linux/drivers/gpu/drm/i915/intel_display.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2006-2007 Intel Corporation
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice (including the next
  12 * paragraph) shall be included in all copies or substantial portions of the
  13 * Software.
  14 *
  15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
  19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
  20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
  21 * DEALINGS IN THE SOFTWARE.
  22 *
  23 * Authors:
  24 *      Eric Anholt <eric@anholt.net>
  25 */
  26
  27#include <linux/dmi.h>
  28#include <linux/module.h>
  29#include <linux/input.h>
  30#include <linux/i2c.h>
  31#include <linux/kernel.h>
  32#include <linux/slab.h>
  33#include <linux/vgaarb.h>
  34#include <drm/drm_edid.h>
  35#include <drm/drmP.h>
  36#include "intel_drv.h"
  37#include <drm/i915_drm.h>
  38#include "i915_drv.h"
  39#include "i915_trace.h"
  40#include <drm/drm_atomic.h>
  41#include <drm/drm_atomic_helper.h>
  42#include <drm/drm_dp_helper.h>
  43#include <drm/drm_crtc_helper.h>
  44#include <drm/drm_plane_helper.h>
  45#include <drm/drm_rect.h>
  46#include <linux/dma_remapping.h>
  47
  48/* Primary plane formats for gen <= 3 */
  49static const uint32_t i8xx_primary_formats[] = {
  50        DRM_FORMAT_C8,
  51        DRM_FORMAT_RGB565,
  52        DRM_FORMAT_XRGB1555,
  53        DRM_FORMAT_XRGB8888,
  54};
  55
  56/* Primary plane formats for gen >= 4 */
  57static const uint32_t i965_primary_formats[] = {
  58        DRM_FORMAT_C8,
  59        DRM_FORMAT_RGB565,
  60        DRM_FORMAT_XRGB8888,
  61        DRM_FORMAT_XBGR8888,
  62        DRM_FORMAT_XRGB2101010,
  63        DRM_FORMAT_XBGR2101010,
  64};
  65
  66static const uint32_t skl_primary_formats[] = {
  67        DRM_FORMAT_C8,
  68        DRM_FORMAT_RGB565,
  69        DRM_FORMAT_XRGB8888,
  70        DRM_FORMAT_XBGR8888,
  71        DRM_FORMAT_ARGB8888,
  72        DRM_FORMAT_ABGR8888,
  73        DRM_FORMAT_XRGB2101010,
  74        DRM_FORMAT_XBGR2101010,
  75};
  76
  77/* Cursor formats */
  78static const uint32_t intel_cursor_formats[] = {
  79        DRM_FORMAT_ARGB8888,
  80};
  81
  82static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
  83
  84static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
  85                                struct intel_crtc_state *pipe_config);
  86static void ironlake_pch_clock_get(struct intel_crtc *crtc,
  87                                   struct intel_crtc_state *pipe_config);
  88
  89static int intel_set_mode(struct drm_crtc *crtc,
  90                          struct drm_atomic_state *state,
  91                          bool force_restore);
  92static int intel_framebuffer_init(struct drm_device *dev,
  93                                  struct intel_framebuffer *ifb,
  94                                  struct drm_mode_fb_cmd2 *mode_cmd,
  95                                  struct drm_i915_gem_object *obj);
  96static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc);
  97static void intel_set_pipe_timings(struct intel_crtc *intel_crtc);
  98static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
  99                                         struct intel_link_m_n *m_n,
 100                                         struct intel_link_m_n *m2_n2);
 101static void ironlake_set_pipeconf(struct drm_crtc *crtc);
 102static void haswell_set_pipeconf(struct drm_crtc *crtc);
 103static void intel_set_pipe_csc(struct drm_crtc *crtc);
 104static void vlv_prepare_pll(struct intel_crtc *crtc,
 105                            const struct intel_crtc_state *pipe_config);
 106static void chv_prepare_pll(struct intel_crtc *crtc,
 107                            const struct intel_crtc_state *pipe_config);
 108static void intel_begin_crtc_commit(struct drm_crtc *crtc);
 109static void intel_finish_crtc_commit(struct drm_crtc *crtc);
 110static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
 111        struct intel_crtc_state *crtc_state);
 112static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
 113                           int num_connectors);
 114static void intel_crtc_enable_planes(struct drm_crtc *crtc);
 115static void intel_crtc_disable_planes(struct drm_crtc *crtc);
 116
 117static struct intel_encoder *intel_find_encoder(struct intel_connector *connector, int pipe)
 118{
 119        if (!connector->mst_port)
 120                return connector->encoder;
 121        else
 122                return &connector->mst_port->mst_encoders[pipe]->base;
 123}
 124
 125typedef struct {
 126        int     min, max;
 127} intel_range_t;
 128
 129typedef struct {
 130        int     dot_limit;
 131        int     p2_slow, p2_fast;
 132} intel_p2_t;
 133
 134typedef struct intel_limit intel_limit_t;
 135struct intel_limit {
 136        intel_range_t   dot, vco, n, m, m1, m2, p, p1;
 137        intel_p2_t          p2;
 138};
 139
 140int
 141intel_pch_rawclk(struct drm_device *dev)
 142{
 143        struct drm_i915_private *dev_priv = dev->dev_private;
 144
 145        WARN_ON(!HAS_PCH_SPLIT(dev));
 146
 147        return I915_READ(PCH_RAWCLK_FREQ) & RAWCLK_FREQ_MASK;
 148}
 149
 150static inline u32 /* units of 100MHz */
 151intel_fdi_link_freq(struct drm_device *dev)
 152{
 153        if (IS_GEN5(dev)) {
 154                struct drm_i915_private *dev_priv = dev->dev_private;
 155                return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
 156        } else
 157                return 27;
 158}
 159
 160static const intel_limit_t intel_limits_i8xx_dac = {
 161        .dot = { .min = 25000, .max = 350000 },
 162        .vco = { .min = 908000, .max = 1512000 },
 163        .n = { .min = 2, .max = 16 },
 164        .m = { .min = 96, .max = 140 },
 165        .m1 = { .min = 18, .max = 26 },
 166        .m2 = { .min = 6, .max = 16 },
 167        .p = { .min = 4, .max = 128 },
 168        .p1 = { .min = 2, .max = 33 },
 169        .p2 = { .dot_limit = 165000,
 170                .p2_slow = 4, .p2_fast = 2 },
 171};
 172
 173static const intel_limit_t intel_limits_i8xx_dvo = {
 174        .dot = { .min = 25000, .max = 350000 },
 175        .vco = { .min = 908000, .max = 1512000 },
 176        .n = { .min = 2, .max = 16 },
 177        .m = { .min = 96, .max = 140 },
 178        .m1 = { .min = 18, .max = 26 },
 179        .m2 = { .min = 6, .max = 16 },
 180        .p = { .min = 4, .max = 128 },
 181        .p1 = { .min = 2, .max = 33 },
 182        .p2 = { .dot_limit = 165000,
 183                .p2_slow = 4, .p2_fast = 4 },
 184};
 185
 186static const intel_limit_t intel_limits_i8xx_lvds = {
 187        .dot = { .min = 25000, .max = 350000 },
 188        .vco = { .min = 908000, .max = 1512000 },
 189        .n = { .min = 2, .max = 16 },
 190        .m = { .min = 96, .max = 140 },
 191        .m1 = { .min = 18, .max = 26 },
 192        .m2 = { .min = 6, .max = 16 },
 193        .p = { .min = 4, .max = 128 },
 194        .p1 = { .min = 1, .max = 6 },
 195        .p2 = { .dot_limit = 165000,
 196                .p2_slow = 14, .p2_fast = 7 },
 197};
 198
 199static const intel_limit_t intel_limits_i9xx_sdvo = {
 200        .dot = { .min = 20000, .max = 400000 },
 201        .vco = { .min = 1400000, .max = 2800000 },
 202        .n = { .min = 1, .max = 6 },
 203        .m = { .min = 70, .max = 120 },
 204        .m1 = { .min = 8, .max = 18 },
 205        .m2 = { .min = 3, .max = 7 },
 206        .p = { .min = 5, .max = 80 },
 207        .p1 = { .min = 1, .max = 8 },
 208        .p2 = { .dot_limit = 200000,
 209                .p2_slow = 10, .p2_fast = 5 },
 210};
 211
 212static const intel_limit_t intel_limits_i9xx_lvds = {
 213        .dot = { .min = 20000, .max = 400000 },
 214        .vco = { .min = 1400000, .max = 2800000 },
 215        .n = { .min = 1, .max = 6 },
 216        .m = { .min = 70, .max = 120 },
 217        .m1 = { .min = 8, .max = 18 },
 218        .m2 = { .min = 3, .max = 7 },
 219        .p = { .min = 7, .max = 98 },
 220        .p1 = { .min = 1, .max = 8 },
 221        .p2 = { .dot_limit = 112000,
 222                .p2_slow = 14, .p2_fast = 7 },
 223};
 224
 225
 226static const intel_limit_t intel_limits_g4x_sdvo = {
 227        .dot = { .min = 25000, .max = 270000 },
 228        .vco = { .min = 1750000, .max = 3500000},
 229        .n = { .min = 1, .max = 4 },
 230        .m = { .min = 104, .max = 138 },
 231        .m1 = { .min = 17, .max = 23 },
 232        .m2 = { .min = 5, .max = 11 },
 233        .p = { .min = 10, .max = 30 },
 234        .p1 = { .min = 1, .max = 3},
 235        .p2 = { .dot_limit = 270000,
 236                .p2_slow = 10,
 237                .p2_fast = 10
 238        },
 239};
 240
 241static const intel_limit_t intel_limits_g4x_hdmi = {
 242        .dot = { .min = 22000, .max = 400000 },
 243        .vco = { .min = 1750000, .max = 3500000},
 244        .n = { .min = 1, .max = 4 },
 245        .m = { .min = 104, .max = 138 },
 246        .m1 = { .min = 16, .max = 23 },
 247        .m2 = { .min = 5, .max = 11 },
 248        .p = { .min = 5, .max = 80 },
 249        .p1 = { .min = 1, .max = 8},
 250        .p2 = { .dot_limit = 165000,
 251                .p2_slow = 10, .p2_fast = 5 },
 252};
 253
 254static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
 255        .dot = { .min = 20000, .max = 115000 },
 256        .vco = { .min = 1750000, .max = 3500000 },
 257        .n = { .min = 1, .max = 3 },
 258        .m = { .min = 104, .max = 138 },
 259        .m1 = { .min = 17, .max = 23 },
 260        .m2 = { .min = 5, .max = 11 },
 261        .p = { .min = 28, .max = 112 },
 262        .p1 = { .min = 2, .max = 8 },
 263        .p2 = { .dot_limit = 0,
 264                .p2_slow = 14, .p2_fast = 14
 265        },
 266};
 267
 268static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
 269        .dot = { .min = 80000, .max = 224000 },
 270        .vco = { .min = 1750000, .max = 3500000 },
 271        .n = { .min = 1, .max = 3 },
 272        .m = { .min = 104, .max = 138 },
 273        .m1 = { .min = 17, .max = 23 },
 274        .m2 = { .min = 5, .max = 11 },
 275        .p = { .min = 14, .max = 42 },
 276        .p1 = { .min = 2, .max = 6 },
 277        .p2 = { .dot_limit = 0,
 278                .p2_slow = 7, .p2_fast = 7
 279        },
 280};
 281
 282static const intel_limit_t intel_limits_pineview_sdvo = {
 283        .dot = { .min = 20000, .max = 400000},
 284        .vco = { .min = 1700000, .max = 3500000 },
 285        /* Pineview's Ncounter is a ring counter */
 286        .n = { .min = 3, .max = 6 },
 287        .m = { .min = 2, .max = 256 },
 288        /* Pineview only has one combined m divider, which we treat as m2. */
 289        .m1 = { .min = 0, .max = 0 },
 290        .m2 = { .min = 0, .max = 254 },
 291        .p = { .min = 5, .max = 80 },
 292        .p1 = { .min = 1, .max = 8 },
 293        .p2 = { .dot_limit = 200000,
 294                .p2_slow = 10, .p2_fast = 5 },
 295};
 296
 297static const intel_limit_t intel_limits_pineview_lvds = {
 298        .dot = { .min = 20000, .max = 400000 },
 299        .vco = { .min = 1700000, .max = 3500000 },
 300        .n = { .min = 3, .max = 6 },
 301        .m = { .min = 2, .max = 256 },
 302        .m1 = { .min = 0, .max = 0 },
 303        .m2 = { .min = 0, .max = 254 },
 304        .p = { .min = 7, .max = 112 },
 305        .p1 = { .min = 1, .max = 8 },
 306        .p2 = { .dot_limit = 112000,
 307                .p2_slow = 14, .p2_fast = 14 },
 308};
 309
 310/* Ironlake / Sandybridge
 311 *
 312 * We calculate clock using (register_value + 2) for N/M1/M2, so here
 313 * the range value for them is (actual_value - 2).
 314 */
 315static const intel_limit_t intel_limits_ironlake_dac = {
 316        .dot = { .min = 25000, .max = 350000 },
 317        .vco = { .min = 1760000, .max = 3510000 },
 318        .n = { .min = 1, .max = 5 },
 319        .m = { .min = 79, .max = 127 },
 320        .m1 = { .min = 12, .max = 22 },
 321        .m2 = { .min = 5, .max = 9 },
 322        .p = { .min = 5, .max = 80 },
 323        .p1 = { .min = 1, .max = 8 },
 324        .p2 = { .dot_limit = 225000,
 325                .p2_slow = 10, .p2_fast = 5 },
 326};
 327
 328static const intel_limit_t intel_limits_ironlake_single_lvds = {
 329        .dot = { .min = 25000, .max = 350000 },
 330        .vco = { .min = 1760000, .max = 3510000 },
 331        .n = { .min = 1, .max = 3 },
 332        .m = { .min = 79, .max = 118 },
 333        .m1 = { .min = 12, .max = 22 },
 334        .m2 = { .min = 5, .max = 9 },
 335        .p = { .min = 28, .max = 112 },
 336        .p1 = { .min = 2, .max = 8 },
 337        .p2 = { .dot_limit = 225000,
 338                .p2_slow = 14, .p2_fast = 14 },
 339};
 340
 341static const intel_limit_t intel_limits_ironlake_dual_lvds = {
 342        .dot = { .min = 25000, .max = 350000 },
 343        .vco = { .min = 1760000, .max = 3510000 },
 344        .n = { .min = 1, .max = 3 },
 345        .m = { .min = 79, .max = 127 },
 346        .m1 = { .min = 12, .max = 22 },
 347        .m2 = { .min = 5, .max = 9 },
 348        .p = { .min = 14, .max = 56 },
 349        .p1 = { .min = 2, .max = 8 },
 350        .p2 = { .dot_limit = 225000,
 351                .p2_slow = 7, .p2_fast = 7 },
 352};
 353
 354/* LVDS 100mhz refclk limits. */
 355static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
 356        .dot = { .min = 25000, .max = 350000 },
 357        .vco = { .min = 1760000, .max = 3510000 },
 358        .n = { .min = 1, .max = 2 },
 359        .m = { .min = 79, .max = 126 },
 360        .m1 = { .min = 12, .max = 22 },
 361        .m2 = { .min = 5, .max = 9 },
 362        .p = { .min = 28, .max = 112 },
 363        .p1 = { .min = 2, .max = 8 },
 364        .p2 = { .dot_limit = 225000,
 365                .p2_slow = 14, .p2_fast = 14 },
 366};
 367
 368static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
 369        .dot = { .min = 25000, .max = 350000 },
 370        .vco = { .min = 1760000, .max = 3510000 },
 371        .n = { .min = 1, .max = 3 },
 372        .m = { .min = 79, .max = 126 },
 373        .m1 = { .min = 12, .max = 22 },
 374        .m2 = { .min = 5, .max = 9 },
 375        .p = { .min = 14, .max = 42 },
 376        .p1 = { .min = 2, .max = 6 },
 377        .p2 = { .dot_limit = 225000,
 378                .p2_slow = 7, .p2_fast = 7 },
 379};
 380
 381static const intel_limit_t intel_limits_vlv = {
 382         /*
 383          * These are the data rate limits (measured in fast clocks)
 384          * since those are the strictest limits we have. The fast
 385          * clock and actual rate limits are more relaxed, so checking
 386          * them would make no difference.
 387          */
 388        .dot = { .min = 25000 * 5, .max = 270000 * 5 },
 389        .vco = { .min = 4000000, .max = 6000000 },
 390        .n = { .min = 1, .max = 7 },
 391        .m1 = { .min = 2, .max = 3 },
 392        .m2 = { .min = 11, .max = 156 },
 393        .p1 = { .min = 2, .max = 3 },
 394        .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
 395};
 396
 397static const intel_limit_t intel_limits_chv = {
 398        /*
 399         * These are the data rate limits (measured in fast clocks)
 400         * since those are the strictest limits we have.  The fast
 401         * clock and actual rate limits are more relaxed, so checking
 402         * them would make no difference.
 403         */
 404        .dot = { .min = 25000 * 5, .max = 540000 * 5},
 405        .vco = { .min = 4800000, .max = 6480000 },
 406        .n = { .min = 1, .max = 1 },
 407        .m1 = { .min = 2, .max = 2 },
 408        .m2 = { .min = 24 << 22, .max = 175 << 22 },
 409        .p1 = { .min = 2, .max = 4 },
 410        .p2 = { .p2_slow = 1, .p2_fast = 14 },
 411};
 412
 413static const intel_limit_t intel_limits_bxt = {
 414        /* FIXME: find real dot limits */
 415        .dot = { .min = 0, .max = INT_MAX },
 416        .vco = { .min = 4800000, .max = 6480000 },
 417        .n = { .min = 1, .max = 1 },
 418        .m1 = { .min = 2, .max = 2 },
 419        /* FIXME: find real m2 limits */
 420        .m2 = { .min = 2 << 22, .max = 255 << 22 },
 421        .p1 = { .min = 2, .max = 4 },
 422        .p2 = { .p2_slow = 1, .p2_fast = 20 },
 423};
 424
 425static void vlv_clock(int refclk, intel_clock_t *clock)
 426{
 427        clock->m = clock->m1 * clock->m2;
 428        clock->p = clock->p1 * clock->p2;
 429        if (WARN_ON(clock->n == 0 || clock->p == 0))
 430                return;
 431        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 432        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 433}
 434
 435/**
 436 * Returns whether any output on the specified pipe is of the specified type
 437 */
 438bool intel_pipe_has_type(struct intel_crtc *crtc, enum intel_output_type type)
 439{
 440        struct drm_device *dev = crtc->base.dev;
 441        struct intel_encoder *encoder;
 442
 443        for_each_encoder_on_crtc(dev, &crtc->base, encoder)
 444                if (encoder->type == type)
 445                        return true;
 446
 447        return false;
 448}
 449
 450/**
 451 * Returns whether any output on the specified pipe will have the specified
 452 * type after a staged modeset is complete, i.e., the same as
 453 * intel_pipe_has_type() but looking at encoder->new_crtc instead of
 454 * encoder->crtc.
 455 */
 456static bool intel_pipe_will_have_type(const struct intel_crtc_state *crtc_state,
 457                                      int type)
 458{
 459        struct drm_atomic_state *state = crtc_state->base.state;
 460        struct drm_connector *connector;
 461        struct drm_connector_state *connector_state;
 462        struct intel_encoder *encoder;
 463        int i, num_connectors = 0;
 464
 465        for_each_connector_in_state(state, connector, connector_state, i) {
 466                if (connector_state->crtc != crtc_state->base.crtc)
 467                        continue;
 468
 469                num_connectors++;
 470
 471                encoder = to_intel_encoder(connector_state->best_encoder);
 472                if (encoder->type == type)
 473                        return true;
 474        }
 475
 476        WARN_ON(num_connectors == 0);
 477
 478        return false;
 479}
 480
 481static const intel_limit_t *
 482intel_ironlake_limit(struct intel_crtc_state *crtc_state, int refclk)
 483{
 484        struct drm_device *dev = crtc_state->base.crtc->dev;
 485        const intel_limit_t *limit;
 486
 487        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 488                if (intel_is_dual_link_lvds(dev)) {
 489                        if (refclk == 100000)
 490                                limit = &intel_limits_ironlake_dual_lvds_100m;
 491                        else
 492                                limit = &intel_limits_ironlake_dual_lvds;
 493                } else {
 494                        if (refclk == 100000)
 495                                limit = &intel_limits_ironlake_single_lvds_100m;
 496                        else
 497                                limit = &intel_limits_ironlake_single_lvds;
 498                }
 499        } else
 500                limit = &intel_limits_ironlake_dac;
 501
 502        return limit;
 503}
 504
 505static const intel_limit_t *
 506intel_g4x_limit(struct intel_crtc_state *crtc_state)
 507{
 508        struct drm_device *dev = crtc_state->base.crtc->dev;
 509        const intel_limit_t *limit;
 510
 511        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 512                if (intel_is_dual_link_lvds(dev))
 513                        limit = &intel_limits_g4x_dual_channel_lvds;
 514                else
 515                        limit = &intel_limits_g4x_single_channel_lvds;
 516        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI) ||
 517                   intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
 518                limit = &intel_limits_g4x_hdmi;
 519        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO)) {
 520                limit = &intel_limits_g4x_sdvo;
 521        } else /* The option is for other outputs */
 522                limit = &intel_limits_i9xx_sdvo;
 523
 524        return limit;
 525}
 526
 527static const intel_limit_t *
 528intel_limit(struct intel_crtc_state *crtc_state, int refclk)
 529{
 530        struct drm_device *dev = crtc_state->base.crtc->dev;
 531        const intel_limit_t *limit;
 532
 533        if (IS_BROXTON(dev))
 534                limit = &intel_limits_bxt;
 535        else if (HAS_PCH_SPLIT(dev))
 536                limit = intel_ironlake_limit(crtc_state, refclk);
 537        else if (IS_G4X(dev)) {
 538                limit = intel_g4x_limit(crtc_state);
 539        } else if (IS_PINEVIEW(dev)) {
 540                if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
 541                        limit = &intel_limits_pineview_lvds;
 542                else
 543                        limit = &intel_limits_pineview_sdvo;
 544        } else if (IS_CHERRYVIEW(dev)) {
 545                limit = &intel_limits_chv;
 546        } else if (IS_VALLEYVIEW(dev)) {
 547                limit = &intel_limits_vlv;
 548        } else if (!IS_GEN2(dev)) {
 549                if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
 550                        limit = &intel_limits_i9xx_lvds;
 551                else
 552                        limit = &intel_limits_i9xx_sdvo;
 553        } else {
 554                if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
 555                        limit = &intel_limits_i8xx_lvds;
 556                else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
 557                        limit = &intel_limits_i8xx_dvo;
 558                else
 559                        limit = &intel_limits_i8xx_dac;
 560        }
 561        return limit;
 562}
 563
 564/* m1 is reserved as 0 in Pineview, n is a ring counter */
 565static void pineview_clock(int refclk, intel_clock_t *clock)
 566{
 567        clock->m = clock->m2 + 2;
 568        clock->p = clock->p1 * clock->p2;
 569        if (WARN_ON(clock->n == 0 || clock->p == 0))
 570                return;
 571        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
 572        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 573}
 574
 575static uint32_t i9xx_dpll_compute_m(struct dpll *dpll)
 576{
 577        return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
 578}
 579
 580static void i9xx_clock(int refclk, intel_clock_t *clock)
 581{
 582        clock->m = i9xx_dpll_compute_m(clock);
 583        clock->p = clock->p1 * clock->p2;
 584        if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
 585                return;
 586        clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
 587        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 588}
 589
 590static void chv_clock(int refclk, intel_clock_t *clock)
 591{
 592        clock->m = clock->m1 * clock->m2;
 593        clock->p = clock->p1 * clock->p2;
 594        if (WARN_ON(clock->n == 0 || clock->p == 0))
 595                return;
 596        clock->vco = DIV_ROUND_CLOSEST_ULL((uint64_t)refclk * clock->m,
 597                        clock->n << 22);
 598        clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
 599}
 600
 601#define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
 602/**
 603 * Returns whether the given set of divisors are valid for a given refclk with
 604 * the given connectors.
 605 */
 606
 607static bool intel_PLL_is_valid(struct drm_device *dev,
 608                               const intel_limit_t *limit,
 609                               const intel_clock_t *clock)
 610{
 611        if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
 612                INTELPllInvalid("n out of range\n");
 613        if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
 614                INTELPllInvalid("p1 out of range\n");
 615        if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
 616                INTELPllInvalid("m2 out of range\n");
 617        if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
 618                INTELPllInvalid("m1 out of range\n");
 619
 620        if (!IS_PINEVIEW(dev) && !IS_VALLEYVIEW(dev) && !IS_BROXTON(dev))
 621                if (clock->m1 <= clock->m2)
 622                        INTELPllInvalid("m1 <= m2\n");
 623
 624        if (!IS_VALLEYVIEW(dev) && !IS_BROXTON(dev)) {
 625                if (clock->p < limit->p.min || limit->p.max < clock->p)
 626                        INTELPllInvalid("p out of range\n");
 627                if (clock->m < limit->m.min || limit->m.max < clock->m)
 628                        INTELPllInvalid("m out of range\n");
 629        }
 630
 631        if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
 632                INTELPllInvalid("vco out of range\n");
 633        /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
 634         * connector, etc., rather than just a single range.
 635         */
 636        if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
 637                INTELPllInvalid("dot out of range\n");
 638
 639        return true;
 640}
 641
 642static bool
 643i9xx_find_best_dpll(const intel_limit_t *limit,
 644                    struct intel_crtc_state *crtc_state,
 645                    int target, int refclk, intel_clock_t *match_clock,
 646                    intel_clock_t *best_clock)
 647{
 648        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 649        struct drm_device *dev = crtc->base.dev;
 650        intel_clock_t clock;
 651        int err = target;
 652
 653        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 654                /*
 655                 * For LVDS just rely on its current settings for dual-channel.
 656                 * We haven't figured out how to reliably set up different
 657                 * single/dual channel state, if we even can.
 658                 */
 659                if (intel_is_dual_link_lvds(dev))
 660                        clock.p2 = limit->p2.p2_fast;
 661                else
 662                        clock.p2 = limit->p2.p2_slow;
 663        } else {
 664                if (target < limit->p2.dot_limit)
 665                        clock.p2 = limit->p2.p2_slow;
 666                else
 667                        clock.p2 = limit->p2.p2_fast;
 668        }
 669
 670        memset(best_clock, 0, sizeof(*best_clock));
 671
 672        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 673             clock.m1++) {
 674                for (clock.m2 = limit->m2.min;
 675                     clock.m2 <= limit->m2.max; clock.m2++) {
 676                        if (clock.m2 >= clock.m1)
 677                                break;
 678                        for (clock.n = limit->n.min;
 679                             clock.n <= limit->n.max; clock.n++) {
 680                                for (clock.p1 = limit->p1.min;
 681                                        clock.p1 <= limit->p1.max; clock.p1++) {
 682                                        int this_err;
 683
 684                                        i9xx_clock(refclk, &clock);
 685                                        if (!intel_PLL_is_valid(dev, limit,
 686                                                                &clock))
 687                                                continue;
 688                                        if (match_clock &&
 689                                            clock.p != match_clock->p)
 690                                                continue;
 691
 692                                        this_err = abs(clock.dot - target);
 693                                        if (this_err < err) {
 694                                                *best_clock = clock;
 695                                                err = this_err;
 696                                        }
 697                                }
 698                        }
 699                }
 700        }
 701
 702        return (err != target);
 703}
 704
 705static bool
 706pnv_find_best_dpll(const intel_limit_t *limit,
 707                   struct intel_crtc_state *crtc_state,
 708                   int target, int refclk, intel_clock_t *match_clock,
 709                   intel_clock_t *best_clock)
 710{
 711        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 712        struct drm_device *dev = crtc->base.dev;
 713        intel_clock_t clock;
 714        int err = target;
 715
 716        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 717                /*
 718                 * For LVDS just rely on its current settings for dual-channel.
 719                 * We haven't figured out how to reliably set up different
 720                 * single/dual channel state, if we even can.
 721                 */
 722                if (intel_is_dual_link_lvds(dev))
 723                        clock.p2 = limit->p2.p2_fast;
 724                else
 725                        clock.p2 = limit->p2.p2_slow;
 726        } else {
 727                if (target < limit->p2.dot_limit)
 728                        clock.p2 = limit->p2.p2_slow;
 729                else
 730                        clock.p2 = limit->p2.p2_fast;
 731        }
 732
 733        memset(best_clock, 0, sizeof(*best_clock));
 734
 735        for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
 736             clock.m1++) {
 737                for (clock.m2 = limit->m2.min;
 738                     clock.m2 <= limit->m2.max; clock.m2++) {
 739                        for (clock.n = limit->n.min;
 740                             clock.n <= limit->n.max; clock.n++) {
 741                                for (clock.p1 = limit->p1.min;
 742                                        clock.p1 <= limit->p1.max; clock.p1++) {
 743                                        int this_err;
 744
 745                                        pineview_clock(refclk, &clock);
 746                                        if (!intel_PLL_is_valid(dev, limit,
 747                                                                &clock))
 748                                                continue;
 749                                        if (match_clock &&
 750                                            clock.p != match_clock->p)
 751                                                continue;
 752
 753                                        this_err = abs(clock.dot - target);
 754                                        if (this_err < err) {
 755                                                *best_clock = clock;
 756                                                err = this_err;
 757                                        }
 758                                }
 759                        }
 760                }
 761        }
 762
 763        return (err != target);
 764}
 765
 766static bool
 767g4x_find_best_dpll(const intel_limit_t *limit,
 768                   struct intel_crtc_state *crtc_state,
 769                   int target, int refclk, intel_clock_t *match_clock,
 770                   intel_clock_t *best_clock)
 771{
 772        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 773        struct drm_device *dev = crtc->base.dev;
 774        intel_clock_t clock;
 775        int max_n;
 776        bool found;
 777        /* approximately equals target * 0.00585 */
 778        int err_most = (target >> 8) + (target >> 9);
 779        found = false;
 780
 781        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
 782                if (intel_is_dual_link_lvds(dev))
 783                        clock.p2 = limit->p2.p2_fast;
 784                else
 785                        clock.p2 = limit->p2.p2_slow;
 786        } else {
 787                if (target < limit->p2.dot_limit)
 788                        clock.p2 = limit->p2.p2_slow;
 789                else
 790                        clock.p2 = limit->p2.p2_fast;
 791        }
 792
 793        memset(best_clock, 0, sizeof(*best_clock));
 794        max_n = limit->n.max;
 795        /* based on hardware requirement, prefer smaller n to precision */
 796        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 797                /* based on hardware requirement, prefere larger m1,m2 */
 798                for (clock.m1 = limit->m1.max;
 799                     clock.m1 >= limit->m1.min; clock.m1--) {
 800                        for (clock.m2 = limit->m2.max;
 801                             clock.m2 >= limit->m2.min; clock.m2--) {
 802                                for (clock.p1 = limit->p1.max;
 803                                     clock.p1 >= limit->p1.min; clock.p1--) {
 804                                        int this_err;
 805
 806                                        i9xx_clock(refclk, &clock);
 807                                        if (!intel_PLL_is_valid(dev, limit,
 808                                                                &clock))
 809                                                continue;
 810
 811                                        this_err = abs(clock.dot - target);
 812                                        if (this_err < err_most) {
 813                                                *best_clock = clock;
 814                                                err_most = this_err;
 815                                                max_n = clock.n;
 816                                                found = true;
 817                                        }
 818                                }
 819                        }
 820                }
 821        }
 822        return found;
 823}
 824
 825/*
 826 * Check if the calculated PLL configuration is more optimal compared to the
 827 * best configuration and error found so far. Return the calculated error.
 828 */
 829static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
 830                               const intel_clock_t *calculated_clock,
 831                               const intel_clock_t *best_clock,
 832                               unsigned int best_error_ppm,
 833                               unsigned int *error_ppm)
 834{
 835        /*
 836         * For CHV ignore the error and consider only the P value.
 837         * Prefer a bigger P value based on HW requirements.
 838         */
 839        if (IS_CHERRYVIEW(dev)) {
 840                *error_ppm = 0;
 841
 842                return calculated_clock->p > best_clock->p;
 843        }
 844
 845        if (WARN_ON_ONCE(!target_freq))
 846                return false;
 847
 848        *error_ppm = div_u64(1000000ULL *
 849                                abs(target_freq - calculated_clock->dot),
 850                             target_freq);
 851        /*
 852         * Prefer a better P value over a better (smaller) error if the error
 853         * is small. Ensure this preference for future configurations too by
 854         * setting the error to 0.
 855         */
 856        if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
 857                *error_ppm = 0;
 858
 859                return true;
 860        }
 861
 862        return *error_ppm + 10 < best_error_ppm;
 863}
 864
 865static bool
 866vlv_find_best_dpll(const intel_limit_t *limit,
 867                   struct intel_crtc_state *crtc_state,
 868                   int target, int refclk, intel_clock_t *match_clock,
 869                   intel_clock_t *best_clock)
 870{
 871        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 872        struct drm_device *dev = crtc->base.dev;
 873        intel_clock_t clock;
 874        unsigned int bestppm = 1000000;
 875        /* min update 19.2 MHz */
 876        int max_n = min(limit->n.max, refclk / 19200);
 877        bool found = false;
 878
 879        target *= 5; /* fast clock */
 880
 881        memset(best_clock, 0, sizeof(*best_clock));
 882
 883        /* based on hardware requirement, prefer smaller n to precision */
 884        for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
 885                for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 886                        for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
 887                             clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 888                                clock.p = clock.p1 * clock.p2;
 889                                /* based on hardware requirement, prefer bigger m1,m2 values */
 890                                for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
 891                                        unsigned int ppm;
 892
 893                                        clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
 894                                                                     refclk * clock.m1);
 895
 896                                        vlv_clock(refclk, &clock);
 897
 898                                        if (!intel_PLL_is_valid(dev, limit,
 899                                                                &clock))
 900                                                continue;
 901
 902                                        if (!vlv_PLL_is_optimal(dev, target,
 903                                                                &clock,
 904                                                                best_clock,
 905                                                                bestppm, &ppm))
 906                                                continue;
 907
 908                                        *best_clock = clock;
 909                                        bestppm = ppm;
 910                                        found = true;
 911                                }
 912                        }
 913                }
 914        }
 915
 916        return found;
 917}
 918
 919static bool
 920chv_find_best_dpll(const intel_limit_t *limit,
 921                   struct intel_crtc_state *crtc_state,
 922                   int target, int refclk, intel_clock_t *match_clock,
 923                   intel_clock_t *best_clock)
 924{
 925        struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
 926        struct drm_device *dev = crtc->base.dev;
 927        unsigned int best_error_ppm;
 928        intel_clock_t clock;
 929        uint64_t m2;
 930        int found = false;
 931
 932        memset(best_clock, 0, sizeof(*best_clock));
 933        best_error_ppm = 1000000;
 934
 935        /*
 936         * Based on hardware doc, the n always set to 1, and m1 always
 937         * set to 2.  If requires to support 200Mhz refclk, we need to
 938         * revisit this because n may not 1 anymore.
 939         */
 940        clock.n = 1, clock.m1 = 2;
 941        target *= 5;    /* fast clock */
 942
 943        for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
 944                for (clock.p2 = limit->p2.p2_fast;
 945                                clock.p2 >= limit->p2.p2_slow;
 946                                clock.p2 -= clock.p2 > 10 ? 2 : 1) {
 947                        unsigned int error_ppm;
 948
 949                        clock.p = clock.p1 * clock.p2;
 950
 951                        m2 = DIV_ROUND_CLOSEST_ULL(((uint64_t)target * clock.p *
 952                                        clock.n) << 22, refclk * clock.m1);
 953
 954                        if (m2 > INT_MAX/clock.m1)
 955                                continue;
 956
 957                        clock.m2 = m2;
 958
 959                        chv_clock(refclk, &clock);
 960
 961                        if (!intel_PLL_is_valid(dev, limit, &clock))
 962                                continue;
 963
 964                        if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
 965                                                best_error_ppm, &error_ppm))
 966                                continue;
 967
 968                        *best_clock = clock;
 969                        best_error_ppm = error_ppm;
 970                        found = true;
 971                }
 972        }
 973
 974        return found;
 975}
 976
 977bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state, int target_clock,
 978                        intel_clock_t *best_clock)
 979{
 980        int refclk = i9xx_get_refclk(crtc_state, 0);
 981
 982        return chv_find_best_dpll(intel_limit(crtc_state, refclk), crtc_state,
 983                                  target_clock, refclk, NULL, best_clock);
 984}
 985
 986bool intel_crtc_active(struct drm_crtc *crtc)
 987{
 988        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
 989
 990        /* Be paranoid as we can arrive here with only partial
 991         * state retrieved from the hardware during setup.
 992         *
 993         * We can ditch the adjusted_mode.crtc_clock check as soon
 994         * as Haswell has gained clock readout/fastboot support.
 995         *
 996         * We can ditch the crtc->primary->fb check as soon as we can
 997         * properly reconstruct framebuffers.
 998         *
 999         * FIXME: The intel_crtc->active here should be switched to
1000         * crtc->state->active once we have proper CRTC states wired up
1001         * for atomic.
1002         */
1003        return intel_crtc->active && crtc->primary->state->fb &&
1004                intel_crtc->config->base.adjusted_mode.crtc_clock;
1005}
1006
1007enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1008                                             enum pipe pipe)
1009{
1010        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1011        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1012
1013        return intel_crtc->config->cpu_transcoder;
1014}
1015
1016static bool pipe_dsl_stopped(struct drm_device *dev, enum pipe pipe)
1017{
1018        struct drm_i915_private *dev_priv = dev->dev_private;
1019        u32 reg = PIPEDSL(pipe);
1020        u32 line1, line2;
1021        u32 line_mask;
1022
1023        if (IS_GEN2(dev))
1024                line_mask = DSL_LINEMASK_GEN2;
1025        else
1026                line_mask = DSL_LINEMASK_GEN3;
1027
1028        line1 = I915_READ(reg) & line_mask;
1029        mdelay(5);
1030        line2 = I915_READ(reg) & line_mask;
1031
1032        return line1 == line2;
1033}
1034
1035/*
1036 * intel_wait_for_pipe_off - wait for pipe to turn off
1037 * @crtc: crtc whose pipe to wait for
1038 *
1039 * After disabling a pipe, we can't wait for vblank in the usual way,
1040 * spinning on the vblank interrupt status bit, since we won't actually
1041 * see an interrupt when the pipe is disabled.
1042 *
1043 * On Gen4 and above:
1044 *   wait for the pipe register state bit to turn off
1045 *
1046 * Otherwise:
1047 *   wait for the display line value to settle (it usually
1048 *   ends up stopping at the start of the next frame).
1049 *
1050 */
1051static void intel_wait_for_pipe_off(struct intel_crtc *crtc)
1052{
1053        struct drm_device *dev = crtc->base.dev;
1054        struct drm_i915_private *dev_priv = dev->dev_private;
1055        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
1056        enum pipe pipe = crtc->pipe;
1057
1058        if (INTEL_INFO(dev)->gen >= 4) {
1059                int reg = PIPECONF(cpu_transcoder);
1060
1061                /* Wait for the Pipe State to go off */
1062                if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1063                             100))
1064                        WARN(1, "pipe_off wait timed out\n");
1065        } else {
1066                /* Wait for the display line to settle */
1067                if (wait_for(pipe_dsl_stopped(dev, pipe), 100))
1068                        WARN(1, "pipe_off wait timed out\n");
1069        }
1070}
1071
1072/*
1073 * ibx_digital_port_connected - is the specified port connected?
1074 * @dev_priv: i915 private structure
1075 * @port: the port to test
1076 *
1077 * Returns true if @port is connected, false otherwise.
1078 */
1079bool ibx_digital_port_connected(struct drm_i915_private *dev_priv,
1080                                struct intel_digital_port *port)
1081{
1082        u32 bit;
1083
1084        if (HAS_PCH_IBX(dev_priv->dev)) {
1085                switch (port->port) {
1086                case PORT_B:
1087                        bit = SDE_PORTB_HOTPLUG;
1088                        break;
1089                case PORT_C:
1090                        bit = SDE_PORTC_HOTPLUG;
1091                        break;
1092                case PORT_D:
1093                        bit = SDE_PORTD_HOTPLUG;
1094                        break;
1095                default:
1096                        return true;
1097                }
1098        } else {
1099                switch (port->port) {
1100                case PORT_B:
1101                        bit = SDE_PORTB_HOTPLUG_CPT;
1102                        break;
1103                case PORT_C:
1104                        bit = SDE_PORTC_HOTPLUG_CPT;
1105                        break;
1106                case PORT_D:
1107                        bit = SDE_PORTD_HOTPLUG_CPT;
1108                        break;
1109                default:
1110                        return true;
1111                }
1112        }
1113
1114        return I915_READ(SDEISR) & bit;
1115}
1116
1117static const char *state_string(bool enabled)
1118{
1119        return enabled ? "on" : "off";
1120}
1121
1122/* Only for pre-ILK configs */
1123void assert_pll(struct drm_i915_private *dev_priv,
1124                enum pipe pipe, bool state)
1125{
1126        int reg;
1127        u32 val;
1128        bool cur_state;
1129
1130        reg = DPLL(pipe);
1131        val = I915_READ(reg);
1132        cur_state = !!(val & DPLL_VCO_ENABLE);
1133        I915_STATE_WARN(cur_state != state,
1134             "PLL state assertion failure (expected %s, current %s)\n",
1135             state_string(state), state_string(cur_state));
1136}
1137
1138/* XXX: the dsi pll is shared between MIPI DSI ports */
1139static void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1140{
1141        u32 val;
1142        bool cur_state;
1143
1144        mutex_lock(&dev_priv->sb_lock);
1145        val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1146        mutex_unlock(&dev_priv->sb_lock);
1147
1148        cur_state = val & DSI_PLL_VCO_EN;
1149        I915_STATE_WARN(cur_state != state,
1150             "DSI PLL state assertion failure (expected %s, current %s)\n",
1151             state_string(state), state_string(cur_state));
1152}
1153#define assert_dsi_pll_enabled(d) assert_dsi_pll(d, true)
1154#define assert_dsi_pll_disabled(d) assert_dsi_pll(d, false)
1155
1156struct intel_shared_dpll *
1157intel_crtc_to_shared_dpll(struct intel_crtc *crtc)
1158{
1159        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
1160
1161        if (crtc->config->shared_dpll < 0)
1162                return NULL;
1163
1164        return &dev_priv->shared_dplls[crtc->config->shared_dpll];
1165}
1166
1167/* For ILK+ */
1168void assert_shared_dpll(struct drm_i915_private *dev_priv,
1169                        struct intel_shared_dpll *pll,
1170                        bool state)
1171{
1172        bool cur_state;
1173        struct intel_dpll_hw_state hw_state;
1174
1175        if (WARN (!pll,
1176                  "asserting DPLL %s with no DPLL\n", state_string(state)))
1177                return;
1178
1179        cur_state = pll->get_hw_state(dev_priv, pll, &hw_state);
1180        I915_STATE_WARN(cur_state != state,
1181             "%s assertion failure (expected %s, current %s)\n",
1182             pll->name, state_string(state), state_string(cur_state));
1183}
1184
1185static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1186                          enum pipe pipe, bool state)
1187{
1188        int reg;
1189        u32 val;
1190        bool cur_state;
1191        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1192                                                                      pipe);
1193
1194        if (HAS_DDI(dev_priv->dev)) {
1195                /* DDI does not have a specific FDI_TX register */
1196                reg = TRANS_DDI_FUNC_CTL(cpu_transcoder);
1197                val = I915_READ(reg);
1198                cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1199        } else {
1200                reg = FDI_TX_CTL(pipe);
1201                val = I915_READ(reg);
1202                cur_state = !!(val & FDI_TX_ENABLE);
1203        }
1204        I915_STATE_WARN(cur_state != state,
1205             "FDI TX state assertion failure (expected %s, current %s)\n",
1206             state_string(state), state_string(cur_state));
1207}
1208#define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1209#define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1210
1211static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1212                          enum pipe pipe, bool state)
1213{
1214        int reg;
1215        u32 val;
1216        bool cur_state;
1217
1218        reg = FDI_RX_CTL(pipe);
1219        val = I915_READ(reg);
1220        cur_state = !!(val & FDI_RX_ENABLE);
1221        I915_STATE_WARN(cur_state != state,
1222             "FDI RX state assertion failure (expected %s, current %s)\n",
1223             state_string(state), state_string(cur_state));
1224}
1225#define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1226#define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1227
1228static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1229                                      enum pipe pipe)
1230{
1231        int reg;
1232        u32 val;
1233
1234        /* ILK FDI PLL is always enabled */
1235        if (INTEL_INFO(dev_priv->dev)->gen == 5)
1236                return;
1237
1238        /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1239        if (HAS_DDI(dev_priv->dev))
1240                return;
1241
1242        reg = FDI_TX_CTL(pipe);
1243        val = I915_READ(reg);
1244        I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1245}
1246
1247void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1248                       enum pipe pipe, bool state)
1249{
1250        int reg;
1251        u32 val;
1252        bool cur_state;
1253
1254        reg = FDI_RX_CTL(pipe);
1255        val = I915_READ(reg);
1256        cur_state = !!(val & FDI_RX_PLL_ENABLE);
1257        I915_STATE_WARN(cur_state != state,
1258             "FDI RX PLL assertion failure (expected %s, current %s)\n",
1259             state_string(state), state_string(cur_state));
1260}
1261
1262void assert_panel_unlocked(struct drm_i915_private *dev_priv,
1263                           enum pipe pipe)
1264{
1265        struct drm_device *dev = dev_priv->dev;
1266        int pp_reg;
1267        u32 val;
1268        enum pipe panel_pipe = PIPE_A;
1269        bool locked = true;
1270
1271        if (WARN_ON(HAS_DDI(dev)))
1272                return;
1273
1274        if (HAS_PCH_SPLIT(dev)) {
1275                u32 port_sel;
1276
1277                pp_reg = PCH_PP_CONTROL;
1278                port_sel = I915_READ(PCH_PP_ON_DELAYS) & PANEL_PORT_SELECT_MASK;
1279
1280                if (port_sel == PANEL_PORT_SELECT_LVDS &&
1281                    I915_READ(PCH_LVDS) & LVDS_PIPEB_SELECT)
1282                        panel_pipe = PIPE_B;
1283                /* XXX: else fix for eDP */
1284        } else if (IS_VALLEYVIEW(dev)) {
1285                /* presumably write lock depends on pipe, not port select */
1286                pp_reg = VLV_PIPE_PP_CONTROL(pipe);
1287                panel_pipe = pipe;
1288        } else {
1289                pp_reg = PP_CONTROL;
1290                if (I915_READ(LVDS) & LVDS_PIPEB_SELECT)
1291                        panel_pipe = PIPE_B;
1292        }
1293
1294        val = I915_READ(pp_reg);
1295        if (!(val & PANEL_POWER_ON) ||
1296            ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1297                locked = false;
1298
1299        I915_STATE_WARN(panel_pipe == pipe && locked,
1300             "panel assertion failure, pipe %c regs locked\n",
1301             pipe_name(pipe));
1302}
1303
1304static void assert_cursor(struct drm_i915_private *dev_priv,
1305                          enum pipe pipe, bool state)
1306{
1307        struct drm_device *dev = dev_priv->dev;
1308        bool cur_state;
1309
1310        if (IS_845G(dev) || IS_I865G(dev))
1311                cur_state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
1312        else
1313                cur_state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
1314
1315        I915_STATE_WARN(cur_state != state,
1316             "cursor on pipe %c assertion failure (expected %s, current %s)\n",
1317             pipe_name(pipe), state_string(state), state_string(cur_state));
1318}
1319#define assert_cursor_enabled(d, p) assert_cursor(d, p, true)
1320#define assert_cursor_disabled(d, p) assert_cursor(d, p, false)
1321
1322void assert_pipe(struct drm_i915_private *dev_priv,
1323                 enum pipe pipe, bool state)
1324{
1325        int reg;
1326        u32 val;
1327        bool cur_state;
1328        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1329                                                                      pipe);
1330
1331        /* if we need the pipe quirk it must be always on */
1332        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1333            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1334                state = true;
1335
1336        if (!intel_display_power_is_enabled(dev_priv,
1337                                POWER_DOMAIN_TRANSCODER(cpu_transcoder))) {
1338                cur_state = false;
1339        } else {
1340                reg = PIPECONF(cpu_transcoder);
1341                val = I915_READ(reg);
1342                cur_state = !!(val & PIPECONF_ENABLE);
1343        }
1344
1345        I915_STATE_WARN(cur_state != state,
1346             "pipe %c assertion failure (expected %s, current %s)\n",
1347             pipe_name(pipe), state_string(state), state_string(cur_state));
1348}
1349
1350static void assert_plane(struct drm_i915_private *dev_priv,
1351                         enum plane plane, bool state)
1352{
1353        int reg;
1354        u32 val;
1355        bool cur_state;
1356
1357        reg = DSPCNTR(plane);
1358        val = I915_READ(reg);
1359        cur_state = !!(val & DISPLAY_PLANE_ENABLE);
1360        I915_STATE_WARN(cur_state != state,
1361             "plane %c assertion failure (expected %s, current %s)\n",
1362             plane_name(plane), state_string(state), state_string(cur_state));
1363}
1364
1365#define assert_plane_enabled(d, p) assert_plane(d, p, true)
1366#define assert_plane_disabled(d, p) assert_plane(d, p, false)
1367
1368static void assert_planes_disabled(struct drm_i915_private *dev_priv,
1369                                   enum pipe pipe)
1370{
1371        struct drm_device *dev = dev_priv->dev;
1372        int reg, i;
1373        u32 val;
1374        int cur_pipe;
1375
1376        /* Primary planes are fixed to pipes on gen4+ */
1377        if (INTEL_INFO(dev)->gen >= 4) {
1378                reg = DSPCNTR(pipe);
1379                val = I915_READ(reg);
1380                I915_STATE_WARN(val & DISPLAY_PLANE_ENABLE,
1381                     "plane %c assertion failure, should be disabled but not\n",
1382                     plane_name(pipe));
1383                return;
1384        }
1385
1386        /* Need to check both planes against the pipe */
1387        for_each_pipe(dev_priv, i) {
1388                reg = DSPCNTR(i);
1389                val = I915_READ(reg);
1390                cur_pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
1391                        DISPPLANE_SEL_PIPE_SHIFT;
1392                I915_STATE_WARN((val & DISPLAY_PLANE_ENABLE) && pipe == cur_pipe,
1393                     "plane %c assertion failure, should be off on pipe %c but is still active\n",
1394                     plane_name(i), pipe_name(pipe));
1395        }
1396}
1397
1398static void assert_sprites_disabled(struct drm_i915_private *dev_priv,
1399                                    enum pipe pipe)
1400{
1401        struct drm_device *dev = dev_priv->dev;
1402        int reg, sprite;
1403        u32 val;
1404
1405        if (INTEL_INFO(dev)->gen >= 9) {
1406                for_each_sprite(dev_priv, pipe, sprite) {
1407                        val = I915_READ(PLANE_CTL(pipe, sprite));
1408                        I915_STATE_WARN(val & PLANE_CTL_ENABLE,
1409                             "plane %d assertion failure, should be off on pipe %c but is still active\n",
1410                             sprite, pipe_name(pipe));
1411                }
1412        } else if (IS_VALLEYVIEW(dev)) {
1413                for_each_sprite(dev_priv, pipe, sprite) {
1414                        reg = SPCNTR(pipe, sprite);
1415                        val = I915_READ(reg);
1416                        I915_STATE_WARN(val & SP_ENABLE,
1417                             "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1418                             sprite_name(pipe, sprite), pipe_name(pipe));
1419                }
1420        } else if (INTEL_INFO(dev)->gen >= 7) {
1421                reg = SPRCTL(pipe);
1422                val = I915_READ(reg);
1423                I915_STATE_WARN(val & SPRITE_ENABLE,
1424                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1425                     plane_name(pipe), pipe_name(pipe));
1426        } else if (INTEL_INFO(dev)->gen >= 5) {
1427                reg = DVSCNTR(pipe);
1428                val = I915_READ(reg);
1429                I915_STATE_WARN(val & DVS_ENABLE,
1430                     "sprite %c assertion failure, should be off on pipe %c but is still active\n",
1431                     plane_name(pipe), pipe_name(pipe));
1432        }
1433}
1434
1435static void assert_vblank_disabled(struct drm_crtc *crtc)
1436{
1437        if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1438                drm_crtc_vblank_put(crtc);
1439}
1440
1441static void ibx_assert_pch_refclk_enabled(struct drm_i915_private *dev_priv)
1442{
1443        u32 val;
1444        bool enabled;
1445
1446        I915_STATE_WARN_ON(!(HAS_PCH_IBX(dev_priv->dev) || HAS_PCH_CPT(dev_priv->dev)));
1447
1448        val = I915_READ(PCH_DREF_CONTROL);
1449        enabled = !!(val & (DREF_SSC_SOURCE_MASK | DREF_NONSPREAD_SOURCE_MASK |
1450                            DREF_SUPERSPREAD_SOURCE_MASK));
1451        I915_STATE_WARN(!enabled, "PCH refclk assertion failure, should be active but is disabled\n");
1452}
1453
1454static void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1455                                           enum pipe pipe)
1456{
1457        int reg;
1458        u32 val;
1459        bool enabled;
1460
1461        reg = PCH_TRANSCONF(pipe);
1462        val = I915_READ(reg);
1463        enabled = !!(val & TRANS_ENABLE);
1464        I915_STATE_WARN(enabled,
1465             "transcoder assertion failed, should be off on pipe %c but is still active\n",
1466             pipe_name(pipe));
1467}
1468
1469static bool dp_pipe_enabled(struct drm_i915_private *dev_priv,
1470                            enum pipe pipe, u32 port_sel, u32 val)
1471{
1472        if ((val & DP_PORT_EN) == 0)
1473                return false;
1474
1475        if (HAS_PCH_CPT(dev_priv->dev)) {
1476                u32     trans_dp_ctl_reg = TRANS_DP_CTL(pipe);
1477                u32     trans_dp_ctl = I915_READ(trans_dp_ctl_reg);
1478                if ((trans_dp_ctl & TRANS_DP_PORT_SEL_MASK) != port_sel)
1479                        return false;
1480        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1481                if ((val & DP_PIPE_MASK_CHV) != DP_PIPE_SELECT_CHV(pipe))
1482                        return false;
1483        } else {
1484                if ((val & DP_PIPE_MASK) != (pipe << 30))
1485                        return false;
1486        }
1487        return true;
1488}
1489
1490static bool hdmi_pipe_enabled(struct drm_i915_private *dev_priv,
1491                              enum pipe pipe, u32 val)
1492{
1493        if ((val & SDVO_ENABLE) == 0)
1494                return false;
1495
1496        if (HAS_PCH_CPT(dev_priv->dev)) {
1497                if ((val & SDVO_PIPE_SEL_MASK_CPT) != SDVO_PIPE_SEL_CPT(pipe))
1498                        return false;
1499        } else if (IS_CHERRYVIEW(dev_priv->dev)) {
1500                if ((val & SDVO_PIPE_SEL_MASK_CHV) != SDVO_PIPE_SEL_CHV(pipe))
1501                        return false;
1502        } else {
1503                if ((val & SDVO_PIPE_SEL_MASK) != SDVO_PIPE_SEL(pipe))
1504                        return false;
1505        }
1506        return true;
1507}
1508
1509static bool lvds_pipe_enabled(struct drm_i915_private *dev_priv,
1510                              enum pipe pipe, u32 val)
1511{
1512        if ((val & LVDS_PORT_EN) == 0)
1513                return false;
1514
1515        if (HAS_PCH_CPT(dev_priv->dev)) {
1516                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1517                        return false;
1518        } else {
1519                if ((val & LVDS_PIPE_MASK) != LVDS_PIPE(pipe))
1520                        return false;
1521        }
1522        return true;
1523}
1524
1525static bool adpa_pipe_enabled(struct drm_i915_private *dev_priv,
1526                              enum pipe pipe, u32 val)
1527{
1528        if ((val & ADPA_DAC_ENABLE) == 0)
1529                return false;
1530        if (HAS_PCH_CPT(dev_priv->dev)) {
1531                if ((val & PORT_TRANS_SEL_MASK) != PORT_TRANS_SEL_CPT(pipe))
1532                        return false;
1533        } else {
1534                if ((val & ADPA_PIPE_SELECT_MASK) != ADPA_PIPE_SELECT(pipe))
1535                        return false;
1536        }
1537        return true;
1538}
1539
1540static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1541                                   enum pipe pipe, int reg, u32 port_sel)
1542{
1543        u32 val = I915_READ(reg);
1544        I915_STATE_WARN(dp_pipe_enabled(dev_priv, pipe, port_sel, val),
1545             "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1546             reg, pipe_name(pipe));
1547
1548        I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & DP_PORT_EN) == 0
1549             && (val & DP_PIPEB_SELECT),
1550             "IBX PCH dp port still using transcoder B\n");
1551}
1552
1553static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1554                                     enum pipe pipe, int reg)
1555{
1556        u32 val = I915_READ(reg);
1557        I915_STATE_WARN(hdmi_pipe_enabled(dev_priv, pipe, val),
1558             "PCH HDMI (0x%08x) enabled on transcoder %c, should be disabled\n",
1559             reg, pipe_name(pipe));
1560
1561        I915_STATE_WARN(HAS_PCH_IBX(dev_priv->dev) && (val & SDVO_ENABLE) == 0
1562             && (val & SDVO_PIPE_B_SELECT),
1563             "IBX PCH hdmi port still using transcoder B\n");
1564}
1565
1566static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1567                                      enum pipe pipe)
1568{
1569        int reg;
1570        u32 val;
1571
1572        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_B, TRANS_DP_PORT_SEL_B);
1573        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_C, TRANS_DP_PORT_SEL_C);
1574        assert_pch_dp_disabled(dev_priv, pipe, PCH_DP_D, TRANS_DP_PORT_SEL_D);
1575
1576        reg = PCH_ADPA;
1577        val = I915_READ(reg);
1578        I915_STATE_WARN(adpa_pipe_enabled(dev_priv, pipe, val),
1579             "PCH VGA enabled on transcoder %c, should be disabled\n",
1580             pipe_name(pipe));
1581
1582        reg = PCH_LVDS;
1583        val = I915_READ(reg);
1584        I915_STATE_WARN(lvds_pipe_enabled(dev_priv, pipe, val),
1585             "PCH LVDS enabled on transcoder %c, should be disabled\n",
1586             pipe_name(pipe));
1587
1588        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIB);
1589        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMIC);
1590        assert_pch_hdmi_disabled(dev_priv, pipe, PCH_HDMID);
1591}
1592
1593static void intel_init_dpio(struct drm_device *dev)
1594{
1595        struct drm_i915_private *dev_priv = dev->dev_private;
1596
1597        if (!IS_VALLEYVIEW(dev))
1598                return;
1599
1600        /*
1601         * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
1602         * CHV x1 PHY (DP/HDMI D)
1603         * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
1604         */
1605        if (IS_CHERRYVIEW(dev)) {
1606                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
1607                DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
1608        } else {
1609                DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
1610        }
1611}
1612
1613static void vlv_enable_pll(struct intel_crtc *crtc,
1614                           const struct intel_crtc_state *pipe_config)
1615{
1616        struct drm_device *dev = crtc->base.dev;
1617        struct drm_i915_private *dev_priv = dev->dev_private;
1618        int reg = DPLL(crtc->pipe);
1619        u32 dpll = pipe_config->dpll_hw_state.dpll;
1620
1621        assert_pipe_disabled(dev_priv, crtc->pipe);
1622
1623        /* No really, not for ILK+ */
1624        BUG_ON(!IS_VALLEYVIEW(dev_priv->dev));
1625
1626        /* PLL is protected by panel, make sure we can write it */
1627        if (IS_MOBILE(dev_priv->dev))
1628                assert_panel_unlocked(dev_priv, crtc->pipe);
1629
1630        I915_WRITE(reg, dpll);
1631        POSTING_READ(reg);
1632        udelay(150);
1633
1634        if (wait_for(((I915_READ(reg) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1635                DRM_ERROR("DPLL %d failed to lock\n", crtc->pipe);
1636
1637        I915_WRITE(DPLL_MD(crtc->pipe), pipe_config->dpll_hw_state.dpll_md);
1638        POSTING_READ(DPLL_MD(crtc->pipe));
1639
1640        /* We do this three times for luck */
1641        I915_WRITE(reg, dpll);
1642        POSTING_READ(reg);
1643        udelay(150); /* wait for warmup */
1644        I915_WRITE(reg, dpll);
1645        POSTING_READ(reg);
1646        udelay(150); /* wait for warmup */
1647        I915_WRITE(reg, dpll);
1648        POSTING_READ(reg);
1649        udelay(150); /* wait for warmup */
1650}
1651
1652static void chv_enable_pll(struct intel_crtc *crtc,
1653                           const struct intel_crtc_state *pipe_config)
1654{
1655        struct drm_device *dev = crtc->base.dev;
1656        struct drm_i915_private *dev_priv = dev->dev_private;
1657        int pipe = crtc->pipe;
1658        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1659        u32 tmp;
1660
1661        assert_pipe_disabled(dev_priv, crtc->pipe);
1662
1663        BUG_ON(!IS_CHERRYVIEW(dev_priv->dev));
1664
1665        mutex_lock(&dev_priv->sb_lock);
1666
1667        /* Enable back the 10bit clock to display controller */
1668        tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1669        tmp |= DPIO_DCLKP_EN;
1670        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1671
1672        mutex_unlock(&dev_priv->sb_lock);
1673
1674        /*
1675         * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1676         */
1677        udelay(1);
1678
1679        /* Enable PLL */
1680        I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1681
1682        /* Check PLL is locked */
1683        if (wait_for(((I915_READ(DPLL(pipe)) & DPLL_LOCK_VLV) == DPLL_LOCK_VLV), 1))
1684                DRM_ERROR("PLL %d failed to lock\n", pipe);
1685
1686        /* not sure when this should be written */
1687        I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1688        POSTING_READ(DPLL_MD(pipe));
1689}
1690
1691static int intel_num_dvo_pipes(struct drm_device *dev)
1692{
1693        struct intel_crtc *crtc;
1694        int count = 0;
1695
1696        for_each_intel_crtc(dev, crtc)
1697                count += crtc->active &&
1698                        intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO);
1699
1700        return count;
1701}
1702
1703static void i9xx_enable_pll(struct intel_crtc *crtc)
1704{
1705        struct drm_device *dev = crtc->base.dev;
1706        struct drm_i915_private *dev_priv = dev->dev_private;
1707        int reg = DPLL(crtc->pipe);
1708        u32 dpll = crtc->config->dpll_hw_state.dpll;
1709
1710        assert_pipe_disabled(dev_priv, crtc->pipe);
1711
1712        /* No really, not for ILK+ */
1713        BUG_ON(INTEL_INFO(dev)->gen >= 5);
1714
1715        /* PLL is protected by panel, make sure we can write it */
1716        if (IS_MOBILE(dev) && !IS_I830(dev))
1717                assert_panel_unlocked(dev_priv, crtc->pipe);
1718
1719        /* Enable DVO 2x clock on both PLLs if necessary */
1720        if (IS_I830(dev) && intel_num_dvo_pipes(dev) > 0) {
1721                /*
1722                 * It appears to be important that we don't enable this
1723                 * for the current pipe before otherwise configuring the
1724                 * PLL. No idea how this should be handled if multiple
1725                 * DVO outputs are enabled simultaneosly.
1726                 */
1727                dpll |= DPLL_DVO_2X_MODE;
1728                I915_WRITE(DPLL(!crtc->pipe),
1729                           I915_READ(DPLL(!crtc->pipe)) | DPLL_DVO_2X_MODE);
1730        }
1731
1732        /* Wait for the clocks to stabilize. */
1733        POSTING_READ(reg);
1734        udelay(150);
1735
1736        if (INTEL_INFO(dev)->gen >= 4) {
1737                I915_WRITE(DPLL_MD(crtc->pipe),
1738                           crtc->config->dpll_hw_state.dpll_md);
1739        } else {
1740                /* The pixel multiplier can only be updated once the
1741                 * DPLL is enabled and the clocks are stable.
1742                 *
1743                 * So write it again.
1744                 */
1745                I915_WRITE(reg, dpll);
1746        }
1747
1748        /* We do this three times for luck */
1749        I915_WRITE(reg, dpll);
1750        POSTING_READ(reg);
1751        udelay(150); /* wait for warmup */
1752        I915_WRITE(reg, dpll);
1753        POSTING_READ(reg);
1754        udelay(150); /* wait for warmup */
1755        I915_WRITE(reg, dpll);
1756        POSTING_READ(reg);
1757        udelay(150); /* wait for warmup */
1758}
1759
1760/**
1761 * i9xx_disable_pll - disable a PLL
1762 * @dev_priv: i915 private structure
1763 * @pipe: pipe PLL to disable
1764 *
1765 * Disable the PLL for @pipe, making sure the pipe is off first.
1766 *
1767 * Note!  This is for pre-ILK only.
1768 */
1769static void i9xx_disable_pll(struct intel_crtc *crtc)
1770{
1771        struct drm_device *dev = crtc->base.dev;
1772        struct drm_i915_private *dev_priv = dev->dev_private;
1773        enum pipe pipe = crtc->pipe;
1774
1775        /* Disable DVO 2x clock on both PLLs if necessary */
1776        if (IS_I830(dev) &&
1777            intel_pipe_has_type(crtc, INTEL_OUTPUT_DVO) &&
1778            intel_num_dvo_pipes(dev) == 1) {
1779                I915_WRITE(DPLL(PIPE_B),
1780                           I915_READ(DPLL(PIPE_B)) & ~DPLL_DVO_2X_MODE);
1781                I915_WRITE(DPLL(PIPE_A),
1782                           I915_READ(DPLL(PIPE_A)) & ~DPLL_DVO_2X_MODE);
1783        }
1784
1785        /* Don't disable pipe or pipe PLLs if needed */
1786        if ((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
1787            (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
1788                return;
1789
1790        /* Make sure the pipe isn't still relying on us */
1791        assert_pipe_disabled(dev_priv, pipe);
1792
1793        I915_WRITE(DPLL(pipe), 0);
1794        POSTING_READ(DPLL(pipe));
1795}
1796
1797static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1798{
1799        u32 val = 0;
1800
1801        /* Make sure the pipe isn't still relying on us */
1802        assert_pipe_disabled(dev_priv, pipe);
1803
1804        /*
1805         * Leave integrated clock source and reference clock enabled for pipe B.
1806         * The latter is needed for VGA hotplug / manual detection.
1807         */
1808        if (pipe == PIPE_B)
1809                val = DPLL_INTEGRATED_CRI_CLK_VLV | DPLL_REFA_CLK_ENABLE_VLV;
1810        I915_WRITE(DPLL(pipe), val);
1811        POSTING_READ(DPLL(pipe));
1812
1813}
1814
1815static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1816{
1817        enum dpio_channel port = vlv_pipe_to_channel(pipe);
1818        u32 val;
1819
1820        /* Make sure the pipe isn't still relying on us */
1821        assert_pipe_disabled(dev_priv, pipe);
1822
1823        /* Set PLL en = 0 */
1824        val = DPLL_SSC_REF_CLOCK_CHV | DPLL_REFA_CLK_ENABLE_VLV;
1825        if (pipe != PIPE_A)
1826                val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1827        I915_WRITE(DPLL(pipe), val);
1828        POSTING_READ(DPLL(pipe));
1829
1830        mutex_lock(&dev_priv->sb_lock);
1831
1832        /* Disable 10bit clock to display controller */
1833        val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1834        val &= ~DPIO_DCLKP_EN;
1835        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1836
1837        /* disable left/right clock distribution */
1838        if (pipe != PIPE_B) {
1839                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW5_CH0);
1840                val &= ~(CHV_BUFLEFTENA1_MASK | CHV_BUFRIGHTENA1_MASK);
1841                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW5_CH0, val);
1842        } else {
1843                val = vlv_dpio_read(dev_priv, pipe, _CHV_CMN_DW1_CH1);
1844                val &= ~(CHV_BUFLEFTENA2_MASK | CHV_BUFRIGHTENA2_MASK);
1845                vlv_dpio_write(dev_priv, pipe, _CHV_CMN_DW1_CH1, val);
1846        }
1847
1848        mutex_unlock(&dev_priv->sb_lock);
1849}
1850
1851void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1852                         struct intel_digital_port *dport,
1853                         unsigned int expected_mask)
1854{
1855        u32 port_mask;
1856        int dpll_reg;
1857
1858        switch (dport->port) {
1859        case PORT_B:
1860                port_mask = DPLL_PORTB_READY_MASK;
1861                dpll_reg = DPLL(0);
1862                break;
1863        case PORT_C:
1864                port_mask = DPLL_PORTC_READY_MASK;
1865                dpll_reg = DPLL(0);
1866                expected_mask <<= 4;
1867                break;
1868        case PORT_D:
1869                port_mask = DPLL_PORTD_READY_MASK;
1870                dpll_reg = DPIO_PHY_STATUS;
1871                break;
1872        default:
1873                BUG();
1874        }
1875
1876        if (wait_for((I915_READ(dpll_reg) & port_mask) == expected_mask, 1000))
1877                WARN(1, "timed out waiting for port %c ready: got 0x%x, expected 0x%x\n",
1878                     port_name(dport->port), I915_READ(dpll_reg) & port_mask, expected_mask);
1879}
1880
1881static void intel_prepare_shared_dpll(struct intel_crtc *crtc)
1882{
1883        struct drm_device *dev = crtc->base.dev;
1884        struct drm_i915_private *dev_priv = dev->dev_private;
1885        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1886
1887        if (WARN_ON(pll == NULL))
1888                return;
1889
1890        WARN_ON(!pll->config.crtc_mask);
1891        if (pll->active == 0) {
1892                DRM_DEBUG_DRIVER("setting up %s\n", pll->name);
1893                WARN_ON(pll->on);
1894                assert_shared_dpll_disabled(dev_priv, pll);
1895
1896                pll->mode_set(dev_priv, pll);
1897        }
1898}
1899
1900/**
1901 * intel_enable_shared_dpll - enable PCH PLL
1902 * @dev_priv: i915 private structure
1903 * @pipe: pipe PLL to enable
1904 *
1905 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1906 * drives the transcoder clock.
