linux/drivers/dma/sh/rcar-dmac.c
<<
>>
Prefs
   1/*
   2 * Renesas R-Car Gen2 DMA Controller Driver
   3 *
   4 * Copyright (C) 2014 Renesas Electronics Inc.
   5 *
   6 * Author: Laurent Pinchart <laurent.pinchart@ideasonboard.com>
   7 *
   8 * This is free software; you can redistribute it and/or modify
   9 * it under the terms of version 2 of the GNU General Public License as
  10 * published by the Free Software Foundation.
  11 */
  12
  13#include <linux/dma-mapping.h>
  14#include <linux/dmaengine.h>
  15#include <linux/interrupt.h>
  16#include <linux/list.h>
  17#include <linux/module.h>
  18#include <linux/mutex.h>
  19#include <linux/of.h>
  20#include <linux/of_dma.h>
  21#include <linux/of_platform.h>
  22#include <linux/platform_device.h>
  23#include <linux/pm_runtime.h>
  24#include <linux/slab.h>
  25#include <linux/spinlock.h>
  26
  27#include "../dmaengine.h"
  28
  29/*
  30 * struct rcar_dmac_xfer_chunk - Descriptor for a hardware transfer
  31 * @node: entry in the parent's chunks list
  32 * @src_addr: device source address
  33 * @dst_addr: device destination address
  34 * @size: transfer size in bytes
  35 */
  36struct rcar_dmac_xfer_chunk {
  37        struct list_head node;
  38
  39        dma_addr_t src_addr;
  40        dma_addr_t dst_addr;
  41        u32 size;
  42};
  43
  44/*
  45 * struct rcar_dmac_hw_desc - Hardware descriptor for a transfer chunk
  46 * @sar: value of the SAR register (source address)
  47 * @dar: value of the DAR register (destination address)
  48 * @tcr: value of the TCR register (transfer count)
  49 */
  50struct rcar_dmac_hw_desc {
  51        u32 sar;
  52        u32 dar;
  53        u32 tcr;
  54        u32 reserved;
  55} __attribute__((__packed__));
  56
  57/*
  58 * struct rcar_dmac_desc - R-Car Gen2 DMA Transfer Descriptor
  59 * @async_tx: base DMA asynchronous transaction descriptor
  60 * @direction: direction of the DMA transfer
  61 * @xfer_shift: log2 of the transfer size
  62 * @chcr: value of the channel configuration register for this transfer
  63 * @node: entry in the channel's descriptors lists
  64 * @chunks: list of transfer chunks for this transfer
  65 * @running: the transfer chunk being currently processed
  66 * @nchunks: number of transfer chunks for this transfer
  67 * @hwdescs.use: whether the transfer descriptor uses hardware descriptors
  68 * @hwdescs.mem: hardware descriptors memory for the transfer
  69 * @hwdescs.dma: device address of the hardware descriptors memory
  70 * @hwdescs.size: size of the hardware descriptors in bytes
  71 * @size: transfer size in bytes
  72 * @cyclic: when set indicates that the DMA transfer is cyclic
  73 */
  74struct rcar_dmac_desc {
  75        struct dma_async_tx_descriptor async_tx;
  76        enum dma_transfer_direction direction;
  77        unsigned int xfer_shift;
  78        u32 chcr;
  79
  80        struct list_head node;
  81        struct list_head chunks;
  82        struct rcar_dmac_xfer_chunk *running;
  83        unsigned int nchunks;
  84
  85        struct {
  86                bool use;
  87                struct rcar_dmac_hw_desc *mem;
  88                dma_addr_t dma;
  89                size_t size;
  90        } hwdescs;
  91
  92        unsigned int size;
  93        bool cyclic;
  94};
  95
  96#define to_rcar_dmac_desc(d)    container_of(d, struct rcar_dmac_desc, async_tx)
  97
  98/*
  99 * struct rcar_dmac_desc_page - One page worth of descriptors
 100 * @node: entry in the channel's pages list
 101 * @descs: array of DMA descriptors
 102 * @chunks: array of transfer chunk descriptors
 103 */
 104struct rcar_dmac_desc_page {
 105        struct list_head node;
 106
 107        union {
 108                struct rcar_dmac_desc descs[0];
 109                struct rcar_dmac_xfer_chunk chunks[0];
 110        };
 111};
 112
 113#define RCAR_DMAC_DESCS_PER_PAGE                                        \
 114        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, descs)) /    \
 115        sizeof(struct rcar_dmac_desc))
 116#define RCAR_DMAC_XFER_CHUNKS_PER_PAGE                                  \
 117        ((PAGE_SIZE - offsetof(struct rcar_dmac_desc_page, chunks)) /   \
 118        sizeof(struct rcar_dmac_xfer_chunk))
 119
 120/*
 121 * struct rcar_dmac_chan - R-Car Gen2 DMA Controller Channel
 122 * @chan: base DMA channel object
 123 * @iomem: channel I/O memory base
 124 * @index: index of this channel in the controller
 125 * @src_xfer_size: size (in bytes) of hardware transfers on the source side
 126 * @dst_xfer_size: size (in bytes) of hardware transfers on the destination side
 127 * @src_slave_addr: slave source memory address
 128 * @dst_slave_addr: slave destination memory address
 129 * @mid_rid: hardware MID/RID for the DMA client using this channel
 130 * @lock: protects the channel CHCR register and the desc members
 131 * @desc.free: list of free descriptors
 132 * @desc.pending: list of pending descriptors (submitted with tx_submit)
 133 * @desc.active: list of active descriptors (activated with issue_pending)
 134 * @desc.done: list of completed descriptors
 135 * @desc.wait: list of descriptors waiting for an ack
 136 * @desc.running: the descriptor being processed (a member of the active list)
 137 * @desc.chunks_free: list of free transfer chunk descriptors
 138 * @desc.pages: list of pages used by allocated descriptors
 139 */
 140struct rcar_dmac_chan {
 141        struct dma_chan chan;
 142        void __iomem *iomem;
 143        unsigned int index;
 144
 145        unsigned int src_xfer_size;
 146        unsigned int dst_xfer_size;
 147        dma_addr_t src_slave_addr;
 148        dma_addr_t dst_slave_addr;
 149        int mid_rid;
 150
 151        spinlock_t lock;
 152
 153        struct {
 154                struct list_head free;
 155                struct list_head pending;
 156                struct list_head active;
 157                struct list_head done;
 158                struct list_head wait;
 159                struct rcar_dmac_desc *running;
 160
 161                struct list_head chunks_free;
 162
 163                struct list_head pages;
 164        } desc;
 165};
 166
 167#define to_rcar_dmac_chan(c)    container_of(c, struct rcar_dmac_chan, chan)
 168
 169/*
 170 * struct rcar_dmac - R-Car Gen2 DMA Controller
 171 * @engine: base DMA engine object
 172 * @dev: the hardware device
 173 * @iomem: remapped I/O memory base
 174 * @n_channels: number of available channels
 175 * @channels: array of DMAC channels
 176 * @modules: bitmask of client modules in use
 177 */
 178struct rcar_dmac {
 179        struct dma_device engine;
 180        struct device *dev;
 181        void __iomem *iomem;
 182
 183        unsigned int n_channels;
 184        struct rcar_dmac_chan *channels;
 185
 186        DECLARE_BITMAP(modules, 256);
 187};
 188
 189#define to_rcar_dmac(d)         container_of(d, struct rcar_dmac, engine)
 190
 191/* -----------------------------------------------------------------------------
 192 * Registers
 193 */
 194
 195#define RCAR_DMAC_CHAN_OFFSET(i)        (0x8000 + 0x80 * (i))
 196
 197#define RCAR_DMAISTA                    0x0020
 198#define RCAR_DMASEC                     0x0030
 199#define RCAR_DMAOR                      0x0060
 200#define RCAR_DMAOR_PRI_FIXED            (0 << 8)
 201#define RCAR_DMAOR_PRI_ROUND_ROBIN      (3 << 8)
 202#define RCAR_DMAOR_AE                   (1 << 2)
 203#define RCAR_DMAOR_DME                  (1 << 0)
 204#define RCAR_DMACHCLR                   0x0080
 205#define RCAR_DMADPSEC                   0x00a0
 206
 207#define RCAR_DMASAR                     0x0000
 208#define RCAR_DMADAR                     0x0004
 209#define RCAR_DMATCR                     0x0008
 210#define RCAR_DMATCR_MASK                0x00ffffff
