linux/drivers/infiniband/ulp/srpt/ib_srpt.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2006 - 2009 Mellanox Technology Inc.  All rights reserved.
   3 * Copyright (C) 2008 - 2011 Bart Van Assche <bvanassche@acm.org>.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/init.h>
  37#include <linux/slab.h>
  38#include <linux/err.h>
  39#include <linux/ctype.h>
  40#include <linux/kthread.h>
  41#include <linux/string.h>
  42#include <linux/delay.h>
  43#include <linux/atomic.h>
  44#include <scsi/scsi_proto.h>
  45#include <scsi/scsi_tcq.h>
  46#include <target/configfs_macros.h>
  47#include <target/target_core_base.h>
  48#include <target/target_core_fabric_configfs.h>
  49#include <target/target_core_fabric.h>
  50#include "ib_srpt.h"
  51
  52/* Name of this kernel module. */
  53#define DRV_NAME                "ib_srpt"
  54#define DRV_VERSION             "2.0.0"
  55#define DRV_RELDATE             "2011-02-14"
  56
  57#define SRPT_ID_STRING  "Linux SRP target"
  58
  59#undef pr_fmt
  60#define pr_fmt(fmt) DRV_NAME " " fmt
  61
  62MODULE_AUTHOR("Vu Pham and Bart Van Assche");
  63MODULE_DESCRIPTION("InfiniBand SCSI RDMA Protocol target "
  64                   "v" DRV_VERSION " (" DRV_RELDATE ")");
  65MODULE_LICENSE("Dual BSD/GPL");
  66
  67/*
  68 * Global Variables
  69 */
  70
  71static u64 srpt_service_guid;
  72static DEFINE_SPINLOCK(srpt_dev_lock);  /* Protects srpt_dev_list. */
  73static LIST_HEAD(srpt_dev_list);        /* List of srpt_device structures. */
  74
  75static unsigned srp_max_req_size = DEFAULT_MAX_REQ_SIZE;
  76module_param(srp_max_req_size, int, 0444);
  77MODULE_PARM_DESC(srp_max_req_size,
  78                 "Maximum size of SRP request messages in bytes.");
  79
  80static int srpt_srq_size = DEFAULT_SRPT_SRQ_SIZE;
  81module_param(srpt_srq_size, int, 0444);
  82MODULE_PARM_DESC(srpt_srq_size,
  83                 "Shared receive queue (SRQ) size.");
  84
  85static int srpt_get_u64_x(char *buffer, struct kernel_param *kp)
  86{
  87        return sprintf(buffer, "0x%016llx", *(u64 *)kp->arg);
  88}
  89module_param_call(srpt_service_guid, NULL, srpt_get_u64_x, &srpt_service_guid,
  90                  0444);
  91MODULE_PARM_DESC(srpt_service_guid,
  92                 "Using this value for ioc_guid, id_ext, and cm_listen_id"
  93                 " instead of using the node_guid of the first HCA.");
  94
  95static struct ib_client srpt_client;
  96static void srpt_release_channel(struct srpt_rdma_ch *ch);
  97static int srpt_queue_status(struct se_cmd *cmd);
  98
  99/**
 100 * opposite_dma_dir() - Swap DMA_TO_DEVICE and DMA_FROM_DEVICE.
 101 */
 102static inline
 103enum dma_data_direction opposite_dma_dir(enum dma_data_direction dir)
 104{
 105        switch (dir) {
 106        case DMA_TO_DEVICE:     return DMA_FROM_DEVICE;
 107        case DMA_FROM_DEVICE:   return DMA_TO_DEVICE;
 108        default:                return dir;
 109        }
 110}
 111
 112/**
 113 * srpt_sdev_name() - Return the name associated with the HCA.
 114 *
 115 * Examples are ib0, ib1, ...
 116 */
 117static inline const char *srpt_sdev_name(struct srpt_device *sdev)
 118{
 119        return sdev->device->name;
 120}
 121
 122static enum rdma_ch_state srpt_get_ch_state(struct srpt_rdma_ch *ch)
 123{
 124        unsigned long flags;
 125        enum rdma_ch_state state;
 126
 127        spin_lock_irqsave(&ch->spinlock, flags);
 128        state = ch->state;
 129        spin_unlock_irqrestore(&ch->spinlock, flags);
 130        return state;
 131}
 132
 133static enum rdma_ch_state
 134srpt_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state new_state)
 135{
 136        unsigned long flags;
 137        enum rdma_ch_state prev;
 138
 139        spin_lock_irqsave(&ch->spinlock, flags);
 140        prev = ch->state;
 141        ch->state = new_state;
 142        spin_unlock_irqrestore(&ch->spinlock, flags);
 143        return prev;
 144}
 145
 146/**
 147 * srpt_test_and_set_ch_state() - Test and set the channel state.
 148 *
 149 * Returns true if and only if the channel state has been set to the new state.
 150 */
 151static bool
 152srpt_test_and_set_ch_state(struct srpt_rdma_ch *ch, enum rdma_ch_state old,
 153                           enum rdma_ch_state new)
 154{
 155        unsigned long flags;
 156        enum rdma_ch_state prev;
 157
 158        spin_lock_irqsave(&ch->spinlock, flags);
 159        prev = ch->state;
 160        if (prev == old)
 161                ch->state = new;
 162        spin_unlock_irqrestore(&ch->spinlock, flags);
 163        return prev == old;
 164}
 165
 166/**
 167 * srpt_event_handler() - Asynchronous IB event callback function.
 168 *
 169 * Callback function called by the InfiniBand core when an asynchronous IB
 170 * event occurs. This callback may occur in interrupt context. See also
 171 * section 11.5.2, Set Asynchronous Event Handler in the InfiniBand
 172 * Architecture Specification.
 173 */
 174static void srpt_event_handler(struct ib_event_handler *handler,
 175                               struct ib_event *event)
 176{
 177        struct srpt_device *sdev;
 178        struct srpt_port *sport;
 179
 180        sdev = ib_get_client_data(event->device, &srpt_client);
 181        if (!sdev || sdev->device != event->device)
 182                return;
 183
 184        pr_debug("ASYNC event= %d on device= %s\n", event->event,
 185                 srpt_sdev_name(sdev));
 186
 187        switch (event->event) {
 188        case IB_EVENT_PORT_ERR:
 189                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 190                        sport = &sdev->port[event->element.port_num - 1];
 191                        sport->lid = 0;
 192                        sport->sm_lid = 0;
 193                }
 194                break;
 195        case IB_EVENT_PORT_ACTIVE:
 196        case IB_EVENT_LID_CHANGE:
 197        case IB_EVENT_PKEY_CHANGE:
 198        case IB_EVENT_SM_CHANGE:
 199        case IB_EVENT_CLIENT_REREGISTER:
 200        case IB_EVENT_GID_CHANGE:
 201                /* Refresh port data asynchronously. */
 202                if (event->element.port_num <= sdev->device->phys_port_cnt) {
 203                        sport = &sdev->port[event->element.port_num - 1];
 204                        if (!sport->lid && !sport->sm_lid)
 205                                schedule_work(&sport->work);
 206                }
 207                break;
 208        default:
 209                pr_err("received unrecognized IB event %d\n",
 210                       event->event);
 211                break;
 212        }
 213}
 214
 215/**
 216 * srpt_srq_event() - SRQ event callback function.
 217 */
 218static void srpt_srq_event(struct ib_event *event, void *ctx)
 219{
 220        pr_info("SRQ event %d\n", event->event);
 221}
 222
 223/**
 224 * srpt_qp_event() - QP event callback function.
 225 */
 226static void srpt_qp_event(struct ib_event *event, struct srpt_rdma_ch *ch)
 227{
 228        pr_debug("QP event %d on cm_id=%p sess_name=%s state=%d\n",
 229                 event->event, ch->cm_id, ch->sess_name, srpt_get_ch_state(ch));
 230
 231        switch (event->event) {
 232        case IB_EVENT_COMM_EST:
 233                ib_cm_notify(ch->cm_id, event->event);
 234                break;
 235        case IB_EVENT_QP_LAST_WQE_REACHED:
 236                if (srpt_test_and_set_ch_state(ch, CH_DRAINING,
 237                                               CH_RELEASING))
 238                        srpt_release_channel(ch);
 239                else
 240                        pr_debug("%s: state %d - ignored LAST_WQE.\n",
 241                                 ch->sess_name, srpt_get_ch_state(ch));
 242                break;
 243        default:
 244                pr_err("received unrecognized IB QP event %d\n", event->event);
 245                break;
 246        }
 247}
 248
 249/**
 250 * srpt_set_ioc() - Helper function for initializing an IOUnitInfo structure.
 251 *
 252 * @slot: one-based slot number.
 253 * @value: four-bit value.
 254 *
 255 * Copies the lowest four bits of value in element slot of the array of four
 256 * bit elements called c_list (controller list). The index slot is one-based.
 257 */
 258static void srpt_set_ioc(u8 *c_list, u32 slot, u8 value)
 259{
 260        u16 id;
 261        u8 tmp;
 262
 263        id = (slot - 1) / 2;
 264        if (slot & 0x1) {
 265                tmp = c_list[id] & 0xf;
 266                c_list[id] = (value << 4) | tmp;
 267        } else {
 268                tmp = c_list[id] & 0xf0;
 269                c_list[id] = (value & 0xf) | tmp;
 270        }
 271}
 272
 273/**
 274 * srpt_get_class_port_info() - Copy ClassPortInfo to a management datagram.
 275 *
 276 * See also section 16.3.3.1 ClassPortInfo in the InfiniBand Architecture
 277 * Specification.
 278 */
 279static void srpt_get_class_port_info(struct ib_dm_mad *mad)
 280{
 281        struct ib_class_port_info *cif;
 282
 283        cif = (struct ib_class_port_info *)mad->data;
 284        memset(cif, 0, sizeof *cif);
 285        cif->base_version = 1;
 286        cif->class_version = 1;
 287        cif->resp_time_value = 20;
 288
 289        mad->mad_hdr.status = 0;
 290}
 291
 292/**
 293 * srpt_get_iou() - Write IOUnitInfo to a management datagram.
 294 *
 295 * See also section 16.3.3.3 IOUnitInfo in the InfiniBand Architecture
 296 * Specification. See also section B.7, table B.6 in the SRP r16a document.
 297 */
 298static void srpt_get_iou(struct ib_dm_mad *mad)
 299{
 300        struct ib_dm_iou_info *ioui;
 301        u8 slot;
 302        int i;
 303
 304        ioui = (struct ib_dm_iou_info *)mad->data;
 305        ioui->change_id = cpu_to_be16(1);
 306        ioui->max_controllers = 16;
 307
 308        /* set present for slot 1 and empty for the rest */
 309        srpt_set_ioc(ioui->controller_list, 1, 1);
 310        for (i = 1, slot = 2; i < 16; i++, slot++)
 311                srpt_set_ioc(ioui->controller_list, slot, 0);
 312
 313        mad->mad_hdr.status = 0;
 314}
 315
 316/**
 317 * srpt_get_ioc() - Write IOControllerprofile to a management datagram.
 318 *
 319 * See also section 16.3.3.4 IOControllerProfile in the InfiniBand
 320 * Architecture Specification. See also section B.7, table B.7 in the SRP
 321 * r16a document.
 322 */
 323static void srpt_get_ioc(struct srpt_port *sport, u32 slot,
 324                         struct ib_dm_mad *mad)
 325{
 326        struct srpt_device *sdev = sport->sdev;
 327        struct ib_dm_ioc_profile *iocp;
 328
 329        iocp = (struct ib_dm_ioc_profile *)mad->data;
 330
 331        if (!slot || slot > 16) {
 332                mad->mad_hdr.status
 333                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 334                return;
 335        }
 336
 337        if (slot > 2) {
 338                mad->mad_hdr.status
 339                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 340                return;
 341        }
 342
 343        memset(iocp, 0, sizeof *iocp);
 344        strcpy(iocp->id_string, SRPT_ID_STRING);
 345        iocp->guid = cpu_to_be64(srpt_service_guid);
 346        iocp->vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
 347        iocp->device_id = cpu_to_be32(sdev->dev_attr.vendor_part_id);
 348        iocp->device_version = cpu_to_be16(sdev->dev_attr.hw_ver);
 349        iocp->subsys_vendor_id = cpu_to_be32(sdev->dev_attr.vendor_id);
 350        iocp->subsys_device_id = 0x0;
 351        iocp->io_class = cpu_to_be16(SRP_REV16A_IB_IO_CLASS);
 352        iocp->io_subclass = cpu_to_be16(SRP_IO_SUBCLASS);
 353        iocp->protocol = cpu_to_be16(SRP_PROTOCOL);
 354        iocp->protocol_version = cpu_to_be16(SRP_PROTOCOL_VERSION);
 355        iocp->send_queue_depth = cpu_to_be16(sdev->srq_size);
 356        iocp->rdma_read_depth = 4;
 357        iocp->send_size = cpu_to_be32(srp_max_req_size);
 358        iocp->rdma_size = cpu_to_be32(min(sport->port_attrib.srp_max_rdma_size,
 359                                          1U << 24));
 360        iocp->num_svc_entries = 1;
 361        iocp->op_cap_mask = SRP_SEND_TO_IOC | SRP_SEND_FROM_IOC |
 362                SRP_RDMA_READ_FROM_IOC | SRP_RDMA_WRITE_FROM_IOC;
 363
 364        mad->mad_hdr.status = 0;
 365}
 366
 367/**
 368 * srpt_get_svc_entries() - Write ServiceEntries to a management datagram.
 369 *
 370 * See also section 16.3.3.5 ServiceEntries in the InfiniBand Architecture
 371 * Specification. See also section B.7, table B.8 in the SRP r16a document.
 372 */
 373static void srpt_get_svc_entries(u64 ioc_guid,
 374                                 u16 slot, u8 hi, u8 lo, struct ib_dm_mad *mad)
 375{
 376        struct ib_dm_svc_entries *svc_entries;
 377
 378        WARN_ON(!ioc_guid);
 379
 380        if (!slot || slot > 16) {
 381                mad->mad_hdr.status
 382                        = cpu_to_be16(DM_MAD_STATUS_INVALID_FIELD);
 383                return;
 384        }
 385
 386        if (slot > 2 || lo > hi || hi > 1) {
 387                mad->mad_hdr.status
 388                        = cpu_to_be16(DM_MAD_STATUS_NO_IOC);
 389                return;
 390        }
 391
 392        svc_entries = (struct ib_dm_svc_entries *)mad->data;
 393        memset(svc_entries, 0, sizeof *svc_entries);
 394        svc_entries->service_entries[0].id = cpu_to_be64(ioc_guid);
 395        snprintf(svc_entries->service_entries[0].name,
 396                 sizeof(svc_entries->service_entries[0].name),
 397                 "%s%016llx",
 398                 SRP_SERVICE_NAME_PREFIX,
 399                 ioc_guid);
 400
 401        mad->mad_hdr.status = 0;
 402}
 403
 404/**
 405 * srpt_mgmt_method_get() - Process a received management datagram.
 406 * @sp:      source port through which the MAD has been received.
 407 * @rq_mad:  received MAD.
 408 * @rsp_mad: response MAD.
 409 */
 410static void srpt_mgmt_method_get(struct srpt_port *sp, struct ib_mad *rq_mad,
 411                                 struct ib_dm_mad *rsp_mad)
 412{
 413        u16 attr_id;
 414        u32 slot;
 415        u8 hi, lo;
 416
 417        attr_id = be16_to_cpu(rq_mad->mad_hdr.attr_id);
 418        switch (attr_id) {
 419        case DM_ATTR_CLASS_PORT_INFO:
 420                srpt_get_class_port_info(rsp_mad);
 421                break;
 422        case DM_ATTR_IOU_INFO:
 423                srpt_get_iou(rsp_mad);
 424                break;
 425        case DM_ATTR_IOC_PROFILE:
 426                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 427                srpt_get_ioc(sp, slot, rsp_mad);
 428                break;
 429        case DM_ATTR_SVC_ENTRIES:
 430                slot = be32_to_cpu(rq_mad->mad_hdr.attr_mod);
 431                hi = (u8) ((slot >> 8) & 0xff);
 432                lo = (u8) (slot & 0xff);
 433                slot = (u16) ((slot >> 16) & 0xffff);
 434                srpt_get_svc_entries(srpt_service_guid,
 435                                     slot, hi, lo, rsp_mad);
 436                break;
 437        default:
 438                rsp_mad->mad_hdr.status =
 439                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 440                break;
 441        }
 442}
 443
 444/**
 445 * srpt_mad_send_handler() - Post MAD-send callback function.
