rate to
 325         * check for bypass mode.
 326         */
 327        if (ti_fapll_clock_is_bypass(synth->fd))
 328                return parent_rate;
 329
 330        rate = parent_rate;
 331
 332        /*
 333         * Synth frequency integer and fractional divider.
 334         * Note that the phase output K is 8, so the result needs
 335         * to be multiplied by SYNTH_PHASE_K.
 336         */
 337        if (synth->freq) {
 338                u32 v, synth_int_div, synth_frac_div, synth_div_freq;
 339
 340                v = readl_relaxed(synth->freq);
 341                synth_int_div = (v >> 24) & 0xf;
 342                synth_frac_div = v & 0xffffff;
 343                synth_div_freq = (synth_int_div * 10000000) + synth_frac_div;
 344                rate *= 10000000;
 345                do_div(rate, synth_div_freq);
 346                rate *= SYNTH_PHASE_K;
 347        }
 348
 349        /* Synth post-divider M */
 350        synth_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
 351
 352        return DIV_ROUND_UP_ULL(rate, synth_div_m);
 353}
 354
 355static unsigned long ti_fapll_synth_get_frac_rate(struct clk_hw *hw,
 356                                                  unsigned long parent_rate)
 357{
 358        struct fapll_synth *synth = to_synth(hw);
 359        unsigned long current_rate, frac_rate;
 360        u32 post_div_m;
 361
 362        current_rate = ti_fapll_synth_recalc_rate(hw, parent_rate);
 363        post_div_m = readl_relaxed(synth->div) & SYNTH_MAX_DIV_M;
 364        frac_rate = current_rate * post_div_m;
 365
 366        return frac_rate;
 367}
 368
 369static u32 ti_fapll_synth_set_frac_rate(struct fapll_synth *synth,
 370                                        unsigned long rate,
 371                                        unsigned long parent_rate)
 372{
 373        u32 post_div_m, synth_int_div = 0, synth_frac_div = 0, v;
 374
 375        post_div_m = DIV_ROUND_UP_ULL((u64)parent_rate * SYNTH_PHASE_K, rate);
 376        post_div_m = post_div_m / SYNTH_MAX_INT_DIV;
 377        if (post_div_m > SYNTH_MAX_DIV_M)
 378                return -EINVAL;
 379        if (!post_div_m)
 380                post_div_m = 1;
 381
 382        for (; post_div_m < SYNTH_MAX_DIV_M; post_div_m++) {
 383                synth_int_div = DIV_ROUND_UP_ULL((u64)parent_rate *
 384                                                 SYNTH_PHASE_K *
 385                                                 10000000,
 386                                                 rate * post_div_m);
 387                synth_frac_div = synth_int_div % 10000000;
 388                synth_int_div /= 10000000;
 389
 390                if (synth_int_div <= SYNTH_MAX_INT_DIV)
 391                        break;
 392        }
 393
 394        if (synth_int_div > SYNTH_MAX_INT_DIV)
 395                return -EINVAL;
 396
 397        v = readl_relaxed(synth->freq);
 398        v &= ~0x1fffffff;
 399        v |= (synth_int_div & SYNTH_MAX_INT_DIV) << 24;
 400        v |= (synth_frac_div & 0xffffff);
 401        v |= SYNTH_LDFREQ;
 402        writel_relaxed(v, synth->freq);
 403
 404        return post_div_m;
 405}
 406
 407static long ti_fapll_synth_round_rate(struct clk_hw *hw, unsigned long rate,
 408                                      unsigned long *parent_rate)
 409{
 410        struct fapll_synth *synth = to_synth(hw);
 411        struct fapll_data *fd = synth->fd;
 412        unsigned long r;
 413
 414        if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
 415                return -EINVAL;
 416
 417        /* Only post divider m available with no fractional divider? */
 418        if (!synth->freq) {
 419                unsigned long frac_rate;
 420                u32 synth_post_div_m;
 421
 422                frac_rate = ti_fapll_synth_get_frac_rate(hw, *parent_rate);
 423                synth_post_div_m = DIV_ROUND_UP(frac_rate, rate);
 424                r = DIV_ROUND_UP(frac_rate, synth_post_div_m);
 425                goto out;
 426        }
 427
 428        r = *parent_rate * SYNTH_PHASE_K;
 429        if (rate > r)
 430                goto out;
 431
 432        r = DIV_ROUND_UP_ULL(r, SYNTH_MAX_INT_DIV * SYNTH_MAX_DIV_M);