 211#define RCAR_DMATSR                     0x0028
 212#define RCAR_DMACHCR                    0x000c
 213#define RCAR_DMACHCR_CAE                (1 << 31)
 214#define RCAR_DMACHCR_CAIE               (1 << 30)
 215#define RCAR_DMACHCR_DPM_DISABLED       (0 << 28)
 216#define RCAR_DMACHCR_DPM_ENABLED        (1 << 28)
 217#define RCAR_DMACHCR_DPM_REPEAT         (2 << 28)
 218#define RCAR_DMACHCR_DPM_INFINITE       (3 << 28)
 219#define RCAR_DMACHCR_RPT_SAR            (1 << 27)
 220#define RCAR_DMACHCR_RPT_DAR            (1 << 26)
 221#define RCAR_DMACHCR_RPT_TCR            (1 << 25)
 222#define RCAR_DMACHCR_DPB                (1 << 22)
 223#define RCAR_DMACHCR_DSE                (1 << 19)
 224#define RCAR_DMACHCR_DSIE               (1 << 18)
 225#define RCAR_DMACHCR_TS_1B              ((0 << 20) | (0 << 3))
 226#define RCAR_DMACHCR_TS_2B              ((0 << 20) | (1 << 3))
 227#define RCAR_DMACHCR_TS_4B              ((0 << 20) | (2 << 3))
 228#define RCAR_DMACHCR_TS_16B             ((0 << 20) | (3 << 3))
 229#define RCAR_DMACHCR_TS_32B             ((1 << 20) | (0 << 3))
 230#define RCAR_DMACHCR_TS_64B             ((1 << 20) | (1 << 3))
 231#define RCAR_DMACHCR_TS_8B              ((1 << 20) | (3 << 3))
 232#define RCAR_DMACHCR_DM_FIXED           (0 << 14)
 233#define RCAR_DMACHCR_DM_INC             (1 << 14)
 234#define RCAR_DMACHCR_DM_DEC             (2 << 14)
 235#define RCAR_DMACHCR_SM_FIXED           (0 << 12)
 236#define RCAR_DMACHCR_SM_INC             (1 << 12)
 237#define RCAR_DMACHCR_SM_DEC             (2 << 12)
 238#define RCAR_DMACHCR_RS_AUTO            (4 << 8)
 239#define RCAR_DMACHCR_RS_DMARS           (8 << 8)
 240#define RCAR_DMACHCR_IE                 (1 << 2)
 241#define RCAR_DMACHCR_TE                 (1 << 1)
 242#define RCAR_DMACHCR_DE                 (1 << 0)
 243#define RCAR_DMATCRB                    0x0018
 244#define RCAR_DMATSRB                    0x0038
 245#define RCAR_DMACHCRB                   0x001c
 246#define RCAR_DMACHCRB_DCNT(n)           ((n) << 24)
 247#define RCAR_DMACHCRB_DPTR_MASK         (0xff << 16)
 248#define RCAR_DMACHCRB_DPTR_SHIFT        16
 249#define RCAR_DMACHCRB_DRST              (1 << 15)
 250#define RCAR_DMACHCRB_DTS               (1 << 8)
 251#define RCAR_DMACHCRB_SLM_NORMAL        (0 << 4)
 252#define RCAR_DMACHCRB_SLM_CLK(n)        ((8 | (n)) << 4)
 253#define RCAR_DMACHCRB_PRI(n)            ((n) << 0)
 254#define RCAR_DMARS                      0x0040
 255#define RCAR_DMABUFCR                   0x0048
 256#define RCAR_DMABUFCR_MBU(n)            ((n) << 16)
 257#define RCAR_DMABUFCR_ULB(n)            ((n) << 0)
 258#define RCAR_DMADPBASE                  0x0050
 259#define RCAR_DMADPBASE_MASK             0xfffffff0
 260#define RCAR_DMADPBASE_SEL              (1 << 0)
 261#define RCAR_DMADPCR                    0x0054
 262#define RCAR_DMADPCR_DIPT(n)            ((n) << 24)
 263#define RCAR_DMAFIXSAR                  0x0010
 264#define RCAR_DMAFIXDAR                  0x0014
 265#define RCAR_DMAFIXDPBASE               0x0060
 266
 267/* Hardcode the MEMCPY transfer size to 4 bytes. */
 268#define RCAR_DMAC_MEMCPY_XFER_SIZE      4
 269
 270/* -----------------------------------------------------------------------------
 271 * Device access
 272 */
 273
 274static void rcar_dmac_write(struct rcar_dmac *dmac, u32 reg, u32 data)
 275{
 276        if (reg == RCAR_DMAOR)
 277                writew(data, dmac->iomem + reg);
 278        else
 279                writel(data, dmac->iomem + reg);
 280}
 281
 282static u32 rcar_dmac_read(struct rcar_dmac *dmac, u32 reg)
 283{
 284        if (reg == RCAR_DMAOR)
 285                return readw(dmac->iomem + reg);
 286        else
 287                return readl(dmac->iomem + reg);
 288}
 289
 290static u32 rcar_dmac_chan_read(struct rcar_dmac_chan *chan, u32 reg)
 291{
 292        if (reg == RCAR_DMARS)
 293                return readw(chan->iomem + reg);
 294        else
 295                return readl(chan->iomem + reg);
 296}
 297
 298static void rcar_dmac_chan_write(struct rcar_dmac_chan *chan, u32 reg, u32 data)
 299{
 300        if (reg == RCAR_DMARS)
 301                writew(data, chan->iomem + reg);
 302        else
 303                writel(data, chan->iomem + reg);
 304}
 305
 306/* -----------------------------------------------------------------------------
 307 * Initialization and configuration
 308 */
 309
 310static bool rcar_dmac_chan_is_busy(struct rcar_dmac_chan *chan)
 311{
 312        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 313
 314        return (chcr & (RCAR_DMACHCR_DE | RCAR_DMACHCR_TE)) == RCAR_DMACHCR_DE;
 315}
 316
 317static void rcar_dmac_chan_start_xfer(struct rcar_dmac_chan *chan)
 318{
 319        struct rcar_dmac_desc *desc = chan->desc.running;
 320        u32 chcr = desc->chcr;
 321
 322        WARN_ON_ONCE(rcar_dmac_chan_is_busy(chan));
 323
 324        if (chan->mid_rid >= 0)
 325                rcar_dmac_chan_write(chan, RCAR_DMARS, chan->mid_rid);
 326
 327        if (desc->hwdescs.use) {
 328                struct rcar_dmac_xfer_chunk *chunk;
 329
 330                dev_dbg(chan->chan.device->dev,
 331                        "chan%u: queue desc %p: %u@%pad\n",
 332                        chan->index, desc, desc->nchunks, &desc->hwdescs.dma);
 333
 334#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 335                rcar_dmac_chan_write(chan, RCAR_DMAFIXDPBASE,
 336                                     desc->hwdescs.dma >> 32);
 337#endif
 338                rcar_dmac_chan_write(chan, RCAR_DMADPBASE,
 339                                     (desc->hwdescs.dma & 0xfffffff0) |
 340                                     RCAR_DMADPBASE_SEL);
 341                rcar_dmac_chan_write(chan, RCAR_DMACHCRB,
 342                                     RCAR_DMACHCRB_DCNT(desc->nchunks - 1) |
 343                                     RCAR_DMACHCRB_DRST);
 344
 345                /*
 346                 * Errata: When descriptor memory is accessed through an IOMMU
 347                 * the DMADAR register isn't initialized automatically from the
 348                 * first descriptor at beginning of transfer by the DMAC like it
 349                 * should. Initialize it manually with the destination address
 350                 * of the first chunk.
 351                 */
 352                chunk = list_first_entry(&desc->chunks,
 353                                         struct rcar_dmac_xfer_chunk, node);
 354                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 355                                     chunk->dst_addr & 0xffffffff);
 356
 357                /*
 358                 * Program the descriptor stage interrupt to occur after the end
 359                 * of the first stage.
 360                 */
 361                rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(1));
 362
 363                chcr |= RCAR_DMACHCR_RPT_SAR | RCAR_DMACHCR_RPT_DAR
 364                     |  RCAR_DMACHCR_RPT_TCR | RCAR_DMACHCR_DPB;
 365
 366                /*
 367                 * If the descriptor isn't cyclic enable normal descriptor mode
 368                 * and the transfer completion interrupt.
 369                 */
 370                if (!desc->cyclic)
 371                        chcr |= RCAR_DMACHCR_DPM_ENABLED | RCAR_DMACHCR_IE;
 372                /*
 373                 * If the descriptor is cyclic and has a callback enable the
 374                 * descriptor stage interrupt in infinite repeat mode.
 375                 */
 376                else if (desc->async_tx.callback)
 377                        chcr |= RCAR_DMACHCR_DPM_INFINITE | RCAR_DMACHCR_DSIE;
 378                /*
 379                 * Otherwise just select infinite repeat mode without any
 380                 * interrupt.