 446 */
 447static void srpt_mad_send_handler(struct ib_mad_agent *mad_agent,
 448                                  struct ib_mad_send_wc *mad_wc)
 449{
 450        ib_destroy_ah(mad_wc->send_buf->ah);
 451        ib_free_send_mad(mad_wc->send_buf);
 452}
 453
 454/**
 455 * srpt_mad_recv_handler() - MAD reception callback function.
 456 */
 457static void srpt_mad_recv_handler(struct ib_mad_agent *mad_agent,
 458                                  struct ib_mad_recv_wc *mad_wc)
 459{
 460        struct srpt_port *sport = (struct srpt_port *)mad_agent->context;
 461        struct ib_ah *ah;
 462        struct ib_mad_send_buf *rsp;
 463        struct ib_dm_mad *dm_mad;
 464
 465        if (!mad_wc || !mad_wc->recv_buf.mad)
 466                return;
 467
 468        ah = ib_create_ah_from_wc(mad_agent->qp->pd, mad_wc->wc,
 469                                  mad_wc->recv_buf.grh, mad_agent->port_num);
 470        if (IS_ERR(ah))
 471                goto err;
 472
 473        BUILD_BUG_ON(offsetof(struct ib_dm_mad, data) != IB_MGMT_DEVICE_HDR);
 474
 475        rsp = ib_create_send_mad(mad_agent, mad_wc->wc->src_qp,
 476                                 mad_wc->wc->pkey_index, 0,
 477                                 IB_MGMT_DEVICE_HDR, IB_MGMT_DEVICE_DATA,
 478                                 GFP_KERNEL,
 479                                 IB_MGMT_BASE_VERSION);
 480        if (IS_ERR(rsp))
 481                goto err_rsp;
 482
 483        rsp->ah = ah;
 484
 485        dm_mad = rsp->mad;
 486        memcpy(dm_mad, mad_wc->recv_buf.mad, sizeof *dm_mad);
 487        dm_mad->mad_hdr.method = IB_MGMT_METHOD_GET_RESP;
 488        dm_mad->mad_hdr.status = 0;
 489
 490        switch (mad_wc->recv_buf.mad->mad_hdr.method) {
 491        case IB_MGMT_METHOD_GET:
 492                srpt_mgmt_method_get(sport, mad_wc->recv_buf.mad, dm_mad);
 493                break;
 494        case IB_MGMT_METHOD_SET:
 495                dm_mad->mad_hdr.status =
 496                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD_ATTR);
 497                break;
 498        default:
 499                dm_mad->mad_hdr.status =
 500                    cpu_to_be16(DM_MAD_STATUS_UNSUP_METHOD);
 501                break;
 502        }
 503
 504        if (!ib_post_send_mad(rsp, NULL)) {
 505                ib_free_recv_mad(mad_wc);
 506                /* will destroy_ah & free_send_mad in send completion */
 507                return;
 508        }
 509
 510        ib_free_send_mad(rsp);
 511
 512err_rsp:
 513        ib_destroy_ah(ah);
 514err:
 515        ib_free_recv_mad(mad_wc);
 516}
 517
 518/**
 519 * srpt_refresh_port() - Configure a HCA port.
 520 *
 521 * Enable InfiniBand management datagram processing, update the cached sm_lid,
 522 * lid and gid values, and register a callback function for processing MADs
 523 * on the specified port.
 524 *
 525 * Note: It is safe to call this function more than once for the same port.
 526 */
 527static int srpt_refresh_port(struct srpt_port *sport)
 528{
 529        struct ib_mad_reg_req reg_req;
 530        struct ib_port_modify port_modify;
 531        struct ib_port_attr port_attr;
 532        int ret;
 533
 534        memset(&port_modify, 0, sizeof port_modify);
 535        port_modify.set_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 536        port_modify.clr_port_cap_mask = 0;
 537
 538        ret = ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 539        if (ret)
 540                goto err_mod_port;
 541
 542        ret = ib_query_port(sport->sdev->device, sport->port, &port_attr);
 543        if (ret)
 544                goto err_query_port;
 545
 546        sport->sm_lid = port_attr.sm_lid;
 547        sport->lid = port_attr.lid;
 548
 549        ret = ib_query_gid(sport->sdev->device, sport->port, 0, &sport->gid);
 550        if (ret)
 551                goto err_query_port;
 552
 553        if (!sport->mad_agent) {
 554                memset(&reg_req, 0, sizeof reg_req);
 555                reg_req.mgmt_class = IB_MGMT_CLASS_DEVICE_MGMT;
 556                reg_req.mgmt_class_version = IB_MGMT_BASE_VERSION;
 557                set_bit(IB_MGMT_METHOD_GET, reg_req.method_mask);
 558                set_bit(IB_MGMT_METHOD_SET, reg_req.method_mask);
 559
 560                sport->mad_agent = ib_register_mad_agent(sport->sdev->device,
 561                                                         sport->port,
 562                                                         IB_QPT_GSI,
 563                                                         &reg_req, 0,
 564                                                         srpt_mad_send_handler,
 565                                                         srpt_mad_recv_handler,
 566                                                         sport, 0);
 567                if (IS_ERR(sport->mad_agent)) {
 568                        ret = PTR_ERR(sport->mad_agent);
 569                        sport->mad_agent = NULL;
 570                        goto err_query_port;
 571                }
 572        }
 573
 574        return 0;
 575
 576err_query_port:
 577
 578        port_modify.set_port_cap_mask = 0;
 579        port_modify.clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP;
 580        ib_modify_port(sport->sdev->device, sport->port, 0, &port_modify);
 581
 582err_mod_port:
 583
 584        return ret;
 585}
 586
 587/**
 588 * srpt_unregister_mad_agent() - Unregister MAD callback functions.
 589 *
 590 * Note: It is safe to call this function more than once for the same device.
 591 */
 592static void srpt_unregister_mad_agent(struct srpt_device *sdev)
 593{
 594        struct ib_port_modify port_modify = {
 595                .clr_port_cap_mask = IB_PORT_DEVICE_MGMT_SUP,
 596        };
 597        struct srpt_port *sport;
 598        int i;
 599
 600        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
 601                sport = &sdev->port[i - 1];
 602                WARN_ON(sport->port != i);
 603                if (ib_modify_port(sdev->device, i, 0, &port_modify) < 0)
 604                        pr_err("disabling MAD processing failed.\n");
 605                if (sport->mad_agent) {
 606                        ib_unregister_mad_agent(sport->mad_agent);
 607                        sport->mad_agent = NULL;
 608                }
 609        }
 610}
 611
 612/**
 613 * srpt_alloc_ioctx() - Allocate an SRPT I/O context structure.
 614 */
 615static struct srpt_ioctx *srpt_alloc_ioctx(struct srpt_device *sdev,
 616                                           int ioctx_size, int dma_size,
 617                                           enum dma_data_direction dir)
 618{
 619        struct srpt_ioctx *ioctx;
 620
 621        ioctx = kmalloc(ioctx_size, GFP_KERNEL);
 622        if (!ioctx)
 623                goto err;
 624
 625        ioctx->buf = kmalloc(dma_size, GFP_KERNEL);
 626        if (!ioctx->buf)
 627                goto err_free_ioctx;
 628
 629        ioctx->dma = ib_dma_map_single(sdev->device, ioctx->buf, dma_size, dir);
 630        if (ib_dma_mapping_error(sdev->device, ioctx->dma))
 631                goto err_free_buf;
 632
 633        return ioctx;
 634
 635err_free_buf:
 636        kfree(ioctx->buf);
 637err_free_ioctx:
 638        kfree(ioctx);
 639err:
 640        return NULL;
 641}
 642
 643/**
 644 * srpt_free_ioctx() - Free an SRPT I/O context structure.
 645 */
 646static void srpt_free_ioctx(struct srpt_device *sdev, struct srpt_ioctx *ioctx,
 647                            int dma_size, enum dma_data_direction dir)
 648{
 649        if (!ioctx)
 650                return;
 651
 652        ib_dma_unmap_single(sdev->device, ioctx->dma, dma_size, dir);
 653        kfree(ioctx->buf);
 654        kfree(ioctx);
 655}
 656
 657/**
 658 * srpt_alloc_ioctx_ring() - Allocate a ring of SRPT I/O context structures.
 659 * @sdev:       Device to allocate the I/O context ring for.
 660 * @ring_size:  Number of elements in the I/O context ring.
 661 * @ioctx_size: I/O context size.
 662 * @dma_size:   DMA buffer size.
 663 * @dir:        DMA data direction.
 664 */
 665static struct srpt_ioctx **srpt_alloc_ioctx_ring(struct srpt_device *sdev,
 666                                int ring_size, int ioctx_size,
 667                                int dma_size, enum dma_data_direction dir)
 668{
 669        struct srpt_ioctx **ring;
 670        int i;
 671
 672        WARN_ON(ioctx_size != sizeof(struct srpt_recv_ioctx)
 673                && ioctx_size != sizeof(struct srpt_send_ioctx));
 674
 675        ring = kmalloc(ring_size * sizeof(ring[0]), GFP_KERNEL);
 676        if (!ring)
 677                goto out;
 678        for (i = 0; i < ring_size; ++i) {
 679                ring[i] = srpt_alloc_ioctx(sdev, ioctx_size, dma_size, dir);
 680                if (!ring[i])
 681                        goto err;
 682                ring[i]->index = i;
 683        }
 684        goto out;
 685
 686err:
 687        while (--i >= 0)
 688                srpt_free_ioctx(sdev, ring[i], dma_size, dir);
 689        kfree(ring);
 690        ring = NULL;
 691out:
 692        return ring;
 693}
 694
 695/**
 696 * srpt_free_ioctx_ring() - Free the ring of SRPT I/O context structures.
 697 */
 698static void srpt_free_ioctx_ring(struct srpt_ioctx **ioctx_ring,
 699                                 struct srpt_device *sdev, int ring_size,
 700                                 int dma_size, enum dma_data_direction dir)
 701{
 702        int i;
 703
 704        for (i = 0; i < ring_size; ++i)
 705                srpt_free_ioctx(sdev, ioctx_ring[i], dma_size, dir);
 706        kfree(ioctx_ring);
 707}
 708
 709/**
 710 * srpt_get_cmd_state() - Get the state of a SCSI command.
 711 */
 712static enum srpt_command_state srpt_get_cmd_state(struct srpt_send_ioctx *ioctx)
 713{
 714        enum srpt_command_state state;
 715        unsigned long flags;
 716
 717        BUG_ON(!ioctx);
 718
 719        spin_lock_irqsave(&ioctx->spinlock, flags);
 720        state = ioctx->state;
 721        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 722        return state;
 723}
 724
 725/**
 726 * srpt_set_cmd_state() - Set the state of a SCSI command.
 727 *
 728 * Does not modify the state of aborted commands. Returns the previous command
 729 * state.
 730 */
 731static enum srpt_command_state srpt_set_cmd_state(struct srpt_send_ioctx *ioctx,
 732                                                  enum srpt_command_state new)
 733{
 734        enum srpt_command_state previous;
 735        unsigned long flags;
 736
 737        BUG_ON(!ioctx);
 738
 739        spin_lock_irqsave(&ioctx->spinlock, flags);
 740        previous = ioctx->state;
 741        if (previous != SRPT_STATE_DONE)
 742                ioctx->state = new;
 743        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 744
 745        return previous;
 746}
 747
 748/**
 749 * srpt_test_and_set_cmd_state() - Test and set the state of a command.
 750 *
 751 * Returns true if and only if the previous command state was equal to 'old'.
 752 */
 753static bool srpt_test_and_set_cmd_state(struct srpt_send_ioctx *ioctx,
 754                                        enum srpt_command_state old,
 755                                        enum srpt_command_state new)
 756{
 757        enum srpt_command_state previous;
 758        unsigned long flags;
 759
 760        WARN_ON(!ioctx);
 761        WARN_ON(old == SRPT_STATE_DONE);
 762        WARN_ON(new == SRPT_STATE_NEW);
 763
 764        spin_lock_irqsave(&ioctx->spinlock, flags);
 765        previous = ioctx->state;
 766        if (previous == old)
 767                ioctx->state = new;
 768        spin_unlock_irqrestore(&ioctx->spinlock, flags);
 769        return previous == old;
 770}
 771
 772/**
 773 * srpt_post_recv() - Post an IB receive request.
 774 */
 775static int srpt_post_recv(struct srpt_device *sdev,
 776                          struct srpt_recv_ioctx *ioctx)
 777{
 778        struct ib_sge list;
 779        struct ib_recv_wr wr, *bad_wr;
 780
 781        BUG_ON(!sdev);
 782        wr.wr_id = encode_wr_id(SRPT_RECV, ioctx->ioctx.index);
 783
 784        list.addr = ioctx->ioctx.dma;
 785        list.length = srp_max_req_size;
 786        list.lkey = sdev->mr->lkey;
 787
 788        wr.next = NULL;
 789        wr.sg_list = &list;
 790        wr.num_sge = 1;
 791
 792        return ib_post_srq_recv(sdev->srq, &wr, &bad_wr);
 793}
 794
 795/**
 796 * srpt_post_send() - Post an IB send request.
 797 *
 798 * Returns zero upon success and a non-zero value upon failure.
 799 */
 800static int srpt_post_send(struct srpt_rdma_ch *ch,
 801                          struct srpt_send_ioctx *ioctx, int len)
 802{
 803        struct ib_sge list;
 804        struct ib_send_wr wr, *bad_wr;
 805        struct srpt_device *sdev = ch->sport->sdev;
 806        int ret;
 807
 808        atomic_inc(&ch->req_lim);
 809
 810        ret = -ENOMEM;
 811        if (unlikely(atomic_dec_return(&ch->sq_wr_avail) < 0)) {
 812                pr_warn("IB send queue full (needed 1)\n");
 813                goto out;
 814        }
 815
 816        ib_dma_sync_single_for_device(sdev->device, ioctx->ioctx.dma, len,
 817                                      DMA_TO_DEVICE);
 818
 819        list.addr = ioctx->ioctx.dma;
 820        list.length = len;
 821        list.lkey = sdev->mr->lkey;
 822
 823        wr.next = NULL;
 824        wr.wr_id = encode_wr_id(SRPT_SEND, ioctx->ioctx.index);
 825        wr.sg_list = &list;
 826        wr.num_sge = 1;
 827        wr.opcode = IB_WR_SEND;
 828        wr.send_flags = IB_SEND_SIGNALED;
 829
 830        ret = ib_post_send(ch->qp, &wr, &bad_wr);
 831
 832out:
 833        if (ret < 0) {
 834                atomic_inc(&ch->sq_wr_avail);
 835                atomic_dec(&ch->req_lim);
 836        }
 837        return ret;
 838}
 839
 840/**
 841 * srpt_get_desc_tbl() - Parse the data descriptors of an SRP_CMD request.
 842 * @ioctx: Pointer to the I/O context associated with the request.
 843 * @srp_cmd: Pointer to the SRP_CMD request data.
 844 * @dir: Pointer to the variable to which the transfer direction will be
 845 *   written.
 846 * @data_len: Pointer to the variable to which the total data length of all
 847 *   descriptors in the SRP_CMD request will be written.
 848 *
 849 * This function initializes ioctx->nrbuf and ioctx->r_bufs.
 850 *
 851 * Returns -EINVAL when the SRP_CMD request contains inconsistent descriptors;
 852 * -ENOMEM when memory allocation fails and zero upon success.
 853 */
 854static int srpt_get_desc_tbl(struct srpt_send_ioctx *ioctx,
 855                             struct srp_cmd *srp_cmd,
 856                             enum dma_data_direction *dir, u64 *data_len)
 857{
 858        struct srp_indirect_buf *idb;
 859        struct srp_direct_buf *db;
 860        unsigned add_cdb_offset;
 861        int ret;
 862
 863        /*
 864         * The pointer computations below will only be compiled correctly
 865         * if srp_cmd::add_data is declared as s8*, u8*, s8[] or u8[], so check
 866         * whether srp_cmd::add_data has been declared as a byte pointer.