1907 */
1908static void intel_enable_shared_dpll(struct intel_crtc *crtc)
1909{
1910        struct drm_device *dev = crtc->base.dev;
1911        struct drm_i915_private *dev_priv = dev->dev_private;
1912        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1913
1914        if (WARN_ON(pll == NULL))
1915                return;
1916
1917        if (WARN_ON(pll->config.crtc_mask == 0))
1918                return;
1919
1920        DRM_DEBUG_KMS("enable %s (active %d, on? %d) for crtc %d\n",
1921                      pll->name, pll->active, pll->on,
1922                      crtc->base.base.id);
1923
1924        if (pll->active++) {
1925                WARN_ON(!pll->on);
1926                assert_shared_dpll_enabled(dev_priv, pll);
1927                return;
1928        }
1929        WARN_ON(pll->on);
1930
1931        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
1932
1933        DRM_DEBUG_KMS("enabling %s\n", pll->name);
1934        pll->enable(dev_priv, pll);
1935        pll->on = true;
1936}
1937
1938static void intel_disable_shared_dpll(struct intel_crtc *crtc)
1939{
1940        struct drm_device *dev = crtc->base.dev;
1941        struct drm_i915_private *dev_priv = dev->dev_private;
1942        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
1943
1944        /* PCH only available on ILK+ */
1945        BUG_ON(INTEL_INFO(dev)->gen < 5);
1946        if (WARN_ON(pll == NULL))
1947               return;
1948
1949        if (WARN_ON(pll->config.crtc_mask == 0))
1950                return;
1951
1952        DRM_DEBUG_KMS("disable %s (active %d, on? %d) for crtc %d\n",
1953                      pll->name, pll->active, pll->on,
1954                      crtc->base.base.id);
1955
1956        if (WARN_ON(pll->active == 0)) {
1957                assert_shared_dpll_disabled(dev_priv, pll);
1958                return;
1959        }
1960
1961        assert_shared_dpll_enabled(dev_priv, pll);
1962        WARN_ON(!pll->on);
1963        if (--pll->active)
1964                return;
1965
1966        DRM_DEBUG_KMS("disabling %s\n", pll->name);
1967        pll->disable(dev_priv, pll);
1968        pll->on = false;
1969
1970        intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
1971}
1972
1973static void ironlake_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1974                                           enum pipe pipe)
1975{
1976        struct drm_device *dev = dev_priv->dev;
1977        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
1978        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1979        uint32_t reg, val, pipeconf_val;
1980
1981        /* PCH only available on ILK+ */
1982        BUG_ON(!HAS_PCH_SPLIT(dev));
1983
1984        /* Make sure PCH DPLL is enabled */
1985        assert_shared_dpll_enabled(dev_priv,
1986                                   intel_crtc_to_shared_dpll(intel_crtc));
1987
1988        /* FDI must be feeding us bits for PCH ports */
1989        assert_fdi_tx_enabled(dev_priv, pipe);
1990        assert_fdi_rx_enabled(dev_priv, pipe);
1991
1992        if (HAS_PCH_CPT(dev)) {
1993                /* Workaround: Set the timing override bit before enabling the
1994                 * pch transcoder. */
1995                reg = TRANS_CHICKEN2(pipe);
1996                val = I915_READ(reg);
1997                val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1998                I915_WRITE(reg, val);
1999        }
2000
2001        reg = PCH_TRANSCONF(pipe);
2002        val = I915_READ(reg);
2003        pipeconf_val = I915_READ(PIPECONF(pipe));
2004
2005        if (HAS_PCH_IBX(dev_priv->dev)) {
2006                /*
2007                 * make the BPC in transcoder be consistent with
2008                 * that in pipeconf reg.
2009                 */
2010                val &= ~PIPECONF_BPC_MASK;
2011                val |= pipeconf_val & PIPECONF_BPC_MASK;
2012        }
2013
2014        val &= ~TRANS_INTERLACE_MASK;
2015        if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK)
2016                if (HAS_PCH_IBX(dev_priv->dev) &&
2017                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
2018                        val |= TRANS_LEGACY_INTERLACED_ILK;
2019                else
2020                        val |= TRANS_INTERLACED;
2021        else
2022                val |= TRANS_PROGRESSIVE;
2023
2024        I915_WRITE(reg, val | TRANS_ENABLE);
2025        if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2026                DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
2027}
2028
2029static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
2030                                      enum transcoder cpu_transcoder)
2031{
2032        u32 val, pipeconf_val;
2033
2034        /* PCH only available on ILK+ */
2035        BUG_ON(!HAS_PCH_SPLIT(dev_priv->dev));
2036
2037        /* FDI must be feeding us bits for PCH ports */
2038        assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
2039        assert_fdi_rx_enabled(dev_priv, TRANSCODER_A);
2040
2041        /* Workaround: set timing override bit. */
2042        val = I915_READ(_TRANSA_CHICKEN2);
2043        val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
2044        I915_WRITE(_TRANSA_CHICKEN2, val);
2045
2046        val = TRANS_ENABLE;
2047        pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
2048
2049        if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
2050            PIPECONF_INTERLACED_ILK)
2051                val |= TRANS_INTERLACED;
2052        else
2053                val |= TRANS_PROGRESSIVE;
2054
2055        I915_WRITE(LPT_TRANSCONF, val);
2056        if (wait_for(I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE, 100))
2057                DRM_ERROR("Failed to enable PCH transcoder\n");
2058}
2059
2060static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
2061                                            enum pipe pipe)
2062{
2063        struct drm_device *dev = dev_priv->dev;
2064        uint32_t reg, val;
2065
2066        /* FDI relies on the transcoder */
2067        assert_fdi_tx_disabled(dev_priv, pipe);
2068        assert_fdi_rx_disabled(dev_priv, pipe);
2069
2070        /* Ports must be off as well */
2071        assert_pch_ports_disabled(dev_priv, pipe);
2072
2073        reg = PCH_TRANSCONF(pipe);
2074        val = I915_READ(reg);
2075        val &= ~TRANS_ENABLE;
2076        I915_WRITE(reg, val);
2077        /* wait for PCH transcoder off, transcoder state */
2078        if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2079                DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
2080
2081        if (!HAS_PCH_IBX(dev)) {
2082                /* Workaround: Clear the timing override chicken bit again. */
2083                reg = TRANS_CHICKEN2(pipe);
2084                val = I915_READ(reg);
2085                val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2086                I915_WRITE(reg, val);
2087        }
2088}
2089
2090static void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
2091{
2092        u32 val;
2093
2094        val = I915_READ(LPT_TRANSCONF);
2095        val &= ~TRANS_ENABLE;
2096        I915_WRITE(LPT_TRANSCONF, val);
2097        /* wait for PCH transcoder off, transcoder state */
2098        if (wait_for((I915_READ(LPT_TRANSCONF) & TRANS_STATE_ENABLE) == 0, 50))
2099                DRM_ERROR("Failed to disable PCH transcoder\n");
2100
2101        /* Workaround: clear timing override bit. */
2102        val = I915_READ(_TRANSA_CHICKEN2);
2103        val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
2104        I915_WRITE(_TRANSA_CHICKEN2, val);
2105}
2106
2107/**
2108 * intel_enable_pipe - enable a pipe, asserting requirements
2109 * @crtc: crtc responsible for the pipe
2110 *
2111 * Enable @crtc's pipe, making sure that various hardware specific requirements
2112 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
2113 */
2114static void intel_enable_pipe(struct intel_crtc *crtc)
2115{
2116        struct drm_device *dev = crtc->base.dev;
2117        struct drm_i915_private *dev_priv = dev->dev_private;
2118        enum pipe pipe = crtc->pipe;
2119        enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
2120                                                                      pipe);
2121        enum pipe pch_transcoder;
2122        int reg;
2123        u32 val;
2124
2125        assert_planes_disabled(dev_priv, pipe);
2126        assert_cursor_disabled(dev_priv, pipe);
2127        assert_sprites_disabled(dev_priv, pipe);
2128
2129        if (HAS_PCH_LPT(dev_priv->dev))
2130                pch_transcoder = TRANSCODER_A;
2131        else
2132                pch_transcoder = pipe;
2133
2134        /*
2135         * A pipe without a PLL won't actually be able to drive bits from
2136         * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
2137         * need the check.
2138         */
2139        if (HAS_GMCH_DISPLAY(dev_priv->dev))
2140                if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DSI))
2141                        assert_dsi_pll_enabled(dev_priv);
2142                else
2143                        assert_pll_enabled(dev_priv, pipe);
2144        else {
2145                if (crtc->config->has_pch_encoder) {
2146                        /* if driving the PCH, we need FDI enabled */
2147                        assert_fdi_rx_pll_enabled(dev_priv, pch_transcoder);
2148                        assert_fdi_tx_pll_enabled(dev_priv,
2149                                                  (enum pipe) cpu_transcoder);
2150                }
2151                /* FIXME: assert CPU port conditions for SNB+ */
2152        }
2153
2154        reg = PIPECONF(cpu_transcoder);
2155        val = I915_READ(reg);
2156        if (val & PIPECONF_ENABLE) {
2157                WARN_ON(!((pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
2158                          (pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE)));
2159                return;
2160        }
2161
2162        I915_WRITE(reg, val | PIPECONF_ENABLE);
2163        POSTING_READ(reg);
2164}
2165
2166/**
2167 * intel_disable_pipe - disable a pipe, asserting requirements
2168 * @crtc: crtc whose pipes is to be disabled
2169 *
2170 * Disable the pipe of @crtc, making sure that various hardware
2171 * specific requirements are met, if applicable, e.g. plane
2172 * disabled, panel fitter off, etc.
2173 *
2174 * Will wait until the pipe has shut down before returning.
2175 */
2176static void intel_disable_pipe(struct intel_crtc *crtc)
2177{
2178        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
2179        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
2180        enum pipe pipe = crtc->pipe;
2181        int reg;
2182        u32 val;
2183
2184        /*
2185         * Make sure planes won't keep trying to pump pixels to us,
2186         * or we might hang the display.
2187         */
2188        assert_planes_disabled(dev_priv, pipe);
2189        assert_cursor_disabled(dev_priv, pipe);
2190        assert_sprites_disabled(dev_priv, pipe);
2191
2192        reg = PIPECONF(cpu_transcoder);
2193        val = I915_READ(reg);
2194        if ((val & PIPECONF_ENABLE) == 0)
2195                return;
2196
2197        /*
2198         * Double wide has implications for planes
2199         * so best keep it disabled when not needed.
2200         */
2201        if (crtc->config->double_wide)
2202                val &= ~PIPECONF_DOUBLE_WIDE;
2203
2204        /* Don't disable pipe or pipe PLLs if needed */
2205        if (!(pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) &&
2206            !(pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
2207                val &= ~PIPECONF_ENABLE;
2208
2209        I915_WRITE(reg, val);
2210        if ((val & PIPECONF_ENABLE) == 0)
2211                intel_wait_for_pipe_off(crtc);
2212}
2213
2214/**
2215 * intel_enable_primary_hw_plane - enable the primary plane on a given pipe
2216 * @plane:  plane to be enabled
2217 * @crtc: crtc for the plane
2218 *
2219 * Enable @plane on @crtc, making sure that the pipe is running first.
2220 */
2221static void intel_enable_primary_hw_plane(struct drm_plane *plane,
2222                                          struct drm_crtc *crtc)
2223{
2224        struct drm_device *dev = plane->dev;
2225        struct drm_i915_private *dev_priv = dev->dev_private;
2226        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2227
2228        /* If the pipe isn't enabled, we can't pump pixels and may hang */
2229        assert_pipe_enabled(dev_priv, intel_crtc->pipe);
2230        to_intel_plane_state(plane->state)->visible = true;
2231
2232        dev_priv->display.update_primary_plane(crtc, plane->fb,
2233                                               crtc->x, crtc->y);
2234}
2235
2236static bool need_vtd_wa(struct drm_device *dev)
2237{
2238#ifdef CONFIG_INTEL_IOMMU
2239        if (INTEL_INFO(dev)->gen >= 6 && intel_iommu_gfx_mapped)
2240                return true;
2241#endif
2242        return false;
2243}
2244
2245unsigned int
2246intel_tile_height(struct drm_device *dev, uint32_t pixel_format,
2247                  uint64_t fb_format_modifier)
2248{
2249        unsigned int tile_height;
2250        uint32_t pixel_bytes;
2251
2252        switch (fb_format_modifier) {
2253        case DRM_FORMAT_MOD_NONE:
2254                tile_height = 1;
2255                break;
2256        case I915_FORMAT_MOD_X_TILED:
2257                tile_height = IS_GEN2(dev) ? 16 : 8;
2258                break;
2259        case I915_FORMAT_MOD_Y_TILED:
2260                tile_height = 32;
2261                break;
2262        case I915_FORMAT_MOD_Yf_TILED:
2263                pixel_bytes = drm_format_plane_cpp(pixel_format, 0);
2264                switch (pixel_bytes) {
2265                default:
2266                case 1:
2267                        tile_height = 64;
2268                        break;
2269                case 2:
2270                case 4:
2271                        tile_height = 32;
2272                        break;
2273                case 8:
2274                        tile_height = 16;
2275                        break;
2276                case 16:
2277                        WARN_ONCE(1,
2278                                  "128-bit pixels are not supported for display!");
2279                        tile_height = 16;
2280                        break;
2281                }
2282                break;
2283        default:
2284                MISSING_CASE(fb_format_modifier);
2285                tile_height = 1;
2286                break;
2287        }
2288
2289        return tile_height;
2290}
2291
2292unsigned int
2293intel_fb_align_height(struct drm_device *dev, unsigned int height,
2294                      uint32_t pixel_format, uint64_t fb_format_modifier)
2295{
2296        return ALIGN(height, intel_tile_height(dev, pixel_format,
2297                                               fb_format_modifier));
2298}
2299
2300static int
2301intel_fill_fb_ggtt_view(struct i915_ggtt_view *view, struct drm_framebuffer *fb,
2302                        const struct drm_plane_state *plane_state)
2303{
2304        struct intel_rotation_info *info = &view->rotation_info;
2305
2306        *view = i915_ggtt_view_normal;
2307
2308        if (!plane_state)
2309                return 0;
2310
2311        if (!intel_rotation_90_or_270(plane_state->rotation))
2312                return 0;
2313
2314        *view = i915_ggtt_view_rotated;
2315
2316        info->height = fb->height;
2317        info->pixel_format = fb->pixel_format;
2318        info->pitch = fb->pitches[0];
2319        info->fb_modifier = fb->modifier[0];
2320
2321        return 0;
2322}
2323
2324int
2325intel_pin_and_fence_fb_obj(struct drm_plane *plane,
2326                           struct drm_framebuffer *fb,
2327                           const struct drm_plane_state *plane_state,
2328                           struct intel_engine_cs *pipelined)
2329{
2330        struct drm_device *dev = fb->dev;
2331        struct drm_i915_private *dev_priv = dev->dev_private;
2332        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2333        struct i915_ggtt_view view;
2334        u32 alignment;
2335        int ret;
2336
2337        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
2338
2339        switch (fb->modifier[0]) {
2340        case DRM_FORMAT_MOD_NONE:
2341                if (INTEL_INFO(dev)->gen >= 9)
2342                        alignment = 256 * 1024;
2343                else if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
2344                        alignment = 128 * 1024;
2345                else if (INTEL_INFO(dev)->gen >= 4)
2346                        alignment = 4 * 1024;
2347                else
2348                        alignment = 64 * 1024;
2349                break;
2350        case I915_FORMAT_MOD_X_TILED:
2351                if (INTEL_INFO(dev)->gen >= 9)
2352                        alignment = 256 * 1024;
2353                else {
2354                        /* pin() will align the object as required by fence */
2355                        alignment = 0;
2356                }
2357                break;
2358        case I915_FORMAT_MOD_Y_TILED:
2359        case I915_FORMAT_MOD_Yf_TILED:
2360                if (WARN_ONCE(INTEL_INFO(dev)->gen < 9,
2361                          "Y tiling bo slipped through, driver bug!\n"))
2362                        return -EINVAL;
2363                alignment = 1 * 1024 * 1024;
2364                break;
2365        default:
2366                MISSING_CASE(fb->modifier[0]);
2367                return -EINVAL;
2368        }
2369
2370        ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2371        if (ret)
2372                return ret;
2373
2374        /* Note that the w/a also requires 64 PTE of padding following the
2375         * bo. We currently fill all unused PTE with the shadow page and so
2376         * we should always have valid PTE following the scanout preventing
2377         * the VT-d warning.
2378         */
2379        if (need_vtd_wa(dev) && alignment < 256 * 1024)
2380                alignment = 256 * 1024;
2381
2382        /*
2383         * Global gtt pte registers are special registers which actually forward
2384         * writes to a chunk of system memory. Which means that there is no risk
2385         * that the register values disappear as soon as we call
2386         * intel_runtime_pm_put(), so it is correct to wrap only the
2387         * pin/unpin/fence and not more.
2388         */
2389        intel_runtime_pm_get(dev_priv);
2390
2391        dev_priv->mm.interruptible = false;
2392        ret = i915_gem_object_pin_to_display_plane(obj, alignment, pipelined,
2393                                                   &view);
2394        if (ret)
2395                goto err_interruptible;
2396
2397        /* Install a fence for tiled scan-out. Pre-i965 always needs a
2398         * fence, whereas 965+ only requires a fence if using
2399         * framebuffer compression.  For simplicity, we always install
2400         * a fence as the cost is not that onerous.
2401         */
2402        ret = i915_gem_object_get_fence(obj);
2403        if (ret)
2404                goto err_unpin;
2405
2406        i915_gem_object_pin_fence(obj);
2407
2408        dev_priv->mm.interruptible = true;
2409        intel_runtime_pm_put(dev_priv);
2410        return 0;
2411
2412err_unpin:
2413        i915_gem_object_unpin_from_display_plane(obj, &view);
2414err_interruptible:
2415        dev_priv->mm.interruptible = true;
2416        intel_runtime_pm_put(dev_priv);
2417        return ret;
2418}
2419
2420static void intel_unpin_fb_obj(struct drm_framebuffer *fb,
2421                               const struct drm_plane_state *plane_state)
2422{
2423        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2424        struct i915_ggtt_view view;
2425        int ret;
2426
2427        WARN_ON(!mutex_is_locked(&obj->base.dev->struct_mutex));
2428
2429        ret = intel_fill_fb_ggtt_view(&view, fb, plane_state);
2430        WARN_ONCE(ret, "Couldn't get view from plane state!");
2431
2432        i915_gem_object_unpin_fence(obj);
2433        i915_gem_object_unpin_from_display_plane(obj, &view);
2434}
2435
2436/* Computes the linear offset to the base tile and adjusts x, y. bytes per pixel
2437 * is assumed to be a power-of-two. */
2438unsigned long intel_gen4_compute_page_offset(int *x, int *y,
2439                                             unsigned int tiling_mode,
2440                                             unsigned int cpp,
2441                                             unsigned int pitch)
2442{
2443        if (tiling_mode != I915_TILING_NONE) {
2444                unsigned int tile_rows, tiles;
2445
2446                tile_rows = *y / 8;
2447                *y %= 8;
2448
2449                tiles = *x / (512/cpp);
2450                *x %= 512/cpp;
2451
2452                return tile_rows * pitch * 8 + tiles * 4096;
2453        } else {
2454                unsigned int offset;
2455
2456                offset = *y * pitch + *x * cpp;
2457                *y = 0;
2458                *x = (offset & 4095) / cpp;
2459                return offset & -4096;
2460        }
2461}
2462
2463static int i9xx_format_to_fourcc(int format)
2464{
2465        switch (format) {
2466        case DISPPLANE_8BPP:
2467                return DRM_FORMAT_C8;
2468        case DISPPLANE_BGRX555:
2469                return DRM_FORMAT_XRGB1555;
2470        case DISPPLANE_BGRX565:
2471                return DRM_FORMAT_RGB565;
2472        default:
2473        case DISPPLANE_BGRX888:
2474                return DRM_FORMAT_XRGB8888;
2475        case DISPPLANE_RGBX888:
2476                return DRM_FORMAT_XBGR8888;
2477        case DISPPLANE_BGRX101010:
2478                return DRM_FORMAT_XRGB2101010;
2479        case DISPPLANE_RGBX101010:
2480                return DRM_FORMAT_XBGR2101010;
2481        }
2482}
2483
2484static int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2485{
2486        switch (format) {
2487        case PLANE_CTL_FORMAT_RGB_565:
2488                return DRM_FORMAT_RGB565;
2489        default:
2490        case PLANE_CTL_FORMAT_XRGB_8888:
2491                if (rgb_order) {
2492                        if (alpha)
2493                                return DRM_FORMAT_ABGR8888;
2494                        else
2495                                return DRM_FORMAT_XBGR8888;
2496                } else {
2497                        if (alpha)
2498                                return DRM_FORMAT_ARGB8888;
2499                        else
2500                                return DRM_FORMAT_XRGB8888;
2501                }
2502        case PLANE_CTL_FORMAT_XRGB_2101010:
2503                if (rgb_order)
2504                        return DRM_FORMAT_XBGR2101010;
2505                else
2506                        return DRM_FORMAT_XRGB2101010;
2507        }
2508}
2509
2510static bool
2511intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
2512                              struct intel_initial_plane_config *plane_config)
2513{
2514        struct drm_device *dev = crtc->base.dev;
2515        struct drm_i915_gem_object *obj = NULL;
2516        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
2517        struct drm_framebuffer *fb = &plane_config->fb->base;
2518        u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
2519        u32 size_aligned = round_up(plane_config->base + plane_config->size,
2520                                    PAGE_SIZE);
2521
2522        size_aligned -= base_aligned;
2523
2524        if (plane_config->size == 0)
2525                return false;
2526
2527        obj = i915_gem_object_create_stolen_for_preallocated(dev,
2528                                                             base_aligned,
2529                                                             base_aligned,
2530                                                             size_aligned);
2531        if (!obj)
2532                return false;
2533
2534        obj->tiling_mode = plane_config->tiling;
2535        if (obj->tiling_mode == I915_TILING_X)
2536                obj->stride = fb->pitches[0];
2537
2538        mode_cmd.pixel_format = fb->pixel_format;
2539        mode_cmd.width = fb->width;
2540        mode_cmd.height = fb->height;
2541        mode_cmd.pitches[0] = fb->pitches[0];
2542        mode_cmd.modifier[0] = fb->modifier[0];
2543        mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
2544
2545        mutex_lock(&dev->struct_mutex);
2546        if (intel_framebuffer_init(dev, to_intel_framebuffer(fb),
2547                                   &mode_cmd, obj)) {
2548                DRM_DEBUG_KMS("intel fb init failed\n");
2549                goto out_unref_obj;
2550        }
2551        mutex_unlock(&dev->struct_mutex);
2552
2553        DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
2554        return true;
2555
2556out_unref_obj:
2557        drm_gem_object_unreference(&obj->base);
2558        mutex_unlock(&dev->struct_mutex);
2559        return false;
2560}
2561
2562/* Update plane->state->fb to match plane->fb after driver-internal updates */
2563static void
2564update_state_fb(struct drm_plane *plane)
2565{
2566        if (plane->fb == plane->state->fb)
2567                return;
2568
2569        if (plane->state->fb)
2570                drm_framebuffer_unreference(plane->state->fb);
2571        plane->state->fb = plane->fb;
2572        if (plane->state->fb)
2573                drm_framebuffer_reference(plane->state->fb);
2574}
2575
2576static void
2577intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
2578                             struct intel_initial_plane_config *plane_config)
2579{
2580        struct drm_device *dev = intel_crtc->base.dev;
2581        struct drm_i915_private *dev_priv = dev->dev_private;
2582        struct drm_crtc *c;
2583        struct intel_crtc *i;
2584        struct drm_i915_gem_object *obj;
2585        struct drm_plane *primary = intel_crtc->base.primary;
2586        struct drm_framebuffer *fb;
2587
2588        if (!plane_config->fb)
2589                return;
2590
2591        if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
2592                fb = &plane_config->fb->base;
2593                goto valid_fb;
2594        }
2595
2596        kfree(plane_config->fb);
2597
2598        /*
2599         * Failed to alloc the obj, check to see if we should share
2600         * an fb with another CRTC instead
2601         */
2602        for_each_crtc(dev, c) {
2603                i = to_intel_crtc(c);
2604
2605                if (c == &intel_crtc->base)
2606                        continue;
2607
2608                if (!i->active)
2609                        continue;
2610
2611                fb = c->primary->fb;
2612                if (!fb)
2613                        continue;
2614
2615                obj = intel_fb_obj(fb);
2616                if (i915_gem_obj_ggtt_offset(obj) == plane_config->base) {
2617                        drm_framebuffer_reference(fb);
2618                        goto valid_fb;
2619                }
2620        }
2621
2622        return;
2623
2624valid_fb:
2625        obj = intel_fb_obj(fb);
2626        if (obj->tiling_mode != I915_TILING_NONE)
2627                dev_priv->preserve_bios_swizzle = true;
2628
2629        primary->fb = fb;
2630        primary->state->crtc = &intel_crtc->base;
2631        primary->crtc = &intel_crtc->base;
2632        update_state_fb(primary);
2633        obj->frontbuffer_bits |= INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
2634}
2635
2636static void i9xx_update_primary_plane(struct drm_crtc *crtc,
2637                                      struct drm_framebuffer *fb,
2638                                      int x, int y)
2639{
2640        struct drm_device *dev = crtc->dev;
2641        struct drm_i915_private *dev_priv = dev->dev_private;
2642        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2643        struct drm_plane *primary = crtc->primary;
2644        bool visible = to_intel_plane_state(primary->state)->visible;
2645        struct drm_i915_gem_object *obj;
2646        int plane = intel_crtc->plane;
2647        unsigned long linear_offset;
2648        u32 dspcntr;
2649        u32 reg = DSPCNTR(plane);
2650        int pixel_size;
2651
2652        if (!visible || !fb) {
2653                I915_WRITE(reg, 0);
2654                if (INTEL_INFO(dev)->gen >= 4)
2655                        I915_WRITE(DSPSURF(plane), 0);
2656                else
2657                        I915_WRITE(DSPADDR(plane), 0);
2658                POSTING_READ(reg);
2659                return;
2660        }
2661
2662        obj = intel_fb_obj(fb);
2663        if (WARN_ON(obj == NULL))
2664                return;
2665
2666        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2667
2668        dspcntr = DISPPLANE_GAMMA_ENABLE;
2669
2670        dspcntr |= DISPLAY_PLANE_ENABLE;
2671
2672        if (INTEL_INFO(dev)->gen < 4) {
2673                if (intel_crtc->pipe == PIPE_B)
2674                        dspcntr |= DISPPLANE_SEL_PIPE_B;
2675
2676                /* pipesrc and dspsize control the size that is scaled from,
2677                 * which should always be the user's requested size.
2678                 */
2679                I915_WRITE(DSPSIZE(plane),
2680                           ((intel_crtc->config->pipe_src_h - 1) << 16) |
2681                           (intel_crtc->config->pipe_src_w - 1));
2682                I915_WRITE(DSPPOS(plane), 0);
2683        } else if (IS_CHERRYVIEW(dev) && plane == PLANE_B) {
2684                I915_WRITE(PRIMSIZE(plane),
2685                           ((intel_crtc->config->pipe_src_h - 1) << 16) |
2686                           (intel_crtc->config->pipe_src_w - 1));
2687                I915_WRITE(PRIMPOS(plane), 0);
2688                I915_WRITE(PRIMCNSTALPHA(plane), 0);
2689        }
2690
2691        switch (fb->pixel_format) {
2692        case DRM_FORMAT_C8:
2693                dspcntr |= DISPPLANE_8BPP;
2694                break;
2695        case DRM_FORMAT_XRGB1555:
2696                dspcntr |= DISPPLANE_BGRX555;
2697                break;
2698        case DRM_FORMAT_RGB565:
2699                dspcntr |= DISPPLANE_BGRX565;
2700                break;
2701        case DRM_FORMAT_XRGB8888:
2702                dspcntr |= DISPPLANE_BGRX888;
2703                break;
2704        case DRM_FORMAT_XBGR8888:
2705                dspcntr |= DISPPLANE_RGBX888;
2706                break;
2707        case DRM_FORMAT_XRGB2101010:
2708                dspcntr |= DISPPLANE_BGRX101010;
2709                break;
2710        case DRM_FORMAT_XBGR2101010:
2711                dspcntr |= DISPPLANE_RGBX101010;
2712                break;
2713        default:
2714                BUG();
2715        }
2716
2717        if (INTEL_INFO(dev)->gen >= 4 &&
2718            obj->tiling_mode != I915_TILING_NONE)
2719                dspcntr |= DISPPLANE_TILED;
2720
2721        if (IS_G4X(dev))
2722                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2723
2724        linear_offset = y * fb->pitches[0] + x * pixel_size;
2725
2726        if (INTEL_INFO(dev)->gen >= 4) {
2727                intel_crtc->dspaddr_offset =
2728                        intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2729                                                       pixel_size,
2730                                                       fb->pitches[0]);
2731                linear_offset -= intel_crtc->dspaddr_offset;
2732        } else {
2733                intel_crtc->dspaddr_offset = linear_offset;
2734        }
2735
2736        if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2737                dspcntr |= DISPPLANE_ROTATE_180;
2738
2739                x += (intel_crtc->config->pipe_src_w - 1);
2740                y += (intel_crtc->config->pipe_src_h - 1);
2741
2742                /* Finding the last pixel of the last line of the display
2743                data and adding to linear_offset*/
2744                linear_offset +=
2745                        (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2746                        (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2747        }
2748
2749        I915_WRITE(reg, dspcntr);
2750
2751        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2752        if (INTEL_INFO(dev)->gen >= 4) {
2753                I915_WRITE(DSPSURF(plane),
2754                           i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2755                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2756                I915_WRITE(DSPLINOFF(plane), linear_offset);
2757        } else
2758                I915_WRITE(DSPADDR(plane), i915_gem_obj_ggtt_offset(obj) + linear_offset);
2759        POSTING_READ(reg);
2760}
2761
2762static void ironlake_update_primary_plane(struct drm_crtc *crtc,
2763                                          struct drm_framebuffer *fb,
2764                                          int x, int y)
2765{
2766        struct drm_device *dev = crtc->dev;
2767        struct drm_i915_private *dev_priv = dev->dev_private;
2768        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2769        struct drm_plane *primary = crtc->primary;
2770        bool visible = to_intel_plane_state(primary->state)->visible;
2771        struct drm_i915_gem_object *obj;
2772        int plane = intel_crtc->plane;
2773        unsigned long linear_offset;
2774        u32 dspcntr;
2775        u32 reg = DSPCNTR(plane);
2776        int pixel_size;
2777
2778        if (!visible || !fb) {
2779                I915_WRITE(reg, 0);
2780                I915_WRITE(DSPSURF(plane), 0);
2781                POSTING_READ(reg);
2782                return;
2783        }
2784
2785        obj = intel_fb_obj(fb);
2786        if (WARN_ON(obj == NULL))
2787                return;
2788
2789        pixel_size = drm_format_plane_cpp(fb->pixel_format, 0);
2790
2791        dspcntr = DISPPLANE_GAMMA_ENABLE;
2792
2793        dspcntr |= DISPLAY_PLANE_ENABLE;
2794
2795        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2796                dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
2797
2798        switch (fb->pixel_format) {
2799        case DRM_FORMAT_C8:
2800                dspcntr |= DISPPLANE_8BPP;
2801                break;
2802        case DRM_FORMAT_RGB565:
2803                dspcntr |= DISPPLANE_BGRX565;
2804                break;
2805        case DRM_FORMAT_XRGB8888:
2806                dspcntr |= DISPPLANE_BGRX888;
2807                break;
2808        case DRM_FORMAT_XBGR8888:
2809                dspcntr |= DISPPLANE_RGBX888;
2810                break;
2811        case DRM_FORMAT_XRGB2101010:
2812                dspcntr |= DISPPLANE_BGRX101010;
2813                break;
2814        case DRM_FORMAT_XBGR2101010:
2815                dspcntr |= DISPPLANE_RGBX101010;
2816                break;
2817        default:
2818                BUG();
2819        }
2820
2821        if (obj->tiling_mode != I915_TILING_NONE)
2822                dspcntr |= DISPPLANE_TILED;
2823
2824        if (!IS_HASWELL(dev) && !IS_BROADWELL(dev))
2825                dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
2826
2827        linear_offset = y * fb->pitches[0] + x * pixel_size;
2828        intel_crtc->dspaddr_offset =
2829                intel_gen4_compute_page_offset(&x, &y, obj->tiling_mode,
2830                                               pixel_size,
2831                                               fb->pitches[0]);
2832        linear_offset -= intel_crtc->dspaddr_offset;
2833        if (crtc->primary->state->rotation == BIT(DRM_ROTATE_180)) {
2834                dspcntr |= DISPPLANE_ROTATE_180;
2835
2836                if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2837                        x += (intel_crtc->config->pipe_src_w - 1);
2838                        y += (intel_crtc->config->pipe_src_h - 1);
2839
2840                        /* Finding the last pixel of the last line of the display
2841                        data and adding to linear_offset*/
2842                        linear_offset +=
2843                                (intel_crtc->config->pipe_src_h - 1) * fb->pitches[0] +
2844                                (intel_crtc->config->pipe_src_w - 1) * pixel_size;
2845                }
2846        }
2847
2848        I915_WRITE(reg, dspcntr);
2849
2850        I915_WRITE(DSPSTRIDE(plane), fb->pitches[0]);
2851        I915_WRITE(DSPSURF(plane),
2852                   i915_gem_obj_ggtt_offset(obj) + intel_crtc->dspaddr_offset);
2853        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2854                I915_WRITE(DSPOFFSET(plane), (y << 16) | x);
2855        } else {
2856                I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
2857                I915_WRITE(DSPLINOFF(plane), linear_offset);
2858        }
2859        POSTING_READ(reg);
2860}
2861
2862u32 intel_fb_stride_alignment(struct drm_device *dev, uint64_t fb_modifier,
2863                              uint32_t pixel_format)
2864{
2865        u32 bits_per_pixel = drm_format_plane_cpp(pixel_format, 0) * 8;
2866
2867        /*
2868         * The stride is either expressed as a multiple of 64 bytes
2869         * chunks for linear buffers or in number of tiles for tiled
2870         * buffers.
2871         */
2872        switch (fb_modifier) {
2873        case DRM_FORMAT_MOD_NONE:
2874                return 64;
2875        case I915_FORMAT_MOD_X_TILED:
2876                if (INTEL_INFO(dev)->gen == 2)
2877                        return 128;
2878                return 512;
2879        case I915_FORMAT_MOD_Y_TILED:
2880                /* No need to check for old gens and Y tiling since this is
2881                 * about the display engine and those will be blocked before
2882                 * we get here.
2883                 */
2884                return 128;
2885        case I915_FORMAT_MOD_Yf_TILED:
2886                if (bits_per_pixel == 8)
2887                        return 64;
2888                else
2889                        return 128;
2890        default:
2891                MISSING_CASE(fb_modifier);
2892                return 64;
2893        }
2894}
2895
2896unsigned long intel_plane_obj_offset(struct intel_plane *intel_plane,
2897                                     struct drm_i915_gem_object *obj)
2898{
2899        const struct i915_ggtt_view *view = &i915_ggtt_view_normal;
2900
2901        if (intel_rotation_90_or_270(intel_plane->base.state->rotation))
2902                view = &i915_ggtt_view_rotated;
2903
2904        return i915_gem_obj_ggtt_offset_view(obj, view);
2905}
2906
2907/*
2908 * This function detaches (aka. unbinds) unused scalers in hardware
2909 */
2910void skl_detach_scalers(struct intel_crtc *intel_crtc)
2911{
2912        struct drm_device *dev;
2913        struct drm_i915_private *dev_priv;
2914        struct intel_crtc_scaler_state *scaler_state;
2915        int i;
2916
2917        if (!intel_crtc || !intel_crtc->config)
2918                return;
2919
2920        dev = intel_crtc->base.dev;
2921        dev_priv = dev->dev_private;
2922        scaler_state = &intel_crtc->config->scaler_state;
2923
2924        /* loop through and disable scalers that aren't in use */
2925        for (i = 0; i < intel_crtc->num_scalers; i++) {
2926                if (!scaler_state->scalers[i].in_use) {
2927                        I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, i), 0);
2928                        I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, i), 0);
2929                        I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, i), 0);
2930                        DRM_DEBUG_KMS("CRTC:%d Disabled scaler id %u.%u\n",
2931                                intel_crtc->base.base.id, intel_crtc->pipe, i);
2932                }
2933        }
2934}
2935
2936u32 skl_plane_ctl_format(uint32_t pixel_format)
2937{
2938        switch (pixel_format) {
2939        case DRM_FORMAT_C8:
2940                return PLANE_CTL_FORMAT_INDEXED;
2941        case DRM_FORMAT_RGB565:
2942                return PLANE_CTL_FORMAT_RGB_565;
2943        case DRM_FORMAT_XBGR8888:
2944                return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
2945        case DRM_FORMAT_XRGB8888:
2946                return PLANE_CTL_FORMAT_XRGB_8888;
2947        /*
2948         * XXX: For ARBG/ABGR formats we default to expecting scanout buffers
2949         * to be already pre-multiplied. We need to add a knob (or a different
2950         * DRM_FORMAT) for user-space to configure that.
2951         */
2952        case DRM_FORMAT_ABGR8888:
2953                return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX |
2954                        PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2955        case DRM_FORMAT_ARGB8888:
2956                return PLANE_CTL_FORMAT_XRGB_8888 |
2957                        PLANE_CTL_ALPHA_SW_PREMULTIPLY;
2958        case DRM_FORMAT_XRGB2101010:
2959                return PLANE_CTL_FORMAT_XRGB_2101010;
2960        case DRM_FORMAT_XBGR2101010:
2961                return PLANE_CTL_ORDER_RGBX | PLANE_CTL_FORMAT_XRGB_2101010;
2962        case DRM_FORMAT_YUYV:
2963                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
2964        case DRM_FORMAT_YVYU:
2965                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
2966        case DRM_FORMAT_UYVY:
2967                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
2968        case DRM_FORMAT_VYUY:
2969                return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
2970        default:
2971                MISSING_CASE(pixel_format);
2972        }
2973
2974        return 0;
2975}
2976
2977u32 skl_plane_ctl_tiling(uint64_t fb_modifier)
2978{
2979        switch (fb_modifier) {
2980        case DRM_FORMAT_MOD_NONE:
2981                break;
2982        case I915_FORMAT_MOD_X_TILED:
2983                return PLANE_CTL_TILED_X;
2984        case I915_FORMAT_MOD_Y_TILED:
2985                return PLANE_CTL_TILED_Y;
2986        case I915_FORMAT_MOD_Yf_TILED:
2987                return PLANE_CTL_TILED_YF;
2988        default:
2989                MISSING_CASE(fb_modifier);
2990        }
2991
2992        return 0;
2993}
2994
2995u32 skl_plane_ctl_rotation(unsigned int rotation)
2996{
2997        switch (rotation) {
2998        case BIT(DRM_ROTATE_0):
2999                break;
3000        /*
3001         * DRM_ROTATE_ is counter clockwise to stay compatible with Xrandr
3002         * while i915 HW rotation is clockwise, thats why this swapping.
3003         */
3004        case BIT(DRM_ROTATE_90):
3005                return PLANE_CTL_ROTATE_270;
3006        case BIT(DRM_ROTATE_180):
3007                return PLANE_CTL_ROTATE_180;
3008        case BIT(DRM_ROTATE_270):
3009                return PLANE_CTL_ROTATE_90;
3010        default:
3011                MISSING_CASE(rotation);
3012        }
3013
3014        return 0;
3015}
3016
3017static void skylake_update_primary_plane(struct drm_crtc *crtc,
3018                                         struct drm_framebuffer *fb,
3019                                         int x, int y)
3020{
3021        struct drm_device *dev = crtc->dev;
3022        struct drm_i915_private *dev_priv = dev->dev_private;
3023        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3024        struct drm_plane *plane = crtc->primary;
3025        bool visible = to_intel_plane_state(plane->state)->visible;
3026        struct drm_i915_gem_object *obj;
3027        int pipe = intel_crtc->pipe;
3028        u32 plane_ctl, stride_div, stride;
3029        u32 tile_height, plane_offset, plane_size;
3030        unsigned int rotation;
3031        int x_offset, y_offset;
3032        unsigned long surf_addr;
3033        struct intel_crtc_state *crtc_state = intel_crtc->config;
3034        struct intel_plane_state *plane_state;
3035        int src_x = 0, src_y = 0, src_w = 0, src_h = 0;
3036        int dst_x = 0, dst_y = 0, dst_w = 0, dst_h = 0;
3037        int scaler_id = -1;
3038
3039        plane_state = to_intel_plane_state(plane->state);
3040
3041        if (!visible || !fb) {
3042                I915_WRITE(PLANE_CTL(pipe, 0), 0);
3043                I915_WRITE(PLANE_SURF(pipe, 0), 0);
3044                POSTING_READ(PLANE_CTL(pipe, 0));
3045                return;
3046        }
3047
3048        plane_ctl = PLANE_CTL_ENABLE |
3049                    PLANE_CTL_PIPE_GAMMA_ENABLE |
3050                    PLANE_CTL_PIPE_CSC_ENABLE;
3051
3052        plane_ctl |= skl_plane_ctl_format(fb->pixel_format);
3053        plane_ctl |= skl_plane_ctl_tiling(fb->modifier[0]);
3054        plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
3055
3056        rotation = plane->state->rotation;
3057        plane_ctl |= skl_plane_ctl_rotation(rotation);
3058
3059        obj = intel_fb_obj(fb);
3060        stride_div = intel_fb_stride_alignment(dev, fb->modifier[0],
3061                                               fb->pixel_format);
3062        surf_addr = intel_plane_obj_offset(to_intel_plane(plane), obj);
3063
3064        /*
3065         * FIXME: intel_plane_state->src, dst aren't set when transitional
3066         * update_plane helpers are called from legacy paths.
3067         * Once full atomic crtc is available, below check can be avoided.
3068         */
3069        if (drm_rect_width(&plane_state->src)) {
3070                scaler_id = plane_state->scaler_id;
3071                src_x = plane_state->src.x1 >> 16;
3072                src_y = plane_state->src.y1 >> 16;
3073                src_w = drm_rect_width(&plane_state->src) >> 16;
3074                src_h = drm_rect_height(&plane_state->src) >> 16;
3075                dst_x = plane_state->dst.x1;
3076                dst_y = plane_state->dst.y1;
3077                dst_w = drm_rect_width(&plane_state->dst);
3078                dst_h = drm_rect_height(&plane_state->dst);
3079
3080                WARN_ON(x != src_x || y != src_y);
3081        } else {
3082                src_w = intel_crtc->config->pipe_src_w;
3083                src_h = intel_crtc->config->pipe_src_h;
3084        }
3085
3086        if (intel_rotation_90_or_270(rotation)) {
3087                /* stride = Surface height in tiles */
3088                tile_height = intel_tile_height(dev, fb->pixel_format,
3089                                                fb->modifier[0]);
3090                stride = DIV_ROUND_UP(fb->height, tile_height);
3091                x_offset = stride * tile_height - y - src_h;
3092                y_offset = x;
3093                plane_size = (src_w - 1) << 16 | (src_h - 1);
3094        } else {
3095                stride = fb->pitches[0] / stride_div;
3096                x_offset = x;
3097                y_offset = y;
3098                plane_size = (src_h - 1) << 16 | (src_w - 1);
3099        }
3100        plane_offset = y_offset << 16 | x_offset;
3101
3102        I915_WRITE(PLANE_CTL(pipe, 0), plane_ctl);
3103        I915_WRITE(PLANE_OFFSET(pipe, 0), plane_offset);
3104        I915_WRITE(PLANE_SIZE(pipe, 0), plane_size);
3105        I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
3106
3107        if (scaler_id >= 0) {
3108                uint32_t ps_ctrl = 0;
3109
3110                WARN_ON(!dst_w || !dst_h);
3111                ps_ctrl = PS_SCALER_EN | PS_PLANE_SEL(0) |
3112                        crtc_state->scaler_state.scalers[scaler_id].mode;
3113                I915_WRITE(SKL_PS_CTRL(pipe, scaler_id), ps_ctrl);
3114                I915_WRITE(SKL_PS_PWR_GATE(pipe, scaler_id), 0);
3115                I915_WRITE(SKL_PS_WIN_POS(pipe, scaler_id), (dst_x << 16) | dst_y);
3116                I915_WRITE(SKL_PS_WIN_SZ(pipe, scaler_id), (dst_w << 16) | dst_h);
3117                I915_WRITE(PLANE_POS(pipe, 0), 0);
3118        } else {
3119                I915_WRITE(PLANE_POS(pipe, 0), (dst_y << 16) | dst_x);
3120        }
3121
3122        I915_WRITE(PLANE_SURF(pipe, 0), surf_addr);
3123
3124        POSTING_READ(PLANE_SURF(pipe, 0));
3125}
3126
3127/* Assume fb object is pinned & idle & fenced and just update base pointers */
3128static int
3129intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
3130                           int x, int y, enum mode_set_atomic state)
3131{
3132        struct drm_device *dev = crtc->dev;
3133        struct drm_i915_private *dev_priv = dev->dev_private;
3134
3135        if (dev_priv->display.disable_fbc)
3136                dev_priv->display.disable_fbc(dev);
3137
3138        dev_priv->display.update_primary_plane(crtc, fb, x, y);
3139
3140        return 0;
3141}
3142
3143static void intel_complete_page_flips(struct drm_device *dev)
3144{
3145        struct drm_crtc *crtc;
3146
3147        for_each_crtc(dev, crtc) {
3148                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3149                enum plane plane = intel_crtc->plane;
3150
3151                intel_prepare_page_flip(dev, plane);
3152                intel_finish_page_flip_plane(dev, plane);
3153        }
3154}
3155
3156static void intel_update_primary_planes(struct drm_device *dev)
3157{
3158        struct drm_i915_private *dev_priv = dev->dev_private;
3159        struct drm_crtc *crtc;
3160
3161        for_each_crtc(dev, crtc) {
3162                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3163
3164                drm_modeset_lock(&crtc->mutex, NULL);
3165                /*
3166                 * FIXME: Once we have proper support for primary planes (and
3167                 * disabling them without disabling the entire crtc) allow again
3168                 * a NULL crtc->primary->fb.
3169                 */
3170                if (intel_crtc->active && crtc->primary->fb)
3171                        dev_priv->display.update_primary_plane(crtc,
3172                                                               crtc->primary->fb,
3173                                                               crtc->x,
3174                                                               crtc->y);
3175                drm_modeset_unlock(&crtc->mutex);
3176        }
3177}
3178
3179void intel_crtc_reset(struct intel_crtc *crtc)
3180{
3181        struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3182
3183        if (!crtc->active)
3184                return;
3185
3186        intel_crtc_disable_planes(&crtc->base);
3187        dev_priv->display.crtc_disable(&crtc->base);
3188        dev_priv->display.crtc_enable(&crtc->base);
3189        intel_crtc_enable_planes(&crtc->base);
3190}
3191
3192void intel_prepare_reset(struct drm_device *dev)
3193{
3194        struct drm_i915_private *dev_priv = to_i915(dev);
3195        struct intel_crtc *crtc;
3196
3197        /* no reset support for gen2 */
3198        if (IS_GEN2(dev))
3199                return;
3200
3201        /* reset doesn't touch the display */
3202        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
3203                return;
3204
3205        drm_modeset_lock_all(dev);
3206
3207        /*
3208         * Disabling the crtcs gracefully seems nicer. Also the
3209         * g33 docs say we should at least disable all the planes.
3210         */
3211        for_each_intel_crtc(dev, crtc) {
3212                if (!crtc->active)
3213                        continue;
3214
3215                intel_crtc_disable_planes(&crtc->base);
3216                dev_priv->display.crtc_disable(&crtc->base);
3217        }
3218}
3219
3220void intel_finish_reset(struct drm_device *dev)
3221{
3222        struct drm_i915_private *dev_priv = to_i915(dev);
3223
3224        /*
3225         * Flips in the rings will be nuked by the reset,
3226         * so complete all pending flips so that user space
3227         * will get its events and not get stuck.
3228         */
3229        intel_complete_page_flips(dev);
3230
3231        /* no reset support for gen2 */
3232        if (IS_GEN2(dev))
3233                return;
3234
3235        /* reset doesn't touch the display */
3236        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev)) {
3237                /*
3238                 * Flips in the rings have been nuked by the reset,
3239                 * so update the base address of all primary
3240                 * planes to the the last fb to make sure we're
3241                 * showing the correct fb after a reset.
3242                 */
3243                intel_update_primary_planes(dev);
3244                return;
3245        }
3246
3247        /*
3248         * The display has been reset as well,
3249         * so need a full re-initialization.
3250         */
3251        intel_runtime_pm_disable_interrupts(dev_priv);
3252        intel_runtime_pm_enable_interrupts(dev_priv);
3253
3254        intel_modeset_init_hw(dev);
3255
3256        spin_lock_irq(&dev_priv->irq_lock);
3257        if (dev_priv->display.hpd_irq_setup)
3258                dev_priv->display.hpd_irq_setup(dev);
3259        spin_unlock_irq(&dev_priv->irq_lock);
3260
3261        intel_modeset_setup_hw_state(dev, true);
3262
3263        intel_hpd_init(dev_priv);
3264
3265        drm_modeset_unlock_all(dev);
3266}
3267
3268static void
3269intel_finish_fb(struct drm_framebuffer *old_fb)
3270{
3271        struct drm_i915_gem_object *obj = intel_fb_obj(old_fb);
3272        struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3273        bool was_interruptible = dev_priv->mm.interruptible;
3274        int ret;
3275
3276        /* Big Hammer, we also need to ensure that any pending
3277         * MI_WAIT_FOR_EVENT inside a user batch buffer on the
3278         * current scanout is retired before unpinning the old
3279         * framebuffer. Note that we rely on userspace rendering
3280         * into the buffer attached to the pipe they are waiting
3281         * on. If not, userspace generates a GPU hang with IPEHR
3282         * point to the MI_WAIT_FOR_EVENT.
3283         *
3284         * This should only fail upon a hung GPU, in which case we
3285         * can safely continue.
3286         */
3287        dev_priv->mm.interruptible = false;
3288        ret = i915_gem_object_wait_rendering(obj, true);
3289        dev_priv->mm.interruptible = was_interruptible;
3290
3291        WARN_ON(ret);
3292}
3293
3294static bool intel_crtc_has_pending_flip(struct drm_crtc *crtc)
3295{
3296        struct drm_device *dev = crtc->dev;
3297        struct drm_i915_private *dev_priv = dev->dev_private;
3298        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3299        bool pending;
3300
3301        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
3302            intel_crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
3303                return false;
3304
3305        spin_lock_irq(&dev->event_lock);
3306        pending = to_intel_crtc(crtc)->unpin_work != NULL;
3307        spin_unlock_irq(&dev->event_lock);
3308
3309        return pending;
3310}
3311
3312static void intel_update_pipe_size(struct intel_crtc *crtc)
3313{
3314        struct drm_device *dev = crtc->base.dev;
3315        struct drm_i915_private *dev_priv = dev->dev_private;
3316        const struct drm_display_mode *adjusted_mode;
3317
3318        if (!i915.fastboot)
3319                return;
3320
3321        /*
3322         * Update pipe size and adjust fitter if needed: the reason for this is
3323         * that in compute_mode_changes we check the native mode (not the pfit
3324         * mode) to see if we can flip rather than do a full mode set. In the
3325         * fastboot case, we'll flip, but if we don't update the pipesrc and
3326         * pfit state, we'll end up with a big fb scanned out into the wrong
3327         * sized surface.
3328         *
3329         * To fix this properly, we need to hoist the checks up into
3330         * compute_mode_changes (or above), check the actual pfit state and
3331         * whether the platform allows pfit disable with pipe active, and only
3332         * then update the pipesrc and pfit state, even on the flip path.
3333         */
3334
3335        adjusted_mode = &crtc->config->base.adjusted_mode;
3336
3337        I915_WRITE(PIPESRC(crtc->pipe),
3338                   ((adjusted_mode->crtc_hdisplay - 1) << 16) |
3339                   (adjusted_mode->crtc_vdisplay - 1));
3340        if (!crtc->config->pch_pfit.enabled &&
3341            (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) ||
3342             intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))) {
3343                I915_WRITE(PF_CTL(crtc->pipe), 0);
3344                I915_WRITE(PF_WIN_POS(crtc->pipe), 0);
3345                I915_WRITE(PF_WIN_SZ(crtc->pipe), 0);
3346        }
3347        crtc->config->pipe_src_w = adjusted_mode->crtc_hdisplay;
3348        crtc->config->pipe_src_h = adjusted_mode->crtc_vdisplay;
3349}
3350
3351static void intel_fdi_normal_train(struct drm_crtc *crtc)
3352{
3353        struct drm_device *dev = crtc->dev;
3354        struct drm_i915_private *dev_priv = dev->dev_private;
3355        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3356        int pipe = intel_crtc->pipe;
3357        u32 reg, temp;
3358
3359        /* enable normal train */
3360        reg = FDI_TX_CTL(pipe);
3361        temp = I915_READ(reg);
3362        if (IS_IVYBRIDGE(dev)) {
3363                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3364                temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
3365        } else {
3366                temp &= ~FDI_LINK_TRAIN_NONE;
3367                temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
3368        }
3369        I915_WRITE(reg, temp);
3370
3371        reg = FDI_RX_CTL(pipe);
3372        temp = I915_READ(reg);
3373        if (HAS_PCH_CPT(dev)) {
3374                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3375                temp |= FDI_LINK_TRAIN_NORMAL_CPT;
3376        } else {
3377                temp &= ~FDI_LINK_TRAIN_NONE;
3378                temp |= FDI_LINK_TRAIN_NONE;
3379        }
3380        I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
3381
3382        /* wait one idle pattern time */
3383        POSTING_READ(reg);
3384        udelay(1000);
3385
3386        /* IVB wants error correction enabled */
3387        if (IS_IVYBRIDGE(dev))
3388                I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
3389                           FDI_FE_ERRC_ENABLE);
3390}
3391
3392/* The FDI link training functions for ILK/Ibexpeak. */
3393static void ironlake_fdi_link_train(struct drm_crtc *crtc)
3394{
3395        struct drm_device *dev = crtc->dev;
3396        struct drm_i915_private *dev_priv = dev->dev_private;
3397        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3398        int pipe = intel_crtc->pipe;
3399        u32 reg, temp, tries;
3400
3401        /* FDI needs bits from pipe first */
3402        assert_pipe_enabled(dev_priv, pipe);
3403
3404        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3405           for train result */
3406        reg = FDI_RX_IMR(pipe);
3407        temp = I915_READ(reg);
3408        temp &= ~FDI_RX_SYMBOL_LOCK;
3409        temp &= ~FDI_RX_BIT_LOCK;
3410        I915_WRITE(reg, temp);
3411        I915_READ(reg);
3412        udelay(150);
3413
3414        /* enable CPU FDI TX and PCH FDI RX */
3415        reg = FDI_TX_CTL(pipe);
3416        temp = I915_READ(reg);
3417        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3418        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3419        temp &= ~FDI_LINK_TRAIN_NONE;
3420        temp |= FDI_LINK_TRAIN_PATTERN_1;
3421        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3422
3423        reg = FDI_RX_CTL(pipe);
3424        temp = I915_READ(reg);
3425        temp &= ~FDI_LINK_TRAIN_NONE;
3426        temp |= FDI_LINK_TRAIN_PATTERN_1;
3427        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3428
3429        POSTING_READ(reg);
3430        udelay(150);
3431
3432        /* Ironlake workaround, enable clock pointer after FDI enable*/
3433        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3434        I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
3435                   FDI_RX_PHASE_SYNC_POINTER_EN);
3436
3437        reg = FDI_RX_IIR(pipe);
3438        for (tries = 0; tries < 5; tries++) {
3439                temp = I915_READ(reg);
3440                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3441
3442                if ((temp & FDI_RX_BIT_LOCK)) {
3443                        DRM_DEBUG_KMS("FDI train 1 done.\n");
3444                        I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3445                        break;
3446                }
3447        }
3448        if (tries == 5)
3449                DRM_ERROR("FDI train 1 fail!\n");
3450
3451        /* Train 2 */
3452        reg = FDI_TX_CTL(pipe);
3453        temp = I915_READ(reg);
3454        temp &= ~FDI_LINK_TRAIN_NONE;
3455        temp |= FDI_LINK_TRAIN_PATTERN_2;
3456        I915_WRITE(reg, temp);
3457
3458        reg = FDI_RX_CTL(pipe);
3459        temp = I915_READ(reg);
3460        temp &= ~FDI_LINK_TRAIN_NONE;
3461        temp |= FDI_LINK_TRAIN_PATTERN_2;
3462        I915_WRITE(reg, temp);
3463
3464        POSTING_READ(reg);
3465        udelay(150);
3466
3467        reg = FDI_RX_IIR(pipe);
3468        for (tries = 0; tries < 5; tries++) {
3469                temp = I915_READ(reg);
3470                DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3471
3472                if (temp & FDI_RX_SYMBOL_LOCK) {
3473                        I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3474                        DRM_DEBUG_KMS("FDI train 2 done.\n");
3475                        break;
3476                }
3477        }
3478        if (tries == 5)
3479                DRM_ERROR("FDI train 2 fail!\n");
3480
3481        DRM_DEBUG_KMS("FDI train done\n");
3482
3483}
3484
3485static const int snb_b_fdi_train_param[] = {
3486        FDI_LINK_TRAIN_400MV_0DB_SNB_B,
3487        FDI_LINK_TRAIN_400MV_6DB_SNB_B,
3488        FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
3489        FDI_LINK_TRAIN_800MV_0DB_SNB_B,
3490};
3491
3492/* The FDI link training functions for SNB/Cougarpoint. */
3493static void gen6_fdi_link_train(struct drm_crtc *crtc)
3494{
3495        struct drm_device *dev = crtc->dev;
3496        struct drm_i915_private *dev_priv = dev->dev_private;
3497        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3498        int pipe = intel_crtc->pipe;
3499        u32 reg, temp, i, retry;
3500
3501        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3502           for train result */
3503        reg = FDI_RX_IMR(pipe);
3504        temp = I915_READ(reg);
3505        temp &= ~FDI_RX_SYMBOL_LOCK;
3506        temp &= ~FDI_RX_BIT_LOCK;
3507        I915_WRITE(reg, temp);
3508
3509        POSTING_READ(reg);
3510        udelay(150);
3511
3512        /* enable CPU FDI TX and PCH FDI RX */
3513        reg = FDI_TX_CTL(pipe);
3514        temp = I915_READ(reg);
3515        temp &= ~FDI_DP_PORT_WIDTH_MASK;
3516        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3517        temp &= ~FDI_LINK_TRAIN_NONE;
3518        temp |= FDI_LINK_TRAIN_PATTERN_1;
3519        temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3520        /* SNB-B */
3521        temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3522        I915_WRITE(reg, temp | FDI_TX_ENABLE);
3523
3524        I915_WRITE(FDI_RX_MISC(pipe),
3525                   FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3526
3527        reg = FDI_RX_CTL(pipe);
3528        temp = I915_READ(reg);
3529        if (HAS_PCH_CPT(dev)) {
3530                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3531                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3532        } else {
3533                temp &= ~FDI_LINK_TRAIN_NONE;
3534                temp |= FDI_LINK_TRAIN_PATTERN_1;
3535        }
3536        I915_WRITE(reg, temp | FDI_RX_ENABLE);
3537
3538        POSTING_READ(reg);
3539        udelay(150);
3540
3541        for (i = 0; i < 4; i++) {
3542                reg = FDI_TX_CTL(pipe);
3543                temp = I915_READ(reg);
3544                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3545                temp |= snb_b_fdi_train_param[i];
3546                I915_WRITE(reg, temp);
3547
3548                POSTING_READ(reg);
3549                udelay(500);
3550
3551                for (retry = 0; retry < 5; retry++) {
3552                        reg = FDI_RX_IIR(pipe);
3553                        temp = I915_READ(reg);
3554                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3555                        if (temp & FDI_RX_BIT_LOCK) {
3556                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3557                                DRM_DEBUG_KMS("FDI train 1 done.\n");
3558                                break;
3559                        }
3560                        udelay(50);
3561                }
3562                if (retry < 5)
3563                        break;
3564        }
3565        if (i == 4)
3566                DRM_ERROR("FDI train 1 fail!\n");
3567
3568        /* Train 2 */
3569        reg = FDI_TX_CTL(pipe);
3570        temp = I915_READ(reg);
3571        temp &= ~FDI_LINK_TRAIN_NONE;
3572        temp |= FDI_LINK_TRAIN_PATTERN_2;
3573        if (IS_GEN6(dev)) {
3574                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3575                /* SNB-B */
3576                temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
3577        }
3578        I915_WRITE(reg, temp);
3579
3580        reg = FDI_RX_CTL(pipe);
3581        temp = I915_READ(reg);
3582        if (HAS_PCH_CPT(dev)) {
3583                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3584                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3585        } else {
3586                temp &= ~FDI_LINK_TRAIN_NONE;
3587                temp |= FDI_LINK_TRAIN_PATTERN_2;
3588        }
3589        I915_WRITE(reg, temp);
3590
3591        POSTING_READ(reg);
3592        udelay(150);
3593
3594        for (i = 0; i < 4; i++) {
3595                reg = FDI_TX_CTL(pipe);
3596                temp = I915_READ(reg);
3597                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3598                temp |= snb_b_fdi_train_param[i];
3599                I915_WRITE(reg, temp);
3600
3601                POSTING_READ(reg);
3602                udelay(500);
3603
3604                for (retry = 0; retry < 5; retry++) {
3605                        reg = FDI_RX_IIR(pipe);
3606                        temp = I915_READ(reg);
3607                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3608                        if (temp & FDI_RX_SYMBOL_LOCK) {
3609                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3610                                DRM_DEBUG_KMS("FDI train 2 done.\n");
3611                                break;
3612                        }
3613                        udelay(50);
3614                }
3615                if (retry < 5)
3616                        break;
3617        }
3618        if (i == 4)
3619                DRM_ERROR("FDI train 2 fail!\n");
3620
3621        DRM_DEBUG_KMS("FDI train done.\n");
3622}
3623
3624/* Manual link training for Ivy Bridge A0 parts */
3625static void ivb_manual_fdi_link_train(struct drm_crtc *crtc)
3626{
3627        struct drm_device *dev = crtc->dev;
3628        struct drm_i915_private *dev_priv = dev->dev_private;
3629        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3630        int pipe = intel_crtc->pipe;
3631        u32 reg, temp, i, j;
3632
3633        /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
3634           for train result */
3635        reg = FDI_RX_IMR(pipe);
3636        temp = I915_READ(reg);
3637        temp &= ~FDI_RX_SYMBOL_LOCK;
3638        temp &= ~FDI_RX_BIT_LOCK;
3639        I915_WRITE(reg, temp);
3640
3641        POSTING_READ(reg);
3642        udelay(150);
3643
3644        DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
3645                      I915_READ(FDI_RX_IIR(pipe)));
3646
3647        /* Try each vswing and preemphasis setting twice before moving on */
3648        for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
3649                /* disable first in case we need to retry */
3650                reg = FDI_TX_CTL(pipe);
3651                temp = I915_READ(reg);
3652                temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
3653                temp &= ~FDI_TX_ENABLE;
3654                I915_WRITE(reg, temp);
3655
3656                reg = FDI_RX_CTL(pipe);
3657                temp = I915_READ(reg);
3658                temp &= ~FDI_LINK_TRAIN_AUTO;
3659                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3660                temp &= ~FDI_RX_ENABLE;
3661                I915_WRITE(reg, temp);
3662
3663                /* enable CPU FDI TX and PCH FDI RX */
3664                reg = FDI_TX_CTL(pipe);
3665                temp = I915_READ(reg);
3666                temp &= ~FDI_DP_PORT_WIDTH_MASK;
3667                temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3668                temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
3669                temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
3670                temp |= snb_b_fdi_train_param[j/2];
3671                temp |= FDI_COMPOSITE_SYNC;
3672                I915_WRITE(reg, temp | FDI_TX_ENABLE);
3673
3674                I915_WRITE(FDI_RX_MISC(pipe),
3675                           FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
3676
3677                reg = FDI_RX_CTL(pipe);
3678                temp = I915_READ(reg);
3679                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3680                temp |= FDI_COMPOSITE_SYNC;
3681                I915_WRITE(reg, temp | FDI_RX_ENABLE);
3682
3683                POSTING_READ(reg);
3684                udelay(1); /* should be 0.5us */
3685
3686                for (i = 0; i < 4; i++) {
3687                        reg = FDI_RX_IIR(pipe);
3688                        temp = I915_READ(reg);
3689                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3690
3691                        if (temp & FDI_RX_BIT_LOCK ||
3692                            (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
3693                                I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
3694                                DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
3695                                              i);
3696                                break;
3697                        }
3698                        udelay(1); /* should be 0.5us */
3699                }
3700                if (i == 4) {
3701                        DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
3702                        continue;
3703                }
3704
3705                /* Train 2 */
3706                reg = FDI_TX_CTL(pipe);
3707                temp = I915_READ(reg);
3708                temp &= ~FDI_LINK_TRAIN_NONE_IVB;
3709                temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
3710                I915_WRITE(reg, temp);
3711
3712                reg = FDI_RX_CTL(pipe);
3713                temp = I915_READ(reg);
3714                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3715                temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
3716                I915_WRITE(reg, temp);
3717
3718                POSTING_READ(reg);
3719                udelay(2); /* should be 1.5us */
3720
3721                for (i = 0; i < 4; i++) {
3722                        reg = FDI_RX_IIR(pipe);
3723                        temp = I915_READ(reg);
3724                        DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
3725
3726                        if (temp & FDI_RX_SYMBOL_LOCK ||
3727                            (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
3728                                I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
3729                                DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
3730                                              i);
3731                                goto train_done;
3732                        }
3733                        udelay(2); /* should be 1.5us */
3734                }
3735                if (i == 4)
3736                        DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
3737        }
3738
3739train_done:
3740        DRM_DEBUG_KMS("FDI train done.\n");
3741}
3742
3743static void ironlake_fdi_pll_enable(struct intel_crtc *intel_crtc)
3744{
3745        struct drm_device *dev = intel_crtc->base.dev;
3746        struct drm_i915_private *dev_priv = dev->dev_private;
3747        int pipe = intel_crtc->pipe;
3748        u32 reg, temp;
3749
3750
3751        /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
3752        reg = FDI_RX_CTL(pipe);
3753        temp = I915_READ(reg);
3754        temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
3755        temp |= FDI_DP_PORT_WIDTH(intel_crtc->config->fdi_lanes);
3756        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3757        I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
3758
3759        POSTING_READ(reg);
3760        udelay(200);
3761
3762        /* Switch from Rawclk to PCDclk */
3763        temp = I915_READ(reg);
3764        I915_WRITE(reg, temp | FDI_PCDCLK);
3765
3766        POSTING_READ(reg);
3767        udelay(200);
3768
3769        /* Enable CPU FDI TX PLL, always on for Ironlake */
3770        reg = FDI_TX_CTL(pipe);
3771        temp = I915_READ(reg);
3772        if ((temp & FDI_TX_PLL_ENABLE) == 0) {
3773                I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
3774
3775                POSTING_READ(reg);
3776                udelay(100);
3777        }
3778}
3779
3780static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
3781{
3782        struct drm_device *dev = intel_crtc->base.dev;
3783        struct drm_i915_private *dev_priv = dev->dev_private;
3784        int pipe = intel_crtc->pipe;
3785        u32 reg, temp;
3786
3787        /* Switch from PCDclk to Rawclk */
3788        reg = FDI_RX_CTL(pipe);
3789        temp = I915_READ(reg);
3790        I915_WRITE(reg, temp & ~FDI_PCDCLK);
3791
3792        /* Disable CPU FDI TX PLL */
3793        reg = FDI_TX_CTL(pipe);
3794        temp = I915_READ(reg);
3795        I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
3796
3797        POSTING_READ(reg);
3798        udelay(100);
3799
3800        reg = FDI_RX_CTL(pipe);
3801        temp = I915_READ(reg);
3802        I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
3803
3804        /* Wait for the clocks to turn off. */
3805        POSTING_READ(reg);
3806        udelay(100);
3807}
3808
3809static void ironlake_fdi_disable(struct drm_crtc *crtc)
3810{
3811        struct drm_device *dev = crtc->dev;
3812        struct drm_i915_private *dev_priv = dev->dev_private;
3813        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3814        int pipe = intel_crtc->pipe;
3815        u32 reg, temp;
3816
3817        /* disable CPU FDI tx and PCH FDI rx */
3818        reg = FDI_TX_CTL(pipe);
3819        temp = I915_READ(reg);
3820        I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
3821        POSTING_READ(reg);
3822
3823        reg = FDI_RX_CTL(pipe);
3824        temp = I915_READ(reg);
3825        temp &= ~(0x7 << 16);
3826        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3827        I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
3828
3829        POSTING_READ(reg);
3830        udelay(100);
3831
3832        /* Ironlake workaround, disable clock pointer after downing FDI */
3833        if (HAS_PCH_IBX(dev))
3834                I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
3835
3836        /* still set train pattern 1 */
3837        reg = FDI_TX_CTL(pipe);
3838        temp = I915_READ(reg);
3839        temp &= ~FDI_LINK_TRAIN_NONE;
3840        temp |= FDI_LINK_TRAIN_PATTERN_1;
3841        I915_WRITE(reg, temp);
3842
3843        reg = FDI_RX_CTL(pipe);
3844        temp = I915_READ(reg);
3845        if (HAS_PCH_CPT(dev)) {
3846                temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
3847                temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
3848        } else {
3849                temp &= ~FDI_LINK_TRAIN_NONE;
3850                temp |= FDI_LINK_TRAIN_PATTERN_1;
3851        }
3852        /* BPC in FDI rx is consistent with that in PIPECONF */
3853        temp &= ~(0x07 << 16);
3854        temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
3855        I915_WRITE(reg, temp);
3856
3857        POSTING_READ(reg);
3858        udelay(100);
3859}
3860
3861bool intel_has_pending_fb_unpin(struct drm_device *dev)
3862{
3863        struct intel_crtc *crtc;
3864
3865        /* Note that we don't need to be called with mode_config.lock here
3866         * as our list of CRTC objects is static for the lifetime of the
3867         * device and so cannot disappear as we iterate. Similarly, we can
3868         * happily treat the predicates as racy, atomic checks as userspace
3869         * cannot claim and pin a new fb without at least acquring the
3870         * struct_mutex and so serialising with us.
3871         */
3872        for_each_intel_crtc(dev, crtc) {
3873                if (atomic_read(&crtc->unpin_work_count) == 0)
3874                        continue;
3875
3876                if (crtc->unpin_work)
3877                        intel_wait_for_vblank(dev, crtc->pipe);
3878
3879                return true;
3880        }
3881
3882        return false;
3883}
3884
3885static void page_flip_completed(struct intel_crtc *intel_crtc)
3886{
3887        struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
3888        struct intel_unpin_work *work = intel_crtc->unpin_work;
3889
3890        /* ensure that the unpin work is consistent wrt ->pending. */
3891        smp_rmb();
3892        intel_crtc->unpin_work = NULL;
3893
3894        if (work->event)
3895                drm_send_vblank_event(intel_crtc->base.dev,
3896                                      intel_crtc->pipe,
3897                                      work->event);
3898
3899        drm_crtc_vblank_put(&intel_crtc->base);
3900
3901        wake_up_all(&dev_priv->pending_flip_queue);
3902        queue_work(dev_priv->wq, &work->work);
3903
3904        trace_i915_flip_complete(intel_crtc->plane,
3905                                 work->pending_flip_obj);
3906}
3907
3908void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
3909{
3910        struct drm_device *dev = crtc->dev;
3911        struct drm_i915_private *dev_priv = dev->dev_private;
3912
3913        WARN_ON(waitqueue_active(&dev_priv->pending_flip_queue));
3914        if (WARN_ON(wait_event_timeout(dev_priv->pending_flip_queue,
3915                                       !intel_crtc_has_pending_flip(crtc),
3916                                       60*HZ) == 0)) {
3917                struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3918
3919                spin_lock_irq(&dev->event_lock);
3920                if (intel_crtc->unpin_work) {
3921                        WARN_ONCE(1, "Removing stuck page flip\n");
3922                        page_flip_completed(intel_crtc);
3923                }
3924                spin_unlock_irq(&dev->event_lock);
3925        }
3926
3927        if (crtc->primary->fb) {
3928                mutex_lock(&dev->struct_mutex);
3929                intel_finish_fb(crtc->primary->fb);
3930                mutex_unlock(&dev->struct_mutex);
3931        }
3932}
3933
3934/* Program iCLKIP clock to the desired frequency */
3935static void lpt_program_iclkip(struct drm_crtc *crtc)
3936{
3937        struct drm_device *dev = crtc->dev;
3938        struct drm_i915_private *dev_priv = dev->dev_private;
3939        int clock = to_intel_crtc(crtc)->config->base.adjusted_mode.crtc_clock;
3940        u32 divsel, phaseinc, auxdiv, phasedir = 0;
3941        u32 temp;
3942
3943        mutex_lock(&dev_priv->sb_lock);
3944
3945        /* It is necessary to ungate the pixclk gate prior to programming
3946         * the divisors, and gate it back when it is done.