 381                 */
 382                else
 383                        chcr |= RCAR_DMACHCR_DPM_INFINITE;
 384        } else {
 385                struct rcar_dmac_xfer_chunk *chunk = desc->running;
 386
 387                dev_dbg(chan->chan.device->dev,
 388                        "chan%u: queue chunk %p: %u@%pad -> %pad\n",
 389                        chan->index, chunk, chunk->size, &chunk->src_addr,
 390                        &chunk->dst_addr);
 391
 392#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 393                rcar_dmac_chan_write(chan, RCAR_DMAFIXSAR,
 394                                     chunk->src_addr >> 32);
 395                rcar_dmac_chan_write(chan, RCAR_DMAFIXDAR,
 396                                     chunk->dst_addr >> 32);
 397#endif
 398                rcar_dmac_chan_write(chan, RCAR_DMASAR,
 399                                     chunk->src_addr & 0xffffffff);
 400                rcar_dmac_chan_write(chan, RCAR_DMADAR,
 401                                     chunk->dst_addr & 0xffffffff);
 402                rcar_dmac_chan_write(chan, RCAR_DMATCR,
 403                                     chunk->size >> desc->xfer_shift);
 404
 405                chcr |= RCAR_DMACHCR_DPM_DISABLED | RCAR_DMACHCR_IE;
 406        }
 407
 408        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr | RCAR_DMACHCR_DE);
 409}
 410
 411static int rcar_dmac_init(struct rcar_dmac *dmac)
 412{
 413        u16 dmaor;
 414
 415        /* Clear all channels and enable the DMAC globally. */
 416        rcar_dmac_write(dmac, RCAR_DMACHCLR, 0x7fff);
 417        rcar_dmac_write(dmac, RCAR_DMAOR,
 418                        RCAR_DMAOR_PRI_FIXED | RCAR_DMAOR_DME);
 419
 420        dmaor = rcar_dmac_read(dmac, RCAR_DMAOR);
 421        if ((dmaor & (RCAR_DMAOR_AE | RCAR_DMAOR_DME)) != RCAR_DMAOR_DME) {
 422                dev_warn(dmac->dev, "DMAOR initialization failed.\n");
 423                return -EIO;
 424        }
 425
 426        return 0;
 427}
 428
 429/* -----------------------------------------------------------------------------
 430 * Descriptors submission
 431 */
 432
 433static dma_cookie_t rcar_dmac_tx_submit(struct dma_async_tx_descriptor *tx)
 434{
 435        struct rcar_dmac_chan *chan = to_rcar_dmac_chan(tx->chan);
 436        struct rcar_dmac_desc *desc = to_rcar_dmac_desc(tx);
 437        unsigned long flags;
 438        dma_cookie_t cookie;
 439
 440        spin_lock_irqsave(&chan->lock, flags);
 441
 442        cookie = dma_cookie_assign(tx);
 443
 444        dev_dbg(chan->chan.device->dev, "chan%u: submit #%d@%p\n",
 445                chan->index, tx->cookie, desc);
 446
 447        list_add_tail(&desc->node, &chan->desc.pending);
 448        desc->running = list_first_entry(&desc->chunks,
 449                                         struct rcar_dmac_xfer_chunk, node);
 450
 451        spin_unlock_irqrestore(&chan->lock, flags);
 452
 453        return cookie;
 454}
 455
 456/* -----------------------------------------------------------------------------
 457 * Descriptors allocation and free
 458 */
 459
 460/*
 461 * rcar_dmac_desc_alloc - Allocate a page worth of DMA descriptors
 462 * @chan: the DMA channel
 463 * @gfp: allocation flags
 464 */
 465static int rcar_dmac_desc_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 466{
 467        struct rcar_dmac_desc_page *page;
 468        unsigned long flags;
 469        LIST_HEAD(list);
 470        unsigned int i;
 471
 472        page = (void *)get_zeroed_page(gfp);
 473        if (!page)
 474                return -ENOMEM;
 475
 476        for (i = 0; i < RCAR_DMAC_DESCS_PER_PAGE; ++i) {
 477                struct rcar_dmac_desc *desc = &page->descs[i];
 478
 479                dma_async_tx_descriptor_init(&desc->async_tx, &chan->chan);
 480                desc->async_tx.tx_submit = rcar_dmac_tx_submit;
 481                INIT_LIST_HEAD(&desc->chunks);
 482
 483                list_add_tail(&desc->node, &list);
 484        }
 485
 486        spin_lock_irqsave(&chan->lock, flags);
 487        list_splice_tail(&list, &chan->desc.free);
 488        list_add_tail(&page->node, &chan->desc.pages);
 489        spin_unlock_irqrestore(&chan->lock, flags);
 490
 491        return 0;
 492}
 493
 494/*
 495 * rcar_dmac_desc_put - Release a DMA transfer descriptor
 496 * @chan: the DMA channel
 497 * @desc: the descriptor
 498 *
 499 * Put the descriptor and its transfer chunk descriptors back in the channel's
 500 * free descriptors lists. The descriptor's chunks list will be reinitialized to
 501 * an empty list as a result.
 502 *
 503 * The descriptor must have been removed from the channel's lists before calling
 504 * this function.
 505 */
 506static void rcar_dmac_desc_put(struct rcar_dmac_chan *chan,
 507                               struct rcar_dmac_desc *desc)
 508{
 509        unsigned long flags;
 510
 511        spin_lock_irqsave(&chan->lock, flags);
 512        list_splice_tail_init(&desc->chunks, &chan->desc.chunks_free);
 513        list_add_tail(&desc->node, &chan->desc.free);
 514        spin_unlock_irqrestore(&chan->lock, flags);
 515}
 516
 517static void rcar_dmac_desc_recycle_acked(struct rcar_dmac_chan *chan)
 518{
 519        struct rcar_dmac_desc *desc, *_desc;
 520        unsigned long flags;
 521        LIST_HEAD(list);
 522
 523        /*
 524         * We have to temporarily move all descriptors from the wait list to a
 525         * local list as iterating over the wait list, even with
 526         * list_for_each_entry_safe, isn't safe if we release the channel lock
 527         * around the rcar_dmac_desc_put() call.
 528         */
 529        spin_lock_irqsave(&chan->lock, flags);
 530        list_splice_init(&chan->desc.wait, &list);
 531        spin_unlock_irqrestore(&chan->lock, flags);
 532
 533        list_for_each_entry_safe(desc, _desc, &list, node) {
 534                if (async_tx_test_ack(&desc->async_tx)) {
 535                        list_del(&desc->node);
 536                        rcar_dmac_desc_put(chan, desc);
 537                }
 538        }
 539
 540        if (list_empty(&list))
 541                return;
 542
 543        /* Put the remaining descriptors back in the wait list. */
 544        spin_lock_irqsave(&chan->lock, flags);
 545        list_splice(&list, &chan->desc.wait);
 546        spin_unlock_irqrestore(&chan->lock, flags);
 547}
 548
 549/*
 550 * rcar_dmac_desc_get - Allocate a descriptor for a DMA transfer
 551 * @chan: the DMA channel
 552 *
 553 * Locking: This function must be called in a non-atomic context.
 554 *
 555 * Return: A pointer to the allocated descriptor or NULL if no descriptor can
 556 * be allocated.
 557 */
 558static struct rcar_dmac_desc *rcar_dmac_desc_get(struct rcar_dmac_chan *chan)
 559{
 560        struct rcar_dmac_desc *desc;
 561        unsigned long flags;
 562        int ret;
 563
 564        /* Recycle acked descriptors before attempting allocation. */
 565        rcar_dmac_desc_recycle_acked(chan);
 566
 567        spin_lock_irqsave(&chan->lock, flags);
 568
 569        while (list_empty(&chan->desc.free)) {
 570                /*
 571                 * No free descriptors, allocate a page worth of them and try
 572                 * again, as someone else could race us to get the newly
 573                 * allocated descriptors. If the allocation fails return an
 574                 * error.
 575                 */
 576                spin_unlock_irqrestore(&chan->lock, flags);
 577                ret = rcar_dmac_desc_alloc(chan, GFP_NOWAIT);
 578                if (ret < 0)
 579                        return NULL;
 580                spin_lock_irqsave(&chan->lock, flags);
 581        }
 582
 583        desc = list_first_entry(&chan->desc.free, struct rcar_dmac_desc, node);
 584        list_del(&desc->node);
 585
 586        spin_unlock_irqrestore(&chan->lock, flags);
 587
 588        return desc;
 589}
 590
 591/*
 592 * rcar_dmac_xfer_chunk_alloc - Allocate a page worth of transfer chunks
 593 * @chan: the DMA channel
 594 * @gfp: allocation flags
 595 */
 596static int rcar_dmac_xfer_chunk_alloc(struct rcar_dmac_chan *chan, gfp_t gfp)
 597{
 598        struct rcar_dmac_desc_page *page;
 599        unsigned long flags;
 600        LIST_HEAD(list);
 601        unsigned int i;
 602
 603        page = (void *)get_zeroed_page(gfp);
 604        if (!page)
 605                return -ENOMEM;
 606
 607        for (i = 0; i < RCAR_DMAC_XFER_CHUNKS_PER_PAGE; ++i) {
 608                struct rcar_dmac_xfer_chunk *chunk = &page->chunks[i];
 609
 610                list_add_tail(&chunk->node, &list);
 611        }
 612
 613        spin_lock_irqsave(&chan->lock, flags);
 614        list_splice_tail(&list, &chan->desc.chunks_free);
 615        list_add_tail(&page->node, &chan->desc.pages);
 616        spin_unlock_irqrestore(&chan->lock, flags);
 617
 618        return 0;
 619}
 620
 621/*
 622 * rcar_dmac_xfer_chunk_get - Allocate a transfer chunk for a DMA transfer
 623 * @chan: the DMA channel
 624 *
 625 * Locking: This function must be called in a non-atomic context.