 867         */
 868        BUILD_BUG_ON(!__same_type(srp_cmd->add_data[0], (s8)0)
 869                     && !__same_type(srp_cmd->add_data[0], (u8)0));
 870
 871        BUG_ON(!dir);
 872        BUG_ON(!data_len);
 873
 874        ret = 0;
 875        *data_len = 0;
 876
 877        /*
 878         * The lower four bits of the buffer format field contain the DATA-IN
 879         * buffer descriptor format, and the highest four bits contain the
 880         * DATA-OUT buffer descriptor format.
 881         */
 882        *dir = DMA_NONE;
 883        if (srp_cmd->buf_fmt & 0xf)
 884                /* DATA-IN: transfer data from target to initiator (read). */
 885                *dir = DMA_FROM_DEVICE;
 886        else if (srp_cmd->buf_fmt >> 4)
 887                /* DATA-OUT: transfer data from initiator to target (write). */
 888                *dir = DMA_TO_DEVICE;
 889
 890        /*
 891         * According to the SRP spec, the lower two bits of the 'ADDITIONAL
 892         * CDB LENGTH' field are reserved and the size in bytes of this field
 893         * is four times the value specified in bits 3..7. Hence the "& ~3".
 894         */
 895        add_cdb_offset = srp_cmd->add_cdb_len & ~3;
 896        if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_DIRECT) ||
 897            ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_DIRECT)) {
 898                ioctx->n_rbuf = 1;
 899                ioctx->rbufs = &ioctx->single_rbuf;
 900
 901                db = (struct srp_direct_buf *)(srp_cmd->add_data
 902                                               + add_cdb_offset);
 903                memcpy(ioctx->rbufs, db, sizeof *db);
 904                *data_len = be32_to_cpu(db->len);
 905        } else if (((srp_cmd->buf_fmt & 0xf) == SRP_DATA_DESC_INDIRECT) ||
 906                   ((srp_cmd->buf_fmt >> 4) == SRP_DATA_DESC_INDIRECT)) {
 907                idb = (struct srp_indirect_buf *)(srp_cmd->add_data
 908                                                  + add_cdb_offset);
 909
 910                ioctx->n_rbuf = be32_to_cpu(idb->table_desc.len) / sizeof *db;
 911
 912                if (ioctx->n_rbuf >
 913                    (srp_cmd->data_out_desc_cnt + srp_cmd->data_in_desc_cnt)) {
 914                        pr_err("received unsupported SRP_CMD request"
 915                               " type (%u out + %u in != %u / %zu)\n",
 916                               srp_cmd->data_out_desc_cnt,
 917                               srp_cmd->data_in_desc_cnt,
 918                               be32_to_cpu(idb->table_desc.len),
 919                               sizeof(*db));
 920                        ioctx->n_rbuf = 0;
 921                        ret = -EINVAL;
 922                        goto out;
 923                }
 924
 925                if (ioctx->n_rbuf == 1)
 926                        ioctx->rbufs = &ioctx->single_rbuf;
 927                else {
 928                        ioctx->rbufs =
 929                                kmalloc(ioctx->n_rbuf * sizeof *db, GFP_ATOMIC);
 930                        if (!ioctx->rbufs) {
 931                                ioctx->n_rbuf = 0;
 932                                ret = -ENOMEM;
 933                                goto out;
 934                        }
 935                }
 936
 937                db = idb->desc_list;
 938                memcpy(ioctx->rbufs, db, ioctx->n_rbuf * sizeof *db);
 939                *data_len = be32_to_cpu(idb->len);
 940        }
 941out:
 942        return ret;
 943}
 944
 945/**
 946 * srpt_init_ch_qp() - Initialize queue pair attributes.
 947 *
 948 * Initialized the attributes of queue pair 'qp' by allowing local write,
 949 * remote read and remote write. Also transitions 'qp' to state IB_QPS_INIT.
 950 */
 951static int srpt_init_ch_qp(struct srpt_rdma_ch *ch, struct ib_qp *qp)
 952{
 953        struct ib_qp_attr *attr;
 954        int ret;
 955
 956        attr = kzalloc(sizeof *attr, GFP_KERNEL);
 957        if (!attr)
 958                return -ENOMEM;
 959
 960        attr->qp_state = IB_QPS_INIT;
 961        attr->qp_access_flags = IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_READ |
 962            IB_ACCESS_REMOTE_WRITE;
 963        attr->port_num = ch->sport->port;
 964        attr->pkey_index = 0;
 965
 966        ret = ib_modify_qp(qp, attr,
 967                           IB_QP_STATE | IB_QP_ACCESS_FLAGS | IB_QP_PORT |
 968                           IB_QP_PKEY_INDEX);
 969
 970        kfree(attr);
 971        return ret;
 972}
 973
 974/**
 975 * srpt_ch_qp_rtr() - Change the state of a channel to 'ready to receive' (RTR).
 976 * @ch: channel of the queue pair.
 977 * @qp: queue pair to change the state of.
 978 *
 979 * Returns zero upon success and a negative value upon failure.
 980 *
 981 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
 982 * If this structure ever becomes larger, it might be necessary to allocate
 983 * it dynamically instead of on the stack.
 984 */
 985static int srpt_ch_qp_rtr(struct srpt_rdma_ch *ch, struct ib_qp *qp)
 986{
 987        struct ib_qp_attr qp_attr;
 988        int attr_mask;
 989        int ret;
 990
 991        qp_attr.qp_state = IB_QPS_RTR;
 992        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
 993        if (ret)
 994                goto out;
 995
 996        qp_attr.max_dest_rd_atomic = 4;
 997
 998        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
 999
1000out:
1001        return ret;
1002}
1003
1004/**
1005 * srpt_ch_qp_rts() - Change the state of a channel to 'ready to send' (RTS).
1006 * @ch: channel of the queue pair.
1007 * @qp: queue pair to change the state of.
1008 *
1009 * Returns zero upon success and a negative value upon failure.
1010 *
1011 * Note: currently a struct ib_qp_attr takes 136 bytes on a 64-bit system.
1012 * If this structure ever becomes larger, it might be necessary to allocate
1013 * it dynamically instead of on the stack.
1014 */
1015static int srpt_ch_qp_rts(struct srpt_rdma_ch *ch, struct ib_qp *qp)
1016{
1017        struct ib_qp_attr qp_attr;
1018        int attr_mask;
1019        int ret;
1020
1021        qp_attr.qp_state = IB_QPS_RTS;
1022        ret = ib_cm_init_qp_attr(ch->cm_id, &qp_attr, &attr_mask);
1023        if (ret)
1024                goto out;
1025
1026        qp_attr.max_rd_atomic = 4;
1027
1028        ret = ib_modify_qp(qp, &qp_attr, attr_mask);
1029
1030out:
1031        return ret;
1032}
1033
1034/**
1035 * srpt_ch_qp_err() - Set the channel queue pair state to 'error'.
1036 */
1037static int srpt_ch_qp_err(struct srpt_rdma_ch *ch)
1038{
1039        struct ib_qp_attr qp_attr;
1040
1041        qp_attr.qp_state = IB_QPS_ERR;
1042        return ib_modify_qp(ch->qp, &qp_attr, IB_QP_STATE);
1043}
1044
1045/**
1046 * srpt_unmap_sg_to_ib_sge() - Unmap an IB SGE list.
1047 */
1048static void srpt_unmap_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1049                                    struct srpt_send_ioctx *ioctx)
1050{
1051        struct scatterlist *sg;
1052        enum dma_data_direction dir;
1053
1054        BUG_ON(!ch);
1055        BUG_ON(!ioctx);
1056        BUG_ON(ioctx->n_rdma && !ioctx->rdma_ius);
1057
1058        while (ioctx->n_rdma)
1059                kfree(ioctx->rdma_ius[--ioctx->n_rdma].sge);
1060
1061        kfree(ioctx->rdma_ius);
1062        ioctx->rdma_ius = NULL;
1063
1064        if (ioctx->mapped_sg_count) {
1065                sg = ioctx->sg;
1066                WARN_ON(!sg);
1067                dir = ioctx->cmd.data_direction;
1068                BUG_ON(dir == DMA_NONE);
1069                ib_dma_unmap_sg(ch->sport->sdev->device, sg, ioctx->sg_cnt,
1070                                opposite_dma_dir(dir));
1071                ioctx->mapped_sg_count = 0;
1072        }
1073}
1074
1075/**
1076 * srpt_map_sg_to_ib_sge() - Map an SG list to an IB SGE list.
1077 */
1078static int srpt_map_sg_to_ib_sge(struct srpt_rdma_ch *ch,
1079                                 struct srpt_send_ioctx *ioctx)
1080{
1081        struct ib_device *dev = ch->sport->sdev->device;
1082        struct se_cmd *cmd;
1083        struct scatterlist *sg, *sg_orig;
1084        int sg_cnt;
1085        enum dma_data_direction dir;
1086        struct rdma_iu *riu;
1087        struct srp_direct_buf *db;
1088        dma_addr_t dma_addr;
1089        struct ib_sge *sge;
1090        u64 raddr;
1091        u32 rsize;
1092        u32 tsize;
1093        u32 dma_len;
1094        int count, nrdma;
1095        int i, j, k;
1096
1097        BUG_ON(!ch);
1098        BUG_ON(!ioctx);
1099        cmd = &ioctx->cmd;
1100        dir = cmd->data_direction;
1101        BUG_ON(dir == DMA_NONE);
1102
1103        ioctx->sg = sg = sg_orig = cmd->t_data_sg;
1104        ioctx->sg_cnt = sg_cnt = cmd->t_data_nents;
1105
1106        count = ib_dma_map_sg(ch->sport->sdev->device, sg, sg_cnt,
1107                              opposite_dma_dir(dir));
1108        if (unlikely(!count))
1109                return -EAGAIN;
1110
1111        ioctx->mapped_sg_count = count;
1112
1113        if (ioctx->rdma_ius && ioctx->n_rdma_ius)
1114                nrdma = ioctx->n_rdma_ius;
1115        else {
1116                nrdma = (count + SRPT_DEF_SG_PER_WQE - 1) / SRPT_DEF_SG_PER_WQE
1117                        + ioctx->n_rbuf;
1118
1119                ioctx->rdma_ius = kzalloc(nrdma * sizeof *riu, GFP_KERNEL);
1120                if (!ioctx->rdma_ius)
1121                        goto free_mem;
1122
1123                ioctx->n_rdma_ius = nrdma;
1124        }
1125
1126        db = ioctx->rbufs;
1127        tsize = cmd->data_length;
1128        dma_len = ib_sg_dma_len(dev, &sg[0]);
1129        riu = ioctx->rdma_ius;
1130
1131        /*
1132         * For each remote desc - calculate the #ib_sge.
1133         * If #ib_sge < SRPT_DEF_SG_PER_WQE per rdma operation then
1134         *      each remote desc rdma_iu is required a rdma wr;
1135         * else
1136         *      we need to allocate extra rdma_iu to carry extra #ib_sge in
1137         *      another rdma wr
1138         */
1139        for (i = 0, j = 0;
1140             j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1141                rsize = be32_to_cpu(db->len);
1142                raddr = be64_to_cpu(db->va);
1143                riu->raddr = raddr;
1144                riu->rkey = be32_to_cpu(db->key);
1145                riu->sge_cnt = 0;
1146
1147                /* calculate how many sge required for this remote_buf */
1148                while (rsize > 0 && tsize > 0) {
1149
1150                        if (rsize >= dma_len) {
1151                                tsize -= dma_len;
1152                                rsize -= dma_len;
1153                                raddr += dma_len;
1154
1155                                if (tsize > 0) {
1156                                        ++j;
1157                                        if (j < count) {
1158                                                sg = sg_next(sg);
1159                                                dma_len = ib_sg_dma_len(
1160                                                                dev, sg);
1161                                        }
1162                                }
1163                        } else {
1164                                tsize -= rsize;
1165                                dma_len -= rsize;
1166                                rsize = 0;
1167                        }
1168
1169                        ++riu->sge_cnt;
1170
1171                        if (rsize > 0 && riu->sge_cnt == SRPT_DEF_SG_PER_WQE) {
1172                                ++ioctx->n_rdma;
1173                                riu->sge =
1174                                    kmalloc(riu->sge_cnt * sizeof *riu->sge,
1175                                            GFP_KERNEL);
1176                                if (!riu->sge)
1177                                        goto free_mem;
1178
1179                                ++riu;
1180                                riu->sge_cnt = 0;
1181                                riu->raddr = raddr;
1182                                riu->rkey = be32_to_cpu(db->key);
1183                        }
1184                }
1185
1186                ++ioctx->n_rdma;
1187                riu->sge = kmalloc(riu->sge_cnt * sizeof *riu->sge,
1188                                   GFP_KERNEL);
1189                if (!riu->sge)
1190                        goto free_mem;
1191        }
1192
1193        db = ioctx->rbufs;
1194        tsize = cmd->data_length;
1195        riu = ioctx->rdma_ius;
1196        sg = sg_orig;
1197        dma_len = ib_sg_dma_len(dev, &sg[0]);
1198        dma_addr = ib_sg_dma_address(dev, &sg[0]);
1199
1200        /* this second loop is really mapped sg_addres to rdma_iu->ib_sge */
1201        for (i = 0, j = 0;
1202             j < count && i < ioctx->n_rbuf && tsize > 0; ++i, ++riu, ++db) {
1203                rsize = be32_to_cpu(db->len);
1204                sge = riu->sge;
1205                k = 0;
1206
1207                while (rsize > 0 && tsize > 0) {
1208                        sge->addr = dma_addr;
1209                        sge->lkey = ch->sport->sdev->mr->lkey;
1210
1211                        if (rsize >= dma_len) {
1212                                sge->length =
1213                                        (tsize < dma_len) ? tsize : dma_len;
1214                                tsize -= dma_len;
1215                                rsize -= dma_len;
1216
1217                                if (tsize > 0) {
1218                                        ++j;
1219                                        if (j < count) {
1220                                                sg = sg_next(sg);
1221                                                dma_len = ib_sg_dma_len(
1222                                                                dev, sg);
1223                                                dma_addr = ib_sg_dma_address(
1224                                                                dev, sg);
1225                                        }
1226                                }
1227                        } else {
1228                                sge->length = (tsize < rsize) ? tsize : rsize;
1229                                tsize -= rsize;
1230                                dma_len -= rsize;
1231                                dma_addr += rsize;
1232                                rsize = 0;
1233                        }
1234
1235                        ++k;
1236                        if (k == riu->sge_cnt && rsize > 0 && tsize > 0) {
1237                                ++riu;
1238                                sge = riu->sge;
1239                                k = 0;
1240                        } else if (rsize > 0 && tsize > 0)
1241                                ++sge;
1242                }
1243        }
1244
1245        return 0;
1246
1247free_mem:
1248        srpt_unmap_sg_to_ib_sge(ch, ioctx);
1249
1250        return -ENOMEM;
1251}
1252
1253/**
1254 * srpt_get_send_ioctx() - Obtain an I/O context for sending to the initiator.
1255 */
1256static struct srpt_send_ioctx *srpt_get_send_ioctx(struct srpt_rdma_ch *ch)
1257{
1258        struct srpt_send_ioctx *ioctx;
1259        unsigned long flags;
1260
1261        BUG_ON(!ch);
1262
1263        ioctx = NULL;
1264        spin_lock_irqsave(&ch->spinlock, flags);
1265        if (!list_empty(&ch->free_list)) {
1266                ioctx = list_first_entry(&ch->free_list,
1267                                         struct srpt_send_ioctx, free_list);
1268                list_del(&ioctx->free_list);
1269        }
1270        spin_unlock_irqrestore(&ch->spinlock, flags);
1271
1272        if (!ioctx)
1273                return ioctx;
1274
1275        BUG_ON(ioctx->ch != ch);
1276        spin_lock_init(&ioctx->spinlock);
1277        ioctx->state = SRPT_STATE_NEW;
1278        ioctx->n_rbuf = 0;
1279        ioctx->rbufs = NULL;
1280        ioctx->n_rdma = 0;
1281        ioctx->n_rdma_ius = 0;
1282        ioctx->rdma_ius = NULL;
1283        ioctx->mapped_sg_count = 0;
1284        init_completion(&ioctx->tx_done);
1285        ioctx->queue_status_only = false;
1286        /*
1287         * transport_init_se_cmd() does not initialize all fields, so do it
1288         * here.