3947         */
3948        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
3949
3950        /* Disable SSCCTL */
3951        intel_sbi_write(dev_priv, SBI_SSCCTL6,
3952                        intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK) |
3953                                SBI_SSCCTL_DISABLE,
3954                        SBI_ICLK);
3955
3956        /* 20MHz is a corner case which is out of range for the 7-bit divisor */
3957        if (clock == 20000) {
3958                auxdiv = 1;
3959                divsel = 0x41;
3960                phaseinc = 0x20;
3961        } else {
3962                /* The iCLK virtual clock root frequency is in MHz,
3963                 * but the adjusted_mode->crtc_clock in in KHz. To get the
3964                 * divisors, it is necessary to divide one by another, so we
3965                 * convert the virtual clock precision to KHz here for higher
3966                 * precision.
3967                 */
3968                u32 iclk_virtual_root_freq = 172800 * 1000;
3969                u32 iclk_pi_range = 64;
3970                u32 desired_divisor, msb_divisor_value, pi_value;
3971
3972                desired_divisor = (iclk_virtual_root_freq / clock);
3973                msb_divisor_value = desired_divisor / iclk_pi_range;
3974                pi_value = desired_divisor % iclk_pi_range;
3975
3976                auxdiv = 0;
3977                divsel = msb_divisor_value - 2;
3978                phaseinc = pi_value;
3979        }
3980
3981        /* This should not happen with any sane values */
3982        WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
3983                ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
3984        WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
3985                ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
3986
3987        DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
3988                        clock,
3989                        auxdiv,
3990                        divsel,
3991                        phasedir,
3992                        phaseinc);
3993
3994        /* Program SSCDIVINTPHASE6 */
3995        temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
3996        temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
3997        temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
3998        temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
3999        temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
4000        temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
4001        temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
4002        intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
4003
4004        /* Program SSCAUXDIV */
4005        temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
4006        temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
4007        temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
4008        intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
4009
4010        /* Enable modulator and associated divider */
4011        temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
4012        temp &= ~SBI_SSCCTL_DISABLE;
4013        intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
4014
4015        /* Wait for initialization time */
4016        udelay(24);
4017
4018        I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
4019
4020        mutex_unlock(&dev_priv->sb_lock);
4021}
4022
4023static void ironlake_pch_transcoder_set_timings(struct intel_crtc *crtc,
4024                                                enum pipe pch_transcoder)
4025{
4026        struct drm_device *dev = crtc->base.dev;
4027        struct drm_i915_private *dev_priv = dev->dev_private;
4028        enum transcoder cpu_transcoder = crtc->config->cpu_transcoder;
4029
4030        I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
4031                   I915_READ(HTOTAL(cpu_transcoder)));
4032        I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
4033                   I915_READ(HBLANK(cpu_transcoder)));
4034        I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
4035                   I915_READ(HSYNC(cpu_transcoder)));
4036
4037        I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
4038                   I915_READ(VTOTAL(cpu_transcoder)));
4039        I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
4040                   I915_READ(VBLANK(cpu_transcoder)));
4041        I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
4042                   I915_READ(VSYNC(cpu_transcoder)));
4043        I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
4044                   I915_READ(VSYNCSHIFT(cpu_transcoder)));
4045}
4046
4047static void cpt_set_fdi_bc_bifurcation(struct drm_device *dev, bool enable)
4048{
4049        struct drm_i915_private *dev_priv = dev->dev_private;
4050        uint32_t temp;
4051
4052        temp = I915_READ(SOUTH_CHICKEN1);
4053        if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
4054                return;
4055
4056        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
4057        WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
4058
4059        temp &= ~FDI_BC_BIFURCATION_SELECT;
4060        if (enable)
4061                temp |= FDI_BC_BIFURCATION_SELECT;
4062
4063        DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
4064        I915_WRITE(SOUTH_CHICKEN1, temp);
4065        POSTING_READ(SOUTH_CHICKEN1);
4066}
4067
4068static void ivybridge_update_fdi_bc_bifurcation(struct intel_crtc *intel_crtc)
4069{
4070        struct drm_device *dev = intel_crtc->base.dev;
4071
4072        switch (intel_crtc->pipe) {
4073        case PIPE_A:
4074                break;
4075        case PIPE_B:
4076                if (intel_crtc->config->fdi_lanes > 2)
4077                        cpt_set_fdi_bc_bifurcation(dev, false);
4078                else
4079                        cpt_set_fdi_bc_bifurcation(dev, true);
4080
4081                break;
4082        case PIPE_C:
4083                cpt_set_fdi_bc_bifurcation(dev, true);
4084
4085                break;
4086        default:
4087                BUG();
4088        }
4089}
4090
4091/*
4092 * Enable PCH resources required for PCH ports:
4093 *   - PCH PLLs
4094 *   - FDI training & RX/TX
4095 *   - update transcoder timings
4096 *   - DP transcoding bits
4097 *   - transcoder
4098 */
4099static void ironlake_pch_enable(struct drm_crtc *crtc)
4100{
4101        struct drm_device *dev = crtc->dev;
4102        struct drm_i915_private *dev_priv = dev->dev_private;
4103        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4104        int pipe = intel_crtc->pipe;
4105        u32 reg, temp;
4106
4107        assert_pch_transcoder_disabled(dev_priv, pipe);
4108
4109        if (IS_IVYBRIDGE(dev))
4110                ivybridge_update_fdi_bc_bifurcation(intel_crtc);
4111
4112        /* Write the TU size bits before fdi link training, so that error
4113         * detection works. */
4114        I915_WRITE(FDI_RX_TUSIZE1(pipe),
4115                   I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
4116
4117        /* For PCH output, training FDI link */
4118        dev_priv->display.fdi_link_train(crtc);
4119
4120        /* We need to program the right clock selection before writing the pixel
4121         * mutliplier into the DPLL. */
4122        if (HAS_PCH_CPT(dev)) {
4123                u32 sel;
4124
4125                temp = I915_READ(PCH_DPLL_SEL);
4126                temp |= TRANS_DPLL_ENABLE(pipe);
4127                sel = TRANS_DPLLB_SEL(pipe);
4128                if (intel_crtc->config->shared_dpll == DPLL_ID_PCH_PLL_B)
4129                        temp |= sel;
4130                else
4131                        temp &= ~sel;
4132                I915_WRITE(PCH_DPLL_SEL, temp);
4133        }
4134
4135        /* XXX: pch pll's can be enabled any time before we enable the PCH
4136         * transcoder, and we actually should do this to not upset any PCH
4137         * transcoder that already use the clock when we share it.
4138         *
4139         * Note that enable_shared_dpll tries to do the right thing, but
4140         * get_shared_dpll unconditionally resets the pll - we need that to have
4141         * the right LVDS enable sequence. */
4142        intel_enable_shared_dpll(intel_crtc);
4143
4144        /* set transcoder timing, panel must allow it */
4145        assert_panel_unlocked(dev_priv, pipe);
4146        ironlake_pch_transcoder_set_timings(intel_crtc, pipe);
4147
4148        intel_fdi_normal_train(crtc);
4149
4150        /* For PCH DP, enable TRANS_DP_CTL */
4151        if (HAS_PCH_CPT(dev) && intel_crtc->config->has_dp_encoder) {
4152                u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
4153                reg = TRANS_DP_CTL(pipe);
4154                temp = I915_READ(reg);
4155                temp &= ~(TRANS_DP_PORT_SEL_MASK |
4156                          TRANS_DP_SYNC_MASK |
4157                          TRANS_DP_BPC_MASK);
4158                temp |= TRANS_DP_OUTPUT_ENABLE;
4159                temp |= bpc << 9; /* same format but at 11:9 */
4160
4161                if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
4162                        temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
4163                if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
4164                        temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
4165
4166                switch (intel_trans_dp_port_sel(crtc)) {
4167                case PCH_DP_B:
4168                        temp |= TRANS_DP_PORT_SEL_B;
4169                        break;
4170                case PCH_DP_C:
4171                        temp |= TRANS_DP_PORT_SEL_C;
4172                        break;
4173                case PCH_DP_D:
4174                        temp |= TRANS_DP_PORT_SEL_D;
4175                        break;
4176                default:
4177                        BUG();
4178                }
4179
4180                I915_WRITE(reg, temp);
4181        }
4182
4183        ironlake_enable_pch_transcoder(dev_priv, pipe);
4184}
4185
4186static void lpt_pch_enable(struct drm_crtc *crtc)
4187{
4188        struct drm_device *dev = crtc->dev;
4189        struct drm_i915_private *dev_priv = dev->dev_private;
4190        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4191        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
4192
4193        assert_pch_transcoder_disabled(dev_priv, TRANSCODER_A);
4194
4195        lpt_program_iclkip(crtc);
4196
4197        /* Set transcoder timing. */
4198        ironlake_pch_transcoder_set_timings(intel_crtc, PIPE_A);
4199
4200        lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
4201}
4202
4203void intel_put_shared_dpll(struct intel_crtc *crtc)
4204{
4205        struct intel_shared_dpll *pll = intel_crtc_to_shared_dpll(crtc);
4206
4207        if (pll == NULL)
4208                return;
4209
4210        if (!(pll->config.crtc_mask & (1 << crtc->pipe))) {
4211                WARN(1, "bad %s crtc mask\n", pll->name);
4212                return;
4213        }
4214
4215        pll->config.crtc_mask &= ~(1 << crtc->pipe);
4216        if (pll->config.crtc_mask == 0) {
4217                WARN_ON(pll->on);
4218                WARN_ON(pll->active);
4219        }
4220
4221        crtc->config->shared_dpll = DPLL_ID_PRIVATE;
4222}
4223
4224struct intel_shared_dpll *intel_get_shared_dpll(struct intel_crtc *crtc,
4225                                                struct intel_crtc_state *crtc_state)
4226{
4227        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
4228        struct intel_shared_dpll *pll;
4229        enum intel_dpll_id i;
4230
4231        if (HAS_PCH_IBX(dev_priv->dev)) {
4232                /* Ironlake PCH has a fixed PLL->PCH pipe mapping. */
4233                i = (enum intel_dpll_id) crtc->pipe;
4234                pll = &dev_priv->shared_dplls[i];
4235
4236                DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4237                              crtc->base.base.id, pll->name);
4238
4239                WARN_ON(pll->new_config->crtc_mask);
4240
4241                goto found;
4242        }
4243
4244        if (IS_BROXTON(dev_priv->dev)) {
4245                /* PLL is attached to port in bxt */
4246                struct intel_encoder *encoder;
4247                struct intel_digital_port *intel_dig_port;
4248
4249                encoder = intel_ddi_get_crtc_new_encoder(crtc_state);
4250                if (WARN_ON(!encoder))
4251                        return NULL;
4252
4253                intel_dig_port = enc_to_dig_port(&encoder->base);
4254                /* 1:1 mapping between ports and PLLs */
4255                i = (enum intel_dpll_id)intel_dig_port->port;
4256                pll = &dev_priv->shared_dplls[i];
4257                DRM_DEBUG_KMS("CRTC:%d using pre-allocated %s\n",
4258                        crtc->base.base.id, pll->name);
4259                WARN_ON(pll->new_config->crtc_mask);
4260
4261                goto found;
4262        }
4263
4264        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4265                pll = &dev_priv->shared_dplls[i];
4266
4267                /* Only want to check enabled timings first */
4268                if (pll->new_config->crtc_mask == 0)
4269                        continue;
4270
4271                if (memcmp(&crtc_state->dpll_hw_state,
4272                           &pll->new_config->hw_state,
4273                           sizeof(pll->new_config->hw_state)) == 0) {
4274                        DRM_DEBUG_KMS("CRTC:%d sharing existing %s (crtc mask 0x%08x, ative %d)\n",
4275                                      crtc->base.base.id, pll->name,
4276                                      pll->new_config->crtc_mask,
4277                                      pll->active);
4278                        goto found;
4279                }
4280        }
4281
4282        /* Ok no matching timings, maybe there's a free one? */
4283        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4284                pll = &dev_priv->shared_dplls[i];
4285                if (pll->new_config->crtc_mask == 0) {
4286                        DRM_DEBUG_KMS("CRTC:%d allocated %s\n",
4287                                      crtc->base.base.id, pll->name);
4288                        goto found;
4289                }
4290        }
4291
4292        return NULL;
4293
4294found:
4295        if (pll->new_config->crtc_mask == 0)
4296                pll->new_config->hw_state = crtc_state->dpll_hw_state;
4297
4298        crtc_state->shared_dpll = i;
4299        DRM_DEBUG_DRIVER("using %s for pipe %c\n", pll->name,
4300                         pipe_name(crtc->pipe));
4301
4302        pll->new_config->crtc_mask |= 1 << crtc->pipe;
4303
4304        return pll;
4305}
4306
4307/**
4308 * intel_shared_dpll_start_config - start a new PLL staged config
4309 * @dev_priv: DRM device
4310 * @clear_pipes: mask of pipes that will have their PLLs freed
4311 *
4312 * Starts a new PLL staged config, copying the current config but
4313 * releasing the references of pipes specified in clear_pipes.
4314 */
4315static int intel_shared_dpll_start_config(struct drm_i915_private *dev_priv,
4316                                          unsigned clear_pipes)
4317{
4318        struct intel_shared_dpll *pll;
4319        enum intel_dpll_id i;
4320
4321        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4322                pll = &dev_priv->shared_dplls[i];
4323
4324                pll->new_config = kmemdup(&pll->config, sizeof pll->config,
4325                                          GFP_KERNEL);
4326                if (!pll->new_config)
4327                        goto cleanup;
4328
4329                pll->new_config->crtc_mask &= ~clear_pipes;
4330        }
4331
4332        return 0;
4333
4334cleanup:
4335        while (--i >= 0) {
4336                pll = &dev_priv->shared_dplls[i];
4337                kfree(pll->new_config);
4338                pll->new_config = NULL;
4339        }
4340
4341        return -ENOMEM;
4342}
4343
4344static void intel_shared_dpll_commit(struct drm_i915_private *dev_priv)
4345{
4346        struct intel_shared_dpll *pll;
4347        enum intel_dpll_id i;
4348
4349        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4350                pll = &dev_priv->shared_dplls[i];
4351
4352                WARN_ON(pll->new_config == &pll->config);
4353
4354                pll->config = *pll->new_config;
4355                kfree(pll->new_config);
4356                pll->new_config = NULL;
4357        }
4358}
4359
4360static void intel_shared_dpll_abort_config(struct drm_i915_private *dev_priv)
4361{
4362        struct intel_shared_dpll *pll;
4363        enum intel_dpll_id i;
4364
4365        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
4366                pll = &dev_priv->shared_dplls[i];
4367
4368                WARN_ON(pll->new_config == &pll->config);
4369
4370                kfree(pll->new_config);
4371                pll->new_config = NULL;
4372        }
4373}
4374
4375static void cpt_verify_modeset(struct drm_device *dev, int pipe)
4376{
4377        struct drm_i915_private *dev_priv = dev->dev_private;
4378        int dslreg = PIPEDSL(pipe);
4379        u32 temp;
4380
4381        temp = I915_READ(dslreg);
4382        udelay(500);
4383        if (wait_for(I915_READ(dslreg) != temp, 5)) {
4384                if (wait_for(I915_READ(dslreg) != temp, 5))
4385                        DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
4386        }
4387}
4388
4389/**
4390 * skl_update_scaler_users - Stages update to crtc's scaler state
4391 * @intel_crtc: crtc
4392 * @crtc_state: crtc_state
4393 * @plane: plane (NULL indicates crtc is requesting update)
4394 * @plane_state: plane's state
4395 * @force_detach: request unconditional detachment of scaler
4396 *
4397 * This function updates scaler state for requested plane or crtc.
4398 * To request scaler usage update for a plane, caller shall pass plane pointer.
4399 * To request scaler usage update for crtc, caller shall pass plane pointer
4400 * as NULL.
4401 *
4402 * Return
4403 *     0 - scaler_usage updated successfully
4404 *    error - requested scaling cannot be supported or other error condition
4405 */
4406int
4407skl_update_scaler_users(
4408        struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state,
4409        struct intel_plane *intel_plane, struct intel_plane_state *plane_state,
4410        int force_detach)
4411{
4412        int need_scaling;
4413        int idx;
4414        int src_w, src_h, dst_w, dst_h;
4415        int *scaler_id;
4416        struct drm_framebuffer *fb;
4417        struct intel_crtc_scaler_state *scaler_state;
4418        unsigned int rotation;
4419
4420        if (!intel_crtc || !crtc_state)
4421                return 0;
4422
4423        scaler_state = &crtc_state->scaler_state;
4424
4425        idx = intel_plane ? drm_plane_index(&intel_plane->base) : SKL_CRTC_INDEX;
4426        fb = intel_plane ? plane_state->base.fb : NULL;
4427
4428        if (intel_plane) {
4429                src_w = drm_rect_width(&plane_state->src) >> 16;
4430                src_h = drm_rect_height(&plane_state->src) >> 16;
4431                dst_w = drm_rect_width(&plane_state->dst);
4432                dst_h = drm_rect_height(&plane_state->dst);
4433                scaler_id = &plane_state->scaler_id;
4434                rotation = plane_state->base.rotation;
4435        } else {
4436                struct drm_display_mode *adjusted_mode =
4437                        &crtc_state->base.adjusted_mode;
4438                src_w = crtc_state->pipe_src_w;
4439                src_h = crtc_state->pipe_src_h;
4440                dst_w = adjusted_mode->hdisplay;
4441                dst_h = adjusted_mode->vdisplay;
4442                scaler_id = &scaler_state->scaler_id;
4443                rotation = DRM_ROTATE_0;
4444        }
4445
4446        need_scaling = intel_rotation_90_or_270(rotation) ?
4447                (src_h != dst_w || src_w != dst_h):
4448                (src_w != dst_w || src_h != dst_h);
4449
4450        /*
4451         * if plane is being disabled or scaler is no more required or force detach
4452         *  - free scaler binded to this plane/crtc
4453         *  - in order to do this, update crtc->scaler_usage
4454         *
4455         * Here scaler state in crtc_state is set free so that
4456         * scaler can be assigned to other user. Actual register
4457         * update to free the scaler is done in plane/panel-fit programming.
4458         * For this purpose crtc/plane_state->scaler_id isn't reset here.
4459         */
4460        if (force_detach || !need_scaling || (intel_plane &&
4461                (!fb || !plane_state->visible))) {
4462                if (*scaler_id >= 0) {
4463                        scaler_state->scaler_users &= ~(1 << idx);
4464                        scaler_state->scalers[*scaler_id].in_use = 0;
4465
4466                        DRM_DEBUG_KMS("Staged freeing scaler id %d.%d from %s:%d "
4467                                "crtc_state = %p scaler_users = 0x%x\n",
4468                                intel_crtc->pipe, *scaler_id, intel_plane ? "PLANE" : "CRTC",
4469                                intel_plane ? intel_plane->base.base.id :
4470                                intel_crtc->base.base.id, crtc_state,
4471                                scaler_state->scaler_users);
4472                        *scaler_id = -1;
4473                }
4474                return 0;
4475        }
4476
4477        /* range checks */
4478        if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
4479                dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
4480
4481                src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
4482                dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H) {
4483                DRM_DEBUG_KMS("%s:%d scaler_user index %u.%u: src %ux%u dst %ux%u "
4484                        "size is out of scaler range\n",
4485                        intel_plane ? "PLANE" : "CRTC",
4486                        intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4487                        intel_crtc->pipe, idx, src_w, src_h, dst_w, dst_h);
4488                return -EINVAL;
4489        }
4490
4491        /* check colorkey */
4492        if (WARN_ON(intel_plane &&
4493                intel_plane->ckey.flags != I915_SET_COLORKEY_NONE)) {
4494                DRM_DEBUG_KMS("PLANE:%d scaling %ux%u->%ux%u not allowed with colorkey",
4495                        intel_plane->base.base.id, src_w, src_h, dst_w, dst_h);
4496                return -EINVAL;
4497        }
4498
4499        /* Check src format */
4500        if (intel_plane) {
4501                switch (fb->pixel_format) {
4502                case DRM_FORMAT_RGB565:
4503                case DRM_FORMAT_XBGR8888:
4504                case DRM_FORMAT_XRGB8888:
4505                case DRM_FORMAT_ABGR8888:
4506                case DRM_FORMAT_ARGB8888:
4507                case DRM_FORMAT_XRGB2101010:
4508                case DRM_FORMAT_XBGR2101010:
4509                case DRM_FORMAT_YUYV:
4510                case DRM_FORMAT_YVYU:
4511                case DRM_FORMAT_UYVY:
4512                case DRM_FORMAT_VYUY:
4513                        break;
4514                default:
4515                        DRM_DEBUG_KMS("PLANE:%d FB:%d unsupported scaling format 0x%x\n",
4516                                intel_plane->base.base.id, fb->base.id, fb->pixel_format);
4517                        return -EINVAL;
4518                }
4519        }
4520
4521        /* mark this plane as a scaler user in crtc_state */
4522        scaler_state->scaler_users |= (1 << idx);
4523        DRM_DEBUG_KMS("%s:%d staged scaling request for %ux%u->%ux%u "
4524                "crtc_state = %p scaler_users = 0x%x\n",
4525                intel_plane ? "PLANE" : "CRTC",
4526                intel_plane ? intel_plane->base.base.id : intel_crtc->base.base.id,
4527                src_w, src_h, dst_w, dst_h, crtc_state, scaler_state->scaler_users);
4528        return 0;
4529}
4530
4531static void skylake_pfit_update(struct intel_crtc *crtc, int enable)
4532{
4533        struct drm_device *dev = crtc->base.dev;
4534        struct drm_i915_private *dev_priv = dev->dev_private;
4535        int pipe = crtc->pipe;
4536        struct intel_crtc_scaler_state *scaler_state =
4537                &crtc->config->scaler_state;
4538
4539        DRM_DEBUG_KMS("for crtc_state = %p\n", crtc->config);
4540
4541        /* To update pfit, first update scaler state */
4542        skl_update_scaler_users(crtc, crtc->config, NULL, NULL, !enable);
4543        intel_atomic_setup_scalers(crtc->base.dev, crtc, crtc->config);
4544        skl_detach_scalers(crtc);
4545        if (!enable)
4546                return;
4547
4548        if (crtc->config->pch_pfit.enabled) {
4549                int id;
4550
4551                if (WARN_ON(crtc->config->scaler_state.scaler_id < 0)) {
4552                        DRM_ERROR("Requesting pfit without getting a scaler first\n");
4553                        return;
4554                }
4555
4556                id = scaler_state->scaler_id;
4557                I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
4558                        PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
4559                I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc->config->pch_pfit.pos);
4560                I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc->config->pch_pfit.size);
4561
4562                DRM_DEBUG_KMS("for crtc_state = %p scaler_id = %d\n", crtc->config, id);
4563        }
4564}
4565
4566static void ironlake_pfit_enable(struct intel_crtc *crtc)
4567{
4568        struct drm_device *dev = crtc->base.dev;
4569        struct drm_i915_private *dev_priv = dev->dev_private;
4570        int pipe = crtc->pipe;
4571
4572        if (crtc->config->pch_pfit.enabled) {
4573                /* Force use of hard-coded filter coefficients
4574                 * as some pre-programmed values are broken,
4575                 * e.g. x201.
4576                 */
4577                if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev))
4578                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
4579                                                 PF_PIPE_SEL_IVB(pipe));
4580                else
4581                        I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
4582                I915_WRITE(PF_WIN_POS(pipe), crtc->config->pch_pfit.pos);
4583                I915_WRITE(PF_WIN_SZ(pipe), crtc->config->pch_pfit.size);
4584        }
4585}
4586
4587static void intel_enable_sprite_planes(struct drm_crtc *crtc)
4588{
4589        struct drm_device *dev = crtc->dev;
4590        enum pipe pipe = to_intel_crtc(crtc)->pipe;
4591        struct drm_plane *plane;
4592        struct intel_plane *intel_plane;
4593
4594        drm_for_each_legacy_plane(plane, &dev->mode_config.plane_list) {
4595                intel_plane = to_intel_plane(plane);
4596                if (intel_plane->pipe == pipe)
4597                        intel_plane_restore(&intel_plane->base);
4598        }
4599}
4600
4601void hsw_enable_ips(struct intel_crtc *crtc)
4602{
4603        struct drm_device *dev = crtc->base.dev;
4604        struct drm_i915_private *dev_priv = dev->dev_private;
4605
4606        if (!crtc->config->ips_enabled)
4607                return;
4608
4609        /* We can only enable IPS after we enable a plane and wait for a vblank */
4610        intel_wait_for_vblank(dev, crtc->pipe);
4611
4612        assert_plane_enabled(dev_priv, crtc->plane);
4613        if (IS_BROADWELL(dev)) {
4614                mutex_lock(&dev_priv->rps.hw_lock);
4615                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0xc0000000));
4616                mutex_unlock(&dev_priv->rps.hw_lock);
4617                /* Quoting Art Runyan: "its not safe to expect any particular
4618                 * value in IPS_CTL bit 31 after enabling IPS through the
4619                 * mailbox." Moreover, the mailbox may return a bogus state,
4620                 * so we need to just enable it and continue on.
4621                 */
4622        } else {
4623                I915_WRITE(IPS_CTL, IPS_ENABLE);
4624                /* The bit only becomes 1 in the next vblank, so this wait here
4625                 * is essentially intel_wait_for_vblank. If we don't have this
4626                 * and don't wait for vblanks until the end of crtc_enable, then
4627                 * the HW state readout code will complain that the expected
4628                 * IPS_CTL value is not the one we read. */
4629                if (wait_for(I915_READ_NOTRACE(IPS_CTL) & IPS_ENABLE, 50))
4630                        DRM_ERROR("Timed out waiting for IPS enable\n");
4631        }
4632}
4633
4634void hsw_disable_ips(struct intel_crtc *crtc)
4635{
4636        struct drm_device *dev = crtc->base.dev;
4637        struct drm_i915_private *dev_priv = dev->dev_private;
4638
4639        if (!crtc->config->ips_enabled)
4640                return;
4641
4642        assert_plane_enabled(dev_priv, crtc->plane);
4643        if (IS_BROADWELL(dev)) {
4644                mutex_lock(&dev_priv->rps.hw_lock);
4645                WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
4646                mutex_unlock(&dev_priv->rps.hw_lock);
4647                /* wait for pcode to finish disabling IPS, which may take up to 42ms */
4648                if (wait_for((I915_READ(IPS_CTL) & IPS_ENABLE) == 0, 42))
4649                        DRM_ERROR("Timed out waiting for IPS disable\n");
4650        } else {
4651                I915_WRITE(IPS_CTL, 0);
4652                POSTING_READ(IPS_CTL);
4653        }
4654
4655        /* We need to wait for a vblank before we can disable the plane. */
4656        intel_wait_for_vblank(dev, crtc->pipe);
4657}
4658
4659/** Loads the palette/gamma unit for the CRTC with the prepared values */
4660static void intel_crtc_load_lut(struct drm_crtc *crtc)
4661{
4662        struct drm_device *dev = crtc->dev;
4663        struct drm_i915_private *dev_priv = dev->dev_private;
4664        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4665        enum pipe pipe = intel_crtc->pipe;
4666        int palreg = PALETTE(pipe);
4667        int i;
4668        bool reenable_ips = false;
4669
4670        /* The clocks have to be on to load the palette. */
4671        if (!crtc->state->enable || !intel_crtc->active)
4672                return;
4673
4674        if (HAS_GMCH_DISPLAY(dev_priv->dev)) {
4675                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI))
4676                        assert_dsi_pll_enabled(dev_priv);
4677                else
4678                        assert_pll_enabled(dev_priv, pipe);
4679        }
4680
4681        /* use legacy palette for Ironlake */
4682        if (!HAS_GMCH_DISPLAY(dev))
4683                palreg = LGC_PALETTE(pipe);
4684
4685        /* Workaround : Do not read or write the pipe palette/gamma data while
4686         * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
4687         */
4688        if (IS_HASWELL(dev) && intel_crtc->config->ips_enabled &&
4689            ((I915_READ(GAMMA_MODE(pipe)) & GAMMA_MODE_MODE_MASK) ==
4690             GAMMA_MODE_MODE_SPLIT)) {
4691                hsw_disable_ips(intel_crtc);
4692                reenable_ips = true;
4693        }
4694
4695        for (i = 0; i < 256; i++) {
4696                I915_WRITE(palreg + 4 * i,
4697                           (intel_crtc->lut_r[i] << 16) |
4698                           (intel_crtc->lut_g[i] << 8) |
4699                           intel_crtc->lut_b[i]);
4700        }
4701
4702        if (reenable_ips)
4703                hsw_enable_ips(intel_crtc);
4704}
4705
4706static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
4707{
4708        if (intel_crtc->overlay) {
4709                struct drm_device *dev = intel_crtc->base.dev;
4710                struct drm_i915_private *dev_priv = dev->dev_private;
4711
4712                mutex_lock(&dev->struct_mutex);
4713                dev_priv->mm.interruptible = false;
4714                (void) intel_overlay_switch_off(intel_crtc->overlay);
4715                dev_priv->mm.interruptible = true;
4716                mutex_unlock(&dev->struct_mutex);
4717        }
4718
4719        /* Let userspace switch the overlay on again. In most cases userspace
4720         * has to recompute where to put it anyway.
4721         */
4722}
4723
4724/**
4725 * intel_post_enable_primary - Perform operations after enabling primary plane
4726 * @crtc: the CRTC whose primary plane was just enabled
4727 *
4728 * Performs potentially sleeping operations that must be done after the primary
4729 * plane is enabled, such as updating FBC and IPS.  Note that this may be
4730 * called due to an explicit primary plane update, or due to an implicit
4731 * re-enable that is caused when a sprite plane is updated to no longer
4732 * completely hide the primary plane.
4733 */
4734static void
4735intel_post_enable_primary(struct drm_crtc *crtc)
4736{
4737        struct drm_device *dev = crtc->dev;
4738        struct drm_i915_private *dev_priv = dev->dev_private;
4739        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4740        int pipe = intel_crtc->pipe;
4741
4742        /*
4743         * BDW signals flip done immediately if the plane
4744         * is disabled, even if the plane enable is already
4745         * armed to occur at the next vblank :(
4746         */
4747        if (IS_BROADWELL(dev))
4748                intel_wait_for_vblank(dev, pipe);
4749
4750        /*
4751         * FIXME IPS should be fine as long as one plane is
4752         * enabled, but in practice it seems to have problems
4753         * when going from primary only to sprite only and vice
4754         * versa.
4755         */
4756        hsw_enable_ips(intel_crtc);
4757
4758        mutex_lock(&dev->struct_mutex);
4759        intel_fbc_update(dev);
4760        mutex_unlock(&dev->struct_mutex);
4761
4762        /*
4763         * Gen2 reports pipe underruns whenever all planes are disabled.
4764         * So don't enable underrun reporting before at least some planes
4765         * are enabled.
4766         * FIXME: Need to fix the logic to work when we turn off all planes
4767         * but leave the pipe running.
4768         */
4769        if (IS_GEN2(dev))
4770                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4771
4772        /* Underruns don't raise interrupts, so check manually. */
4773        if (HAS_GMCH_DISPLAY(dev))
4774                i9xx_check_fifo_underruns(dev_priv);
4775}
4776
4777/**
4778 * intel_pre_disable_primary - Perform operations before disabling primary plane
4779 * @crtc: the CRTC whose primary plane is to be disabled
4780 *
4781 * Performs potentially sleeping operations that must be done before the
4782 * primary plane is disabled, such as updating FBC and IPS.  Note that this may
4783 * be called due to an explicit primary plane update, or due to an implicit
4784 * disable that is caused when a sprite plane completely hides the primary
4785 * plane.
4786 */
4787static void
4788intel_pre_disable_primary(struct drm_crtc *crtc)
4789{
4790        struct drm_device *dev = crtc->dev;
4791        struct drm_i915_private *dev_priv = dev->dev_private;
4792        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4793        int pipe = intel_crtc->pipe;
4794
4795        /*
4796         * Gen2 reports pipe underruns whenever all planes are disabled.
4797         * So diasble underrun reporting before all the planes get disabled.
4798         * FIXME: Need to fix the logic to work when we turn off all planes
4799         * but leave the pipe running.
4800         */
4801        if (IS_GEN2(dev))
4802                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
4803
4804        /*
4805         * Vblank time updates from the shadow to live plane control register
4806         * are blocked if the memory self-refresh mode is active at that
4807         * moment. So to make sure the plane gets truly disabled, disable
4808         * first the self-refresh mode. The self-refresh enable bit in turn
4809         * will be checked/applied by the HW only at the next frame start
4810         * event which is after the vblank start event, so we need to have a
4811         * wait-for-vblank between disabling the plane and the pipe.
4812         */
4813        if (HAS_GMCH_DISPLAY(dev))
4814                intel_set_memory_cxsr(dev_priv, false);
4815
4816        mutex_lock(&dev->struct_mutex);
4817        if (dev_priv->fbc.crtc == intel_crtc)
4818                intel_fbc_disable(dev);
4819        mutex_unlock(&dev->struct_mutex);
4820
4821        /*
4822         * FIXME IPS should be fine as long as one plane is
4823         * enabled, but in practice it seems to have problems
4824         * when going from primary only to sprite only and vice
4825         * versa.
4826         */
4827        hsw_disable_ips(intel_crtc);
4828}
4829
4830static void intel_crtc_enable_planes(struct drm_crtc *crtc)
4831{
4832        struct drm_device *dev = crtc->dev;
4833        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4834        int pipe = intel_crtc->pipe;
4835
4836        intel_enable_primary_hw_plane(crtc->primary, crtc);
4837        intel_enable_sprite_planes(crtc);
4838        intel_crtc_update_cursor(crtc, true);
4839
4840        intel_post_enable_primary(crtc);
4841
4842        /*
4843         * FIXME: Once we grow proper nuclear flip support out of this we need
4844         * to compute the mask of flip planes precisely. For the time being
4845         * consider this a flip to a NULL plane.
4846         */
4847        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4848}
4849
4850static void intel_crtc_disable_planes(struct drm_crtc *crtc)
4851{
4852        struct drm_device *dev = crtc->dev;
4853        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4854        struct intel_plane *intel_plane;
4855        int pipe = intel_crtc->pipe;
4856
4857        if (!intel_crtc->active)
4858                return;
4859
4860        intel_crtc_wait_for_pending_flips(crtc);
4861
4862        intel_pre_disable_primary(crtc);
4863
4864        intel_crtc_dpms_overlay_disable(intel_crtc);
4865        for_each_intel_plane(dev, intel_plane) {
4866                if (intel_plane->pipe == pipe) {
4867                        struct drm_crtc *from = intel_plane->base.crtc;
4868
4869                        intel_plane->disable_plane(&intel_plane->base,
4870                                                   from ?: crtc, true);
4871                }
4872        }
4873
4874        /*
4875         * FIXME: Once we grow proper nuclear flip support out of this we need
4876         * to compute the mask of flip planes precisely. For the time being
4877         * consider this a flip to a NULL plane.
4878         */
4879        intel_frontbuffer_flip(dev, INTEL_FRONTBUFFER_ALL_MASK(pipe));
4880}
4881
4882static void ironlake_crtc_enable(struct drm_crtc *crtc)
4883{
4884        struct drm_device *dev = crtc->dev;
4885        struct drm_i915_private *dev_priv = dev->dev_private;
4886        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4887        struct intel_encoder *encoder;
4888        int pipe = intel_crtc->pipe;
4889
4890        WARN_ON(!crtc->state->enable);
4891
4892        if (intel_crtc->active)
4893                return;
4894
4895        if (intel_crtc->config->has_pch_encoder)
4896                intel_prepare_shared_dpll(intel_crtc);
4897
4898        if (intel_crtc->config->has_dp_encoder)
4899                intel_dp_set_m_n(intel_crtc, M1_N1);
4900
4901        intel_set_pipe_timings(intel_crtc);
4902
4903        if (intel_crtc->config->has_pch_encoder) {
4904                intel_cpu_transcoder_set_m_n(intel_crtc,
4905                                     &intel_crtc->config->fdi_m_n, NULL);
4906        }
4907
4908        ironlake_set_pipeconf(crtc);
4909
4910        intel_crtc->active = true;
4911
4912        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
4913        intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
4914
4915        for_each_encoder_on_crtc(dev, crtc, encoder)
4916                if (encoder->pre_enable)
4917                        encoder->pre_enable(encoder);
4918
4919        if (intel_crtc->config->has_pch_encoder) {
4920                /* Note: FDI PLL enabling _must_ be done before we enable the
4921                 * cpu pipes, hence this is separate from all the other fdi/pch
4922                 * enabling. */
4923                ironlake_fdi_pll_enable(intel_crtc);
4924        } else {
4925                assert_fdi_tx_disabled(dev_priv, pipe);
4926                assert_fdi_rx_disabled(dev_priv, pipe);
4927        }
4928
4929        ironlake_pfit_enable(intel_crtc);
4930
4931        /*
4932         * On ILK+ LUT must be loaded before the pipe is running but with
4933         * clocks enabled
4934         */
4935        intel_crtc_load_lut(crtc);
4936
4937        intel_update_watermarks(crtc);
4938        intel_enable_pipe(intel_crtc);
4939
4940        if (intel_crtc->config->has_pch_encoder)
4941                ironlake_pch_enable(crtc);
4942
4943        assert_vblank_disabled(crtc);
4944        drm_crtc_vblank_on(crtc);
4945
4946        for_each_encoder_on_crtc(dev, crtc, encoder)
4947                encoder->enable(encoder);
4948
4949        if (HAS_PCH_CPT(dev))
4950                cpt_verify_modeset(dev, intel_crtc->pipe);
4951}
4952
4953/* IPS only exists on ULT machines and is tied to pipe A. */
4954static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
4955{
4956        return HAS_IPS(crtc->base.dev) && crtc->pipe == PIPE_A;
4957}
4958
4959/*
4960 * This implements the workaround described in the "notes" section of the mode
4961 * set sequence documentation. When going from no pipes or single pipe to
4962 * multiple pipes, and planes are enabled after the pipe, we need to wait at
4963 * least 2 vblanks on the first pipe before enabling planes on the second pipe.
4964 */
4965static void haswell_mode_set_planes_workaround(struct intel_crtc *crtc)
4966{
4967        struct drm_device *dev = crtc->base.dev;
4968        struct intel_crtc *crtc_it, *other_active_crtc = NULL;
4969
4970        /* We want to get the other_active_crtc only if there's only 1 other
4971         * active crtc. */
4972        for_each_intel_crtc(dev, crtc_it) {
4973                if (!crtc_it->active || crtc_it == crtc)
4974                        continue;
4975
4976                if (other_active_crtc)
4977                        return;
4978
4979                other_active_crtc = crtc_it;
4980        }
4981        if (!other_active_crtc)
4982                return;
4983
4984        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4985        intel_wait_for_vblank(dev, other_active_crtc->pipe);
4986}
4987
4988static void haswell_crtc_enable(struct drm_crtc *crtc)
4989{
4990        struct drm_device *dev = crtc->dev;
4991        struct drm_i915_private *dev_priv = dev->dev_private;
4992        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4993        struct intel_encoder *encoder;
4994        int pipe = intel_crtc->pipe;
4995
4996        WARN_ON(!crtc->state->enable);
4997
4998        if (intel_crtc->active)
4999                return;
5000
5001        if (intel_crtc_to_shared_dpll(intel_crtc))
5002                intel_enable_shared_dpll(intel_crtc);
5003
5004        if (intel_crtc->config->has_dp_encoder)
5005                intel_dp_set_m_n(intel_crtc, M1_N1);
5006
5007        intel_set_pipe_timings(intel_crtc);
5008
5009        if (intel_crtc->config->cpu_transcoder != TRANSCODER_EDP) {
5010                I915_WRITE(PIPE_MULT(intel_crtc->config->cpu_transcoder),
5011                           intel_crtc->config->pixel_multiplier - 1);
5012        }
5013
5014        if (intel_crtc->config->has_pch_encoder) {
5015                intel_cpu_transcoder_set_m_n(intel_crtc,
5016                                     &intel_crtc->config->fdi_m_n, NULL);
5017        }
5018
5019        haswell_set_pipeconf(crtc);
5020
5021        intel_set_pipe_csc(crtc);
5022
5023        intel_crtc->active = true;
5024
5025        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5026        for_each_encoder_on_crtc(dev, crtc, encoder)
5027                if (encoder->pre_enable)
5028                        encoder->pre_enable(encoder);
5029
5030        if (intel_crtc->config->has_pch_encoder) {
5031                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5032                                                      true);
5033                dev_priv->display.fdi_link_train(crtc);
5034        }
5035
5036        intel_ddi_enable_pipe_clock(intel_crtc);
5037
5038        if (INTEL_INFO(dev)->gen == 9)
5039                skylake_pfit_update(intel_crtc, 1);
5040        else if (INTEL_INFO(dev)->gen < 9)
5041                ironlake_pfit_enable(intel_crtc);
5042        else
5043                MISSING_CASE(INTEL_INFO(dev)->gen);
5044
5045        /*
5046         * On ILK+ LUT must be loaded before the pipe is running but with
5047         * clocks enabled
5048         */
5049        intel_crtc_load_lut(crtc);
5050
5051        intel_ddi_set_pipe_settings(crtc);
5052        intel_ddi_enable_transcoder_func(crtc);
5053
5054        intel_update_watermarks(crtc);
5055        intel_enable_pipe(intel_crtc);
5056
5057        if (intel_crtc->config->has_pch_encoder)
5058                lpt_pch_enable(crtc);
5059
5060        if (intel_crtc->config->dp_encoder_is_mst)
5061                intel_ddi_set_vc_payload_alloc(crtc, true);
5062
5063        assert_vblank_disabled(crtc);
5064        drm_crtc_vblank_on(crtc);
5065
5066        for_each_encoder_on_crtc(dev, crtc, encoder) {
5067                encoder->enable(encoder);
5068                intel_opregion_notify_encoder(encoder, true);
5069        }
5070
5071        /* If we change the relative order between pipe/planes enabling, we need
5072         * to change the workaround. */
5073        haswell_mode_set_planes_workaround(intel_crtc);
5074}
5075
5076static void ironlake_pfit_disable(struct intel_crtc *crtc)
5077{
5078        struct drm_device *dev = crtc->base.dev;
5079        struct drm_i915_private *dev_priv = dev->dev_private;
5080        int pipe = crtc->pipe;
5081
5082        /* To avoid upsetting the power well on haswell only disable the pfit if
5083         * it's in use. The hw state code will make sure we get this right. */
5084        if (crtc->config->pch_pfit.enabled) {
5085                I915_WRITE(PF_CTL(pipe), 0);
5086                I915_WRITE(PF_WIN_POS(pipe), 0);
5087                I915_WRITE(PF_WIN_SZ(pipe), 0);
5088        }
5089}
5090
5091static void ironlake_crtc_disable(struct drm_crtc *crtc)
5092{
5093        struct drm_device *dev = crtc->dev;
5094        struct drm_i915_private *dev_priv = dev->dev_private;
5095        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5096        struct intel_encoder *encoder;
5097        int pipe = intel_crtc->pipe;
5098        u32 reg, temp;
5099
5100        if (!intel_crtc->active)
5101                return;
5102
5103        for_each_encoder_on_crtc(dev, crtc, encoder)
5104                encoder->disable(encoder);
5105
5106        drm_crtc_vblank_off(crtc);
5107        assert_vblank_disabled(crtc);
5108
5109        if (intel_crtc->config->has_pch_encoder)
5110                intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
5111
5112        intel_disable_pipe(intel_crtc);
5113
5114        ironlake_pfit_disable(intel_crtc);
5115
5116        if (intel_crtc->config->has_pch_encoder)
5117                ironlake_fdi_disable(crtc);
5118
5119        for_each_encoder_on_crtc(dev, crtc, encoder)
5120                if (encoder->post_disable)
5121                        encoder->post_disable(encoder);
5122
5123        if (intel_crtc->config->has_pch_encoder) {
5124                ironlake_disable_pch_transcoder(dev_priv, pipe);
5125
5126                if (HAS_PCH_CPT(dev)) {
5127                        /* disable TRANS_DP_CTL */
5128                        reg = TRANS_DP_CTL(pipe);
5129                        temp = I915_READ(reg);
5130                        temp &= ~(TRANS_DP_OUTPUT_ENABLE |
5131                                  TRANS_DP_PORT_SEL_MASK);
5132                        temp |= TRANS_DP_PORT_SEL_NONE;
5133                        I915_WRITE(reg, temp);
5134
5135                        /* disable DPLL_SEL */
5136                        temp = I915_READ(PCH_DPLL_SEL);
5137                        temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
5138                        I915_WRITE(PCH_DPLL_SEL, temp);
5139                }
5140
5141                /* disable PCH DPLL */
5142                intel_disable_shared_dpll(intel_crtc);
5143
5144                ironlake_fdi_pll_disable(intel_crtc);
5145        }
5146
5147        intel_crtc->active = false;
5148        intel_update_watermarks(crtc);
5149
5150        mutex_lock(&dev->struct_mutex);
5151        intel_fbc_update(dev);
5152        mutex_unlock(&dev->struct_mutex);
5153}
5154
5155static void haswell_crtc_disable(struct drm_crtc *crtc)
5156{
5157        struct drm_device *dev = crtc->dev;
5158        struct drm_i915_private *dev_priv = dev->dev_private;
5159        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5160        struct intel_encoder *encoder;
5161        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
5162
5163        if (!intel_crtc->active)
5164                return;
5165
5166        for_each_encoder_on_crtc(dev, crtc, encoder) {
5167                intel_opregion_notify_encoder(encoder, false);
5168                encoder->disable(encoder);
5169        }
5170
5171        drm_crtc_vblank_off(crtc);
5172        assert_vblank_disabled(crtc);
5173
5174        if (intel_crtc->config->has_pch_encoder)
5175                intel_set_pch_fifo_underrun_reporting(dev_priv, TRANSCODER_A,
5176                                                      false);
5177        intel_disable_pipe(intel_crtc);
5178
5179        if (intel_crtc->config->dp_encoder_is_mst)
5180                intel_ddi_set_vc_payload_alloc(crtc, false);
5181
5182        intel_ddi_disable_transcoder_func(dev_priv, cpu_transcoder);
5183
5184        if (INTEL_INFO(dev)->gen == 9)
5185                skylake_pfit_update(intel_crtc, 0);
5186        else if (INTEL_INFO(dev)->gen < 9)
5187                ironlake_pfit_disable(intel_crtc);
5188        else
5189                MISSING_CASE(INTEL_INFO(dev)->gen);
5190
5191        intel_ddi_disable_pipe_clock(intel_crtc);
5192
5193        if (intel_crtc->config->has_pch_encoder) {
5194                lpt_disable_pch_transcoder(dev_priv);
5195                intel_ddi_fdi_disable(crtc);
5196        }
5197
5198        for_each_encoder_on_crtc(dev, crtc, encoder)
5199                if (encoder->post_disable)
5200                        encoder->post_disable(encoder);
5201
5202        intel_crtc->active = false;
5203        intel_update_watermarks(crtc);
5204
5205        mutex_lock(&dev->struct_mutex);
5206        intel_fbc_update(dev);
5207        mutex_unlock(&dev->struct_mutex);
5208
5209        if (intel_crtc_to_shared_dpll(intel_crtc))
5210                intel_disable_shared_dpll(intel_crtc);
5211}
5212
5213static void ironlake_crtc_off(struct drm_crtc *crtc)
5214{
5215        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5216        intel_put_shared_dpll(intel_crtc);
5217}
5218
5219
5220static void i9xx_pfit_enable(struct intel_crtc *crtc)
5221{
5222        struct drm_device *dev = crtc->base.dev;
5223        struct drm_i915_private *dev_priv = dev->dev_private;
5224        struct intel_crtc_state *pipe_config = crtc->config;
5225
5226        if (!pipe_config->gmch_pfit.control)
5227                return;
5228
5229        /*
5230         * The panel fitter should only be adjusted whilst the pipe is disabled,
5231         * according to register description and PRM.
5232         */
5233        WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
5234        assert_pipe_disabled(dev_priv, crtc->pipe);
5235
5236        I915_WRITE(PFIT_PGM_RATIOS, pipe_config->gmch_pfit.pgm_ratios);
5237        I915_WRITE(PFIT_CONTROL, pipe_config->gmch_pfit.control);
5238
5239        /* Border color in case we don't scale up to the full screen. Black by
5240         * default, change to something else for debugging. */
5241        I915_WRITE(BCLRPAT(crtc->pipe), 0);
5242}
5243
5244static enum intel_display_power_domain port_to_power_domain(enum port port)
5245{
5246        switch (port) {
5247        case PORT_A:
5248                return POWER_DOMAIN_PORT_DDI_A_4_LANES;
5249        case PORT_B:
5250                return POWER_DOMAIN_PORT_DDI_B_4_LANES;
5251        case PORT_C:
5252                return POWER_DOMAIN_PORT_DDI_C_4_LANES;
5253        case PORT_D:
5254                return POWER_DOMAIN_PORT_DDI_D_4_LANES;
5255        default:
5256                WARN_ON_ONCE(1);
5257                return POWER_DOMAIN_PORT_OTHER;
5258        }
5259}
5260
5261#define for_each_power_domain(domain, mask)                             \
5262        for ((domain) = 0; (domain) < POWER_DOMAIN_NUM; (domain)++)     \
5263                if ((1 << (domain)) & (mask))
5264
5265enum intel_display_power_domain
5266intel_display_port_power_domain(struct intel_encoder *intel_encoder)
5267{
5268        struct drm_device *dev = intel_encoder->base.dev;
5269        struct intel_digital_port *intel_dig_port;
5270
5271        switch (intel_encoder->type) {
5272        case INTEL_OUTPUT_UNKNOWN:
5273                /* Only DDI platforms should ever use this output type */
5274                WARN_ON_ONCE(!HAS_DDI(dev));
5275        case INTEL_OUTPUT_DISPLAYPORT:
5276        case INTEL_OUTPUT_HDMI:
5277        case INTEL_OUTPUT_EDP:
5278                intel_dig_port = enc_to_dig_port(&intel_encoder->base);
5279                return port_to_power_domain(intel_dig_port->port);
5280        case INTEL_OUTPUT_DP_MST:
5281                intel_dig_port = enc_to_mst(&intel_encoder->base)->primary;
5282                return port_to_power_domain(intel_dig_port->port);
5283        case INTEL_OUTPUT_ANALOG:
5284                return POWER_DOMAIN_PORT_CRT;
5285        case INTEL_OUTPUT_DSI:
5286                return POWER_DOMAIN_PORT_DSI;
5287        default:
5288                return POWER_DOMAIN_PORT_OTHER;
5289        }
5290}
5291
5292static unsigned long get_crtc_power_domains(struct drm_crtc *crtc)
5293{
5294        struct drm_device *dev = crtc->dev;
5295        struct intel_encoder *intel_encoder;
5296        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5297        enum pipe pipe = intel_crtc->pipe;
5298        unsigned long mask;
5299        enum transcoder transcoder;
5300
5301        transcoder = intel_pipe_to_cpu_transcoder(dev->dev_private, pipe);
5302
5303        mask = BIT(POWER_DOMAIN_PIPE(pipe));
5304        mask |= BIT(POWER_DOMAIN_TRANSCODER(transcoder));
5305        if (intel_crtc->config->pch_pfit.enabled ||
5306            intel_crtc->config->pch_pfit.force_thru)
5307                mask |= BIT(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
5308
5309        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
5310                mask |= BIT(intel_display_port_power_domain(intel_encoder));
5311
5312        return mask;
5313}
5314
5315static void modeset_update_crtc_power_domains(struct drm_atomic_state *state)
5316{
5317        struct drm_device *dev = state->dev;
5318        struct drm_i915_private *dev_priv = dev->dev_private;
5319        unsigned long pipe_domains[I915_MAX_PIPES] = { 0, };
5320        struct intel_crtc *crtc;
5321
5322        /*
5323         * First get all needed power domains, then put all unneeded, to avoid
5324         * any unnecessary toggling of the power wells.
5325         */
5326        for_each_intel_crtc(dev, crtc) {
5327                enum intel_display_power_domain domain;
5328
5329                if (!crtc->base.state->enable)
5330                        continue;
5331
5332                pipe_domains[crtc->pipe] = get_crtc_power_domains(&crtc->base);
5333
5334                for_each_power_domain(domain, pipe_domains[crtc->pipe])
5335                        intel_display_power_get(dev_priv, domain);
5336        }
5337
5338        if (dev_priv->display.modeset_global_resources)
5339                dev_priv->display.modeset_global_resources(state);
5340
5341        for_each_intel_crtc(dev, crtc) {
5342                enum intel_display_power_domain domain;
5343
5344                for_each_power_domain(domain, crtc->enabled_power_domains)
5345                        intel_display_power_put(dev_priv, domain);
5346
5347                crtc->enabled_power_domains = pipe_domains[crtc->pipe];
5348        }
5349
5350        intel_display_set_init_power(dev_priv, false);
5351}
5352
5353void broxton_set_cdclk(struct drm_device *dev, int frequency)
5354{
5355        struct drm_i915_private *dev_priv = dev->dev_private;
5356        uint32_t divider;
5357        uint32_t ratio;
5358        uint32_t current_freq;
5359        int ret;
5360
5361        /* frequency = 19.2MHz * ratio / 2 / div{1,1.5,2,4} */
5362        switch (frequency) {
5363        case 144000:
5364                divider = BXT_CDCLK_CD2X_DIV_SEL_4;
5365                ratio = BXT_DE_PLL_RATIO(60);
5366                break;
5367        case 288000:
5368                divider = BXT_CDCLK_CD2X_DIV_SEL_2;
5369                ratio = BXT_DE_PLL_RATIO(60);
5370                break;
5371        case 384000:
5372                divider = BXT_CDCLK_CD2X_DIV_SEL_1_5;
5373                ratio = BXT_DE_PLL_RATIO(60);
5374                break;
5375        case 576000:
5376                divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5377                ratio = BXT_DE_PLL_RATIO(60);
5378                break;
5379        case 624000:
5380                divider = BXT_CDCLK_CD2X_DIV_SEL_1;
5381                ratio = BXT_DE_PLL_RATIO(65);
5382                break;
5383        case 19200:
5384                /*
5385                 * Bypass frequency with DE PLL disabled. Init ratio, divider
5386                 * to suppress GCC warning.
5387                 */
5388                ratio = 0;
5389                divider = 0;
5390                break;
5391        default:
5392                DRM_ERROR("unsupported CDCLK freq %d", frequency);
5393
5394                return;
5395        }
5396
5397        mutex_lock(&dev_priv->rps.hw_lock);
5398        /* Inform power controller of upcoming frequency change */
5399        ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5400                                      0x80000000);
5401        mutex_unlock(&dev_priv->rps.hw_lock);
5402
5403        if (ret) {
5404                DRM_ERROR("PCode CDCLK freq change notify failed (err %d, freq %d)\n",
5405                          ret, frequency);
5406                return;
5407        }
5408
5409        current_freq = I915_READ(CDCLK_CTL) & CDCLK_FREQ_DECIMAL_MASK;
5410        /* convert from .1 fixpoint MHz with -1MHz offset to kHz */
5411        current_freq = current_freq * 500 + 1000;
5412
5413        /*
5414         * DE PLL has to be disabled when
5415         * - setting to 19.2MHz (bypass, PLL isn't used)
5416         * - before setting to 624MHz (PLL needs toggling)
5417         * - before setting to any frequency from 624MHz (PLL needs toggling)
5418         */
5419        if (frequency == 19200 || frequency == 624000 ||
5420            current_freq == 624000) {
5421                I915_WRITE(BXT_DE_PLL_ENABLE, ~BXT_DE_PLL_PLL_ENABLE);
5422                /* Timeout 200us */
5423                if (wait_for(!(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK),
5424                             1))
5425                        DRM_ERROR("timout waiting for DE PLL unlock\n");
5426        }
5427
5428        if (frequency != 19200) {
5429                uint32_t val;
5430
5431                val = I915_READ(BXT_DE_PLL_CTL);
5432                val &= ~BXT_DE_PLL_RATIO_MASK;
5433                val |= ratio;
5434                I915_WRITE(BXT_DE_PLL_CTL, val);
5435
5436                I915_WRITE(BXT_DE_PLL_ENABLE, BXT_DE_PLL_PLL_ENABLE);
5437                /* Timeout 200us */
5438                if (wait_for(I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_LOCK, 1))
5439                        DRM_ERROR("timeout waiting for DE PLL lock\n");
5440
5441                val = I915_READ(CDCLK_CTL);
5442                val &= ~BXT_CDCLK_CD2X_DIV_SEL_MASK;
5443                val |= divider;
5444                /*
5445                 * Disable SSA Precharge when CD clock frequency < 500 MHz,
5446                 * enable otherwise.
5447                 */
5448                val &= ~BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5449                if (frequency >= 500000)
5450                        val |= BXT_CDCLK_SSA_PRECHARGE_ENABLE;
5451
5452                val &= ~CDCLK_FREQ_DECIMAL_MASK;
5453                /* convert from kHz to .1 fixpoint MHz with -1MHz offset */
5454                val |= (frequency - 1000) / 500;
5455                I915_WRITE(CDCLK_CTL, val);
5456        }
5457
5458        mutex_lock(&dev_priv->rps.hw_lock);
5459        ret = sandybridge_pcode_write(dev_priv, HSW_PCODE_DE_WRITE_FREQ_REQ,
5460                                      DIV_ROUND_UP(frequency, 25000));
5461        mutex_unlock(&dev_priv->rps.hw_lock);
5462
5463        if (ret) {
5464                DRM_ERROR("PCode CDCLK freq set failed, (err %d, freq %d)\n",
5465                          ret, frequency);
5466                return;
5467        }
5468
5469        dev_priv->cdclk_freq = frequency;
5470}
5471
5472void broxton_init_cdclk(struct drm_device *dev)
5473{
5474        struct drm_i915_private *dev_priv = dev->dev_private;
5475        uint32_t val;
5476
5477        /*
5478         * NDE_RSTWRN_OPT RST PCH Handshake En must always be 0b on BXT
5479         * or else the reset will hang because there is no PCH to respond.
5480         * Move the handshake programming to initialization sequence.
5481         * Previously was left up to BIOS.
5482         */
5483        val = I915_READ(HSW_NDE_RSTWRN_OPT);
5484        val &= ~RESET_PCH_HANDSHAKE_ENABLE;
5485        I915_WRITE(HSW_NDE_RSTWRN_OPT, val);
5486
5487        /* Enable PG1 for cdclk */
5488        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5489
5490        /* check if cd clock is enabled */
5491        if (I915_READ(BXT_DE_PLL_ENABLE) & BXT_DE_PLL_PLL_ENABLE) {
5492                DRM_DEBUG_KMS("Display already initialized\n");
5493                return;
5494        }
5495
5496        /*
5497         * FIXME:
5498         * - The initial CDCLK needs to be read from VBT.
5499         *   Need to make this change after VBT has changes for BXT.
5500         * - check if setting the max (or any) cdclk freq is really necessary
5501         *   here, it belongs to modeset time
5502         */
5503        broxton_set_cdclk(dev, 624000);
5504
5505        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5506        POSTING_READ(DBUF_CTL);
5507
5508        udelay(10);
5509
5510        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5511                DRM_ERROR("DBuf power enable timeout!\n");
5512}
5513
5514void broxton_uninit_cdclk(struct drm_device *dev)
5515{
5516        struct drm_i915_private *dev_priv = dev->dev_private;
5517
5518        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5519        POSTING_READ(DBUF_CTL);
5520
5521        udelay(10);
5522
5523        if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5524                DRM_ERROR("DBuf power disable timeout!\n");
5525
5526        /* Set minimum (bypass) frequency, in effect turning off the DE PLL */
5527        broxton_set_cdclk(dev, 19200);
5528
5529        intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5530}
5531
5532static const struct skl_cdclk_entry {
5533        unsigned int freq;
5534        unsigned int vco;
5535} skl_cdclk_frequencies[] = {
5536        { .freq = 308570, .vco = 8640 },
5537        { .freq = 337500, .vco = 8100 },
5538        { .freq = 432000, .vco = 8640 },
5539        { .freq = 450000, .vco = 8100 },
5540        { .freq = 540000, .vco = 8100 },
5541        { .freq = 617140, .vco = 8640 },
5542        { .freq = 675000, .vco = 8100 },
5543};
5544
5545static unsigned int skl_cdclk_decimal(unsigned int freq)
5546{
5547        return (freq - 1000) / 500;
5548}
5549
5550static unsigned int skl_cdclk_get_vco(unsigned int freq)
5551{
5552        unsigned int i;
5553
5554        for (i = 0; i < ARRAY_SIZE(skl_cdclk_frequencies); i++) {
5555                const struct skl_cdclk_entry *e = &skl_cdclk_frequencies[i];
5556
5557                if (e->freq == freq)
5558                        return e->vco;
5559        }
5560
5561        return 8100;
5562}
5563
5564static void
5565skl_dpll0_enable(struct drm_i915_private *dev_priv, unsigned int required_vco)
5566{
5567        unsigned int min_freq;
5568        u32 val;
5569
5570        /* select the minimum CDCLK before enabling DPLL 0 */
5571        val = I915_READ(CDCLK_CTL);
5572        val &= ~CDCLK_FREQ_SEL_MASK | ~CDCLK_FREQ_DECIMAL_MASK;
5573        val |= CDCLK_FREQ_337_308;
5574
5575        if (required_vco == 8640)
5576                min_freq = 308570;
5577        else
5578                min_freq = 337500;
5579
5580        val = CDCLK_FREQ_337_308 | skl_cdclk_decimal(min_freq);
5581
5582        I915_WRITE(CDCLK_CTL, val);
5583        POSTING_READ(CDCLK_CTL);
5584
5585        /*
5586         * We always enable DPLL0 with the lowest link rate possible, but still
5587         * taking into account the VCO required to operate the eDP panel at the
5588         * desired frequency. The usual DP link rates operate with a VCO of
5589         * 8100 while the eDP 1.4 alternate link rates need a VCO of 8640.
5590         * The modeset code is responsible for the selection of the exact link
5591         * rate later on, with the constraint of choosing a frequency that
5592         * works with required_vco.
5593         */
5594        val = I915_READ(DPLL_CTRL1);
5595
5596        val &= ~(DPLL_CTRL1_HDMI_MODE(SKL_DPLL0) | DPLL_CTRL1_SSC(SKL_DPLL0) |
5597                 DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0));
5598        val |= DPLL_CTRL1_OVERRIDE(SKL_DPLL0);
5599        if (required_vco == 8640)
5600                val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_1080,
5601                                            SKL_DPLL0);
5602        else
5603                val |= DPLL_CTRL1_LINK_RATE(DPLL_CTRL1_LINK_RATE_810,
5604                                            SKL_DPLL0);
5605
5606        I915_WRITE(DPLL_CTRL1, val);
5607        POSTING_READ(DPLL_CTRL1);
5608
5609        I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) | LCPLL_PLL_ENABLE);
5610
5611        if (wait_for(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK, 5))
5612                DRM_ERROR("DPLL0 not locked\n");
5613}
5614
5615static bool skl_cdclk_pcu_ready(struct drm_i915_private *dev_priv)
5616{
5617        int ret;
5618        u32 val;
5619
5620        /* inform PCU we want to change CDCLK */
5621        val = SKL_CDCLK_PREPARE_FOR_CHANGE;
5622        mutex_lock(&dev_priv->rps.hw_lock);
5623        ret = sandybridge_pcode_read(dev_priv, SKL_PCODE_CDCLK_CONTROL, &val);
5624        mutex_unlock(&dev_priv->rps.hw_lock);
5625
5626        return ret == 0 && (val & SKL_CDCLK_READY_FOR_CHANGE);
5627}
5628
5629static bool skl_cdclk_wait_for_pcu_ready(struct drm_i915_private *dev_priv)
5630{
5631        unsigned int i;
5632
5633        for (i = 0; i < 15; i++) {
5634                if (skl_cdclk_pcu_ready(dev_priv))
5635                        return true;
5636                udelay(10);
5637        }
5638
5639        return false;
5640}
5641
5642static void skl_set_cdclk(struct drm_i915_private *dev_priv, unsigned int freq)
5643{
5644        u32 freq_select, pcu_ack;
5645
5646        DRM_DEBUG_DRIVER("Changing CDCLK to %dKHz\n", freq);
5647
5648        if (!skl_cdclk_wait_for_pcu_ready(dev_priv)) {
5649                DRM_ERROR("failed to inform PCU about cdclk change\n");
5650                return;
5651        }
5652
5653        /* set CDCLK_CTL */
5654        switch(freq) {
5655        case 450000:
5656        case 432000:
5657                freq_select = CDCLK_FREQ_450_432;
5658                pcu_ack = 1;
5659                break;
5660        case 540000:
5661                freq_select = CDCLK_FREQ_540;
5662                pcu_ack = 2;
5663                break;
5664        case 308570:
5665        case 337500:
5666        default:
5667                freq_select = CDCLK_FREQ_337_308;
5668                pcu_ack = 0;
5669                break;
5670        case 617140:
5671        case 675000:
5672                freq_select = CDCLK_FREQ_675_617;
5673                pcu_ack = 3;
5674                break;
5675        }
5676
5677        I915_WRITE(CDCLK_CTL, freq_select | skl_cdclk_decimal(freq));
5678        POSTING_READ(CDCLK_CTL);
5679
5680        /* inform PCU of the change */
5681        mutex_lock(&dev_priv->rps.hw_lock);
5682        sandybridge_pcode_write(dev_priv, SKL_PCODE_CDCLK_CONTROL, pcu_ack);
5683        mutex_unlock(&dev_priv->rps.hw_lock);
5684}
5685
5686void skl_uninit_cdclk(struct drm_i915_private *dev_priv)
5687{
5688        /* disable DBUF power */
5689        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) & ~DBUF_POWER_REQUEST);
5690        POSTING_READ(DBUF_CTL);
5691
5692        udelay(10);
5693
5694        if (I915_READ(DBUF_CTL) & DBUF_POWER_STATE)
5695                DRM_ERROR("DBuf power disable timeout\n");
5696
5697        /* disable DPLL0 */
5698        I915_WRITE(LCPLL1_CTL, I915_READ(LCPLL1_CTL) & ~LCPLL_PLL_ENABLE);
5699        if (wait_for(!(I915_READ(LCPLL1_CTL) & LCPLL_PLL_LOCK), 1))
5700                DRM_ERROR("Couldn't disable DPLL0\n");
5701
5702        intel_display_power_put(dev_priv, POWER_DOMAIN_PLLS);
5703}
5704
5705void skl_init_cdclk(struct drm_i915_private *dev_priv)
5706{
5707        u32 val;
5708        unsigned int required_vco;
5709
5710        /* enable PCH reset handshake */
5711        val = I915_READ(HSW_NDE_RSTWRN_OPT);
5712        I915_WRITE(HSW_NDE_RSTWRN_OPT, val | RESET_PCH_HANDSHAKE_ENABLE);
5713
5714        /* enable PG1 and Misc I/O */
5715        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
5716
5717        /* DPLL0 already enabed !? */
5718        if (I915_READ(LCPLL1_CTL) & LCPLL_PLL_ENABLE) {
5719                DRM_DEBUG_DRIVER("DPLL0 already running\n");
5720                return;
5721        }
5722
5723        /* enable DPLL0 */
5724        required_vco = skl_cdclk_get_vco(dev_priv->skl_boot_cdclk);
5725        skl_dpll0_enable(dev_priv, required_vco);
5726
5727        /* set CDCLK to the frequency the BIOS chose */
5728        skl_set_cdclk(dev_priv, dev_priv->skl_boot_cdclk);
5729
5730        /* enable DBUF power */
5731        I915_WRITE(DBUF_CTL, I915_READ(DBUF_CTL) | DBUF_POWER_REQUEST);
5732        POSTING_READ(DBUF_CTL);
5733
5734        udelay(10);
5735
5736        if (!(I915_READ(DBUF_CTL) & DBUF_POWER_STATE))
5737                DRM_ERROR("DBuf power enable timeout\n");
5738}
5739
5740/* returns HPLL frequency in kHz */
5741static int valleyview_get_vco(struct drm_i915_private *dev_priv)
5742{
5743        int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
5744
5745        /* Obtain SKU information */
5746        mutex_lock(&dev_priv->sb_lock);
5747        hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
5748                CCK_FUSE_HPLL_FREQ_MASK;
5749        mutex_unlock(&dev_priv->sb_lock);
5750
5751        return vco_freq[hpll_freq] * 1000;
5752}
5753
5754static void vlv_update_cdclk(struct drm_device *dev)
5755{
5756        struct drm_i915_private *dev_priv = dev->dev_private;
5757
5758        dev_priv->cdclk_freq = dev_priv->display.get_display_clock_speed(dev);
5759        DRM_DEBUG_DRIVER("Current CD clock rate: %d kHz\n",
5760                         dev_priv->cdclk_freq);
5761
5762        /*
5763         * Program the gmbus_freq based on the cdclk frequency.
5764         * BSpec erroneously claims we should aim for 4MHz, but
5765         * in fact 1MHz is the correct frequency.
