linux/drivers/crypto/qce/sha.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2010-2014, The Linux Foundation. All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License version 2 and
   6 * only version 2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  11 * GNU General Public License for more details.
  12 */
  13
  14#include <linux/device.h>
  15#include <linux/interrupt.h>
  16#include <crypto/internal/hash.h>
  17
  18#include "common.h"
  19#include "core.h"
  20#include "sha.h"
  21
  22/* crypto hw padding constant for first operation */
  23#define SHA_PADDING             64
  24#define SHA_PADDING_MASK        (SHA_PADDING - 1)
  25
  26static LIST_HEAD(ahash_algs);
  27
  28static const u32 std_iv_sha1[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  29        SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4, 0, 0, 0
  30};
  31
  32static const u32 std_iv_sha256[SHA256_DIGEST_SIZE / sizeof(u32)] = {
  33        SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3,
  34        SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7
  35};
  36
  37static void qce_ahash_done(void *data)
  38{
  39        struct crypto_async_request *async_req = data;
  40        struct ahash_request *req = ahash_request_cast(async_req);
  41        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
  42        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  43        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  44        struct qce_device *qce = tmpl->qce;
  45        struct qce_result_dump *result = qce->dma.result_buf;
  46        unsigned int digestsize = crypto_ahash_digestsize(ahash);
  47        int error;
  48        u32 status;
  49
  50        error = qce_dma_terminate_all(&qce->dma);
  51        if (error)
  52                dev_dbg(qce->dev, "ahash dma termination error (%d)\n", error);
  53
  54        qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
  55                    rctx->src_chained);
  56        qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
  57
  58        memcpy(rctx->digest, result->auth_iv, digestsize);
  59        if (req->result)
  60                memcpy(req->result, result->auth_iv, digestsize);
  61
  62        rctx->byte_count[0] = cpu_to_be32(result->auth_byte_count[0]);
  63        rctx->byte_count[1] = cpu_to_be32(result->auth_byte_count[1]);
  64
  65        error = qce_check_status(qce, &status);
  66        if (error < 0)
  67                dev_dbg(qce->dev, "ahash operation error (%x)\n", status);
  68
  69        req->src = rctx->src_orig;
  70        req->nbytes = rctx->nbytes_orig;
  71        rctx->last_blk = false;
  72        rctx->first_blk = false;
  73
  74        qce->async_req_done(tmpl->qce, error);
  75}
  76
  77static int qce_ahash_async_req_handle(struct crypto_async_request *async_req)
  78{
  79        struct ahash_request *req = ahash_request_cast(async_req);
  80        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
  81        struct qce_sha_ctx *ctx = crypto_tfm_ctx(async_req->tfm);
  82        struct qce_alg_template *tmpl = to_ahash_tmpl(async_req->tfm);
  83        struct qce_device *qce = tmpl->qce;
  84        unsigned long flags = rctx->flags;
  85        int ret;
  86
  87        if (IS_SHA_HMAC(flags)) {
  88                rctx->authkey = ctx->authkey;
  89                rctx->authklen = QCE_SHA_HMAC_KEY_SIZE;
  90        } else if (IS_CMAC(flags)) {
  91                rctx->authkey = ctx->authkey;
  92                rctx->authklen = AES_KEYSIZE_128;
  93        }
  94
  95        rctx->src_nents = qce_countsg(req->src, req->nbytes,
  96                                      &rctx->src_chained);
  97        ret = qce_mapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
  98                        rctx->src_chained);
  99        if (ret < 0)
 100                return ret;
 101
 102        sg_init_one(&rctx->result_sg, qce->dma.result_buf, QCE_RESULT_BUF_SZ);
 103
 104        ret = qce_mapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
 105        if (ret < 0)
 106                goto error_unmap_src;
 107
 108        ret = qce_dma_prep_sgs(&qce->dma, req->src, rctx->src_nents,
 109                               &rctx->result_sg, 1, qce_ahash_done, async_req);
 110        if (ret)
 111                goto error_unmap_dst;
 112
 113        qce_dma_issue_pending(&qce->dma);
 114
 115        ret = qce_start(async_req, tmpl->crypto_alg_type, 0, 0);
 116        if (ret)
 117                goto error_terminate;
 118
 119        return 0;
 120
 121error_terminate:
 122        qce_dma_terminate_all(&qce->dma);
 123error_unmap_dst:
 124        qce_unmapsg(qce->dev, &rctx->result_sg, 1, DMA_FROM_DEVICE, 0);
 125error_unmap_src:
 126        qce_unmapsg(qce->dev, req->src, rctx->src_nents, DMA_TO_DEVICE,
 127                    rctx->src_chained);
 128        return ret;
 129}
 130
 131static int qce_ahash_init(struct ahash_request *req)
 132{
 133        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 134        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 135        const u32 *std_iv = tmpl->std_iv;
 136
 137        memset(rctx, 0, sizeof(*rctx));