1289         */
1290        memset(&ioctx->cmd, 0, sizeof(ioctx->cmd));
1291        memset(&ioctx->sense_data, 0, sizeof(ioctx->sense_data));
1292
1293        return ioctx;
1294}
1295
1296/**
1297 * srpt_abort_cmd() - Abort a SCSI command.
1298 * @ioctx:   I/O context associated with the SCSI command.
1299 * @context: Preferred execution context.
1300 */
1301static int srpt_abort_cmd(struct srpt_send_ioctx *ioctx)
1302{
1303        enum srpt_command_state state;
1304        unsigned long flags;
1305
1306        BUG_ON(!ioctx);
1307
1308        /*
1309         * If the command is in a state where the target core is waiting for
1310         * the ib_srpt driver, change the state to the next state. Changing
1311         * the state of the command from SRPT_STATE_NEED_DATA to
1312         * SRPT_STATE_DATA_IN ensures that srpt_xmit_response() will call this
1313         * function a second time.
1314         */
1315
1316        spin_lock_irqsave(&ioctx->spinlock, flags);
1317        state = ioctx->state;
1318        switch (state) {
1319        case SRPT_STATE_NEED_DATA:
1320                ioctx->state = SRPT_STATE_DATA_IN;
1321                break;
1322        case SRPT_STATE_DATA_IN:
1323        case SRPT_STATE_CMD_RSP_SENT:
1324        case SRPT_STATE_MGMT_RSP_SENT:
1325                ioctx->state = SRPT_STATE_DONE;
1326                break;
1327        default:
1328                break;
1329        }
1330        spin_unlock_irqrestore(&ioctx->spinlock, flags);
1331
1332        if (state == SRPT_STATE_DONE) {
1333                struct srpt_rdma_ch *ch = ioctx->ch;
1334
1335                BUG_ON(ch->sess == NULL);
1336
1337                target_put_sess_cmd(&ioctx->cmd);
1338                goto out;
1339        }
1340
1341        pr_debug("Aborting cmd with state %d and tag %lld\n", state,
1342                 ioctx->cmd.tag);
1343
1344        switch (state) {
1345        case SRPT_STATE_NEW:
1346        case SRPT_STATE_DATA_IN:
1347        case SRPT_STATE_MGMT:
1348                /*
1349                 * Do nothing - defer abort processing until
1350                 * srpt_queue_response() is invoked.
1351                 */
1352                WARN_ON(!transport_check_aborted_status(&ioctx->cmd, false));
1353                break;
1354        case SRPT_STATE_NEED_DATA:
1355                /* DMA_TO_DEVICE (write) - RDMA read error. */
1356
1357                /* XXX(hch): this is a horrible layering violation.. */
1358                spin_lock_irqsave(&ioctx->cmd.t_state_lock, flags);
1359                ioctx->cmd.transport_state &= ~CMD_T_ACTIVE;
1360                spin_unlock_irqrestore(&ioctx->cmd.t_state_lock, flags);
1361                break;
1362        case SRPT_STATE_CMD_RSP_SENT:
1363                /*
1364                 * SRP_RSP sending failed or the SRP_RSP send completion has
1365                 * not been received in time.
1366                 */
1367                srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
1368                target_put_sess_cmd(&ioctx->cmd);
1369                break;
1370        case SRPT_STATE_MGMT_RSP_SENT:
1371                srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1372                target_put_sess_cmd(&ioctx->cmd);
1373                break;
1374        default:
1375                WARN(1, "Unexpected command state (%d)", state);
1376                break;
1377        }
1378
1379out:
1380        return state;
1381}
1382
1383/**
1384 * srpt_handle_send_err_comp() - Process an IB_WC_SEND error completion.
1385 */
1386static void srpt_handle_send_err_comp(struct srpt_rdma_ch *ch, u64 wr_id)
1387{
1388        struct srpt_send_ioctx *ioctx;
1389        enum srpt_command_state state;
1390        u32 index;
1391
1392        atomic_inc(&ch->sq_wr_avail);
1393
1394        index = idx_from_wr_id(wr_id);
1395        ioctx = ch->ioctx_ring[index];
1396        state = srpt_get_cmd_state(ioctx);
1397
1398        WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1399                && state != SRPT_STATE_MGMT_RSP_SENT
1400                && state != SRPT_STATE_NEED_DATA
1401                && state != SRPT_STATE_DONE);
1402
1403        /* If SRP_RSP sending failed, undo the ch->req_lim change. */
1404        if (state == SRPT_STATE_CMD_RSP_SENT
1405            || state == SRPT_STATE_MGMT_RSP_SENT)
1406                atomic_dec(&ch->req_lim);
1407
1408        srpt_abort_cmd(ioctx);
1409}
1410
1411/**
1412 * srpt_handle_send_comp() - Process an IB send completion notification.
1413 */
1414static void srpt_handle_send_comp(struct srpt_rdma_ch *ch,
1415                                  struct srpt_send_ioctx *ioctx)
1416{
1417        enum srpt_command_state state;
1418
1419        atomic_inc(&ch->sq_wr_avail);
1420
1421        state = srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
1422
1423        if (WARN_ON(state != SRPT_STATE_CMD_RSP_SENT
1424                    && state != SRPT_STATE_MGMT_RSP_SENT
1425                    && state != SRPT_STATE_DONE))
1426                pr_debug("state = %d\n", state);
1427
1428        if (state != SRPT_STATE_DONE) {
1429                srpt_unmap_sg_to_ib_sge(ch, ioctx);
1430                transport_generic_free_cmd(&ioctx->cmd, 0);
1431        } else {
1432                pr_err("IB completion has been received too late for"
1433                       " wr_id = %u.\n", ioctx->ioctx.index);
1434        }
1435}
1436
1437/**
1438 * srpt_handle_rdma_comp() - Process an IB RDMA completion notification.
1439 *
1440 * XXX: what is now target_execute_cmd used to be asynchronous, and unmapping
1441 * the data that has been transferred via IB RDMA had to be postponed until the
1442 * check_stop_free() callback.  None of this is necessary anymore and needs to
1443 * be cleaned up.
1444 */
1445static void srpt_handle_rdma_comp(struct srpt_rdma_ch *ch,
1446                                  struct srpt_send_ioctx *ioctx,
1447                                  enum srpt_opcode opcode)
1448{
1449        WARN_ON(ioctx->n_rdma <= 0);
1450        atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1451
1452        if (opcode == SRPT_RDMA_READ_LAST) {
1453                if (srpt_test_and_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA,
1454                                                SRPT_STATE_DATA_IN))
1455                        target_execute_cmd(&ioctx->cmd);
1456                else
1457                        pr_err("%s[%d]: wrong state = %d\n", __func__,
1458                               __LINE__, srpt_get_cmd_state(ioctx));
1459        } else if (opcode == SRPT_RDMA_ABORT) {
1460                ioctx->rdma_aborted = true;
1461        } else {
1462                WARN(true, "unexpected opcode %d\n", opcode);
1463        }
1464}
1465
1466/**
1467 * srpt_handle_rdma_err_comp() - Process an IB RDMA error completion.
1468 */
1469static void srpt_handle_rdma_err_comp(struct srpt_rdma_ch *ch,
1470                                      struct srpt_send_ioctx *ioctx,
1471                                      enum srpt_opcode opcode)
1472{
1473        enum srpt_command_state state;
1474
1475        state = srpt_get_cmd_state(ioctx);
1476        switch (opcode) {
1477        case SRPT_RDMA_READ_LAST:
1478                if (ioctx->n_rdma <= 0) {
1479                        pr_err("Received invalid RDMA read"
1480                               " error completion with idx %d\n",
1481                               ioctx->ioctx.index);
1482                        break;
1483                }
1484                atomic_add(ioctx->n_rdma, &ch->sq_wr_avail);
1485                if (state == SRPT_STATE_NEED_DATA)
1486                        srpt_abort_cmd(ioctx);
1487                else
1488                        pr_err("%s[%d]: wrong state = %d\n",
1489                               __func__, __LINE__, state);
1490                break;
1491        case SRPT_RDMA_WRITE_LAST:
1492                break;
1493        default:
1494                pr_err("%s[%d]: opcode = %u\n", __func__, __LINE__, opcode);
1495                break;
1496        }
1497}
1498
1499/**
1500 * srpt_build_cmd_rsp() - Build an SRP_RSP response.
1501 * @ch: RDMA channel through which the request has been received.
1502 * @ioctx: I/O context associated with the SRP_CMD request. The response will
1503 *   be built in the buffer ioctx->buf points at and hence this function will
1504 *   overwrite the request data.
1505 * @tag: tag of the request for which this response is being generated.
1506 * @status: value for the STATUS field of the SRP_RSP information unit.
1507 *
1508 * Returns the size in bytes of the SRP_RSP response.
1509 *
1510 * An SRP_RSP response contains a SCSI status or service response. See also
1511 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1512 * response. See also SPC-2 for more information about sense data.
1513 */
1514static int srpt_build_cmd_rsp(struct srpt_rdma_ch *ch,
1515                              struct srpt_send_ioctx *ioctx, u64 tag,
1516                              int status)
1517{
1518        struct srp_rsp *srp_rsp;
1519        const u8 *sense_data;
1520        int sense_data_len, max_sense_len;
1521
1522        /*
1523         * The lowest bit of all SAM-3 status codes is zero (see also
1524         * paragraph 5.3 in SAM-3).
1525         */
1526        WARN_ON(status & 1);
1527
1528        srp_rsp = ioctx->ioctx.buf;
1529        BUG_ON(!srp_rsp);
1530
1531        sense_data = ioctx->sense_data;
1532        sense_data_len = ioctx->cmd.scsi_sense_length;
1533        WARN_ON(sense_data_len > sizeof(ioctx->sense_data));
1534
1535        memset(srp_rsp, 0, sizeof *srp_rsp);
1536        srp_rsp->opcode = SRP_RSP;
1537        srp_rsp->req_lim_delta =
1538                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1539        srp_rsp->tag = tag;
1540        srp_rsp->status = status;
1541
1542        if (sense_data_len) {
1543                BUILD_BUG_ON(MIN_MAX_RSP_SIZE <= sizeof(*srp_rsp));
1544                max_sense_len = ch->max_ti_iu_len - sizeof(*srp_rsp);
1545                if (sense_data_len > max_sense_len) {
1546                        pr_warn("truncated sense data from %d to %d"
1547                                " bytes\n", sense_data_len, max_sense_len);
1548                        sense_data_len = max_sense_len;
1549                }
1550
1551                srp_rsp->flags |= SRP_RSP_FLAG_SNSVALID;
1552                srp_rsp->sense_data_len = cpu_to_be32(sense_data_len);
1553                memcpy(srp_rsp + 1, sense_data, sense_data_len);
1554        }
1555
1556        return sizeof(*srp_rsp) + sense_data_len;
1557}
1558
1559/**
1560 * srpt_build_tskmgmt_rsp() - Build a task management response.
1561 * @ch:       RDMA channel through which the request has been received.
1562 * @ioctx:    I/O context in which the SRP_RSP response will be built.
1563 * @rsp_code: RSP_CODE that will be stored in the response.
1564 * @tag:      Tag of the request for which this response is being generated.
1565 *
1566 * Returns the size in bytes of the SRP_RSP response.
1567 *
1568 * An SRP_RSP response contains a SCSI status or service response. See also
1569 * section 6.9 in the SRP r16a document for the format of an SRP_RSP
1570 * response.
1571 */
1572static int srpt_build_tskmgmt_rsp(struct srpt_rdma_ch *ch,
1573                                  struct srpt_send_ioctx *ioctx,
1574                                  u8 rsp_code, u64 tag)
1575{
1576        struct srp_rsp *srp_rsp;
1577        int resp_data_len;
1578        int resp_len;
1579
1580        resp_data_len = 4;
1581        resp_len = sizeof(*srp_rsp) + resp_data_len;
1582
1583        srp_rsp = ioctx->ioctx.buf;
1584        BUG_ON(!srp_rsp);
1585        memset(srp_rsp, 0, sizeof *srp_rsp);
1586
1587        srp_rsp->opcode = SRP_RSP;
1588        srp_rsp->req_lim_delta =
1589                cpu_to_be32(1 + atomic_xchg(&ch->req_lim_delta, 0));
1590        srp_rsp->tag = tag;
1591
1592        srp_rsp->flags |= SRP_RSP_FLAG_RSPVALID;
1593        srp_rsp->resp_data_len = cpu_to_be32(resp_data_len);
1594        srp_rsp->data[3] = rsp_code;
1595
1596        return resp_len;
1597}
1598
1599#define NO_SUCH_LUN ((uint64_t)-1LL)
1600
1601/*
1602 * SCSI LUN addressing method. See also SAM-2 and the section about
1603 * eight byte LUNs.
1604 */
1605enum scsi_lun_addr_method {
1606        SCSI_LUN_ADDR_METHOD_PERIPHERAL   = 0,
1607        SCSI_LUN_ADDR_METHOD_FLAT         = 1,
1608        SCSI_LUN_ADDR_METHOD_LUN          = 2,
1609        SCSI_LUN_ADDR_METHOD_EXTENDED_LUN = 3,
1610};
1611
1612/*
1613 * srpt_unpack_lun() - Convert from network LUN to linear LUN.
1614 *
1615 * Convert an 2-byte, 4-byte, 6-byte or 8-byte LUN structure in network byte
1616 * order (big endian) to a linear LUN. Supports three LUN addressing methods:
1617 * peripheral, flat and logical unit. See also SAM-2, section 4.9.4 (page 40).
1618 */
1619static uint64_t srpt_unpack_lun(const uint8_t *lun, int len)
1620{
1621        uint64_t res = NO_SUCH_LUN;
1622        int addressing_method;
1623
1624        if (unlikely(len < 2)) {
1625                pr_err("Illegal LUN length %d, expected 2 bytes or more\n",
1626                       len);
1627                goto out;
1628        }
1629
1630        switch (len) {
1631        case 8:
1632                if ((*((__be64 *)lun) &
1633                     cpu_to_be64(0x0000FFFFFFFFFFFFLL)) != 0)
1634                        goto out_err;
1635                break;
1636        case 4:
1637                if (*((__be16 *)&lun[2]) != 0)
1638                        goto out_err;
1639                break;
1640        case 6:
1641                if (*((__be32 *)&lun[2]) != 0)
1642                        goto out_err;
1643                break;
1644        case 2:
1645                break;
1646        default:
1647                goto out_err;
1648        }
1649
1650        addressing_method = (*lun) >> 6; /* highest two bits of byte 0 */
1651        switch (addressing_method) {
1652        case SCSI_LUN_ADDR_METHOD_PERIPHERAL:
1653        case SCSI_LUN_ADDR_METHOD_FLAT:
1654        case SCSI_LUN_ADDR_METHOD_LUN:
1655                res = *(lun + 1) | (((*lun) & 0x3f) << 8);
1656                break;
1657
1658        case SCSI_LUN_ADDR_METHOD_EXTENDED_LUN:
1659        default:
1660                pr_err("Unimplemented LUN addressing method %u\n",
1661                       addressing_method);
1662                break;
1663        }
1664
1665out:
1666        return res;
1667
1668out_err:
1669        pr_err("Support for multi-level LUNs has not yet been implemented\n");
1670        goto out;
1671}
1672
1673static int srpt_check_stop_free(struct se_cmd *cmd)
1674{
1675        struct srpt_send_ioctx *ioctx = container_of(cmd,
1676                                struct srpt_send_ioctx, cmd);
1677
1678        return target_put_sess_cmd(&ioctx->cmd);
1679}
1680
1681/**
1682 * srpt_handle_cmd() - Process SRP_CMD.