5766         */
5767        I915_WRITE(GMBUSFREQ_VLV, DIV_ROUND_UP(dev_priv->cdclk_freq, 1000));
5768}
5769
5770/* Adjust CDclk dividers to allow high res or save power if possible */
5771static void valleyview_set_cdclk(struct drm_device *dev, int cdclk)
5772{
5773        struct drm_i915_private *dev_priv = dev->dev_private;
5774        u32 val, cmd;
5775
5776        WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5777                                        != dev_priv->cdclk_freq);
5778
5779        if (cdclk >= 320000) /* jump to highest voltage for 400MHz too */
5780                cmd = 2;
5781        else if (cdclk == 266667)
5782                cmd = 1;
5783        else
5784                cmd = 0;
5785
5786        mutex_lock(&dev_priv->rps.hw_lock);
5787        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5788        val &= ~DSPFREQGUAR_MASK;
5789        val |= (cmd << DSPFREQGUAR_SHIFT);
5790        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5791        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5792                      DSPFREQSTAT_MASK) == (cmd << DSPFREQSTAT_SHIFT),
5793                     50)) {
5794                DRM_ERROR("timed out waiting for CDclk change\n");
5795        }
5796        mutex_unlock(&dev_priv->rps.hw_lock);
5797
5798        mutex_lock(&dev_priv->sb_lock);
5799
5800        if (cdclk == 400000) {
5801                u32 divider;
5802
5803                divider = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5804
5805                /* adjust cdclk divider */
5806                val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
5807                val &= ~DISPLAY_FREQUENCY_VALUES;
5808                val |= divider;
5809                vlv_cck_write(dev_priv, CCK_DISPLAY_CLOCK_CONTROL, val);
5810
5811                if (wait_for((vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL) &
5812                              DISPLAY_FREQUENCY_STATUS) == (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
5813                             50))
5814                        DRM_ERROR("timed out waiting for CDclk change\n");
5815        }
5816
5817        /* adjust self-refresh exit latency value */
5818        val = vlv_bunit_read(dev_priv, BUNIT_REG_BISOC);
5819        val &= ~0x7f;
5820
5821        /*
5822         * For high bandwidth configs, we set a higher latency in the bunit
5823         * so that the core display fetch happens in time to avoid underruns.
5824         */
5825        if (cdclk == 400000)
5826                val |= 4500 / 250; /* 4.5 usec */
5827        else
5828                val |= 3000 / 250; /* 3.0 usec */
5829        vlv_bunit_write(dev_priv, BUNIT_REG_BISOC, val);
5830
5831        mutex_unlock(&dev_priv->sb_lock);
5832
5833        vlv_update_cdclk(dev);
5834}
5835
5836static void cherryview_set_cdclk(struct drm_device *dev, int cdclk)
5837{
5838        struct drm_i915_private *dev_priv = dev->dev_private;
5839        u32 val, cmd;
5840
5841        WARN_ON(dev_priv->display.get_display_clock_speed(dev)
5842                                                != dev_priv->cdclk_freq);
5843
5844        switch (cdclk) {
5845        case 333333:
5846        case 320000:
5847        case 266667:
5848        case 200000:
5849                break;
5850        default:
5851                MISSING_CASE(cdclk);
5852                return;
5853        }
5854
5855        /*
5856         * Specs are full of misinformation, but testing on actual
5857         * hardware has shown that we just need to write the desired
5858         * CCK divider into the Punit register.
5859         */
5860        cmd = DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, cdclk) - 1;
5861
5862        mutex_lock(&dev_priv->rps.hw_lock);
5863        val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
5864        val &= ~DSPFREQGUAR_MASK_CHV;
5865        val |= (cmd << DSPFREQGUAR_SHIFT_CHV);
5866        vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
5867        if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ) &
5868                      DSPFREQSTAT_MASK_CHV) == (cmd << DSPFREQSTAT_SHIFT_CHV),
5869                     50)) {
5870                DRM_ERROR("timed out waiting for CDclk change\n");
5871        }
5872        mutex_unlock(&dev_priv->rps.hw_lock);
5873
5874        vlv_update_cdclk(dev);
5875}
5876
5877static int valleyview_calc_cdclk(struct drm_i915_private *dev_priv,
5878                                 int max_pixclk)
5879{
5880        int freq_320 = (dev_priv->hpll_freq <<  1) % 320000 != 0 ? 333333 : 320000;
5881        int limit = IS_CHERRYVIEW(dev_priv) ? 95 : 90;
5882
5883        /*
5884         * Really only a few cases to deal with, as only 4 CDclks are supported:
5885         *   200MHz
5886         *   267MHz
5887         *   320/333MHz (depends on HPLL freq)
5888         *   400MHz (VLV only)
5889         * So we check to see whether we're above 90% (VLV) or 95% (CHV)
5890         * of the lower bin and adjust if needed.
5891         *
5892         * We seem to get an unstable or solid color picture at 200MHz.
5893         * Not sure what's wrong. For now use 200MHz only when all pipes
5894         * are off.
5895         */
5896        if (!IS_CHERRYVIEW(dev_priv) &&
5897            max_pixclk > freq_320*limit/100)
5898                return 400000;
5899        else if (max_pixclk > 266667*limit/100)
5900                return freq_320;
5901        else if (max_pixclk > 0)
5902                return 266667;
5903        else
5904                return 200000;
5905}
5906
5907static int broxton_calc_cdclk(struct drm_i915_private *dev_priv,
5908                              int max_pixclk)
5909{
5910        /*
5911         * FIXME:
5912         * - remove the guardband, it's not needed on BXT
5913         * - set 19.2MHz bypass frequency if there are no active pipes
5914         */
5915        if (max_pixclk > 576000*9/10)
5916                return 624000;
5917        else if (max_pixclk > 384000*9/10)
5918                return 576000;
5919        else if (max_pixclk > 288000*9/10)
5920                return 384000;
5921        else if (max_pixclk > 144000*9/10)
5922                return 288000;
5923        else
5924                return 144000;
5925}
5926
5927/* Compute the max pixel clock for new configuration. Uses atomic state if
5928 * that's non-NULL, look at current state otherwise. */
5929static int intel_mode_max_pixclk(struct drm_device *dev,
5930                                 struct drm_atomic_state *state)
5931{
5932        struct intel_crtc *intel_crtc;
5933        struct intel_crtc_state *crtc_state;
5934        int max_pixclk = 0;
5935
5936        for_each_intel_crtc(dev, intel_crtc) {
5937                if (state)
5938                        crtc_state =
5939                                intel_atomic_get_crtc_state(state, intel_crtc);
5940                else
5941                        crtc_state = intel_crtc->config;
5942                if (IS_ERR(crtc_state))
5943                        return PTR_ERR(crtc_state);
5944
5945                if (!crtc_state->base.enable)
5946                        continue;
5947
5948                max_pixclk = max(max_pixclk,
5949                                 crtc_state->base.adjusted_mode.crtc_clock);
5950        }
5951
5952        return max_pixclk;
5953}
5954
5955static int valleyview_modeset_global_pipes(struct drm_atomic_state *state)
5956{
5957        struct drm_i915_private *dev_priv = to_i915(state->dev);
5958        struct drm_crtc *crtc;
5959        struct drm_crtc_state *crtc_state;
5960        int max_pixclk = intel_mode_max_pixclk(state->dev, state);
5961        int cdclk, i;
5962
5963        if (max_pixclk < 0)
5964                return max_pixclk;
5965
5966        if (IS_VALLEYVIEW(dev_priv))
5967                cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
5968        else
5969                cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
5970
5971        if (cdclk == dev_priv->cdclk_freq)
5972                return 0;
5973
5974        /* add all active pipes to the state */
5975        for_each_crtc(state->dev, crtc) {
5976                if (!crtc->state->enable)
5977                        continue;
5978
5979                crtc_state = drm_atomic_get_crtc_state(state, crtc);
5980                if (IS_ERR(crtc_state))
5981                        return PTR_ERR(crtc_state);
5982        }
5983
5984        /* disable/enable all currently active pipes while we change cdclk */
5985        for_each_crtc_in_state(state, crtc, crtc_state, i)
5986                if (crtc_state->enable)
5987                        crtc_state->mode_changed = true;
5988
5989        return 0;
5990}
5991
5992static void vlv_program_pfi_credits(struct drm_i915_private *dev_priv)
5993{
5994        unsigned int credits, default_credits;
5995
5996        if (IS_CHERRYVIEW(dev_priv))
5997                default_credits = PFI_CREDIT(12);
5998        else
5999                default_credits = PFI_CREDIT(8);
6000
6001        if (DIV_ROUND_CLOSEST(dev_priv->cdclk_freq, 1000) >= dev_priv->rps.cz_freq) {
6002                /* CHV suggested value is 31 or 63 */
6003                if (IS_CHERRYVIEW(dev_priv))
6004                        credits = PFI_CREDIT_31;
6005                else
6006                        credits = PFI_CREDIT(15);
6007        } else {
6008                credits = default_credits;
6009        }
6010
6011        /*
6012         * WA - write default credits before re-programming
6013         * FIXME: should we also set the resend bit here?
6014         */
6015        I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6016                   default_credits);
6017
6018        I915_WRITE(GCI_CONTROL, VGA_FAST_MODE_DISABLE |
6019                   credits | PFI_CREDIT_RESEND);
6020
6021        /*
6022         * FIXME is this guaranteed to clear
6023         * immediately or should we poll for it?
6024         */
6025        WARN_ON(I915_READ(GCI_CONTROL) & PFI_CREDIT_RESEND);
6026}
6027
6028static void valleyview_modeset_global_resources(struct drm_atomic_state *old_state)
6029{
6030        struct drm_device *dev = old_state->dev;
6031        struct drm_i915_private *dev_priv = dev->dev_private;
6032        int max_pixclk = intel_mode_max_pixclk(dev, NULL);
6033        int req_cdclk;
6034
6035        /* The path in intel_mode_max_pixclk() with a NULL atomic state should
6036         * never fail. */
6037        if (WARN_ON(max_pixclk < 0))
6038                return;
6039
6040        req_cdclk = valleyview_calc_cdclk(dev_priv, max_pixclk);
6041
6042        if (req_cdclk != dev_priv->cdclk_freq) {
6043                /*
6044                 * FIXME: We can end up here with all power domains off, yet
6045                 * with a CDCLK frequency other than the minimum. To account
6046                 * for this take the PIPE-A power domain, which covers the HW
6047                 * blocks needed for the following programming. This can be
6048                 * removed once it's guaranteed that we get here either with
6049                 * the minimum CDCLK set, or the required power domains
6050                 * enabled.
6051                 */
6052                intel_display_power_get(dev_priv, POWER_DOMAIN_PIPE_A);
6053
6054                if (IS_CHERRYVIEW(dev))
6055                        cherryview_set_cdclk(dev, req_cdclk);
6056                else
6057                        valleyview_set_cdclk(dev, req_cdclk);
6058
6059                vlv_program_pfi_credits(dev_priv);
6060
6061                intel_display_power_put(dev_priv, POWER_DOMAIN_PIPE_A);
6062        }
6063}
6064
6065static void valleyview_crtc_enable(struct drm_crtc *crtc)
6066{
6067        struct drm_device *dev = crtc->dev;
6068        struct drm_i915_private *dev_priv = to_i915(dev);
6069        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6070        struct intel_encoder *encoder;
6071        int pipe = intel_crtc->pipe;
6072        bool is_dsi;
6073
6074        WARN_ON(!crtc->state->enable);
6075
6076        if (intel_crtc->active)
6077                return;
6078
6079        is_dsi = intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI);
6080
6081        if (!is_dsi) {
6082                if (IS_CHERRYVIEW(dev))
6083                        chv_prepare_pll(intel_crtc, intel_crtc->config);
6084                else
6085                        vlv_prepare_pll(intel_crtc, intel_crtc->config);
6086        }
6087
6088        if (intel_crtc->config->has_dp_encoder)
6089                intel_dp_set_m_n(intel_crtc, M1_N1);
6090
6091        intel_set_pipe_timings(intel_crtc);
6092
6093        if (IS_CHERRYVIEW(dev) && pipe == PIPE_B) {
6094                struct drm_i915_private *dev_priv = dev->dev_private;
6095
6096                I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6097                I915_WRITE(CHV_CANVAS(pipe), 0);
6098        }
6099
6100        i9xx_set_pipeconf(intel_crtc);
6101
6102        intel_crtc->active = true;
6103
6104        intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6105
6106        for_each_encoder_on_crtc(dev, crtc, encoder)
6107                if (encoder->pre_pll_enable)
6108                        encoder->pre_pll_enable(encoder);
6109
6110        if (!is_dsi) {
6111                if (IS_CHERRYVIEW(dev))
6112                        chv_enable_pll(intel_crtc, intel_crtc->config);
6113                else
6114                        vlv_enable_pll(intel_crtc, intel_crtc->config);
6115        }
6116
6117        for_each_encoder_on_crtc(dev, crtc, encoder)
6118                if (encoder->pre_enable)
6119                        encoder->pre_enable(encoder);
6120
6121        i9xx_pfit_enable(intel_crtc);
6122
6123        intel_crtc_load_lut(crtc);
6124
6125        intel_update_watermarks(crtc);
6126        intel_enable_pipe(intel_crtc);
6127
6128        assert_vblank_disabled(crtc);
6129        drm_crtc_vblank_on(crtc);
6130
6131        for_each_encoder_on_crtc(dev, crtc, encoder)
6132                encoder->enable(encoder);
6133}
6134
6135static void i9xx_set_pll_dividers(struct intel_crtc *crtc)
6136{
6137        struct drm_device *dev = crtc->base.dev;
6138        struct drm_i915_private *dev_priv = dev->dev_private;
6139
6140        I915_WRITE(FP0(crtc->pipe), crtc->config->dpll_hw_state.fp0);
6141        I915_WRITE(FP1(crtc->pipe), crtc->config->dpll_hw_state.fp1);
6142}
6143
6144static void i9xx_crtc_enable(struct drm_crtc *crtc)
6145{
6146        struct drm_device *dev = crtc->dev;
6147        struct drm_i915_private *dev_priv = to_i915(dev);
6148        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6149        struct intel_encoder *encoder;
6150        int pipe = intel_crtc->pipe;
6151
6152        WARN_ON(!crtc->state->enable);
6153
6154        if (intel_crtc->active)
6155                return;
6156
6157        i9xx_set_pll_dividers(intel_crtc);
6158
6159        if (intel_crtc->config->has_dp_encoder)
6160                intel_dp_set_m_n(intel_crtc, M1_N1);
6161
6162        intel_set_pipe_timings(intel_crtc);
6163
6164        i9xx_set_pipeconf(intel_crtc);
6165
6166        intel_crtc->active = true;
6167
6168        if (!IS_GEN2(dev))
6169                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6170
6171        for_each_encoder_on_crtc(dev, crtc, encoder)
6172                if (encoder->pre_enable)
6173                        encoder->pre_enable(encoder);
6174
6175        i9xx_enable_pll(intel_crtc);
6176
6177        i9xx_pfit_enable(intel_crtc);
6178
6179        intel_crtc_load_lut(crtc);
6180
6181        intel_update_watermarks(crtc);
6182        intel_enable_pipe(intel_crtc);
6183
6184        assert_vblank_disabled(crtc);
6185        drm_crtc_vblank_on(crtc);
6186
6187        for_each_encoder_on_crtc(dev, crtc, encoder)
6188                encoder->enable(encoder);
6189}
6190
6191static void i9xx_pfit_disable(struct intel_crtc *crtc)
6192{
6193        struct drm_device *dev = crtc->base.dev;
6194        struct drm_i915_private *dev_priv = dev->dev_private;
6195
6196        if (!crtc->config->gmch_pfit.control)
6197                return;
6198
6199        assert_pipe_disabled(dev_priv, crtc->pipe);
6200
6201        DRM_DEBUG_DRIVER("disabling pfit, current: 0x%08x\n",
6202                         I915_READ(PFIT_CONTROL));
6203        I915_WRITE(PFIT_CONTROL, 0);
6204}
6205
6206static void i9xx_crtc_disable(struct drm_crtc *crtc)
6207{
6208        struct drm_device *dev = crtc->dev;
6209        struct drm_i915_private *dev_priv = dev->dev_private;
6210        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6211        struct intel_encoder *encoder;
6212        int pipe = intel_crtc->pipe;
6213
6214        if (!intel_crtc->active)
6215                return;
6216
6217        /*
6218         * On gen2 planes are double buffered but the pipe isn't, so we must
6219         * wait for planes to fully turn off before disabling the pipe.
6220         * We also need to wait on all gmch platforms because of the
6221         * self-refresh mode constraint explained above.
6222         */
6223        intel_wait_for_vblank(dev, pipe);
6224
6225        for_each_encoder_on_crtc(dev, crtc, encoder)
6226                encoder->disable(encoder);
6227
6228        drm_crtc_vblank_off(crtc);
6229        assert_vblank_disabled(crtc);
6230
6231        intel_disable_pipe(intel_crtc);
6232
6233        i9xx_pfit_disable(intel_crtc);
6234
6235        for_each_encoder_on_crtc(dev, crtc, encoder)
6236                if (encoder->post_disable)
6237                        encoder->post_disable(encoder);
6238
6239        if (!intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_DSI)) {
6240                if (IS_CHERRYVIEW(dev))
6241                        chv_disable_pll(dev_priv, pipe);
6242                else if (IS_VALLEYVIEW(dev))
6243                        vlv_disable_pll(dev_priv, pipe);
6244                else
6245                        i9xx_disable_pll(intel_crtc);
6246        }
6247
6248        if (!IS_GEN2(dev))
6249                intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6250
6251        intel_crtc->active = false;
6252        intel_update_watermarks(crtc);
6253
6254        mutex_lock(&dev->struct_mutex);
6255        intel_fbc_update(dev);
6256        mutex_unlock(&dev->struct_mutex);
6257}
6258
6259static void i9xx_crtc_off(struct drm_crtc *crtc)
6260{
6261}
6262
6263/* Master function to enable/disable CRTC and corresponding power wells */
6264void intel_crtc_control(struct drm_crtc *crtc, bool enable)
6265{
6266        struct drm_device *dev = crtc->dev;
6267        struct drm_i915_private *dev_priv = dev->dev_private;
6268        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6269        enum intel_display_power_domain domain;
6270        unsigned long domains;
6271
6272        if (enable) {
6273                if (!intel_crtc->active) {
6274                        domains = get_crtc_power_domains(crtc);
6275                        for_each_power_domain(domain, domains)
6276                                intel_display_power_get(dev_priv, domain);
6277                        intel_crtc->enabled_power_domains = domains;
6278
6279                        dev_priv->display.crtc_enable(crtc);
6280                        intel_crtc_enable_planes(crtc);
6281                }
6282        } else {
6283                if (intel_crtc->active) {
6284                        intel_crtc_disable_planes(crtc);
6285                        dev_priv->display.crtc_disable(crtc);
6286
6287                        domains = intel_crtc->enabled_power_domains;
6288                        for_each_power_domain(domain, domains)
6289                                intel_display_power_put(dev_priv, domain);
6290                        intel_crtc->enabled_power_domains = 0;
6291                }
6292        }
6293}
6294
6295/**
6296 * Sets the power management mode of the pipe and plane.
6297 */
6298void intel_crtc_update_dpms(struct drm_crtc *crtc)
6299{
6300        struct drm_device *dev = crtc->dev;
6301        struct intel_encoder *intel_encoder;
6302        bool enable = false;
6303
6304        for_each_encoder_on_crtc(dev, crtc, intel_encoder)
6305                enable |= intel_encoder->connectors_active;
6306
6307        intel_crtc_control(crtc, enable);
6308
6309        crtc->state->active = enable;
6310}
6311
6312static void intel_crtc_disable(struct drm_crtc *crtc)
6313{
6314        struct drm_device *dev = crtc->dev;
6315        struct drm_connector *connector;
6316        struct drm_i915_private *dev_priv = dev->dev_private;
6317
6318        intel_crtc_disable_planes(crtc);
6319        dev_priv->display.crtc_disable(crtc);
6320        dev_priv->display.off(crtc);
6321
6322        drm_plane_helper_disable(crtc->primary);
6323
6324        /* Update computed state. */
6325        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
6326                if (!connector->encoder || !connector->encoder->crtc)
6327                        continue;
6328
6329                if (connector->encoder->crtc != crtc)
6330                        continue;
6331
6332                connector->dpms = DRM_MODE_DPMS_OFF;
6333                to_intel_encoder(connector->encoder)->connectors_active = false;
6334        }
6335}
6336
6337void intel_encoder_destroy(struct drm_encoder *encoder)
6338{
6339        struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6340
6341        drm_encoder_cleanup(encoder);
6342        kfree(intel_encoder);
6343}
6344
6345/* Simple dpms helper for encoders with just one connector, no cloning and only
6346 * one kind of off state. It clamps all !ON modes to fully OFF and changes the
6347 * state of the entire output pipe. */
6348static void intel_encoder_dpms(struct intel_encoder *encoder, int mode)
6349{
6350        if (mode == DRM_MODE_DPMS_ON) {
6351                encoder->connectors_active = true;
6352
6353                intel_crtc_update_dpms(encoder->base.crtc);
6354        } else {
6355                encoder->connectors_active = false;
6356
6357                intel_crtc_update_dpms(encoder->base.crtc);
6358        }
6359}
6360
6361/* Cross check the actual hw state with our own modeset state tracking (and it's
6362 * internal consistency). */
6363static void intel_connector_check_state(struct intel_connector *connector)
6364{
6365        if (connector->get_hw_state(connector)) {
6366                struct intel_encoder *encoder = connector->encoder;
6367                struct drm_crtc *crtc;
6368                bool encoder_enabled;
6369                enum pipe pipe;
6370
6371                DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
6372                              connector->base.base.id,
6373                              connector->base.name);
6374
6375                /* there is no real hw state for MST connectors */
6376                if (connector->mst_port)
6377                        return;
6378
6379                I915_STATE_WARN(connector->base.dpms == DRM_MODE_DPMS_OFF,
6380                     "wrong connector dpms state\n");
6381                I915_STATE_WARN(connector->base.encoder != &encoder->base,
6382                     "active connector not linked to encoder\n");
6383
6384                if (encoder) {
6385                        I915_STATE_WARN(!encoder->connectors_active,
6386                             "encoder->connectors_active not set\n");
6387
6388                        encoder_enabled = encoder->get_hw_state(encoder, &pipe);
6389                        I915_STATE_WARN(!encoder_enabled, "encoder not enabled\n");
6390                        if (I915_STATE_WARN_ON(!encoder->base.crtc))
6391                                return;
6392
6393                        crtc = encoder->base.crtc;
6394
6395                        I915_STATE_WARN(!crtc->state->enable,
6396                                        "crtc not enabled\n");
6397                        I915_STATE_WARN(!to_intel_crtc(crtc)->active, "crtc not active\n");
6398                        I915_STATE_WARN(pipe != to_intel_crtc(crtc)->pipe,
6399                             "encoder active on the wrong pipe\n");
6400                }
6401        }
6402}
6403
6404int intel_connector_init(struct intel_connector *connector)
6405{
6406        struct drm_connector_state *connector_state;
6407
6408        connector_state = kzalloc(sizeof *connector_state, GFP_KERNEL);
6409        if (!connector_state)
6410                return -ENOMEM;
6411
6412        connector->base.state = connector_state;
6413        return 0;
6414}
6415
6416struct intel_connector *intel_connector_alloc(void)
6417{
6418        struct intel_connector *connector;
6419
6420        connector = kzalloc(sizeof *connector, GFP_KERNEL);
6421        if (!connector)
6422                return NULL;
6423
6424        if (intel_connector_init(connector) < 0) {
6425                kfree(connector);
6426                return NULL;
6427        }
6428
6429        return connector;
6430}
6431
6432/* Even simpler default implementation, if there's really no special case to
6433 * consider. */
6434void intel_connector_dpms(struct drm_connector *connector, int mode)
6435{
6436        /* All the simple cases only support two dpms states. */
6437        if (mode != DRM_MODE_DPMS_ON)
6438                mode = DRM_MODE_DPMS_OFF;
6439
6440        if (mode == connector->dpms)
6441                return;
6442
6443        connector->dpms = mode;
6444
6445        /* Only need to change hw state when actually enabled */
6446        if (connector->encoder)
6447                intel_encoder_dpms(to_intel_encoder(connector->encoder), mode);
6448
6449        intel_modeset_check_state(connector->dev);
6450}
6451
6452/* Simple connector->get_hw_state implementation for encoders that support only
6453 * one connector and no cloning and hence the encoder state determines the state
6454 * of the connector. */
6455bool intel_connector_get_hw_state(struct intel_connector *connector)
6456{
6457        enum pipe pipe = 0;
6458        struct intel_encoder *encoder = connector->encoder;
6459
6460        return encoder->get_hw_state(encoder, &pipe);
6461}
6462
6463static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
6464{
6465        if (crtc_state->base.enable && crtc_state->has_pch_encoder)
6466                return crtc_state->fdi_lanes;
6467
6468        return 0;
6469}
6470
6471static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
6472                                     struct intel_crtc_state *pipe_config)
6473{
6474        struct drm_atomic_state *state = pipe_config->base.state;
6475        struct intel_crtc *other_crtc;
6476        struct intel_crtc_state *other_crtc_state;
6477
6478        DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
6479                      pipe_name(pipe), pipe_config->fdi_lanes);
6480        if (pipe_config->fdi_lanes > 4) {
6481                DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
6482                              pipe_name(pipe), pipe_config->fdi_lanes);
6483                return -EINVAL;
6484        }
6485
6486        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
6487                if (pipe_config->fdi_lanes > 2) {
6488                        DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
6489                                      pipe_config->fdi_lanes);
6490                        return -EINVAL;
6491                } else {
6492                        return 0;
6493                }
6494        }
6495
6496        if (INTEL_INFO(dev)->num_pipes == 2)
6497                return 0;
6498
6499        /* Ivybridge 3 pipe is really complicated */
6500        switch (pipe) {
6501        case PIPE_A:
6502                return 0;
6503        case PIPE_B:
6504                if (pipe_config->fdi_lanes <= 2)
6505                        return 0;
6506
6507                other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_C));
6508                other_crtc_state =
6509                        intel_atomic_get_crtc_state(state, other_crtc);
6510                if (IS_ERR(other_crtc_state))
6511                        return PTR_ERR(other_crtc_state);
6512
6513                if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
6514                        DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
6515                                      pipe_name(pipe), pipe_config->fdi_lanes);
6516                        return -EINVAL;
6517                }
6518                return 0;
6519        case PIPE_C:
6520                if (pipe_config->fdi_lanes > 2) {
6521                        DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
6522                                      pipe_name(pipe), pipe_config->fdi_lanes);
6523                        return -EINVAL;
6524                }
6525
6526                other_crtc = to_intel_crtc(intel_get_crtc_for_pipe(dev, PIPE_B));
6527                other_crtc_state =
6528                        intel_atomic_get_crtc_state(state, other_crtc);
6529                if (IS_ERR(other_crtc_state))
6530                        return PTR_ERR(other_crtc_state);
6531
6532                if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
6533                        DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
6534                        return -EINVAL;
6535                }
6536                return 0;
6537        default:
6538                BUG();
6539        }
6540}
6541
6542#define RETRY 1
6543static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
6544                                       struct intel_crtc_state *pipe_config)
6545{
6546        struct drm_device *dev = intel_crtc->base.dev;
6547        struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6548        int lane, link_bw, fdi_dotclock, ret;
6549        bool needs_recompute = false;
6550
6551retry:
6552        /* FDI is a binary signal running at ~2.7GHz, encoding
6553         * each output octet as 10 bits. The actual frequency
6554         * is stored as a divider into a 100MHz clock, and the
6555         * mode pixel clock is stored in units of 1KHz.
6556         * Hence the bw of each lane in terms of the mode signal
6557         * is:
6558         */
6559        link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
6560
6561        fdi_dotclock = adjusted_mode->crtc_clock;
6562
6563        lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
6564                                           pipe_config->pipe_bpp);
6565
6566        pipe_config->fdi_lanes = lane;
6567
6568        intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
6569                               link_bw, &pipe_config->fdi_m_n);
6570
6571        ret = ironlake_check_fdi_lanes(intel_crtc->base.dev,
6572                                       intel_crtc->pipe, pipe_config);
6573        if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
6574                pipe_config->pipe_bpp -= 2*3;
6575                DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
6576                              pipe_config->pipe_bpp);
6577                needs_recompute = true;
6578                pipe_config->bw_constrained = true;
6579
6580                goto retry;
6581        }
6582
6583        if (needs_recompute)
6584                return RETRY;
6585
6586        return ret;
6587}
6588
6589static void hsw_compute_ips_config(struct intel_crtc *crtc,
6590                                   struct intel_crtc_state *pipe_config)
6591{
6592        pipe_config->ips_enabled = i915.enable_ips &&
6593                                   hsw_crtc_supports_ips(crtc) &&
6594                                   pipe_config->pipe_bpp <= 24;
6595}
6596
6597static int intel_crtc_compute_config(struct intel_crtc *crtc,
6598                                     struct intel_crtc_state *pipe_config)
6599{
6600        struct drm_device *dev = crtc->base.dev;
6601        struct drm_i915_private *dev_priv = dev->dev_private;
6602        struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
6603        int ret;
6604
6605        /* FIXME should check pixel clock limits on all platforms */
6606        if (INTEL_INFO(dev)->gen < 4) {
6607                int clock_limit =
6608                        dev_priv->display.get_display_clock_speed(dev);
6609
6610                /*
6611                 * Enable pixel doubling when the dot clock
6612                 * is > 90% of the (display) core speed.
6613                 *
6614                 * GDG double wide on either pipe,
6615                 * otherwise pipe A only.
6616                 */
6617                if ((crtc->pipe == PIPE_A || IS_I915G(dev)) &&
6618                    adjusted_mode->crtc_clock > clock_limit * 9 / 10) {
6619                        clock_limit *= 2;
6620                        pipe_config->double_wide = true;
6621                }
6622
6623                if (adjusted_mode->crtc_clock > clock_limit * 9 / 10)
6624                        return -EINVAL;
6625        }
6626
6627        /*
6628         * Pipe horizontal size must be even in:
6629         * - DVO ganged mode
6630         * - LVDS dual channel mode
6631         * - Double wide pipe
6632         */
6633        if ((intel_pipe_will_have_type(pipe_config, INTEL_OUTPUT_LVDS) &&
6634             intel_is_dual_link_lvds(dev)) || pipe_config->double_wide)
6635                pipe_config->pipe_src_w &= ~1;
6636
6637        /* Cantiga+ cannot handle modes with a hsync front porch of 0.
6638         * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
6639         */
6640        if ((INTEL_INFO(dev)->gen > 4 || IS_G4X(dev)) &&
6641                adjusted_mode->hsync_start == adjusted_mode->hdisplay)
6642                return -EINVAL;
6643
6644        if (HAS_IPS(dev))
6645                hsw_compute_ips_config(crtc, pipe_config);
6646
6647        if (pipe_config->has_pch_encoder)
6648                return ironlake_fdi_compute_config(crtc, pipe_config);
6649
6650        /* FIXME: remove below call once atomic mode set is place and all crtc
6651         * related checks called from atomic_crtc_check function */
6652        ret = 0;
6653        DRM_DEBUG_KMS("intel_crtc = %p drm_state (pipe_config->base.state) = %p\n",
6654                crtc, pipe_config->base.state);
6655        ret = intel_atomic_setup_scalers(dev, crtc, pipe_config);
6656
6657        return ret;
6658}
6659
6660static int skylake_get_display_clock_speed(struct drm_device *dev)
6661{
6662        struct drm_i915_private *dev_priv = to_i915(dev);
6663        uint32_t lcpll1 = I915_READ(LCPLL1_CTL);
6664        uint32_t cdctl = I915_READ(CDCLK_CTL);
6665        uint32_t linkrate;
6666
6667        if (!(lcpll1 & LCPLL_PLL_ENABLE)) {
6668                WARN(1, "LCPLL1 not enabled\n");
6669                return 24000; /* 24MHz is the cd freq with NSSC ref */
6670        }
6671
6672        if ((cdctl & CDCLK_FREQ_SEL_MASK) == CDCLK_FREQ_540)
6673                return 540000;
6674
6675        linkrate = (I915_READ(DPLL_CTRL1) &
6676                    DPLL_CTRL1_LINK_RATE_MASK(SKL_DPLL0)) >> 1;
6677
6678        if (linkrate == DPLL_CTRL1_LINK_RATE_2160 ||
6679            linkrate == DPLL_CTRL1_LINK_RATE_1080) {
6680                /* vco 8640 */
6681                switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6682                case CDCLK_FREQ_450_432:
6683                        return 432000;
6684                case CDCLK_FREQ_337_308:
6685                        return 308570;
6686                case CDCLK_FREQ_675_617:
6687                        return 617140;
6688                default:
6689                        WARN(1, "Unknown cd freq selection\n");
6690                }
6691        } else {
6692                /* vco 8100 */
6693                switch (cdctl & CDCLK_FREQ_SEL_MASK) {
6694                case CDCLK_FREQ_450_432:
6695                        return 450000;
6696                case CDCLK_FREQ_337_308:
6697                        return 337500;
6698                case CDCLK_FREQ_675_617:
6699                        return 675000;
6700                default:
6701                        WARN(1, "Unknown cd freq selection\n");
6702                }
6703        }
6704
6705        /* error case, do as if DPLL0 isn't enabled */
6706        return 24000;
6707}
6708
6709static int broadwell_get_display_clock_speed(struct drm_device *dev)
6710{
6711        struct drm_i915_private *dev_priv = dev->dev_private;
6712        uint32_t lcpll = I915_READ(LCPLL_CTL);
6713        uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6714
6715        if (lcpll & LCPLL_CD_SOURCE_FCLK)
6716                return 800000;
6717        else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6718                return 450000;
6719        else if (freq == LCPLL_CLK_FREQ_450)
6720                return 450000;
6721        else if (freq == LCPLL_CLK_FREQ_54O_BDW)
6722                return 540000;
6723        else if (freq == LCPLL_CLK_FREQ_337_5_BDW)
6724                return 337500;
6725        else
6726                return 675000;
6727}
6728
6729static int haswell_get_display_clock_speed(struct drm_device *dev)
6730{
6731        struct drm_i915_private *dev_priv = dev->dev_private;
6732        uint32_t lcpll = I915_READ(LCPLL_CTL);
6733        uint32_t freq = lcpll & LCPLL_CLK_FREQ_MASK;
6734
6735        if (lcpll & LCPLL_CD_SOURCE_FCLK)
6736                return 800000;
6737        else if (I915_READ(FUSE_STRAP) & HSW_CDCLK_LIMIT)
6738                return 450000;
6739        else if (freq == LCPLL_CLK_FREQ_450)
6740                return 450000;
6741        else if (IS_HSW_ULT(dev))
6742                return 337500;
6743        else
6744                return 540000;
6745}
6746
6747static int valleyview_get_display_clock_speed(struct drm_device *dev)
6748{
6749        struct drm_i915_private *dev_priv = dev->dev_private;
6750        u32 val;
6751        int divider;
6752
6753        if (dev_priv->hpll_freq == 0)
6754                dev_priv->hpll_freq = valleyview_get_vco(dev_priv);
6755
6756        mutex_lock(&dev_priv->sb_lock);
6757        val = vlv_cck_read(dev_priv, CCK_DISPLAY_CLOCK_CONTROL);
6758        mutex_unlock(&dev_priv->sb_lock);
6759
6760        divider = val & DISPLAY_FREQUENCY_VALUES;
6761
6762        WARN((val & DISPLAY_FREQUENCY_STATUS) !=
6763             (divider << DISPLAY_FREQUENCY_STATUS_SHIFT),
6764             "cdclk change in progress\n");
6765
6766        return DIV_ROUND_CLOSEST(dev_priv->hpll_freq << 1, divider + 1);
6767}
6768
6769static int ilk_get_display_clock_speed(struct drm_device *dev)
6770{
6771        return 450000;
6772}
6773
6774static int i945_get_display_clock_speed(struct drm_device *dev)
6775{
6776        return 400000;
6777}
6778
6779static int i915_get_display_clock_speed(struct drm_device *dev)
6780{
6781        return 333333;
6782}
6783
6784static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
6785{
6786        return 200000;
6787}
6788
6789static int pnv_get_display_clock_speed(struct drm_device *dev)
6790{
6791        u16 gcfgc = 0;
6792
6793        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6794
6795        switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6796        case GC_DISPLAY_CLOCK_267_MHZ_PNV:
6797                return 266667;
6798        case GC_DISPLAY_CLOCK_333_MHZ_PNV:
6799                return 333333;
6800        case GC_DISPLAY_CLOCK_444_MHZ_PNV:
6801                return 444444;
6802        case GC_DISPLAY_CLOCK_200_MHZ_PNV:
6803                return 200000;
6804        default:
6805                DRM_ERROR("Unknown pnv display core clock 0x%04x\n", gcfgc);
6806        case GC_DISPLAY_CLOCK_133_MHZ_PNV:
6807                return 133333;
6808        case GC_DISPLAY_CLOCK_167_MHZ_PNV:
6809                return 166667;
6810        }
6811}
6812
6813static int i915gm_get_display_clock_speed(struct drm_device *dev)
6814{
6815        u16 gcfgc = 0;
6816
6817        pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
6818
6819        if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
6820                return 133333;
6821        else {
6822                switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
6823                case GC_DISPLAY_CLOCK_333_MHZ:
6824                        return 333333;
6825                default:
6826                case GC_DISPLAY_CLOCK_190_200_MHZ:
6827                        return 190000;
6828                }
6829        }
6830}
6831
6832static int i865_get_display_clock_speed(struct drm_device *dev)
6833{
6834        return 266667;
6835}
6836
6837static int i855_get_display_clock_speed(struct drm_device *dev)
6838{
6839        u16 hpllcc = 0;
6840        /* Assume that the hardware is in the high speed state.  This
6841         * should be the default.
6842         */
6843        switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
6844        case GC_CLOCK_133_200:
6845        case GC_CLOCK_100_200:
6846                return 200000;
6847        case GC_CLOCK_166_250:
6848                return 250000;
6849        case GC_CLOCK_100_133:
6850                return 133333;
6851        }
6852
6853        /* Shouldn't happen */
6854        return 0;
6855}
6856
6857static int i830_get_display_clock_speed(struct drm_device *dev)
6858{
6859        return 133333;
6860}
6861
6862static void
6863intel_reduce_m_n_ratio(uint32_t *num, uint32_t *den)
6864{
6865        while (*num > DATA_LINK_M_N_MASK ||
6866               *den > DATA_LINK_M_N_MASK) {
6867                *num >>= 1;
6868                *den >>= 1;
6869        }
6870}
6871
6872static void compute_m_n(unsigned int m, unsigned int n,
6873                        uint32_t *ret_m, uint32_t *ret_n)
6874{
6875        *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
6876        *ret_m = div_u64((uint64_t) m * *ret_n, n);
6877        intel_reduce_m_n_ratio(ret_m, ret_n);
6878}
6879
6880void
6881intel_link_compute_m_n(int bits_per_pixel, int nlanes,
6882                       int pixel_clock, int link_clock,
6883                       struct intel_link_m_n *m_n)
6884{
6885        m_n->tu = 64;
6886
6887        compute_m_n(bits_per_pixel * pixel_clock,
6888                    link_clock * nlanes * 8,
6889                    &m_n->gmch_m, &m_n->gmch_n);
6890
6891        compute_m_n(pixel_clock, link_clock,
6892                    &m_n->link_m, &m_n->link_n);
6893}
6894
6895static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
6896{
6897        if (i915.panel_use_ssc >= 0)
6898                return i915.panel_use_ssc != 0;
6899        return dev_priv->vbt.lvds_use_ssc
6900                && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
6901}
6902
6903static int i9xx_get_refclk(const struct intel_crtc_state *crtc_state,
6904                           int num_connectors)
6905{
6906        struct drm_device *dev = crtc_state->base.crtc->dev;
6907        struct drm_i915_private *dev_priv = dev->dev_private;
6908        int refclk;
6909
6910        WARN_ON(!crtc_state->base.state);
6911
6912        if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
6913                refclk = 100000;
6914        } else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6915            intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
6916                refclk = dev_priv->vbt.lvds_ssc_freq;
6917                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
6918        } else if (!IS_GEN2(dev)) {
6919                refclk = 96000;
6920        } else {
6921                refclk = 48000;
6922        }
6923
6924        return refclk;
6925}
6926
6927static uint32_t pnv_dpll_compute_fp(struct dpll *dpll)
6928{
6929        return (1 << dpll->n) << 16 | dpll->m2;
6930}
6931
6932static uint32_t i9xx_dpll_compute_fp(struct dpll *dpll)
6933{
6934        return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
6935}
6936
6937static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
6938                                     struct intel_crtc_state *crtc_state,
6939                                     intel_clock_t *reduced_clock)
6940{
6941        struct drm_device *dev = crtc->base.dev;
6942        u32 fp, fp2 = 0;
6943
6944        if (IS_PINEVIEW(dev)) {
6945                fp = pnv_dpll_compute_fp(&crtc_state->dpll);
6946                if (reduced_clock)
6947                        fp2 = pnv_dpll_compute_fp(reduced_clock);
6948        } else {
6949                fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
6950                if (reduced_clock)
6951                        fp2 = i9xx_dpll_compute_fp(reduced_clock);
6952        }
6953
6954        crtc_state->dpll_hw_state.fp0 = fp;
6955
6956        crtc->lowfreq_avail = false;
6957        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
6958            reduced_clock) {
6959                crtc_state->dpll_hw_state.fp1 = fp2;
6960                crtc->lowfreq_avail = true;
6961        } else {
6962                crtc_state->dpll_hw_state.fp1 = fp;
6963        }
6964}
6965
6966static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
6967                pipe)
6968{
6969        u32 reg_val;
6970
6971        /*
6972         * PLLB opamp always calibrates to max value of 0x3f, force enable it
6973         * and set it to a reasonable value instead.
6974         */
6975        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6976        reg_val &= 0xffffff00;
6977        reg_val |= 0x00000030;
6978        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6979
6980        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6981        reg_val &= 0x8cffffff;
6982        reg_val = 0x8c000000;
6983        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6984
6985        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
6986        reg_val &= 0xffffff00;
6987        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
6988
6989        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
6990        reg_val &= 0x00ffffff;
6991        reg_val |= 0xb0000000;
6992        vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
6993}
6994
6995static void intel_pch_transcoder_set_m_n(struct intel_crtc *crtc,
6996                                         struct intel_link_m_n *m_n)
6997{
6998        struct drm_device *dev = crtc->base.dev;
6999        struct drm_i915_private *dev_priv = dev->dev_private;
7000        int pipe = crtc->pipe;
7001
7002        I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7003        I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7004        I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7005        I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7006}
7007
7008static void intel_cpu_transcoder_set_m_n(struct intel_crtc *crtc,
7009                                         struct intel_link_m_n *m_n,
7010                                         struct intel_link_m_n *m2_n2)
7011{
7012        struct drm_device *dev = crtc->base.dev;
7013        struct drm_i915_private *dev_priv = dev->dev_private;
7014        int pipe = crtc->pipe;
7015        enum transcoder transcoder = crtc->config->cpu_transcoder;
7016
7017        if (INTEL_INFO(dev)->gen >= 5) {
7018                I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7019                I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7020                I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7021                I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7022                /* M2_N2 registers to be set only for gen < 8 (M2_N2 available
7023                 * for gen < 8) and if DRRS is supported (to make sure the
7024                 * registers are not unnecessarily accessed).
7025                 */
7026                if (m2_n2 && (IS_CHERRYVIEW(dev) || INTEL_INFO(dev)->gen < 8) &&
7027                        crtc->config->has_drrs) {
7028                        I915_WRITE(PIPE_DATA_M2(transcoder),
7029                                        TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7030                        I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7031                        I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7032                        I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7033                }
7034        } else {
7035                I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7036                I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7037                I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7038                I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7039        }
7040}
7041
7042void intel_dp_set_m_n(struct intel_crtc *crtc, enum link_m_n_set m_n)
7043{
7044        struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7045
7046        if (m_n == M1_N1) {
7047                dp_m_n = &crtc->config->dp_m_n;
7048                dp_m2_n2 = &crtc->config->dp_m2_n2;
7049        } else if (m_n == M2_N2) {
7050
7051                /*
7052                 * M2_N2 registers are not supported. Hence m2_n2 divider value
7053                 * needs to be programmed into M1_N1.
7054                 */
7055                dp_m_n = &crtc->config->dp_m2_n2;
7056        } else {
7057                DRM_ERROR("Unsupported divider value\n");
7058                return;
7059        }
7060
7061        if (crtc->config->has_pch_encoder)
7062                intel_pch_transcoder_set_m_n(crtc, &crtc->config->dp_m_n);
7063        else
7064                intel_cpu_transcoder_set_m_n(crtc, dp_m_n, dp_m2_n2);
7065}
7066
7067static void vlv_update_pll(struct intel_crtc *crtc,
7068                           struct intel_crtc_state *pipe_config)
7069{
7070        u32 dpll, dpll_md;
7071
7072        /*
7073         * Enable DPIO clock input. We should never disable the reference
7074         * clock for pipe B, since VGA hotplug / manual detection depends
7075         * on it.
7076         */
7077        dpll = DPLL_EXT_BUFFER_ENABLE_VLV | DPLL_REFA_CLK_ENABLE_VLV |
7078                DPLL_VGA_MODE_DIS | DPLL_INTEGRATED_CLOCK_VLV;
7079        /* We should never disable this, set it here for state tracking */
7080        if (crtc->pipe == PIPE_B)
7081                dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7082        dpll |= DPLL_VCO_ENABLE;
7083        pipe_config->dpll_hw_state.dpll = dpll;
7084
7085        dpll_md = (pipe_config->pixel_multiplier - 1)
7086                << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7087        pipe_config->dpll_hw_state.dpll_md = dpll_md;
7088}
7089
7090static void vlv_prepare_pll(struct intel_crtc *crtc,
7091                            const struct intel_crtc_state *pipe_config)
7092{
7093        struct drm_device *dev = crtc->base.dev;
7094        struct drm_i915_private *dev_priv = dev->dev_private;
7095        int pipe = crtc->pipe;
7096        u32 mdiv;
7097        u32 bestn, bestm1, bestm2, bestp1, bestp2;
7098        u32 coreclk, reg_val;
7099
7100        mutex_lock(&dev_priv->sb_lock);
7101
7102        bestn = pipe_config->dpll.n;
7103        bestm1 = pipe_config->dpll.m1;
7104        bestm2 = pipe_config->dpll.m2;
7105        bestp1 = pipe_config->dpll.p1;
7106        bestp2 = pipe_config->dpll.p2;
7107
7108        /* See eDP HDMI DPIO driver vbios notes doc */
7109
7110        /* PLL B needs special handling */
7111        if (pipe == PIPE_B)
7112                vlv_pllb_recal_opamp(dev_priv, pipe);
7113
7114        /* Set up Tx target for periodic Rcomp update */
7115        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7116
7117        /* Disable target IRef on PLL */
7118        reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7119        reg_val &= 0x00ffffff;
7120        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7121
7122        /* Disable fast lock */
7123        vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7124
7125        /* Set idtafcrecal before PLL is enabled */
7126        mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7127        mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7128        mdiv |= ((bestn << DPIO_N_SHIFT));
7129        mdiv |= (1 << DPIO_K_SHIFT);
7130
7131        /*
7132         * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7133         * but we don't support that).
7134         * Note: don't use the DAC post divider as it seems unstable.
7135         */
7136        mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7137        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7138
7139        mdiv |= DPIO_ENABLE_CALIBRATION;
7140        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7141
7142        /* Set HBR and RBR LPF coefficients */
7143        if (pipe_config->port_clock == 162000 ||
7144            intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG) ||
7145            intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI))
7146                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7147                                 0x009f0003);
7148        else
7149                vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7150                                 0x00d0000f);
7151
7152        if (pipe_config->has_dp_encoder) {
7153                /* Use SSC source */
7154                if (pipe == PIPE_A)
7155                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7156                                         0x0df40000);
7157                else
7158                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7159                                         0x0df70000);
7160        } else { /* HDMI or VGA */
7161                /* Use bend source */
7162                if (pipe == PIPE_A)
7163                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7164                                         0x0df70000);
7165                else
7166                        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7167                                         0x0df40000);
7168        }
7169
7170        coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7171        coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7172        if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
7173            intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
7174                coreclk |= 0x01000000;
7175        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7176
7177        vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7178        mutex_unlock(&dev_priv->sb_lock);
7179}
7180
7181static void chv_update_pll(struct intel_crtc *crtc,
7182                           struct intel_crtc_state *pipe_config)
7183{
7184        pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLOCK_CHV |
7185                DPLL_REFA_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS |
7186                DPLL_VCO_ENABLE;
7187        if (crtc->pipe != PIPE_A)
7188                pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7189
7190        pipe_config->dpll_hw_state.dpll_md =
7191                (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7192}
7193
7194static void chv_prepare_pll(struct intel_crtc *crtc,
7195                            const struct intel_crtc_state *pipe_config)
7196{
7197        struct drm_device *dev = crtc->base.dev;
7198        struct drm_i915_private *dev_priv = dev->dev_private;
7199        int pipe = crtc->pipe;
7200        int dpll_reg = DPLL(crtc->pipe);
7201        enum dpio_channel port = vlv_pipe_to_channel(pipe);
7202        u32 loopfilter, tribuf_calcntr;
7203        u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7204        u32 dpio_val;
7205        int vco;
7206
7207        bestn = pipe_config->dpll.n;
7208        bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7209        bestm1 = pipe_config->dpll.m1;
7210        bestm2 = pipe_config->dpll.m2 >> 22;
7211        bestp1 = pipe_config->dpll.p1;
7212        bestp2 = pipe_config->dpll.p2;
7213        vco = pipe_config->dpll.vco;
7214        dpio_val = 0;
7215        loopfilter = 0;
7216
7217        /*
7218         * Enable Refclk and SSC
7219         */
7220        I915_WRITE(dpll_reg,
7221                   pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7222
7223        mutex_lock(&dev_priv->sb_lock);
7224
7225        /* p1 and p2 divider */
7226        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7227                        5 << DPIO_CHV_S1_DIV_SHIFT |
7228                        bestp1 << DPIO_CHV_P1_DIV_SHIFT |
7229                        bestp2 << DPIO_CHV_P2_DIV_SHIFT |
7230                        1 << DPIO_CHV_K_DIV_SHIFT);
7231
7232        /* Feedback post-divider - m2 */
7233        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
7234
7235        /* Feedback refclk divider - n and m1 */
7236        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
7237                        DPIO_CHV_M1_DIV_BY_2 |
7238                        1 << DPIO_CHV_N_DIV_SHIFT);
7239
7240        /* M2 fraction division */
7241        if (bestm2_frac)
7242                vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
7243
7244        /* M2 fraction division enable */
7245        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7246        dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
7247        dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
7248        if (bestm2_frac)
7249                dpio_val |= DPIO_CHV_FRAC_DIV_EN;
7250        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
7251
7252        /* Program digital lock detect threshold */
7253        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
7254        dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
7255                                        DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
7256        dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
7257        if (!bestm2_frac)
7258                dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
7259        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
7260
7261        /* Loop filter */
7262        if (vco == 5400000) {
7263                loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
7264                loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
7265                loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
7266                tribuf_calcntr = 0x9;
7267        } else if (vco <= 6200000) {
7268                loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
7269                loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
7270                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7271                tribuf_calcntr = 0x9;
7272        } else if (vco <= 6480000) {
7273                loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7274                loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7275                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7276                tribuf_calcntr = 0x8;
7277        } else {
7278                /* Not supported. Apply the same limits as in the max case */
7279                loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
7280                loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
7281                loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
7282                tribuf_calcntr = 0;
7283        }
7284        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
7285
7286        dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
7287        dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
7288        dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
7289        vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
7290
7291        /* AFC Recal */
7292        vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
7293                        vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
7294                        DPIO_AFC_RECAL);
7295
7296        mutex_unlock(&dev_priv->sb_lock);
7297}
7298
7299/**
7300 * vlv_force_pll_on - forcibly enable just the PLL
7301 * @dev_priv: i915 private structure
7302 * @pipe: pipe PLL to enable
7303 * @dpll: PLL configuration
7304 *
7305 * Enable the PLL for @pipe using the supplied @dpll config. To be used
7306 * in cases where we need the PLL enabled even when @pipe is not going to
7307 * be enabled.
7308 */
7309void vlv_force_pll_on(struct drm_device *dev, enum pipe pipe,
7310                      const struct dpll *dpll)
7311{
7312        struct intel_crtc *crtc =
7313                to_intel_crtc(intel_get_crtc_for_pipe(dev, pipe));
7314        struct intel_crtc_state pipe_config = {
7315                .base.crtc = &crtc->base,
7316                .pixel_multiplier = 1,
7317                .dpll = *dpll,
7318        };
7319
7320        if (IS_CHERRYVIEW(dev)) {
7321                chv_update_pll(crtc, &pipe_config);
7322                chv_prepare_pll(crtc, &pipe_config);
7323                chv_enable_pll(crtc, &pipe_config);
7324        } else {
7325                vlv_update_pll(crtc, &pipe_config);
7326                vlv_prepare_pll(crtc, &pipe_config);
7327                vlv_enable_pll(crtc, &pipe_config);
7328        }
7329}
7330
7331/**
7332 * vlv_force_pll_off - forcibly disable just the PLL
7333 * @dev_priv: i915 private structure
7334 * @pipe: pipe PLL to disable
7335 *
7336 * Disable the PLL for @pipe. To be used in cases where we need
7337 * the PLL enabled even when @pipe is not going to be enabled.
7338 */
7339void vlv_force_pll_off(struct drm_device *dev, enum pipe pipe)
7340{
7341        if (IS_CHERRYVIEW(dev))
7342                chv_disable_pll(to_i915(dev), pipe);
7343        else
7344                vlv_disable_pll(to_i915(dev), pipe);
7345}
7346
7347static void i9xx_update_pll(struct intel_crtc *crtc,
7348                            struct intel_crtc_state *crtc_state,
7349                            intel_clock_t *reduced_clock,
7350                            int num_connectors)
7351{
7352        struct drm_device *dev = crtc->base.dev;
7353        struct drm_i915_private *dev_priv = dev->dev_private;
7354        u32 dpll;
7355        bool is_sdvo;
7356        struct dpll *clock = &crtc_state->dpll;
7357
7358        i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7359
7360        is_sdvo = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_SDVO) ||
7361                intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_HDMI);
7362
7363        dpll = DPLL_VGA_MODE_DIS;
7364
7365        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS))
7366                dpll |= DPLLB_MODE_LVDS;
7367        else
7368                dpll |= DPLLB_MODE_DAC_SERIAL;
7369
7370        if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7371                dpll |= (crtc_state->pixel_multiplier - 1)
7372                        << SDVO_MULTIPLIER_SHIFT_HIRES;
7373        }
7374
7375        if (is_sdvo)
7376                dpll |= DPLL_SDVO_HIGH_SPEED;
7377
7378        if (crtc_state->has_dp_encoder)
7379                dpll |= DPLL_SDVO_HIGH_SPEED;
7380
7381        /* compute bitmask from p1 value */
7382        if (IS_PINEVIEW(dev))
7383                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
7384        else {
7385                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7386                if (IS_G4X(dev) && reduced_clock)
7387                        dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
7388        }
7389        switch (clock->p2) {
7390        case 5:
7391                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
7392                break;
7393        case 7:
7394                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
7395                break;
7396        case 10:
7397                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
7398                break;
7399        case 14:
7400                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
7401                break;
7402        }
7403        if (INTEL_INFO(dev)->gen >= 4)
7404                dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
7405
7406        if (crtc_state->sdvo_tv_clock)
7407                dpll |= PLL_REF_INPUT_TVCLKINBC;
7408        else if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7409                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7410                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7411        else
7412                dpll |= PLL_REF_INPUT_DREFCLK;
7413
7414        dpll |= DPLL_VCO_ENABLE;
7415        crtc_state->dpll_hw_state.dpll = dpll;
7416
7417        if (INTEL_INFO(dev)->gen >= 4) {
7418                u32 dpll_md = (crtc_state->pixel_multiplier - 1)
7419                        << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7420                crtc_state->dpll_hw_state.dpll_md = dpll_md;
7421        }
7422}
7423
7424static void i8xx_update_pll(struct intel_crtc *crtc,
7425                            struct intel_crtc_state *crtc_state,
7426                            intel_clock_t *reduced_clock,
7427                            int num_connectors)
7428{
7429        struct drm_device *dev = crtc->base.dev;
7430        struct drm_i915_private *dev_priv = dev->dev_private;
7431        u32 dpll;
7432        struct dpll *clock = &crtc_state->dpll;
7433
7434        i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
7435
7436        dpll = DPLL_VGA_MODE_DIS;
7437
7438        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS)) {
7439                dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7440        } else {
7441                if (clock->p1 == 2)
7442                        dpll |= PLL_P1_DIVIDE_BY_TWO;
7443                else
7444                        dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
7445                if (clock->p2 == 4)
7446                        dpll |= PLL_P2_DIVIDE_BY_4;
7447        }
7448
7449        if (!IS_I830(dev) && intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_DVO))
7450                dpll |= DPLL_DVO_2X_MODE;
7451
7452        if (intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7453                 intel_panel_use_ssc(dev_priv) && num_connectors < 2)
7454                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
7455        else
7456                dpll |= PLL_REF_INPUT_DREFCLK;
7457
7458        dpll |= DPLL_VCO_ENABLE;
7459        crtc_state->dpll_hw_state.dpll = dpll;
7460}
7461
7462static void intel_set_pipe_timings(struct intel_crtc *intel_crtc)
7463{
7464        struct drm_device *dev = intel_crtc->base.dev;
7465        struct drm_i915_private *dev_priv = dev->dev_private;
7466        enum pipe pipe = intel_crtc->pipe;
7467        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
7468        struct drm_display_mode *adjusted_mode =
7469                &intel_crtc->config->base.adjusted_mode;
7470        uint32_t crtc_vtotal, crtc_vblank_end;
7471        int vsyncshift = 0;
7472
7473        /* We need to be careful not to changed the adjusted mode, for otherwise
7474         * the hw state checker will get angry at the mismatch. */
7475        crtc_vtotal = adjusted_mode->crtc_vtotal;
7476        crtc_vblank_end = adjusted_mode->crtc_vblank_end;
7477
7478        if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
7479                /* the chip adds 2 halflines automatically */
7480                crtc_vtotal -= 1;
7481                crtc_vblank_end -= 1;
7482
7483                if (intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7484                        vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
7485                else
7486                        vsyncshift = adjusted_mode->crtc_hsync_start -
7487                                adjusted_mode->crtc_htotal / 2;
7488                if (vsyncshift < 0)
7489                        vsyncshift += adjusted_mode->crtc_htotal;
7490        }
7491
7492        if (INTEL_INFO(dev)->gen > 3)
7493                I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
7494
7495        I915_WRITE(HTOTAL(cpu_transcoder),
7496                   (adjusted_mode->crtc_hdisplay - 1) |
7497                   ((adjusted_mode->crtc_htotal - 1) << 16));
7498        I915_WRITE(HBLANK(cpu_transcoder),
7499                   (adjusted_mode->crtc_hblank_start - 1) |
7500                   ((adjusted_mode->crtc_hblank_end - 1) << 16));
7501        I915_WRITE(HSYNC(cpu_transcoder),
7502                   (adjusted_mode->crtc_hsync_start - 1) |
7503                   ((adjusted_mode->crtc_hsync_end - 1) << 16));
7504
7505        I915_WRITE(VTOTAL(cpu_transcoder),
7506                   (adjusted_mode->crtc_vdisplay - 1) |
7507                   ((crtc_vtotal - 1) << 16));
7508        I915_WRITE(VBLANK(cpu_transcoder),
7509                   (adjusted_mode->crtc_vblank_start - 1) |
7510                   ((crtc_vblank_end - 1) << 16));
7511        I915_WRITE(VSYNC(cpu_transcoder),
7512                   (adjusted_mode->crtc_vsync_start - 1) |
7513                   ((adjusted_mode->crtc_vsync_end - 1) << 16));
7514
7515        /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
7516         * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
7517         * documented on the DDI_FUNC_CTL register description, EDP Input Select
7518         * bits. */
7519        if (IS_HASWELL(dev) && cpu_transcoder == TRANSCODER_EDP &&
7520            (pipe == PIPE_B || pipe == PIPE_C))
7521                I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
7522
7523        /* pipesrc controls the size that is scaled from, which should
7524         * always be the user's requested size.
7525         */
7526        I915_WRITE(PIPESRC(pipe),
7527                   ((intel_crtc->config->pipe_src_w - 1) << 16) |
7528                   (intel_crtc->config->pipe_src_h - 1));
7529}
7530
7531static void intel_get_pipe_timings(struct intel_crtc *crtc,
7532                                   struct intel_crtc_state *pipe_config)
7533{
7534        struct drm_device *dev = crtc->base.dev;
7535        struct drm_i915_private *dev_priv = dev->dev_private;
7536        enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
7537        uint32_t tmp;
7538
7539        tmp = I915_READ(HTOTAL(cpu_transcoder));
7540        pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
7541        pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
7542        tmp = I915_READ(HBLANK(cpu_transcoder));
7543        pipe_config->base.adjusted_mode.crtc_hblank_start = (tmp & 0xffff) + 1;
7544        pipe_config->base.adjusted_mode.crtc_hblank_end = ((tmp >> 16) & 0xffff) + 1;
7545        tmp = I915_READ(HSYNC(cpu_transcoder));
7546        pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
7547        pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
7548
7549        tmp = I915_READ(VTOTAL(cpu_transcoder));
7550        pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
7551        pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
7552        tmp = I915_READ(VBLANK(cpu_transcoder));
7553        pipe_config->base.adjusted_mode.crtc_vblank_start = (tmp & 0xffff) + 1;
7554        pipe_config->base.adjusted_mode.crtc_vblank_end = ((tmp >> 16) & 0xffff) + 1;
7555        tmp = I915_READ(VSYNC(cpu_transcoder));
7556        pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
7557        pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
7558
7559        if (I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK) {
7560                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
7561                pipe_config->base.adjusted_mode.crtc_vtotal += 1;
7562                pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
7563        }
7564
7565        tmp = I915_READ(PIPESRC(crtc->pipe));
7566        pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
7567        pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
7568
7569        pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
7570        pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
7571}
7572
7573void intel_mode_from_pipe_config(struct drm_display_mode *mode,
7574                                 struct intel_crtc_state *pipe_config)
7575{
7576        mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
7577        mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
7578        mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
7579        mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
7580
7581        mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
7582        mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
7583        mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
7584        mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
7585
7586        mode->flags = pipe_config->base.adjusted_mode.flags;
7587
7588        mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
7589        mode->flags |= pipe_config->base.adjusted_mode.flags;
7590}
7591
7592static void i9xx_set_pipeconf(struct intel_crtc *intel_crtc)
7593{
7594        struct drm_device *dev = intel_crtc->base.dev;
7595        struct drm_i915_private *dev_priv = dev->dev_private;
7596        uint32_t pipeconf;
7597
7598        pipeconf = 0;
7599
7600        if ((intel_crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
7601            (intel_crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
7602                pipeconf |= I915_READ(PIPECONF(intel_crtc->pipe)) & PIPECONF_ENABLE;
7603
7604        if (intel_crtc->config->double_wide)
7605                pipeconf |= PIPECONF_DOUBLE_WIDE;
7606
7607        /* only g4x and later have fancy bpc/dither controls */
7608        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7609                /* Bspec claims that we can't use dithering for 30bpp pipes. */
7610                if (intel_crtc->config->dither && intel_crtc->config->pipe_bpp != 30)
7611                        pipeconf |= PIPECONF_DITHER_EN |
7612                                    PIPECONF_DITHER_TYPE_SP;
7613
7614                switch (intel_crtc->config->pipe_bpp) {
7615                case 18:
7616                        pipeconf |= PIPECONF_6BPC;
7617                        break;
7618                case 24:
7619                        pipeconf |= PIPECONF_8BPC;
7620                        break;
7621                case 30:
7622                        pipeconf |= PIPECONF_10BPC;
7623                        break;
7624                default:
7625                        /* Case prevented by intel_choose_pipe_bpp_dither. */
7626                        BUG();
7627                }
7628        }
7629
7630        if (HAS_PIPE_CXSR(dev)) {
7631                if (intel_crtc->lowfreq_avail) {
7632                        DRM_DEBUG_KMS("enabling CxSR downclocking\n");
7633                        pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
7634                } else {
7635                        DRM_DEBUG_KMS("disabling CxSR downclocking\n");
7636                }
7637        }
7638
7639        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
7640                if (INTEL_INFO(dev)->gen < 4 ||
7641                    intel_pipe_has_type(intel_crtc, INTEL_OUTPUT_SDVO))
7642                        pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
7643                else
7644                        pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
7645        } else
7646                pipeconf |= PIPECONF_PROGRESSIVE;
7647
7648        if (IS_VALLEYVIEW(dev) && intel_crtc->config->limited_color_range)
7649                pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
7650
7651        I915_WRITE(PIPECONF(intel_crtc->pipe), pipeconf);
7652        POSTING_READ(PIPECONF(intel_crtc->pipe));
7653}
7654
7655static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
7656                                   struct intel_crtc_state *crtc_state)
7657{
7658        struct drm_device *dev = crtc->base.dev;
7659        struct drm_i915_private *dev_priv = dev->dev_private;
7660        int refclk, num_connectors = 0;
7661        intel_clock_t clock, reduced_clock;
7662        bool ok, has_reduced_clock = false;
7663        bool is_lvds = false, is_dsi = false;
7664        struct intel_encoder *encoder;
7665        const intel_limit_t *limit;
7666        struct drm_atomic_state *state = crtc_state->base.state;
7667        struct drm_connector *connector;
7668        struct drm_connector_state *connector_state;
7669        int i;
7670
7671        memset(&crtc_state->dpll_hw_state, 0,
7672               sizeof(crtc_state->dpll_hw_state));
7673
7674        for_each_connector_in_state(state, connector, connector_state, i) {
7675                if (connector_state->crtc != &crtc->base)
7676                        continue;
7677
7678                encoder = to_intel_encoder(connector_state->best_encoder);
7679
7680                switch (encoder->type) {
7681                case INTEL_OUTPUT_LVDS:
7682                        is_lvds = true;
7683                        break;
7684                case INTEL_OUTPUT_DSI:
7685                        is_dsi = true;
7686                        break;
7687                default:
7688                        break;
7689                }
7690
7691                num_connectors++;
7692        }
7693
7694        if (is_dsi)
7695                return 0;
7696
7697        if (!crtc_state->clock_set) {
7698                refclk = i9xx_get_refclk(crtc_state, num_connectors);
7699
7700                /*
7701                 * Returns a set of divisors for the desired target clock with
7702                 * the given refclk, or FALSE.  The returned values represent
7703                 * the clock equation: reflck * (5 * (m1 + 2) + (m2 + 2)) / (n +
7704                 * 2) / p1 / p2.
7705                 */
7706                limit = intel_limit(crtc_state, refclk);
7707                ok = dev_priv->display.find_dpll(limit, crtc_state,
7708                                                 crtc_state->port_clock,
7709                                                 refclk, NULL, &clock);
7710                if (!ok) {
7711                        DRM_ERROR("Couldn't find PLL settings for mode!\n");
7712                        return -EINVAL;
7713                }
7714
7715                if (is_lvds && dev_priv->lvds_downclock_avail) {
7716                        /*
7717                         * Ensure we match the reduced clock's P to the target
7718                         * clock.  If the clocks don't match, we can't switch
7719                         * the display clock by using the FP0/FP1. In such case
7720                         * we will disable the LVDS downclock feature.