 433        if (rate < r)
 434                goto out;
 435
 436        r = rate;
 437out:
 438        return r;
 439}
 440
 441static int ti_fapll_synth_set_rate(struct clk_hw *hw, unsigned long rate,
 442                                   unsigned long parent_rate)
 443{
 444        struct fapll_synth *synth = to_synth(hw);
 445        struct fapll_data *fd = synth->fd;
 446        unsigned long frac_rate, post_rate = 0;
 447        u32 post_div_m = 0, v;
 448
 449        if (ti_fapll_clock_is_bypass(fd) || !synth->div || !rate)
 450                return -EINVAL;
 451
 452        /* Produce the rate with just post divider M? */
 453        frac_rate = ti_fapll_synth_get_frac_rate(hw, parent_rate);
 454        if (frac_rate < rate) {
 455                if (!synth->freq)
 456                        return -EINVAL;
 457        } else {
 458                post_div_m = DIV_ROUND_UP(frac_rate, rate);
 459                if (post_div_m && (post_div_m <= SYNTH_MAX_DIV_M))
 460                        post_rate = DIV_ROUND_UP(frac_rate, post_div_m);
 461                if (!synth->freq && !post_rate)
 462                        return -EINVAL;
 463        }
 464
 465        /* Need to recalculate the fractional divider? */
 466        if ((post_rate != rate) && synth->freq)
 467                post_div_m = ti_fapll_synth_set_frac_rate(synth,
 468                                                          rate,
 469                                                          parent_rate);
 470
 471        v = readl_relaxed(synth->div);
 472        v &= ~SYNTH_MAX_DIV_M;
 473        v |= post_div_m;
 474        v |= SYNTH_LDMDIV1;
 475        writel_relaxed(v, synth->div);
 476
 477        return 0;
 478}
 479
 480static struct clk_ops ti_fapll_synt_ops = {
 481        .enable = ti_fapll_synth_enable,
 482        .disable = ti_fapll_synth_disable,
 483        .is_enabled = ti_fapll_synth_is_enabled,
 484        .recalc_rate = ti_fapll_synth_recalc_rate,
 485        .round_rate = ti_fapll_synth_round_rate,
 486        .set_rate = ti_fapll_synth_set_rate,
 487};
 488
 489static struct clk * __init ti_fapll_synth_setup(struct fapll_data *fd,
 490                                                void __iomem *freq,
 491                                                void __iomem *div,
 492                                                int index,
 493                                                const char *name,
 494                                                const char *parent,
 495                                                struct clk *pll_clk)
 496{
 497        struct clk_init_data *init;
 498        struct fapll_synth *synth;
 499
 500        init = kzalloc(sizeof(*init), GFP_KERNEL);
 501        if (!init)
 502                return ERR_PTR(-ENOMEM);
 503
 504        init->ops = &ti_fapll_synt_ops;
 505        init->name = name;
 506        init->parent_names = &parent;
 507        init->num_parents = 1;
 508
 509        synth = kzalloc(sizeof(*synth), GFP_KERNEL);
 510        if (!synth)
 511                goto free;
 512
 513        synth->fd = fd;
 514        synth->index = index;
 515        synth->freq = freq;
 516        synth->div = div;
 517        synth->name = name;
 518        synth->hw.init = init;
 519        synth->clk_pll = pll_clk;
 520
 521        return clk_register(NULL, &synth->hw);
 522
 523free:
 524        kfree(synth);
 525        kfree(init);
 526
 527        return ERR_PTR(-ENOMEM);
 528}
 529
 530static void __init ti_fapll_setup(struct device_node *node)
 531{
 532        struct fapll_data *fd;
 533        struct clk_init_data *init = NULL;
 534        const char *parent_name[2];
 535        struct clk *pll_clk;
 536        int i;
 537
 538        fd = kzalloc(sizeof(*fd), GFP_KERNEL);
 539        if (!fd)
 540                return;
 541
 542        fd->outputs.clks = kzalloc(sizeof(struct clk *) *
 543                                   MAX_FAPLL_OUTPUTS + 1,
 544                                   GFP_KERNEL);
 545        if (!fd->outputs.clks)
 546                goto free;
 547
 548        init = kzalloc(sizeof(*init), GFP_KERNEL);
 549        if (!init)
 550                goto free;
 551
 552        init->ops = &ti_fapll_ops;