 626 *
 627 * Return: A pointer to the allocated transfer chunk descriptor or NULL if no
 628 * descriptor can be allocated.
 629 */
 630static struct rcar_dmac_xfer_chunk *
 631rcar_dmac_xfer_chunk_get(struct rcar_dmac_chan *chan)
 632{
 633        struct rcar_dmac_xfer_chunk *chunk;
 634        unsigned long flags;
 635        int ret;
 636
 637        spin_lock_irqsave(&chan->lock, flags);
 638
 639        while (list_empty(&chan->desc.chunks_free)) {
 640                /*
 641                 * No free descriptors, allocate a page worth of them and try
 642                 * again, as someone else could race us to get the newly
 643                 * allocated descriptors. If the allocation fails return an
 644                 * error.
 645                 */
 646                spin_unlock_irqrestore(&chan->lock, flags);
 647                ret = rcar_dmac_xfer_chunk_alloc(chan, GFP_NOWAIT);
 648                if (ret < 0)
 649                        return NULL;
 650                spin_lock_irqsave(&chan->lock, flags);
 651        }
 652
 653        chunk = list_first_entry(&chan->desc.chunks_free,
 654                                 struct rcar_dmac_xfer_chunk, node);
 655        list_del(&chunk->node);
 656
 657        spin_unlock_irqrestore(&chan->lock, flags);
 658
 659        return chunk;
 660}
 661
 662static void rcar_dmac_realloc_hwdesc(struct rcar_dmac_chan *chan,
 663                                     struct rcar_dmac_desc *desc, size_t size)
 664{
 665        /*
 666         * dma_alloc_coherent() allocates memory in page size increments. To
 667         * avoid reallocating the hardware descriptors when the allocated size
 668         * wouldn't change align the requested size to a multiple of the page
 669         * size.
 670         */
 671        size = PAGE_ALIGN(size);
 672
 673        if (desc->hwdescs.size == size)
 674                return;
 675
 676        if (desc->hwdescs.mem) {
 677                dma_free_coherent(chan->chan.device->dev, desc->hwdescs.size,
 678                                  desc->hwdescs.mem, desc->hwdescs.dma);
 679                desc->hwdescs.mem = NULL;
 680                desc->hwdescs.size = 0;
 681        }
 682
 683        if (!size)
 684                return;
 685
 686        desc->hwdescs.mem = dma_alloc_coherent(chan->chan.device->dev, size,
 687                                               &desc->hwdescs.dma, GFP_NOWAIT);
 688        if (!desc->hwdescs.mem)
 689                return;
 690
 691        desc->hwdescs.size = size;
 692}
 693
 694static int rcar_dmac_fill_hwdesc(struct rcar_dmac_chan *chan,
 695                                 struct rcar_dmac_desc *desc)
 696{
 697        struct rcar_dmac_xfer_chunk *chunk;
 698        struct rcar_dmac_hw_desc *hwdesc;
 699
 700        rcar_dmac_realloc_hwdesc(chan, desc, desc->nchunks * sizeof(*hwdesc));
 701
 702        hwdesc = desc->hwdescs.mem;
 703        if (!hwdesc)
 704                return -ENOMEM;
 705
 706        list_for_each_entry(chunk, &desc->chunks, node) {
 707                hwdesc->sar = chunk->src_addr;
 708                hwdesc->dar = chunk->dst_addr;
 709                hwdesc->tcr = chunk->size >> desc->xfer_shift;
 710                hwdesc++;
 711        }
 712
 713        return 0;
 714}
 715
 716/* -----------------------------------------------------------------------------
 717 * Stop and reset
 718 */
 719
 720static void rcar_dmac_chan_halt(struct rcar_dmac_chan *chan)
 721{
 722        u32 chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
 723
 724        chcr &= ~(RCAR_DMACHCR_DSE | RCAR_DMACHCR_DSIE | RCAR_DMACHCR_IE |
 725                  RCAR_DMACHCR_TE | RCAR_DMACHCR_DE);
 726        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr);
 727}
 728
 729static void rcar_dmac_chan_reinit(struct rcar_dmac_chan *chan)
 730{
 731        struct rcar_dmac_desc *desc, *_desc;
 732        unsigned long flags;
 733        LIST_HEAD(descs);
 734
 735        spin_lock_irqsave(&chan->lock, flags);
 736
 737        /* Move all non-free descriptors to the local lists. */
 738        list_splice_init(&chan->desc.pending, &descs);
 739        list_splice_init(&chan->desc.active, &descs);
 740        list_splice_init(&chan->desc.done, &descs);
 741        list_splice_init(&chan->desc.wait, &descs);
 742
 743        chan->desc.running = NULL;
 744
 745        spin_unlock_irqrestore(&chan->lock, flags);
 746
 747        list_for_each_entry_safe(desc, _desc, &descs, node) {
 748                list_del(&desc->node);
 749                rcar_dmac_desc_put(chan, desc);
 750        }
 751}
 752
 753static void rcar_dmac_stop(struct rcar_dmac *dmac)
 754{
 755        rcar_dmac_write(dmac, RCAR_DMAOR, 0);
 756}
 757
 758static void rcar_dmac_abort(struct rcar_dmac *dmac)
 759{
 760        unsigned int i;
 761
 762        /* Stop all channels. */
 763        for (i = 0; i < dmac->n_channels; ++i) {
 764                struct rcar_dmac_chan *chan = &dmac->channels[i];
 765
 766                /* Stop and reinitialize the channel. */
 767                spin_lock(&chan->lock);
 768                rcar_dmac_chan_halt(chan);
 769                spin_unlock(&chan->lock);
 770
 771                rcar_dmac_chan_reinit(chan);
 772        }
 773}
 774
 775/* -----------------------------------------------------------------------------
 776 * Descriptors preparation
 777 */
 778
 779static void rcar_dmac_chan_configure_desc(struct rcar_dmac_chan *chan,
 780                                          struct rcar_dmac_desc *desc)
 781{
 782        static const u32 chcr_ts[] = {
 783                RCAR_DMACHCR_TS_1B, RCAR_DMACHCR_TS_2B,
 784                RCAR_DMACHCR_TS_4B, RCAR_DMACHCR_TS_8B,
 785                RCAR_DMACHCR_TS_16B, RCAR_DMACHCR_TS_32B,
 786                RCAR_DMACHCR_TS_64B,
 787        };
 788
 789        unsigned int xfer_size;
 790        u32 chcr;
 791
 792        switch (desc->direction) {
 793        case DMA_DEV_TO_MEM:
 794                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_FIXED
 795                     | RCAR_DMACHCR_RS_DMARS;
 796                xfer_size = chan->src_xfer_size;
 797                break;
 798
 799        case DMA_MEM_TO_DEV:
 800                chcr = RCAR_DMACHCR_DM_FIXED | RCAR_DMACHCR_SM_INC
 801                     | RCAR_DMACHCR_RS_DMARS;
 802                xfer_size = chan->dst_xfer_size;
 803                break;
 804
 805        case DMA_MEM_TO_MEM:
 806        default:
 807                chcr = RCAR_DMACHCR_DM_INC | RCAR_DMACHCR_SM_INC
 808                     | RCAR_DMACHCR_RS_AUTO;
 809                xfer_size = RCAR_DMAC_MEMCPY_XFER_SIZE;
 810                break;
 811        }
 812
 813        desc->xfer_shift = ilog2(xfer_size);
 814        desc->chcr = chcr | chcr_ts[desc->xfer_shift];
 815}
 816
 817/*
 818 * rcar_dmac_chan_prep_sg - prepare transfer descriptors from an SG list
 819 *
 820 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
 821 * converted to scatter-gather to guarantee consistent locking and a correct
 822 * list manipulation. For slave DMA direction carries the usual meaning, and,
 823 * logically, the SG list is RAM and the addr variable contains slave address,
 824 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_MEM_TO_MEM
 825 * and the SG list contains only one element and points at the source buffer.