 138        rctx->first_blk = true;
 139        rctx->last_blk = false;
 140        rctx->flags = tmpl->alg_flags;
 141        memcpy(rctx->digest, std_iv, sizeof(rctx->digest));
 142
 143        return 0;
 144}
 145
 146static int qce_ahash_export(struct ahash_request *req, void *out)
 147{
 148        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 149        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 150        unsigned long flags = rctx->flags;
 151        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 152        unsigned int blocksize =
 153                        crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 154
 155        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 156                struct sha1_state *out_state = out;
 157
 158                out_state->count = rctx->count;
 159                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 160                                       rctx->digest, digestsize);
 161                memcpy(out_state->buffer, rctx->buf, blocksize);
 162        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 163                struct sha256_state *out_state = out;
 164
 165                out_state->count = rctx->count;
 166                qce_cpu_to_be32p_array((__be32 *)out_state->state,
 167                                       rctx->digest, digestsize);
 168                memcpy(out_state->buf, rctx->buf, blocksize);
 169        } else {
 170                return -EINVAL;
 171        }
 172
 173        return 0;
 174}
 175
 176static int qce_import_common(struct ahash_request *req, u64 in_count,
 177                             const u32 *state, const u8 *buffer, bool hmac)
 178{
 179        struct crypto_ahash *ahash = crypto_ahash_reqtfm(req);
 180        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 181        unsigned int digestsize = crypto_ahash_digestsize(ahash);
 182        unsigned int blocksize;
 183        u64 count = in_count;
 184
 185        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(ahash));
 186        rctx->count = in_count;
 187        memcpy(rctx->buf, buffer, blocksize);
 188
 189        if (in_count <= blocksize) {
 190                rctx->first_blk = 1;
 191        } else {
 192                rctx->first_blk = 0;
 193                /*
 194                 * For HMAC, there is a hardware padding done when first block
 195                 * is set. Therefore the byte_count must be incremened by 64
 196                 * after the first block operation.
 197                 */
 198                if (hmac)
 199                        count += SHA_PADDING;
 200        }
 201
 202        rctx->byte_count[0] = (__force __be32)(count & ~SHA_PADDING_MASK);
 203        rctx->byte_count[1] = (__force __be32)(count >> 32);
 204        qce_cpu_to_be32p_array((__be32 *)rctx->digest, (const u8 *)state,
 205                               digestsize);
 206        rctx->buflen = (unsigned int)(in_count & (blocksize - 1));
 207
 208        return 0;
 209}
 210
 211static int qce_ahash_import(struct ahash_request *req, const void *in)
 212{
 213        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 214        unsigned long flags = rctx->flags;
 215        bool hmac = IS_SHA_HMAC(flags);
 216        int ret = -EINVAL;
 217
 218        if (IS_SHA1(flags) || IS_SHA1_HMAC(flags)) {
 219                const struct sha1_state *state = in;
 220
 221                ret = qce_import_common(req, state->count, state->state,
 222                                        state->buffer, hmac);
 223        } else if (IS_SHA256(flags) || IS_SHA256_HMAC(flags)) {
 224                const struct sha256_state *state = in;
 225
 226                ret = qce_import_common(req, state->count, state->state,
 227                                        state->buf, hmac);
 228        }
 229
 230        return ret;
 231}
 232
 233static int qce_ahash_update(struct ahash_request *req)
 234{
 235        struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
 236        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 237        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 238        struct qce_device *qce = tmpl->qce;
 239        struct scatterlist *sg_last, *sg;
 240        unsigned int total, len;
 241        unsigned int hash_later;
 242        unsigned int nbytes;
 243        unsigned int blocksize;
 244
 245        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 246        rctx->count += req->nbytes;
 247
 248        /* check for buffer from previous updates and append it */
 249        total = req->nbytes + rctx->buflen;
 250
 251        if (total <= blocksize) {
 252                scatterwalk_map_and_copy(rctx->buf + rctx->buflen, req->src,
 253                                         0, req->nbytes, 0);
 254                rctx->buflen += req->nbytes;
 255                return 0;
 256        }
 257
 258        /* save the original req structure fields */
 259        rctx->src_orig = req->src;
 260        rctx->nbytes_orig = req->nbytes;
 261
 262        /*
 263         * if we have data from previous update copy them on buffer. The old
 264         * data will be combined with current request bytes.