1683 */
1684static int srpt_handle_cmd(struct srpt_rdma_ch *ch,
1685                           struct srpt_recv_ioctx *recv_ioctx,
1686                           struct srpt_send_ioctx *send_ioctx)
1687{
1688        struct se_cmd *cmd;
1689        struct srp_cmd *srp_cmd;
1690        uint64_t unpacked_lun;
1691        u64 data_len;
1692        enum dma_data_direction dir;
1693        sense_reason_t ret;
1694        int rc;
1695
1696        BUG_ON(!send_ioctx);
1697
1698        srp_cmd = recv_ioctx->ioctx.buf;
1699        cmd = &send_ioctx->cmd;
1700        cmd->tag = srp_cmd->tag;
1701
1702        switch (srp_cmd->task_attr) {
1703        case SRP_CMD_SIMPLE_Q:
1704                cmd->sam_task_attr = TCM_SIMPLE_TAG;
1705                break;
1706        case SRP_CMD_ORDERED_Q:
1707        default:
1708                cmd->sam_task_attr = TCM_ORDERED_TAG;
1709                break;
1710        case SRP_CMD_HEAD_OF_Q:
1711                cmd->sam_task_attr = TCM_HEAD_TAG;
1712                break;
1713        case SRP_CMD_ACA:
1714                cmd->sam_task_attr = TCM_ACA_TAG;
1715                break;
1716        }
1717
1718        if (srpt_get_desc_tbl(send_ioctx, srp_cmd, &dir, &data_len)) {
1719                pr_err("0x%llx: parsing SRP descriptor table failed.\n",
1720                       srp_cmd->tag);
1721                ret = TCM_INVALID_CDB_FIELD;
1722                goto send_sense;
1723        }
1724
1725        unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_cmd->lun,
1726                                       sizeof(srp_cmd->lun));
1727        rc = target_submit_cmd(cmd, ch->sess, srp_cmd->cdb,
1728                        &send_ioctx->sense_data[0], unpacked_lun, data_len,
1729                        TCM_SIMPLE_TAG, dir, TARGET_SCF_ACK_KREF);
1730        if (rc != 0) {
1731                ret = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1732                goto send_sense;
1733        }
1734        return 0;
1735
1736send_sense:
1737        transport_send_check_condition_and_sense(cmd, ret, 0);
1738        return -1;
1739}
1740
1741/**
1742 * srpt_rx_mgmt_fn_tag() - Process a task management function by tag.
1743 * @ch: RDMA channel of the task management request.
1744 * @fn: Task management function to perform.
1745 * @req_tag: Tag of the SRP task management request.
1746 * @mgmt_ioctx: I/O context of the task management request.
1747 *
1748 * Returns zero if the target core will process the task management
1749 * request asynchronously.
1750 *
1751 * Note: It is assumed that the initiator serializes tag-based task management
1752 * requests.
1753 */
1754static int srpt_rx_mgmt_fn_tag(struct srpt_send_ioctx *ioctx, u64 tag)
1755{
1756        struct srpt_device *sdev;
1757        struct srpt_rdma_ch *ch;
1758        struct srpt_send_ioctx *target;
1759        int ret, i;
1760
1761        ret = -EINVAL;
1762        ch = ioctx->ch;
1763        BUG_ON(!ch);
1764        BUG_ON(!ch->sport);
1765        sdev = ch->sport->sdev;
1766        BUG_ON(!sdev);
1767        spin_lock_irq(&sdev->spinlock);
1768        for (i = 0; i < ch->rq_size; ++i) {
1769                target = ch->ioctx_ring[i];
1770                if (target->cmd.se_lun == ioctx->cmd.se_lun &&
1771                    target->cmd.tag == tag &&
1772                    srpt_get_cmd_state(target) != SRPT_STATE_DONE) {
1773                        ret = 0;
1774                        /* now let the target core abort &target->cmd; */
1775                        break;
1776                }
1777        }
1778        spin_unlock_irq(&sdev->spinlock);
1779        return ret;
1780}
1781
1782static int srp_tmr_to_tcm(int fn)
1783{
1784        switch (fn) {
1785        case SRP_TSK_ABORT_TASK:
1786                return TMR_ABORT_TASK;
1787        case SRP_TSK_ABORT_TASK_SET:
1788                return TMR_ABORT_TASK_SET;
1789        case SRP_TSK_CLEAR_TASK_SET:
1790                return TMR_CLEAR_TASK_SET;
1791        case SRP_TSK_LUN_RESET:
1792                return TMR_LUN_RESET;
1793        case SRP_TSK_CLEAR_ACA:
1794                return TMR_CLEAR_ACA;
1795        default:
1796                return -1;
1797        }
1798}
1799
1800/**
1801 * srpt_handle_tsk_mgmt() - Process an SRP_TSK_MGMT information unit.
1802 *
1803 * Returns 0 if and only if the request will be processed by the target core.
1804 *
1805 * For more information about SRP_TSK_MGMT information units, see also section
1806 * 6.7 in the SRP r16a document.
1807 */
1808static void srpt_handle_tsk_mgmt(struct srpt_rdma_ch *ch,
1809                                 struct srpt_recv_ioctx *recv_ioctx,
1810                                 struct srpt_send_ioctx *send_ioctx)
1811{
1812        struct srp_tsk_mgmt *srp_tsk;
1813        struct se_cmd *cmd;
1814        struct se_session *sess = ch->sess;
1815        uint64_t unpacked_lun;
1816        uint32_t tag = 0;
1817        int tcm_tmr;
1818        int rc;
1819
1820        BUG_ON(!send_ioctx);
1821
1822        srp_tsk = recv_ioctx->ioctx.buf;
1823        cmd = &send_ioctx->cmd;
1824
1825        pr_debug("recv tsk_mgmt fn %d for task_tag %lld and cmd tag %lld"
1826                 " cm_id %p sess %p\n", srp_tsk->tsk_mgmt_func,
1827                 srp_tsk->task_tag, srp_tsk->tag, ch->cm_id, ch->sess);
1828
1829        srpt_set_cmd_state(send_ioctx, SRPT_STATE_MGMT);
1830        send_ioctx->cmd.tag = srp_tsk->tag;
1831        tcm_tmr = srp_tmr_to_tcm(srp_tsk->tsk_mgmt_func);
1832        if (tcm_tmr < 0) {
1833                send_ioctx->cmd.se_tmr_req->response =
1834                        TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
1835                goto fail;
1836        }
1837        unpacked_lun = srpt_unpack_lun((uint8_t *)&srp_tsk->lun,
1838                                       sizeof(srp_tsk->lun));
1839
1840        if (srp_tsk->tsk_mgmt_func == SRP_TSK_ABORT_TASK) {
1841                rc = srpt_rx_mgmt_fn_tag(send_ioctx, srp_tsk->task_tag);
1842                if (rc < 0) {
1843                        send_ioctx->cmd.se_tmr_req->response =
1844                                        TMR_TASK_DOES_NOT_EXIST;
1845                        goto fail;
1846                }
1847                tag = srp_tsk->task_tag;
1848        }
1849        rc = target_submit_tmr(&send_ioctx->cmd, sess, NULL, unpacked_lun,
1850                                srp_tsk, tcm_tmr, GFP_KERNEL, tag,
1851                                TARGET_SCF_ACK_KREF);
1852        if (rc != 0) {
1853                send_ioctx->cmd.se_tmr_req->response = TMR_FUNCTION_REJECTED;
1854                goto fail;
1855        }
1856        return;
1857fail:
1858        transport_send_check_condition_and_sense(cmd, 0, 0); // XXX:
1859}
1860
1861/**
1862 * srpt_handle_new_iu() - Process a newly received information unit.
1863 * @ch:    RDMA channel through which the information unit has been received.
1864 * @ioctx: SRPT I/O context associated with the information unit.
1865 */
1866static void srpt_handle_new_iu(struct srpt_rdma_ch *ch,
1867                               struct srpt_recv_ioctx *recv_ioctx,
1868                               struct srpt_send_ioctx *send_ioctx)
1869{
1870        struct srp_cmd *srp_cmd;
1871        enum rdma_ch_state ch_state;
1872
1873        BUG_ON(!ch);
1874        BUG_ON(!recv_ioctx);
1875
1876        ib_dma_sync_single_for_cpu(ch->sport->sdev->device,
1877                                   recv_ioctx->ioctx.dma, srp_max_req_size,
1878                                   DMA_FROM_DEVICE);
1879
1880        ch_state = srpt_get_ch_state(ch);
1881        if (unlikely(ch_state == CH_CONNECTING)) {
1882                list_add_tail(&recv_ioctx->wait_list, &ch->cmd_wait_list);
1883                goto out;
1884        }
1885
1886        if (unlikely(ch_state != CH_LIVE))
1887                goto out;
1888
1889        srp_cmd = recv_ioctx->ioctx.buf;
1890        if (srp_cmd->opcode == SRP_CMD || srp_cmd->opcode == SRP_TSK_MGMT) {
1891                if (!send_ioctx)
1892                        send_ioctx = srpt_get_send_ioctx(ch);
1893                if (unlikely(!send_ioctx)) {
1894                        list_add_tail(&recv_ioctx->wait_list,
1895                                      &ch->cmd_wait_list);
1896                        goto out;
1897                }
1898        }
1899
1900        switch (srp_cmd->opcode) {
1901        case SRP_CMD:
1902                srpt_handle_cmd(ch, recv_ioctx, send_ioctx);
1903                break;
1904        case SRP_TSK_MGMT:
1905                srpt_handle_tsk_mgmt(ch, recv_ioctx, send_ioctx);
1906                break;
1907        case SRP_I_LOGOUT:
1908                pr_err("Not yet implemented: SRP_I_LOGOUT\n");
1909                break;
1910        case SRP_CRED_RSP:
1911                pr_debug("received SRP_CRED_RSP\n");
1912                break;
1913        case SRP_AER_RSP:
1914                pr_debug("received SRP_AER_RSP\n");
1915                break;
1916        case SRP_RSP:
1917                pr_err("Received SRP_RSP\n");
1918                break;
1919        default:
1920                pr_err("received IU with unknown opcode 0x%x\n",
1921                       srp_cmd->opcode);
1922                break;
1923        }
1924
1925        srpt_post_recv(ch->sport->sdev, recv_ioctx);
1926out:
1927        return;
1928}
1929
1930static void srpt_process_rcv_completion(struct ib_cq *cq,
1931                                        struct srpt_rdma_ch *ch,
1932                                        struct ib_wc *wc)
1933{
1934        struct srpt_device *sdev = ch->sport->sdev;
1935        struct srpt_recv_ioctx *ioctx;
1936        u32 index;
1937
1938        index = idx_from_wr_id(wc->wr_id);
1939        if (wc->status == IB_WC_SUCCESS) {
1940                int req_lim;
1941
1942                req_lim = atomic_dec_return(&ch->req_lim);
1943                if (unlikely(req_lim < 0))
1944                        pr_err("req_lim = %d < 0\n", req_lim);
1945                ioctx = sdev->ioctx_ring[index];
1946                srpt_handle_new_iu(ch, ioctx, NULL);
1947        } else {
1948                pr_info("receiving failed for idx %u with status %d\n",
1949                        index, wc->status);
1950        }
1951}
1952
1953/**
1954 * srpt_process_send_completion() - Process an IB send completion.
1955 *
1956 * Note: Although this has not yet been observed during tests, at least in
1957 * theory it is possible that the srpt_get_send_ioctx() call invoked by
1958 * srpt_handle_new_iu() fails. This is possible because the req_lim_delta
1959 * value in each response is set to one, and it is possible that this response
1960 * makes the initiator send a new request before the send completion for that
1961 * response has been processed. This could e.g. happen if the call to
1962 * srpt_put_send_iotcx() is delayed because of a higher priority interrupt or
1963 * if IB retransmission causes generation of the send completion to be
1964 * delayed. Incoming information units for which srpt_get_send_ioctx() fails
1965 * are queued on cmd_wait_list. The code below processes these delayed
1966 * requests one at a time.
1967 */
1968static void srpt_process_send_completion(struct ib_cq *cq,
1969                                         struct srpt_rdma_ch *ch,
1970                                         struct ib_wc *wc)
1971{
1972        struct srpt_send_ioctx *send_ioctx;
1973        uint32_t index;
1974        enum srpt_opcode opcode;
1975
1976        index = idx_from_wr_id(wc->wr_id);
1977        opcode = opcode_from_wr_id(wc->wr_id);
1978        send_ioctx = ch->ioctx_ring[index];
1979        if (wc->status == IB_WC_SUCCESS) {
1980                if (opcode == SRPT_SEND)
1981                        srpt_handle_send_comp(ch, send_ioctx);
1982                else {
1983                        WARN_ON(opcode != SRPT_RDMA_ABORT &&
1984                                wc->opcode != IB_WC_RDMA_READ);
1985                        srpt_handle_rdma_comp(ch, send_ioctx, opcode);
1986                }
1987        } else {
1988                if (opcode == SRPT_SEND) {
1989                        pr_info("sending response for idx %u failed"
1990                                " with status %d\n", index, wc->status);
1991                        srpt_handle_send_err_comp(ch, wc->wr_id);
1992                } else if (opcode != SRPT_RDMA_MID) {
1993                        pr_info("RDMA t %d for idx %u failed with"
1994                                " status %d\n", opcode, index, wc->status);
1995                        srpt_handle_rdma_err_comp(ch, send_ioctx, opcode);
1996                }
1997        }
1998
1999        while (unlikely(opcode == SRPT_SEND
2000                        && !list_empty(&ch->cmd_wait_list)
2001                        && srpt_get_ch_state(ch) == CH_LIVE
2002                        && (send_ioctx = srpt_get_send_ioctx(ch)) != NULL)) {
2003                struct srpt_recv_ioctx *recv_ioctx;
2004
2005                recv_ioctx = list_first_entry(&ch->cmd_wait_list,
2006                                              struct srpt_recv_ioctx,
2007                                              wait_list);
2008                list_del(&recv_ioctx->wait_list);
2009                srpt_handle_new_iu(ch, recv_ioctx, send_ioctx);
2010        }
2011}
2012
2013static void srpt_process_completion(struct ib_cq *cq, struct srpt_rdma_ch *ch)
2014{
2015        struct ib_wc *const wc = ch->wc;
2016        int i, n;
2017
2018        WARN_ON(cq != ch->cq);
2019
2020        ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
2021        while ((n = ib_poll_cq(cq, ARRAY_SIZE(ch->wc), wc)) > 0) {
2022                for (i = 0; i < n; i++) {
2023                        if (opcode_from_wr_id(wc[i].wr_id) == SRPT_RECV)
2024                                srpt_process_rcv_completion(cq, ch, &wc[i]);
2025                        else
2026                                srpt_process_send_completion(cq, ch, &wc[i]);
2027                }
2028        }
2029}
2030
2031/**
2032 * srpt_completion() - IB completion queue callback function.
2033 *
2034 * Notes:
2035 * - It is guaranteed that a completion handler will never be invoked
2036 *   concurrently on two different CPUs for the same completion queue. See also
2037 *   Documentation/infiniband/core_locking.txt and the implementation of
2038 *   handle_edge_irq() in kernel/irq/chip.c.
2039 * - When threaded IRQs are enabled, completion handlers are invoked in thread
2040 *   context instead of interrupt context.
2041 */
2042static void srpt_completion(struct ib_cq *cq, void *ctx)
2043{
2044        struct srpt_rdma_ch *ch = ctx;
2045
2046        wake_up_interruptible(&ch->wait_queue);
2047}
2048
2049static int srpt_compl_thread(void *arg)
2050{
2051        struct srpt_rdma_ch *ch;
2052
2053        /* Hibernation / freezing of the SRPT kernel thread is not supported. */
2054        current->flags |= PF_NOFREEZE;
2055
2056        ch = arg;
2057        BUG_ON(!ch);
2058        pr_info("Session %s: kernel thread %s (PID %d) started\n",
2059                ch->sess_name, ch->thread->comm, current->pid);
2060        while (!kthread_should_stop()) {
2061                wait_event_interruptible(ch->wait_queue,
2062                        (srpt_process_completion(ch->cq, ch),
2063                         kthread_should_stop()));
2064        }
2065        pr_info("Session %s: kernel thread %s (PID %d) stopped\n",
2066                ch->sess_name, ch->thread->comm, current->pid);
2067        return 0;
2068}
2069
2070/**
2071 * srpt_create_ch_ib() - Create receive and send completion queues.