 826 */
 827static struct dma_async_tx_descriptor *
 828rcar_dmac_chan_prep_sg(struct rcar_dmac_chan *chan, struct scatterlist *sgl,
 829                       unsigned int sg_len, dma_addr_t dev_addr,
 830                       enum dma_transfer_direction dir, unsigned long dma_flags,
 831                       bool cyclic)
 832{
 833        struct rcar_dmac_xfer_chunk *chunk;
 834        struct rcar_dmac_desc *desc;
 835        struct scatterlist *sg;
 836        unsigned int nchunks = 0;
 837        unsigned int max_chunk_size;
 838        unsigned int full_size = 0;
 839        bool highmem = false;
 840        unsigned int i;
 841
 842        desc = rcar_dmac_desc_get(chan);
 843        if (!desc)
 844                return NULL;
 845
 846        desc->async_tx.flags = dma_flags;
 847        desc->async_tx.cookie = -EBUSY;
 848
 849        desc->cyclic = cyclic;
 850        desc->direction = dir;
 851
 852        rcar_dmac_chan_configure_desc(chan, desc);
 853
 854        max_chunk_size = (RCAR_DMATCR_MASK + 1) << desc->xfer_shift;
 855
 856        /*
 857         * Allocate and fill the transfer chunk descriptors. We own the only
 858         * reference to the DMA descriptor, there's no need for locking.
 859         */
 860        for_each_sg(sgl, sg, sg_len, i) {
 861                dma_addr_t mem_addr = sg_dma_address(sg);
 862                unsigned int len = sg_dma_len(sg);
 863
 864                full_size += len;
 865
 866                while (len) {
 867                        unsigned int size = min(len, max_chunk_size);
 868
 869#ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
 870                        /*
 871                         * Prevent individual transfers from crossing 4GB
 872                         * boundaries.
 873                         */
 874                        if (dev_addr >> 32 != (dev_addr + size - 1) >> 32)
 875                                size = ALIGN(dev_addr, 1ULL << 32) - dev_addr;
 876                        if (mem_addr >> 32 != (mem_addr + size - 1) >> 32)
 877                                size = ALIGN(mem_addr, 1ULL << 32) - mem_addr;
 878
 879                        /*
 880                         * Check if either of the source or destination address
 881                         * can't be expressed in 32 bits. If so we can't use
 882                         * hardware descriptor lists.
 883                         */
 884                        if (dev_addr >> 32 || mem_addr >> 32)
 885                                highmem = true;
 886#endif
 887
 888                        chunk = rcar_dmac_xfer_chunk_get(chan);
 889                        if (!chunk) {
 890                                rcar_dmac_desc_put(chan, desc);
 891                                return NULL;
 892                        }
 893
 894                        if (dir == DMA_DEV_TO_MEM) {
 895                                chunk->src_addr = dev_addr;
 896                                chunk->dst_addr = mem_addr;
 897                        } else {
 898                                chunk->src_addr = mem_addr;
 899                                chunk->dst_addr = dev_addr;
 900                        }
 901
 902                        chunk->size = size;
 903
 904                        dev_dbg(chan->chan.device->dev,
 905                                "chan%u: chunk %p/%p sgl %u@%p, %u/%u %pad -> %pad\n",
 906                                chan->index, chunk, desc, i, sg, size, len,
 907                                &chunk->src_addr, &chunk->dst_addr);
 908
 909                        mem_addr += size;
 910                        if (dir == DMA_MEM_TO_MEM)
 911                                dev_addr += size;
 912
 913                        len -= size;
 914
 915                        list_add_tail(&chunk->node, &desc->chunks);
 916                        nchunks++;
 917                }
 918        }
 919
 920        desc->nchunks = nchunks;
 921        desc->size = full_size;
 922
 923        /*
 924         * Use hardware descriptor lists if possible when more than one chunk
 925         * needs to be transferred (otherwise they don't make much sense).
 926         *
 927         * The highmem check currently covers the whole transfer. As an
 928         * optimization we could use descriptor lists for consecutive lowmem
 929         * chunks and direct manual mode for highmem chunks. Whether the
 930         * performance improvement would be significant enough compared to the
 931         * additional complexity remains to be investigated.
 932         */
 933        desc->hwdescs.use = !highmem && nchunks > 1;
 934        if (desc->hwdescs.use) {
 935                if (rcar_dmac_fill_hwdesc(chan, desc) < 0)
 936                        desc->hwdescs.use = false;
 937        }
 938
 939        return &desc->async_tx;
 940}
 941
 942/* -----------------------------------------------------------------------------
 943 * DMA engine operations
 944 */
 945
 946static int rcar_dmac_alloc_chan_resources(struct dma_chan *chan)
 947{
 948        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 949        int ret;
 950
 951        INIT_LIST_HEAD(&rchan->desc.chunks_free);
 952        INIT_LIST_HEAD(&rchan->desc.pages);
 953
 954        /* Preallocate descriptors. */
 955        ret = rcar_dmac_xfer_chunk_alloc(rchan, GFP_KERNEL);
 956        if (ret < 0)
 957                return -ENOMEM;
 958
 959        ret = rcar_dmac_desc_alloc(rchan, GFP_KERNEL);
 960        if (ret < 0)
 961                return -ENOMEM;
 962
 963        return pm_runtime_get_sync(chan->device->dev);
 964}
 965
 966static void rcar_dmac_free_chan_resources(struct dma_chan *chan)
 967{
 968        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
 969        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
 970        struct rcar_dmac_desc_page *page, *_page;
 971        struct rcar_dmac_desc *desc;
 972        LIST_HEAD(list);
 973
 974        /* Protect against ISR */
 975        spin_lock_irq(&rchan->lock);
 976        rcar_dmac_chan_halt(rchan);
 977        spin_unlock_irq(&rchan->lock);
 978
 979        /* Now no new interrupts will occur */
 980
 981        if (rchan->mid_rid >= 0) {
 982                /* The caller is holding dma_list_mutex */
 983                clear_bit(rchan->mid_rid, dmac->modules);
 984                rchan->mid_rid = -EINVAL;
 985        }
 986
 987        list_splice_init(&rchan->desc.free, &list);
 988        list_splice_init(&rchan->desc.pending, &list);
 989        list_splice_init(&rchan->desc.active, &list);
 990        list_splice_init(&rchan->desc.done, &list);
 991        list_splice_init(&rchan->desc.wait, &list);
 992
 993        list_for_each_entry(desc, &list, node)
 994                rcar_dmac_realloc_hwdesc(rchan, desc, 0);
 995
 996        list_for_each_entry_safe(page, _page, &rchan->desc.pages, node) {
 997                list_del(&page->node);
 998                free_page((unsigned long)page);
 999        }
1000
1001        pm_runtime_put(chan->device->dev);
1002}
1003
1004static struct dma_async_tx_descriptor *
1005rcar_dmac_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dma_dest,
1006                          dma_addr_t dma_src, size_t len, unsigned long flags)
1007{
1008        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1009        struct scatterlist sgl;
1010
1011        if (!len)
1012                return NULL;
1013
1014        sg_init_table(&sgl, 1);
1015        sg_set_page(&sgl, pfn_to_page(PFN_DOWN(dma_src)), len,
1016                    offset_in_page(dma_src));
1017        sg_dma_address(&sgl) = dma_src;
1018        sg_dma_len(&sgl) = len;
1019
1020        return rcar_dmac_chan_prep_sg(rchan, &sgl, 1, dma_dest,
1021                                      DMA_MEM_TO_MEM, flags, false);
1022}
1023
1024static struct dma_async_tx_descriptor *
1025rcar_dmac_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
1026                        unsigned int sg_len, enum dma_transfer_direction dir,
1027                        unsigned long flags, void *context)
1028{
1029        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1030        dma_addr_t dev_addr;
1031
1032        /* Someone calling slave DMA on a generic channel? */
1033        if (rchan->mid_rid < 0 || !sg_len) {
1034                dev_warn(chan->device->dev,
1035                         "%s: bad parameter: len=%d, id=%d\n",
1036                         __func__, sg_len, rchan->mid_rid);
1037                return NULL;
1038        }
1039
1040        dev_addr = dir == DMA_DEV_TO_MEM
1041                 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1042        return rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1043                                      dir, flags, false);
1044}
1045
1046#define RCAR_DMAC_MAX_SG_LEN    32
1047
1048static struct dma_async_tx_descriptor *
1049rcar_dmac_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t buf_addr,
1050                          size_t buf_len, size_t period_len,
1051                          enum dma_transfer_direction dir, unsigned long flags)
1052{
1053        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1054        struct dma_async_tx_descriptor *desc;
1055        struct scatterlist *sgl;
1056        dma_addr_t dev_addr;
1057        unsigned int sg_len;
1058        unsigned int i;
1059
1060        /* Someone calling slave DMA on a generic channel? */
1061        if (rchan->mid_rid < 0 || buf_len < period_len) {
1062                dev_warn(chan->device->dev,
1063                        "%s: bad parameter: buf_len=%zu, period_len=%zu, id=%d\n",
1064                        __func__, buf_len, period_len, rchan->mid_rid);
1065                return NULL;
1066        }
1067
1068        sg_len = buf_len / period_len;
1069        if (sg_len > RCAR_DMAC_MAX_SG_LEN) {
1070                dev_err(chan->device->dev,
1071                        "chan%u: sg length %d exceds limit %d",
1072                        rchan->index, sg_len, RCAR_DMAC_MAX_SG_LEN);
1073                return NULL;
1074        }
1075
1076        /*
1077         * Allocate the sg list dynamically as it would consume too much stack
1078         * space.