 265         */
 266        if (rctx->buflen)
 267                memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 268
 269        /* calculate how many bytes will be hashed later */
 270        hash_later = total % blocksize;
 271        if (hash_later) {
 272                unsigned int src_offset = req->nbytes - hash_later;
 273                scatterwalk_map_and_copy(rctx->buf, req->src, src_offset,
 274                                         hash_later, 0);
 275        }
 276
 277        /* here nbytes is multiple of blocksize */
 278        nbytes = total - hash_later;
 279
 280        len = rctx->buflen;
 281        sg = sg_last = req->src;
 282
 283        while (len < nbytes && sg) {
 284                if (len + sg_dma_len(sg) > nbytes)
 285                        break;
 286                len += sg_dma_len(sg);
 287                sg_last = sg;
 288                sg = sg_next(sg);
 289        }
 290
 291        if (!sg_last)
 292                return -EINVAL;
 293
 294        sg_mark_end(sg_last);
 295
 296        if (rctx->buflen) {
 297                sg_init_table(rctx->sg, 2);
 298                sg_set_buf(rctx->sg, rctx->tmpbuf, rctx->buflen);
 299                scatterwalk_sg_chain(rctx->sg, 2, req->src);
 300                req->src = rctx->sg;
 301        }
 302
 303        req->nbytes = nbytes;
 304        rctx->buflen = hash_later;
 305
 306        return qce->async_req_enqueue(tmpl->qce, &req->base);
 307}
 308
 309static int qce_ahash_final(struct ahash_request *req)
 310{
 311        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 312        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 313        struct qce_device *qce = tmpl->qce;
 314
 315        if (!rctx->buflen)
 316                return 0;
 317
 318        rctx->last_blk = true;
 319
 320        rctx->src_orig = req->src;
 321        rctx->nbytes_orig = req->nbytes;
 322
 323        memcpy(rctx->tmpbuf, rctx->buf, rctx->buflen);
 324        sg_init_one(rctx->sg, rctx->tmpbuf, rctx->buflen);
 325
 326        req->src = rctx->sg;
 327        req->nbytes = rctx->buflen;
 328
 329        return qce->async_req_enqueue(tmpl->qce, &req->base);
 330}
 331
 332static int qce_ahash_digest(struct ahash_request *req)
 333{
 334        struct qce_sha_reqctx *rctx = ahash_request_ctx(req);
 335        struct qce_alg_template *tmpl = to_ahash_tmpl(req->base.tfm);
 336        struct qce_device *qce = tmpl->qce;
 337        int ret;
 338
 339        ret = qce_ahash_init(req);
 340        if (ret)
 341                return ret;
 342
 343        rctx->src_orig = req->src;
 344        rctx->nbytes_orig = req->nbytes;
 345        rctx->first_blk = true;
 346        rctx->last_blk = true;
 347
 348        return qce->async_req_enqueue(tmpl->qce, &req->base);
 349}
 350
 351struct qce_ahash_result {
 352        struct completion completion;
 353        int error;
 354};
 355
 356static void qce_digest_complete(struct crypto_async_request *req, int error)
 357{
 358        struct qce_ahash_result *result = req->data;
 359
 360        if (error == -EINPROGRESS)
 361                return;
 362
 363        result->error = error;
 364        complete(&result->completion);
 365}
 366
 367static int qce_ahash_hmac_setkey(struct crypto_ahash *tfm, const u8 *key,
 368                                 unsigned int keylen)
 369{
 370        unsigned int digestsize = crypto_ahash_digestsize(tfm);
 371        struct qce_sha_ctx *ctx = crypto_tfm_ctx(&tfm->base);
 372        struct qce_ahash_result result;
 373        struct ahash_request *req;
 374        struct scatterlist sg;
 375        unsigned int blocksize;
 376        struct crypto_ahash *ahash_tfm;
 377        u8 *buf;
 378        int ret;
 379        const char *alg_name;
 380