2072 */
2073static int srpt_create_ch_ib(struct srpt_rdma_ch *ch)
2074{
2075        struct ib_qp_init_attr *qp_init;
2076        struct srpt_port *sport = ch->sport;
2077        struct srpt_device *sdev = sport->sdev;
2078        u32 srp_sq_size = sport->port_attrib.srp_sq_size;
2079        struct ib_cq_init_attr cq_attr = {};
2080        int ret;
2081
2082        WARN_ON(ch->rq_size < 1);
2083
2084        ret = -ENOMEM;
2085        qp_init = kzalloc(sizeof *qp_init, GFP_KERNEL);
2086        if (!qp_init)
2087                goto out;
2088
2089retry:
2090        cq_attr.cqe = ch->rq_size + srp_sq_size;
2091        ch->cq = ib_create_cq(sdev->device, srpt_completion, NULL, ch,
2092                              &cq_attr);
2093        if (IS_ERR(ch->cq)) {
2094                ret = PTR_ERR(ch->cq);
2095                pr_err("failed to create CQ cqe= %d ret= %d\n",
2096                       ch->rq_size + srp_sq_size, ret);
2097                goto out;
2098        }
2099
2100        qp_init->qp_context = (void *)ch;
2101        qp_init->event_handler
2102                = (void(*)(struct ib_event *, void*))srpt_qp_event;
2103        qp_init->send_cq = ch->cq;
2104        qp_init->recv_cq = ch->cq;
2105        qp_init->srq = sdev->srq;
2106        qp_init->sq_sig_type = IB_SIGNAL_REQ_WR;
2107        qp_init->qp_type = IB_QPT_RC;
2108        qp_init->cap.max_send_wr = srp_sq_size;
2109        qp_init->cap.max_send_sge = SRPT_DEF_SG_PER_WQE;
2110
2111        ch->qp = ib_create_qp(sdev->pd, qp_init);
2112        if (IS_ERR(ch->qp)) {
2113                ret = PTR_ERR(ch->qp);
2114                if (ret == -ENOMEM) {
2115                        srp_sq_size /= 2;
2116                        if (srp_sq_size >= MIN_SRPT_SQ_SIZE) {
2117                                ib_destroy_cq(ch->cq);
2118                                goto retry;
2119                        }
2120                }
2121                pr_err("failed to create_qp ret= %d\n", ret);
2122                goto err_destroy_cq;
2123        }
2124
2125        atomic_set(&ch->sq_wr_avail, qp_init->cap.max_send_wr);
2126
2127        pr_debug("%s: max_cqe= %d max_sge= %d sq_size = %d cm_id= %p\n",
2128                 __func__, ch->cq->cqe, qp_init->cap.max_send_sge,
2129                 qp_init->cap.max_send_wr, ch->cm_id);
2130
2131        ret = srpt_init_ch_qp(ch, ch->qp);
2132        if (ret)
2133                goto err_destroy_qp;
2134
2135        init_waitqueue_head(&ch->wait_queue);
2136
2137        pr_debug("creating thread for session %s\n", ch->sess_name);
2138
2139        ch->thread = kthread_run(srpt_compl_thread, ch, "ib_srpt_compl");
2140        if (IS_ERR(ch->thread)) {
2141                pr_err("failed to create kernel thread %ld\n",
2142                       PTR_ERR(ch->thread));
2143                ch->thread = NULL;
2144                goto err_destroy_qp;
2145        }
2146
2147out:
2148        kfree(qp_init);
2149        return ret;
2150
2151err_destroy_qp:
2152        ib_destroy_qp(ch->qp);
2153err_destroy_cq:
2154        ib_destroy_cq(ch->cq);
2155        goto out;
2156}
2157
2158static void srpt_destroy_ch_ib(struct srpt_rdma_ch *ch)
2159{
2160        if (ch->thread)
2161                kthread_stop(ch->thread);
2162
2163        ib_destroy_qp(ch->qp);
2164        ib_destroy_cq(ch->cq);
2165}
2166
2167/**
2168 * __srpt_close_ch() - Close an RDMA channel by setting the QP error state.
2169 *
2170 * Reset the QP and make sure all resources associated with the channel will
2171 * be deallocated at an appropriate time.
2172 *
2173 * Note: The caller must hold ch->sport->sdev->spinlock.
2174 */
2175static void __srpt_close_ch(struct srpt_rdma_ch *ch)
2176{
2177        enum rdma_ch_state prev_state;
2178        unsigned long flags;
2179
2180        spin_lock_irqsave(&ch->spinlock, flags);
2181        prev_state = ch->state;
2182        switch (prev_state) {
2183        case CH_CONNECTING:
2184        case CH_LIVE:
2185                ch->state = CH_DISCONNECTING;
2186                break;
2187        default:
2188                break;
2189        }
2190        spin_unlock_irqrestore(&ch->spinlock, flags);
2191
2192        switch (prev_state) {
2193        case CH_CONNECTING:
2194                ib_send_cm_rej(ch->cm_id, IB_CM_REJ_NO_RESOURCES, NULL, 0,
2195                               NULL, 0);
2196                /* fall through */
2197        case CH_LIVE:
2198                if (ib_send_cm_dreq(ch->cm_id, NULL, 0) < 0)
2199                        pr_err("sending CM DREQ failed.\n");
2200                break;
2201        case CH_DISCONNECTING:
2202                break;
2203        case CH_DRAINING:
2204        case CH_RELEASING:
2205                break;
2206        }
2207}
2208
2209/**
2210 * srpt_close_ch() - Close an RDMA channel.
2211 */
2212static void srpt_close_ch(struct srpt_rdma_ch *ch)
2213{
2214        struct srpt_device *sdev;
2215
2216        sdev = ch->sport->sdev;
2217        spin_lock_irq(&sdev->spinlock);
2218        __srpt_close_ch(ch);
2219        spin_unlock_irq(&sdev->spinlock);
2220}
2221
2222/**
2223 * srpt_shutdown_session() - Whether or not a session may be shut down.
2224 */
2225static int srpt_shutdown_session(struct se_session *se_sess)
2226{
2227        struct srpt_rdma_ch *ch = se_sess->fabric_sess_ptr;
2228        unsigned long flags;
2229
2230        spin_lock_irqsave(&ch->spinlock, flags);
2231        if (ch->in_shutdown) {
2232                spin_unlock_irqrestore(&ch->spinlock, flags);
2233                return true;
2234        }
2235
2236        ch->in_shutdown = true;
2237        target_sess_cmd_list_set_waiting(se_sess);
2238        spin_unlock_irqrestore(&ch->spinlock, flags);
2239
2240        return true;
2241}
2242
2243/**
2244 * srpt_drain_channel() - Drain a channel by resetting the IB queue pair.
2245 * @cm_id: Pointer to the CM ID of the channel to be drained.
2246 *
2247 * Note: Must be called from inside srpt_cm_handler to avoid a race between
2248 * accessing sdev->spinlock and the call to kfree(sdev) in srpt_remove_one()
2249 * (the caller of srpt_cm_handler holds the cm_id spinlock; srpt_remove_one()
2250 * waits until all target sessions for the associated IB device have been
2251 * unregistered and target session registration involves a call to
2252 * ib_destroy_cm_id(), which locks the cm_id spinlock and hence waits until
2253 * this function has finished).
2254 */
2255static void srpt_drain_channel(struct ib_cm_id *cm_id)
2256{
2257        struct srpt_device *sdev;
2258        struct srpt_rdma_ch *ch;
2259        int ret;
2260        bool do_reset = false;
2261
2262        WARN_ON_ONCE(irqs_disabled());
2263
2264        sdev = cm_id->context;
2265        BUG_ON(!sdev);
2266        spin_lock_irq(&sdev->spinlock);
2267        list_for_each_entry(ch, &sdev->rch_list, list) {
2268                if (ch->cm_id == cm_id) {
2269                        do_reset = srpt_test_and_set_ch_state(ch,
2270                                        CH_CONNECTING, CH_DRAINING) ||
2271                                   srpt_test_and_set_ch_state(ch,
2272                                        CH_LIVE, CH_DRAINING) ||
2273                                   srpt_test_and_set_ch_state(ch,
2274                                        CH_DISCONNECTING, CH_DRAINING);
2275                        break;
2276                }
2277        }
2278        spin_unlock_irq(&sdev->spinlock);
2279
2280        if (do_reset) {
2281                if (ch->sess)
2282                        srpt_shutdown_session(ch->sess);
2283
2284                ret = srpt_ch_qp_err(ch);
2285                if (ret < 0)
2286                        pr_err("Setting queue pair in error state"
2287                               " failed: %d\n", ret);
2288        }
2289}
2290
2291/**
2292 * srpt_find_channel() - Look up an RDMA channel.
2293 * @cm_id: Pointer to the CM ID of the channel to be looked up.
2294 *
2295 * Return NULL if no matching RDMA channel has been found.
2296 */
2297static struct srpt_rdma_ch *srpt_find_channel(struct srpt_device *sdev,
2298                                              struct ib_cm_id *cm_id)
2299{
2300        struct srpt_rdma_ch *ch;
2301        bool found;
2302
2303        WARN_ON_ONCE(irqs_disabled());
2304        BUG_ON(!sdev);
2305
2306        found = false;
2307        spin_lock_irq(&sdev->spinlock);
2308        list_for_each_entry(ch, &sdev->rch_list, list) {
2309                if (ch->cm_id == cm_id) {
2310                        found = true;
2311                        break;
2312                }
2313        }
2314        spin_unlock_irq(&sdev->spinlock);
2315
2316        return found ? ch : NULL;
2317}
2318
2319/**
2320 * srpt_release_channel() - Release channel resources.
2321 *
2322 * Schedules the actual release because:
2323 * - Calling the ib_destroy_cm_id() call from inside an IB CM callback would
2324 *   trigger a deadlock.
2325 * - It is not safe to call TCM transport_* functions from interrupt context.
2326 */
2327static void srpt_release_channel(struct srpt_rdma_ch *ch)
2328{
2329        schedule_work(&ch->release_work);
2330}
2331
2332static void srpt_release_channel_work(struct work_struct *w)
2333{
2334        struct srpt_rdma_ch *ch;
2335        struct srpt_device *sdev;
2336        struct se_session *se_sess;
2337
2338        ch = container_of(w, struct srpt_rdma_ch, release_work);
2339        pr_debug("ch = %p; ch->sess = %p; release_done = %p\n", ch, ch->sess,
2340                 ch->release_done);
2341
2342        sdev = ch->sport->sdev;
2343        BUG_ON(!sdev);
2344
2345        se_sess = ch->sess;
2346        BUG_ON(!se_sess);
2347
2348        target_wait_for_sess_cmds(se_sess);
2349
2350        transport_deregister_session_configfs(se_sess);
2351        transport_deregister_session(se_sess);
2352        ch->sess = NULL;
2353
2354        ib_destroy_cm_id(ch->cm_id);
2355
2356        srpt_destroy_ch_ib(ch);
2357
2358        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2359                             ch->sport->sdev, ch->rq_size,
2360                             ch->rsp_size, DMA_TO_DEVICE);
2361
2362        spin_lock_irq(&sdev->spinlock);
2363        list_del(&ch->list);
2364        spin_unlock_irq(&sdev->spinlock);
2365
2366        if (ch->release_done)
2367                complete(ch->release_done);
2368
2369        wake_up(&sdev->ch_releaseQ);
2370
2371        kfree(ch);
2372}
2373
2374static struct srpt_node_acl *__srpt_lookup_acl(struct srpt_port *sport,
2375                                               u8 i_port_id[16])
2376{
2377        struct srpt_node_acl *nacl;
2378
2379        list_for_each_entry(nacl, &sport->port_acl_list, list)
2380                if (memcmp(nacl->i_port_id, i_port_id,
2381                           sizeof(nacl->i_port_id)) == 0)
2382                        return nacl;
2383
2384        return NULL;
2385}
2386
2387static struct srpt_node_acl *srpt_lookup_acl(struct srpt_port *sport,
2388                                             u8 i_port_id[16])
2389{
2390        struct srpt_node_acl *nacl;
2391
2392        spin_lock_irq(&sport->port_acl_lock);
2393        nacl = __srpt_lookup_acl(sport, i_port_id);
2394        spin_unlock_irq(&sport->port_acl_lock);
2395
2396        return nacl;
2397}
2398
2399/**
2400 * srpt_cm_req_recv() - Process the event IB_CM_REQ_RECEIVED.
2401 *
2402 * Ownership of the cm_id is transferred to the target session if this
2403 * functions returns zero. Otherwise the caller remains the owner of cm_id.
2404 */
2405static int srpt_cm_req_recv(struct ib_cm_id *cm_id,
2406                            struct ib_cm_req_event_param *param,
2407                            void *private_data)
2408{
2409        struct srpt_device *sdev = cm_id->context;
2410        struct srpt_port *sport = &sdev->port[param->port - 1];
2411        struct srp_login_req *req;
2412        struct srp_login_rsp *rsp;
2413        struct srp_login_rej *rej;
2414        struct ib_cm_rep_param *rep_param;
2415        struct srpt_rdma_ch *ch, *tmp_ch;
2416        struct srpt_node_acl *nacl;
2417        u32 it_iu_len;
2418        int i;
2419        int ret = 0;
2420
2421        WARN_ON_ONCE(irqs_disabled());
2422
2423        if (WARN_ON(!sdev || !private_data))
2424                return -EINVAL;
2425
2426        req = (struct srp_login_req *)private_data;
2427
2428        it_iu_len = be32_to_cpu(req->req_it_iu_len);
2429
2430        pr_info("Received SRP_LOGIN_REQ with i_port_id 0x%llx:0x%llx,"
2431                " t_port_id 0x%llx:0x%llx and it_iu_len %d on port %d"
2432                " (guid=0x%llx:0x%llx)\n",
2433                be64_to_cpu(*(__be64 *)&req->initiator_port_id[0]),
2434                be64_to_cpu(*(__be64 *)&req->initiator_port_id[8]),
2435                be64_to_cpu(*(__be64 *)&req->target_port_id[0]),
2436                be64_to_cpu(*(__be64 *)&req->target_port_id[8]),
2437                it_iu_len,
2438                param->port,
2439                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[0]),
2440                be64_to_cpu(*(__be64 *)&sdev->port[param->port - 1].gid.raw[8]));
2441
2442        rsp = kzalloc(sizeof *rsp, GFP_KERNEL);
2443        rej = kzalloc(sizeof *rej, GFP_KERNEL);
2444        rep_param = kzalloc(sizeof *rep_param, GFP_KERNEL);
2445
2446        if (!rsp || !rej || !rep_param) {
2447                ret = -ENOMEM;
2448                goto out;
2449        }
2450
2451        if (it_iu_len > srp_max_req_size || it_iu_len < 64) {
2452                rej->reason = cpu_to_be32(
2453                              SRP_LOGIN_REJ_REQ_IT_IU_LENGTH_TOO_LARGE);
2454                ret = -EINVAL;
2455                pr_err("rejected SRP_LOGIN_REQ because its"
2456                       " length (%d bytes) is out of range (%d .. %d)\n",
2457                       it_iu_len, 64, srp_max_req_size);
2458                goto reject;
2459        }
2460
2461        if (!sport->enabled) {
2462                rej->reason = cpu_to_be32(
2463                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2464                ret = -EINVAL;
2465                pr_err("rejected SRP_LOGIN_REQ because the target port"
2466                       " has not yet been enabled\n");
2467                goto reject;
2468        }
2469
2470        if ((req->req_flags & SRP_MTCH_ACTION) == SRP_MULTICHAN_SINGLE) {
2471                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_NO_CHAN;
2472
2473                spin_lock_irq(&sdev->spinlock);
2474
2475                list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list) {
2476                        if (!memcmp(ch->i_port_id, req->initiator_port_id, 16)
2477                            && !memcmp(ch->t_port_id, req->target_port_id, 16)
2478                            && param->port == ch->sport->port
2479                            && param->listen_id == ch->sport->sdev->cm_id
2480                            && ch->cm_id) {
2481                                enum rdma_ch_state ch_state;
2482
2483                                ch_state = srpt_get_ch_state(ch);
2484                                if (ch_state != CH_CONNECTING
2485                                    && ch_state != CH_LIVE)
2486                                        continue;
2487
2488                                /* found an existing channel */
2489                                pr_debug("Found existing channel %s"
2490                                         " cm_id= %p state= %d\n",
2491                                         ch->sess_name, ch->cm_id, ch_state);
2492
2493                                __srpt_close_ch(ch);
2494
2495                                rsp->rsp_flags =
2496                                        SRP_LOGIN_RSP_MULTICHAN_TERMINATED;
2497                        }
2498                }
2499
2500                spin_unlock_irq(&sdev->spinlock);
2501
2502        } else
2503                rsp->rsp_flags = SRP_LOGIN_RSP_MULTICHAN_MAINTAINED;
2504
2505        if (*(__be64 *)req->target_port_id != cpu_to_be64(srpt_service_guid)
2506            || *(__be64 *)(req->target_port_id + 8) !=
2507               cpu_to_be64(srpt_service_guid)) {
2508                rej->reason = cpu_to_be32(
2509                              SRP_LOGIN_REJ_UNABLE_ASSOCIATE_CHANNEL);
2510                ret = -ENOMEM;
2511                pr_err("rejected SRP_LOGIN_REQ because it"
2512                       " has an invalid target port identifier.\n");
2513                goto reject;
2514        }
2515
2516        ch = kzalloc(sizeof *ch, GFP_KERNEL);
2517        if (!ch) {
2518                rej->reason = cpu_to_be32(
2519                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2520                pr_err("rejected SRP_LOGIN_REQ because no memory.\n");
2521                ret = -ENOMEM;
2522                goto reject;
2523        }
2524
2525        INIT_WORK(&ch->release_work, srpt_release_channel_work);
2526        memcpy(ch->i_port_id, req->initiator_port_id, 16);
2527        memcpy(ch->t_port_id, req->target_port_id, 16);
2528        ch->sport = &sdev->port[param->port - 1];
2529        ch->cm_id = cm_id;
2530        /*
2531         * Avoid QUEUE_FULL conditions by limiting the number of buffers used
2532         * for the SRP protocol to the command queue size.