1079         */
1080        sgl = kcalloc(sg_len, sizeof(*sgl), GFP_NOWAIT);
1081        if (!sgl)
1082                return NULL;
1083
1084        sg_init_table(sgl, sg_len);
1085
1086        for (i = 0; i < sg_len; ++i) {
1087                dma_addr_t src = buf_addr + (period_len * i);
1088
1089                sg_set_page(&sgl[i], pfn_to_page(PFN_DOWN(src)), period_len,
1090                            offset_in_page(src));
1091                sg_dma_address(&sgl[i]) = src;
1092                sg_dma_len(&sgl[i]) = period_len;
1093        }
1094
1095        dev_addr = dir == DMA_DEV_TO_MEM
1096                 ? rchan->src_slave_addr : rchan->dst_slave_addr;
1097        desc = rcar_dmac_chan_prep_sg(rchan, sgl, sg_len, dev_addr,
1098                                      dir, flags, true);
1099
1100        kfree(sgl);
1101        return desc;
1102}
1103
1104static int rcar_dmac_device_config(struct dma_chan *chan,
1105                                   struct dma_slave_config *cfg)
1106{
1107        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1108
1109        /*
1110         * We could lock this, but you shouldn't be configuring the
1111         * channel, while using it...
1112         */
1113        rchan->src_slave_addr = cfg->src_addr;
1114        rchan->dst_slave_addr = cfg->dst_addr;
1115        rchan->src_xfer_size = cfg->src_addr_width;
1116        rchan->dst_xfer_size = cfg->dst_addr_width;
1117
1118        return 0;
1119}
1120
1121static int rcar_dmac_chan_terminate_all(struct dma_chan *chan)
1122{
1123        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1124        unsigned long flags;
1125
1126        spin_lock_irqsave(&rchan->lock, flags);
1127        rcar_dmac_chan_halt(rchan);
1128        spin_unlock_irqrestore(&rchan->lock, flags);
1129
1130        /*
1131         * FIXME: No new interrupt can occur now, but the IRQ thread might still
1132         * be running.
1133         */
1134
1135        rcar_dmac_chan_reinit(rchan);
1136
1137        return 0;
1138}
1139
1140static unsigned int rcar_dmac_chan_get_residue(struct rcar_dmac_chan *chan,
1141                                               dma_cookie_t cookie)
1142{
1143        struct rcar_dmac_desc *desc = chan->desc.running;
1144        struct rcar_dmac_xfer_chunk *running = NULL;
1145        struct rcar_dmac_xfer_chunk *chunk;
1146        unsigned int residue = 0;
1147        unsigned int dptr = 0;
1148
1149        if (!desc)
1150                return 0;
1151
1152        /*
1153         * If the cookie doesn't correspond to the currently running transfer
1154         * then the descriptor hasn't been processed yet, and the residue is
1155         * equal to the full descriptor size.
1156         */
1157        if (cookie != desc->async_tx.cookie)
1158                return desc->size;
1159
1160        /*
1161         * In descriptor mode the descriptor running pointer is not maintained
1162         * by the interrupt handler, find the running descriptor from the
1163         * descriptor pointer field in the CHCRB register. In non-descriptor
1164         * mode just use the running descriptor pointer.
1165         */
1166        if (desc->hwdescs.use) {
1167                dptr = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1168                        RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1169                WARN_ON(dptr >= desc->nchunks);
1170        } else {
1171                running = desc->running;
1172        }
1173
1174        /* Compute the size of all chunks still to be transferred. */
1175        list_for_each_entry_reverse(chunk, &desc->chunks, node) {
1176                if (chunk == running || ++dptr == desc->nchunks)
1177                        break;
1178
1179                residue += chunk->size;
1180        }
1181
1182        /* Add the residue for the current chunk. */
1183        residue += rcar_dmac_chan_read(chan, RCAR_DMATCR) << desc->xfer_shift;
1184
1185        return residue;
1186}
1187
1188static enum dma_status rcar_dmac_tx_status(struct dma_chan *chan,
1189                                           dma_cookie_t cookie,
1190                                           struct dma_tx_state *txstate)
1191{
1192        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1193        enum dma_status status;
1194        unsigned long flags;
1195        unsigned int residue;
1196
1197        status = dma_cookie_status(chan, cookie, txstate);
1198        if (status == DMA_COMPLETE || !txstate)
1199                return status;
1200
1201        spin_lock_irqsave(&rchan->lock, flags);
1202        residue = rcar_dmac_chan_get_residue(rchan, cookie);
1203        spin_unlock_irqrestore(&rchan->lock, flags);
1204
1205        dma_set_residue(txstate, residue);
1206
1207        return status;
1208}
1209
1210static void rcar_dmac_issue_pending(struct dma_chan *chan)
1211{
1212        struct rcar_dmac_chan *rchan = to_rcar_dmac_chan(chan);
1213        unsigned long flags;
1214
1215        spin_lock_irqsave(&rchan->lock, flags);
1216
1217        if (list_empty(&rchan->desc.pending))
1218                goto done;
1219
1220        /* Append the pending list to the active list. */
1221        list_splice_tail_init(&rchan->desc.pending, &rchan->desc.active);
1222
1223        /*
1224         * If no transfer is running pick the first descriptor from the active
1225         * list and start the transfer.
1226         */
1227        if (!rchan->desc.running) {
1228                struct rcar_dmac_desc *desc;
1229
1230                desc = list_first_entry(&rchan->desc.active,
1231                                        struct rcar_dmac_desc, node);
1232                rchan->desc.running = desc;
1233
1234                rcar_dmac_chan_start_xfer(rchan);
1235        }
1236
1237done:
1238        spin_unlock_irqrestore(&rchan->lock, flags);
1239}
1240
1241/* -----------------------------------------------------------------------------
1242 * IRQ handling
1243 */
1244
1245static irqreturn_t rcar_dmac_isr_desc_stage_end(struct rcar_dmac_chan *chan)
1246{
1247        struct rcar_dmac_desc *desc = chan->desc.running;
1248        unsigned int stage;
1249
1250        if (WARN_ON(!desc || !desc->cyclic)) {
1251                /*
1252                 * This should never happen, there should always be a running
1253                 * cyclic descriptor when a descriptor stage end interrupt is
1254                 * triggered. Warn and return.
1255                 */
1256                return IRQ_NONE;
1257        }
1258
1259        /* Program the interrupt pointer to the next stage. */
1260        stage = (rcar_dmac_chan_read(chan, RCAR_DMACHCRB) &
1261                 RCAR_DMACHCRB_DPTR_MASK) >> RCAR_DMACHCRB_DPTR_SHIFT;
1262        rcar_dmac_chan_write(chan, RCAR_DMADPCR, RCAR_DMADPCR_DIPT(stage));
1263
1264        return IRQ_WAKE_THREAD;
1265}
1266
1267static irqreturn_t rcar_dmac_isr_transfer_end(struct rcar_dmac_chan *chan)
1268{
1269        struct rcar_dmac_desc *desc = chan->desc.running;
1270        irqreturn_t ret = IRQ_WAKE_THREAD;
1271
1272        if (WARN_ON_ONCE(!desc)) {
1273                /*
1274                 * This should never happen, there should always be a running
1275                 * descriptor when a transfer end interrupt is triggered. Warn
1276                 * and return.
1277                 */
1278                return IRQ_NONE;
1279        }
1280
1281        /*
1282         * The transfer end interrupt isn't generated for each chunk when using
1283         * descriptor mode. Only update the running chunk pointer in
1284         * non-descriptor mode.
1285         */
1286        if (!desc->hwdescs.use) {
1287                /*
1288                 * If we haven't completed the last transfer chunk simply move
1289                 * to the next one. Only wake the IRQ thread if the transfer is
1290                 * cyclic.
1291                 */
1292                if (!list_is_last(&desc->running->node, &desc->chunks)) {
1293                        desc->running = list_next_entry(desc->running, node);
1294                        if (!desc->cyclic)
1295                                ret = IRQ_HANDLED;
1296                        goto done;
1297                }
1298
1299                /*
1300                 * We've completed the last transfer chunk. If the transfer is
1301                 * cyclic, move back to the first one.