7721                         */
7722                        has_reduced_clock =
7723                                dev_priv->display.find_dpll(limit, crtc_state,
7724                                                            dev_priv->lvds_downclock,
7725                                                            refclk, &clock,
7726                                                            &reduced_clock);
7727                }
7728                /* Compat-code for transition, will disappear. */
7729                crtc_state->dpll.n = clock.n;
7730                crtc_state->dpll.m1 = clock.m1;
7731                crtc_state->dpll.m2 = clock.m2;
7732                crtc_state->dpll.p1 = clock.p1;
7733                crtc_state->dpll.p2 = clock.p2;
7734        }
7735
7736        if (IS_GEN2(dev)) {
7737                i8xx_update_pll(crtc, crtc_state,
7738                                has_reduced_clock ? &reduced_clock : NULL,
7739                                num_connectors);
7740        } else if (IS_CHERRYVIEW(dev)) {
7741                chv_update_pll(crtc, crtc_state);
7742        } else if (IS_VALLEYVIEW(dev)) {
7743                vlv_update_pll(crtc, crtc_state);
7744        } else {
7745                i9xx_update_pll(crtc, crtc_state,
7746                                has_reduced_clock ? &reduced_clock : NULL,
7747                                num_connectors);
7748        }
7749
7750        return 0;
7751}
7752
7753static void i9xx_get_pfit_config(struct intel_crtc *crtc,
7754                                 struct intel_crtc_state *pipe_config)
7755{
7756        struct drm_device *dev = crtc->base.dev;
7757        struct drm_i915_private *dev_priv = dev->dev_private;
7758        uint32_t tmp;
7759
7760        if (INTEL_INFO(dev)->gen <= 3 && (IS_I830(dev) || !IS_MOBILE(dev)))
7761                return;
7762
7763        tmp = I915_READ(PFIT_CONTROL);
7764        if (!(tmp & PFIT_ENABLE))
7765                return;
7766
7767        /* Check whether the pfit is attached to our pipe. */
7768        if (INTEL_INFO(dev)->gen < 4) {
7769                if (crtc->pipe != PIPE_B)
7770                        return;
7771        } else {
7772                if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
7773                        return;
7774        }
7775
7776        pipe_config->gmch_pfit.control = tmp;
7777        pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
7778        if (INTEL_INFO(dev)->gen < 5)
7779                pipe_config->gmch_pfit.lvds_border_bits =
7780                        I915_READ(LVDS) & LVDS_BORDER_ENABLE;
7781}
7782
7783static void vlv_crtc_clock_get(struct intel_crtc *crtc,
7784                               struct intel_crtc_state *pipe_config)
7785{
7786        struct drm_device *dev = crtc->base.dev;
7787        struct drm_i915_private *dev_priv = dev->dev_private;
7788        int pipe = pipe_config->cpu_transcoder;
7789        intel_clock_t clock;
7790        u32 mdiv;
7791        int refclk = 100000;
7792
7793        /* In case of MIPI DPLL will not even be used */
7794        if (!(pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE))
7795                return;
7796
7797        mutex_lock(&dev_priv->sb_lock);
7798        mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
7799        mutex_unlock(&dev_priv->sb_lock);
7800
7801        clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
7802        clock.m2 = mdiv & DPIO_M2DIV_MASK;
7803        clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
7804        clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
7805        clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
7806
7807        vlv_clock(refclk, &clock);
7808
7809        /* clock.dot is the fast clock */
7810        pipe_config->port_clock = clock.dot / 5;
7811}
7812
7813static void
7814i9xx_get_initial_plane_config(struct intel_crtc *crtc,
7815                              struct intel_initial_plane_config *plane_config)
7816{
7817        struct drm_device *dev = crtc->base.dev;
7818        struct drm_i915_private *dev_priv = dev->dev_private;
7819        u32 val, base, offset;
7820        int pipe = crtc->pipe, plane = crtc->plane;
7821        int fourcc, pixel_format;
7822        unsigned int aligned_height;
7823        struct drm_framebuffer *fb;
7824        struct intel_framebuffer *intel_fb;
7825
7826        val = I915_READ(DSPCNTR(plane));
7827        if (!(val & DISPLAY_PLANE_ENABLE))
7828                return;
7829
7830        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
7831        if (!intel_fb) {
7832                DRM_DEBUG_KMS("failed to alloc fb\n");
7833                return;
7834        }
7835
7836        fb = &intel_fb->base;
7837
7838        if (INTEL_INFO(dev)->gen >= 4) {
7839                if (val & DISPPLANE_TILED) {
7840                        plane_config->tiling = I915_TILING_X;
7841                        fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
7842                }
7843        }
7844
7845        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
7846        fourcc = i9xx_format_to_fourcc(pixel_format);
7847        fb->pixel_format = fourcc;
7848        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
7849
7850        if (INTEL_INFO(dev)->gen >= 4) {
7851                if (plane_config->tiling)
7852                        offset = I915_READ(DSPTILEOFF(plane));
7853                else
7854                        offset = I915_READ(DSPLINOFF(plane));
7855                base = I915_READ(DSPSURF(plane)) & 0xfffff000;
7856        } else {
7857                base = I915_READ(DSPADDR(plane));
7858        }
7859        plane_config->base = base;
7860
7861        val = I915_READ(PIPESRC(pipe));
7862        fb->width = ((val >> 16) & 0xfff) + 1;
7863        fb->height = ((val >> 0) & 0xfff) + 1;
7864
7865        val = I915_READ(DSPSTRIDE(pipe));
7866        fb->pitches[0] = val & 0xffffffc0;
7867
7868        aligned_height = intel_fb_align_height(dev, fb->height,
7869                                               fb->pixel_format,
7870                                               fb->modifier[0]);
7871
7872        plane_config->size = fb->pitches[0] * aligned_height;
7873
7874        DRM_DEBUG_KMS("pipe/plane %c/%d with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
7875                      pipe_name(pipe), plane, fb->width, fb->height,
7876                      fb->bits_per_pixel, base, fb->pitches[0],
7877                      plane_config->size);
7878
7879        plane_config->fb = intel_fb;
7880}
7881
7882static void chv_crtc_clock_get(struct intel_crtc *crtc,
7883                               struct intel_crtc_state *pipe_config)
7884{
7885        struct drm_device *dev = crtc->base.dev;
7886        struct drm_i915_private *dev_priv = dev->dev_private;
7887        int pipe = pipe_config->cpu_transcoder;
7888        enum dpio_channel port = vlv_pipe_to_channel(pipe);
7889        intel_clock_t clock;
7890        u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
7891        int refclk = 100000;
7892
7893        mutex_lock(&dev_priv->sb_lock);
7894        cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
7895        pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
7896        pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
7897        pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
7898        pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
7899        mutex_unlock(&dev_priv->sb_lock);
7900
7901        clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
7902        clock.m2 = (pll_dw0 & 0xff) << 22;
7903        if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
7904                clock.m2 |= pll_dw2 & 0x3fffff;
7905        clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
7906        clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
7907        clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
7908
7909        chv_clock(refclk, &clock);
7910
7911        /* clock.dot is the fast clock */
7912        pipe_config->port_clock = clock.dot / 5;
7913}
7914
7915static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
7916                                 struct intel_crtc_state *pipe_config)
7917{
7918        struct drm_device *dev = crtc->base.dev;
7919        struct drm_i915_private *dev_priv = dev->dev_private;
7920        uint32_t tmp;
7921
7922        if (!intel_display_power_is_enabled(dev_priv,
7923                                            POWER_DOMAIN_PIPE(crtc->pipe)))
7924                return false;
7925
7926        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
7927        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
7928
7929        tmp = I915_READ(PIPECONF(crtc->pipe));
7930        if (!(tmp & PIPECONF_ENABLE))
7931                return false;
7932
7933        if (IS_G4X(dev) || IS_VALLEYVIEW(dev)) {
7934                switch (tmp & PIPECONF_BPC_MASK) {
7935                case PIPECONF_6BPC:
7936                        pipe_config->pipe_bpp = 18;
7937                        break;
7938                case PIPECONF_8BPC:
7939                        pipe_config->pipe_bpp = 24;
7940                        break;
7941                case PIPECONF_10BPC:
7942                        pipe_config->pipe_bpp = 30;
7943                        break;
7944                default:
7945                        break;
7946                }
7947        }
7948
7949        if (IS_VALLEYVIEW(dev) && (tmp & PIPECONF_COLOR_RANGE_SELECT))
7950                pipe_config->limited_color_range = true;
7951
7952        if (INTEL_INFO(dev)->gen < 4)
7953                pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
7954
7955        intel_get_pipe_timings(crtc, pipe_config);
7956
7957        i9xx_get_pfit_config(crtc, pipe_config);
7958
7959        if (INTEL_INFO(dev)->gen >= 4) {
7960                tmp = I915_READ(DPLL_MD(crtc->pipe));
7961                pipe_config->pixel_multiplier =
7962                        ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
7963                         >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
7964                pipe_config->dpll_hw_state.dpll_md = tmp;
7965        } else if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev)) {
7966                tmp = I915_READ(DPLL(crtc->pipe));
7967                pipe_config->pixel_multiplier =
7968                        ((tmp & SDVO_MULTIPLIER_MASK)
7969                         >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
7970        } else {
7971                /* Note that on i915G/GM the pixel multiplier is in the sdvo
7972                 * port and will be fixed up in the encoder->get_config
7973                 * function. */
7974                pipe_config->pixel_multiplier = 1;
7975        }
7976        pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
7977        if (!IS_VALLEYVIEW(dev)) {
7978                /*
7979                 * DPLL_DVO_2X_MODE must be enabled for both DPLLs
7980                 * on 830. Filter it out here so that we don't
7981                 * report errors due to that.
7982                 */
7983                if (IS_I830(dev))
7984                        pipe_config->dpll_hw_state.dpll &= ~DPLL_DVO_2X_MODE;
7985
7986                pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
7987                pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
7988        } else {
7989                /* Mask out read-only status bits. */
7990                pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
7991                                                     DPLL_PORTC_READY_MASK |
7992                                                     DPLL_PORTB_READY_MASK);
7993        }
7994
7995        if (IS_CHERRYVIEW(dev))
7996                chv_crtc_clock_get(crtc, pipe_config);
7997        else if (IS_VALLEYVIEW(dev))
7998                vlv_crtc_clock_get(crtc, pipe_config);
7999        else
8000                i9xx_crtc_clock_get(crtc, pipe_config);
8001
8002        return true;
8003}
8004
8005static void ironlake_init_pch_refclk(struct drm_device *dev)
8006{
8007        struct drm_i915_private *dev_priv = dev->dev_private;
8008        struct intel_encoder *encoder;
8009        u32 val, final;
8010        bool has_lvds = false;
8011        bool has_cpu_edp = false;
8012        bool has_panel = false;
8013        bool has_ck505 = false;
8014        bool can_ssc = false;
8015
8016        /* We need to take the global config into account */
8017        for_each_intel_encoder(dev, encoder) {
8018                switch (encoder->type) {
8019                case INTEL_OUTPUT_LVDS:
8020                        has_panel = true;
8021                        has_lvds = true;
8022                        break;
8023                case INTEL_OUTPUT_EDP:
8024                        has_panel = true;
8025                        if (enc_to_dig_port(&encoder->base)->port == PORT_A)
8026                                has_cpu_edp = true;
8027                        break;
8028                default:
8029                        break;
8030                }
8031        }
8032
8033        if (HAS_PCH_IBX(dev)) {
8034                has_ck505 = dev_priv->vbt.display_clock_mode;
8035                can_ssc = has_ck505;
8036        } else {
8037                has_ck505 = false;
8038                can_ssc = true;
8039        }
8040
8041        DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d\n",
8042                      has_panel, has_lvds, has_ck505);
8043
8044        /* Ironlake: try to setup display ref clock before DPLL
8045         * enabling. This is only under driver's control after
8046         * PCH B stepping, previous chipset stepping should be
8047         * ignoring this setting.
8048         */
8049        val = I915_READ(PCH_DREF_CONTROL);
8050
8051        /* As we must carefully and slowly disable/enable each source in turn,
8052         * compute the final state we want first and check if we need to
8053         * make any changes at all.
8054         */
8055        final = val;
8056        final &= ~DREF_NONSPREAD_SOURCE_MASK;
8057        if (has_ck505)
8058                final |= DREF_NONSPREAD_CK505_ENABLE;
8059        else
8060                final |= DREF_NONSPREAD_SOURCE_ENABLE;
8061
8062        final &= ~DREF_SSC_SOURCE_MASK;
8063        final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8064        final &= ~DREF_SSC1_ENABLE;
8065
8066        if (has_panel) {
8067                final |= DREF_SSC_SOURCE_ENABLE;
8068
8069                if (intel_panel_use_ssc(dev_priv) && can_ssc)
8070                        final |= DREF_SSC1_ENABLE;
8071
8072                if (has_cpu_edp) {
8073                        if (intel_panel_use_ssc(dev_priv) && can_ssc)
8074                                final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8075                        else
8076                                final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8077                } else
8078                        final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8079        } else {
8080                final |= DREF_SSC_SOURCE_DISABLE;
8081                final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8082        }
8083
8084        if (final == val)
8085                return;
8086
8087        /* Always enable nonspread source */
8088        val &= ~DREF_NONSPREAD_SOURCE_MASK;
8089
8090        if (has_ck505)
8091                val |= DREF_NONSPREAD_CK505_ENABLE;
8092        else
8093                val |= DREF_NONSPREAD_SOURCE_ENABLE;
8094
8095        if (has_panel) {
8096                val &= ~DREF_SSC_SOURCE_MASK;
8097                val |= DREF_SSC_SOURCE_ENABLE;
8098
8099                /* SSC must be turned on before enabling the CPU output  */
8100                if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8101                        DRM_DEBUG_KMS("Using SSC on panel\n");
8102                        val |= DREF_SSC1_ENABLE;
8103                } else
8104                        val &= ~DREF_SSC1_ENABLE;
8105
8106                /* Get SSC going before enabling the outputs */
8107                I915_WRITE(PCH_DREF_CONTROL, val);
8108                POSTING_READ(PCH_DREF_CONTROL);
8109                udelay(200);
8110
8111                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8112
8113                /* Enable CPU source on CPU attached eDP */
8114                if (has_cpu_edp) {
8115                        if (intel_panel_use_ssc(dev_priv) && can_ssc) {
8116                                DRM_DEBUG_KMS("Using SSC on eDP\n");
8117                                val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
8118                        } else
8119                                val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
8120                } else
8121                        val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8122
8123                I915_WRITE(PCH_DREF_CONTROL, val);
8124                POSTING_READ(PCH_DREF_CONTROL);
8125                udelay(200);
8126        } else {
8127                DRM_DEBUG_KMS("Disabling SSC entirely\n");
8128
8129                val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
8130
8131                /* Turn off CPU output */
8132                val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
8133
8134                I915_WRITE(PCH_DREF_CONTROL, val);
8135                POSTING_READ(PCH_DREF_CONTROL);
8136                udelay(200);
8137
8138                /* Turn off the SSC source */
8139                val &= ~DREF_SSC_SOURCE_MASK;
8140                val |= DREF_SSC_SOURCE_DISABLE;
8141
8142                /* Turn off SSC1 */
8143                val &= ~DREF_SSC1_ENABLE;
8144
8145                I915_WRITE(PCH_DREF_CONTROL, val);
8146                POSTING_READ(PCH_DREF_CONTROL);
8147                udelay(200);
8148        }
8149
8150        BUG_ON(val != final);
8151}
8152
8153static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
8154{
8155        uint32_t tmp;
8156
8157        tmp = I915_READ(SOUTH_CHICKEN2);
8158        tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
8159        I915_WRITE(SOUTH_CHICKEN2, tmp);
8160
8161        if (wait_for_atomic_us(I915_READ(SOUTH_CHICKEN2) &
8162                               FDI_MPHY_IOSFSB_RESET_STATUS, 100))
8163                DRM_ERROR("FDI mPHY reset assert timeout\n");
8164
8165        tmp = I915_READ(SOUTH_CHICKEN2);
8166        tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
8167        I915_WRITE(SOUTH_CHICKEN2, tmp);
8168
8169        if (wait_for_atomic_us((I915_READ(SOUTH_CHICKEN2) &
8170                                FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
8171                DRM_ERROR("FDI mPHY reset de-assert timeout\n");
8172}
8173
8174/* WaMPhyProgramming:hsw */
8175static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
8176{
8177        uint32_t tmp;
8178
8179        tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
8180        tmp &= ~(0xFF << 24);
8181        tmp |= (0x12 << 24);
8182        intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
8183
8184        tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
8185        tmp |= (1 << 11);
8186        intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
8187
8188        tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
8189        tmp |= (1 << 11);
8190        intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
8191
8192        tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
8193        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8194        intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
8195
8196        tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
8197        tmp |= (1 << 24) | (1 << 21) | (1 << 18);
8198        intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
8199
8200        tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
8201        tmp &= ~(7 << 13);
8202        tmp |= (5 << 13);
8203        intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
8204
8205        tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
8206        tmp &= ~(7 << 13);
8207        tmp |= (5 << 13);
8208        intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
8209
8210        tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
8211        tmp &= ~0xFF;
8212        tmp |= 0x1C;
8213        intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
8214
8215        tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
8216        tmp &= ~0xFF;
8217        tmp |= 0x1C;
8218        intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
8219
8220        tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
8221        tmp &= ~(0xFF << 16);
8222        tmp |= (0x1C << 16);
8223        intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
8224
8225        tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
8226        tmp &= ~(0xFF << 16);
8227        tmp |= (0x1C << 16);
8228        intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
8229
8230        tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
8231        tmp |= (1 << 27);
8232        intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
8233
8234        tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
8235        tmp |= (1 << 27);
8236        intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
8237
8238        tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
8239        tmp &= ~(0xF << 28);
8240        tmp |= (4 << 28);
8241        intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
8242
8243        tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
8244        tmp &= ~(0xF << 28);
8245        tmp |= (4 << 28);
8246        intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
8247}
8248
8249/* Implements 3 different sequences from BSpec chapter "Display iCLK
8250 * Programming" based on the parameters passed:
8251 * - Sequence to enable CLKOUT_DP
8252 * - Sequence to enable CLKOUT_DP without spread
8253 * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
8254 */
8255static void lpt_enable_clkout_dp(struct drm_device *dev, bool with_spread,
8256                                 bool with_fdi)
8257{
8258        struct drm_i915_private *dev_priv = dev->dev_private;
8259        uint32_t reg, tmp;
8260
8261        if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
8262                with_spread = true;
8263        if (WARN(dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE &&
8264                 with_fdi, "LP PCH doesn't have FDI\n"))
8265                with_fdi = false;
8266
8267        mutex_lock(&dev_priv->sb_lock);
8268
8269        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8270        tmp &= ~SBI_SSCCTL_DISABLE;
8271        tmp |= SBI_SSCCTL_PATHALT;
8272        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8273
8274        udelay(24);
8275
8276        if (with_spread) {
8277                tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8278                tmp &= ~SBI_SSCCTL_PATHALT;
8279                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8280
8281                if (with_fdi) {
8282                        lpt_reset_fdi_mphy(dev_priv);
8283                        lpt_program_fdi_mphy(dev_priv);
8284                }
8285        }
8286
8287        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8288               SBI_GEN0 : SBI_DBUFF0;
8289        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8290        tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8291        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8292
8293        mutex_unlock(&dev_priv->sb_lock);
8294}
8295
8296/* Sequence to disable CLKOUT_DP */
8297static void lpt_disable_clkout_dp(struct drm_device *dev)
8298{
8299        struct drm_i915_private *dev_priv = dev->dev_private;
8300        uint32_t reg, tmp;
8301
8302        mutex_lock(&dev_priv->sb_lock);
8303
8304        reg = (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) ?
8305               SBI_GEN0 : SBI_DBUFF0;
8306        tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
8307        tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
8308        intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
8309
8310        tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
8311        if (!(tmp & SBI_SSCCTL_DISABLE)) {
8312                if (!(tmp & SBI_SSCCTL_PATHALT)) {
8313                        tmp |= SBI_SSCCTL_PATHALT;
8314                        intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8315                        udelay(32);
8316                }
8317                tmp |= SBI_SSCCTL_DISABLE;
8318                intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
8319        }
8320
8321        mutex_unlock(&dev_priv->sb_lock);
8322}
8323
8324static void lpt_init_pch_refclk(struct drm_device *dev)
8325{
8326        struct intel_encoder *encoder;
8327        bool has_vga = false;
8328
8329        for_each_intel_encoder(dev, encoder) {
8330                switch (encoder->type) {
8331                case INTEL_OUTPUT_ANALOG:
8332                        has_vga = true;
8333                        break;
8334                default:
8335                        break;
8336                }
8337        }
8338
8339        if (has_vga)
8340                lpt_enable_clkout_dp(dev, true, true);
8341        else
8342                lpt_disable_clkout_dp(dev);
8343}
8344
8345/*
8346 * Initialize reference clocks when the driver loads
8347 */
8348void intel_init_pch_refclk(struct drm_device *dev)
8349{
8350        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
8351                ironlake_init_pch_refclk(dev);
8352        else if (HAS_PCH_LPT(dev))
8353                lpt_init_pch_refclk(dev);
8354}
8355
8356static int ironlake_get_refclk(struct intel_crtc_state *crtc_state)
8357{
8358        struct drm_device *dev = crtc_state->base.crtc->dev;
8359        struct drm_i915_private *dev_priv = dev->dev_private;
8360        struct drm_atomic_state *state = crtc_state->base.state;
8361        struct drm_connector *connector;
8362        struct drm_connector_state *connector_state;
8363        struct intel_encoder *encoder;
8364        int num_connectors = 0, i;
8365        bool is_lvds = false;
8366
8367        for_each_connector_in_state(state, connector, connector_state, i) {
8368                if (connector_state->crtc != crtc_state->base.crtc)
8369                        continue;
8370
8371                encoder = to_intel_encoder(connector_state->best_encoder);
8372
8373                switch (encoder->type) {
8374                case INTEL_OUTPUT_LVDS:
8375                        is_lvds = true;
8376                        break;
8377                default:
8378                        break;
8379                }
8380                num_connectors++;
8381        }
8382
8383        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2) {
8384                DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
8385                              dev_priv->vbt.lvds_ssc_freq);
8386                return dev_priv->vbt.lvds_ssc_freq;
8387        }
8388
8389        return 120000;
8390}
8391
8392static void ironlake_set_pipeconf(struct drm_crtc *crtc)
8393{
8394        struct drm_i915_private *dev_priv = crtc->dev->dev_private;
8395        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8396        int pipe = intel_crtc->pipe;
8397        uint32_t val;
8398
8399        val = 0;
8400
8401        switch (intel_crtc->config->pipe_bpp) {
8402        case 18:
8403                val |= PIPECONF_6BPC;
8404                break;
8405        case 24:
8406                val |= PIPECONF_8BPC;
8407                break;
8408        case 30:
8409                val |= PIPECONF_10BPC;
8410                break;
8411        case 36:
8412                val |= PIPECONF_12BPC;
8413                break;
8414        default:
8415                /* Case prevented by intel_choose_pipe_bpp_dither. */
8416                BUG();
8417        }
8418
8419        if (intel_crtc->config->dither)
8420                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8421
8422        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8423                val |= PIPECONF_INTERLACED_ILK;
8424        else
8425                val |= PIPECONF_PROGRESSIVE;
8426
8427        if (intel_crtc->config->limited_color_range)
8428                val |= PIPECONF_COLOR_RANGE_SELECT;
8429
8430        I915_WRITE(PIPECONF(pipe), val);
8431        POSTING_READ(PIPECONF(pipe));
8432}
8433
8434/*
8435 * Set up the pipe CSC unit.
8436 *
8437 * Currently only full range RGB to limited range RGB conversion
8438 * is supported, but eventually this should handle various
8439 * RGB<->YCbCr scenarios as well.
8440 */
8441static void intel_set_pipe_csc(struct drm_crtc *crtc)
8442{
8443        struct drm_device *dev = crtc->dev;
8444        struct drm_i915_private *dev_priv = dev->dev_private;
8445        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8446        int pipe = intel_crtc->pipe;
8447        uint16_t coeff = 0x7800; /* 1.0 */
8448
8449        /*
8450         * TODO: Check what kind of values actually come out of the pipe
8451         * with these coeff/postoff values and adjust to get the best
8452         * accuracy. Perhaps we even need to take the bpc value into
8453         * consideration.
8454         */
8455
8456        if (intel_crtc->config->limited_color_range)
8457                coeff = ((235 - 16) * (1 << 12) / 255) & 0xff8; /* 0.xxx... */
8458
8459        /*
8460         * GY/GU and RY/RU should be the other way around according
8461         * to BSpec, but reality doesn't agree. Just set them up in
8462         * a way that results in the correct picture.
8463         */
8464        I915_WRITE(PIPE_CSC_COEFF_RY_GY(pipe), coeff << 16);
8465        I915_WRITE(PIPE_CSC_COEFF_BY(pipe), 0);
8466
8467        I915_WRITE(PIPE_CSC_COEFF_RU_GU(pipe), coeff);
8468        I915_WRITE(PIPE_CSC_COEFF_BU(pipe), 0);
8469
8470        I915_WRITE(PIPE_CSC_COEFF_RV_GV(pipe), 0);
8471        I915_WRITE(PIPE_CSC_COEFF_BV(pipe), coeff << 16);
8472
8473        I915_WRITE(PIPE_CSC_PREOFF_HI(pipe), 0);
8474        I915_WRITE(PIPE_CSC_PREOFF_ME(pipe), 0);
8475        I915_WRITE(PIPE_CSC_PREOFF_LO(pipe), 0);
8476
8477        if (INTEL_INFO(dev)->gen > 6) {
8478                uint16_t postoff = 0;
8479
8480                if (intel_crtc->config->limited_color_range)
8481                        postoff = (16 * (1 << 12) / 255) & 0x1fff;
8482
8483                I915_WRITE(PIPE_CSC_POSTOFF_HI(pipe), postoff);
8484                I915_WRITE(PIPE_CSC_POSTOFF_ME(pipe), postoff);
8485                I915_WRITE(PIPE_CSC_POSTOFF_LO(pipe), postoff);
8486
8487                I915_WRITE(PIPE_CSC_MODE(pipe), 0);
8488        } else {
8489                uint32_t mode = CSC_MODE_YUV_TO_RGB;
8490
8491                if (intel_crtc->config->limited_color_range)
8492                        mode |= CSC_BLACK_SCREEN_OFFSET;
8493
8494                I915_WRITE(PIPE_CSC_MODE(pipe), mode);
8495        }
8496}
8497
8498static void haswell_set_pipeconf(struct drm_crtc *crtc)
8499{
8500        struct drm_device *dev = crtc->dev;
8501        struct drm_i915_private *dev_priv = dev->dev_private;
8502        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
8503        enum pipe pipe = intel_crtc->pipe;
8504        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
8505        uint32_t val;
8506
8507        val = 0;
8508
8509        if (IS_HASWELL(dev) && intel_crtc->config->dither)
8510                val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
8511
8512        if (intel_crtc->config->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
8513                val |= PIPECONF_INTERLACED_ILK;
8514        else
8515                val |= PIPECONF_PROGRESSIVE;
8516
8517        I915_WRITE(PIPECONF(cpu_transcoder), val);
8518        POSTING_READ(PIPECONF(cpu_transcoder));
8519
8520        I915_WRITE(GAMMA_MODE(intel_crtc->pipe), GAMMA_MODE_MODE_8BIT);
8521        POSTING_READ(GAMMA_MODE(intel_crtc->pipe));
8522
8523        if (IS_BROADWELL(dev) || INTEL_INFO(dev)->gen >= 9) {
8524                val = 0;
8525
8526                switch (intel_crtc->config->pipe_bpp) {
8527                case 18:
8528                        val |= PIPEMISC_DITHER_6_BPC;
8529                        break;
8530                case 24:
8531                        val |= PIPEMISC_DITHER_8_BPC;
8532                        break;
8533                case 30:
8534                        val |= PIPEMISC_DITHER_10_BPC;
8535                        break;
8536                case 36:
8537                        val |= PIPEMISC_DITHER_12_BPC;
8538                        break;
8539                default:
8540                        /* Case prevented by pipe_config_set_bpp. */
8541                        BUG();
8542                }
8543
8544                if (intel_crtc->config->dither)
8545                        val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
8546
8547                I915_WRITE(PIPEMISC(pipe), val);
8548        }
8549}
8550
8551static bool ironlake_compute_clocks(struct drm_crtc *crtc,
8552                                    struct intel_crtc_state *crtc_state,
8553                                    intel_clock_t *clock,
8554                                    bool *has_reduced_clock,
8555                                    intel_clock_t *reduced_clock)
8556{
8557        struct drm_device *dev = crtc->dev;
8558        struct drm_i915_private *dev_priv = dev->dev_private;
8559        int refclk;
8560        const intel_limit_t *limit;
8561        bool ret, is_lvds = false;
8562
8563        is_lvds = intel_pipe_will_have_type(crtc_state, INTEL_OUTPUT_LVDS);
8564
8565        refclk = ironlake_get_refclk(crtc_state);
8566
8567        /*
8568         * Returns a set of divisors for the desired target clock with the given
8569         * refclk, or FALSE.  The returned values represent the clock equation:
8570         * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
8571         */
8572        limit = intel_limit(crtc_state, refclk);
8573        ret = dev_priv->display.find_dpll(limit, crtc_state,
8574                                          crtc_state->port_clock,
8575                                          refclk, NULL, clock);
8576        if (!ret)
8577                return false;
8578
8579        if (is_lvds && dev_priv->lvds_downclock_avail) {
8580                /*
8581                 * Ensure we match the reduced clock's P to the target clock.
8582                 * If the clocks don't match, we can't switch the display clock
8583                 * by using the FP0/FP1. In such case we will disable the LVDS
8584                 * downclock feature.
8585                */
8586                *has_reduced_clock =
8587                        dev_priv->display.find_dpll(limit, crtc_state,
8588                                                    dev_priv->lvds_downclock,
8589                                                    refclk, clock,
8590                                                    reduced_clock);
8591        }
8592
8593        return true;
8594}
8595
8596int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
8597{
8598        /*
8599         * Account for spread spectrum to avoid
8600         * oversubscribing the link. Max center spread
8601         * is 2.5%; use 5% for safety's sake.
8602         */
8603        u32 bps = target_clock * bpp * 21 / 20;
8604        return DIV_ROUND_UP(bps, link_bw * 8);
8605}
8606
8607static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
8608{
8609        return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
8610}
8611
8612static uint32_t ironlake_compute_dpll(struct intel_crtc *intel_crtc,
8613                                      struct intel_crtc_state *crtc_state,
8614                                      u32 *fp,
8615                                      intel_clock_t *reduced_clock, u32 *fp2)
8616{
8617        struct drm_crtc *crtc = &intel_crtc->base;
8618        struct drm_device *dev = crtc->dev;
8619        struct drm_i915_private *dev_priv = dev->dev_private;
8620        struct drm_atomic_state *state = crtc_state->base.state;
8621        struct drm_connector *connector;
8622        struct drm_connector_state *connector_state;
8623        struct intel_encoder *encoder;
8624        uint32_t dpll;
8625        int factor, num_connectors = 0, i;
8626        bool is_lvds = false, is_sdvo = false;
8627
8628        for_each_connector_in_state(state, connector, connector_state, i) {
8629                if (connector_state->crtc != crtc_state->base.crtc)
8630                        continue;
8631
8632                encoder = to_intel_encoder(connector_state->best_encoder);
8633
8634                switch (encoder->type) {
8635                case INTEL_OUTPUT_LVDS:
8636                        is_lvds = true;
8637                        break;
8638                case INTEL_OUTPUT_SDVO:
8639                case INTEL_OUTPUT_HDMI:
8640                        is_sdvo = true;
8641                        break;
8642                default:
8643                        break;
8644                }
8645
8646                num_connectors++;
8647        }
8648
8649        /* Enable autotuning of the PLL clock (if permissible) */
8650        factor = 21;
8651        if (is_lvds) {
8652                if ((intel_panel_use_ssc(dev_priv) &&
8653                     dev_priv->vbt.lvds_ssc_freq == 100000) ||
8654                    (HAS_PCH_IBX(dev) && intel_is_dual_link_lvds(dev)))
8655                        factor = 25;
8656        } else if (crtc_state->sdvo_tv_clock)
8657                factor = 20;
8658
8659        if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
8660                *fp |= FP_CB_TUNE;
8661
8662        if (fp2 && (reduced_clock->m < factor * reduced_clock->n))
8663                *fp2 |= FP_CB_TUNE;
8664
8665        dpll = 0;
8666
8667        if (is_lvds)
8668                dpll |= DPLLB_MODE_LVDS;
8669        else
8670                dpll |= DPLLB_MODE_DAC_SERIAL;
8671
8672        dpll |= (crtc_state->pixel_multiplier - 1)
8673                << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
8674
8675        if (is_sdvo)
8676                dpll |= DPLL_SDVO_HIGH_SPEED;
8677        if (crtc_state->has_dp_encoder)
8678                dpll |= DPLL_SDVO_HIGH_SPEED;
8679
8680        /* compute bitmask from p1 value */
8681        dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8682        /* also FPA1 */
8683        dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8684
8685        switch (crtc_state->dpll.p2) {
8686        case 5:
8687                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8688                break;
8689        case 7:
8690                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8691                break;
8692        case 10:
8693                dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8694                break;
8695        case 14:
8696                dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8697                break;
8698        }
8699
8700        if (is_lvds && intel_panel_use_ssc(dev_priv) && num_connectors < 2)
8701                dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8702        else
8703                dpll |= PLL_REF_INPUT_DREFCLK;
8704
8705        return dpll | DPLL_VCO_ENABLE;
8706}
8707
8708static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
8709                                       struct intel_crtc_state *crtc_state)
8710{
8711        struct drm_device *dev = crtc->base.dev;
8712        intel_clock_t clock, reduced_clock;
8713        u32 dpll = 0, fp = 0, fp2 = 0;
8714        bool ok, has_reduced_clock = false;
8715        bool is_lvds = false;
8716        struct intel_shared_dpll *pll;
8717
8718        memset(&crtc_state->dpll_hw_state, 0,
8719               sizeof(crtc_state->dpll_hw_state));
8720
8721        is_lvds = intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS);
8722
8723        WARN(!(HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev)),
8724             "Unexpected PCH type %d\n", INTEL_PCH_TYPE(dev));
8725
8726        ok = ironlake_compute_clocks(&crtc->base, crtc_state, &clock,
8727                                     &has_reduced_clock, &reduced_clock);
8728        if (!ok && !crtc_state->clock_set) {
8729                DRM_ERROR("Couldn't find PLL settings for mode!\n");
8730                return -EINVAL;
8731        }
8732        /* Compat-code for transition, will disappear. */
8733        if (!crtc_state->clock_set) {
8734                crtc_state->dpll.n = clock.n;
8735                crtc_state->dpll.m1 = clock.m1;
8736                crtc_state->dpll.m2 = clock.m2;
8737                crtc_state->dpll.p1 = clock.p1;
8738                crtc_state->dpll.p2 = clock.p2;
8739        }
8740
8741        /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
8742        if (crtc_state->has_pch_encoder) {
8743                fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
8744                if (has_reduced_clock)
8745                        fp2 = i9xx_dpll_compute_fp(&reduced_clock);
8746
8747                dpll = ironlake_compute_dpll(crtc, crtc_state,
8748                                             &fp, &reduced_clock,
8749                                             has_reduced_clock ? &fp2 : NULL);
8750
8751                crtc_state->dpll_hw_state.dpll = dpll;
8752                crtc_state->dpll_hw_state.fp0 = fp;
8753                if (has_reduced_clock)
8754                        crtc_state->dpll_hw_state.fp1 = fp2;
8755                else
8756                        crtc_state->dpll_hw_state.fp1 = fp;
8757
8758                pll = intel_get_shared_dpll(crtc, crtc_state);
8759                if (pll == NULL) {
8760                        DRM_DEBUG_DRIVER("failed to find PLL for pipe %c\n",
8761                                         pipe_name(crtc->pipe));
8762                        return -EINVAL;
8763                }
8764        }
8765
8766        if (is_lvds && has_reduced_clock)
8767                crtc->lowfreq_avail = true;
8768        else
8769                crtc->lowfreq_avail = false;
8770
8771        return 0;
8772}
8773
8774static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
8775                                         struct intel_link_m_n *m_n)
8776{
8777        struct drm_device *dev = crtc->base.dev;
8778        struct drm_i915_private *dev_priv = dev->dev_private;
8779        enum pipe pipe = crtc->pipe;
8780
8781        m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
8782        m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
8783        m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
8784                & ~TU_SIZE_MASK;
8785        m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
8786        m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
8787                    & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8788}
8789
8790static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
8791                                         enum transcoder transcoder,
8792                                         struct intel_link_m_n *m_n,
8793                                         struct intel_link_m_n *m2_n2)
8794{
8795        struct drm_device *dev = crtc->base.dev;
8796        struct drm_i915_private *dev_priv = dev->dev_private;
8797        enum pipe pipe = crtc->pipe;
8798
8799        if (INTEL_INFO(dev)->gen >= 5) {
8800                m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
8801                m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
8802                m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
8803                        & ~TU_SIZE_MASK;
8804                m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
8805                m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
8806                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8807                /* Read M2_N2 registers only for gen < 8 (M2_N2 available for
8808                 * gen < 8) and if DRRS is supported (to make sure the
8809                 * registers are not unnecessarily read).
8810                 */
8811                if (m2_n2 && INTEL_INFO(dev)->gen < 8 &&
8812                        crtc->config->has_drrs) {
8813                        m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
8814                        m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
8815                        m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
8816                                        & ~TU_SIZE_MASK;
8817                        m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
8818                        m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
8819                                        & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8820                }
8821        } else {
8822                m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
8823                m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
8824                m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
8825                        & ~TU_SIZE_MASK;
8826                m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
8827                m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
8828                            & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
8829        }
8830}
8831
8832void intel_dp_get_m_n(struct intel_crtc *crtc,
8833                      struct intel_crtc_state *pipe_config)
8834{
8835        if (pipe_config->has_pch_encoder)
8836                intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
8837        else
8838                intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8839                                             &pipe_config->dp_m_n,
8840                                             &pipe_config->dp_m2_n2);
8841}
8842
8843static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
8844                                        struct intel_crtc_state *pipe_config)
8845{
8846        intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
8847                                     &pipe_config->fdi_m_n, NULL);
8848}
8849
8850static void skylake_get_pfit_config(struct intel_crtc *crtc,
8851                                    struct intel_crtc_state *pipe_config)
8852{
8853        struct drm_device *dev = crtc->base.dev;
8854        struct drm_i915_private *dev_priv = dev->dev_private;
8855        struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
8856        uint32_t ps_ctrl = 0;
8857        int id = -1;
8858        int i;
8859
8860        /* find scaler attached to this pipe */
8861        for (i = 0; i < crtc->num_scalers; i++) {
8862                ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
8863                if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
8864                        id = i;
8865                        pipe_config->pch_pfit.enabled = true;
8866                        pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
8867                        pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
8868                        break;
8869                }
8870        }
8871
8872        scaler_state->scaler_id = id;
8873        if (id >= 0) {
8874                scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
8875        } else {
8876                scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
8877        }
8878}
8879
8880static void
8881skylake_get_initial_plane_config(struct intel_crtc *crtc,
8882                                 struct intel_initial_plane_config *plane_config)
8883{
8884        struct drm_device *dev = crtc->base.dev;
8885        struct drm_i915_private *dev_priv = dev->dev_private;
8886        u32 val, base, offset, stride_mult, tiling;
8887        int pipe = crtc->pipe;
8888        int fourcc, pixel_format;
8889        unsigned int aligned_height;
8890        struct drm_framebuffer *fb;
8891        struct intel_framebuffer *intel_fb;
8892
8893        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8894        if (!intel_fb) {
8895                DRM_DEBUG_KMS("failed to alloc fb\n");
8896                return;
8897        }
8898
8899        fb = &intel_fb->base;
8900
8901        val = I915_READ(PLANE_CTL(pipe, 0));
8902        if (!(val & PLANE_CTL_ENABLE))
8903                goto error;
8904
8905        pixel_format = val & PLANE_CTL_FORMAT_MASK;
8906        fourcc = skl_format_to_fourcc(pixel_format,
8907                                      val & PLANE_CTL_ORDER_RGBX,
8908                                      val & PLANE_CTL_ALPHA_MASK);
8909        fb->pixel_format = fourcc;
8910        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
8911
8912        tiling = val & PLANE_CTL_TILED_MASK;
8913        switch (tiling) {
8914        case PLANE_CTL_TILED_LINEAR:
8915                fb->modifier[0] = DRM_FORMAT_MOD_NONE;
8916                break;
8917        case PLANE_CTL_TILED_X:
8918                plane_config->tiling = I915_TILING_X;
8919                fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
8920                break;
8921        case PLANE_CTL_TILED_Y:
8922                fb->modifier[0] = I915_FORMAT_MOD_Y_TILED;
8923                break;
8924        case PLANE_CTL_TILED_YF:
8925                fb->modifier[0] = I915_FORMAT_MOD_Yf_TILED;
8926                break;
8927        default:
8928                MISSING_CASE(tiling);
8929                goto error;
8930        }
8931
8932        base = I915_READ(PLANE_SURF(pipe, 0)) & 0xfffff000;
8933        plane_config->base = base;
8934
8935        offset = I915_READ(PLANE_OFFSET(pipe, 0));
8936
8937        val = I915_READ(PLANE_SIZE(pipe, 0));
8938        fb->height = ((val >> 16) & 0xfff) + 1;
8939        fb->width = ((val >> 0) & 0x1fff) + 1;
8940
8941        val = I915_READ(PLANE_STRIDE(pipe, 0));
8942        stride_mult = intel_fb_stride_alignment(dev, fb->modifier[0],
8943                                                fb->pixel_format);
8944        fb->pitches[0] = (val & 0x3ff) * stride_mult;
8945
8946        aligned_height = intel_fb_align_height(dev, fb->height,
8947                                               fb->pixel_format,
8948                                               fb->modifier[0]);
8949
8950        plane_config->size = fb->pitches[0] * aligned_height;
8951
8952        DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8953                      pipe_name(pipe), fb->width, fb->height,
8954                      fb->bits_per_pixel, base, fb->pitches[0],
8955                      plane_config->size);
8956
8957        plane_config->fb = intel_fb;
8958        return;
8959
8960error:
8961        kfree(fb);
8962}
8963
8964static void ironlake_get_pfit_config(struct intel_crtc *crtc,
8965                                     struct intel_crtc_state *pipe_config)
8966{
8967        struct drm_device *dev = crtc->base.dev;
8968        struct drm_i915_private *dev_priv = dev->dev_private;
8969        uint32_t tmp;
8970
8971        tmp = I915_READ(PF_CTL(crtc->pipe));
8972
8973        if (tmp & PF_ENABLE) {
8974                pipe_config->pch_pfit.enabled = true;
8975                pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
8976                pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
8977
8978                /* We currently do not free assignements of panel fitters on
8979                 * ivb/hsw (since we don't use the higher upscaling modes which
8980                 * differentiates them) so just WARN about this case for now. */
8981                if (IS_GEN7(dev)) {
8982                        WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
8983                                PF_PIPE_SEL_IVB(crtc->pipe));
8984                }
8985        }
8986}
8987
8988static void
8989ironlake_get_initial_plane_config(struct intel_crtc *crtc,
8990                                  struct intel_initial_plane_config *plane_config)
8991{
8992        struct drm_device *dev = crtc->base.dev;
8993        struct drm_i915_private *dev_priv = dev->dev_private;
8994        u32 val, base, offset;
8995        int pipe = crtc->pipe;
8996        int fourcc, pixel_format;
8997        unsigned int aligned_height;
8998        struct drm_framebuffer *fb;
8999        struct intel_framebuffer *intel_fb;
9000
9001        val = I915_READ(DSPCNTR(pipe));
9002        if (!(val & DISPLAY_PLANE_ENABLE))
9003                return;
9004
9005        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9006        if (!intel_fb) {
9007                DRM_DEBUG_KMS("failed to alloc fb\n");
9008                return;
9009        }
9010
9011        fb = &intel_fb->base;
9012
9013        if (INTEL_INFO(dev)->gen >= 4) {
9014                if (val & DISPPLANE_TILED) {
9015                        plane_config->tiling = I915_TILING_X;
9016                        fb->modifier[0] = I915_FORMAT_MOD_X_TILED;
9017                }
9018        }
9019
9020        pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
9021        fourcc = i9xx_format_to_fourcc(pixel_format);
9022        fb->pixel_format = fourcc;
9023        fb->bits_per_pixel = drm_format_plane_cpp(fourcc, 0) * 8;
9024
9025        base = I915_READ(DSPSURF(pipe)) & 0xfffff000;
9026        if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
9027                offset = I915_READ(DSPOFFSET(pipe));
9028        } else {
9029                if (plane_config->tiling)
9030                        offset = I915_READ(DSPTILEOFF(pipe));
9031                else
9032                        offset = I915_READ(DSPLINOFF(pipe));
9033        }
9034        plane_config->base = base;
9035
9036        val = I915_READ(PIPESRC(pipe));
9037        fb->width = ((val >> 16) & 0xfff) + 1;
9038        fb->height = ((val >> 0) & 0xfff) + 1;
9039
9040        val = I915_READ(DSPSTRIDE(pipe));
9041        fb->pitches[0] = val & 0xffffffc0;
9042
9043        aligned_height = intel_fb_align_height(dev, fb->height,
9044                                               fb->pixel_format,
9045                                               fb->modifier[0]);
9046
9047        plane_config->size = fb->pitches[0] * aligned_height;
9048
9049        DRM_DEBUG_KMS("pipe %c with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
9050                      pipe_name(pipe), fb->width, fb->height,
9051                      fb->bits_per_pixel, base, fb->pitches[0],
9052                      plane_config->size);
9053
9054        plane_config->fb = intel_fb;
9055}
9056
9057static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
9058                                     struct intel_crtc_state *pipe_config)
9059{
9060        struct drm_device *dev = crtc->base.dev;
9061        struct drm_i915_private *dev_priv = dev->dev_private;
9062        uint32_t tmp;
9063
9064        if (!intel_display_power_is_enabled(dev_priv,
9065                                            POWER_DOMAIN_PIPE(crtc->pipe)))
9066                return false;
9067
9068        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9069        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9070
9071        tmp = I915_READ(PIPECONF(crtc->pipe));
9072        if (!(tmp & PIPECONF_ENABLE))
9073                return false;
9074
9075        switch (tmp & PIPECONF_BPC_MASK) {
9076        case PIPECONF_6BPC:
9077                pipe_config->pipe_bpp = 18;
9078                break;
9079        case PIPECONF_8BPC:
9080                pipe_config->pipe_bpp = 24;
9081                break;
9082        case PIPECONF_10BPC:
9083                pipe_config->pipe_bpp = 30;
9084                break;
9085        case PIPECONF_12BPC:
9086                pipe_config->pipe_bpp = 36;
9087                break;
9088        default:
9089                break;
9090        }
9091
9092        if (tmp & PIPECONF_COLOR_RANGE_SELECT)
9093                pipe_config->limited_color_range = true;
9094
9095        if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
9096                struct intel_shared_dpll *pll;
9097
9098                pipe_config->has_pch_encoder = true;
9099
9100                tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
9101                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9102                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
9103
9104                ironlake_get_fdi_m_n_config(crtc, pipe_config);
9105
9106                if (HAS_PCH_IBX(dev_priv->dev)) {
9107                        pipe_config->shared_dpll =
9108                                (enum intel_dpll_id) crtc->pipe;
9109                } else {
9110                        tmp = I915_READ(PCH_DPLL_SEL);
9111                        if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
9112                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_B;
9113                        else
9114                                pipe_config->shared_dpll = DPLL_ID_PCH_PLL_A;
9115                }
9116
9117                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9118
9119                WARN_ON(!pll->get_hw_state(dev_priv, pll,
9120                                           &pipe_config->dpll_hw_state));
9121
9122                tmp = pipe_config->dpll_hw_state.dpll;
9123                pipe_config->pixel_multiplier =
9124                        ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
9125                         >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
9126
9127                ironlake_pch_clock_get(crtc, pipe_config);
9128        } else {
9129                pipe_config->pixel_multiplier = 1;
9130        }
9131
9132        intel_get_pipe_timings(crtc, pipe_config);
9133
9134        ironlake_get_pfit_config(crtc, pipe_config);
9135
9136        return true;
9137}
9138
9139static void assert_can_disable_lcpll(struct drm_i915_private *dev_priv)
9140{
9141        struct drm_device *dev = dev_priv->dev;
9142        struct intel_crtc *crtc;
9143
9144        for_each_intel_crtc(dev, crtc)
9145                I915_STATE_WARN(crtc->active, "CRTC for pipe %c enabled\n",
9146                     pipe_name(crtc->pipe));
9147
9148        I915_STATE_WARN(I915_READ(HSW_PWR_WELL_DRIVER), "Power well on\n");
9149        I915_STATE_WARN(I915_READ(SPLL_CTL) & SPLL_PLL_ENABLE, "SPLL enabled\n");
9150        I915_STATE_WARN(I915_READ(WRPLL_CTL1) & WRPLL_PLL_ENABLE, "WRPLL1 enabled\n");
9151        I915_STATE_WARN(I915_READ(WRPLL_CTL2) & WRPLL_PLL_ENABLE, "WRPLL2 enabled\n");
9152        I915_STATE_WARN(I915_READ(PCH_PP_STATUS) & PP_ON, "Panel power on\n");
9153        I915_STATE_WARN(I915_READ(BLC_PWM_CPU_CTL2) & BLM_PWM_ENABLE,
9154             "CPU PWM1 enabled\n");
9155        if (IS_HASWELL(dev))
9156                I915_STATE_WARN(I915_READ(HSW_BLC_PWM2_CTL) & BLM_PWM_ENABLE,
9157                     "CPU PWM2 enabled\n");
9158        I915_STATE_WARN(I915_READ(BLC_PWM_PCH_CTL1) & BLM_PCH_PWM_ENABLE,
9159             "PCH PWM1 enabled\n");
9160        I915_STATE_WARN(I915_READ(UTIL_PIN_CTL) & UTIL_PIN_ENABLE,
9161             "Utility pin enabled\n");
9162        I915_STATE_WARN(I915_READ(PCH_GTC_CTL) & PCH_GTC_ENABLE, "PCH GTC enabled\n");
9163
9164        /*
9165         * In theory we can still leave IRQs enabled, as long as only the HPD
9166         * interrupts remain enabled. We used to check for that, but since it's
9167         * gen-specific and since we only disable LCPLL after we fully disable
9168         * the interrupts, the check below should be enough.
9169         */
9170        I915_STATE_WARN(intel_irqs_enabled(dev_priv), "IRQs enabled\n");
9171}
9172
9173static uint32_t hsw_read_dcomp(struct drm_i915_private *dev_priv)
9174{
9175        struct drm_device *dev = dev_priv->dev;
9176
9177        if (IS_HASWELL(dev))
9178                return I915_READ(D_COMP_HSW);
9179        else
9180                return I915_READ(D_COMP_BDW);
9181}
9182
9183static void hsw_write_dcomp(struct drm_i915_private *dev_priv, uint32_t val)
9184{
9185        struct drm_device *dev = dev_priv->dev;
9186
9187        if (IS_HASWELL(dev)) {
9188                mutex_lock(&dev_priv->rps.hw_lock);
9189                if (sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_D_COMP,
9190                                            val))
9191                        DRM_ERROR("Failed to write to D_COMP\n");
9192                mutex_unlock(&dev_priv->rps.hw_lock);
9193        } else {
9194                I915_WRITE(D_COMP_BDW, val);
9195                POSTING_READ(D_COMP_BDW);
9196        }
9197}
9198
9199/*
9200 * This function implements pieces of two sequences from BSpec:
9201 * - Sequence for display software to disable LCPLL
9202 * - Sequence for display software to allow package C8+
9203 * The steps implemented here are just the steps that actually touch the LCPLL
9204 * register. Callers should take care of disabling all the display engine
9205 * functions, doing the mode unset, fixing interrupts, etc.
9206 */
9207static void hsw_disable_lcpll(struct drm_i915_private *dev_priv,
9208                              bool switch_to_fclk, bool allow_power_down)
9209{
9210        uint32_t val;
9211
9212        assert_can_disable_lcpll(dev_priv);
9213
9214        val = I915_READ(LCPLL_CTL);
9215
9216        if (switch_to_fclk) {
9217                val |= LCPLL_CD_SOURCE_FCLK;
9218                I915_WRITE(LCPLL_CTL, val);
9219
9220                if (wait_for_atomic_us(I915_READ(LCPLL_CTL) &
9221                                       LCPLL_CD_SOURCE_FCLK_DONE, 1))
9222                        DRM_ERROR("Switching to FCLK failed\n");
9223
9224                val = I915_READ(LCPLL_CTL);
9225        }
9226
9227        val |= LCPLL_PLL_DISABLE;
9228        I915_WRITE(LCPLL_CTL, val);
9229        POSTING_READ(LCPLL_CTL);
9230
9231        if (wait_for((I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK) == 0, 1))
9232                DRM_ERROR("LCPLL still locked\n");
9233
9234        val = hsw_read_dcomp(dev_priv);
9235        val |= D_COMP_COMP_DISABLE;
9236        hsw_write_dcomp(dev_priv, val);
9237        ndelay(100);
9238
9239        if (wait_for((hsw_read_dcomp(dev_priv) & D_COMP_RCOMP_IN_PROGRESS) == 0,
9240                     1))
9241                DRM_ERROR("D_COMP RCOMP still in progress\n");
9242
9243        if (allow_power_down) {
9244                val = I915_READ(LCPLL_CTL);
9245                val |= LCPLL_POWER_DOWN_ALLOW;
9246                I915_WRITE(LCPLL_CTL, val);
9247                POSTING_READ(LCPLL_CTL);
9248        }
9249}
9250
9251/*
9252 * Fully restores LCPLL, disallowing power down and switching back to LCPLL
9253 * source.
9254 */
9255static void hsw_restore_lcpll(struct drm_i915_private *dev_priv)
9256{
9257        uint32_t val;
9258
9259        val = I915_READ(LCPLL_CTL);
9260
9261        if ((val & (LCPLL_PLL_LOCK | LCPLL_PLL_DISABLE | LCPLL_CD_SOURCE_FCLK |
9262                    LCPLL_POWER_DOWN_ALLOW)) == LCPLL_PLL_LOCK)
9263                return;
9264
9265        /*
9266         * Make sure we're not on PC8 state before disabling PC8, otherwise
9267         * we'll hang the machine. To prevent PC8 state, just enable force_wake.
9268         */
9269        intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
9270
9271        if (val & LCPLL_POWER_DOWN_ALLOW) {
9272                val &= ~LCPLL_POWER_DOWN_ALLOW;
9273                I915_WRITE(LCPLL_CTL, val);
9274                POSTING_READ(LCPLL_CTL);
9275        }
9276
9277        val = hsw_read_dcomp(dev_priv);
9278        val |= D_COMP_COMP_FORCE;
9279        val &= ~D_COMP_COMP_DISABLE;
9280        hsw_write_dcomp(dev_priv, val);
9281
9282        val = I915_READ(LCPLL_CTL);
9283        val &= ~LCPLL_PLL_DISABLE;
9284        I915_WRITE(LCPLL_CTL, val);
9285
9286        if (wait_for(I915_READ(LCPLL_CTL) & LCPLL_PLL_LOCK, 5))
9287                DRM_ERROR("LCPLL not locked yet\n");
9288
9289        if (val & LCPLL_CD_SOURCE_FCLK) {
9290                val = I915_READ(LCPLL_CTL);
9291                val &= ~LCPLL_CD_SOURCE_FCLK;
9292                I915_WRITE(LCPLL_CTL, val);
9293
9294                if (wait_for_atomic_us((I915_READ(LCPLL_CTL) &
9295                                        LCPLL_CD_SOURCE_FCLK_DONE) == 0, 1))
9296                        DRM_ERROR("Switching back to LCPLL failed\n");
9297        }
9298
9299        intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
9300}
9301
9302/*
9303 * Package states C8 and deeper are really deep PC states that can only be
9304 * reached when all the devices on the system allow it, so even if the graphics
9305 * device allows PC8+, it doesn't mean the system will actually get to these
9306 * states. Our driver only allows PC8+ when going into runtime PM.
9307 *
9308 * The requirements for PC8+ are that all the outputs are disabled, the power
9309 * well is disabled and most interrupts are disabled, and these are also
9310 * requirements for runtime PM. When these conditions are met, we manually do
9311 * the other conditions: disable the interrupts, clocks and switch LCPLL refclk
9312 * to Fclk. If we're in PC8+ and we get an non-hotplug interrupt, we can hard
9313 * hang the machine.
9314 *
9315 * When we really reach PC8 or deeper states (not just when we allow it) we lose
9316 * the state of some registers, so when we come back from PC8+ we need to
9317 * restore this state. We don't get into PC8+ if we're not in RC6, so we don't
9318 * need to take care of the registers kept by RC6. Notice that this happens even
9319 * if we don't put the device in PCI D3 state (which is what currently happens
9320 * because of the runtime PM support).
9321 *
9322 * For more, read "Display Sequences for Package C8" on the hardware
9323 * documentation.
9324 */
9325void hsw_enable_pc8(struct drm_i915_private *dev_priv)
9326{
9327        struct drm_device *dev = dev_priv->dev;
9328        uint32_t val;
9329
9330        DRM_DEBUG_KMS("Enabling package C8+\n");
9331
9332        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9333                val = I915_READ(SOUTH_DSPCLK_GATE_D);
9334                val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
9335                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9336        }
9337
9338        lpt_disable_clkout_dp(dev);
9339        hsw_disable_lcpll(dev_priv, true, true);
9340}
9341
9342void hsw_disable_pc8(struct drm_i915_private *dev_priv)
9343{
9344        struct drm_device *dev = dev_priv->dev;
9345        uint32_t val;
9346
9347        DRM_DEBUG_KMS("Disabling package C8+\n");
9348
9349        hsw_restore_lcpll(dev_priv);
9350        lpt_init_pch_refclk(dev);
9351
9352        if (dev_priv->pch_id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
9353                val = I915_READ(SOUTH_DSPCLK_GATE_D);
9354                val |= PCH_LP_PARTITION_LEVEL_DISABLE;
9355                I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
9356        }
9357
9358        intel_prepare_ddi(dev);
9359}
9360
9361static void broxton_modeset_global_resources(struct drm_atomic_state *old_state)
9362{
9363        struct drm_device *dev = old_state->dev;
9364        struct drm_i915_private *dev_priv = dev->dev_private;
9365        int max_pixclk = intel_mode_max_pixclk(dev, NULL);
9366        int req_cdclk;
9367
9368        /* see the comment in valleyview_modeset_global_resources */
9369        if (WARN_ON(max_pixclk < 0))
9370                return;
9371
9372        req_cdclk = broxton_calc_cdclk(dev_priv, max_pixclk);
9373
9374        if (req_cdclk != dev_priv->cdclk_freq)
9375                broxton_set_cdclk(dev, req_cdclk);
9376}
9377
9378static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
9379                                      struct intel_crtc_state *crtc_state)
9380{
9381        if (!intel_ddi_pll_select(crtc, crtc_state))
9382                return -EINVAL;
9383
9384        crtc->lowfreq_avail = false;
9385
9386        return 0;
9387}
9388
9389static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
9390                                enum port port,
9391                                struct intel_crtc_state *pipe_config)
9392{
9393        switch (port) {
9394        case PORT_A:
9395                pipe_config->ddi_pll_sel = SKL_DPLL0;
9396                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9397                break;
9398        case PORT_B:
9399                pipe_config->ddi_pll_sel = SKL_DPLL1;
9400                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9401                break;
9402        case PORT_C:
9403                pipe_config->ddi_pll_sel = SKL_DPLL2;
9404                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9405                break;
9406        default:
9407                DRM_ERROR("Incorrect port type\n");
9408        }
9409}
9410
9411static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
9412                                enum port port,
9413                                struct intel_crtc_state *pipe_config)
9414{
9415        u32 temp, dpll_ctl1;
9416
9417        temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
9418        pipe_config->ddi_pll_sel = temp >> (port * 3 + 1);
9419
9420        switch (pipe_config->ddi_pll_sel) {
9421        case SKL_DPLL0:
9422                /*
9423                 * On SKL the eDP DPLL (DPLL0 as we don't use SSC) is not part
9424                 * of the shared DPLL framework and thus needs to be read out
9425                 * separately
9426                 */
9427                dpll_ctl1 = I915_READ(DPLL_CTRL1);
9428                pipe_config->dpll_hw_state.ctrl1 = dpll_ctl1 & 0x3f;
9429                break;
9430        case SKL_DPLL1:
9431                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL1;
9432                break;
9433        case SKL_DPLL2:
9434                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL2;
9435                break;
9436        case SKL_DPLL3:
9437                pipe_config->shared_dpll = DPLL_ID_SKL_DPLL3;
9438                break;
9439        }
9440}
9441
9442static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
9443                                enum port port,
9444                                struct intel_crtc_state *pipe_config)
9445{
9446        pipe_config->ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
9447
9448        switch (pipe_config->ddi_pll_sel) {
9449        case PORT_CLK_SEL_WRPLL1:
9450                pipe_config->shared_dpll = DPLL_ID_WRPLL1;
9451                break;
9452        case PORT_CLK_SEL_WRPLL2:
9453                pipe_config->shared_dpll = DPLL_ID_WRPLL2;
9454                break;
9455        }
9456}
9457
9458static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
9459                                       struct intel_crtc_state *pipe_config)
9460{
9461        struct drm_device *dev = crtc->base.dev;
9462        struct drm_i915_private *dev_priv = dev->dev_private;
9463        struct intel_shared_dpll *pll;
9464        enum port port;
9465        uint32_t tmp;
9466
9467        tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
9468
9469        port = (tmp & TRANS_DDI_PORT_MASK) >> TRANS_DDI_PORT_SHIFT;
9470
9471        if (IS_SKYLAKE(dev))
9472                skylake_get_ddi_pll(dev_priv, port, pipe_config);
9473        else if (IS_BROXTON(dev))
9474                bxt_get_ddi_pll(dev_priv, port, pipe_config);
9475        else
9476                haswell_get_ddi_pll(dev_priv, port, pipe_config);
9477
9478        if (pipe_config->shared_dpll >= 0) {
9479                pll = &dev_priv->shared_dplls[pipe_config->shared_dpll];
9480
9481                WARN_ON(!pll->get_hw_state(dev_priv, pll,
9482                                           &pipe_config->dpll_hw_state));
9483        }
9484
9485        /*
9486         * Haswell has only FDI/PCH transcoder A. It is which is connected to
9487         * DDI E. So just check whether this pipe is wired to DDI E and whether
9488         * the PCH transcoder is on.
9489         */
9490        if (INTEL_INFO(dev)->gen < 9 &&
9491            (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
9492                pipe_config->has_pch_encoder = true;
9493
9494                tmp = I915_READ(FDI_RX_CTL(PIPE_A));
9495                pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
9496                                          FDI_DP_PORT_WIDTH_SHIFT) + 1;
9497
9498                ironlake_get_fdi_m_n_config(crtc, pipe_config);
9499        }
9500}
9501
9502static bool haswell_get_pipe_config(struct intel_crtc *crtc,
9503                                    struct intel_crtc_state *pipe_config)
9504{
9505        struct drm_device *dev = crtc->base.dev;
9506        struct drm_i915_private *dev_priv = dev->dev_private;
9507        enum intel_display_power_domain pfit_domain;
9508        uint32_t tmp;
9509
9510        if (!intel_display_power_is_enabled(dev_priv,
9511                                         POWER_DOMAIN_PIPE(crtc->pipe)))
9512                return false;
9513
9514        pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
9515        pipe_config->shared_dpll = DPLL_ID_PRIVATE;
9516
9517        tmp = I915_READ(TRANS_DDI_FUNC_CTL(TRANSCODER_EDP));
9518        if (tmp & TRANS_DDI_FUNC_ENABLE) {
9519                enum pipe trans_edp_pipe;
9520                switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
9521                default:
9522                        WARN(1, "unknown pipe linked to edp transcoder\n");
9523                case TRANS_DDI_EDP_INPUT_A_ONOFF:
9524                case TRANS_DDI_EDP_INPUT_A_ON:
9525                        trans_edp_pipe = PIPE_A;
9526                        break;
9527                case TRANS_DDI_EDP_INPUT_B_ONOFF:
9528                        trans_edp_pipe = PIPE_B;
9529                        break;
9530                case TRANS_DDI_EDP_INPUT_C_ONOFF:
9531                        trans_edp_pipe = PIPE_C;
9532                        break;
9533                }
9534
9535                if (trans_edp_pipe == crtc->pipe)
9536                        pipe_config->cpu_transcoder = TRANSCODER_EDP;
9537        }
9538
9539        if (!intel_display_power_is_enabled(dev_priv,
9540                        POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder)))
9541                return false;
9542
9543        tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
9544        if (!(tmp & PIPECONF_ENABLE))
9545                return false;
9546
9547        haswell_get_ddi_port_state(crtc, pipe_config);
9548
9549        intel_get_pipe_timings(crtc, pipe_config);
9550
9551        if (INTEL_INFO(dev)->gen >= 9) {
9552                skl_init_scalers(dev, crtc, pipe_config);
9553        }
9554
9555        pfit_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
9556
9557        if (INTEL_INFO(dev)->gen >= 9) {
9558                pipe_config->scaler_state.scaler_id = -1;
9559                pipe_config->scaler_state.scaler_users &= ~(1 << SKL_CRTC_INDEX);
9560        }
9561
9562        if (intel_display_power_is_enabled(dev_priv, pfit_domain)) {
9563                if (INTEL_INFO(dev)->gen == 9)
9564                        skylake_get_pfit_config(crtc, pipe_config);
9565                else if (INTEL_INFO(dev)->gen < 9)
9566                        ironlake_get_pfit_config(crtc, pipe_config);
9567                else
9568                        MISSING_CASE(INTEL_INFO(dev)->gen);
9569        }
9570
9571        if (IS_HASWELL(dev))
9572                pipe_config->ips_enabled = hsw_crtc_supports_ips(crtc) &&
9573                        (I915_READ(IPS_CTL) & IPS_ENABLE);
9574
9575        if (pipe_config->cpu_transcoder != TRANSCODER_EDP) {
9576                pipe_config->pixel_multiplier =
9577                        I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
9578        } else {
9579                pipe_config->pixel_multiplier = 1;
9580        }
9581
9582        return true;
9583}
9584
9585static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
9586{
9587        struct drm_device *dev = crtc->dev;
9588        struct drm_i915_private *dev_priv = dev->dev_private;
9589        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9590        uint32_t cntl = 0, size = 0;
9591
9592        if (base) {
9593                unsigned int width = intel_crtc->base.cursor->state->crtc_w;
9594                unsigned int height = intel_crtc->base.cursor->state->crtc_h;
9595                unsigned int stride = roundup_pow_of_two(width) * 4;
9596
9597                switch (stride) {
9598                default:
9599                        WARN_ONCE(1, "Invalid cursor width/stride, width=%u, stride=%u\n",
9600                                  width, stride);
9601                        stride = 256;
9602                        /* fallthrough */
9603                case 256:
9604                case 512:
9605                case 1024:
9606                case 2048:
9607                        break;
9608                }
9609
9610                cntl |= CURSOR_ENABLE |
9611                        CURSOR_GAMMA_ENABLE |
9612                        CURSOR_FORMAT_ARGB |
9613                        CURSOR_STRIDE(stride);
9614
9615                size = (height << 12) | width;
9616        }
9617
9618        if (intel_crtc->cursor_cntl != 0 &&
9619            (intel_crtc->cursor_base != base ||
9620             intel_crtc->cursor_size != size ||
9621             intel_crtc->cursor_cntl != cntl)) {
9622                /* On these chipsets we can only modify the base/size/stride
9623                 * whilst the cursor is disabled.
9624                 */
9625                I915_WRITE(_CURACNTR, 0);
9626                POSTING_READ(_CURACNTR);
9627                intel_crtc->cursor_cntl = 0;
9628        }
9629
9630        if (intel_crtc->cursor_base != base) {
9631                I915_WRITE(_CURABASE, base);
9632                intel_crtc->cursor_base = base;
9633        }
9634
9635        if (intel_crtc->cursor_size != size) {
9636                I915_WRITE(CURSIZE, size);
9637                intel_crtc->cursor_size = size;
9638        }
9639
9640        if (intel_crtc->cursor_cntl != cntl) {
9641                I915_WRITE(_CURACNTR, cntl);
9642                POSTING_READ(_CURACNTR);
9643                intel_crtc->cursor_cntl = cntl;
9644        }
9645}
9646
9647static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
9648{
9649        struct drm_device *dev = crtc->dev;
9650        struct drm_i915_private *dev_priv = dev->dev_private;
9651        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9652        int pipe = intel_crtc->pipe;
9653        uint32_t cntl;
9654
9655        cntl = 0;
9656        if (base) {
9657                cntl = MCURSOR_GAMMA_ENABLE;
9658                switch (intel_crtc->base.cursor->state->crtc_w) {
9659                        case 64:
9660                                cntl |= CURSOR_MODE_64_ARGB_AX;
9661                                break;
9662                        case 128:
9663                                cntl |= CURSOR_MODE_128_ARGB_AX;
9664                                break;
9665                        case 256:
9666                                cntl |= CURSOR_MODE_256_ARGB_AX;
9667                                break;
9668                        default:
9669                                MISSING_CASE(intel_crtc->base.cursor->state->crtc_w);
9670                                return;
9671                }
9672                cntl |= pipe << 28; /* Connect to correct pipe */
9673
9674                if (IS_HASWELL(dev) || IS_BROADWELL(dev))
9675                        cntl |= CURSOR_PIPE_CSC_ENABLE;
9676        }
9677
9678        if (crtc->cursor->state->rotation == BIT(DRM_ROTATE_180))
9679                cntl |= CURSOR_ROTATE_180;
9680
9681        if (intel_crtc->cursor_cntl != cntl) {
9682                I915_WRITE(CURCNTR(pipe), cntl);
9683                POSTING_READ(CURCNTR(pipe));
9684                intel_crtc->cursor_cntl = cntl;
9685        }
9686
9687        /* and commit changes on next vblank */
9688        I915_WRITE(CURBASE(pipe), base);
9689        POSTING_READ(CURBASE(pipe));
9690
9691        intel_crtc->cursor_base = base;
9692}
9693
9694/* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
9695static void intel_crtc_update_cursor(struct drm_crtc *crtc,
9696                                     bool on)
9697{
9698        struct drm_device *dev = crtc->dev;
9699        struct drm_i915_private *dev_priv = dev->dev_private;
9700        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9701        int pipe = intel_crtc->pipe;
9702        int x = crtc->cursor_x;
9703        int y = crtc->cursor_y;
9704        u32 base = 0, pos = 0;
9705
9706        if (on)
9707                base = intel_crtc->cursor_addr;
9708
9709        if (x >= intel_crtc->config->pipe_src_w)
9710                base = 0;
9711
9712        if (y >= intel_crtc->config->pipe_src_h)
9713                base = 0;
9714
9715        if (x < 0) {
9716                if (x + intel_crtc->base.cursor->state->crtc_w <= 0)
9717                        base = 0;
9718
9719                pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
9720                x = -x;
9721        }
9722        pos |= x << CURSOR_X_SHIFT;
9723
9724        if (y < 0) {
9725                if (y + intel_crtc->base.cursor->state->crtc_h <= 0)
9726                        base = 0;
9727
9728                pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
9729                y = -y;
9730        }
9731        pos |= y << CURSOR_Y_SHIFT;
9732
9733        if (base == 0 && intel_crtc->cursor_base == 0)
9734                return;
9735
9736        I915_WRITE(CURPOS(pipe), pos);
9737
9738        /* ILK+ do this automagically */
9739        if (HAS_GMCH_DISPLAY(dev) &&
9740            crtc->cursor->state->rotation == BIT(DRM_ROTATE_180)) {
9741                base += (intel_crtc->base.cursor->state->crtc_h *
9742                        intel_crtc->base.cursor->state->crtc_w - 1) * 4;
9743        }
9744
9745        if (IS_845G(dev) || IS_I865G(dev))
9746                i845_update_cursor(crtc, base);
9747        else
9748                i9xx_update_cursor(crtc, base);
9749}
9750
9751static bool cursor_size_ok(struct drm_device *dev,
9752                           uint32_t width, uint32_t height)
9753{
9754        if (width == 0 || height == 0)
9755                return false;
9756
9757        /*
9758         * 845g/865g are special in that they are only limited by
9759         * the width of their cursors, the height is arbitrary up to
9760         * the precision of the register. Everything else requires
9761         * square cursors, limited to a few power-of-two sizes.