 381        blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
 382        memset(ctx->authkey, 0, sizeof(ctx->authkey));
 383
 384        if (keylen <= blocksize) {
 385                memcpy(ctx->authkey, key, keylen);
 386                return 0;
 387        }
 388
 389        if (digestsize == SHA1_DIGEST_SIZE)
 390                alg_name = "sha1-qce";
 391        else if (digestsize == SHA256_DIGEST_SIZE)
 392                alg_name = "sha256-qce";
 393        else
 394                return -EINVAL;
 395
 396        ahash_tfm = crypto_alloc_ahash(alg_name, CRYPTO_ALG_TYPE_AHASH,
 397                                       CRYPTO_ALG_TYPE_AHASH_MASK);
 398        if (IS_ERR(ahash_tfm))
 399                return PTR_ERR(ahash_tfm);
 400
 401        req = ahash_request_alloc(ahash_tfm, GFP_KERNEL);
 402        if (!req) {
 403                ret = -ENOMEM;
 404                goto err_free_ahash;
 405        }
 406
 407        init_completion(&result.completion);
 408        ahash_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
 409                                   qce_digest_complete, &result);
 410        crypto_ahash_clear_flags(ahash_tfm, ~0);
 411
 412        buf = kzalloc(keylen + QCE_MAX_ALIGN_SIZE, GFP_KERNEL);
 413        if (!buf) {
 414                ret = -ENOMEM;
 415                goto err_free_req;
 416        }
 417
 418        memcpy(buf, key, keylen);
 419        sg_init_one(&sg, buf, keylen);
 420        ahash_request_set_crypt(req, &sg, ctx->authkey, keylen);
 421
 422        ret = crypto_ahash_digest(req);
 423        if (ret == -EINPROGRESS || ret == -EBUSY) {
 424                ret = wait_for_completion_interruptible(&result.completion);
 425                if (!ret)
 426                        ret = result.error;
 427        }
 428
 429        if (ret)
 430                crypto_ahash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
 431
 432        kfree(buf);
 433err_free_req:
 434        ahash_request_free(req);
 435err_free_ahash:
 436        crypto_free_ahash(ahash_tfm);
 437        return ret;
 438}
 439
 440static int qce_ahash_cra_init(struct crypto_tfm *tfm)
 441{
 442        struct crypto_ahash *ahash = __crypto_ahash_cast(tfm);
 443        struct qce_sha_ctx *ctx = crypto_tfm_ctx(tfm);
 444
 445        crypto_ahash_set_reqsize(ahash, sizeof(struct qce_sha_reqctx));
 446        memset(ctx, 0, sizeof(*ctx));
 447        return 0;
 448}
 449
 450struct qce_ahash_def {
 451        unsigned long flags;
 452        const char *name;
 453        const char *drv_name;
 454        unsigned int digestsize;
 455        unsigned int blocksize;
 456        unsigned int statesize;
 457        const u32 *std_iv;
 458};
 459
 460static const struct qce_ahash_def ahash_def[] = {
 461        {
 462                .flags          = QCE_HASH_SHA1,
 463                .name           = "sha1",
 464                .drv_name       = "sha1-qce",
 465                .digestsize     = SHA1_DIGEST_SIZE,
 466                .blocksize      = SHA1_BLOCK_SIZE,
 467                .statesize      = sizeof(struct sha1_state),
 468                .std_iv         = std_iv_sha1,
 469        },
 470        {
 471                .flags          = QCE_HASH_SHA256,
 472                .name           = "sha256",
 473                .drv_name       = "sha256-qce",
 474                .digestsize     = SHA256_DIGEST_SIZE,
 475                .blocksize      = SHA256_BLOCK_SIZE,
 476                .statesize      = sizeof(struct sha256_state),
 477                .std_iv         = std_iv_sha256,
 478        },
 479        {
 480                .flags          = QCE_HASH_SHA1_HMAC,
 481                .name           = "hmac(sha1)",
 482                .drv_name       = "hmac-sha1-qce",
 483                .digestsize     = SHA1_DIGEST_SIZE,