2533         */
2534        ch->rq_size = SRPT_RQ_SIZE;
2535        spin_lock_init(&ch->spinlock);
2536        ch->state = CH_CONNECTING;
2537        INIT_LIST_HEAD(&ch->cmd_wait_list);
2538        ch->rsp_size = ch->sport->port_attrib.srp_max_rsp_size;
2539
2540        ch->ioctx_ring = (struct srpt_send_ioctx **)
2541                srpt_alloc_ioctx_ring(ch->sport->sdev, ch->rq_size,
2542                                      sizeof(*ch->ioctx_ring[0]),
2543                                      ch->rsp_size, DMA_TO_DEVICE);
2544        if (!ch->ioctx_ring)
2545                goto free_ch;
2546
2547        INIT_LIST_HEAD(&ch->free_list);
2548        for (i = 0; i < ch->rq_size; i++) {
2549                ch->ioctx_ring[i]->ch = ch;
2550                list_add_tail(&ch->ioctx_ring[i]->free_list, &ch->free_list);
2551        }
2552
2553        ret = srpt_create_ch_ib(ch);
2554        if (ret) {
2555                rej->reason = cpu_to_be32(
2556                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2557                pr_err("rejected SRP_LOGIN_REQ because creating"
2558                       " a new RDMA channel failed.\n");
2559                goto free_ring;
2560        }
2561
2562        ret = srpt_ch_qp_rtr(ch, ch->qp);
2563        if (ret) {
2564                rej->reason = cpu_to_be32(SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2565                pr_err("rejected SRP_LOGIN_REQ because enabling"
2566                       " RTR failed (error code = %d)\n", ret);
2567                goto destroy_ib;
2568        }
2569        /*
2570         * Use the initator port identifier as the session name.
2571         */
2572        snprintf(ch->sess_name, sizeof(ch->sess_name), "0x%016llx%016llx",
2573                        be64_to_cpu(*(__be64 *)ch->i_port_id),
2574                        be64_to_cpu(*(__be64 *)(ch->i_port_id + 8)));
2575
2576        pr_debug("registering session %s\n", ch->sess_name);
2577
2578        nacl = srpt_lookup_acl(sport, ch->i_port_id);
2579        if (!nacl) {
2580                pr_info("Rejected login because no ACL has been"
2581                        " configured yet for initiator %s.\n", ch->sess_name);
2582                rej->reason = cpu_to_be32(
2583                              SRP_LOGIN_REJ_CHANNEL_LIMIT_REACHED);
2584                goto destroy_ib;
2585        }
2586
2587        ch->sess = transport_init_session(TARGET_PROT_NORMAL);
2588        if (IS_ERR(ch->sess)) {
2589                rej->reason = cpu_to_be32(
2590                              SRP_LOGIN_REJ_INSUFFICIENT_RESOURCES);
2591                pr_debug("Failed to create session\n");
2592                goto deregister_session;
2593        }
2594        ch->sess->se_node_acl = &nacl->nacl;
2595        transport_register_session(&sport->port_tpg_1, &nacl->nacl, ch->sess, ch);
2596
2597        pr_debug("Establish connection sess=%p name=%s cm_id=%p\n", ch->sess,
2598                 ch->sess_name, ch->cm_id);
2599
2600        /* create srp_login_response */
2601        rsp->opcode = SRP_LOGIN_RSP;
2602        rsp->tag = req->tag;
2603        rsp->max_it_iu_len = req->req_it_iu_len;
2604        rsp->max_ti_iu_len = req->req_it_iu_len;
2605        ch->max_ti_iu_len = it_iu_len;
2606        rsp->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2607                                   | SRP_BUF_FORMAT_INDIRECT);
2608        rsp->req_lim_delta = cpu_to_be32(ch->rq_size);
2609        atomic_set(&ch->req_lim, ch->rq_size);
2610        atomic_set(&ch->req_lim_delta, 0);
2611
2612        /* create cm reply */
2613        rep_param->qp_num = ch->qp->qp_num;
2614        rep_param->private_data = (void *)rsp;
2615        rep_param->private_data_len = sizeof *rsp;
2616        rep_param->rnr_retry_count = 7;
2617        rep_param->flow_control = 1;
2618        rep_param->failover_accepted = 0;
2619        rep_param->srq = 1;
2620        rep_param->responder_resources = 4;
2621        rep_param->initiator_depth = 4;
2622
2623        ret = ib_send_cm_rep(cm_id, rep_param);
2624        if (ret) {
2625                pr_err("sending SRP_LOGIN_REQ response failed"
2626                       " (error code = %d)\n", ret);
2627                goto release_channel;
2628        }
2629
2630        spin_lock_irq(&sdev->spinlock);
2631        list_add_tail(&ch->list, &sdev->rch_list);
2632        spin_unlock_irq(&sdev->spinlock);
2633
2634        goto out;
2635
2636release_channel:
2637        srpt_set_ch_state(ch, CH_RELEASING);
2638        transport_deregister_session_configfs(ch->sess);
2639
2640deregister_session:
2641        transport_deregister_session(ch->sess);
2642        ch->sess = NULL;
2643
2644destroy_ib:
2645        srpt_destroy_ch_ib(ch);
2646
2647free_ring:
2648        srpt_free_ioctx_ring((struct srpt_ioctx **)ch->ioctx_ring,
2649                             ch->sport->sdev, ch->rq_size,
2650                             ch->rsp_size, DMA_TO_DEVICE);
2651free_ch:
2652        kfree(ch);
2653
2654reject:
2655        rej->opcode = SRP_LOGIN_REJ;
2656        rej->tag = req->tag;
2657        rej->buf_fmt = cpu_to_be16(SRP_BUF_FORMAT_DIRECT
2658                                   | SRP_BUF_FORMAT_INDIRECT);
2659
2660        ib_send_cm_rej(cm_id, IB_CM_REJ_CONSUMER_DEFINED, NULL, 0,
2661                             (void *)rej, sizeof *rej);
2662
2663out:
2664        kfree(rep_param);
2665        kfree(rsp);
2666        kfree(rej);
2667
2668        return ret;
2669}
2670
2671static void srpt_cm_rej_recv(struct ib_cm_id *cm_id)
2672{
2673        pr_info("Received IB REJ for cm_id %p.\n", cm_id);
2674        srpt_drain_channel(cm_id);
2675}
2676
2677/**
2678 * srpt_cm_rtu_recv() - Process an IB_CM_RTU_RECEIVED or USER_ESTABLISHED event.
2679 *
2680 * An IB_CM_RTU_RECEIVED message indicates that the connection is established
2681 * and that the recipient may begin transmitting (RTU = ready to use).
2682 */
2683static void srpt_cm_rtu_recv(struct ib_cm_id *cm_id)
2684{
2685        struct srpt_rdma_ch *ch;
2686        int ret;
2687
2688        ch = srpt_find_channel(cm_id->context, cm_id);
2689        BUG_ON(!ch);
2690
2691        if (srpt_test_and_set_ch_state(ch, CH_CONNECTING, CH_LIVE)) {
2692                struct srpt_recv_ioctx *ioctx, *ioctx_tmp;
2693
2694                ret = srpt_ch_qp_rts(ch, ch->qp);
2695
2696                list_for_each_entry_safe(ioctx, ioctx_tmp, &ch->cmd_wait_list,
2697                                         wait_list) {
2698                        list_del(&ioctx->wait_list);
2699                        srpt_handle_new_iu(ch, ioctx, NULL);
2700                }
2701                if (ret)
2702                        srpt_close_ch(ch);
2703        }
2704}
2705
2706static void srpt_cm_timewait_exit(struct ib_cm_id *cm_id)
2707{
2708        pr_info("Received IB TimeWait exit for cm_id %p.\n", cm_id);
2709        srpt_drain_channel(cm_id);
2710}
2711
2712static void srpt_cm_rep_error(struct ib_cm_id *cm_id)
2713{
2714        pr_info("Received IB REP error for cm_id %p.\n", cm_id);
2715        srpt_drain_channel(cm_id);
2716}
2717
2718/**
2719 * srpt_cm_dreq_recv() - Process reception of a DREQ message.
2720 */
2721static void srpt_cm_dreq_recv(struct ib_cm_id *cm_id)
2722{
2723        struct srpt_rdma_ch *ch;
2724        unsigned long flags;
2725        bool send_drep = false;
2726
2727        ch = srpt_find_channel(cm_id->context, cm_id);
2728        BUG_ON(!ch);
2729
2730        pr_debug("cm_id= %p ch->state= %d\n", cm_id, srpt_get_ch_state(ch));
2731
2732        spin_lock_irqsave(&ch->spinlock, flags);
2733        switch (ch->state) {
2734        case CH_CONNECTING:
2735        case CH_LIVE:
2736                send_drep = true;
2737                ch->state = CH_DISCONNECTING;
2738                break;
2739        case CH_DISCONNECTING:
2740        case CH_DRAINING:
2741        case CH_RELEASING:
2742                WARN(true, "unexpected channel state %d\n", ch->state);
2743                break;
2744        }
2745        spin_unlock_irqrestore(&ch->spinlock, flags);
2746
2747        if (send_drep) {
2748                if (ib_send_cm_drep(ch->cm_id, NULL, 0) < 0)
2749                        pr_err("Sending IB DREP failed.\n");
2750                pr_info("Received DREQ and sent DREP for session %s.\n",
2751                        ch->sess_name);
2752        }
2753}
2754
2755/**
2756 * srpt_cm_drep_recv() - Process reception of a DREP message.
2757 */
2758static void srpt_cm_drep_recv(struct ib_cm_id *cm_id)
2759{
2760        pr_info("Received InfiniBand DREP message for cm_id %p.\n", cm_id);
2761        srpt_drain_channel(cm_id);
2762}
2763
2764/**
2765 * srpt_cm_handler() - IB connection manager callback function.
2766 *
2767 * A non-zero return value will cause the caller destroy the CM ID.
2768 *
2769 * Note: srpt_cm_handler() must only return a non-zero value when transferring
2770 * ownership of the cm_id to a channel by srpt_cm_req_recv() failed. Returning
2771 * a non-zero value in any other case will trigger a race with the
2772 * ib_destroy_cm_id() call in srpt_release_channel().
2773 */
2774static int srpt_cm_handler(struct ib_cm_id *cm_id, struct ib_cm_event *event)
2775{
2776        int ret;
2777
2778        ret = 0;
2779        switch (event->event) {
2780        case IB_CM_REQ_RECEIVED:
2781                ret = srpt_cm_req_recv(cm_id, &event->param.req_rcvd,
2782                                       event->private_data);
2783                break;
2784        case IB_CM_REJ_RECEIVED:
2785                srpt_cm_rej_recv(cm_id);
2786                break;
2787        case IB_CM_RTU_RECEIVED:
2788        case IB_CM_USER_ESTABLISHED:
2789                srpt_cm_rtu_recv(cm_id);
2790                break;
2791        case IB_CM_DREQ_RECEIVED:
2792                srpt_cm_dreq_recv(cm_id);
2793                break;
2794        case IB_CM_DREP_RECEIVED:
2795                srpt_cm_drep_recv(cm_id);
2796                break;
2797        case IB_CM_TIMEWAIT_EXIT:
2798                srpt_cm_timewait_exit(cm_id);
2799                break;
2800        case IB_CM_REP_ERROR:
2801                srpt_cm_rep_error(cm_id);
2802                break;
2803        case IB_CM_DREQ_ERROR:
2804                pr_info("Received IB DREQ ERROR event.\n");
2805                break;
2806        case IB_CM_MRA_RECEIVED:
2807                pr_info("Received IB MRA event\n");
2808                break;
2809        default:
2810                pr_err("received unrecognized IB CM event %d\n", event->event);
2811                break;
2812        }
2813
2814        return ret;
2815}
2816
2817/**
2818 * srpt_perform_rdmas() - Perform IB RDMA.
2819 *
2820 * Returns zero upon success or a negative number upon failure.
2821 */
2822static int srpt_perform_rdmas(struct srpt_rdma_ch *ch,
2823                              struct srpt_send_ioctx *ioctx)
2824{
2825        struct ib_send_wr wr;
2826        struct ib_send_wr *bad_wr;
2827        struct rdma_iu *riu;
2828        int i;
2829        int ret;
2830        int sq_wr_avail;
2831        enum dma_data_direction dir;
2832        const int n_rdma = ioctx->n_rdma;
2833
2834        dir = ioctx->cmd.data_direction;
2835        if (dir == DMA_TO_DEVICE) {
2836                /* write */
2837                ret = -ENOMEM;
2838                sq_wr_avail = atomic_sub_return(n_rdma, &ch->sq_wr_avail);
2839                if (sq_wr_avail < 0) {
2840                        pr_warn("IB send queue full (needed %d)\n",
2841                                n_rdma);
2842                        goto out;
2843                }
2844        }
2845
2846        ioctx->rdma_aborted = false;
2847        ret = 0;
2848        riu = ioctx->rdma_ius;
2849        memset(&wr, 0, sizeof wr);
2850
2851        for (i = 0; i < n_rdma; ++i, ++riu) {
2852                if (dir == DMA_FROM_DEVICE) {
2853                        wr.opcode = IB_WR_RDMA_WRITE;
2854                        wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2855                                                SRPT_RDMA_WRITE_LAST :
2856                                                SRPT_RDMA_MID,
2857                                                ioctx->ioctx.index);
2858                } else {
2859                        wr.opcode = IB_WR_RDMA_READ;
2860                        wr.wr_id = encode_wr_id(i == n_rdma - 1 ?
2861                                                SRPT_RDMA_READ_LAST :
2862                                                SRPT_RDMA_MID,
2863                                                ioctx->ioctx.index);
2864                }
2865                wr.next = NULL;
2866                wr.wr.rdma.remote_addr = riu->raddr;
2867                wr.wr.rdma.rkey = riu->rkey;
2868                wr.num_sge = riu->sge_cnt;
2869                wr.sg_list = riu->sge;
2870
2871                /* only get completion event for the last rdma write */
2872                if (i == (n_rdma - 1) && dir == DMA_TO_DEVICE)
2873                        wr.send_flags = IB_SEND_SIGNALED;
2874
2875                ret = ib_post_send(ch->qp, &wr, &bad_wr);
2876                if (ret)
2877                        break;
2878        }
2879
2880        if (ret)
2881                pr_err("%s[%d]: ib_post_send() returned %d for %d/%d\n",
2882                                 __func__, __LINE__, ret, i, n_rdma);
2883        if (ret && i > 0) {
2884                wr.num_sge = 0;
2885                wr.wr_id = encode_wr_id(SRPT_RDMA_ABORT, ioctx->ioctx.index);
2886                wr.send_flags = IB_SEND_SIGNALED;
2887                while (ch->state == CH_LIVE &&
2888                        ib_post_send(ch->qp, &wr, &bad_wr) != 0) {
2889                        pr_info("Trying to abort failed RDMA transfer [%d]\n",
2890                                ioctx->ioctx.index);
2891                        msleep(1000);
2892                }
2893                while (ch->state != CH_RELEASING && !ioctx->rdma_aborted) {
2894                        pr_info("Waiting until RDMA abort finished [%d]\n",
2895                                ioctx->ioctx.index);
2896                        msleep(1000);
2897                }
2898        }
2899out:
2900        if (unlikely(dir == DMA_TO_DEVICE && ret < 0))
2901                atomic_add(n_rdma, &ch->sq_wr_avail);
2902        return ret;
2903}
2904
2905/**
2906 * srpt_xfer_data() - Start data transfer from initiator to target.