9762         */
9763        if (IS_845G(dev) || IS_I865G(dev)) {
9764                if ((width & 63) != 0)
9765                        return false;
9766
9767                if (width > (IS_845G(dev) ? 64 : 512))
9768                        return false;
9769
9770                if (height > 1023)
9771                        return false;
9772        } else {
9773                switch (width | height) {
9774                case 256:
9775                case 128:
9776                        if (IS_GEN2(dev))
9777                                return false;
9778                case 64:
9779                        break;
9780                default:
9781                        return false;
9782                }
9783        }
9784
9785        return true;
9786}
9787
9788static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
9789                                 u16 *blue, uint32_t start, uint32_t size)
9790{
9791        int end = (start + size > 256) ? 256 : start + size, i;
9792        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
9793
9794        for (i = start; i < end; i++) {
9795                intel_crtc->lut_r[i] = red[i] >> 8;
9796                intel_crtc->lut_g[i] = green[i] >> 8;
9797                intel_crtc->lut_b[i] = blue[i] >> 8;
9798        }
9799
9800        intel_crtc_load_lut(crtc);
9801}
9802
9803/* VESA 640x480x72Hz mode to set on the pipe */
9804static struct drm_display_mode load_detect_mode = {
9805        DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
9806                 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
9807};
9808
9809struct drm_framebuffer *
9810__intel_framebuffer_create(struct drm_device *dev,
9811                           struct drm_mode_fb_cmd2 *mode_cmd,
9812                           struct drm_i915_gem_object *obj)
9813{
9814        struct intel_framebuffer *intel_fb;
9815        int ret;
9816
9817        intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9818        if (!intel_fb) {
9819                drm_gem_object_unreference(&obj->base);
9820                return ERR_PTR(-ENOMEM);
9821        }
9822
9823        ret = intel_framebuffer_init(dev, intel_fb, mode_cmd, obj);
9824        if (ret)
9825                goto err;
9826
9827        return &intel_fb->base;
9828err:
9829        drm_gem_object_unreference(&obj->base);
9830        kfree(intel_fb);
9831
9832        return ERR_PTR(ret);
9833}
9834
9835static struct drm_framebuffer *
9836intel_framebuffer_create(struct drm_device *dev,
9837                         struct drm_mode_fb_cmd2 *mode_cmd,
9838                         struct drm_i915_gem_object *obj)
9839{
9840        struct drm_framebuffer *fb;
9841        int ret;
9842
9843        ret = i915_mutex_lock_interruptible(dev);
9844        if (ret)
9845                return ERR_PTR(ret);
9846        fb = __intel_framebuffer_create(dev, mode_cmd, obj);
9847        mutex_unlock(&dev->struct_mutex);
9848
9849        return fb;
9850}
9851
9852static u32
9853intel_framebuffer_pitch_for_width(int width, int bpp)
9854{
9855        u32 pitch = DIV_ROUND_UP(width * bpp, 8);
9856        return ALIGN(pitch, 64);
9857}
9858
9859static u32
9860intel_framebuffer_size_for_mode(struct drm_display_mode *mode, int bpp)
9861{
9862        u32 pitch = intel_framebuffer_pitch_for_width(mode->hdisplay, bpp);
9863        return PAGE_ALIGN(pitch * mode->vdisplay);
9864}
9865
9866static struct drm_framebuffer *
9867intel_framebuffer_create_for_mode(struct drm_device *dev,
9868                                  struct drm_display_mode *mode,
9869                                  int depth, int bpp)
9870{
9871        struct drm_i915_gem_object *obj;
9872        struct drm_mode_fb_cmd2 mode_cmd = { 0 };
9873
9874        obj = i915_gem_alloc_object(dev,
9875                                    intel_framebuffer_size_for_mode(mode, bpp));
9876        if (obj == NULL)
9877                return ERR_PTR(-ENOMEM);
9878
9879        mode_cmd.width = mode->hdisplay;
9880        mode_cmd.height = mode->vdisplay;
9881        mode_cmd.pitches[0] = intel_framebuffer_pitch_for_width(mode_cmd.width,
9882                                                                bpp);
9883        mode_cmd.pixel_format = drm_mode_legacy_fb_format(bpp, depth);
9884
9885        return intel_framebuffer_create(dev, &mode_cmd, obj);
9886}
9887
9888static struct drm_framebuffer *
9889mode_fits_in_fbdev(struct drm_device *dev,
9890                   struct drm_display_mode *mode)
9891{
9892#ifdef CONFIG_DRM_I915_FBDEV
9893        struct drm_i915_private *dev_priv = dev->dev_private;
9894        struct drm_i915_gem_object *obj;
9895        struct drm_framebuffer *fb;
9896
9897        if (!dev_priv->fbdev)
9898                return NULL;
9899
9900        if (!dev_priv->fbdev->fb)
9901                return NULL;
9902
9903        obj = dev_priv->fbdev->fb->obj;
9904        BUG_ON(!obj);
9905
9906        fb = &dev_priv->fbdev->fb->base;
9907        if (fb->pitches[0] < intel_framebuffer_pitch_for_width(mode->hdisplay,
9908                                                               fb->bits_per_pixel))
9909                return NULL;
9910
9911        if (obj->base.size < mode->vdisplay * fb->pitches[0])
9912                return NULL;
9913
9914        return fb;
9915#else
9916        return NULL;
9917#endif
9918}
9919
9920static int intel_modeset_setup_plane_state(struct drm_atomic_state *state,
9921                                           struct drm_crtc *crtc,
9922                                           struct drm_display_mode *mode,
9923                                           struct drm_framebuffer *fb,
9924                                           int x, int y)
9925{
9926        struct drm_plane_state *plane_state;
9927        int hdisplay, vdisplay;
9928        int ret;
9929
9930        plane_state = drm_atomic_get_plane_state(state, crtc->primary);
9931        if (IS_ERR(plane_state))
9932                return PTR_ERR(plane_state);
9933
9934        if (mode)
9935                drm_crtc_get_hv_timing(mode, &hdisplay, &vdisplay);
9936        else
9937                hdisplay = vdisplay = 0;
9938
9939        ret = drm_atomic_set_crtc_for_plane(plane_state, fb ? crtc : NULL);
9940        if (ret)
9941                return ret;
9942        drm_atomic_set_fb_for_plane(plane_state, fb);
9943        plane_state->crtc_x = 0;
9944        plane_state->crtc_y = 0;
9945        plane_state->crtc_w = hdisplay;
9946        plane_state->crtc_h = vdisplay;
9947        plane_state->src_x = x << 16;
9948        plane_state->src_y = y << 16;
9949        plane_state->src_w = hdisplay << 16;
9950        plane_state->src_h = vdisplay << 16;
9951
9952        return 0;
9953}
9954
9955bool intel_get_load_detect_pipe(struct drm_connector *connector,
9956                                struct drm_display_mode *mode,
9957                                struct intel_load_detect_pipe *old,
9958                                struct drm_modeset_acquire_ctx *ctx)
9959{
9960        struct intel_crtc *intel_crtc;
9961        struct intel_encoder *intel_encoder =
9962                intel_attached_encoder(connector);
9963        struct drm_crtc *possible_crtc;
9964        struct drm_encoder *encoder = &intel_encoder->base;
9965        struct drm_crtc *crtc = NULL;
9966        struct drm_device *dev = encoder->dev;
9967        struct drm_framebuffer *fb;
9968        struct drm_mode_config *config = &dev->mode_config;
9969        struct drm_atomic_state *state = NULL;
9970        struct drm_connector_state *connector_state;
9971        struct intel_crtc_state *crtc_state;
9972        int ret, i = -1;
9973
9974        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
9975                      connector->base.id, connector->name,
9976                      encoder->base.id, encoder->name);
9977
9978retry:
9979        ret = drm_modeset_lock(&config->connection_mutex, ctx);
9980        if (ret)
9981                goto fail_unlock;
9982
9983        /*
9984         * Algorithm gets a little messy:
9985         *
9986         *   - if the connector already has an assigned crtc, use it (but make
9987         *     sure it's on first)
9988         *
9989         *   - try to find the first unused crtc that can drive this connector,
9990         *     and use that if we find one
9991         */
9992
9993        /* See if we already have a CRTC for this connector */
9994        if (encoder->crtc) {
9995                crtc = encoder->crtc;
9996
9997                ret = drm_modeset_lock(&crtc->mutex, ctx);
9998                if (ret)
9999                        goto fail_unlock;
10000                ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10001                if (ret)
10002                        goto fail_unlock;
10003
10004                old->dpms_mode = connector->dpms;
10005                old->load_detect_temp = false;
10006
10007                /* Make sure the crtc and connector are running */
10008                if (connector->dpms != DRM_MODE_DPMS_ON)
10009                        connector->funcs->dpms(connector, DRM_MODE_DPMS_ON);
10010
10011                return true;
10012        }
10013
10014        /* Find an unused one (if possible) */
10015        for_each_crtc(dev, possible_crtc) {
10016                i++;
10017                if (!(encoder->possible_crtcs & (1 << i)))
10018                        continue;
10019                if (possible_crtc->state->enable)
10020                        continue;
10021                /* This can occur when applying the pipe A quirk on resume. */
10022                if (to_intel_crtc(possible_crtc)->new_enabled)
10023                        continue;
10024
10025                crtc = possible_crtc;
10026                break;
10027        }
10028
10029        /*
10030         * If we didn't find an unused CRTC, don't use any.
10031         */
10032        if (!crtc) {
10033                DRM_DEBUG_KMS("no pipe available for load-detect\n");
10034                goto fail_unlock;
10035        }
10036
10037        ret = drm_modeset_lock(&crtc->mutex, ctx);
10038        if (ret)
10039                goto fail_unlock;
10040        ret = drm_modeset_lock(&crtc->primary->mutex, ctx);
10041        if (ret)
10042                goto fail_unlock;
10043        intel_encoder->new_crtc = to_intel_crtc(crtc);
10044        to_intel_connector(connector)->new_encoder = intel_encoder;
10045
10046        intel_crtc = to_intel_crtc(crtc);
10047        intel_crtc->new_enabled = true;
10048        old->dpms_mode = connector->dpms;
10049        old->load_detect_temp = true;
10050        old->release_fb = NULL;
10051
10052        state = drm_atomic_state_alloc(dev);
10053        if (!state)
10054                return false;
10055
10056        state->acquire_ctx = ctx;
10057
10058        connector_state = drm_atomic_get_connector_state(state, connector);
10059        if (IS_ERR(connector_state)) {
10060                ret = PTR_ERR(connector_state);
10061                goto fail;
10062        }
10063
10064        connector_state->crtc = crtc;
10065        connector_state->best_encoder = &intel_encoder->base;
10066
10067        crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10068        if (IS_ERR(crtc_state)) {
10069                ret = PTR_ERR(crtc_state);
10070                goto fail;
10071        }
10072
10073        crtc_state->base.active = crtc_state->base.enable = true;
10074
10075        if (!mode)
10076                mode = &load_detect_mode;
10077
10078        /* We need a framebuffer large enough to accommodate all accesses
10079         * that the plane may generate whilst we perform load detection.
10080         * We can not rely on the fbcon either being present (we get called
10081         * during its initialisation to detect all boot displays, or it may
10082         * not even exist) or that it is large enough to satisfy the
10083         * requested mode.
10084         */
10085        fb = mode_fits_in_fbdev(dev, mode);
10086        if (fb == NULL) {
10087                DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
10088                fb = intel_framebuffer_create_for_mode(dev, mode, 24, 32);
10089                old->release_fb = fb;
10090        } else
10091                DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
10092        if (IS_ERR(fb)) {
10093                DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
10094                goto fail;
10095        }
10096
10097        ret = intel_modeset_setup_plane_state(state, crtc, mode, fb, 0, 0);
10098        if (ret)
10099                goto fail;
10100
10101        drm_mode_copy(&crtc_state->base.mode, mode);
10102
10103        if (intel_set_mode(crtc, state, true)) {
10104                DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
10105                if (old->release_fb)
10106                        old->release_fb->funcs->destroy(old->release_fb);
10107                goto fail;
10108        }
10109        crtc->primary->crtc = crtc;
10110
10111        /* let the connector get through one full cycle before testing */
10112        intel_wait_for_vblank(dev, intel_crtc->pipe);
10113        return true;
10114
10115 fail:
10116        intel_crtc->new_enabled = crtc->state->enable;
10117fail_unlock:
10118        drm_atomic_state_free(state);
10119        state = NULL;
10120
10121        if (ret == -EDEADLK) {
10122                drm_modeset_backoff(ctx);
10123                goto retry;
10124        }
10125
10126        return false;
10127}
10128
10129void intel_release_load_detect_pipe(struct drm_connector *connector,
10130                                    struct intel_load_detect_pipe *old,
10131                                    struct drm_modeset_acquire_ctx *ctx)
10132{
10133        struct drm_device *dev = connector->dev;
10134        struct intel_encoder *intel_encoder =
10135                intel_attached_encoder(connector);
10136        struct drm_encoder *encoder = &intel_encoder->base;
10137        struct drm_crtc *crtc = encoder->crtc;
10138        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10139        struct drm_atomic_state *state;
10140        struct drm_connector_state *connector_state;
10141        struct intel_crtc_state *crtc_state;
10142        int ret;
10143
10144        DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
10145                      connector->base.id, connector->name,
10146                      encoder->base.id, encoder->name);
10147
10148        if (old->load_detect_temp) {
10149                state = drm_atomic_state_alloc(dev);
10150                if (!state)
10151                        goto fail;
10152
10153                state->acquire_ctx = ctx;
10154
10155                connector_state = drm_atomic_get_connector_state(state, connector);
10156                if (IS_ERR(connector_state))
10157                        goto fail;
10158
10159                crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
10160                if (IS_ERR(crtc_state))
10161                        goto fail;
10162
10163                to_intel_connector(connector)->new_encoder = NULL;
10164                intel_encoder->new_crtc = NULL;
10165                intel_crtc->new_enabled = false;
10166
10167                connector_state->best_encoder = NULL;
10168                connector_state->crtc = NULL;
10169
10170                crtc_state->base.enable = crtc_state->base.active = false;
10171
10172                ret = intel_modeset_setup_plane_state(state, crtc, NULL, NULL,
10173                                                      0, 0);
10174                if (ret)
10175                        goto fail;
10176
10177                ret = intel_set_mode(crtc, state, true);
10178                if (ret)
10179                        goto fail;
10180
10181                if (old->release_fb) {
10182                        drm_framebuffer_unregister_private(old->release_fb);
10183                        drm_framebuffer_unreference(old->release_fb);
10184                }
10185
10186                return;
10187        }
10188
10189        /* Switch crtc and encoder back off if necessary */
10190        if (old->dpms_mode != DRM_MODE_DPMS_ON)
10191                connector->funcs->dpms(connector, old->dpms_mode);
10192
10193        return;
10194fail:
10195        DRM_DEBUG_KMS("Couldn't release load detect pipe.\n");
10196        drm_atomic_state_free(state);
10197}
10198
10199static int i9xx_pll_refclk(struct drm_device *dev,
10200                           const struct intel_crtc_state *pipe_config)
10201{
10202        struct drm_i915_private *dev_priv = dev->dev_private;
10203        u32 dpll = pipe_config->dpll_hw_state.dpll;
10204
10205        if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
10206                return dev_priv->vbt.lvds_ssc_freq;
10207        else if (HAS_PCH_SPLIT(dev))
10208                return 120000;
10209        else if (!IS_GEN2(dev))
10210                return 96000;
10211        else
10212                return 48000;
10213}
10214
10215/* Returns the clock of the currently programmed mode of the given pipe. */
10216static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
10217                                struct intel_crtc_state *pipe_config)
10218{
10219        struct drm_device *dev = crtc->base.dev;
10220        struct drm_i915_private *dev_priv = dev->dev_private;
10221        int pipe = pipe_config->cpu_transcoder;
10222        u32 dpll = pipe_config->dpll_hw_state.dpll;
10223        u32 fp;
10224        intel_clock_t clock;
10225        int refclk = i9xx_pll_refclk(dev, pipe_config);
10226
10227        if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
10228                fp = pipe_config->dpll_hw_state.fp0;
10229        else
10230                fp = pipe_config->dpll_hw_state.fp1;
10231
10232        clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
10233        if (IS_PINEVIEW(dev)) {
10234                clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
10235                clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
10236        } else {
10237                clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
10238                clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
10239        }
10240
10241        if (!IS_GEN2(dev)) {
10242                if (IS_PINEVIEW(dev))
10243                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
10244                                DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
10245                else
10246                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
10247                               DPLL_FPA01_P1_POST_DIV_SHIFT);
10248
10249                switch (dpll & DPLL_MODE_MASK) {
10250                case DPLLB_MODE_DAC_SERIAL:
10251                        clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
10252                                5 : 10;
10253                        break;
10254                case DPLLB_MODE_LVDS:
10255                        clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
10256                                7 : 14;
10257                        break;
10258                default:
10259                        DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
10260                                  "mode\n", (int)(dpll & DPLL_MODE_MASK));
10261                        return;
10262                }
10263
10264                if (IS_PINEVIEW(dev))
10265                        pineview_clock(refclk, &clock);
10266                else
10267                        i9xx_clock(refclk, &clock);
10268        } else {
10269                u32 lvds = IS_I830(dev) ? 0 : I915_READ(LVDS);
10270                bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
10271
10272                if (is_lvds) {
10273                        clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
10274                                       DPLL_FPA01_P1_POST_DIV_SHIFT);
10275
10276                        if (lvds & LVDS_CLKB_POWER_UP)
10277                                clock.p2 = 7;
10278                        else
10279                                clock.p2 = 14;
10280                } else {
10281                        if (dpll & PLL_P1_DIVIDE_BY_TWO)
10282                                clock.p1 = 2;
10283                        else {
10284                                clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
10285                                            DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
10286                        }
10287                        if (dpll & PLL_P2_DIVIDE_BY_4)
10288                                clock.p2 = 4;
10289                        else
10290                                clock.p2 = 2;
10291                }
10292
10293                i9xx_clock(refclk, &clock);
10294        }
10295
10296        /*
10297         * This value includes pixel_multiplier. We will use
10298         * port_clock to compute adjusted_mode.crtc_clock in the
10299         * encoder's get_config() function.
10300         */
10301        pipe_config->port_clock = clock.dot;
10302}
10303
10304int intel_dotclock_calculate(int link_freq,
10305                             const struct intel_link_m_n *m_n)
10306{
10307        /*
10308         * The calculation for the data clock is:
10309         * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
10310         * But we want to avoid losing precison if possible, so:
10311         * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
10312         *
10313         * and the link clock is simpler:
10314         * link_clock = (m * link_clock) / n
10315         */
10316
10317        if (!m_n->link_n)
10318                return 0;
10319
10320        return div_u64((u64)m_n->link_m * link_freq, m_n->link_n);
10321}
10322
10323static void ironlake_pch_clock_get(struct intel_crtc *crtc,
10324                                   struct intel_crtc_state *pipe_config)
10325{
10326        struct drm_device *dev = crtc->base.dev;
10327
10328        /* read out port_clock from the DPLL */
10329        i9xx_crtc_clock_get(crtc, pipe_config);
10330
10331        /*
10332         * This value does not include pixel_multiplier.
10333         * We will check that port_clock and adjusted_mode.crtc_clock
10334         * agree once we know their relationship in the encoder's
10335         * get_config() function.
10336         */
10337        pipe_config->base.adjusted_mode.crtc_clock =
10338                intel_dotclock_calculate(intel_fdi_link_freq(dev) * 10000,
10339                                         &pipe_config->fdi_m_n);
10340}
10341
10342/** Returns the currently programmed mode of the given pipe. */
10343struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
10344                                             struct drm_crtc *crtc)
10345{
10346        struct drm_i915_private *dev_priv = dev->dev_private;
10347        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10348        enum transcoder cpu_transcoder = intel_crtc->config->cpu_transcoder;
10349        struct drm_display_mode *mode;
10350        struct intel_crtc_state pipe_config;
10351        int htot = I915_READ(HTOTAL(cpu_transcoder));
10352        int hsync = I915_READ(HSYNC(cpu_transcoder));
10353        int vtot = I915_READ(VTOTAL(cpu_transcoder));
10354        int vsync = I915_READ(VSYNC(cpu_transcoder));
10355        enum pipe pipe = intel_crtc->pipe;
10356
10357        mode = kzalloc(sizeof(*mode), GFP_KERNEL);
10358        if (!mode)
10359                return NULL;
10360
10361        /*
10362         * Construct a pipe_config sufficient for getting the clock info
10363         * back out of crtc_clock_get.
10364         *
10365         * Note, if LVDS ever uses a non-1 pixel multiplier, we'll need
10366         * to use a real value here instead.
10367         */
10368        pipe_config.cpu_transcoder = (enum transcoder) pipe;
10369        pipe_config.pixel_multiplier = 1;
10370        pipe_config.dpll_hw_state.dpll = I915_READ(DPLL(pipe));
10371        pipe_config.dpll_hw_state.fp0 = I915_READ(FP0(pipe));
10372        pipe_config.dpll_hw_state.fp1 = I915_READ(FP1(pipe));
10373        i9xx_crtc_clock_get(intel_crtc, &pipe_config);
10374
10375        mode->clock = pipe_config.port_clock / pipe_config.pixel_multiplier;
10376        mode->hdisplay = (htot & 0xffff) + 1;
10377        mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
10378        mode->hsync_start = (hsync & 0xffff) + 1;
10379        mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
10380        mode->vdisplay = (vtot & 0xffff) + 1;
10381        mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
10382        mode->vsync_start = (vsync & 0xffff) + 1;
10383        mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
10384
10385        drm_mode_set_name(mode);
10386
10387        return mode;
10388}
10389
10390static void intel_decrease_pllclock(struct drm_crtc *crtc)
10391{
10392        struct drm_device *dev = crtc->dev;
10393        struct drm_i915_private *dev_priv = dev->dev_private;
10394        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10395
10396        if (!HAS_GMCH_DISPLAY(dev))
10397                return;
10398
10399        if (!dev_priv->lvds_downclock_avail)
10400                return;
10401
10402        /*
10403         * Since this is called by a timer, we should never get here in
10404         * the manual case.
10405         */
10406        if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
10407                int pipe = intel_crtc->pipe;
10408                int dpll_reg = DPLL(pipe);
10409                int dpll;
10410
10411                DRM_DEBUG_DRIVER("downclocking LVDS\n");
10412
10413                assert_panel_unlocked(dev_priv, pipe);
10414
10415                dpll = I915_READ(dpll_reg);
10416                dpll |= DISPLAY_RATE_SELECT_FPA1;
10417                I915_WRITE(dpll_reg, dpll);
10418                intel_wait_for_vblank(dev, pipe);
10419                dpll = I915_READ(dpll_reg);
10420                if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
10421                        DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
10422        }
10423
10424}
10425
10426void intel_mark_busy(struct drm_device *dev)
10427{
10428        struct drm_i915_private *dev_priv = dev->dev_private;
10429
10430        if (dev_priv->mm.busy)
10431                return;
10432
10433        intel_runtime_pm_get(dev_priv);
10434        i915_update_gfx_val(dev_priv);
10435        if (INTEL_INFO(dev)->gen >= 6)
10436                gen6_rps_busy(dev_priv);
10437        dev_priv->mm.busy = true;
10438}
10439
10440void intel_mark_idle(struct drm_device *dev)
10441{
10442        struct drm_i915_private *dev_priv = dev->dev_private;
10443        struct drm_crtc *crtc;
10444
10445        if (!dev_priv->mm.busy)
10446                return;
10447
10448        dev_priv->mm.busy = false;
10449
10450        for_each_crtc(dev, crtc) {
10451                if (!crtc->primary->fb)
10452                        continue;
10453
10454                intel_decrease_pllclock(crtc);
10455        }
10456
10457        if (INTEL_INFO(dev)->gen >= 6)
10458                gen6_rps_idle(dev->dev_private);
10459
10460        intel_runtime_pm_put(dev_priv);
10461}
10462
10463static void intel_crtc_destroy(struct drm_crtc *crtc)
10464{
10465        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10466        struct drm_device *dev = crtc->dev;
10467        struct intel_unpin_work *work;
10468
10469        spin_lock_irq(&dev->event_lock);
10470        work = intel_crtc->unpin_work;
10471        intel_crtc->unpin_work = NULL;
10472        spin_unlock_irq(&dev->event_lock);
10473
10474        if (work) {
10475                cancel_work_sync(&work->work);
10476                kfree(work);
10477        }
10478
10479        drm_crtc_cleanup(crtc);
10480
10481        kfree(intel_crtc);
10482}
10483
10484static void intel_unpin_work_fn(struct work_struct *__work)
10485{
10486        struct intel_unpin_work *work =
10487                container_of(__work, struct intel_unpin_work, work);
10488        struct drm_device *dev = work->crtc->dev;
10489        enum pipe pipe = to_intel_crtc(work->crtc)->pipe;
10490
10491        mutex_lock(&dev->struct_mutex);
10492        intel_unpin_fb_obj(work->old_fb, work->crtc->primary->state);
10493        drm_gem_object_unreference(&work->pending_flip_obj->base);
10494
10495        intel_fbc_update(dev);
10496
10497        if (work->flip_queued_req)
10498                i915_gem_request_assign(&work->flip_queued_req, NULL);
10499        mutex_unlock(&dev->struct_mutex);
10500
10501        intel_frontbuffer_flip_complete(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
10502        drm_framebuffer_unreference(work->old_fb);
10503
10504        BUG_ON(atomic_read(&to_intel_crtc(work->crtc)->unpin_work_count) == 0);
10505        atomic_dec(&to_intel_crtc(work->crtc)->unpin_work_count);
10506
10507        kfree(work);
10508}
10509
10510static void do_intel_finish_page_flip(struct drm_device *dev,
10511                                      struct drm_crtc *crtc)
10512{
10513        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10514        struct intel_unpin_work *work;
10515        unsigned long flags;
10516
10517        /* Ignore early vblank irqs */
10518        if (intel_crtc == NULL)
10519                return;
10520
10521        /*
10522         * This is called both by irq handlers and the reset code (to complete
10523         * lost pageflips) so needs the full irqsave spinlocks.
10524         */
10525        spin_lock_irqsave(&dev->event_lock, flags);
10526        work = intel_crtc->unpin_work;
10527
10528        /* Ensure we don't miss a work->pending update ... */
10529        smp_rmb();
10530
10531        if (work == NULL || atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
10532                spin_unlock_irqrestore(&dev->event_lock, flags);
10533                return;
10534        }
10535
10536        page_flip_completed(intel_crtc);
10537
10538        spin_unlock_irqrestore(&dev->event_lock, flags);
10539}
10540
10541void intel_finish_page_flip(struct drm_device *dev, int pipe)
10542{
10543        struct drm_i915_private *dev_priv = dev->dev_private;
10544        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
10545
10546        do_intel_finish_page_flip(dev, crtc);
10547}
10548
10549void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
10550{
10551        struct drm_i915_private *dev_priv = dev->dev_private;
10552        struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
10553
10554        do_intel_finish_page_flip(dev, crtc);
10555}
10556
10557/* Is 'a' after or equal to 'b'? */
10558static bool g4x_flip_count_after_eq(u32 a, u32 b)
10559{
10560        return !((a - b) & 0x80000000);
10561}
10562
10563static bool page_flip_finished(struct intel_crtc *crtc)
10564{
10565        struct drm_device *dev = crtc->base.dev;
10566        struct drm_i915_private *dev_priv = dev->dev_private;
10567
10568        if (i915_reset_in_progress(&dev_priv->gpu_error) ||
10569            crtc->reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter))
10570                return true;
10571
10572        /*
10573         * The relevant registers doen't exist on pre-ctg.
10574         * As the flip done interrupt doesn't trigger for mmio
10575         * flips on gmch platforms, a flip count check isn't
10576         * really needed there. But since ctg has the registers,
10577         * include it in the check anyway.
10578         */
10579        if (INTEL_INFO(dev)->gen < 5 && !IS_G4X(dev))
10580                return true;
10581
10582        /*
10583         * A DSPSURFLIVE check isn't enough in case the mmio and CS flips
10584         * used the same base address. In that case the mmio flip might
10585         * have completed, but the CS hasn't even executed the flip yet.
10586         *
10587         * A flip count check isn't enough as the CS might have updated
10588         * the base address just after start of vblank, but before we
10589         * managed to process the interrupt. This means we'd complete the
10590         * CS flip too soon.
10591         *
10592         * Combining both checks should get us a good enough result. It may
10593         * still happen that the CS flip has been executed, but has not
10594         * yet actually completed. But in case the base address is the same
10595         * anyway, we don't really care.
10596         */
10597        return (I915_READ(DSPSURFLIVE(crtc->plane)) & ~0xfff) ==
10598                crtc->unpin_work->gtt_offset &&
10599                g4x_flip_count_after_eq(I915_READ(PIPE_FLIPCOUNT_GM45(crtc->pipe)),
10600                                    crtc->unpin_work->flip_count);
10601}
10602
10603void intel_prepare_page_flip(struct drm_device *dev, int plane)
10604{
10605        struct drm_i915_private *dev_priv = dev->dev_private;
10606        struct intel_crtc *intel_crtc =
10607                to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
10608        unsigned long flags;
10609
10610
10611        /*
10612         * This is called both by irq handlers and the reset code (to complete
10613         * lost pageflips) so needs the full irqsave spinlocks.
10614         *
10615         * NB: An MMIO update of the plane base pointer will also
10616         * generate a page-flip completion irq, i.e. every modeset
10617         * is also accompanied by a spurious intel_prepare_page_flip().
10618         */
10619        spin_lock_irqsave(&dev->event_lock, flags);
10620        if (intel_crtc->unpin_work && page_flip_finished(intel_crtc))
10621                atomic_inc_not_zero(&intel_crtc->unpin_work->pending);
10622        spin_unlock_irqrestore(&dev->event_lock, flags);
10623}
10624
10625static inline void intel_mark_page_flip_active(struct intel_crtc *intel_crtc)
10626{
10627        /* Ensure that the work item is consistent when activating it ... */
10628        smp_wmb();
10629        atomic_set(&intel_crtc->unpin_work->pending, INTEL_FLIP_PENDING);
10630        /* and that it is marked active as soon as the irq could fire. */
10631        smp_wmb();
10632}
10633
10634static int intel_gen2_queue_flip(struct drm_device *dev,
10635                                 struct drm_crtc *crtc,
10636                                 struct drm_framebuffer *fb,
10637                                 struct drm_i915_gem_object *obj,
10638                                 struct intel_engine_cs *ring,
10639                                 uint32_t flags)
10640{
10641        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10642        u32 flip_mask;
10643        int ret;
10644
10645        ret = intel_ring_begin(ring, 6);
10646        if (ret)
10647                return ret;
10648
10649        /* Can't queue multiple flips, so wait for the previous
10650         * one to finish before executing the next.
10651         */
10652        if (intel_crtc->plane)
10653                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10654        else
10655                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10656        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10657        intel_ring_emit(ring, MI_NOOP);
10658        intel_ring_emit(ring, MI_DISPLAY_FLIP |
10659                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10660        intel_ring_emit(ring, fb->pitches[0]);
10661        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10662        intel_ring_emit(ring, 0); /* aux display base address, unused */
10663
10664        intel_mark_page_flip_active(intel_crtc);
10665        __intel_ring_advance(ring);
10666        return 0;
10667}
10668
10669static int intel_gen3_queue_flip(struct drm_device *dev,
10670                                 struct drm_crtc *crtc,
10671                                 struct drm_framebuffer *fb,
10672                                 struct drm_i915_gem_object *obj,
10673                                 struct intel_engine_cs *ring,
10674                                 uint32_t flags)
10675{
10676        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10677        u32 flip_mask;
10678        int ret;
10679
10680        ret = intel_ring_begin(ring, 6);
10681        if (ret)
10682                return ret;
10683
10684        if (intel_crtc->plane)
10685                flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
10686        else
10687                flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
10688        intel_ring_emit(ring, MI_WAIT_FOR_EVENT | flip_mask);
10689        intel_ring_emit(ring, MI_NOOP);
10690        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 |
10691                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10692        intel_ring_emit(ring, fb->pitches[0]);
10693        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10694        intel_ring_emit(ring, MI_NOOP);
10695
10696        intel_mark_page_flip_active(intel_crtc);
10697        __intel_ring_advance(ring);
10698        return 0;
10699}
10700
10701static int intel_gen4_queue_flip(struct drm_device *dev,
10702                                 struct drm_crtc *crtc,
10703                                 struct drm_framebuffer *fb,
10704                                 struct drm_i915_gem_object *obj,
10705                                 struct intel_engine_cs *ring,
10706                                 uint32_t flags)
10707{
10708        struct drm_i915_private *dev_priv = dev->dev_private;
10709        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10710        uint32_t pf, pipesrc;
10711        int ret;
10712
10713        ret = intel_ring_begin(ring, 4);
10714        if (ret)
10715                return ret;
10716
10717        /* i965+ uses the linear or tiled offsets from the
10718         * Display Registers (which do not change across a page-flip)
10719         * so we need only reprogram the base address.
10720         */
10721        intel_ring_emit(ring, MI_DISPLAY_FLIP |
10722                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10723        intel_ring_emit(ring, fb->pitches[0]);
10724        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset |
10725                        obj->tiling_mode);
10726
10727        /* XXX Enabling the panel-fitter across page-flip is so far
10728         * untested on non-native modes, so ignore it for now.
10729         * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
10730         */
10731        pf = 0;
10732        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10733        intel_ring_emit(ring, pf | pipesrc);
10734
10735        intel_mark_page_flip_active(intel_crtc);
10736        __intel_ring_advance(ring);
10737        return 0;
10738}
10739
10740static int intel_gen6_queue_flip(struct drm_device *dev,
10741                                 struct drm_crtc *crtc,
10742                                 struct drm_framebuffer *fb,
10743                                 struct drm_i915_gem_object *obj,
10744                                 struct intel_engine_cs *ring,
10745                                 uint32_t flags)
10746{
10747        struct drm_i915_private *dev_priv = dev->dev_private;
10748        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10749        uint32_t pf, pipesrc;
10750        int ret;
10751
10752        ret = intel_ring_begin(ring, 4);
10753        if (ret)
10754                return ret;
10755
10756        intel_ring_emit(ring, MI_DISPLAY_FLIP |
10757                        MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
10758        intel_ring_emit(ring, fb->pitches[0] | obj->tiling_mode);
10759        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10760
10761        /* Contrary to the suggestions in the documentation,
10762         * "Enable Panel Fitter" does not seem to be required when page
10763         * flipping with a non-native mode, and worse causes a normal
10764         * modeset to fail.
10765         * pf = I915_READ(PF_CTL(intel_crtc->pipe)) & PF_ENABLE;
10766         */
10767        pf = 0;
10768        pipesrc = I915_READ(PIPESRC(intel_crtc->pipe)) & 0x0fff0fff;
10769        intel_ring_emit(ring, pf | pipesrc);
10770
10771        intel_mark_page_flip_active(intel_crtc);
10772        __intel_ring_advance(ring);
10773        return 0;
10774}
10775
10776static int intel_gen7_queue_flip(struct drm_device *dev,
10777                                 struct drm_crtc *crtc,
10778                                 struct drm_framebuffer *fb,
10779                                 struct drm_i915_gem_object *obj,
10780                                 struct intel_engine_cs *ring,
10781                                 uint32_t flags)
10782{
10783        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
10784        uint32_t plane_bit = 0;
10785        int len, ret;
10786
10787        switch (intel_crtc->plane) {
10788        case PLANE_A:
10789                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_A;
10790                break;
10791        case PLANE_B:
10792                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_B;
10793                break;
10794        case PLANE_C:
10795                plane_bit = MI_DISPLAY_FLIP_IVB_PLANE_C;
10796                break;
10797        default:
10798                WARN_ONCE(1, "unknown plane in flip command\n");
10799                return -ENODEV;
10800        }
10801
10802        len = 4;
10803        if (ring->id == RCS) {
10804                len += 6;
10805                /*
10806                 * On Gen 8, SRM is now taking an extra dword to accommodate
10807                 * 48bits addresses, and we need a NOOP for the batch size to
10808                 * stay even.
10809                 */
10810                if (IS_GEN8(dev))
10811                        len += 2;
10812        }
10813
10814        /*
10815         * BSpec MI_DISPLAY_FLIP for IVB:
10816         * "The full packet must be contained within the same cache line."
10817         *
10818         * Currently the LRI+SRM+MI_DISPLAY_FLIP all fit within the same
10819         * cacheline, if we ever start emitting more commands before
10820         * the MI_DISPLAY_FLIP we may need to first emit everything else,
10821         * then do the cacheline alignment, and finally emit the
10822         * MI_DISPLAY_FLIP.
10823         */
10824        ret = intel_ring_cacheline_align(ring);
10825        if (ret)
10826                return ret;
10827
10828        ret = intel_ring_begin(ring, len);
10829        if (ret)
10830                return ret;
10831
10832        /* Unmask the flip-done completion message. Note that the bspec says that
10833         * we should do this for both the BCS and RCS, and that we must not unmask
10834         * more than one flip event at any time (or ensure that one flip message
10835         * can be sent by waiting for flip-done prior to queueing new flips).
10836         * Experimentation says that BCS works despite DERRMR masking all
10837         * flip-done completion events and that unmasking all planes at once
10838         * for the RCS also doesn't appear to drop events. Setting the DERRMR
10839         * to zero does lead to lockups within MI_DISPLAY_FLIP.
10840         */
10841        if (ring->id == RCS) {
10842                intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
10843                intel_ring_emit(ring, DERRMR);
10844                intel_ring_emit(ring, ~(DERRMR_PIPEA_PRI_FLIP_DONE |
10845                                        DERRMR_PIPEB_PRI_FLIP_DONE |
10846                                        DERRMR_PIPEC_PRI_FLIP_DONE));
10847                if (IS_GEN8(dev))
10848                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM_GEN8(1) |
10849                                              MI_SRM_LRM_GLOBAL_GTT);
10850                else
10851                        intel_ring_emit(ring, MI_STORE_REGISTER_MEM(1) |
10852                                              MI_SRM_LRM_GLOBAL_GTT);
10853                intel_ring_emit(ring, DERRMR);
10854                intel_ring_emit(ring, ring->scratch.gtt_offset + 256);
10855                if (IS_GEN8(dev)) {
10856                        intel_ring_emit(ring, 0);
10857                        intel_ring_emit(ring, MI_NOOP);
10858                }
10859        }
10860
10861        intel_ring_emit(ring, MI_DISPLAY_FLIP_I915 | plane_bit);
10862        intel_ring_emit(ring, (fb->pitches[0] | obj->tiling_mode));
10863        intel_ring_emit(ring, intel_crtc->unpin_work->gtt_offset);
10864        intel_ring_emit(ring, (MI_NOOP));
10865
10866        intel_mark_page_flip_active(intel_crtc);
10867        __intel_ring_advance(ring);
10868        return 0;
10869}
10870
10871static bool use_mmio_flip(struct intel_engine_cs *ring,
10872                          struct drm_i915_gem_object *obj)
10873{
10874        /*
10875         * This is not being used for older platforms, because
10876         * non-availability of flip done interrupt forces us to use
10877         * CS flips. Older platforms derive flip done using some clever
10878         * tricks involving the flip_pending status bits and vblank irqs.
10879         * So using MMIO flips there would disrupt this mechanism.
10880         */
10881
10882        if (ring == NULL)
10883                return true;
10884
10885        if (INTEL_INFO(ring->dev)->gen < 5)
10886                return false;
10887
10888        if (i915.use_mmio_flip < 0)
10889                return false;
10890        else if (i915.use_mmio_flip > 0)
10891                return true;
10892        else if (i915.enable_execlists)
10893                return true;
10894        else
10895                return ring != i915_gem_request_get_ring(obj->last_write_req);
10896}
10897
10898static void skl_do_mmio_flip(struct intel_crtc *intel_crtc)
10899{
10900        struct drm_device *dev = intel_crtc->base.dev;
10901        struct drm_i915_private *dev_priv = dev->dev_private;
10902        struct drm_framebuffer *fb = intel_crtc->base.primary->fb;
10903        const enum pipe pipe = intel_crtc->pipe;
10904        u32 ctl, stride;
10905
10906        ctl = I915_READ(PLANE_CTL(pipe, 0));
10907        ctl &= ~PLANE_CTL_TILED_MASK;
10908        switch (fb->modifier[0]) {
10909        case DRM_FORMAT_MOD_NONE:
10910                break;
10911        case I915_FORMAT_MOD_X_TILED:
10912                ctl |= PLANE_CTL_TILED_X;
10913                break;
10914        case I915_FORMAT_MOD_Y_TILED:
10915                ctl |= PLANE_CTL_TILED_Y;
10916                break;
10917        case I915_FORMAT_MOD_Yf_TILED:
10918                ctl |= PLANE_CTL_TILED_YF;
10919                break;
10920        default:
10921                MISSING_CASE(fb->modifier[0]);
10922        }
10923
10924        /*
10925         * The stride is either expressed as a multiple of 64 bytes chunks for
10926         * linear buffers or in number of tiles for tiled buffers.
10927         */
10928        stride = fb->pitches[0] /
10929                 intel_fb_stride_alignment(dev, fb->modifier[0],
10930                                           fb->pixel_format);
10931
10932        /*
10933         * Both PLANE_CTL and PLANE_STRIDE are not updated on vblank but on
10934         * PLANE_SURF updates, the update is then guaranteed to be atomic.
10935         */
10936        I915_WRITE(PLANE_CTL(pipe, 0), ctl);
10937        I915_WRITE(PLANE_STRIDE(pipe, 0), stride);
10938
10939        I915_WRITE(PLANE_SURF(pipe, 0), intel_crtc->unpin_work->gtt_offset);
10940        POSTING_READ(PLANE_SURF(pipe, 0));
10941}
10942
10943static void ilk_do_mmio_flip(struct intel_crtc *intel_crtc)
10944{
10945        struct drm_device *dev = intel_crtc->base.dev;
10946        struct drm_i915_private *dev_priv = dev->dev_private;
10947        struct intel_framebuffer *intel_fb =
10948                to_intel_framebuffer(intel_crtc->base.primary->fb);
10949        struct drm_i915_gem_object *obj = intel_fb->obj;
10950        u32 dspcntr;
10951        u32 reg;
10952
10953        reg = DSPCNTR(intel_crtc->plane);
10954        dspcntr = I915_READ(reg);
10955
10956        if (obj->tiling_mode != I915_TILING_NONE)
10957                dspcntr |= DISPPLANE_TILED;
10958        else
10959                dspcntr &= ~DISPPLANE_TILED;
10960
10961        I915_WRITE(reg, dspcntr);
10962
10963        I915_WRITE(DSPSURF(intel_crtc->plane),
10964                   intel_crtc->unpin_work->gtt_offset);
10965        POSTING_READ(DSPSURF(intel_crtc->plane));
10966
10967}
10968
10969/*
10970 * XXX: This is the temporary way to update the plane registers until we get
10971 * around to using the usual plane update functions for MMIO flips
10972 */
10973static void intel_do_mmio_flip(struct intel_crtc *intel_crtc)
10974{
10975        struct drm_device *dev = intel_crtc->base.dev;
10976        bool atomic_update;
10977        u32 start_vbl_count;
10978
10979        intel_mark_page_flip_active(intel_crtc);
10980
10981        atomic_update = intel_pipe_update_start(intel_crtc, &start_vbl_count);
10982
10983        if (INTEL_INFO(dev)->gen >= 9)
10984                skl_do_mmio_flip(intel_crtc);
10985        else
10986                /* use_mmio_flip() retricts MMIO flips to ilk+ */
10987                ilk_do_mmio_flip(intel_crtc);
10988
10989        if (atomic_update)
10990                intel_pipe_update_end(intel_crtc, start_vbl_count);
10991}
10992
10993static void intel_mmio_flip_work_func(struct work_struct *work)
10994{
10995        struct intel_mmio_flip *mmio_flip =
10996                container_of(work, struct intel_mmio_flip, work);
10997
10998        if (mmio_flip->req)
10999                WARN_ON(__i915_wait_request(mmio_flip->req,
11000                                            mmio_flip->crtc->reset_counter,
11001                                            false, NULL,
11002                                            &mmio_flip->i915->rps.mmioflips));
11003
11004        intel_do_mmio_flip(mmio_flip->crtc);
11005
11006        i915_gem_request_unreference__unlocked(mmio_flip->req);
11007        kfree(mmio_flip);
11008}
11009
11010static int intel_queue_mmio_flip(struct drm_device *dev,
11011                                 struct drm_crtc *crtc,
11012                                 struct drm_framebuffer *fb,
11013                                 struct drm_i915_gem_object *obj,
11014                                 struct intel_engine_cs *ring,
11015                                 uint32_t flags)
11016{
11017        struct intel_mmio_flip *mmio_flip;
11018
11019        mmio_flip = kmalloc(sizeof(*mmio_flip), GFP_KERNEL);
11020        if (mmio_flip == NULL)
11021                return -ENOMEM;
11022
11023        mmio_flip->i915 = to_i915(dev);
11024        mmio_flip->req = i915_gem_request_reference(obj->last_write_req);
11025        mmio_flip->crtc = to_intel_crtc(crtc);
11026
11027        INIT_WORK(&mmio_flip->work, intel_mmio_flip_work_func);
11028        schedule_work(&mmio_flip->work);
11029
11030        return 0;
11031}
11032
11033static int intel_default_queue_flip(struct drm_device *dev,
11034                                    struct drm_crtc *crtc,
11035                                    struct drm_framebuffer *fb,
11036                                    struct drm_i915_gem_object *obj,
11037                                    struct intel_engine_cs *ring,
11038                                    uint32_t flags)
11039{
11040        return -ENODEV;
11041}
11042
11043static bool __intel_pageflip_stall_check(struct drm_device *dev,
11044                                         struct drm_crtc *crtc)
11045{
11046        struct drm_i915_private *dev_priv = dev->dev_private;
11047        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11048        struct intel_unpin_work *work = intel_crtc->unpin_work;
11049        u32 addr;
11050
11051        if (atomic_read(&work->pending) >= INTEL_FLIP_COMPLETE)
11052                return true;
11053
11054        if (!work->enable_stall_check)
11055                return false;
11056
11057        if (work->flip_ready_vblank == 0) {
11058                if (work->flip_queued_req &&
11059                    !i915_gem_request_completed(work->flip_queued_req, true))
11060                        return false;
11061
11062                work->flip_ready_vblank = drm_crtc_vblank_count(crtc);
11063        }
11064
11065        if (drm_crtc_vblank_count(crtc) - work->flip_ready_vblank < 3)
11066                return false;
11067
11068        /* Potential stall - if we see that the flip has happened,
11069         * assume a missed interrupt. */
11070        if (INTEL_INFO(dev)->gen >= 4)
11071                addr = I915_HI_DISPBASE(I915_READ(DSPSURF(intel_crtc->plane)));
11072        else
11073                addr = I915_READ(DSPADDR(intel_crtc->plane));
11074
11075        /* There is a potential issue here with a false positive after a flip
11076         * to the same address. We could address this by checking for a
11077         * non-incrementing frame counter.
11078         */
11079        return addr == work->gtt_offset;
11080}
11081
11082void intel_check_page_flip(struct drm_device *dev, int pipe)
11083{
11084        struct drm_i915_private *dev_priv = dev->dev_private;
11085        struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
11086        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11087        struct intel_unpin_work *work;
11088
11089        WARN_ON(!in_interrupt());
11090
11091        if (crtc == NULL)
11092                return;
11093
11094        spin_lock(&dev->event_lock);
11095        work = intel_crtc->unpin_work;
11096        if (work != NULL && __intel_pageflip_stall_check(dev, crtc)) {
11097                WARN_ONCE(1, "Kicking stuck page flip: queued at %d, now %d\n",
11098                         work->flip_queued_vblank, drm_vblank_count(dev, pipe));
11099                page_flip_completed(intel_crtc);
11100                work = NULL;
11101        }
11102        if (work != NULL &&
11103            drm_vblank_count(dev, pipe) - work->flip_queued_vblank > 1)
11104                intel_queue_rps_boost_for_request(dev, work->flip_queued_req);
11105        spin_unlock(&dev->event_lock);
11106}
11107
11108static int intel_crtc_page_flip(struct drm_crtc *crtc,
11109                                struct drm_framebuffer *fb,
11110                                struct drm_pending_vblank_event *event,
11111                                uint32_t page_flip_flags)
11112{
11113        struct drm_device *dev = crtc->dev;
11114        struct drm_i915_private *dev_priv = dev->dev_private;
11115        struct drm_framebuffer *old_fb = crtc->primary->fb;
11116        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
11117        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11118        struct drm_plane *primary = crtc->primary;
11119        enum pipe pipe = intel_crtc->pipe;
11120        struct intel_unpin_work *work;
11121        struct intel_engine_cs *ring;
11122        bool mmio_flip;
11123        int ret;
11124
11125        /*
11126         * drm_mode_page_flip_ioctl() should already catch this, but double
11127         * check to be safe.  In the future we may enable pageflipping from
11128         * a disabled primary plane.
11129         */
11130        if (WARN_ON(intel_fb_obj(old_fb) == NULL))
11131                return -EBUSY;
11132
11133        /* Can't change pixel format via MI display flips. */
11134        if (fb->pixel_format != crtc->primary->fb->pixel_format)
11135                return -EINVAL;
11136
11137        /*
11138         * TILEOFF/LINOFF registers can't be changed via MI display flips.
11139         * Note that pitch changes could also affect these register.
11140         */
11141        if (INTEL_INFO(dev)->gen > 3 &&
11142            (fb->offsets[0] != crtc->primary->fb->offsets[0] ||
11143             fb->pitches[0] != crtc->primary->fb->pitches[0]))
11144                return -EINVAL;
11145
11146        if (i915_terminally_wedged(&dev_priv->gpu_error))
11147                goto out_hang;
11148
11149        work = kzalloc(sizeof(*work), GFP_KERNEL);
11150        if (work == NULL)
11151                return -ENOMEM;
11152
11153        work->event = event;
11154        work->crtc = crtc;
11155        work->old_fb = old_fb;
11156        INIT_WORK(&work->work, intel_unpin_work_fn);
11157
11158        ret = drm_crtc_vblank_get(crtc);
11159        if (ret)
11160                goto free_work;
11161
11162        /* We borrow the event spin lock for protecting unpin_work */
11163        spin_lock_irq(&dev->event_lock);
11164        if (intel_crtc->unpin_work) {
11165                /* Before declaring the flip queue wedged, check if
11166                 * the hardware completed the operation behind our backs.
11167                 */
11168                if (__intel_pageflip_stall_check(dev, crtc)) {
11169                        DRM_DEBUG_DRIVER("flip queue: previous flip completed, continuing\n");
11170                        page_flip_completed(intel_crtc);
11171                } else {
11172                        DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
11173                        spin_unlock_irq(&dev->event_lock);
11174
11175                        drm_crtc_vblank_put(crtc);
11176                        kfree(work);
11177                        return -EBUSY;
11178                }
11179        }
11180        intel_crtc->unpin_work = work;
11181        spin_unlock_irq(&dev->event_lock);
11182
11183        if (atomic_read(&intel_crtc->unpin_work_count) >= 2)
11184                flush_workqueue(dev_priv->wq);
11185
11186        /* Reference the objects for the scheduled work. */
11187        drm_framebuffer_reference(work->old_fb);
11188        drm_gem_object_reference(&obj->base);
11189
11190        crtc->primary->fb = fb;
11191        update_state_fb(crtc->primary);
11192
11193        work->pending_flip_obj = obj;
11194
11195        ret = i915_mutex_lock_interruptible(dev);
11196        if (ret)
11197                goto cleanup;
11198
11199        atomic_inc(&intel_crtc->unpin_work_count);
11200        intel_crtc->reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
11201
11202        if (INTEL_INFO(dev)->gen >= 5 || IS_G4X(dev))
11203                work->flip_count = I915_READ(PIPE_FLIPCOUNT_GM45(pipe)) + 1;
11204
11205        if (IS_VALLEYVIEW(dev)) {
11206                ring = &dev_priv->ring[BCS];
11207                if (obj->tiling_mode != intel_fb_obj(work->old_fb)->tiling_mode)
11208                        /* vlv: DISPLAY_FLIP fails to change tiling */
11209                        ring = NULL;
11210        } else if (IS_IVYBRIDGE(dev) || IS_HASWELL(dev)) {
11211                ring = &dev_priv->ring[BCS];
11212        } else if (INTEL_INFO(dev)->gen >= 7) {
11213                ring = i915_gem_request_get_ring(obj->last_write_req);
11214                if (ring == NULL || ring->id != RCS)
11215                        ring = &dev_priv->ring[BCS];
11216        } else {
11217                ring = &dev_priv->ring[RCS];
11218        }
11219
11220        mmio_flip = use_mmio_flip(ring, obj);
11221
11222        /* When using CS flips, we want to emit semaphores between rings.
11223         * However, when using mmio flips we will create a task to do the
11224         * synchronisation, so all we want here is to pin the framebuffer
11225         * into the display plane and skip any waits.
11226         */
11227        ret = intel_pin_and_fence_fb_obj(crtc->primary, fb,
11228                                         crtc->primary->state,
11229                                         mmio_flip ? i915_gem_request_get_ring(obj->last_write_req) : ring);
11230        if (ret)
11231                goto cleanup_pending;
11232
11233        work->gtt_offset = intel_plane_obj_offset(to_intel_plane(primary), obj)
11234                                                  + intel_crtc->dspaddr_offset;
11235
11236        if (mmio_flip) {
11237                ret = intel_queue_mmio_flip(dev, crtc, fb, obj, ring,
11238                                            page_flip_flags);
11239                if (ret)
11240                        goto cleanup_unpin;
11241
11242                i915_gem_request_assign(&work->flip_queued_req,
11243                                        obj->last_write_req);
11244        } else {
11245                if (obj->last_write_req) {
11246                        ret = i915_gem_check_olr(obj->last_write_req);
11247                        if (ret)
11248                                goto cleanup_unpin;
11249                }
11250
11251                ret = dev_priv->display.queue_flip(dev, crtc, fb, obj, ring,
11252                                                   page_flip_flags);
11253                if (ret)
11254                        goto cleanup_unpin;
11255
11256                i915_gem_request_assign(&work->flip_queued_req,
11257                                        intel_ring_get_request(ring));
11258        }
11259
11260        work->flip_queued_vblank = drm_crtc_vblank_count(crtc);
11261        work->enable_stall_check = true;
11262
11263        i915_gem_track_fb(intel_fb_obj(work->old_fb), obj,
11264                          INTEL_FRONTBUFFER_PRIMARY(pipe));
11265
11266        intel_fbc_disable(dev);
11267        intel_frontbuffer_flip_prepare(dev, INTEL_FRONTBUFFER_PRIMARY(pipe));
11268        mutex_unlock(&dev->struct_mutex);
11269
11270        trace_i915_flip_request(intel_crtc->plane, obj);
11271
11272        return 0;
11273
11274cleanup_unpin:
11275        intel_unpin_fb_obj(fb, crtc->primary->state);
11276cleanup_pending:
11277        atomic_dec(&intel_crtc->unpin_work_count);
11278        mutex_unlock(&dev->struct_mutex);
11279cleanup:
11280        crtc->primary->fb = old_fb;
11281        update_state_fb(crtc->primary);
11282
11283        drm_gem_object_unreference_unlocked(&obj->base);
11284        drm_framebuffer_unreference(work->old_fb);
11285
11286        spin_lock_irq(&dev->event_lock);
11287        intel_crtc->unpin_work = NULL;
11288        spin_unlock_irq(&dev->event_lock);
11289
11290        drm_crtc_vblank_put(crtc);
11291free_work:
11292        kfree(work);
11293
11294        if (ret == -EIO) {
11295out_hang:
11296                ret = intel_plane_restore(primary);
11297                if (ret == 0 && event) {
11298                        spin_lock_irq(&dev->event_lock);
11299                        drm_send_vblank_event(dev, pipe, event);
11300                        spin_unlock_irq(&dev->event_lock);
11301                }
11302        }
11303        return ret;
11304}
11305
11306static const struct drm_crtc_helper_funcs intel_helper_funcs = {
11307        .mode_set_base_atomic = intel_pipe_set_base_atomic,
11308        .load_lut = intel_crtc_load_lut,
11309        .atomic_begin = intel_begin_crtc_commit,
11310        .atomic_flush = intel_finish_crtc_commit,
11311};
11312
11313/**
11314 * intel_modeset_update_staged_output_state
11315 *
11316 * Updates the staged output configuration state, e.g. after we've read out the
11317 * current hw state.
11318 */
11319static void intel_modeset_update_staged_output_state(struct drm_device *dev)
11320{
11321        struct intel_crtc *crtc;
11322        struct intel_encoder *encoder;
11323        struct intel_connector *connector;
11324
11325        for_each_intel_connector(dev, connector) {
11326                connector->new_encoder =
11327                        to_intel_encoder(connector->base.encoder);
11328        }
11329
11330        for_each_intel_encoder(dev, encoder) {
11331                encoder->new_crtc =
11332                        to_intel_crtc(encoder->base.crtc);
11333        }
11334
11335        for_each_intel_crtc(dev, crtc) {
11336                crtc->new_enabled = crtc->base.state->enable;
11337        }
11338}
11339
11340/* Transitional helper to copy current connector/encoder state to
11341 * connector->state. This is needed so that code that is partially
11342 * converted to atomic does the right thing.
11343 */
11344static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
11345{
11346        struct intel_connector *connector;
11347
11348        for_each_intel_connector(dev, connector) {
11349                if (connector->base.encoder) {
11350                        connector->base.state->best_encoder =
11351                                connector->base.encoder;
11352                        connector->base.state->crtc =
11353                                connector->base.encoder->crtc;
11354                } else {
11355                        connector->base.state->best_encoder = NULL;
11356                        connector->base.state->crtc = NULL;
11357                }
11358        }
11359}
11360
11361/* Fixup legacy state after an atomic state swap.
11362 */
11363static void intel_modeset_fixup_state(struct drm_atomic_state *state)
11364{
11365        struct intel_crtc *crtc;
11366        struct intel_encoder *encoder;
11367        struct intel_connector *connector;
11368
11369        for_each_intel_connector(state->dev, connector) {
11370                connector->base.encoder = connector->base.state->best_encoder;
11371                if (connector->base.encoder)
11372                        connector->base.encoder->crtc =
11373                                connector->base.state->crtc;
11374        }
11375
11376        /* Update crtc of disabled encoders */
11377        for_each_intel_encoder(state->dev, encoder) {
11378                int num_connectors = 0;
11379
11380                for_each_intel_connector(state->dev, connector)
11381                        if (connector->base.encoder == &encoder->base)
11382                                num_connectors++;
11383
11384                if (num_connectors == 0)
11385                        encoder->base.crtc = NULL;
11386        }
11387
11388        for_each_intel_crtc(state->dev, crtc) {
11389                crtc->base.enabled = crtc->base.state->enable;
11390                crtc->config = to_intel_crtc_state(crtc->base.state);
11391        }
11392}
11393
11394static void
11395connected_sink_compute_bpp(struct intel_connector *connector,
11396                           struct intel_crtc_state *pipe_config)
11397{
11398        int bpp = pipe_config->pipe_bpp;
11399
11400        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] checking for sink bpp constrains\n",
11401                connector->base.base.id,
11402                connector->base.name);
11403
11404        /* Don't use an invalid EDID bpc value */
11405        if (connector->base.display_info.bpc &&
11406            connector->base.display_info.bpc * 3 < bpp) {
11407                DRM_DEBUG_KMS("clamping display bpp (was %d) to EDID reported max of %d\n",
11408                              bpp, connector->base.display_info.bpc*3);
11409                pipe_config->pipe_bpp = connector->base.display_info.bpc*3;
11410        }
11411
11412        /* Clamp bpp to 8 on screens without EDID 1.4 */
11413        if (connector->base.display_info.bpc == 0 && bpp > 24) {
11414                DRM_DEBUG_KMS("clamping display bpp (was %d) to default limit of 24\n",
11415                              bpp);
11416                pipe_config->pipe_bpp = 24;
11417        }
11418}
11419
11420static int
11421compute_baseline_pipe_bpp(struct intel_crtc *crtc,
11422                          struct intel_crtc_state *pipe_config)
11423{
11424        struct drm_device *dev = crtc->base.dev;
11425        struct drm_atomic_state *state;
11426        struct drm_connector *connector;
11427        struct drm_connector_state *connector_state;
11428        int bpp, i;
11429
11430        if ((IS_G4X(dev) || IS_VALLEYVIEW(dev)))
11431                bpp = 10*3;
11432        else if (INTEL_INFO(dev)->gen >= 5)
11433                bpp = 12*3;
11434        else
11435                bpp = 8*3;
11436
11437
11438        pipe_config->pipe_bpp = bpp;
11439
11440        state = pipe_config->base.state;
11441
11442        /* Clamp display bpp to EDID value */
11443        for_each_connector_in_state(state, connector, connector_state, i) {
11444                if (connector_state->crtc != &crtc->base)
11445                        continue;
11446
11447                connected_sink_compute_bpp(to_intel_connector(connector),
11448                                           pipe_config);
11449        }
11450
11451        return bpp;
11452}
11453
11454static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
11455{
11456        DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
11457                        "type: 0x%x flags: 0x%x\n",
11458                mode->crtc_clock,
11459                mode->crtc_hdisplay, mode->crtc_hsync_start,
11460                mode->crtc_hsync_end, mode->crtc_htotal,
11461                mode->crtc_vdisplay, mode->crtc_vsync_start,
11462                mode->crtc_vsync_end, mode->crtc_vtotal, mode->type, mode->flags);
11463}
11464
11465static void intel_dump_pipe_config(struct intel_crtc *crtc,
11466                                   struct intel_crtc_state *pipe_config,
11467                                   const char *context)
11468{
11469        struct drm_device *dev = crtc->base.dev;
11470        struct drm_plane *plane;
11471        struct intel_plane *intel_plane;
11472        struct intel_plane_state *state;
11473        struct drm_framebuffer *fb;
11474
11475        DRM_DEBUG_KMS("[CRTC:%d]%s config %p for pipe %c\n", crtc->base.base.id,
11476                      context, pipe_config, pipe_name(crtc->pipe));
11477
11478        DRM_DEBUG_KMS("cpu_transcoder: %c\n", transcoder_name(pipe_config->cpu_transcoder));
11479        DRM_DEBUG_KMS("pipe bpp: %i, dithering: %i\n",
11480                      pipe_config->pipe_bpp, pipe_config->dither);
11481        DRM_DEBUG_KMS("fdi/pch: %i, lanes: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11482                      pipe_config->has_pch_encoder,
11483                      pipe_config->fdi_lanes,
11484                      pipe_config->fdi_m_n.gmch_m, pipe_config->fdi_m_n.gmch_n,
11485                      pipe_config->fdi_m_n.link_m, pipe_config->fdi_m_n.link_n,
11486                      pipe_config->fdi_m_n.tu);
11487        DRM_DEBUG_KMS("dp: %i, gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
11488                      pipe_config->has_dp_encoder,
11489                      pipe_config->dp_m_n.gmch_m, pipe_config->dp_m_n.gmch_n,
11490                      pipe_config->dp_m_n.link_m, pipe_config->dp_m_n.link_n,
11491                      pipe_config->dp_m_n.tu);
11492
11493        DRM_DEBUG_KMS("dp: %i, gmch_m2: %u, gmch_n2: %u, link_m2: %u, link_n2: %u, tu2: %u\n",
11494                      pipe_config->has_dp_encoder,
11495                      pipe_config->dp_m2_n2.gmch_m,
11496                      pipe_config->dp_m2_n2.gmch_n,
11497                      pipe_config->dp_m2_n2.link_m,
11498                      pipe_config->dp_m2_n2.link_n,
11499                      pipe_config->dp_m2_n2.tu);
11500
11501        DRM_DEBUG_KMS("audio: %i, infoframes: %i\n",
11502                      pipe_config->has_audio,
11503                      pipe_config->has_infoframe);
11504
11505        DRM_DEBUG_KMS("requested mode:\n");
11506        drm_mode_debug_printmodeline(&pipe_config->base.mode);
11507        DRM_DEBUG_KMS("adjusted mode:\n");
11508        drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
11509        intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
11510        DRM_DEBUG_KMS("port clock: %d\n", pipe_config->port_clock);
11511        DRM_DEBUG_KMS("pipe src size: %dx%d\n",
11512                      pipe_config->pipe_src_w, pipe_config->pipe_src_h);
11513        DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
11514                      crtc->num_scalers,
11515                      pipe_config->scaler_state.scaler_users,
11516                      pipe_config->scaler_state.scaler_id);
11517        DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
11518                      pipe_config->gmch_pfit.control,
11519                      pipe_config->gmch_pfit.pgm_ratios,
11520                      pipe_config->gmch_pfit.lvds_border_bits);
11521        DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s\n",
11522                      pipe_config->pch_pfit.pos,
11523                      pipe_config->pch_pfit.size,
11524                      pipe_config->pch_pfit.enabled ? "enabled" : "disabled");
11525        DRM_DEBUG_KMS("ips: %i\n", pipe_config->ips_enabled);
11526        DRM_DEBUG_KMS("double wide: %i\n", pipe_config->double_wide);
11527
11528        if (IS_BROXTON(dev)) {
11529                DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: ebb0: 0x%x, "
11530                              "pll0: 0x%x, pll1: 0x%x, pll2: 0x%x, pll3: 0x%x, "
11531                              "pll6: 0x%x, pll8: 0x%x, pcsdw12: 0x%x\n",
11532                              pipe_config->ddi_pll_sel,
11533                              pipe_config->dpll_hw_state.ebb0,
11534                              pipe_config->dpll_hw_state.pll0,
11535                              pipe_config->dpll_hw_state.pll1,
11536                              pipe_config->dpll_hw_state.pll2,
11537                              pipe_config->dpll_hw_state.pll3,
11538                              pipe_config->dpll_hw_state.pll6,
11539                              pipe_config->dpll_hw_state.pll8,
11540                              pipe_config->dpll_hw_state.pcsdw12);
11541        } else if (IS_SKYLAKE(dev)) {
11542                DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: "
11543                              "ctrl1: 0x%x, cfgcr1: 0x%x, cfgcr2: 0x%x\n",
11544                              pipe_config->ddi_pll_sel,
11545                              pipe_config->dpll_hw_state.ctrl1,
11546                              pipe_config->dpll_hw_state.cfgcr1,
11547                              pipe_config->dpll_hw_state.cfgcr2);
11548        } else if (HAS_DDI(dev)) {
11549                DRM_DEBUG_KMS("ddi_pll_sel: %u; dpll_hw_state: wrpll: 0x%x\n",
11550                              pipe_config->ddi_pll_sel,
11551                              pipe_config->dpll_hw_state.wrpll);
11552        } else {
11553                DRM_DEBUG_KMS("dpll_hw_state: dpll: 0x%x, dpll_md: 0x%x, "
11554                              "fp0: 0x%x, fp1: 0x%x\n",
11555                              pipe_config->dpll_hw_state.dpll,
11556                              pipe_config->dpll_hw_state.dpll_md,
11557                              pipe_config->dpll_hw_state.fp0,
11558                              pipe_config->dpll_hw_state.fp1);
11559        }
11560
11561        DRM_DEBUG_KMS("planes on this crtc\n");
11562        list_for_each_entry(plane, &dev->mode_config.plane_list, head) {
11563                intel_plane = to_intel_plane(plane);
11564                if (intel_plane->pipe != crtc->pipe)
11565                        continue;
11566
11567                state = to_intel_plane_state(plane->state);
11568                fb = state->base.fb;
11569                if (!fb) {
11570                        DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d "
11571                                "disabled, scaler_id = %d\n",
11572                                plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11573                                plane->base.id, intel_plane->pipe,
11574                                (crtc->base.primary == plane) ? 0 : intel_plane->plane + 1,
11575                                drm_plane_index(plane), state->scaler_id);
11576                        continue;
11577                }
11578
11579                DRM_DEBUG_KMS("%s PLANE:%d plane: %u.%u idx: %d enabled",
11580                        plane->type == DRM_PLANE_TYPE_CURSOR ? "CURSOR" : "STANDARD",
11581                        plane->base.id, intel_plane->pipe,
11582                        crtc->base.primary == plane ? 0 : intel_plane->plane + 1,
11583                        drm_plane_index(plane));
11584                DRM_DEBUG_KMS("\tFB:%d, fb = %ux%u format = 0x%x",
11585                        fb->base.id, fb->width, fb->height, fb->pixel_format);
11586                DRM_DEBUG_KMS("\tscaler:%d src (%u, %u) %ux%u dst (%u, %u) %ux%u\n",
11587                        state->scaler_id,
11588                        state->src.x1 >> 16, state->src.y1 >> 16,
11589                        drm_rect_width(&state->src) >> 16,
11590                        drm_rect_height(&state->src) >> 16,
11591                        state->dst.x1, state->dst.y1,
11592                        drm_rect_width(&state->dst), drm_rect_height(&state->dst));
11593        }
11594}
11595
11596static bool encoders_cloneable(const struct intel_encoder *a,
11597                               const struct intel_encoder *b)
11598{
11599        /* masks could be asymmetric, so check both ways */
11600        return a == b || (a->cloneable & (1 << b->type) &&
11601                          b->cloneable & (1 << a->type));
11602}
11603
11604static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11605                                         struct intel_crtc *crtc,
11606                                         struct intel_encoder *encoder)
11607{
11608        struct intel_encoder *source_encoder;
11609        struct drm_connector *connector;
11610        struct drm_connector_state *connector_state;
11611        int i;
11612
11613        for_each_connector_in_state(state, connector, connector_state, i) {
11614                if (connector_state->crtc != &crtc->base)
11615                        continue;
11616
11617                source_encoder =
11618                        to_intel_encoder(connector_state->best_encoder);
11619                if (!encoders_cloneable(encoder, source_encoder))
11620                        return false;
11621        }
11622
11623        return true;
11624}
11625
11626static bool check_encoder_cloning(struct drm_atomic_state *state,
11627                                  struct intel_crtc *crtc)
11628{
11629        struct intel_encoder *encoder;
11630        struct drm_connector *connector;
11631        struct drm_connector_state *connector_state;
11632        int i;
11633
11634        for_each_connector_in_state(state, connector, connector_state, i) {
11635                if (connector_state->crtc != &crtc->base)
11636                        continue;
11637
11638                encoder = to_intel_encoder(connector_state->best_encoder);
11639                if (!check_single_encoder_cloning(state, crtc, encoder))
11640                        return false;
11641        }
11642
11643        return true;
11644}
11645
11646static bool check_digital_port_conflicts(struct drm_atomic_state *state)
11647{
11648        struct drm_device *dev = state->dev;
11649        struct intel_encoder *encoder;
11650        struct drm_connector *connector;
11651        struct drm_connector_state *connector_state;
11652        unsigned int used_ports = 0;
11653        int i;
11654
11655        /*
11656         * Walk the connector list instead of the encoder
11657         * list to detect the problem on ddi platforms
11658         * where there's just one encoder per digital port.
11659         */
11660        for_each_connector_in_state(state, connector, connector_state, i) {
11661                if (!connector_state->best_encoder)
11662                        continue;
11663
11664                encoder = to_intel_encoder(connector_state->best_encoder);
11665
11666                WARN_ON(!connector_state->crtc);
11667
11668                switch (encoder->type) {
11669                        unsigned int port_mask;
11670                case INTEL_OUTPUT_UNKNOWN:
11671                        if (WARN_ON(!HAS_DDI(dev)))
11672                                break;
11673                case INTEL_OUTPUT_DISPLAYPORT:
11674                case INTEL_OUTPUT_HDMI:
11675                case INTEL_OUTPUT_EDP:
11676                        port_mask = 1 << enc_to_dig_port(&encoder->base)->port;
11677
11678                        /* the same port mustn't appear more than once */
11679                        if (used_ports & port_mask)
11680                                return false;
11681
11682                        used_ports |= port_mask;
11683                default:
11684                        break;
11685                }
11686        }
11687
11688        return true;
11689}
11690
11691static void
11692clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
11693{
11694        struct drm_crtc_state tmp_state;
11695        struct intel_crtc_scaler_state scaler_state;
11696        struct intel_dpll_hw_state dpll_hw_state;
11697        enum intel_dpll_id shared_dpll;
11698        uint32_t ddi_pll_sel;
11699
11700        /* FIXME: before the switch to atomic started, a new pipe_config was
11701         * kzalloc'd. Code that depends on any field being zero should be
11702         * fixed, so that the crtc_state can be safely duplicated. For now,
11703         * only fields that are know to not cause problems are preserved. */
11704
11705        tmp_state = crtc_state->base;
11706        scaler_state = crtc_state->scaler_state;
11707        shared_dpll = crtc_state->shared_dpll;
11708        dpll_hw_state = crtc_state->dpll_hw_state;
11709        ddi_pll_sel = crtc_state->ddi_pll_sel;
11710
11711        memset(crtc_state, 0, sizeof *crtc_state);
11712
11713        crtc_state->base = tmp_state;
11714        crtc_state->scaler_state = scaler_state;
11715        crtc_state->shared_dpll = shared_dpll;
11716        crtc_state->dpll_hw_state = dpll_hw_state;
11717        crtc_state->ddi_pll_sel = ddi_pll_sel;
11718}
11719
11720static int
11721intel_modeset_pipe_config(struct drm_crtc *crtc,
11722                          struct drm_atomic_state *state,
11723                          struct intel_crtc_state *pipe_config)
11724{
11725        struct intel_encoder *encoder;
11726        struct drm_connector *connector;
11727        struct drm_connector_state *connector_state;
11728        int base_bpp, ret = -EINVAL;
11729        int i;
11730        bool retry = true;
11731
11732        if (!check_encoder_cloning(state, to_intel_crtc(crtc))) {
11733                DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
11734                return -EINVAL;
11735        }
11736
11737        if (!check_digital_port_conflicts(state)) {
11738                DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
11739                return -EINVAL;
11740        }
11741
11742        clear_intel_crtc_state(pipe_config);
11743
11744        pipe_config->cpu_transcoder =
11745                (enum transcoder) to_intel_crtc(crtc)->pipe;
11746
11747        /*
11748         * Sanitize sync polarity flags based on requested ones. If neither
11749         * positive or negative polarity is requested, treat this as meaning
11750         * negative polarity.