 553        init->name = node->name;
 554
 555        init->num_parents = of_clk_get_parent_count(node);
 556        if (init->num_parents != 2) {
 557                pr_err("%s must have two parents\n", node->name);
 558                goto free;
 559        }
 560
 561        parent_name[0] = of_clk_get_parent_name(node, 0);
 562        parent_name[1] = of_clk_get_parent_name(node, 1);
 563        init->parent_names = parent_name;
 564
 565        fd->clk_ref = of_clk_get(node, 0);
 566        if (IS_ERR(fd->clk_ref)) {
 567                pr_err("%s could not get clk_ref\n", node->name);
 568                goto free;
 569        }
 570
 571        fd->clk_bypass = of_clk_get(node, 1);
 572        if (IS_ERR(fd->clk_bypass)) {
 573                pr_err("%s could not get clk_bypass\n", node->name);
 574                goto free;
 575        }
 576
 577        fd->base = of_iomap(node, 0);
 578        if (!fd->base) {
 579                pr_err("%s could not get IO base\n", node->name);
 580                goto free;
 581        }
 582
 583        if (fapll_is_ddr_pll(fd->base))
 584                fd->bypass_bit_inverted = true;
 585
 586        fd->name = node->name;
 587        fd->hw.init = init;
 588
 589        /* Register the parent PLL */
 590        pll_clk = clk_register(NULL, &fd->hw);
 591        if (IS_ERR(pll_clk))
 592                goto unmap;
 593
 594        fd->outputs.clks[0] = pll_clk;
 595        fd->outputs.clk_num++;
 596
 597        /*
 598         * Set up the child synthesizers starting at index 1 as the
 599         * PLL output is at index 0. We need to check the clock-indices
 600         * for numbering in case there are holes in the synth mapping,
 601         * and then probe the synth register to see if it has a FREQ
 602         * register available.
 603         */
 604        for (i = 0; i < MAX_FAPLL_OUTPUTS; i++) {
 605                const char *output_name;
 606                void __iomem *freq, *div;
 607                struct clk *synth_clk;
 608                int output_instance;
 609                u32 v;
 610
 611                if (of_property_read_string_index(node, "clock-output-names",
 612                                                  i, &output_name))
 613                        continue;
 614
 615                if (of_property_read_u32_index(node, "clock-indices", i,
 616                                               &output_instance))
 617                        output_instance = i;
 618
 619                freq = fd->base + (output_instance * 8);
 620                div = freq + 4;
 621
 622                /* Check for hardwired audio_pll_clk1 */
 623                if (is_audio_pll_clk1(freq)) {
 624                        freq = NULL;
 625                        div = NULL;
 626                } else {
 627                        /* Does the synthesizer have a FREQ register? */
 628                        v = readl_relaxed(freq);
 629                        if (!v)
 630                                freq = NULL;
 631                }
 632                synth_clk = ti_fapll_synth_setup(fd, freq, div, output_instance,
 633                                                 output_name, node->name,
 634                                                 pll_clk);
 635                if (IS_ERR(synth_clk))
 636                        continue;
 637
 638                fd->outputs.clks[output_instance] = synth_clk;
 639                fd->outputs.clk_num++;
 640
 641                clk_register_clkdev(synth_clk, output_name, NULL);
 642        }
 643
 644        /* Register the child synthesizers as the FAPLL outputs */
 645        of_clk_add_provider(node, of_clk_src_onecell_get, &fd->outputs);
 646        /* Add clock alias for the outputs */
 647
 648        kfree(init);
 649
 650        return;
 651
 652unmap:
 653        iounmap(fd->base);
 654free:
 655        if (fd->clk_bypass)
 656                clk_put(fd->clk_bypass);
 657        if (fd->clk_ref)
 658                clk_put(fd->clk_ref);
 659        kfree(fd->outputs.clks);
 660        kfree(fd);
 661        kfree(init);
 662}
 663
 664CLK_OF_DECLARE(ti_fapll_clock, "ti,dm816-fapll-clock", ti_fapll_setup);
 665