1302                 */
1303                if (desc->cyclic) {
1304                        desc->running =
1305                                list_first_entry(&desc->chunks,
1306                                                 struct rcar_dmac_xfer_chunk,
1307                                                 node);
1308                        goto done;
1309                }
1310        }
1311
1312        /* The descriptor is complete, move it to the done list. */
1313        list_move_tail(&desc->node, &chan->desc.done);
1314
1315        /* Queue the next descriptor, if any. */
1316        if (!list_empty(&chan->desc.active))
1317                chan->desc.running = list_first_entry(&chan->desc.active,
1318                                                      struct rcar_dmac_desc,
1319                                                      node);
1320        else
1321                chan->desc.running = NULL;
1322
1323done:
1324        if (chan->desc.running)
1325                rcar_dmac_chan_start_xfer(chan);
1326
1327        return ret;
1328}
1329
1330static irqreturn_t rcar_dmac_isr_channel(int irq, void *dev)
1331{
1332        u32 mask = RCAR_DMACHCR_DSE | RCAR_DMACHCR_TE;
1333        struct rcar_dmac_chan *chan = dev;
1334        irqreturn_t ret = IRQ_NONE;
1335        u32 chcr;
1336
1337        spin_lock(&chan->lock);
1338
1339        chcr = rcar_dmac_chan_read(chan, RCAR_DMACHCR);
1340        if (chcr & RCAR_DMACHCR_TE)
1341                mask |= RCAR_DMACHCR_DE;
1342        rcar_dmac_chan_write(chan, RCAR_DMACHCR, chcr & ~mask);
1343
1344        if (chcr & RCAR_DMACHCR_DSE)
1345                ret |= rcar_dmac_isr_desc_stage_end(chan);
1346
1347        if (chcr & RCAR_DMACHCR_TE)
1348                ret |= rcar_dmac_isr_transfer_end(chan);
1349
1350        spin_unlock(&chan->lock);
1351
1352        return ret;
1353}
1354
1355static irqreturn_t rcar_dmac_isr_channel_thread(int irq, void *dev)
1356{
1357        struct rcar_dmac_chan *chan = dev;
1358        struct rcar_dmac_desc *desc;
1359
1360        spin_lock_irq(&chan->lock);
1361
1362        /* For cyclic transfers notify the user after every chunk. */
1363        if (chan->desc.running && chan->desc.running->cyclic) {
1364                dma_async_tx_callback callback;
1365                void *callback_param;
1366
1367                desc = chan->desc.running;
1368                callback = desc->async_tx.callback;
1369                callback_param = desc->async_tx.callback_param;
1370
1371                if (callback) {
1372                        spin_unlock_irq(&chan->lock);
1373                        callback(callback_param);
1374                        spin_lock_irq(&chan->lock);
1375                }
1376        }
1377
1378        /*
1379         * Call the callback function for all descriptors on the done list and
1380         * move them to the ack wait list.
1381         */
1382        while (!list_empty(&chan->desc.done)) {
1383                desc = list_first_entry(&chan->desc.done, struct rcar_dmac_desc,
1384                                        node);
1385                dma_cookie_complete(&desc->async_tx);
1386                list_del(&desc->node);
1387
1388                if (desc->async_tx.callback) {
1389                        spin_unlock_irq(&chan->lock);
1390                        /*
1391                         * We own the only reference to this descriptor, we can
1392                         * safely dereference it without holding the channel
1393                         * lock.
1394                         */
1395                        desc->async_tx.callback(desc->async_tx.callback_param);
1396                        spin_lock_irq(&chan->lock);
1397                }
1398
1399                list_add_tail(&desc->node, &chan->desc.wait);
1400        }
1401
1402        spin_unlock_irq(&chan->lock);
1403
1404        /* Recycle all acked descriptors. */
1405        rcar_dmac_desc_recycle_acked(chan);
1406
1407        return IRQ_HANDLED;
1408}
1409
1410static irqreturn_t rcar_dmac_isr_error(int irq, void *data)
1411{
1412        struct rcar_dmac *dmac = data;
1413
1414        if (!(rcar_dmac_read(dmac, RCAR_DMAOR) & RCAR_DMAOR_AE))
1415                return IRQ_NONE;
1416
1417        /*
1418         * An unrecoverable error occurred on an unknown channel. Halt the DMAC,
1419         * abort transfers on all channels, and reinitialize the DMAC.
1420         */
1421        rcar_dmac_stop(dmac);
1422        rcar_dmac_abort(dmac);
1423        rcar_dmac_init(dmac);
1424
1425        return IRQ_HANDLED;
1426}
1427
1428/* -----------------------------------------------------------------------------
1429 * OF xlate and channel filter
1430 */
1431
1432static bool rcar_dmac_chan_filter(struct dma_chan *chan, void *arg)
1433{
1434        struct rcar_dmac *dmac = to_rcar_dmac(chan->device);
1435        struct of_phandle_args *dma_spec = arg;
1436
1437        /*
1438         * FIXME: Using a filter on OF platforms is a nonsense. The OF xlate
1439         * function knows from which device it wants to allocate a channel from,
1440         * and would be perfectly capable of selecting the channel it wants.
1441         * Forcing it to call dma_request_channel() and iterate through all
1442         * channels from all controllers is just pointless.
1443         */
1444        if (chan->device->device_config != rcar_dmac_device_config ||
1445            dma_spec->np != chan->device->dev->of_node)
1446                return false;
1447
1448        return !test_and_set_bit(dma_spec->args[0], dmac->modules);
1449}
1450
1451static struct dma_chan *rcar_dmac_of_xlate(struct of_phandle_args *dma_spec,
1452                                           struct of_dma *ofdma)
1453{
1454        struct rcar_dmac_chan *rchan;
1455        struct dma_chan *chan;
1456        dma_cap_mask_t mask;
1457
1458        if (dma_spec->args_count != 1)
1459                return NULL;
1460
1461        /* Only slave DMA channels can be allocated via DT */
1462        dma_cap_zero(mask);
1463        dma_cap_set(DMA_SLAVE, mask);
1464
1465        chan = dma_request_channel(mask, rcar_dmac_chan_filter, dma_spec);
1466        if (!chan)
1467                return NULL;
1468
1469        rchan = to_rcar_dmac_chan(chan);
1470        rchan->mid_rid = dma_spec->args[0];
1471
1472        return chan;
1473}
1474
1475/* -----------------------------------------------------------------------------
1476 * Power management
1477 */
1478
1479#ifdef CONFIG_PM_SLEEP
1480static int rcar_dmac_sleep_suspend(struct device *dev)
1481{
1482        /*
1483         * TODO: Wait for the current transfer to complete and stop the device.
1484         */
1485        return 0;
1486}
1487
1488static int rcar_dmac_sleep_resume(struct device *dev)
1489{
1490        /* TODO: Resume transfers, if any. */
1491        return 0;
1492}
1493#endif
1494
1495#ifdef CONFIG_PM
1496static int rcar_dmac_runtime_suspend(struct device *dev)
1497{
1498        return 0;
1499}
1500
1501static int rcar_dmac_runtime_resume(struct device *dev)
1502{
1503        struct rcar_dmac *dmac = dev_get_drvdata(dev);
1504
1505        return rcar_dmac_init(dmac);
1506}
1507#endif
1508
1509static const struct dev_pm_ops rcar_dmac_pm = {
1510        SET_SYSTEM_SLEEP_PM_OPS(rcar_dmac_sleep_suspend, rcar_dmac_sleep_resume)
1511        SET_RUNTIME_PM_OPS(rcar_dmac_runtime_suspend, rcar_dmac_runtime_resume,
1512                           NULL)
1513};
1514
1515/* -----------------------------------------------------------------------------
1516 * Probe and remove
1517 */
1518
1519static int rcar_dmac_chan_probe(struct rcar_dmac *dmac,
1520                                struct rcar_dmac_chan *rchan,
1521                                unsigned int index)
1522{
1523        struct platform_device *pdev = to_platform_device(dmac->dev);
1524        struct dma_chan *chan = &rchan->chan;
1525        char pdev_irqname[5];
1526        char *irqname;
1527        int irq;
1528        int ret;
1529
1530        rchan->index = index;
1531        rchan->iomem = dmac->iomem + RCAR_DMAC_CHAN_OFFSET(index);
1532        rchan->mid_rid = -EINVAL;
1533
1534        spin_lock_init(&rchan->lock);
1535
1536        INIT_LIST_HEAD(&rchan->desc.free);
1537        INIT_LIST_HEAD(&rchan->desc.pending);
1538        INIT_LIST_HEAD(&rchan->desc.active);
1539        INIT_LIST_HEAD(&rchan->desc.done);
1540        INIT_LIST_HEAD(&rchan->desc.wait);
1541
1542        /* Request the channel interrupt. */
1543        sprintf(pdev_irqname, "ch%u", index);
1544        irq = platform_get_irq_byname(pdev, pdev_irqname);
1545        if (irq < 0) {
1546                dev_err(dmac->dev, "no IRQ specified for channel %u\n", index);
1547                return -ENODEV;
1548        }
1549
1550        irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:%u",
1551                                 dev_name(dmac->dev), index);
1552        if (!irqname)
1553                return -ENOMEM;
1554
1555        ret = devm_request_threaded_irq(dmac->dev, irq, rcar_dmac_isr_channel,
1556                                        rcar_dmac_isr_channel_thread, 0,
1557                                        irqname, rchan);
1558        if (ret) {
1559                dev_err(dmac->dev, "failed to request IRQ %u (%d)\n", irq, ret);
1560                return ret;
1561        }
1562
1563        /*
1564         * Initialize the DMA engine channel and add it to the DMA engine
1565         * channels list.