11751         */
11752        if (!(pipe_config->base.adjusted_mode.flags &
11753              (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
11754                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
11755
11756        if (!(pipe_config->base.adjusted_mode.flags &
11757              (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
11758                pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
11759
11760        /* Compute a starting value for pipe_config->pipe_bpp taking the source
11761         * plane pixel format and any sink constraints into account. Returns the
11762         * source plane bpp so that dithering can be selected on mismatches
11763         * after encoders and crtc also have had their say. */
11764        base_bpp = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
11765                                             pipe_config);
11766        if (base_bpp < 0)
11767                goto fail;
11768
11769        /*
11770         * Determine the real pipe dimensions. Note that stereo modes can
11771         * increase the actual pipe size due to the frame doubling and
11772         * insertion of additional space for blanks between the frame. This
11773         * is stored in the crtc timings. We use the requested mode to do this
11774         * computation to clearly distinguish it from the adjusted mode, which
11775         * can be changed by the connectors in the below retry loop.
11776         */
11777        drm_crtc_get_hv_timing(&pipe_config->base.mode,
11778                               &pipe_config->pipe_src_w,
11779                               &pipe_config->pipe_src_h);
11780
11781encoder_retry:
11782        /* Ensure the port clock defaults are reset when retrying. */
11783        pipe_config->port_clock = 0;
11784        pipe_config->pixel_multiplier = 1;
11785
11786        /* Fill in default crtc timings, allow encoders to overwrite them. */
11787        drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
11788                              CRTC_STEREO_DOUBLE);
11789
11790        /* Pass our mode to the connectors and the CRTC to give them a chance to
11791         * adjust it according to limitations or connector properties, and also
11792         * a chance to reject the mode entirely.
11793         */
11794        for_each_connector_in_state(state, connector, connector_state, i) {
11795                if (connector_state->crtc != crtc)
11796                        continue;
11797
11798                encoder = to_intel_encoder(connector_state->best_encoder);
11799
11800                if (!(encoder->compute_config(encoder, pipe_config))) {
11801                        DRM_DEBUG_KMS("Encoder config failure\n");
11802                        goto fail;
11803                }
11804        }
11805
11806        /* Set default port clock if not overwritten by the encoder. Needs to be
11807         * done afterwards in case the encoder adjusts the mode. */
11808        if (!pipe_config->port_clock)
11809                pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
11810                        * pipe_config->pixel_multiplier;
11811
11812        ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
11813        if (ret < 0) {
11814                DRM_DEBUG_KMS("CRTC fixup failed\n");
11815                goto fail;
11816        }
11817
11818        if (ret == RETRY) {
11819                if (WARN(!retry, "loop in pipe configuration computation\n")) {
11820                        ret = -EINVAL;
11821                        goto fail;
11822                }
11823
11824                DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
11825                retry = false;
11826                goto encoder_retry;
11827        }
11828
11829        /* Dithering seems to not pass-through bits correctly when it should, so
11830         * only enable it on 6bpc panels. */
11831        pipe_config->dither = pipe_config->pipe_bpp == 6*3;
11832        DRM_DEBUG_KMS("plane bpp: %i, pipe bpp: %i, dithering: %i\n",
11833                      base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
11834
11835        return 0;
11836fail:
11837        return ret;
11838}
11839
11840static bool intel_crtc_in_use(struct drm_crtc *crtc)
11841{
11842        struct drm_encoder *encoder;
11843        struct drm_device *dev = crtc->dev;
11844
11845        list_for_each_entry(encoder, &dev->mode_config.encoder_list, head)
11846                if (encoder->crtc == crtc)
11847                        return true;
11848
11849        return false;
11850}
11851
11852static bool
11853needs_modeset(struct drm_crtc_state *state)
11854{
11855        return state->mode_changed || state->active_changed;
11856}
11857
11858static void
11859intel_modeset_update_state(struct drm_atomic_state *state)
11860{
11861        struct drm_device *dev = state->dev;
11862        struct drm_i915_private *dev_priv = dev->dev_private;
11863        struct intel_encoder *intel_encoder;
11864        struct drm_crtc *crtc;
11865        struct drm_crtc_state *crtc_state;
11866        struct drm_connector *connector;
11867        int i;
11868
11869        intel_shared_dpll_commit(dev_priv);
11870
11871        for_each_intel_encoder(dev, intel_encoder) {
11872                if (!intel_encoder->base.crtc)
11873                        continue;
11874
11875                for_each_crtc_in_state(state, crtc, crtc_state, i) {
11876                        if (crtc != intel_encoder->base.crtc)
11877                                continue;
11878
11879                        if (crtc_state->enable && needs_modeset(crtc_state))
11880                                intel_encoder->connectors_active = false;
11881
11882                        break;
11883                }
11884        }
11885
11886        drm_atomic_helper_swap_state(state->dev, state);
11887        intel_modeset_fixup_state(state);
11888
11889        /* Double check state. */
11890        for_each_crtc(dev, crtc) {
11891                WARN_ON(crtc->state->enable != intel_crtc_in_use(crtc));
11892        }
11893
11894        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
11895                if (!connector->encoder || !connector->encoder->crtc)
11896                        continue;
11897
11898                for_each_crtc_in_state(state, crtc, crtc_state, i) {
11899                        if (crtc != connector->encoder->crtc)
11900                                continue;
11901
11902                        if (crtc->state->enable && needs_modeset(crtc->state)) {
11903                                struct drm_property *dpms_property =
11904                                        dev->mode_config.dpms_property;
11905
11906                                connector->dpms = DRM_MODE_DPMS_ON;
11907                                drm_object_property_set_value(&connector->base,
11908                                                                 dpms_property,
11909                                                                 DRM_MODE_DPMS_ON);
11910
11911                                intel_encoder = to_intel_encoder(connector->encoder);
11912                                intel_encoder->connectors_active = true;
11913                        }
11914
11915                        break;
11916                }
11917        }
11918
11919}
11920
11921static bool intel_fuzzy_clock_check(int clock1, int clock2)
11922{
11923        int diff;
11924
11925        if (clock1 == clock2)
11926                return true;
11927
11928        if (!clock1 || !clock2)
11929                return false;
11930
11931        diff = abs(clock1 - clock2);
11932
11933        if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
11934                return true;
11935
11936        return false;
11937}
11938
11939#define for_each_intel_crtc_masked(dev, mask, intel_crtc) \
11940        list_for_each_entry((intel_crtc), \
11941                            &(dev)->mode_config.crtc_list, \
11942                            base.head) \
11943                if (mask & (1 <<(intel_crtc)->pipe))
11944
11945static bool
11946intel_pipe_config_compare(struct drm_device *dev,
11947                          struct intel_crtc_state *current_config,
11948                          struct intel_crtc_state *pipe_config)
11949{
11950#define PIPE_CONF_CHECK_X(name) \
11951        if (current_config->name != pipe_config->name) { \
11952                DRM_ERROR("mismatch in " #name " " \
11953                          "(expected 0x%08x, found 0x%08x)\n", \
11954                          current_config->name, \
11955                          pipe_config->name); \
11956                return false; \
11957        }
11958
11959#define PIPE_CONF_CHECK_I(name) \
11960        if (current_config->name != pipe_config->name) { \
11961                DRM_ERROR("mismatch in " #name " " \
11962                          "(expected %i, found %i)\n", \
11963                          current_config->name, \
11964                          pipe_config->name); \
11965                return false; \
11966        }
11967
11968/* This is required for BDW+ where there is only one set of registers for
11969 * switching between high and low RR.
11970 * This macro can be used whenever a comparison has to be made between one
11971 * hw state and multiple sw state variables.
11972 */
11973#define PIPE_CONF_CHECK_I_ALT(name, alt_name) \
11974        if ((current_config->name != pipe_config->name) && \
11975                (current_config->alt_name != pipe_config->name)) { \
11976                        DRM_ERROR("mismatch in " #name " " \
11977                                  "(expected %i or %i, found %i)\n", \
11978                                  current_config->name, \
11979                                  current_config->alt_name, \
11980                                  pipe_config->name); \
11981                        return false; \
11982        }
11983
11984#define PIPE_CONF_CHECK_FLAGS(name, mask)       \
11985        if ((current_config->name ^ pipe_config->name) & (mask)) { \
11986                DRM_ERROR("mismatch in " #name "(" #mask ") "      \
11987                          "(expected %i, found %i)\n", \
11988                          current_config->name & (mask), \
11989                          pipe_config->name & (mask)); \
11990                return false; \
11991        }
11992
11993#define PIPE_CONF_CHECK_CLOCK_FUZZY(name) \
11994        if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
11995                DRM_ERROR("mismatch in " #name " " \
11996                          "(expected %i, found %i)\n", \
11997                          current_config->name, \
11998                          pipe_config->name); \
11999                return false; \
12000        }
12001
12002#define PIPE_CONF_QUIRK(quirk)  \
12003        ((current_config->quirks | pipe_config->quirks) & (quirk))
12004
12005        PIPE_CONF_CHECK_I(cpu_transcoder);
12006
12007        PIPE_CONF_CHECK_I(has_pch_encoder);
12008        PIPE_CONF_CHECK_I(fdi_lanes);
12009        PIPE_CONF_CHECK_I(fdi_m_n.gmch_m);
12010        PIPE_CONF_CHECK_I(fdi_m_n.gmch_n);
12011        PIPE_CONF_CHECK_I(fdi_m_n.link_m);
12012        PIPE_CONF_CHECK_I(fdi_m_n.link_n);
12013        PIPE_CONF_CHECK_I(fdi_m_n.tu);
12014
12015        PIPE_CONF_CHECK_I(has_dp_encoder);
12016
12017        if (INTEL_INFO(dev)->gen < 8) {
12018                PIPE_CONF_CHECK_I(dp_m_n.gmch_m);
12019                PIPE_CONF_CHECK_I(dp_m_n.gmch_n);
12020                PIPE_CONF_CHECK_I(dp_m_n.link_m);
12021                PIPE_CONF_CHECK_I(dp_m_n.link_n);
12022                PIPE_CONF_CHECK_I(dp_m_n.tu);
12023
12024                if (current_config->has_drrs) {
12025                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_m);
12026                        PIPE_CONF_CHECK_I(dp_m2_n2.gmch_n);
12027                        PIPE_CONF_CHECK_I(dp_m2_n2.link_m);
12028                        PIPE_CONF_CHECK_I(dp_m2_n2.link_n);
12029                        PIPE_CONF_CHECK_I(dp_m2_n2.tu);
12030                }
12031        } else {
12032                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_m, dp_m2_n2.gmch_m);
12033                PIPE_CONF_CHECK_I_ALT(dp_m_n.gmch_n, dp_m2_n2.gmch_n);
12034                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_m, dp_m2_n2.link_m);
12035                PIPE_CONF_CHECK_I_ALT(dp_m_n.link_n, dp_m2_n2.link_n);
12036                PIPE_CONF_CHECK_I_ALT(dp_m_n.tu, dp_m2_n2.tu);
12037        }
12038
12039        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
12040        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
12041        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
12042        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
12043        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
12044        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
12045
12046        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
12047        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
12048        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
12049        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
12050        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
12051        PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
12052
12053        PIPE_CONF_CHECK_I(pixel_multiplier);
12054        PIPE_CONF_CHECK_I(has_hdmi_sink);
12055        if ((INTEL_INFO(dev)->gen < 8 && !IS_HASWELL(dev)) ||
12056            IS_VALLEYVIEW(dev))
12057                PIPE_CONF_CHECK_I(limited_color_range);
12058        PIPE_CONF_CHECK_I(has_infoframe);
12059
12060        PIPE_CONF_CHECK_I(has_audio);
12061
12062        PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12063                              DRM_MODE_FLAG_INTERLACE);
12064
12065        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
12066                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12067                                      DRM_MODE_FLAG_PHSYNC);
12068                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12069                                      DRM_MODE_FLAG_NHSYNC);
12070                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12071                                      DRM_MODE_FLAG_PVSYNC);
12072                PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
12073                                      DRM_MODE_FLAG_NVSYNC);
12074        }
12075
12076        PIPE_CONF_CHECK_I(pipe_src_w);
12077        PIPE_CONF_CHECK_I(pipe_src_h);
12078
12079        /*
12080         * FIXME: BIOS likes to set up a cloned config with lvds+external
12081         * screen. Since we don't yet re-compute the pipe config when moving
12082         * just the lvds port away to another pipe the sw tracking won't match.
12083         *
12084         * Proper atomic modesets with recomputed global state will fix this.
12085         * Until then just don't check gmch state for inherited modes.
12086         */
12087        if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_INHERITED_MODE)) {
12088                PIPE_CONF_CHECK_I(gmch_pfit.control);
12089                /* pfit ratios are autocomputed by the hw on gen4+ */
12090                if (INTEL_INFO(dev)->gen < 4)
12091                        PIPE_CONF_CHECK_I(gmch_pfit.pgm_ratios);
12092                PIPE_CONF_CHECK_I(gmch_pfit.lvds_border_bits);
12093        }
12094
12095        PIPE_CONF_CHECK_I(pch_pfit.enabled);
12096        if (current_config->pch_pfit.enabled) {
12097                PIPE_CONF_CHECK_I(pch_pfit.pos);
12098                PIPE_CONF_CHECK_I(pch_pfit.size);
12099        }
12100
12101        PIPE_CONF_CHECK_I(scaler_state.scaler_id);
12102
12103        /* BDW+ don't expose a synchronous way to read the state */
12104        if (IS_HASWELL(dev))
12105                PIPE_CONF_CHECK_I(ips_enabled);
12106
12107        PIPE_CONF_CHECK_I(double_wide);
12108
12109        PIPE_CONF_CHECK_X(ddi_pll_sel);
12110
12111        PIPE_CONF_CHECK_I(shared_dpll);
12112        PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
12113        PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
12114        PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
12115        PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
12116        PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
12117        PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
12118        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
12119        PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
12120
12121        if (IS_G4X(dev) || INTEL_INFO(dev)->gen >= 5)
12122                PIPE_CONF_CHECK_I(pipe_bpp);
12123
12124        PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
12125        PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
12126
12127#undef PIPE_CONF_CHECK_X
12128#undef PIPE_CONF_CHECK_I
12129#undef PIPE_CONF_CHECK_I_ALT
12130#undef PIPE_CONF_CHECK_FLAGS
12131#undef PIPE_CONF_CHECK_CLOCK_FUZZY
12132#undef PIPE_CONF_QUIRK
12133
12134        return true;
12135}
12136
12137static void check_wm_state(struct drm_device *dev)
12138{
12139        struct drm_i915_private *dev_priv = dev->dev_private;
12140        struct skl_ddb_allocation hw_ddb, *sw_ddb;
12141        struct intel_crtc *intel_crtc;
12142        int plane;
12143
12144        if (INTEL_INFO(dev)->gen < 9)
12145                return;
12146
12147        skl_ddb_get_hw_state(dev_priv, &hw_ddb);
12148        sw_ddb = &dev_priv->wm.skl_hw.ddb;
12149
12150        for_each_intel_crtc(dev, intel_crtc) {
12151                struct skl_ddb_entry *hw_entry, *sw_entry;
12152                const enum pipe pipe = intel_crtc->pipe;
12153
12154                if (!intel_crtc->active)
12155                        continue;
12156
12157                /* planes */
12158                for_each_plane(dev_priv, pipe, plane) {
12159                        hw_entry = &hw_ddb.plane[pipe][plane];
12160                        sw_entry = &sw_ddb->plane[pipe][plane];
12161
12162                        if (skl_ddb_entry_equal(hw_entry, sw_entry))
12163                                continue;
12164
12165                        DRM_ERROR("mismatch in DDB state pipe %c plane %d "
12166                                  "(expected (%u,%u), found (%u,%u))\n",
12167                                  pipe_name(pipe), plane + 1,
12168                                  sw_entry->start, sw_entry->end,
12169                                  hw_entry->start, hw_entry->end);
12170                }
12171
12172                /* cursor */
12173                hw_entry = &hw_ddb.cursor[pipe];
12174                sw_entry = &sw_ddb->cursor[pipe];
12175
12176                if (skl_ddb_entry_equal(hw_entry, sw_entry))
12177                        continue;
12178
12179                DRM_ERROR("mismatch in DDB state pipe %c cursor "
12180                          "(expected (%u,%u), found (%u,%u))\n",
12181                          pipe_name(pipe),
12182                          sw_entry->start, sw_entry->end,
12183                          hw_entry->start, hw_entry->end);
12184        }
12185}
12186
12187static void
12188check_connector_state(struct drm_device *dev)
12189{
12190        struct intel_connector *connector;
12191
12192        for_each_intel_connector(dev, connector) {
12193                /* This also checks the encoder/connector hw state with the
12194                 * ->get_hw_state callbacks. */
12195                intel_connector_check_state(connector);
12196
12197                I915_STATE_WARN(&connector->new_encoder->base != connector->base.encoder,
12198                     "connector's staged encoder doesn't match current encoder\n");
12199        }
12200}
12201
12202static void
12203check_encoder_state(struct drm_device *dev)
12204{
12205        struct intel_encoder *encoder;
12206        struct intel_connector *connector;
12207
12208        for_each_intel_encoder(dev, encoder) {
12209                bool enabled = false;
12210                bool active = false;
12211                enum pipe pipe, tracked_pipe;
12212
12213                DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
12214                              encoder->base.base.id,
12215                              encoder->base.name);
12216
12217                I915_STATE_WARN(&encoder->new_crtc->base != encoder->base.crtc,
12218                     "encoder's stage crtc doesn't match current crtc\n");
12219                I915_STATE_WARN(encoder->connectors_active && !encoder->base.crtc,
12220                     "encoder's active_connectors set, but no crtc\n");
12221
12222                for_each_intel_connector(dev, connector) {
12223                        if (connector->base.encoder != &encoder->base)
12224                                continue;
12225                        enabled = true;
12226                        if (connector->base.dpms != DRM_MODE_DPMS_OFF)
12227                                active = true;
12228                }
12229                /*
12230                 * for MST connectors if we unplug the connector is gone
12231                 * away but the encoder is still connected to a crtc
12232                 * until a modeset happens in response to the hotplug.
12233                 */
12234                if (!enabled && encoder->base.encoder_type == DRM_MODE_ENCODER_DPMST)
12235                        continue;
12236
12237                I915_STATE_WARN(!!encoder->base.crtc != enabled,
12238                     "encoder's enabled state mismatch "
12239                     "(expected %i, found %i)\n",
12240                     !!encoder->base.crtc, enabled);
12241                I915_STATE_WARN(active && !encoder->base.crtc,
12242                     "active encoder with no crtc\n");
12243
12244                I915_STATE_WARN(encoder->connectors_active != active,
12245                     "encoder's computed active state doesn't match tracked active state "
12246                     "(expected %i, found %i)\n", active, encoder->connectors_active);
12247
12248                active = encoder->get_hw_state(encoder, &pipe);
12249                I915_STATE_WARN(active != encoder->connectors_active,
12250                     "encoder's hw state doesn't match sw tracking "
12251                     "(expected %i, found %i)\n",
12252                     encoder->connectors_active, active);
12253
12254                if (!encoder->base.crtc)
12255                        continue;
12256
12257                tracked_pipe = to_intel_crtc(encoder->base.crtc)->pipe;
12258                I915_STATE_WARN(active && pipe != tracked_pipe,
12259                     "active encoder's pipe doesn't match"
12260                     "(expected %i, found %i)\n",
12261                     tracked_pipe, pipe);
12262
12263        }
12264}
12265
12266static void
12267check_crtc_state(struct drm_device *dev)
12268{
12269        struct drm_i915_private *dev_priv = dev->dev_private;
12270        struct intel_crtc *crtc;
12271        struct intel_encoder *encoder;
12272        struct intel_crtc_state pipe_config;
12273
12274        for_each_intel_crtc(dev, crtc) {
12275                bool enabled = false;
12276                bool active = false;
12277
12278                memset(&pipe_config, 0, sizeof(pipe_config));
12279
12280                DRM_DEBUG_KMS("[CRTC:%d]\n",
12281                              crtc->base.base.id);
12282
12283                I915_STATE_WARN(crtc->active && !crtc->base.state->enable,
12284                     "active crtc, but not enabled in sw tracking\n");
12285
12286                for_each_intel_encoder(dev, encoder) {
12287                        if (encoder->base.crtc != &crtc->base)
12288                                continue;
12289                        enabled = true;
12290                        if (encoder->connectors_active)
12291                                active = true;
12292                }
12293
12294                I915_STATE_WARN(active != crtc->active,
12295                     "crtc's computed active state doesn't match tracked active state "
12296                     "(expected %i, found %i)\n", active, crtc->active);
12297                I915_STATE_WARN(enabled != crtc->base.state->enable,
12298                     "crtc's computed enabled state doesn't match tracked enabled state "
12299                     "(expected %i, found %i)\n", enabled,
12300                                crtc->base.state->enable);
12301
12302                active = dev_priv->display.get_pipe_config(crtc,
12303                                                           &pipe_config);
12304
12305                /* hw state is inconsistent with the pipe quirk */
12306                if ((crtc->pipe == PIPE_A && dev_priv->quirks & QUIRK_PIPEA_FORCE) ||
12307                    (crtc->pipe == PIPE_B && dev_priv->quirks & QUIRK_PIPEB_FORCE))
12308                        active = crtc->active;
12309
12310                for_each_intel_encoder(dev, encoder) {
12311                        enum pipe pipe;
12312                        if (encoder->base.crtc != &crtc->base)
12313                                continue;
12314                        if (encoder->get_hw_state(encoder, &pipe))
12315                                encoder->get_config(encoder, &pipe_config);
12316                }
12317
12318                I915_STATE_WARN(crtc->active != active,
12319                     "crtc active state doesn't match with hw state "
12320                     "(expected %i, found %i)\n", crtc->active, active);
12321
12322                if (active &&
12323                    !intel_pipe_config_compare(dev, crtc->config, &pipe_config)) {
12324                        I915_STATE_WARN(1, "pipe state doesn't match!\n");
12325                        intel_dump_pipe_config(crtc, &pipe_config,
12326                                               "[hw state]");
12327                        intel_dump_pipe_config(crtc, crtc->config,
12328                                               "[sw state]");
12329                }
12330        }
12331}
12332
12333static void
12334check_shared_dpll_state(struct drm_device *dev)
12335{
12336        struct drm_i915_private *dev_priv = dev->dev_private;
12337        struct intel_crtc *crtc;
12338        struct intel_dpll_hw_state dpll_hw_state;
12339        int i;
12340
12341        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
12342                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
12343                int enabled_crtcs = 0, active_crtcs = 0;
12344                bool active;
12345
12346                memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
12347
12348                DRM_DEBUG_KMS("%s\n", pll->name);
12349
12350                active = pll->get_hw_state(dev_priv, pll, &dpll_hw_state);
12351
12352                I915_STATE_WARN(pll->active > hweight32(pll->config.crtc_mask),
12353                     "more active pll users than references: %i vs %i\n",
12354                     pll->active, hweight32(pll->config.crtc_mask));
12355                I915_STATE_WARN(pll->active && !pll->on,
12356                     "pll in active use but not on in sw tracking\n");
12357                I915_STATE_WARN(pll->on && !pll->active,
12358                     "pll in on but not on in use in sw tracking\n");
12359                I915_STATE_WARN(pll->on != active,
12360                     "pll on state mismatch (expected %i, found %i)\n",
12361                     pll->on, active);
12362
12363                for_each_intel_crtc(dev, crtc) {
12364                        if (crtc->base.state->enable && intel_crtc_to_shared_dpll(crtc) == pll)
12365                                enabled_crtcs++;
12366                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll)
12367                                active_crtcs++;
12368                }
12369                I915_STATE_WARN(pll->active != active_crtcs,
12370                     "pll active crtcs mismatch (expected %i, found %i)\n",
12371                     pll->active, active_crtcs);
12372                I915_STATE_WARN(hweight32(pll->config.crtc_mask) != enabled_crtcs,
12373                     "pll enabled crtcs mismatch (expected %i, found %i)\n",
12374                     hweight32(pll->config.crtc_mask), enabled_crtcs);
12375
12376                I915_STATE_WARN(pll->on && memcmp(&pll->config.hw_state, &dpll_hw_state,
12377                                       sizeof(dpll_hw_state)),
12378                     "pll hw state mismatch\n");
12379        }
12380}
12381
12382void
12383intel_modeset_check_state(struct drm_device *dev)
12384{
12385        check_wm_state(dev);
12386        check_connector_state(dev);
12387        check_encoder_state(dev);
12388        check_crtc_state(dev);
12389        check_shared_dpll_state(dev);
12390}
12391
12392void ironlake_check_encoder_dotclock(const struct intel_crtc_state *pipe_config,
12393                                     int dotclock)
12394{
12395        /*
12396         * FDI already provided one idea for the dotclock.
12397         * Yell if the encoder disagrees.
12398         */
12399        WARN(!intel_fuzzy_clock_check(pipe_config->base.adjusted_mode.crtc_clock, dotclock),
12400             "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
12401             pipe_config->base.adjusted_mode.crtc_clock, dotclock);
12402}
12403
12404static void update_scanline_offset(struct intel_crtc *crtc)
12405{
12406        struct drm_device *dev = crtc->base.dev;
12407
12408        /*
12409         * The scanline counter increments at the leading edge of hsync.
12410         *
12411         * On most platforms it starts counting from vtotal-1 on the
12412         * first active line. That means the scanline counter value is
12413         * always one less than what we would expect. Ie. just after
12414         * start of vblank, which also occurs at start of hsync (on the
12415         * last active line), the scanline counter will read vblank_start-1.
12416         *
12417         * On gen2 the scanline counter starts counting from 1 instead
12418         * of vtotal-1, so we have to subtract one (or rather add vtotal-1
12419         * to keep the value positive), instead of adding one.
12420         *
12421         * On HSW+ the behaviour of the scanline counter depends on the output
12422         * type. For DP ports it behaves like most other platforms, but on HDMI
12423         * there's an extra 1 line difference. So we need to add two instead of
12424         * one to the value.
12425         */
12426        if (IS_GEN2(dev)) {
12427                const struct drm_display_mode *mode = &crtc->config->base.adjusted_mode;
12428                int vtotal;
12429
12430                vtotal = mode->crtc_vtotal;
12431                if (mode->flags & DRM_MODE_FLAG_INTERLACE)
12432                        vtotal /= 2;
12433
12434                crtc->scanline_offset = vtotal - 1;
12435        } else if (HAS_DDI(dev) &&
12436                   intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI)) {
12437                crtc->scanline_offset = 2;
12438        } else
12439                crtc->scanline_offset = 1;
12440}
12441
12442static struct intel_crtc_state *
12443intel_modeset_compute_config(struct drm_crtc *crtc,
12444                             struct drm_atomic_state *state)
12445{
12446        struct intel_crtc_state *pipe_config;
12447        int ret = 0;
12448
12449        ret = drm_atomic_add_affected_connectors(state, crtc);
12450        if (ret)
12451                return ERR_PTR(ret);
12452
12453        ret = drm_atomic_helper_check_modeset(state->dev, state);
12454        if (ret)
12455                return ERR_PTR(ret);
12456
12457        /*
12458         * Note this needs changes when we start tracking multiple modes
12459         * and crtcs.  At that point we'll need to compute the whole config
12460         * (i.e. one pipe_config for each crtc) rather than just the one
12461         * for this crtc.
12462         */
12463        pipe_config = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12464        if (IS_ERR(pipe_config))
12465                return pipe_config;
12466
12467        if (!pipe_config->base.enable)
12468                return pipe_config;
12469
12470        ret = intel_modeset_pipe_config(crtc, state, pipe_config);
12471        if (ret)
12472                return ERR_PTR(ret);
12473
12474        /* Check things that can only be changed through modeset */
12475        if (pipe_config->has_audio !=
12476            to_intel_crtc(crtc)->config->has_audio)
12477                pipe_config->base.mode_changed = true;
12478
12479        /*
12480         * Note we have an issue here with infoframes: current code
12481         * only updates them on the full mode set path per hw
12482         * requirements.  So here we should be checking for any
12483         * required changes and forcing a mode set.
12484         */
12485
12486        intel_dump_pipe_config(to_intel_crtc(crtc), pipe_config,"[modeset]");
12487
12488        ret = drm_atomic_helper_check_planes(state->dev, state);
12489        if (ret)
12490                return ERR_PTR(ret);
12491
12492        return pipe_config;
12493}
12494
12495static int __intel_set_mode_setup_plls(struct drm_atomic_state *state)
12496{
12497        struct drm_device *dev = state->dev;
12498        struct drm_i915_private *dev_priv = to_i915(dev);
12499        unsigned clear_pipes = 0;
12500        struct intel_crtc *intel_crtc;
12501        struct intel_crtc_state *intel_crtc_state;
12502        struct drm_crtc *crtc;
12503        struct drm_crtc_state *crtc_state;
12504        int ret = 0;
12505        int i;
12506
12507        if (!dev_priv->display.crtc_compute_clock)
12508                return 0;
12509
12510        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12511                intel_crtc = to_intel_crtc(crtc);
12512                intel_crtc_state = to_intel_crtc_state(crtc_state);
12513
12514                if (needs_modeset(crtc_state)) {
12515                        clear_pipes |= 1 << intel_crtc->pipe;
12516                        intel_crtc_state->shared_dpll = DPLL_ID_PRIVATE;
12517                }
12518        }
12519
12520        ret = intel_shared_dpll_start_config(dev_priv, clear_pipes);
12521        if (ret)
12522                goto done;
12523
12524        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12525                if (!needs_modeset(crtc_state) || !crtc_state->enable)
12526                        continue;
12527
12528                intel_crtc = to_intel_crtc(crtc);
12529                intel_crtc_state = to_intel_crtc_state(crtc_state);
12530
12531                ret = dev_priv->display.crtc_compute_clock(intel_crtc,
12532                                                           intel_crtc_state);
12533                if (ret) {
12534                        intel_shared_dpll_abort_config(dev_priv);
12535                        goto done;
12536                }
12537        }
12538
12539done:
12540        return ret;
12541}
12542
12543/* Code that should eventually be part of atomic_check() */
12544static int __intel_set_mode_checks(struct drm_atomic_state *state)
12545{
12546        struct drm_device *dev = state->dev;
12547        int ret;
12548
12549        /*
12550         * See if the config requires any additional preparation, e.g.
12551         * to adjust global state with pipes off.  We need to do this
12552         * here so we can get the modeset_pipe updated config for the new
12553         * mode set on this crtc.  For other crtcs we need to use the
12554         * adjusted_mode bits in the crtc directly.
12555         */
12556        if (IS_VALLEYVIEW(dev) || IS_BROXTON(dev)) {
12557                ret = valleyview_modeset_global_pipes(state);
12558                if (ret)
12559                        return ret;
12560        }
12561
12562        ret = __intel_set_mode_setup_plls(state);
12563        if (ret)
12564                return ret;
12565
12566        return 0;
12567}
12568
12569static int __intel_set_mode(struct drm_crtc *modeset_crtc,
12570                            struct intel_crtc_state *pipe_config)
12571{
12572        struct drm_device *dev = modeset_crtc->dev;
12573        struct drm_i915_private *dev_priv = dev->dev_private;
12574        struct drm_atomic_state *state = pipe_config->base.state;
12575        struct drm_crtc *crtc;
12576        struct drm_crtc_state *crtc_state;
12577        int ret = 0;
12578        int i;
12579
12580        ret = __intel_set_mode_checks(state);
12581        if (ret < 0)
12582                return ret;
12583
12584        ret = drm_atomic_helper_prepare_planes(dev, state);
12585        if (ret)
12586                return ret;
12587
12588        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12589                if (!needs_modeset(crtc_state))
12590                        continue;
12591
12592                if (!crtc_state->enable) {
12593                        if (crtc->state->enable)
12594                                intel_crtc_disable(crtc);
12595                } else if (crtc->state->enable) {
12596                        intel_crtc_disable_planes(crtc);
12597                        dev_priv->display.crtc_disable(crtc);
12598                }
12599        }
12600
12601        /* crtc->mode is already used by the ->mode_set callbacks, hence we need
12602         * to set it here already despite that we pass it down the callchain.
12603         *
12604         * Note we'll need to fix this up when we start tracking multiple
12605         * pipes; here we assume a single modeset_pipe and only track the
12606         * single crtc and mode.
12607         */
12608        if (pipe_config->base.enable && needs_modeset(&pipe_config->base)) {
12609                modeset_crtc->mode = pipe_config->base.mode;
12610
12611                /*
12612                 * Calculate and store various constants which
12613                 * are later needed by vblank and swap-completion
12614                 * timestamping. They are derived from true hwmode.
12615                 */
12616                drm_calc_timestamping_constants(modeset_crtc,
12617                                                &pipe_config->base.adjusted_mode);
12618        }
12619
12620        /* Only after disabling all output pipelines that will be changed can we
12621         * update the the output configuration. */
12622        intel_modeset_update_state(state);
12623
12624        /* The state has been swaped above, so state actually contains the
12625         * old state now. */
12626
12627        modeset_update_crtc_power_domains(state);
12628
12629        /* Now enable the clocks, plane, pipe, and connectors that we set up. */
12630        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12631                if (!needs_modeset(crtc->state) || !crtc->state->enable) {
12632                        drm_atomic_helper_commit_planes_on_crtc(crtc_state);
12633                        continue;
12634                }
12635
12636                update_scanline_offset(to_intel_crtc(crtc));
12637
12638                dev_priv->display.crtc_enable(crtc);
12639                drm_atomic_helper_commit_planes_on_crtc(crtc_state);
12640        }
12641
12642        /* FIXME: add subpixel order */
12643
12644        drm_atomic_helper_cleanup_planes(dev, state);
12645
12646        drm_atomic_state_free(state);
12647
12648        return 0;
12649}
12650
12651static int intel_set_mode_with_config(struct drm_crtc *crtc,
12652                                      struct intel_crtc_state *pipe_config,
12653                                      bool force_restore)
12654{
12655        int ret;
12656
12657        ret = __intel_set_mode(crtc, pipe_config);
12658
12659        if (ret == 0 && force_restore) {
12660                intel_modeset_update_staged_output_state(crtc->dev);
12661                intel_modeset_check_state(crtc->dev);
12662        }
12663
12664        return ret;
12665}
12666
12667static int intel_set_mode(struct drm_crtc *crtc,
12668                          struct drm_atomic_state *state,
12669                          bool force_restore)
12670{
12671        struct intel_crtc_state *pipe_config;
12672        int ret = 0;
12673
12674        pipe_config = intel_modeset_compute_config(crtc, state);
12675        if (IS_ERR(pipe_config)) {
12676                ret = PTR_ERR(pipe_config);
12677                goto out;
12678        }
12679
12680        ret = intel_set_mode_with_config(crtc, pipe_config, force_restore);
12681        if (ret)
12682                goto out;
12683
12684out:
12685        return ret;
12686}
12687
12688void intel_crtc_restore_mode(struct drm_crtc *crtc)
12689{
12690        struct drm_device *dev = crtc->dev;
12691        struct drm_atomic_state *state;
12692        struct intel_encoder *encoder;
12693        struct intel_connector *connector;
12694        struct drm_connector_state *connector_state;
12695        struct intel_crtc_state *crtc_state;
12696        int ret;
12697
12698        state = drm_atomic_state_alloc(dev);
12699        if (!state) {
12700                DRM_DEBUG_KMS("[CRTC:%d] mode restore failed, out of memory",
12701                              crtc->base.id);
12702                return;
12703        }
12704
12705        state->acquire_ctx = dev->mode_config.acquire_ctx;
12706
12707        /* The force restore path in the HW readout code relies on the staged
12708         * config still keeping the user requested config while the actual
12709         * state has been overwritten by the configuration read from HW. We
12710         * need to copy the staged config to the atomic state, otherwise the
12711         * mode set will just reapply the state the HW is already in. */
12712        for_each_intel_encoder(dev, encoder) {
12713                if (&encoder->new_crtc->base != crtc)
12714                        continue;
12715
12716                for_each_intel_connector(dev, connector) {
12717                        if (connector->new_encoder != encoder)
12718                                continue;
12719
12720                        connector_state = drm_atomic_get_connector_state(state, &connector->base);
12721                        if (IS_ERR(connector_state)) {
12722                                DRM_DEBUG_KMS("Failed to add [CONNECTOR:%d:%s] to state: %ld\n",
12723                                              connector->base.base.id,
12724                                              connector->base.name,
12725                                              PTR_ERR(connector_state));
12726                                continue;
12727                        }
12728
12729                        connector_state->crtc = crtc;
12730                        connector_state->best_encoder = &encoder->base;
12731                }
12732        }
12733
12734        crtc_state = intel_atomic_get_crtc_state(state, to_intel_crtc(crtc));
12735        if (IS_ERR(crtc_state)) {
12736                DRM_DEBUG_KMS("Failed to add [CRTC:%d] to state: %ld\n",
12737                              crtc->base.id, PTR_ERR(crtc_state));
12738                drm_atomic_state_free(state);
12739                return;
12740        }
12741
12742        crtc_state->base.active = crtc_state->base.enable =
12743                to_intel_crtc(crtc)->new_enabled;
12744
12745        drm_mode_copy(&crtc_state->base.mode, &crtc->mode);
12746
12747        intel_modeset_setup_plane_state(state, crtc, &crtc->mode,
12748                                        crtc->primary->fb, crtc->x, crtc->y);
12749
12750        ret = intel_set_mode(crtc, state, false);
12751        if (ret)
12752                drm_atomic_state_free(state);
12753}
12754
12755#undef for_each_intel_crtc_masked
12756
12757static bool intel_connector_in_mode_set(struct intel_connector *connector,
12758                                        struct drm_mode_set *set)
12759{
12760        int ro;
12761
12762        for (ro = 0; ro < set->num_connectors; ro++)
12763                if (set->connectors[ro] == &connector->base)
12764                        return true;
12765
12766        return false;
12767}
12768
12769static int
12770intel_modeset_stage_output_state(struct drm_device *dev,
12771                                 struct drm_mode_set *set,
12772                                 struct drm_atomic_state *state)
12773{
12774        struct intel_connector *connector;
12775        struct drm_connector *drm_connector;
12776        struct drm_connector_state *connector_state;
12777        struct drm_crtc *crtc;
12778        struct drm_crtc_state *crtc_state;
12779        int i, ret;
12780
12781        /* The upper layers ensure that we either disable a crtc or have a list
12782         * of connectors. For paranoia, double-check this. */
12783        WARN_ON(!set->fb && (set->num_connectors != 0));
12784        WARN_ON(set->fb && (set->num_connectors == 0));
12785
12786        for_each_intel_connector(dev, connector) {
12787                bool in_mode_set = intel_connector_in_mode_set(connector, set);
12788
12789                if (!in_mode_set && connector->base.state->crtc != set->crtc)
12790                        continue;
12791
12792                connector_state =
12793                        drm_atomic_get_connector_state(state, &connector->base);
12794                if (IS_ERR(connector_state))
12795                        return PTR_ERR(connector_state);
12796
12797                if (in_mode_set) {
12798                        int pipe = to_intel_crtc(set->crtc)->pipe;
12799                        connector_state->best_encoder =
12800                                &intel_find_encoder(connector, pipe)->base;
12801                }
12802
12803                if (connector->base.state->crtc != set->crtc)
12804                        continue;
12805
12806                /* If we disable the crtc, disable all its connectors. Also, if
12807                 * the connector is on the changing crtc but not on the new
12808                 * connector list, disable it. */
12809                if (!set->fb || !in_mode_set) {
12810                        connector_state->best_encoder = NULL;
12811
12812                        DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [NOCRTC]\n",
12813                                connector->base.base.id,
12814                                connector->base.name);
12815                }
12816        }
12817        /* connector->new_encoder is now updated for all connectors. */
12818
12819        for_each_connector_in_state(state, drm_connector, connector_state, i) {
12820                connector = to_intel_connector(drm_connector);
12821
12822                if (!connector_state->best_encoder) {
12823                        ret = drm_atomic_set_crtc_for_connector(connector_state,
12824                                                                NULL);
12825                        if (ret)
12826                                return ret;
12827
12828                        continue;
12829                }
12830
12831                if (intel_connector_in_mode_set(connector, set)) {
12832                        struct drm_crtc *crtc = connector->base.state->crtc;
12833
12834                        /* If this connector was in a previous crtc, add it
12835                         * to the state. We might need to disable it. */
12836                        if (crtc) {
12837                                crtc_state =
12838                                        drm_atomic_get_crtc_state(state, crtc);
12839                                if (IS_ERR(crtc_state))
12840                                        return PTR_ERR(crtc_state);
12841                        }
12842
12843                        ret = drm_atomic_set_crtc_for_connector(connector_state,
12844                                                                set->crtc);
12845                        if (ret)
12846                                return ret;
12847                }
12848
12849                /* Make sure the new CRTC will work with the encoder */
12850                if (!drm_encoder_crtc_ok(connector_state->best_encoder,
12851                                         connector_state->crtc)) {
12852                        return -EINVAL;
12853                }
12854
12855                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] to [CRTC:%d]\n",
12856                        connector->base.base.id,
12857                        connector->base.name,
12858                        connector_state->crtc->base.id);
12859
12860                if (connector_state->best_encoder != &connector->encoder->base)
12861                        connector->encoder =
12862                                to_intel_encoder(connector_state->best_encoder);
12863        }
12864
12865        for_each_crtc_in_state(state, crtc, crtc_state, i) {
12866                bool has_connectors;
12867
12868                ret = drm_atomic_add_affected_connectors(state, crtc);
12869                if (ret)
12870                        return ret;
12871
12872                has_connectors = !!drm_atomic_connectors_for_crtc(state, crtc);
12873                if (has_connectors != crtc_state->enable)
12874                        crtc_state->enable =
12875                        crtc_state->active = has_connectors;
12876        }
12877
12878        ret = intel_modeset_setup_plane_state(state, set->crtc, set->mode,
12879                                              set->fb, set->x, set->y);
12880        if (ret)
12881                return ret;
12882
12883        crtc_state = drm_atomic_get_crtc_state(state, set->crtc);
12884        if (IS_ERR(crtc_state))
12885                return PTR_ERR(crtc_state);
12886
12887        if (set->mode)
12888                drm_mode_copy(&crtc_state->mode, set->mode);
12889
12890        if (set->num_connectors)
12891                crtc_state->active = true;
12892
12893        return 0;
12894}
12895
12896static int intel_crtc_set_config(struct drm_mode_set *set)
12897{
12898        struct drm_device *dev;
12899        struct drm_atomic_state *state = NULL;
12900        struct intel_crtc_state *pipe_config;
12901        int ret;
12902
12903        BUG_ON(!set);
12904        BUG_ON(!set->crtc);
12905        BUG_ON(!set->crtc->helper_private);
12906
12907        /* Enforce sane interface api - has been abused by the fb helper. */
12908        BUG_ON(!set->mode && set->fb);
12909        BUG_ON(set->fb && set->num_connectors == 0);
12910
12911        if (set->fb) {
12912                DRM_DEBUG_KMS("[CRTC:%d] [FB:%d] #connectors=%d (x y) (%i %i)\n",
12913                                set->crtc->base.id, set->fb->base.id,
12914                                (int)set->num_connectors, set->x, set->y);
12915        } else {
12916                DRM_DEBUG_KMS("[CRTC:%d] [NOFB]\n", set->crtc->base.id);
12917        }
12918
12919        dev = set->crtc->dev;
12920
12921        state = drm_atomic_state_alloc(dev);
12922        if (!state)
12923                return -ENOMEM;
12924
12925        state->acquire_ctx = dev->mode_config.acquire_ctx;
12926
12927        ret = intel_modeset_stage_output_state(dev, set, state);
12928        if (ret)
12929                goto out;
12930
12931        pipe_config = intel_modeset_compute_config(set->crtc, state);
12932        if (IS_ERR(pipe_config)) {
12933                ret = PTR_ERR(pipe_config);
12934                goto out;
12935        }
12936
12937        intel_update_pipe_size(to_intel_crtc(set->crtc));
12938
12939        ret = intel_set_mode_with_config(set->crtc, pipe_config, true);
12940
12941        if (ret) {
12942                DRM_DEBUG_KMS("failed to set mode on [CRTC:%d], err = %d\n",
12943                              set->crtc->base.id, ret);
12944        }
12945
12946out:
12947        if (ret)
12948                drm_atomic_state_free(state);
12949        return ret;
12950}
12951
12952static const struct drm_crtc_funcs intel_crtc_funcs = {
12953        .gamma_set = intel_crtc_gamma_set,
12954        .set_config = intel_crtc_set_config,
12955        .destroy = intel_crtc_destroy,
12956        .page_flip = intel_crtc_page_flip,
12957        .atomic_duplicate_state = intel_crtc_duplicate_state,
12958        .atomic_destroy_state = intel_crtc_destroy_state,
12959};
12960
12961static bool ibx_pch_dpll_get_hw_state(struct drm_i915_private *dev_priv,
12962                                      struct intel_shared_dpll *pll,
12963                                      struct intel_dpll_hw_state *hw_state)
12964{
12965        uint32_t val;
12966
12967        if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_PLLS))
12968                return false;
12969
12970        val = I915_READ(PCH_DPLL(pll->id));
12971        hw_state->dpll = val;
12972        hw_state->fp0 = I915_READ(PCH_FP0(pll->id));
12973        hw_state->fp1 = I915_READ(PCH_FP1(pll->id));
12974
12975        return val & DPLL_VCO_ENABLE;
12976}
12977
12978static void ibx_pch_dpll_mode_set(struct drm_i915_private *dev_priv,
12979                                  struct intel_shared_dpll *pll)
12980{
12981        I915_WRITE(PCH_FP0(pll->id), pll->config.hw_state.fp0);
12982        I915_WRITE(PCH_FP1(pll->id), pll->config.hw_state.fp1);
12983}
12984
12985static void ibx_pch_dpll_enable(struct drm_i915_private *dev_priv,
12986                                struct intel_shared_dpll *pll)
12987{
12988        /* PCH refclock must be enabled first */
12989        ibx_assert_pch_refclk_enabled(dev_priv);
12990
12991        I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
12992
12993        /* Wait for the clocks to stabilize. */
12994        POSTING_READ(PCH_DPLL(pll->id));
12995        udelay(150);
12996
12997        /* The pixel multiplier can only be updated once the
12998         * DPLL is enabled and the clocks are stable.
12999         *
13000         * So write it again.
13001         */
13002        I915_WRITE(PCH_DPLL(pll->id), pll->config.hw_state.dpll);
13003        POSTING_READ(PCH_DPLL(pll->id));
13004        udelay(200);
13005}
13006
13007static void ibx_pch_dpll_disable(struct drm_i915_private *dev_priv,
13008                                 struct intel_shared_dpll *pll)
13009{
13010        struct drm_device *dev = dev_priv->dev;
13011        struct intel_crtc *crtc;
13012
13013        /* Make sure no transcoder isn't still depending on us. */
13014        for_each_intel_crtc(dev, crtc) {
13015                if (intel_crtc_to_shared_dpll(crtc) == pll)
13016                        assert_pch_transcoder_disabled(dev_priv, crtc->pipe);
13017        }
13018
13019        I915_WRITE(PCH_DPLL(pll->id), 0);
13020        POSTING_READ(PCH_DPLL(pll->id));
13021        udelay(200);
13022}
13023
13024static char *ibx_pch_dpll_names[] = {
13025        "PCH DPLL A",
13026        "PCH DPLL B",
13027};
13028
13029static void ibx_pch_dpll_init(struct drm_device *dev)
13030{
13031        struct drm_i915_private *dev_priv = dev->dev_private;
13032        int i;
13033
13034        dev_priv->num_shared_dpll = 2;
13035
13036        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
13037                dev_priv->shared_dplls[i].id = i;
13038                dev_priv->shared_dplls[i].name = ibx_pch_dpll_names[i];
13039                dev_priv->shared_dplls[i].mode_set = ibx_pch_dpll_mode_set;
13040                dev_priv->shared_dplls[i].enable = ibx_pch_dpll_enable;
13041                dev_priv->shared_dplls[i].disable = ibx_pch_dpll_disable;
13042                dev_priv->shared_dplls[i].get_hw_state =
13043                        ibx_pch_dpll_get_hw_state;
13044        }
13045}
13046
13047static void intel_shared_dpll_init(struct drm_device *dev)
13048{
13049        struct drm_i915_private *dev_priv = dev->dev_private;
13050
13051        if (HAS_DDI(dev))
13052                intel_ddi_pll_init(dev);
13053        else if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
13054                ibx_pch_dpll_init(dev);
13055        else
13056                dev_priv->num_shared_dpll = 0;
13057
13058        BUG_ON(dev_priv->num_shared_dpll > I915_NUM_PLLS);
13059}
13060
13061/**
13062 * intel_wm_need_update - Check whether watermarks need updating
13063 * @plane: drm plane
13064 * @state: new plane state
13065 *
13066 * Check current plane state versus the new one to determine whether
13067 * watermarks need to be recalculated.
13068 *
13069 * Returns true or false.
13070 */
13071bool intel_wm_need_update(struct drm_plane *plane,
13072                          struct drm_plane_state *state)
13073{
13074        /* Update watermarks on tiling changes. */
13075        if (!plane->state->fb || !state->fb ||
13076            plane->state->fb->modifier[0] != state->fb->modifier[0] ||
13077            plane->state->rotation != state->rotation)
13078                return true;
13079
13080        return false;
13081}
13082
13083/**
13084 * intel_prepare_plane_fb - Prepare fb for usage on plane
13085 * @plane: drm plane to prepare for
13086 * @fb: framebuffer to prepare for presentation
13087 *
13088 * Prepares a framebuffer for usage on a display plane.  Generally this
13089 * involves pinning the underlying object and updating the frontbuffer tracking
13090 * bits.  Some older platforms need special physical address handling for
13091 * cursor planes.
13092 *
13093 * Returns 0 on success, negative error code on failure.
13094 */
13095int
13096intel_prepare_plane_fb(struct drm_plane *plane,
13097                       struct drm_framebuffer *fb,
13098                       const struct drm_plane_state *new_state)
13099{
13100        struct drm_device *dev = plane->dev;
13101        struct intel_plane *intel_plane = to_intel_plane(plane);
13102        enum pipe pipe = intel_plane->pipe;
13103        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13104        struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->fb);
13105        unsigned frontbuffer_bits = 0;
13106        int ret = 0;
13107
13108        if (!obj)
13109                return 0;
13110
13111        switch (plane->type) {
13112        case DRM_PLANE_TYPE_PRIMARY:
13113                frontbuffer_bits = INTEL_FRONTBUFFER_PRIMARY(pipe);
13114                break;
13115        case DRM_PLANE_TYPE_CURSOR:
13116                frontbuffer_bits = INTEL_FRONTBUFFER_CURSOR(pipe);
13117                break;
13118        case DRM_PLANE_TYPE_OVERLAY:
13119                frontbuffer_bits = INTEL_FRONTBUFFER_SPRITE(pipe);
13120                break;
13121        }
13122
13123        mutex_lock(&dev->struct_mutex);
13124
13125        if (plane->type == DRM_PLANE_TYPE_CURSOR &&
13126            INTEL_INFO(dev)->cursor_needs_physical) {
13127                int align = IS_I830(dev) ? 16 * 1024 : 256;
13128                ret = i915_gem_object_attach_phys(obj, align);
13129                if (ret)
13130                        DRM_DEBUG_KMS("failed to attach phys object\n");
13131        } else {
13132                ret = intel_pin_and_fence_fb_obj(plane, fb, new_state, NULL);
13133        }
13134
13135        if (ret == 0)
13136                i915_gem_track_fb(old_obj, obj, frontbuffer_bits);
13137
13138        mutex_unlock(&dev->struct_mutex);
13139
13140        return ret;
13141}
13142
13143/**
13144 * intel_cleanup_plane_fb - Cleans up an fb after plane use
13145 * @plane: drm plane to clean up for
13146 * @fb: old framebuffer that was on plane
13147 *
13148 * Cleans up a framebuffer that has just been removed from a plane.
13149 */
13150void
13151intel_cleanup_plane_fb(struct drm_plane *plane,
13152                       struct drm_framebuffer *fb,
13153                       const struct drm_plane_state *old_state)
13154{
13155        struct drm_device *dev = plane->dev;
13156        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13157
13158        if (WARN_ON(!obj))
13159                return;
13160
13161        if (plane->type != DRM_PLANE_TYPE_CURSOR ||
13162            !INTEL_INFO(dev)->cursor_needs_physical) {
13163                mutex_lock(&dev->struct_mutex);
13164                intel_unpin_fb_obj(fb, old_state);
13165                mutex_unlock(&dev->struct_mutex);
13166        }
13167}
13168
13169int
13170skl_max_scale(struct intel_crtc *intel_crtc, struct intel_crtc_state *crtc_state)
13171{
13172        int max_scale;
13173        struct drm_device *dev;
13174        struct drm_i915_private *dev_priv;
13175        int crtc_clock, cdclk;
13176
13177        if (!intel_crtc || !crtc_state)
13178                return DRM_PLANE_HELPER_NO_SCALING;
13179
13180        dev = intel_crtc->base.dev;
13181        dev_priv = dev->dev_private;
13182        crtc_clock = crtc_state->base.adjusted_mode.crtc_clock;
13183        cdclk = dev_priv->display.get_display_clock_speed(dev);
13184
13185        if (!crtc_clock || !cdclk)
13186                return DRM_PLANE_HELPER_NO_SCALING;
13187
13188        /*
13189         * skl max scale is lower of:
13190         *    close to 3 but not 3, -1 is for that purpose
13191         *            or
13192         *    cdclk/crtc_clock
13193         */
13194        max_scale = min((1 << 16) * 3 - 1, (1 << 8) * ((cdclk << 8) / crtc_clock));
13195
13196        return max_scale;
13197}
13198
13199static int
13200intel_check_primary_plane(struct drm_plane *plane,
13201                          struct intel_plane_state *state)
13202{
13203        struct drm_device *dev = plane->dev;
13204        struct drm_i915_private *dev_priv = dev->dev_private;
13205        struct drm_crtc *crtc = state->base.crtc;
13206        struct intel_crtc *intel_crtc;
13207        struct intel_crtc_state *crtc_state;
13208        struct drm_framebuffer *fb = state->base.fb;
13209        struct drm_rect *dest = &state->dst;
13210        struct drm_rect *src = &state->src;
13211        const struct drm_rect *clip = &state->clip;
13212        bool can_position = false;
13213        int max_scale = DRM_PLANE_HELPER_NO_SCALING;
13214        int min_scale = DRM_PLANE_HELPER_NO_SCALING;
13215        int ret;
13216
13217        crtc = crtc ? crtc : plane->crtc;
13218        intel_crtc = to_intel_crtc(crtc);
13219        crtc_state = state->base.state ?
13220                intel_atomic_get_crtc_state(state->base.state, intel_crtc) : NULL;
13221
13222        if (INTEL_INFO(dev)->gen >= 9) {
13223                /* use scaler when colorkey is not required */
13224                if (to_intel_plane(plane)->ckey.flags == I915_SET_COLORKEY_NONE) {
13225                        min_scale = 1;
13226                        max_scale = skl_max_scale(intel_crtc, crtc_state);
13227                }
13228                can_position = true;
13229        }
13230
13231        ret = drm_plane_helper_check_update(plane, crtc, fb,
13232                                            src, dest, clip,
13233                                            min_scale,
13234                                            max_scale,
13235                                            can_position, true,
13236                                            &state->visible);
13237        if (ret)
13238                return ret;
13239
13240        if (crtc_state ? crtc_state->base.active : intel_crtc->active) {
13241                struct intel_plane_state *old_state =
13242                        to_intel_plane_state(plane->state);
13243
13244                intel_crtc->atomic.wait_for_flips = true;
13245
13246                /*
13247                 * FBC does not work on some platforms for rotated
13248                 * planes, so disable it when rotation is not 0 and
13249                 * update it when rotation is set back to 0.
13250                 *
13251                 * FIXME: This is redundant with the fbc update done in
13252                 * the primary plane enable function except that that
13253                 * one is done too late. We eventually need to unify
13254                 * this.
13255                 */
13256                if (state->visible &&
13257                    INTEL_INFO(dev)->gen <= 4 && !IS_G4X(dev) &&
13258                    dev_priv->fbc.crtc == intel_crtc &&
13259                    state->base.rotation != BIT(DRM_ROTATE_0)) {
13260                        intel_crtc->atomic.disable_fbc = true;
13261                }
13262
13263                if (state->visible && !old_state->visible) {
13264                        /*
13265                         * BDW signals flip done immediately if the plane
13266                         * is disabled, even if the plane enable is already
13267                         * armed to occur at the next vblank :(
13268                         */
13269                        if (IS_BROADWELL(dev))
13270                                intel_crtc->atomic.wait_vblank = true;
13271
13272                        if (crtc_state)
13273                                intel_crtc->atomic.post_enable_primary = true;
13274                }
13275
13276                /*
13277                 * FIXME: Actually if we will still have any other plane enabled
13278                 * on the pipe we could let IPS enabled still, but for
13279                 * now lets consider that when we make primary invisible
13280                 * by setting DSPCNTR to 0 on update_primary_plane function
13281                 * IPS needs to be disable.
13282                 */
13283                if (!state->visible || !fb)
13284                        intel_crtc->atomic.disable_ips = true;
13285
13286                if (!state->visible && old_state->visible &&
13287                    crtc_state && !needs_modeset(&crtc_state->base))
13288                        intel_crtc->atomic.pre_disable_primary = true;
13289
13290                intel_crtc->atomic.fb_bits |=
13291                        INTEL_FRONTBUFFER_PRIMARY(intel_crtc->pipe);
13292
13293                intel_crtc->atomic.update_fbc = true;
13294
13295                if (intel_wm_need_update(plane, &state->base))
13296                        intel_crtc->atomic.update_wm = true;
13297        }
13298
13299        if (INTEL_INFO(dev)->gen >= 9) {
13300                ret = skl_update_scaler_users(intel_crtc, crtc_state,
13301                        to_intel_plane(plane), state, 0);
13302                if (ret)
13303                        return ret;
13304        }
13305
13306        return 0;
13307}
13308
13309static void
13310intel_commit_primary_plane(struct drm_plane *plane,
13311                           struct intel_plane_state *state)
13312{
13313        struct drm_crtc *crtc = state->base.crtc;
13314        struct drm_framebuffer *fb = state->base.fb;
13315        struct drm_device *dev = plane->dev;
13316        struct drm_i915_private *dev_priv = dev->dev_private;
13317        struct intel_crtc *intel_crtc;
13318        struct drm_rect *src = &state->src;
13319
13320        crtc = crtc ? crtc : plane->crtc;
13321        intel_crtc = to_intel_crtc(crtc);
13322
13323        plane->fb = fb;
13324        crtc->x = src->x1 >> 16;
13325        crtc->y = src->y1 >> 16;
13326
13327        if (intel_crtc->active) {
13328                if (state->visible)
13329                        /* FIXME: kill this fastboot hack */
13330                        intel_update_pipe_size(intel_crtc);
13331
13332                dev_priv->display.update_primary_plane(crtc, plane->fb,
13333                                                       crtc->x, crtc->y);
13334        }
13335}
13336
13337static void
13338intel_disable_primary_plane(struct drm_plane *plane,
13339                            struct drm_crtc *crtc,
13340                            bool force)
13341{
13342        struct drm_device *dev = plane->dev;
13343        struct drm_i915_private *dev_priv = dev->dev_private;
13344
13345        dev_priv->display.update_primary_plane(crtc, NULL, 0, 0);
13346}
13347
13348static void intel_begin_crtc_commit(struct drm_crtc *crtc)
13349{
13350        struct drm_device *dev = crtc->dev;
13351        struct drm_i915_private *dev_priv = dev->dev_private;
13352        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13353        struct intel_plane *intel_plane;
13354        struct drm_plane *p;
13355        unsigned fb_bits = 0;
13356
13357        /* Track fb's for any planes being disabled */
13358        list_for_each_entry(p, &dev->mode_config.plane_list, head) {
13359                intel_plane = to_intel_plane(p);
13360
13361                if (intel_crtc->atomic.disabled_planes &
13362                    (1 << drm_plane_index(p))) {
13363                        switch (p->type) {
13364                        case DRM_PLANE_TYPE_PRIMARY:
13365                                fb_bits = INTEL_FRONTBUFFER_PRIMARY(intel_plane->pipe);
13366                                break;
13367                        case DRM_PLANE_TYPE_CURSOR:
13368                                fb_bits = INTEL_FRONTBUFFER_CURSOR(intel_plane->pipe);
13369                                break;
13370                        case DRM_PLANE_TYPE_OVERLAY:
13371                                fb_bits = INTEL_FRONTBUFFER_SPRITE(intel_plane->pipe);
13372                                break;
13373                        }
13374
13375                        mutex_lock(&dev->struct_mutex);
13376                        i915_gem_track_fb(intel_fb_obj(p->fb), NULL, fb_bits);
13377                        mutex_unlock(&dev->struct_mutex);
13378                }
13379        }
13380
13381        if (intel_crtc->atomic.wait_for_flips)
13382                intel_crtc_wait_for_pending_flips(crtc);
13383
13384        if (intel_crtc->atomic.disable_fbc)
13385                intel_fbc_disable(dev);
13386
13387        if (intel_crtc->atomic.disable_ips)
13388                hsw_disable_ips(intel_crtc);
13389
13390        if (intel_crtc->atomic.pre_disable_primary)
13391                intel_pre_disable_primary(crtc);
13392
13393        if (intel_crtc->atomic.update_wm)
13394                intel_update_watermarks(crtc);
13395
13396        intel_runtime_pm_get(dev_priv);
13397
13398        /* Perform vblank evasion around commit operation */
13399        if (intel_crtc->active)
13400                intel_crtc->atomic.evade =
13401                        intel_pipe_update_start(intel_crtc,
13402                                                &intel_crtc->atomic.start_vbl_count);
13403}
13404
13405static void intel_finish_crtc_commit(struct drm_crtc *crtc)
13406{
13407        struct drm_device *dev = crtc->dev;
13408        struct drm_i915_private *dev_priv = dev->dev_private;
13409        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13410        struct drm_plane *p;
13411
13412        if (intel_crtc->atomic.evade)
13413                intel_pipe_update_end(intel_crtc,
13414                                      intel_crtc->atomic.start_vbl_count);
13415
13416        intel_runtime_pm_put(dev_priv);
13417
13418        if (intel_crtc->atomic.wait_vblank)
13419                intel_wait_for_vblank(dev, intel_crtc->pipe);
13420
13421        intel_frontbuffer_flip(dev, intel_crtc->atomic.fb_bits);
13422
13423        if (intel_crtc->atomic.update_fbc) {
13424                mutex_lock(&dev->struct_mutex);
13425                intel_fbc_update(dev);
13426                mutex_unlock(&dev->struct_mutex);
13427        }
13428
13429        if (intel_crtc->atomic.post_enable_primary)
13430                intel_post_enable_primary(crtc);
13431
13432        drm_for_each_legacy_plane(p, &dev->mode_config.plane_list)
13433                if (intel_crtc->atomic.update_sprite_watermarks & drm_plane_index(p))
13434                        intel_update_sprite_watermarks(p, crtc, 0, 0, 0,
13435                                                       false, false);
13436
13437        memset(&intel_crtc->atomic, 0, sizeof(intel_crtc->atomic));
13438}
13439
13440/**
13441 * intel_plane_destroy - destroy a plane
13442 * @plane: plane to destroy
13443 *
13444 * Common destruction function for all types of planes (primary, cursor,
13445 * sprite).
13446 */
13447void intel_plane_destroy(struct drm_plane *plane)
13448{
13449        struct intel_plane *intel_plane = to_intel_plane(plane);
13450        drm_plane_cleanup(plane);
13451        kfree(intel_plane);
13452}
13453
13454const struct drm_plane_funcs intel_plane_funcs = {
13455        .update_plane = drm_atomic_helper_update_plane,
13456        .disable_plane = drm_atomic_helper_disable_plane,
13457        .destroy = intel_plane_destroy,
13458        .set_property = drm_atomic_helper_plane_set_property,
13459        .atomic_get_property = intel_plane_atomic_get_property,
13460        .atomic_set_property = intel_plane_atomic_set_property,
13461        .atomic_duplicate_state = intel_plane_duplicate_state,
13462        .atomic_destroy_state = intel_plane_destroy_state,
13463
13464};
13465
13466static struct drm_plane *intel_primary_plane_create(struct drm_device *dev,
13467                                                    int pipe)
13468{
13469        struct intel_plane *primary;
13470        struct intel_plane_state *state;
13471        const uint32_t *intel_primary_formats;
13472        int num_formats;
13473
13474        primary = kzalloc(sizeof(*primary), GFP_KERNEL);
13475        if (primary == NULL)
13476                return NULL;
13477
13478        state = intel_create_plane_state(&primary->base);
13479        if (!state) {
13480                kfree(primary);
13481                return NULL;
13482        }
13483        primary->base.state = &state->base;
13484
13485        primary->can_scale = false;
13486        primary->max_downscale = 1;
13487        if (INTEL_INFO(dev)->gen >= 9) {
13488                primary->can_scale = true;
13489                state->scaler_id = -1;
13490        }
13491        primary->pipe = pipe;
13492        primary->plane = pipe;
13493        primary->check_plane = intel_check_primary_plane;
13494        primary->commit_plane = intel_commit_primary_plane;
13495        primary->disable_plane = intel_disable_primary_plane;
13496        primary->ckey.flags = I915_SET_COLORKEY_NONE;
13497        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4)
13498                primary->plane = !pipe;
13499
13500        if (INTEL_INFO(dev)->gen >= 9) {
13501                intel_primary_formats = skl_primary_formats;
13502                num_formats = ARRAY_SIZE(skl_primary_formats);
13503        } else if (INTEL_INFO(dev)->gen >= 4) {
13504                intel_primary_formats = i965_primary_formats;
13505                num_formats = ARRAY_SIZE(i965_primary_formats);
13506        } else {
13507                intel_primary_formats = i8xx_primary_formats;
13508                num_formats = ARRAY_SIZE(i8xx_primary_formats);
13509        }
13510
13511        drm_universal_plane_init(dev, &primary->base, 0,
13512                                 &intel_plane_funcs,
13513                                 intel_primary_formats, num_formats,
13514                                 DRM_PLANE_TYPE_PRIMARY);
13515
13516        if (INTEL_INFO(dev)->gen >= 4)
13517                intel_create_rotation_property(dev, primary);
13518
13519        drm_plane_helper_add(&primary->base, &intel_plane_helper_funcs);
13520
13521        return &primary->base;
13522}
13523
13524void intel_create_rotation_property(struct drm_device *dev, struct intel_plane *plane)
13525{
13526        if (!dev->mode_config.rotation_property) {
13527                unsigned long flags = BIT(DRM_ROTATE_0) |
13528                        BIT(DRM_ROTATE_180);
13529
13530                if (INTEL_INFO(dev)->gen >= 9)
13531                        flags |= BIT(DRM_ROTATE_90) | BIT(DRM_ROTATE_270);
13532
13533                dev->mode_config.rotation_property =
13534                        drm_mode_create_rotation_property(dev, flags);
13535        }
13536        if (dev->mode_config.rotation_property)
13537                drm_object_attach_property(&plane->base.base,
13538                                dev->mode_config.rotation_property,
13539                                plane->base.state->rotation);
13540}
13541
13542static int
13543intel_check_cursor_plane(struct drm_plane *plane,
13544                         struct intel_plane_state *state)
13545{
13546        struct drm_crtc *crtc = state->base.crtc;
13547        struct drm_device *dev = plane->dev;
13548        struct drm_framebuffer *fb = state->base.fb;
13549        struct drm_rect *dest = &state->dst;
13550        struct drm_rect *src = &state->src;
13551        const struct drm_rect *clip = &state->clip;
13552        struct drm_i915_gem_object *obj = intel_fb_obj(fb);
13553        struct intel_crtc *intel_crtc;
13554        unsigned stride;
13555        int ret;
13556
13557        crtc = crtc ? crtc : plane->crtc;
13558        intel_crtc = to_intel_crtc(crtc);
13559
13560        ret = drm_plane_helper_check_update(plane, crtc, fb,
13561                                            src, dest, clip,
13562                                            DRM_PLANE_HELPER_NO_SCALING,
13563                                            DRM_PLANE_HELPER_NO_SCALING,
13564                                            true, true, &state->visible);
13565        if (ret)
13566                return ret;
13567
13568
13569        /* if we want to turn off the cursor ignore width and height */
13570        if (!obj)
13571                goto finish;
13572
13573        /* Check for which cursor types we support */
13574        if (!cursor_size_ok(dev, state->base.crtc_w, state->base.crtc_h)) {
13575                DRM_DEBUG("Cursor dimension %dx%d not supported\n",
13576                          state->base.crtc_w, state->base.crtc_h);
13577                return -EINVAL;
13578        }
13579
13580        stride = roundup_pow_of_two(state->base.crtc_w) * 4;
13581        if (obj->base.size < stride * state->base.crtc_h) {
13582                DRM_DEBUG_KMS("buffer is too small\n");
13583                return -ENOMEM;
13584        }
13585
13586        if (fb->modifier[0] != DRM_FORMAT_MOD_NONE) {
13587                DRM_DEBUG_KMS("cursor cannot be tiled\n");
13588                ret = -EINVAL;
13589        }
13590
13591finish:
13592        if (intel_crtc->active) {
13593                if (plane->state->crtc_w != state->base.crtc_w)
13594                        intel_crtc->atomic.update_wm = true;
13595
13596                intel_crtc->atomic.fb_bits |=
13597                        INTEL_FRONTBUFFER_CURSOR(intel_crtc->pipe);
13598        }
13599
13600        return ret;
13601}
13602
13603static void
13604intel_disable_cursor_plane(struct drm_plane *plane,
13605                           struct drm_crtc *crtc,
13606                           bool force)
13607{
13608        struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
13609
13610        if (!force) {
13611                plane->fb = NULL;
13612                intel_crtc->cursor_bo = NULL;
13613                intel_crtc->cursor_addr = 0;
13614        }
13615
13616        intel_crtc_update_cursor(crtc, false);
13617}
13618
13619static void
13620intel_commit_cursor_plane(struct drm_plane *plane,
13621                          struct intel_plane_state *state)
13622{
13623        struct drm_crtc *crtc = state->base.crtc;
13624        struct drm_device *dev = plane->dev;
13625        struct intel_crtc *intel_crtc;
13626        struct drm_i915_gem_object *obj = intel_fb_obj(state->base.fb);
13627        uint32_t addr;
13628
13629        crtc = crtc ? crtc : plane->crtc;
13630        intel_crtc = to_intel_crtc(crtc);
13631
13632        plane->fb = state->base.fb;
13633        crtc->cursor_x = state->base.crtc_x;
13634        crtc->cursor_y = state->base.crtc_y;
13635
13636        if (intel_crtc->cursor_bo == obj)
13637                goto update;
13638
13639        if (!obj)
13640                addr = 0;
13641        else if (!INTEL_INFO(dev)->cursor_needs_physical)
13642                addr = i915_gem_obj_ggtt_offset(obj);
13643        else
13644                addr = obj->phys_handle->busaddr;
13645
13646        intel_crtc->cursor_addr = addr;
13647        intel_crtc->cursor_bo = obj;
13648update:
13649
13650        if (intel_crtc->active)
13651                intel_crtc_update_cursor(crtc, state->visible);
13652}
13653
13654static struct drm_plane *intel_cursor_plane_create(struct drm_device *dev,
13655                                                   int pipe)
13656{
13657        struct intel_plane *cursor;
13658        struct intel_plane_state *state;
13659
13660        cursor = kzalloc(sizeof(*cursor), GFP_KERNEL);
13661        if (cursor == NULL)
13662                return NULL;
13663
13664        state = intel_create_plane_state(&cursor->base);
13665        if (!state) {
13666                kfree(cursor);
13667                return NULL;
13668        }
13669        cursor->base.state = &state->base;
13670
13671        cursor->can_scale = false;
13672        cursor->max_downscale = 1;
13673        cursor->pipe = pipe;
13674        cursor->plane = pipe;
13675        cursor->check_plane = intel_check_cursor_plane;
13676        cursor->commit_plane = intel_commit_cursor_plane;
13677        cursor->disable_plane = intel_disable_cursor_plane;
13678
13679        drm_universal_plane_init(dev, &cursor->base, 0,
13680                                 &intel_plane_funcs,
13681                                 intel_cursor_formats,
13682                                 ARRAY_SIZE(intel_cursor_formats),
13683                                 DRM_PLANE_TYPE_CURSOR);
13684
13685        if (INTEL_INFO(dev)->gen >= 4) {
13686                if (!dev->mode_config.rotation_property)
13687                        dev->mode_config.rotation_property =
13688                                drm_mode_create_rotation_property(dev,
13689                                                        BIT(DRM_ROTATE_0) |
13690                                                        BIT(DRM_ROTATE_180));
13691                if (dev->mode_config.rotation_property)
13692                        drm_object_attach_property(&cursor->base.base,
13693                                dev->mode_config.rotation_property,
13694                                state->base.rotation);
13695        }
13696
13697        if (INTEL_INFO(dev)->gen >=9)
13698                state->scaler_id = -1;
13699
13700        drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
13701
13702        return &cursor->base;
13703}
13704
13705static void skl_init_scalers(struct drm_device *dev, struct intel_crtc *intel_crtc,
13706        struct intel_crtc_state *crtc_state)
13707{
13708        int i;
13709        struct intel_scaler *intel_scaler;
13710        struct intel_crtc_scaler_state *scaler_state = &crtc_state->scaler_state;
13711
13712        for (i = 0; i < intel_crtc->num_scalers; i++) {
13713                intel_scaler = &scaler_state->scalers[i];
13714                intel_scaler->in_use = 0;
13715                intel_scaler->id = i;
13716
13717                intel_scaler->mode = PS_SCALER_MODE_DYN;
13718        }
13719
13720        scaler_state->scaler_id = -1;
13721}
13722
13723static void intel_crtc_init(struct drm_device *dev, int pipe)
13724{
13725        struct drm_i915_private *dev_priv = dev->dev_private;
13726        struct intel_crtc *intel_crtc;
13727        struct intel_crtc_state *crtc_state = NULL;
13728        struct drm_plane *primary = NULL;
13729        struct drm_plane *cursor = NULL;
13730        int i, ret;
13731
13732        intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
13733        if (intel_crtc == NULL)
13734                return;
13735
13736        crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
13737        if (!crtc_state)
13738                goto fail;
13739        intel_crtc->config = crtc_state;
13740        intel_crtc->base.state = &crtc_state->base;
13741        crtc_state->base.crtc = &intel_crtc->base;
13742
13743        /* initialize shared scalers */
13744        if (INTEL_INFO(dev)->gen >= 9) {
13745                if (pipe == PIPE_C)
13746                        intel_crtc->num_scalers = 1;
13747                else
13748                        intel_crtc->num_scalers = SKL_NUM_SCALERS;
13749
13750                skl_init_scalers(dev, intel_crtc, crtc_state);
13751        }
13752
13753        primary = intel_primary_plane_create(dev, pipe);
13754        if (!primary)
13755                goto fail;
13756
13757        cursor = intel_cursor_plane_create(dev, pipe);
13758        if (!cursor)
13759                goto fail;
13760
13761        ret = drm_crtc_init_with_planes(dev, &intel_crtc->base, primary,
13762                                        cursor, &intel_crtc_funcs);
13763        if (ret)
13764                goto fail;
13765
13766        drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
13767        for (i = 0; i < 256; i++) {
13768                intel_crtc->lut_r[i] = i;
13769                intel_crtc->lut_g[i] = i;
13770                intel_crtc->lut_b[i] = i;
13771        }
13772
13773        /*
13774         * On gen2/3 only plane A can do fbc, but the panel fitter and lvds port
13775         * is hooked to pipe B. Hence we want plane A feeding pipe B.