 484                .blocksize      = SHA1_BLOCK_SIZE,
 485                .statesize      = sizeof(struct sha1_state),
 486                .std_iv         = std_iv_sha1,
 487        },
 488        {
 489                .flags          = QCE_HASH_SHA256_HMAC,
 490                .name           = "hmac(sha256)",
 491                .drv_name       = "hmac-sha256-qce",
 492                .digestsize     = SHA256_DIGEST_SIZE,
 493                .blocksize      = SHA256_BLOCK_SIZE,
 494                .statesize      = sizeof(struct sha256_state),
 495                .std_iv         = std_iv_sha256,
 496        },
 497};
 498
 499static int qce_ahash_register_one(const struct qce_ahash_def *def,
 500                                  struct qce_device *qce)
 501{
 502        struct qce_alg_template *tmpl;
 503        struct ahash_alg *alg;
 504        struct crypto_alg *base;
 505        int ret;
 506
 507        tmpl = kzalloc(sizeof(*tmpl), GFP_KERNEL);
 508        if (!tmpl)
 509                return -ENOMEM;
 510
 511        tmpl->std_iv = def->std_iv;
 512
 513        alg = &tmpl->alg.ahash;
 514        alg->init = qce_ahash_init;
 515        alg->update = qce_ahash_update;
 516        alg->final = qce_ahash_final;
 517        alg->digest = qce_ahash_digest;
 518        alg->export = qce_ahash_export;
 519        alg->import = qce_ahash_import;
 520        if (IS_SHA_HMAC(def->flags))
 521                alg->setkey = qce_ahash_hmac_setkey;
 522        alg->halg.digestsize = def->digestsize;
 523        alg->halg.statesize = def->statesize;
 524
 525        base = &alg->halg.base;
 526        base->cra_blocksize = def->blocksize;
 527        base->cra_priority = 300;
 528        base->cra_flags = CRYPTO_ALG_ASYNC;
 529        base->cra_ctxsize = sizeof(struct qce_sha_ctx);
 530        base->cra_alignmask = 0;
 531        base->cra_module = THIS_MODULE;
 532        base->cra_init = qce_ahash_cra_init;
 533        INIT_LIST_HEAD(&base->cra_list);
 534
 535        snprintf(base->cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
 536        snprintf(base->cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
 537                 def->drv_name);
 538
 539        INIT_LIST_HEAD(&tmpl->entry);
 540        tmpl->crypto_alg_type = CRYPTO_ALG_TYPE_AHASH;
 541        tmpl->alg_flags = def->flags;
 542        tmpl->qce = qce;
 543
 544        ret = crypto_register_ahash(alg);
 545        if (ret) {
 546                kfree(tmpl);
 547                dev_err(qce->dev, "%s registration failed\n", base->cra_name);
 548                return ret;
 549        }
 550
 551        list_add_tail(&tmpl->entry, &ahash_algs);
 552        dev_dbg(qce->dev, "%s is registered\n", base->cra_name);
 553        return 0;
 554}
 555
 556static void qce_ahash_unregister(struct qce_device *qce)
 557{
 558        struct qce_alg_template *tmpl, *n;
 559
 560        list_for_each_entry_safe(tmpl, n, &ahash_algs, entry) {
 561                crypto_unregister_ahash(&tmpl->alg.ahash);
 562                list_del(&tmpl->entry);
 563                kfree(tmpl);
 564        }
 565}
 566
 567static int qce_ahash_register(struct qce_device *qce)
 568{
 569        int ret, i;
 570
 571        for (i = 0; i < ARRAY_SIZE(ahash_def); i++) {
 572                ret = qce_ahash_register_one(&ahash_def[i], qce);
 573                if (ret)
 574                        goto err;
 575        }
 576
 577        return 0;
 578err:
 579        qce_ahash_unregister(qce);
 580        return ret;
 581}
 582
 583const struct qce_algo_ops ahash_ops = {
 584        .type = CRYPTO_ALG_TYPE_AHASH,
 585        .register_algs = qce_ahash_register,
 586        .unregister_algs = qce_ahash_unregister,
 587        .async_req_handle = qce_ahash_async_req_handle,
 588};
 589