1566         */
1567        chan->device = &dmac->engine;
1568        dma_cookie_init(chan);
1569
1570        list_add_tail(&chan->device_node, &dmac->engine.channels);
1571
1572        return 0;
1573}
1574
1575static int rcar_dmac_parse_of(struct device *dev, struct rcar_dmac *dmac)
1576{
1577        struct device_node *np = dev->of_node;
1578        int ret;
1579
1580        ret = of_property_read_u32(np, "dma-channels", &dmac->n_channels);
1581        if (ret < 0) {
1582                dev_err(dev, "unable to read dma-channels property\n");
1583                return ret;
1584        }
1585
1586        if (dmac->n_channels <= 0 || dmac->n_channels >= 100) {
1587                dev_err(dev, "invalid number of channels %u\n",
1588                        dmac->n_channels);
1589                return -EINVAL;
1590        }
1591
1592        return 0;
1593}
1594
1595static int rcar_dmac_probe(struct platform_device *pdev)
1596{
1597        const enum dma_slave_buswidth widths = DMA_SLAVE_BUSWIDTH_1_BYTE |
1598                DMA_SLAVE_BUSWIDTH_2_BYTES | DMA_SLAVE_BUSWIDTH_4_BYTES |
1599                DMA_SLAVE_BUSWIDTH_8_BYTES | DMA_SLAVE_BUSWIDTH_16_BYTES |
1600                DMA_SLAVE_BUSWIDTH_32_BYTES | DMA_SLAVE_BUSWIDTH_64_BYTES;
1601        unsigned int channels_offset = 0;
1602        struct dma_device *engine;
1603        struct rcar_dmac *dmac;
1604        struct resource *mem;
1605        unsigned int i;
1606        char *irqname;
1607        int irq;
1608        int ret;
1609
1610        dmac = devm_kzalloc(&pdev->dev, sizeof(*dmac), GFP_KERNEL);
1611        if (!dmac)
1612                return -ENOMEM;
1613
1614        dmac->dev = &pdev->dev;
1615        platform_set_drvdata(pdev, dmac);
1616
1617        ret = rcar_dmac_parse_of(&pdev->dev, dmac);
1618        if (ret < 0)
1619                return ret;
1620
1621        /*
1622         * A still unconfirmed hardware bug prevents the IPMMU microTLB 0 to be
1623         * flushed correctly, resulting in memory corruption. DMAC 0 channel 0
1624         * is connected to microTLB 0 on currently supported platforms, so we
1625         * can't use it with the IPMMU. As the IOMMU API operates at the device
1626         * level we can't disable it selectively, so ignore channel 0 for now if
1627         * the device is part of an IOMMU group.
1628         */
1629        if (pdev->dev.iommu_group) {
1630                dmac->n_channels--;
1631                channels_offset = 1;
1632        }
1633
1634        dmac->channels = devm_kcalloc(&pdev->dev, dmac->n_channels,
1635                                      sizeof(*dmac->channels), GFP_KERNEL);
1636        if (!dmac->channels)
1637                return -ENOMEM;
1638
1639        /* Request resources. */
1640        mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1641        dmac->iomem = devm_ioremap_resource(&pdev->dev, mem);
1642        if (IS_ERR(dmac->iomem))
1643                return PTR_ERR(dmac->iomem);
1644
1645        irq = platform_get_irq_byname(pdev, "error");
1646        if (irq < 0) {
1647                dev_err(&pdev->dev, "no error IRQ specified\n");
1648                return -ENODEV;
1649        }
1650
1651        irqname = devm_kasprintf(dmac->dev, GFP_KERNEL, "%s:error",
1652                                 dev_name(dmac->dev));
1653        if (!irqname)
1654                return -ENOMEM;
1655
1656        ret = devm_request_irq(&pdev->dev, irq, rcar_dmac_isr_error, 0,
1657                               irqname, dmac);
1658        if (ret) {
1659                dev_err(&pdev->dev, "failed to request IRQ %u (%d)\n",
1660                        irq, ret);
1661                return ret;
1662        }
1663
1664        /* Enable runtime PM and initialize the device. */
1665        pm_runtime_enable(&pdev->dev);
1666        ret = pm_runtime_get_sync(&pdev->dev);
1667        if (ret < 0) {
1668                dev_err(&pdev->dev, "runtime PM get sync failed (%d)\n", ret);
1669                return ret;
1670        }
1671
1672        ret = rcar_dmac_init(dmac);
1673        pm_runtime_put(&pdev->dev);
1674
1675        if (ret) {
1676                dev_err(&pdev->dev, "failed to reset device\n");
1677                goto error;
1678        }
1679
1680        /* Initialize the channels. */
1681        INIT_LIST_HEAD(&dmac->engine.channels);
1682
1683        for (i = 0; i < dmac->n_channels; ++i) {
1684                ret = rcar_dmac_chan_probe(dmac, &dmac->channels[i],
1685                                           i + channels_offset);
1686                if (ret < 0)
1687                        goto error;
1688        }
1689
1690        /* Register the DMAC as a DMA provider for DT. */
1691        ret = of_dma_controller_register(pdev->dev.of_node, rcar_dmac_of_xlate,
1692                                         NULL);
1693        if (ret < 0)
1694                goto error;
1695
1696        /*
1697         * Register the DMA engine device.
1698         *
1699         * Default transfer size of 32 bytes requires 32-byte alignment.
1700         */
1701        engine = &dmac->engine;
1702        dma_cap_set(DMA_MEMCPY, engine->cap_mask);
1703        dma_cap_set(DMA_SLAVE, engine->cap_mask);
1704
1705        engine->dev = &pdev->dev;
1706        engine->copy_align = ilog2(RCAR_DMAC_MEMCPY_XFER_SIZE);
1707
1708        engine->src_addr_widths = widths;
1709        engine->dst_addr_widths = widths;
1710        engine->directions = BIT(DMA_MEM_TO_DEV) | BIT(DMA_DEV_TO_MEM);
1711        engine->residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1712
1713        engine->device_alloc_chan_resources = rcar_dmac_alloc_chan_resources;
1714        engine->device_free_chan_resources = rcar_dmac_free_chan_resources;
1715        engine->device_prep_dma_memcpy = rcar_dmac_prep_dma_memcpy;
1716        engine->device_prep_slave_sg = rcar_dmac_prep_slave_sg;
1717        engine->device_prep_dma_cyclic = rcar_dmac_prep_dma_cyclic;
1718        engine->device_config = rcar_dmac_device_config;
1719        engine->device_terminate_all = rcar_dmac_chan_terminate_all;
1720        engine->device_tx_status = rcar_dmac_tx_status;
1721        engine->device_issue_pending = rcar_dmac_issue_pending;
1722
1723        ret = dma_async_device_register(engine);
1724        if (ret < 0)
1725                goto error;
1726
1727        return 0;
1728
1729error:
1730        of_dma_controller_free(pdev->dev.of_node);
1731        pm_runtime_disable(&pdev->dev);
1732        return ret;
1733}
1734
1735static int rcar_dmac_remove(struct platform_device *pdev)
1736{
1737        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1738
1739        of_dma_controller_free(pdev->dev.of_node);
1740        dma_async_device_unregister(&dmac->engine);
1741
1742        pm_runtime_disable(&pdev->dev);
1743
1744        return 0;
1745}
1746
1747static void rcar_dmac_shutdown(struct platform_device *pdev)
1748{
1749        struct rcar_dmac *dmac = platform_get_drvdata(pdev);
1750
1751        rcar_dmac_stop(dmac);
1752}
1753
1754static const struct of_device_id rcar_dmac_of_ids[] = {
1755        { .compatible = "renesas,rcar-dmac", },
1756        { /* Sentinel */ }
1757};
1758MODULE_DEVICE_TABLE(of, rcar_dmac_of_ids);
1759
1760static struct platform_driver rcar_dmac_driver = {
1761        .driver         = {
1762                .pm     = &rcar_dmac_pm,
1763                .name   = "rcar-dmac",
1764                .of_match_table = rcar_dmac_of_ids,
1765        },
1766        .probe          = rcar_dmac_probe,
1767        .remove         = rcar_dmac_remove,
1768        .shutdown       = rcar_dmac_shutdown,
1769};
1770
1771module_platform_driver(rcar_dmac_driver);
1772
1773MODULE_DESCRIPTION("R-Car Gen2 DMA Controller Driver");
1774MODULE_AUTHOR("Laurent Pinchart <laurent.pinchart@ideasonboard.com>");
1775MODULE_LICENSE("GPL v2");
1776