13776         */
13777        intel_crtc->pipe = pipe;
13778        intel_crtc->plane = pipe;
13779        if (HAS_FBC(dev) && INTEL_INFO(dev)->gen < 4) {
13780                DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
13781                intel_crtc->plane = !pipe;
13782        }
13783
13784        intel_crtc->cursor_base = ~0;
13785        intel_crtc->cursor_cntl = ~0;
13786        intel_crtc->cursor_size = ~0;
13787
13788        BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
13789               dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
13790        dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
13791        dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
13792
13793        drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
13794
13795        WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
13796        return;
13797
13798fail:
13799        if (primary)
13800                drm_plane_cleanup(primary);
13801        if (cursor)
13802                drm_plane_cleanup(cursor);
13803        kfree(crtc_state);
13804        kfree(intel_crtc);
13805}
13806
13807enum pipe intel_get_pipe_from_connector(struct intel_connector *connector)
13808{
13809        struct drm_encoder *encoder = connector->base.encoder;
13810        struct drm_device *dev = connector->base.dev;
13811
13812        WARN_ON(!drm_modeset_is_locked(&dev->mode_config.connection_mutex));
13813
13814        if (!encoder || WARN_ON(!encoder->crtc))
13815                return INVALID_PIPE;
13816
13817        return to_intel_crtc(encoder->crtc)->pipe;
13818}
13819
13820int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
13821                                struct drm_file *file)
13822{
13823        struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
13824        struct drm_crtc *drmmode_crtc;
13825        struct intel_crtc *crtc;
13826
13827        drmmode_crtc = drm_crtc_find(dev, pipe_from_crtc_id->crtc_id);
13828
13829        if (!drmmode_crtc) {
13830                DRM_ERROR("no such CRTC id\n");
13831                return -ENOENT;
13832        }
13833
13834        crtc = to_intel_crtc(drmmode_crtc);
13835        pipe_from_crtc_id->pipe = crtc->pipe;
13836
13837        return 0;
13838}
13839
13840static int intel_encoder_clones(struct intel_encoder *encoder)
13841{
13842        struct drm_device *dev = encoder->base.dev;
13843        struct intel_encoder *source_encoder;
13844        int index_mask = 0;
13845        int entry = 0;
13846
13847        for_each_intel_encoder(dev, source_encoder) {
13848                if (encoders_cloneable(encoder, source_encoder))
13849                        index_mask |= (1 << entry);
13850
13851                entry++;
13852        }
13853
13854        return index_mask;
13855}
13856
13857static bool has_edp_a(struct drm_device *dev)
13858{
13859        struct drm_i915_private *dev_priv = dev->dev_private;
13860
13861        if (!IS_MOBILE(dev))
13862                return false;
13863
13864        if ((I915_READ(DP_A) & DP_DETECTED) == 0)
13865                return false;
13866
13867        if (IS_GEN5(dev) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
13868                return false;
13869
13870        return true;
13871}
13872
13873static bool intel_crt_present(struct drm_device *dev)
13874{
13875        struct drm_i915_private *dev_priv = dev->dev_private;
13876
13877        if (INTEL_INFO(dev)->gen >= 9)
13878                return false;
13879
13880        if (IS_HSW_ULT(dev) || IS_BDW_ULT(dev))
13881                return false;
13882
13883        if (IS_CHERRYVIEW(dev))
13884                return false;
13885
13886        if (IS_VALLEYVIEW(dev) && !dev_priv->vbt.int_crt_support)
13887                return false;
13888
13889        return true;
13890}
13891
13892static void intel_setup_outputs(struct drm_device *dev)
13893{
13894        struct drm_i915_private *dev_priv = dev->dev_private;
13895        struct intel_encoder *encoder;
13896        bool dpd_is_edp = false;
13897
13898        intel_lvds_init(dev);
13899
13900        if (intel_crt_present(dev))
13901                intel_crt_init(dev);
13902
13903        if (IS_BROXTON(dev)) {
13904                /*
13905                 * FIXME: Broxton doesn't support port detection via the
13906                 * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
13907                 * detect the ports.
13908                 */
13909                intel_ddi_init(dev, PORT_A);
13910                intel_ddi_init(dev, PORT_B);
13911                intel_ddi_init(dev, PORT_C);
13912        } else if (HAS_DDI(dev)) {
13913                int found;
13914
13915                /*
13916                 * Haswell uses DDI functions to detect digital outputs.
13917                 * On SKL pre-D0 the strap isn't connected, so we assume
13918                 * it's there.
13919                 */
13920                found = I915_READ(DDI_BUF_CTL_A) & DDI_INIT_DISPLAY_DETECTED;
13921                /* WaIgnoreDDIAStrap: skl */
13922                if (found ||
13923                    (IS_SKYLAKE(dev) && INTEL_REVID(dev) < SKL_REVID_D0))
13924                        intel_ddi_init(dev, PORT_A);
13925
13926                /* DDI B, C and D detection is indicated by the SFUSE_STRAP
13927                 * register */
13928                found = I915_READ(SFUSE_STRAP);
13929
13930                if (found & SFUSE_STRAP_DDIB_DETECTED)
13931                        intel_ddi_init(dev, PORT_B);
13932                if (found & SFUSE_STRAP_DDIC_DETECTED)
13933                        intel_ddi_init(dev, PORT_C);
13934                if (found & SFUSE_STRAP_DDID_DETECTED)
13935                        intel_ddi_init(dev, PORT_D);
13936        } else if (HAS_PCH_SPLIT(dev)) {
13937                int found;
13938                dpd_is_edp = intel_dp_is_edp(dev, PORT_D);
13939
13940                if (has_edp_a(dev))
13941                        intel_dp_init(dev, DP_A, PORT_A);
13942
13943                if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
13944                        /* PCH SDVOB multiplex with HDMIB */
13945                        found = intel_sdvo_init(dev, PCH_SDVOB, true);
13946                        if (!found)
13947                                intel_hdmi_init(dev, PCH_HDMIB, PORT_B);
13948                        if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
13949                                intel_dp_init(dev, PCH_DP_B, PORT_B);
13950                }
13951
13952                if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
13953                        intel_hdmi_init(dev, PCH_HDMIC, PORT_C);
13954
13955                if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
13956                        intel_hdmi_init(dev, PCH_HDMID, PORT_D);
13957
13958                if (I915_READ(PCH_DP_C) & DP_DETECTED)
13959                        intel_dp_init(dev, PCH_DP_C, PORT_C);
13960
13961                if (I915_READ(PCH_DP_D) & DP_DETECTED)
13962                        intel_dp_init(dev, PCH_DP_D, PORT_D);
13963        } else if (IS_VALLEYVIEW(dev)) {
13964                /*
13965                 * The DP_DETECTED bit is the latched state of the DDC
13966                 * SDA pin at boot. However since eDP doesn't require DDC
13967                 * (no way to plug in a DP->HDMI dongle) the DDC pins for
13968                 * eDP ports may have been muxed to an alternate function.
13969                 * Thus we can't rely on the DP_DETECTED bit alone to detect
13970                 * eDP ports. Consult the VBT as well as DP_DETECTED to
13971                 * detect eDP ports.
13972                 */
13973                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIB) & SDVO_DETECTED &&
13974                    !intel_dp_is_edp(dev, PORT_B))
13975                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIB,
13976                                        PORT_B);
13977                if (I915_READ(VLV_DISPLAY_BASE + DP_B) & DP_DETECTED ||
13978                    intel_dp_is_edp(dev, PORT_B))
13979                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_B, PORT_B);
13980
13981                if (I915_READ(VLV_DISPLAY_BASE + GEN4_HDMIC) & SDVO_DETECTED &&
13982                    !intel_dp_is_edp(dev, PORT_C))
13983                        intel_hdmi_init(dev, VLV_DISPLAY_BASE + GEN4_HDMIC,
13984                                        PORT_C);
13985                if (I915_READ(VLV_DISPLAY_BASE + DP_C) & DP_DETECTED ||
13986                    intel_dp_is_edp(dev, PORT_C))
13987                        intel_dp_init(dev, VLV_DISPLAY_BASE + DP_C, PORT_C);
13988
13989                if (IS_CHERRYVIEW(dev)) {
13990                        if (I915_READ(VLV_DISPLAY_BASE + CHV_HDMID) & SDVO_DETECTED)
13991                                intel_hdmi_init(dev, VLV_DISPLAY_BASE + CHV_HDMID,
13992                                                PORT_D);
13993                        /* eDP not supported on port D, so don't check VBT */
13994                        if (I915_READ(VLV_DISPLAY_BASE + DP_D) & DP_DETECTED)
13995                                intel_dp_init(dev, VLV_DISPLAY_BASE + DP_D, PORT_D);
13996                }
13997
13998                intel_dsi_init(dev);
13999        } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
14000                bool found = false;
14001
14002                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14003                        DRM_DEBUG_KMS("probing SDVOB\n");
14004                        found = intel_sdvo_init(dev, GEN3_SDVOB, true);
14005                        if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
14006                                DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
14007                                intel_hdmi_init(dev, GEN4_HDMIB, PORT_B);
14008                        }
14009
14010                        if (!found && SUPPORTS_INTEGRATED_DP(dev))
14011                                intel_dp_init(dev, DP_B, PORT_B);
14012                }
14013
14014                /* Before G4X SDVOC doesn't have its own detect register */
14015
14016                if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
14017                        DRM_DEBUG_KMS("probing SDVOC\n");
14018                        found = intel_sdvo_init(dev, GEN3_SDVOC, false);
14019                }
14020
14021                if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
14022
14023                        if (SUPPORTS_INTEGRATED_HDMI(dev)) {
14024                                DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
14025                                intel_hdmi_init(dev, GEN4_HDMIC, PORT_C);
14026                        }
14027                        if (SUPPORTS_INTEGRATED_DP(dev))
14028                                intel_dp_init(dev, DP_C, PORT_C);
14029                }
14030
14031                if (SUPPORTS_INTEGRATED_DP(dev) &&
14032                    (I915_READ(DP_D) & DP_DETECTED))
14033                        intel_dp_init(dev, DP_D, PORT_D);
14034        } else if (IS_GEN2(dev))
14035                intel_dvo_init(dev);
14036
14037        if (SUPPORTS_TV(dev))
14038                intel_tv_init(dev);
14039
14040        intel_psr_init(dev);
14041
14042        for_each_intel_encoder(dev, encoder) {
14043                encoder->base.possible_crtcs = encoder->crtc_mask;
14044                encoder->base.possible_clones =
14045                        intel_encoder_clones(encoder);
14046        }
14047
14048        intel_init_pch_refclk(dev);
14049
14050        drm_helper_move_panel_connectors_to_head(dev);
14051}
14052
14053static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
14054{
14055        struct drm_device *dev = fb->dev;
14056        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14057
14058        drm_framebuffer_cleanup(fb);
14059        mutex_lock(&dev->struct_mutex);
14060        WARN_ON(!intel_fb->obj->framebuffer_references--);
14061        drm_gem_object_unreference(&intel_fb->obj->base);
14062        mutex_unlock(&dev->struct_mutex);
14063        kfree(intel_fb);
14064}
14065
14066static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
14067                                                struct drm_file *file,
14068                                                unsigned int *handle)
14069{
14070        struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
14071        struct drm_i915_gem_object *obj = intel_fb->obj;
14072
14073        return drm_gem_handle_create(file, &obj->base, handle);
14074}
14075
14076static const struct drm_framebuffer_funcs intel_fb_funcs = {
14077        .destroy = intel_user_framebuffer_destroy,
14078        .create_handle = intel_user_framebuffer_create_handle,
14079};
14080
14081static
14082u32 intel_fb_pitch_limit(struct drm_device *dev, uint64_t fb_modifier,
14083                         uint32_t pixel_format)
14084{
14085        u32 gen = INTEL_INFO(dev)->gen;
14086
14087        if (gen >= 9) {
14088                /* "The stride in bytes must not exceed the of the size of 8K
14089                 *  pixels and 32K bytes."
14090                 */
14091                 return min(8192*drm_format_plane_cpp(pixel_format, 0), 32768);
14092        } else if (gen >= 5 && !IS_VALLEYVIEW(dev)) {
14093                return 32*1024;
14094        } else if (gen >= 4) {
14095                if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14096                        return 16*1024;
14097                else
14098                        return 32*1024;
14099        } else if (gen >= 3) {
14100                if (fb_modifier == I915_FORMAT_MOD_X_TILED)
14101                        return 8*1024;
14102                else
14103                        return 16*1024;
14104        } else {
14105                /* XXX DSPC is limited to 4k tiled */
14106                return 8*1024;
14107        }
14108}
14109
14110static int intel_framebuffer_init(struct drm_device *dev,
14111                                  struct intel_framebuffer *intel_fb,
14112                                  struct drm_mode_fb_cmd2 *mode_cmd,
14113                                  struct drm_i915_gem_object *obj)
14114{
14115        unsigned int aligned_height;
14116        int ret;
14117        u32 pitch_limit, stride_alignment;
14118
14119        WARN_ON(!mutex_is_locked(&dev->struct_mutex));
14120
14121        if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
14122                /* Enforce that fb modifier and tiling mode match, but only for
14123                 * X-tiled. This is needed for FBC. */
14124                if (!!(obj->tiling_mode == I915_TILING_X) !=
14125                    !!(mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED)) {
14126                        DRM_DEBUG("tiling_mode doesn't match fb modifier\n");
14127                        return -EINVAL;
14128                }
14129        } else {
14130                if (obj->tiling_mode == I915_TILING_X)
14131                        mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
14132                else if (obj->tiling_mode == I915_TILING_Y) {
14133                        DRM_DEBUG("No Y tiling for legacy addfb\n");
14134                        return -EINVAL;
14135                }
14136        }
14137
14138        /* Passed in modifier sanity checking. */
14139        switch (mode_cmd->modifier[0]) {
14140        case I915_FORMAT_MOD_Y_TILED:
14141        case I915_FORMAT_MOD_Yf_TILED:
14142                if (INTEL_INFO(dev)->gen < 9) {
14143                        DRM_DEBUG("Unsupported tiling 0x%llx!\n",
14144                                  mode_cmd->modifier[0]);
14145                        return -EINVAL;
14146                }
14147        case DRM_FORMAT_MOD_NONE:
14148        case I915_FORMAT_MOD_X_TILED:
14149                break;
14150        default:
14151                DRM_DEBUG("Unsupported fb modifier 0x%llx!\n",
14152                          mode_cmd->modifier[0]);
14153                return -EINVAL;
14154        }
14155
14156        stride_alignment = intel_fb_stride_alignment(dev, mode_cmd->modifier[0],
14157                                                     mode_cmd->pixel_format);
14158        if (mode_cmd->pitches[0] & (stride_alignment - 1)) {
14159                DRM_DEBUG("pitch (%d) must be at least %u byte aligned\n",
14160                          mode_cmd->pitches[0], stride_alignment);
14161                return -EINVAL;
14162        }
14163
14164        pitch_limit = intel_fb_pitch_limit(dev, mode_cmd->modifier[0],
14165                                           mode_cmd->pixel_format);
14166        if (mode_cmd->pitches[0] > pitch_limit) {
14167                DRM_DEBUG("%s pitch (%u) must be at less than %d\n",
14168                          mode_cmd->modifier[0] != DRM_FORMAT_MOD_NONE ?
14169                          "tiled" : "linear",
14170                          mode_cmd->pitches[0], pitch_limit);
14171                return -EINVAL;
14172        }
14173
14174        if (mode_cmd->modifier[0] == I915_FORMAT_MOD_X_TILED &&
14175            mode_cmd->pitches[0] != obj->stride) {
14176                DRM_DEBUG("pitch (%d) must match tiling stride (%d)\n",
14177                          mode_cmd->pitches[0], obj->stride);
14178                return -EINVAL;
14179        }
14180
14181        /* Reject formats not supported by any plane early. */
14182        switch (mode_cmd->pixel_format) {
14183        case DRM_FORMAT_C8:
14184        case DRM_FORMAT_RGB565:
14185        case DRM_FORMAT_XRGB8888:
14186        case DRM_FORMAT_ARGB8888:
14187                break;
14188        case DRM_FORMAT_XRGB1555:
14189                if (INTEL_INFO(dev)->gen > 3) {
14190                        DRM_DEBUG("unsupported pixel format: %s\n",
14191                                  drm_get_format_name(mode_cmd->pixel_format));
14192                        return -EINVAL;
14193                }
14194                break;
14195        case DRM_FORMAT_ABGR8888:
14196                if (!IS_VALLEYVIEW(dev) && INTEL_INFO(dev)->gen < 9) {
14197                        DRM_DEBUG("unsupported pixel format: %s\n",
14198                                  drm_get_format_name(mode_cmd->pixel_format));
14199                        return -EINVAL;
14200                }
14201                break;
14202        case DRM_FORMAT_XBGR8888:
14203        case DRM_FORMAT_XRGB2101010:
14204        case DRM_FORMAT_XBGR2101010:
14205                if (INTEL_INFO(dev)->gen < 4) {
14206                        DRM_DEBUG("unsupported pixel format: %s\n",
14207                                  drm_get_format_name(mode_cmd->pixel_format));
14208                        return -EINVAL;
14209                }
14210                break;
14211        case DRM_FORMAT_ABGR2101010:
14212                if (!IS_VALLEYVIEW(dev)) {
14213                        DRM_DEBUG("unsupported pixel format: %s\n",
14214                                  drm_get_format_name(mode_cmd->pixel_format));
14215                        return -EINVAL;
14216                }
14217                break;
14218        case DRM_FORMAT_YUYV:
14219        case DRM_FORMAT_UYVY:
14220        case DRM_FORMAT_YVYU:
14221        case DRM_FORMAT_VYUY:
14222                if (INTEL_INFO(dev)->gen < 5) {
14223                        DRM_DEBUG("unsupported pixel format: %s\n",
14224                                  drm_get_format_name(mode_cmd->pixel_format));
14225                        return -EINVAL;
14226                }
14227                break;
14228        default:
14229                DRM_DEBUG("unsupported pixel format: %s\n",
14230                          drm_get_format_name(mode_cmd->pixel_format));
14231                return -EINVAL;
14232        }
14233
14234        /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
14235        if (mode_cmd->offsets[0] != 0)
14236                return -EINVAL;
14237
14238        aligned_height = intel_fb_align_height(dev, mode_cmd->height,
14239                                               mode_cmd->pixel_format,
14240                                               mode_cmd->modifier[0]);
14241        /* FIXME drm helper for size checks (especially planar formats)? */
14242        if (obj->base.size < aligned_height * mode_cmd->pitches[0])
14243                return -EINVAL;
14244
14245        drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
14246        intel_fb->obj = obj;
14247        intel_fb->obj->framebuffer_references++;
14248
14249        ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
14250        if (ret) {
14251                DRM_ERROR("framebuffer init failed %d\n", ret);
14252                return ret;
14253        }
14254
14255        return 0;
14256}
14257
14258static struct drm_framebuffer *
14259intel_user_framebuffer_create(struct drm_device *dev,
14260                              struct drm_file *filp,
14261                              struct drm_mode_fb_cmd2 *mode_cmd)
14262{
14263        struct drm_i915_gem_object *obj;
14264
14265        obj = to_intel_bo(drm_gem_object_lookup(dev, filp,
14266                                                mode_cmd->handles[0]));
14267        if (&obj->base == NULL)
14268                return ERR_PTR(-ENOENT);
14269
14270        return intel_framebuffer_create(dev, mode_cmd, obj);
14271}
14272
14273#ifndef CONFIG_DRM_I915_FBDEV
14274static inline void intel_fbdev_output_poll_changed(struct drm_device *dev)
14275{
14276}
14277#endif
14278
14279static const struct drm_mode_config_funcs intel_mode_funcs = {
14280        .fb_create = intel_user_framebuffer_create,
14281        .output_poll_changed = intel_fbdev_output_poll_changed,
14282        .atomic_check = intel_atomic_check,
14283        .atomic_commit = intel_atomic_commit,
14284};
14285
14286/* Set up chip specific display functions */
14287static void intel_init_display(struct drm_device *dev)
14288{
14289        struct drm_i915_private *dev_priv = dev->dev_private;
14290
14291        if (HAS_PCH_SPLIT(dev) || IS_G4X(dev))
14292                dev_priv->display.find_dpll = g4x_find_best_dpll;
14293        else if (IS_CHERRYVIEW(dev))
14294                dev_priv->display.find_dpll = chv_find_best_dpll;
14295        else if (IS_VALLEYVIEW(dev))
14296                dev_priv->display.find_dpll = vlv_find_best_dpll;
14297        else if (IS_PINEVIEW(dev))
14298                dev_priv->display.find_dpll = pnv_find_best_dpll;
14299        else
14300                dev_priv->display.find_dpll = i9xx_find_best_dpll;
14301
14302        if (INTEL_INFO(dev)->gen >= 9) {
14303                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14304                dev_priv->display.get_initial_plane_config =
14305                        skylake_get_initial_plane_config;
14306                dev_priv->display.crtc_compute_clock =
14307                        haswell_crtc_compute_clock;
14308                dev_priv->display.crtc_enable = haswell_crtc_enable;
14309                dev_priv->display.crtc_disable = haswell_crtc_disable;
14310                dev_priv->display.off = ironlake_crtc_off;
14311                dev_priv->display.update_primary_plane =
14312                        skylake_update_primary_plane;
14313        } else if (HAS_DDI(dev)) {
14314                dev_priv->display.get_pipe_config = haswell_get_pipe_config;
14315                dev_priv->display.get_initial_plane_config =
14316                        ironlake_get_initial_plane_config;
14317                dev_priv->display.crtc_compute_clock =
14318                        haswell_crtc_compute_clock;
14319                dev_priv->display.crtc_enable = haswell_crtc_enable;
14320                dev_priv->display.crtc_disable = haswell_crtc_disable;
14321                dev_priv->display.off = ironlake_crtc_off;
14322                dev_priv->display.update_primary_plane =
14323                        ironlake_update_primary_plane;
14324        } else if (HAS_PCH_SPLIT(dev)) {
14325                dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
14326                dev_priv->display.get_initial_plane_config =
14327                        ironlake_get_initial_plane_config;
14328                dev_priv->display.crtc_compute_clock =
14329                        ironlake_crtc_compute_clock;
14330                dev_priv->display.crtc_enable = ironlake_crtc_enable;
14331                dev_priv->display.crtc_disable = ironlake_crtc_disable;
14332                dev_priv->display.off = ironlake_crtc_off;
14333                dev_priv->display.update_primary_plane =
14334                        ironlake_update_primary_plane;
14335        } else if (IS_VALLEYVIEW(dev)) {
14336                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14337                dev_priv->display.get_initial_plane_config =
14338                        i9xx_get_initial_plane_config;
14339                dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14340                dev_priv->display.crtc_enable = valleyview_crtc_enable;
14341                dev_priv->display.crtc_disable = i9xx_crtc_disable;
14342                dev_priv->display.off = i9xx_crtc_off;
14343                dev_priv->display.update_primary_plane =
14344                        i9xx_update_primary_plane;
14345        } else {
14346                dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
14347                dev_priv->display.get_initial_plane_config =
14348                        i9xx_get_initial_plane_config;
14349                dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
14350                dev_priv->display.crtc_enable = i9xx_crtc_enable;
14351                dev_priv->display.crtc_disable = i9xx_crtc_disable;
14352                dev_priv->display.off = i9xx_crtc_off;
14353                dev_priv->display.update_primary_plane =
14354                        i9xx_update_primary_plane;
14355        }
14356
14357        /* Returns the core display clock speed */
14358        if (IS_SKYLAKE(dev))
14359                dev_priv->display.get_display_clock_speed =
14360                        skylake_get_display_clock_speed;
14361        else if (IS_BROADWELL(dev))
14362                dev_priv->display.get_display_clock_speed =
14363                        broadwell_get_display_clock_speed;
14364        else if (IS_HASWELL(dev))
14365                dev_priv->display.get_display_clock_speed =
14366                        haswell_get_display_clock_speed;
14367        else if (IS_VALLEYVIEW(dev))
14368                dev_priv->display.get_display_clock_speed =
14369                        valleyview_get_display_clock_speed;
14370        else if (IS_GEN5(dev))
14371                dev_priv->display.get_display_clock_speed =
14372                        ilk_get_display_clock_speed;
14373        else if (IS_I945G(dev) || IS_BROADWATER(dev) ||
14374                 IS_GEN6(dev) || IS_IVYBRIDGE(dev) || (IS_G33(dev) && !IS_PINEVIEW_M(dev)))
14375                dev_priv->display.get_display_clock_speed =
14376                        i945_get_display_clock_speed;
14377        else if (IS_I915G(dev))
14378                dev_priv->display.get_display_clock_speed =
14379                        i915_get_display_clock_speed;
14380        else if (IS_I945GM(dev) || IS_845G(dev))
14381                dev_priv->display.get_display_clock_speed =
14382                        i9xx_misc_get_display_clock_speed;
14383        else if (IS_PINEVIEW(dev))
14384                dev_priv->display.get_display_clock_speed =
14385                        pnv_get_display_clock_speed;
14386        else if (IS_I915GM(dev))
14387                dev_priv->display.get_display_clock_speed =
14388                        i915gm_get_display_clock_speed;
14389        else if (IS_I865G(dev))
14390                dev_priv->display.get_display_clock_speed =
14391                        i865_get_display_clock_speed;
14392        else if (IS_I85X(dev))
14393                dev_priv->display.get_display_clock_speed =
14394                        i855_get_display_clock_speed;
14395        else /* 852, 830 */
14396                dev_priv->display.get_display_clock_speed =
14397                        i830_get_display_clock_speed;
14398
14399        if (IS_GEN5(dev)) {
14400                dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
14401        } else if (IS_GEN6(dev)) {
14402                dev_priv->display.fdi_link_train = gen6_fdi_link_train;
14403        } else if (IS_IVYBRIDGE(dev)) {
14404                /* FIXME: detect B0+ stepping and use auto training */
14405                dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
14406        } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
14407                dev_priv->display.fdi_link_train = hsw_fdi_link_train;
14408        } else if (IS_VALLEYVIEW(dev)) {
14409                dev_priv->display.modeset_global_resources =
14410                        valleyview_modeset_global_resources;
14411        } else if (IS_BROXTON(dev)) {
14412                dev_priv->display.modeset_global_resources =
14413                        broxton_modeset_global_resources;
14414        }
14415
14416        switch (INTEL_INFO(dev)->gen) {
14417        case 2:
14418                dev_priv->display.queue_flip = intel_gen2_queue_flip;
14419                break;
14420
14421        case 3:
14422                dev_priv->display.queue_flip = intel_gen3_queue_flip;
14423                break;
14424
14425        case 4:
14426        case 5:
14427                dev_priv->display.queue_flip = intel_gen4_queue_flip;
14428                break;
14429
14430        case 6:
14431                dev_priv->display.queue_flip = intel_gen6_queue_flip;
14432                break;
14433        case 7:
14434        case 8: /* FIXME(BDW): Check that the gen8 RCS flip works. */
14435                dev_priv->display.queue_flip = intel_gen7_queue_flip;
14436                break;
14437        case 9:
14438                /* Drop through - unsupported since execlist only. */
14439        default:
14440                /* Default just returns -ENODEV to indicate unsupported */
14441                dev_priv->display.queue_flip = intel_default_queue_flip;
14442        }
14443
14444        intel_panel_init_backlight_funcs(dev);
14445
14446        mutex_init(&dev_priv->pps_mutex);
14447}
14448
14449/*
14450 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
14451 * resume, or other times.  This quirk makes sure that's the case for
14452 * affected systems.
14453 */
14454static void quirk_pipea_force(struct drm_device *dev)
14455{
14456        struct drm_i915_private *dev_priv = dev->dev_private;
14457
14458        dev_priv->quirks |= QUIRK_PIPEA_FORCE;
14459        DRM_INFO("applying pipe a force quirk\n");
14460}
14461
14462static void quirk_pipeb_force(struct drm_device *dev)
14463{
14464        struct drm_i915_private *dev_priv = dev->dev_private;
14465
14466        dev_priv->quirks |= QUIRK_PIPEB_FORCE;
14467        DRM_INFO("applying pipe b force quirk\n");
14468}
14469
14470/*
14471 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
14472 */
14473static void quirk_ssc_force_disable(struct drm_device *dev)
14474{
14475        struct drm_i915_private *dev_priv = dev->dev_private;
14476        dev_priv->quirks |= QUIRK_LVDS_SSC_DISABLE;
14477        DRM_INFO("applying lvds SSC disable quirk\n");
14478}
14479
14480/*
14481 * A machine (e.g. Acer Aspire 5734Z) may need to invert the panel backlight
14482 * brightness value
14483 */
14484static void quirk_invert_brightness(struct drm_device *dev)
14485{
14486        struct drm_i915_private *dev_priv = dev->dev_private;
14487        dev_priv->quirks |= QUIRK_INVERT_BRIGHTNESS;
14488        DRM_INFO("applying inverted panel brightness quirk\n");
14489}
14490
14491/* Some VBT's incorrectly indicate no backlight is present */
14492static void quirk_backlight_present(struct drm_device *dev)
14493{
14494        struct drm_i915_private *dev_priv = dev->dev_private;
14495        dev_priv->quirks |= QUIRK_BACKLIGHT_PRESENT;
14496        DRM_INFO("applying backlight present quirk\n");
14497}
14498
14499struct intel_quirk {
14500        int device;
14501        int subsystem_vendor;
14502        int subsystem_device;
14503        void (*hook)(struct drm_device *dev);
14504};
14505
14506/* For systems that don't have a meaningful PCI subdevice/subvendor ID */
14507struct intel_dmi_quirk {
14508        void (*hook)(struct drm_device *dev);
14509        const struct dmi_system_id (*dmi_id_list)[];
14510};
14511
14512static int intel_dmi_reverse_brightness(const struct dmi_system_id *id)
14513{
14514        DRM_INFO("Backlight polarity reversed on %s\n", id->ident);
14515        return 1;
14516}
14517
14518static const struct intel_dmi_quirk intel_dmi_quirks[] = {
14519        {
14520                .dmi_id_list = &(const struct dmi_system_id[]) {
14521                        {
14522                                .callback = intel_dmi_reverse_brightness,
14523                                .ident = "NCR Corporation",
14524                                .matches = {DMI_MATCH(DMI_SYS_VENDOR, "NCR Corporation"),
14525                                            DMI_MATCH(DMI_PRODUCT_NAME, ""),
14526                                },
14527                        },
14528                        { }  /* terminating entry */
14529                },
14530                .hook = quirk_invert_brightness,
14531        },
14532};
14533
14534static struct intel_quirk intel_quirks[] = {
14535        /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
14536        { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
14537
14538        /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
14539        { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
14540
14541        /* 830 needs to leave pipe A & dpll A up */
14542        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
14543
14544        /* 830 needs to leave pipe B & dpll B up */
14545        { 0x3577, PCI_ANY_ID, PCI_ANY_ID, quirk_pipeb_force },
14546
14547        /* Lenovo U160 cannot use SSC on LVDS */
14548        { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable },
14549
14550        /* Sony Vaio Y cannot use SSC on LVDS */
14551        { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable },
14552
14553        /* Acer Aspire 5734Z must invert backlight brightness */
14554        { 0x2a42, 0x1025, 0x0459, quirk_invert_brightness },
14555
14556        /* Acer/eMachines G725 */
14557        { 0x2a42, 0x1025, 0x0210, quirk_invert_brightness },
14558
14559        /* Acer/eMachines e725 */
14560        { 0x2a42, 0x1025, 0x0212, quirk_invert_brightness },
14561
14562        /* Acer/Packard Bell NCL20 */
14563        { 0x2a42, 0x1025, 0x034b, quirk_invert_brightness },
14564
14565        /* Acer Aspire 4736Z */
14566        { 0x2a42, 0x1025, 0x0260, quirk_invert_brightness },
14567
14568        /* Acer Aspire 5336 */
14569        { 0x2a42, 0x1025, 0x048a, quirk_invert_brightness },
14570
14571        /* Acer C720 and C720P Chromebooks (Celeron 2955U) have backlights */
14572        { 0x0a06, 0x1025, 0x0a11, quirk_backlight_present },
14573
14574        /* Acer C720 Chromebook (Core i3 4005U) */
14575        { 0x0a16, 0x1025, 0x0a11, quirk_backlight_present },
14576
14577        /* Apple Macbook 2,1 (Core 2 T7400) */
14578        { 0x27a2, 0x8086, 0x7270, quirk_backlight_present },
14579
14580        /* Toshiba CB35 Chromebook (Celeron 2955U) */
14581        { 0x0a06, 0x1179, 0x0a88, quirk_backlight_present },
14582
14583        /* HP Chromebook 14 (Celeron 2955U) */
14584        { 0x0a06, 0x103c, 0x21ed, quirk_backlight_present },
14585
14586        /* Dell Chromebook 11 */
14587        { 0x0a06, 0x1028, 0x0a35, quirk_backlight_present },
14588};
14589
14590static void intel_init_quirks(struct drm_device *dev)
14591{
14592        struct pci_dev *d = dev->pdev;
14593        int i;
14594
14595        for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
14596                struct intel_quirk *q = &intel_quirks[i];
14597
14598                if (d->device == q->device &&
14599                    (d->subsystem_vendor == q->subsystem_vendor ||
14600                     q->subsystem_vendor == PCI_ANY_ID) &&
14601                    (d->subsystem_device == q->subsystem_device ||
14602                     q->subsystem_device == PCI_ANY_ID))
14603                        q->hook(dev);
14604        }
14605        for (i = 0; i < ARRAY_SIZE(intel_dmi_quirks); i++) {
14606                if (dmi_check_system(*intel_dmi_quirks[i].dmi_id_list) != 0)
14607                        intel_dmi_quirks[i].hook(dev);
14608        }
14609}
14610
14611/* Disable the VGA plane that we never use */
14612static void i915_disable_vga(struct drm_device *dev)
14613{
14614        struct drm_i915_private *dev_priv = dev->dev_private;
14615        u8 sr1;
14616        u32 vga_reg = i915_vgacntrl_reg(dev);
14617
14618        /* WaEnableVGAAccessThroughIOPort:ctg,elk,ilk,snb,ivb,vlv,hsw */
14619        vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
14620        outb(SR01, VGA_SR_INDEX);
14621        sr1 = inb(VGA_SR_DATA);
14622        outb(sr1 | 1<<5, VGA_SR_DATA);
14623        vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
14624        udelay(300);
14625
14626        I915_WRITE(vga_reg, VGA_DISP_DISABLE);
14627        POSTING_READ(vga_reg);
14628}
14629
14630void intel_modeset_init_hw(struct drm_device *dev)
14631{
14632        intel_prepare_ddi(dev);
14633
14634        if (IS_VALLEYVIEW(dev))
14635                vlv_update_cdclk(dev);
14636
14637        intel_init_clock_gating(dev);
14638
14639        intel_enable_gt_powersave(dev);
14640}
14641
14642void intel_modeset_init(struct drm_device *dev)
14643{
14644        struct drm_i915_private *dev_priv = dev->dev_private;
14645        int sprite, ret;
14646        enum pipe pipe;
14647        struct intel_crtc *crtc;
14648
14649        drm_mode_config_init(dev);
14650
14651        dev->mode_config.min_width = 0;
14652        dev->mode_config.min_height = 0;
14653
14654        dev->mode_config.preferred_depth = 24;
14655        dev->mode_config.prefer_shadow = 1;
14656
14657        dev->mode_config.allow_fb_modifiers = true;
14658
14659        dev->mode_config.funcs = &intel_mode_funcs;
14660
14661        intel_init_quirks(dev);
14662
14663        intel_init_pm(dev);
14664
14665        if (INTEL_INFO(dev)->num_pipes == 0)
14666                return;
14667
14668        intel_init_display(dev);
14669        intel_init_audio(dev);
14670
14671        if (IS_GEN2(dev)) {
14672                dev->mode_config.max_width = 2048;
14673                dev->mode_config.max_height = 2048;
14674        } else if (IS_GEN3(dev)) {
14675                dev->mode_config.max_width = 4096;
14676                dev->mode_config.max_height = 4096;
14677        } else {
14678                dev->mode_config.max_width = 8192;
14679                dev->mode_config.max_height = 8192;
14680        }
14681
14682        if (IS_845G(dev) || IS_I865G(dev)) {
14683                dev->mode_config.cursor_width = IS_845G(dev) ? 64 : 512;
14684                dev->mode_config.cursor_height = 1023;
14685        } else if (IS_GEN2(dev)) {
14686                dev->mode_config.cursor_width = GEN2_CURSOR_WIDTH;
14687                dev->mode_config.cursor_height = GEN2_CURSOR_HEIGHT;
14688        } else {
14689                dev->mode_config.cursor_width = MAX_CURSOR_WIDTH;
14690                dev->mode_config.cursor_height = MAX_CURSOR_HEIGHT;
14691        }
14692
14693        dev->mode_config.fb_base = dev_priv->gtt.mappable_base;
14694
14695        DRM_DEBUG_KMS("%d display pipe%s available.\n",
14696                      INTEL_INFO(dev)->num_pipes,
14697                      INTEL_INFO(dev)->num_pipes > 1 ? "s" : "");
14698
14699        for_each_pipe(dev_priv, pipe) {
14700                intel_crtc_init(dev, pipe);
14701                for_each_sprite(dev_priv, pipe, sprite) {
14702                        ret = intel_plane_init(dev, pipe, sprite);
14703                        if (ret)
14704                                DRM_DEBUG_KMS("pipe %c sprite %c init failed: %d\n",
14705                                              pipe_name(pipe), sprite_name(pipe, sprite), ret);
14706                }
14707        }
14708
14709        intel_init_dpio(dev);
14710
14711        intel_shared_dpll_init(dev);
14712
14713        /* Just disable it once at startup */
14714        i915_disable_vga(dev);
14715        intel_setup_outputs(dev);
14716
14717        /* Just in case the BIOS is doing something questionable. */
14718        intel_fbc_disable(dev);
14719
14720        drm_modeset_lock_all(dev);
14721        intel_modeset_setup_hw_state(dev, false);
14722        drm_modeset_unlock_all(dev);
14723
14724        for_each_intel_crtc(dev, crtc) {
14725                if (!crtc->active)
14726                        continue;
14727
14728                /*
14729                 * Note that reserving the BIOS fb up front prevents us
14730                 * from stuffing other stolen allocations like the ring
14731                 * on top.  This prevents some ugliness at boot time, and
14732                 * can even allow for smooth boot transitions if the BIOS
14733                 * fb is large enough for the active pipe configuration.
14734                 */
14735                if (dev_priv->display.get_initial_plane_config) {
14736                        dev_priv->display.get_initial_plane_config(crtc,
14737                                                           &crtc->plane_config);
14738                        /*
14739                         * If the fb is shared between multiple heads, we'll
14740                         * just get the first one.
14741                         */
14742                        intel_find_initial_plane_obj(crtc, &crtc->plane_config);
14743                }
14744        }
14745}
14746
14747static void intel_enable_pipe_a(struct drm_device *dev)
14748{
14749        struct intel_connector *connector;
14750        struct drm_connector *crt = NULL;
14751        struct intel_load_detect_pipe load_detect_temp;
14752        struct drm_modeset_acquire_ctx *ctx = dev->mode_config.acquire_ctx;
14753
14754        /* We can't just switch on the pipe A, we need to set things up with a
14755         * proper mode and output configuration. As a gross hack, enable pipe A
14756         * by enabling the load detect pipe once. */
14757        for_each_intel_connector(dev, connector) {
14758                if (connector->encoder->type == INTEL_OUTPUT_ANALOG) {
14759                        crt = &connector->base;
14760                        break;
14761                }
14762        }
14763
14764        if (!crt)
14765                return;
14766
14767        if (intel_get_load_detect_pipe(crt, NULL, &load_detect_temp, ctx))
14768                intel_release_load_detect_pipe(crt, &load_detect_temp, ctx);
14769}
14770
14771static bool
14772intel_check_plane_mapping(struct intel_crtc *crtc)
14773{
14774        struct drm_device *dev = crtc->base.dev;
14775        struct drm_i915_private *dev_priv = dev->dev_private;
14776        u32 reg, val;
14777
14778        if (INTEL_INFO(dev)->num_pipes == 1)
14779                return true;
14780
14781        reg = DSPCNTR(!crtc->plane);
14782        val = I915_READ(reg);
14783
14784        if ((val & DISPLAY_PLANE_ENABLE) &&
14785            (!!(val & DISPPLANE_SEL_PIPE_MASK) == crtc->pipe))
14786                return false;
14787
14788        return true;
14789}
14790
14791static void intel_sanitize_crtc(struct intel_crtc *crtc)
14792{
14793        struct drm_device *dev = crtc->base.dev;
14794        struct drm_i915_private *dev_priv = dev->dev_private;
14795        u32 reg;
14796
14797        /* Clear any frame start delays used for debugging left by the BIOS */
14798        reg = PIPECONF(crtc->config->cpu_transcoder);
14799        I915_WRITE(reg, I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
14800
14801        /* restore vblank interrupts to correct state */
14802        drm_crtc_vblank_reset(&crtc->base);
14803        if (crtc->active) {
14804                update_scanline_offset(crtc);
14805                drm_crtc_vblank_on(&crtc->base);
14806        }
14807
14808        /* We need to sanitize the plane -> pipe mapping first because this will
14809         * disable the crtc (and hence change the state) if it is wrong. Note
14810         * that gen4+ has a fixed plane -> pipe mapping.  */
14811        if (INTEL_INFO(dev)->gen < 4 && !intel_check_plane_mapping(crtc)) {
14812                struct intel_connector *connector;
14813                bool plane;
14814
14815                DRM_DEBUG_KMS("[CRTC:%d] wrong plane connection detected!\n",
14816                              crtc->base.base.id);
14817
14818                /* Pipe has the wrong plane attached and the plane is active.
14819                 * Temporarily change the plane mapping and disable everything
14820                 * ...  */
14821                plane = crtc->plane;
14822                to_intel_plane_state(crtc->base.primary->state)->visible = true;
14823                crtc->plane = !plane;
14824                intel_crtc_disable_planes(&crtc->base);
14825                dev_priv->display.crtc_disable(&crtc->base);
14826                crtc->plane = plane;
14827
14828                /* ... and break all links. */
14829                for_each_intel_connector(dev, connector) {
14830                        if (connector->encoder->base.crtc != &crtc->base)
14831                                continue;
14832
14833                        connector->base.dpms = DRM_MODE_DPMS_OFF;
14834                        connector->base.encoder = NULL;
14835                }
14836                /* multiple connectors may have the same encoder:
14837                 *  handle them and break crtc link separately */
14838                for_each_intel_connector(dev, connector)
14839                        if (connector->encoder->base.crtc == &crtc->base) {
14840                                connector->encoder->base.crtc = NULL;
14841                                connector->encoder->connectors_active = false;
14842                        }
14843
14844                WARN_ON(crtc->active);
14845                crtc->base.state->enable = false;
14846                crtc->base.state->active = false;
14847                crtc->base.enabled = false;
14848        }
14849
14850        if (dev_priv->quirks & QUIRK_PIPEA_FORCE &&
14851            crtc->pipe == PIPE_A && !crtc->active) {
14852                /* BIOS forgot to enable pipe A, this mostly happens after
14853                 * resume. Force-enable the pipe to fix this, the update_dpms
14854                 * call below we restore the pipe to the right state, but leave
14855                 * the required bits on. */
14856                intel_enable_pipe_a(dev);
14857        }
14858
14859        /* Adjust the state of the output pipe according to whether we
14860         * have active connectors/encoders. */
14861        intel_crtc_update_dpms(&crtc->base);
14862
14863        if (crtc->active != crtc->base.state->enable) {
14864                struct intel_encoder *encoder;
14865
14866                /* This can happen either due to bugs in the get_hw_state
14867                 * functions or because the pipe is force-enabled due to the
14868                 * pipe A quirk. */
14869                DRM_DEBUG_KMS("[CRTC:%d] hw state adjusted, was %s, now %s\n",
14870                              crtc->base.base.id,
14871                              crtc->base.state->enable ? "enabled" : "disabled",
14872                              crtc->active ? "enabled" : "disabled");
14873
14874                crtc->base.state->enable = crtc->active;
14875                crtc->base.state->active = crtc->active;
14876                crtc->base.enabled = crtc->active;
14877
14878                /* Because we only establish the connector -> encoder ->
14879                 * crtc links if something is active, this means the
14880                 * crtc is now deactivated. Break the links. connector
14881                 * -> encoder links are only establish when things are
14882                 *  actually up, hence no need to break them. */
14883                WARN_ON(crtc->active);
14884
14885                for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
14886                        WARN_ON(encoder->connectors_active);
14887                        encoder->base.crtc = NULL;
14888                }
14889        }
14890
14891        if (crtc->active || HAS_GMCH_DISPLAY(dev)) {
14892                /*
14893                 * We start out with underrun reporting disabled to avoid races.
14894                 * For correct bookkeeping mark this on active crtcs.
14895                 *
14896                 * Also on gmch platforms we dont have any hardware bits to
14897                 * disable the underrun reporting. Which means we need to start
14898                 * out with underrun reporting disabled also on inactive pipes,
14899                 * since otherwise we'll complain about the garbage we read when
14900                 * e.g. coming up after runtime pm.
14901                 *
14902                 * No protection against concurrent access is required - at
14903                 * worst a fifo underrun happens which also sets this to false.
14904                 */
14905                crtc->cpu_fifo_underrun_disabled = true;
14906                crtc->pch_fifo_underrun_disabled = true;
14907        }
14908}
14909
14910static void intel_sanitize_encoder(struct intel_encoder *encoder)
14911{
14912        struct intel_connector *connector;
14913        struct drm_device *dev = encoder->base.dev;
14914
14915        /* We need to check both for a crtc link (meaning that the
14916         * encoder is active and trying to read from a pipe) and the
14917         * pipe itself being active. */
14918        bool has_active_crtc = encoder->base.crtc &&
14919                to_intel_crtc(encoder->base.crtc)->active;
14920
14921        if (encoder->connectors_active && !has_active_crtc) {
14922                DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
14923                              encoder->base.base.id,
14924                              encoder->base.name);
14925
14926                /* Connector is active, but has no active pipe. This is
14927                 * fallout from our resume register restoring. Disable
14928                 * the encoder manually again. */
14929                if (encoder->base.crtc) {
14930                        DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
14931                                      encoder->base.base.id,
14932                                      encoder->base.name);
14933                        encoder->disable(encoder);
14934                        if (encoder->post_disable)
14935                                encoder->post_disable(encoder);
14936                }
14937                encoder->base.crtc = NULL;
14938                encoder->connectors_active = false;
14939
14940                /* Inconsistent output/port/pipe state happens presumably due to
14941                 * a bug in one of the get_hw_state functions. Or someplace else
14942                 * in our code, like the register restore mess on resume. Clamp
14943                 * things to off as a safer default. */
14944                for_each_intel_connector(dev, connector) {
14945                        if (connector->encoder != encoder)
14946                                continue;
14947                        connector->base.dpms = DRM_MODE_DPMS_OFF;
14948                        connector->base.encoder = NULL;
14949                }
14950        }
14951        /* Enabled encoders without active connectors will be fixed in
14952         * the crtc fixup. */
14953}
14954
14955void i915_redisable_vga_power_on(struct drm_device *dev)
14956{
14957        struct drm_i915_private *dev_priv = dev->dev_private;
14958        u32 vga_reg = i915_vgacntrl_reg(dev);
14959
14960        if (!(I915_READ(vga_reg) & VGA_DISP_DISABLE)) {
14961                DRM_DEBUG_KMS("Something enabled VGA plane, disabling it\n");
14962                i915_disable_vga(dev);
14963        }
14964}
14965
14966void i915_redisable_vga(struct drm_device *dev)
14967{
14968        struct drm_i915_private *dev_priv = dev->dev_private;
14969
14970        /* This function can be called both from intel_modeset_setup_hw_state or
14971         * at a very early point in our resume sequence, where the power well
14972         * structures are not yet restored. Since this function is at a very
14973         * paranoid "someone might have enabled VGA while we were not looking"
14974         * level, just check if the power well is enabled instead of trying to
14975         * follow the "don't touch the power well if we don't need it" policy
14976         * the rest of the driver uses. */
14977        if (!intel_display_power_is_enabled(dev_priv, POWER_DOMAIN_VGA))
14978                return;
14979
14980        i915_redisable_vga_power_on(dev);
14981}
14982
14983static bool primary_get_hw_state(struct intel_crtc *crtc)
14984{
14985        struct drm_i915_private *dev_priv = crtc->base.dev->dev_private;
14986
14987        if (!crtc->active)
14988                return false;
14989
14990        return I915_READ(DSPCNTR(crtc->plane)) & DISPLAY_PLANE_ENABLE;
14991}
14992
14993static void intel_modeset_readout_hw_state(struct drm_device *dev)
14994{
14995        struct drm_i915_private *dev_priv = dev->dev_private;
14996        enum pipe pipe;
14997        struct intel_crtc *crtc;
14998        struct intel_encoder *encoder;
14999        struct intel_connector *connector;
15000        int i;
15001
15002        for_each_intel_crtc(dev, crtc) {
15003                struct drm_plane *primary = crtc->base.primary;
15004                struct intel_plane_state *plane_state;
15005
15006                memset(crtc->config, 0, sizeof(*crtc->config));
15007                crtc->config->base.crtc = &crtc->base;
15008
15009                crtc->config->quirks |= PIPE_CONFIG_QUIRK_INHERITED_MODE;
15010
15011                crtc->active = dev_priv->display.get_pipe_config(crtc,
15012                                                                 crtc->config);
15013
15014                crtc->base.state->enable = crtc->active;
15015                crtc->base.state->active = crtc->active;
15016                crtc->base.enabled = crtc->active;
15017
15018                plane_state = to_intel_plane_state(primary->state);
15019                plane_state->visible = primary_get_hw_state(crtc);
15020
15021                DRM_DEBUG_KMS("[CRTC:%d] hw state readout: %s\n",
15022                              crtc->base.base.id,
15023                              crtc->active ? "enabled" : "disabled");
15024        }
15025
15026        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15027                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15028
15029                pll->on = pll->get_hw_state(dev_priv, pll,
15030                                            &pll->config.hw_state);
15031                pll->active = 0;
15032                pll->config.crtc_mask = 0;
15033                for_each_intel_crtc(dev, crtc) {
15034                        if (crtc->active && intel_crtc_to_shared_dpll(crtc) == pll) {
15035                                pll->active++;
15036                                pll->config.crtc_mask |= 1 << crtc->pipe;
15037                        }
15038                }
15039
15040                DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
15041                              pll->name, pll->config.crtc_mask, pll->on);
15042
15043                if (pll->config.crtc_mask)
15044                        intel_display_power_get(dev_priv, POWER_DOMAIN_PLLS);
15045        }
15046
15047        for_each_intel_encoder(dev, encoder) {
15048                pipe = 0;
15049
15050                if (encoder->get_hw_state(encoder, &pipe)) {
15051                        crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15052                        encoder->base.crtc = &crtc->base;
15053                        encoder->get_config(encoder, crtc->config);
15054                } else {
15055                        encoder->base.crtc = NULL;
15056                }
15057
15058                encoder->connectors_active = false;
15059                DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
15060                              encoder->base.base.id,
15061                              encoder->base.name,
15062                              encoder->base.crtc ? "enabled" : "disabled",
15063                              pipe_name(pipe));
15064        }
15065
15066        for_each_intel_connector(dev, connector) {
15067                if (connector->get_hw_state(connector)) {
15068                        connector->base.dpms = DRM_MODE_DPMS_ON;
15069                        connector->encoder->connectors_active = true;
15070                        connector->base.encoder = &connector->encoder->base;
15071                } else {
15072                        connector->base.dpms = DRM_MODE_DPMS_OFF;
15073                        connector->base.encoder = NULL;
15074                }
15075                DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
15076                              connector->base.base.id,
15077                              connector->base.name,
15078                              connector->base.encoder ? "enabled" : "disabled");
15079        }
15080}
15081
15082/* Scan out the current hw modeset state, sanitizes it and maps it into the drm
15083 * and i915 state tracking structures. */
15084void intel_modeset_setup_hw_state(struct drm_device *dev,
15085                                  bool force_restore)
15086{
15087        struct drm_i915_private *dev_priv = dev->dev_private;
15088        enum pipe pipe;
15089        struct intel_crtc *crtc;
15090        struct intel_encoder *encoder;
15091        int i;
15092
15093        intel_modeset_readout_hw_state(dev);
15094
15095        /*
15096         * Now that we have the config, copy it to each CRTC struct
15097         * Note that this could go away if we move to using crtc_config
15098         * checking everywhere.
15099         */
15100        for_each_intel_crtc(dev, crtc) {
15101                if (crtc->active && i915.fastboot) {
15102                        intel_mode_from_pipe_config(&crtc->base.mode,
15103                                                    crtc->config);
15104                        DRM_DEBUG_KMS("[CRTC:%d] found active mode: ",
15105                                      crtc->base.base.id);
15106                        drm_mode_debug_printmodeline(&crtc->base.mode);
15107                }
15108        }
15109
15110        /* HW state is read out, now we need to sanitize this mess. */
15111        for_each_intel_encoder(dev, encoder) {
15112                intel_sanitize_encoder(encoder);
15113        }
15114
15115        for_each_pipe(dev_priv, pipe) {
15116                crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
15117                intel_sanitize_crtc(crtc);
15118                intel_dump_pipe_config(crtc, crtc->config,
15119                                       "[setup_hw_state]");
15120        }
15121
15122        intel_modeset_update_connector_atomic_state(dev);
15123
15124        for (i = 0; i < dev_priv->num_shared_dpll; i++) {
15125                struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
15126
15127                if (!pll->on || pll->active)
15128                        continue;
15129
15130                DRM_DEBUG_KMS("%s enabled but not in use, disabling\n", pll->name);
15131
15132                pll->disable(dev_priv, pll);
15133                pll->on = false;
15134        }
15135
15136        if (IS_GEN9(dev))
15137                skl_wm_get_hw_state(dev);
15138        else if (HAS_PCH_SPLIT(dev))
15139                ilk_wm_get_hw_state(dev);
15140
15141        if (force_restore) {
15142                i915_redisable_vga(dev);
15143
15144                /*
15145                 * We need to use raw interfaces for restoring state to avoid
15146                 * checking (bogus) intermediate states.
15147                 */
15148                for_each_pipe(dev_priv, pipe) {
15149                        struct drm_crtc *crtc =
15150                                dev_priv->pipe_to_crtc_mapping[pipe];
15151
15152                        intel_crtc_restore_mode(crtc);
15153                }
15154        } else {
15155                intel_modeset_update_staged_output_state(dev);
15156        }
15157
15158        intel_modeset_check_state(dev);
15159}
15160
15161void intel_modeset_gem_init(struct drm_device *dev)
15162{
15163        struct drm_i915_private *dev_priv = dev->dev_private;
15164        struct drm_crtc *c;
15165        struct drm_i915_gem_object *obj;
15166        int ret;
15167
15168        mutex_lock(&dev->struct_mutex);
15169        intel_init_gt_powersave(dev);
15170        mutex_unlock(&dev->struct_mutex);
15171
15172        /*
15173         * There may be no VBT; and if the BIOS enabled SSC we can
15174         * just keep using it to avoid unnecessary flicker.  Whereas if the
15175         * BIOS isn't using it, don't assume it will work even if the VBT
15176         * indicates as much.
15177         */
15178        if (HAS_PCH_IBX(dev) || HAS_PCH_CPT(dev))
15179                dev_priv->vbt.lvds_use_ssc = !!(I915_READ(PCH_DREF_CONTROL) &
15180                                                DREF_SSC1_ENABLE);
15181
15182        intel_modeset_init_hw(dev);
15183
15184        intel_setup_overlay(dev);
15185
15186        /*
15187         * Make sure any fbs we allocated at startup are properly
15188         * pinned & fenced.  When we do the allocation it's too early
15189         * for this.
15190         */
15191        for_each_crtc(dev, c) {
15192                obj = intel_fb_obj(c->primary->fb);
15193                if (obj == NULL)
15194                        continue;
15195
15196                mutex_lock(&dev->struct_mutex);
15197                ret = intel_pin_and_fence_fb_obj(c->primary,
15198                                                 c->primary->fb,
15199                                                 c->primary->state,
15200                                                 NULL);
15201                mutex_unlock(&dev->struct_mutex);
15202                if (ret) {
15203                        DRM_ERROR("failed to pin boot fb on pipe %d\n",
15204                                  to_intel_crtc(c)->pipe);
15205                        drm_framebuffer_unreference(c->primary->fb);
15206                        c->primary->fb = NULL;
15207                        update_state_fb(c->primary);
15208                }
15209        }
15210
15211        intel_backlight_register(dev);
15212}
15213
15214void intel_connector_unregister(struct intel_connector *intel_connector)
15215{
15216        struct drm_connector *connector = &intel_connector->base;
15217
15218        intel_panel_destroy_backlight(connector);
15219        drm_connector_unregister(connector);
15220}
15221
15222void intel_modeset_cleanup(struct drm_device *dev)
15223{
15224        struct drm_i915_private *dev_priv = dev->dev_private;
15225        struct drm_connector *connector;
15226
15227        intel_disable_gt_powersave(dev);
15228
15229        intel_backlight_unregister(dev);
15230
15231        /*
15232         * Interrupts and polling as the first thing to avoid creating havoc.
15233         * Too much stuff here (turning of connectors, ...) would
15234         * experience fancy races otherwise.
15235         */
15236        intel_irq_uninstall(dev_priv);
15237
15238        /*
15239         * Due to the hpd irq storm handling the hotplug work can re-arm the
15240         * poll handlers. Hence disable polling after hpd handling is shut down.
15241         */
15242        drm_kms_helper_poll_fini(dev);
15243
15244        mutex_lock(&dev->struct_mutex);
15245
15246        intel_unregister_dsm_handler();
15247
15248        intel_fbc_disable(dev);
15249
15250        mutex_unlock(&dev->struct_mutex);
15251
15252        /* flush any delayed tasks or pending work */
15253        flush_scheduled_work();
15254
15255        /* destroy the backlight and sysfs files before encoders/connectors */
15256        list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
15257                struct intel_connector *intel_connector;
15258
15259                intel_connector = to_intel_connector(connector);
15260                intel_connector->unregister(intel_connector);
15261        }
15262
15263        drm_mode_config_cleanup(dev);
15264
15265        intel_cleanup_overlay(dev);
15266
15267        mutex_lock(&dev->struct_mutex);
15268        intel_cleanup_gt_powersave(dev);
15269        mutex_unlock(&dev->struct_mutex);
15270}
15271
15272/*
15273 * Return which encoder is currently attached for connector.
15274 */
15275struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
15276{
15277        return &intel_attached_encoder(connector)->base;
15278}
15279
15280void intel_connector_attach_encoder(struct intel_connector *connector,
15281                                    struct intel_encoder *encoder)
15282{
15283        connector->encoder = encoder;
15284        drm_mode_connector_attach_encoder(&connector->base,
15285                                          &encoder->base);
15286}
15287
15288/*
15289 * set vga decode state - true == enable VGA decode
15290 */
15291int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
15292{
15293        struct drm_i915_private *dev_priv = dev->dev_private;
15294        unsigned reg = INTEL_INFO(dev)->gen >= 6 ? SNB_GMCH_CTRL : INTEL_GMCH_CTRL;
15295        u16 gmch_ctrl;
15296
15297        if (pci_read_config_word(dev_priv->bridge_dev, reg, &gmch_ctrl)) {
15298                DRM_ERROR("failed to read control word\n");
15299                return -EIO;
15300        }
15301
15302        if (!!(gmch_ctrl & INTEL_GMCH_VGA_DISABLE) == !state)
15303                return 0;
15304
15305        if (state)
15306                gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
15307        else
15308                gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
15309
15310        if (pci_write_config_word(dev_priv->bridge_dev, reg, gmch_ctrl)) {
15311                DRM_ERROR("failed to write control word\n");
15312                return -EIO;
15313        }
15314
15315        return 0;
15316}
15317
15318struct intel_display_error_state {
15319
15320        u32 power_well_driver;
15321
15322        int num_transcoders;
15323
15324        struct intel_cursor_error_state {
15325                u32 control;
15326                u32 position;
15327                u32 base;
15328                u32 size;
15329        } cursor[I915_MAX_PIPES];
15330
15331        struct intel_pipe_error_state {
15332                bool power_domain_on;
15333                u32 source;
15334                u32 stat;
15335        } pipe[I915_MAX_PIPES];
15336
15337        struct intel_plane_error_state {
15338                u32 control;
15339                u32 stride;
15340                u32 size;
15341                u32 pos;
15342                u32 addr;
15343                u32 surface;
15344                u32 tile_offset;
15345        } plane[I915_MAX_PIPES];
15346
15347        struct intel_transcoder_error_state {
15348                bool power_domain_on;
15349                enum transcoder cpu_transcoder;
15350
15351                u32 conf;
15352
15353                u32 htotal;
15354                u32 hblank;
15355                u32 hsync;
15356                u32 vtotal;
15357                u32 vblank;
15358                u32 vsync;
15359        } transcoder[4];
15360};
15361
15362struct intel_display_error_state *
15363intel_display_capture_error_state(struct drm_device *dev)
15364{
15365        struct drm_i915_private *dev_priv = dev->dev_private;
15366        struct intel_display_error_state *error;
15367        int transcoders[] = {
15368                TRANSCODER_A,
15369                TRANSCODER_B,
15370                TRANSCODER_C,
15371                TRANSCODER_EDP,
15372        };
15373        int i;
15374
15375        if (INTEL_INFO(dev)->num_pipes == 0)
15376                return NULL;
15377
15378        error = kzalloc(sizeof(*error), GFP_ATOMIC);
15379        if (error == NULL)
15380                return NULL;
15381
15382        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15383                error->power_well_driver = I915_READ(HSW_PWR_WELL_DRIVER);
15384
15385        for_each_pipe(dev_priv, i) {
15386                error->pipe[i].power_domain_on =
15387                        __intel_display_power_is_enabled(dev_priv,
15388                                                         POWER_DOMAIN_PIPE(i));
15389                if (!error->pipe[i].power_domain_on)
15390                        continue;
15391
15392                error->cursor[i].control = I915_READ(CURCNTR(i));
15393                error->cursor[i].position = I915_READ(CURPOS(i));
15394                error->cursor[i].base = I915_READ(CURBASE(i));
15395
15396                error->plane[i].control = I915_READ(DSPCNTR(i));
15397                error->plane[i].stride = I915_READ(DSPSTRIDE(i));
15398                if (INTEL_INFO(dev)->gen <= 3) {
15399                        error->plane[i].size = I915_READ(DSPSIZE(i));
15400                        error->plane[i].pos = I915_READ(DSPPOS(i));
15401                }
15402                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15403                        error->plane[i].addr = I915_READ(DSPADDR(i));
15404                if (INTEL_INFO(dev)->gen >= 4) {
15405                        error->plane[i].surface = I915_READ(DSPSURF(i));
15406                        error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
15407                }
15408
15409                error->pipe[i].source = I915_READ(PIPESRC(i));
15410
15411                if (HAS_GMCH_DISPLAY(dev))
15412                        error->pipe[i].stat = I915_READ(PIPESTAT(i));
15413        }
15414
15415        error->num_transcoders = INTEL_INFO(dev)->num_pipes;
15416        if (HAS_DDI(dev_priv->dev))
15417                error->num_transcoders++; /* Account for eDP. */
15418
15419        for (i = 0; i < error->num_transcoders; i++) {
15420                enum transcoder cpu_transcoder = transcoders[i];
15421
15422                error->transcoder[i].power_domain_on =
15423                        __intel_display_power_is_enabled(dev_priv,
15424                                POWER_DOMAIN_TRANSCODER(cpu_transcoder));
15425                if (!error->transcoder[i].power_domain_on)
15426                        continue;
15427
15428                error->transcoder[i].cpu_transcoder = cpu_transcoder;
15429
15430                error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
15431                error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
15432                error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
15433                error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
15434                error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
15435                error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
15436                error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
15437        }
15438
15439        return error;
15440}
15441
15442#define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
15443
15444void
15445intel_display_print_error_state(struct drm_i915_error_state_buf *m,
15446                                struct drm_device *dev,
15447                                struct intel_display_error_state *error)
15448{
15449        struct drm_i915_private *dev_priv = dev->dev_private;
15450        int i;
15451
15452        if (!error)
15453                return;
15454
15455        err_printf(m, "Num Pipes: %d\n", INTEL_INFO(dev)->num_pipes);
15456        if (IS_HASWELL(dev) || IS_BROADWELL(dev))
15457                err_printf(m, "PWR_WELL_CTL2: %08x\n",
15458                           error->power_well_driver);
15459        for_each_pipe(dev_priv, i) {
15460                err_printf(m, "Pipe [%d]:\n", i);
15461                err_printf(m, "  Power: %s\n",
15462                           error->pipe[i].power_domain_on ? "on" : "off");
15463                err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
15464                err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
15465
15466                err_printf(m, "Plane [%d]:\n", i);
15467                err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
15468                err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
15469                if (INTEL_INFO(dev)->gen <= 3) {
15470                        err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
15471                        err_printf(m, "  POS: %08x\n", error->plane[i].pos);
15472                }
15473                if (INTEL_INFO(dev)->gen <= 7 && !IS_HASWELL(dev))
15474                        err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
15475                if (INTEL_INFO(dev)->gen >= 4) {
15476                        err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
15477                        err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
15478                }
15479
15480                err_printf(m, "Cursor [%d]:\n", i);
15481                err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
15482                err_printf(m, "  POS: %08x\n", error->cursor[i].position);
15483                err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
15484        }
15485
15486        for (i = 0; i < error->num_transcoders; i++) {
15487                err_printf(m, "CPU transcoder: %c\n",
15488                           transcoder_name(error->transcoder[i].cpu_transcoder));
15489                err_printf(m, "  Power: %s\n",
15490                           error->transcoder[i].power_domain_on ? "on" : "off");
15491                err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
15492                err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
15493                err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
15494                err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
15495                err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
15496                err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
15497                err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
15498        }
15499}
15500
15501void intel_modeset_preclose(struct drm_device *dev, struct drm_file *file)
15502{
15503        struct intel_crtc *crtc;
15504
15505        for_each_intel_crtc(dev, crtc) {
15506                struct intel_unpin_work *work;
15507
15508                spin_lock_irq(&dev->event_lock);
15509
15510                work = crtc->unpin_work;
15511
15512                if (work && work->event &&
15513                    work->event->base.file_priv == file) {
15514                        kfree(work->event);
15515                        work->event = NULL;
15516                }
15517
15518                spin_unlock_irq(&dev->event_lock);
15519        }
15520}
15521