2907 */
2908static int srpt_xfer_data(struct srpt_rdma_ch *ch,
2909                          struct srpt_send_ioctx *ioctx)
2910{
2911        int ret;
2912
2913        ret = srpt_map_sg_to_ib_sge(ch, ioctx);
2914        if (ret) {
2915                pr_err("%s[%d] ret=%d\n", __func__, __LINE__, ret);
2916                goto out;
2917        }
2918
2919        ret = srpt_perform_rdmas(ch, ioctx);
2920        if (ret) {
2921                if (ret == -EAGAIN || ret == -ENOMEM)
2922                        pr_info("%s[%d] queue full -- ret=%d\n",
2923                                __func__, __LINE__, ret);
2924                else
2925                        pr_err("%s[%d] fatal error -- ret=%d\n",
2926                               __func__, __LINE__, ret);
2927                goto out_unmap;
2928        }
2929
2930out:
2931        return ret;
2932out_unmap:
2933        srpt_unmap_sg_to_ib_sge(ch, ioctx);
2934        goto out;
2935}
2936
2937static int srpt_write_pending_status(struct se_cmd *se_cmd)
2938{
2939        struct srpt_send_ioctx *ioctx;
2940
2941        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2942        return srpt_get_cmd_state(ioctx) == SRPT_STATE_NEED_DATA;
2943}
2944
2945/*
2946 * srpt_write_pending() - Start data transfer from initiator to target (write).
2947 */
2948static int srpt_write_pending(struct se_cmd *se_cmd)
2949{
2950        struct srpt_rdma_ch *ch;
2951        struct srpt_send_ioctx *ioctx;
2952        enum srpt_command_state new_state;
2953        enum rdma_ch_state ch_state;
2954        int ret;
2955
2956        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
2957
2958        new_state = srpt_set_cmd_state(ioctx, SRPT_STATE_NEED_DATA);
2959        WARN_ON(new_state == SRPT_STATE_DONE);
2960
2961        ch = ioctx->ch;
2962        BUG_ON(!ch);
2963
2964        ch_state = srpt_get_ch_state(ch);
2965        switch (ch_state) {
2966        case CH_CONNECTING:
2967                WARN(true, "unexpected channel state %d\n", ch_state);
2968                ret = -EINVAL;
2969                goto out;
2970        case CH_LIVE:
2971                break;
2972        case CH_DISCONNECTING:
2973        case CH_DRAINING:
2974        case CH_RELEASING:
2975                pr_debug("cmd with tag %lld: channel disconnecting\n",
2976                         ioctx->cmd.tag);
2977                srpt_set_cmd_state(ioctx, SRPT_STATE_DATA_IN);
2978                ret = -EINVAL;
2979                goto out;
2980        }
2981        ret = srpt_xfer_data(ch, ioctx);
2982
2983out:
2984        return ret;
2985}
2986
2987static u8 tcm_to_srp_tsk_mgmt_status(const int tcm_mgmt_status)
2988{
2989        switch (tcm_mgmt_status) {
2990        case TMR_FUNCTION_COMPLETE:
2991                return SRP_TSK_MGMT_SUCCESS;
2992        case TMR_FUNCTION_REJECTED:
2993                return SRP_TSK_MGMT_FUNC_NOT_SUPP;
2994        }
2995        return SRP_TSK_MGMT_FAILED;
2996}
2997
2998/**
2999 * srpt_queue_response() - Transmits the response to a SCSI command.
3000 *
3001 * Callback function called by the TCM core. Must not block since it can be
3002 * invoked on the context of the IB completion handler.
3003 */
3004static void srpt_queue_response(struct se_cmd *cmd)
3005{
3006        struct srpt_rdma_ch *ch;
3007        struct srpt_send_ioctx *ioctx;
3008        enum srpt_command_state state;
3009        unsigned long flags;
3010        int ret;
3011        enum dma_data_direction dir;
3012        int resp_len;
3013        u8 srp_tm_status;
3014
3015        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3016        ch = ioctx->ch;
3017        BUG_ON(!ch);
3018
3019        spin_lock_irqsave(&ioctx->spinlock, flags);
3020        state = ioctx->state;
3021        switch (state) {
3022        case SRPT_STATE_NEW:
3023        case SRPT_STATE_DATA_IN:
3024                ioctx->state = SRPT_STATE_CMD_RSP_SENT;
3025                break;
3026        case SRPT_STATE_MGMT:
3027                ioctx->state = SRPT_STATE_MGMT_RSP_SENT;
3028                break;
3029        default:
3030                WARN(true, "ch %p; cmd %d: unexpected command state %d\n",
3031                        ch, ioctx->ioctx.index, ioctx->state);
3032                break;
3033        }
3034        spin_unlock_irqrestore(&ioctx->spinlock, flags);
3035
3036        if (unlikely(transport_check_aborted_status(&ioctx->cmd, false)
3037                     || WARN_ON_ONCE(state == SRPT_STATE_CMD_RSP_SENT))) {
3038                atomic_inc(&ch->req_lim_delta);
3039                srpt_abort_cmd(ioctx);
3040                return;
3041        }
3042
3043        dir = ioctx->cmd.data_direction;
3044
3045        /* For read commands, transfer the data to the initiator. */
3046        if (dir == DMA_FROM_DEVICE && ioctx->cmd.data_length &&
3047            !ioctx->queue_status_only) {
3048                ret = srpt_xfer_data(ch, ioctx);
3049                if (ret) {
3050                        pr_err("xfer_data failed for tag %llu\n",
3051                               ioctx->cmd.tag);
3052                        return;
3053                }
3054        }
3055
3056        if (state != SRPT_STATE_MGMT)
3057                resp_len = srpt_build_cmd_rsp(ch, ioctx, ioctx->cmd.tag,
3058                                              cmd->scsi_status);
3059        else {
3060                srp_tm_status
3061                        = tcm_to_srp_tsk_mgmt_status(cmd->se_tmr_req->response);
3062                resp_len = srpt_build_tskmgmt_rsp(ch, ioctx, srp_tm_status,
3063                                                 ioctx->cmd.tag);
3064        }
3065        ret = srpt_post_send(ch, ioctx, resp_len);
3066        if (ret) {
3067                pr_err("sending cmd response failed for tag %llu\n",
3068                       ioctx->cmd.tag);
3069                srpt_unmap_sg_to_ib_sge(ch, ioctx);
3070                srpt_set_cmd_state(ioctx, SRPT_STATE_DONE);
3071                target_put_sess_cmd(&ioctx->cmd);
3072        }
3073}
3074
3075static int srpt_queue_data_in(struct se_cmd *cmd)
3076{
3077        srpt_queue_response(cmd);
3078        return 0;
3079}
3080
3081static void srpt_queue_tm_rsp(struct se_cmd *cmd)
3082{
3083        srpt_queue_response(cmd);
3084}
3085
3086static void srpt_aborted_task(struct se_cmd *cmd)
3087{
3088        struct srpt_send_ioctx *ioctx = container_of(cmd,
3089                                struct srpt_send_ioctx, cmd);
3090
3091        srpt_unmap_sg_to_ib_sge(ioctx->ch, ioctx);
3092}
3093
3094static int srpt_queue_status(struct se_cmd *cmd)
3095{
3096        struct srpt_send_ioctx *ioctx;
3097
3098        ioctx = container_of(cmd, struct srpt_send_ioctx, cmd);
3099        BUG_ON(ioctx->sense_data != cmd->sense_buffer);
3100        if (cmd->se_cmd_flags &
3101            (SCF_TRANSPORT_TASK_SENSE | SCF_EMULATED_TASK_SENSE))
3102                WARN_ON(cmd->scsi_status != SAM_STAT_CHECK_CONDITION);
3103        ioctx->queue_status_only = true;
3104        srpt_queue_response(cmd);
3105        return 0;
3106}
3107
3108static void srpt_refresh_port_work(struct work_struct *work)
3109{
3110        struct srpt_port *sport = container_of(work, struct srpt_port, work);
3111
3112        srpt_refresh_port(sport);
3113}
3114
3115static int srpt_ch_list_empty(struct srpt_device *sdev)
3116{
3117        int res;
3118
3119        spin_lock_irq(&sdev->spinlock);
3120        res = list_empty(&sdev->rch_list);
3121        spin_unlock_irq(&sdev->spinlock);
3122
3123        return res;
3124}
3125
3126/**
3127 * srpt_release_sdev() - Free the channel resources associated with a target.
3128 */
3129static int srpt_release_sdev(struct srpt_device *sdev)
3130{
3131        struct srpt_rdma_ch *ch, *tmp_ch;
3132        int res;
3133
3134        WARN_ON_ONCE(irqs_disabled());
3135
3136        BUG_ON(!sdev);
3137
3138        spin_lock_irq(&sdev->spinlock);
3139        list_for_each_entry_safe(ch, tmp_ch, &sdev->rch_list, list)
3140                __srpt_close_ch(ch);
3141        spin_unlock_irq(&sdev->spinlock);
3142
3143        res = wait_event_interruptible(sdev->ch_releaseQ,
3144                                       srpt_ch_list_empty(sdev));
3145        if (res)
3146                pr_err("%s: interrupted.\n", __func__);
3147
3148        return 0;
3149}
3150
3151static struct srpt_port *__srpt_lookup_port(const char *name)
3152{
3153        struct ib_device *dev;
3154        struct srpt_device *sdev;
3155        struct srpt_port *sport;
3156        int i;
3157
3158        list_for_each_entry(sdev, &srpt_dev_list, list) {
3159                dev = sdev->device;
3160                if (!dev)
3161                        continue;
3162
3163                for (i = 0; i < dev->phys_port_cnt; i++) {
3164                        sport = &sdev->port[i];
3165
3166                        if (!strcmp(sport->port_guid, name))
3167                                return sport;
3168                }
3169        }
3170
3171        return NULL;
3172}
3173
3174static struct srpt_port *srpt_lookup_port(const char *name)
3175{
3176        struct srpt_port *sport;
3177
3178        spin_lock(&srpt_dev_lock);
3179        sport = __srpt_lookup_port(name);
3180        spin_unlock(&srpt_dev_lock);
3181
3182        return sport;
3183}
3184
3185/**
3186 * srpt_add_one() - Infiniband device addition callback function.
3187 */
3188static void srpt_add_one(struct ib_device *device)
3189{
3190        struct srpt_device *sdev;
3191        struct srpt_port *sport;
3192        struct ib_srq_init_attr srq_attr;
3193        int i;
3194
3195        pr_debug("device = %p, device->dma_ops = %p\n", device,
3196                 device->dma_ops);
3197
3198        sdev = kzalloc(sizeof *sdev, GFP_KERNEL);
3199        if (!sdev)
3200                goto err;
3201
3202        sdev->device = device;
3203        INIT_LIST_HEAD(&sdev->rch_list);
3204        init_waitqueue_head(&sdev->ch_releaseQ);
3205        spin_lock_init(&sdev->spinlock);
3206
3207        if (ib_query_device(device, &sdev->dev_attr))
3208                goto free_dev;
3209
3210        sdev->pd = ib_alloc_pd(device);
3211        if (IS_ERR(sdev->pd))
3212                goto free_dev;
3213
3214        sdev->mr = ib_get_dma_mr(sdev->pd, IB_ACCESS_LOCAL_WRITE);
3215        if (IS_ERR(sdev->mr))
3216                goto err_pd;
3217
3218        sdev->srq_size = min(srpt_srq_size, sdev->dev_attr.max_srq_wr);
3219
3220        srq_attr.event_handler = srpt_srq_event;
3221        srq_attr.srq_context = (void *)sdev;
3222        srq_attr.attr.max_wr = sdev->srq_size;
3223        srq_attr.attr.max_sge = 1;
3224        srq_attr.attr.srq_limit = 0;
3225        srq_attr.srq_type = IB_SRQT_BASIC;
3226
3227        sdev->srq = ib_create_srq(sdev->pd, &srq_attr);
3228        if (IS_ERR(sdev->srq))
3229                goto err_mr;
3230
3231        pr_debug("%s: create SRQ #wr= %d max_allow=%d dev= %s\n",
3232                 __func__, sdev->srq_size, sdev->dev_attr.max_srq_wr,
3233                 device->name);
3234
3235        if (!srpt_service_guid)
3236                srpt_service_guid = be64_to_cpu(device->node_guid);
3237
3238        sdev->cm_id = ib_create_cm_id(device, srpt_cm_handler, sdev);
3239        if (IS_ERR(sdev->cm_id))
3240                goto err_srq;
3241
3242        /* print out target login information */
3243        pr_debug("Target login info: id_ext=%016llx,ioc_guid=%016llx,"
3244                 "pkey=ffff,service_id=%016llx\n", srpt_service_guid,
3245                 srpt_service_guid, srpt_service_guid);
3246
3247        /*
3248         * We do not have a consistent service_id (ie. also id_ext of target_id)
3249         * to identify this target. We currently use the guid of the first HCA
3250         * in the system as service_id; therefore, the target_id will change
3251         * if this HCA is gone bad and replaced by different HCA
3252         */
3253        if (ib_cm_listen(sdev->cm_id, cpu_to_be64(srpt_service_guid), 0, NULL))
3254                goto err_cm;
3255
3256        INIT_IB_EVENT_HANDLER(&sdev->event_handler, sdev->device,
3257                              srpt_event_handler);
3258        if (ib_register_event_handler(&sdev->event_handler))
3259                goto err_cm;
3260
3261        sdev->ioctx_ring = (struct srpt_recv_ioctx **)
3262                srpt_alloc_ioctx_ring(sdev, sdev->srq_size,
3263                                      sizeof(*sdev->ioctx_ring[0]),
3264                                      srp_max_req_size, DMA_FROM_DEVICE);
3265        if (!sdev->ioctx_ring)
3266                goto err_event;
3267
3268        for (i = 0; i < sdev->srq_size; ++i)
3269                srpt_post_recv(sdev, sdev->ioctx_ring[i]);
3270
3271        WARN_ON(sdev->device->phys_port_cnt > ARRAY_SIZE(sdev->port));
3272
3273        for (i = 1; i <= sdev->device->phys_port_cnt; i++) {
3274                sport = &sdev->port[i - 1];
3275                sport->sdev = sdev;
3276                sport->port = i;
3277                sport->port_attrib.srp_max_rdma_size = DEFAULT_MAX_RDMA_SIZE;
3278                sport->port_attrib.srp_max_rsp_size = DEFAULT_MAX_RSP_SIZE;
3279                sport->port_attrib.srp_sq_size = DEF_SRPT_SQ_SIZE;
3280                INIT_WORK(&sport->work, srpt_refresh_port_work);
3281                INIT_LIST_HEAD(&sport->port_acl_list);
3282                spin_lock_init(&sport->port_acl_lock);
3283
3284                if (srpt_refresh_port(sport)) {
3285                        pr_err("MAD registration failed for %s-%d.\n",
3286                               srpt_sdev_name(sdev), i);
3287                        goto err_ring;
3288                }
3289                snprintf(sport->port_guid, sizeof(sport->port_guid),
3290                        "0x%016llx%016llx",
3291                        be64_to_cpu(sport->gid.global.subnet_prefix),
3292                        be64_to_cpu(sport->gid.global.interface_id));
3293        }
3294
3295        spin_lock(&srpt_dev_lock);
3296        list_add_tail(&sdev->list, &srpt_dev_list);
3297        spin_unlock(&srpt_dev_lock);
3298
3299out:
3300        ib_set_client_data(device, &srpt_client, sdev);
3301        pr_debug("added %s.\n", device->name);
3302        return;
3303
3304err_ring:
3305        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3306                             sdev->srq_size, srp_max_req_size,
3307                             DMA_FROM_DEVICE);
3308err_event:
3309        ib_unregister_event_handler(&sdev->event_handler);
3310err_cm:
3311        ib_destroy_cm_id(sdev->cm_id);
3312err_srq:
3313        ib_destroy_srq(sdev->srq);
3314err_mr:
3315        ib_dereg_mr(sdev->mr);
3316err_pd:
3317        ib_dealloc_pd(sdev->pd);
3318free_dev:
3319        kfree(sdev);
3320err:
3321        sdev = NULL;
3322        pr_info("%s(%s) failed.\n", __func__, device->name);
3323        goto out;
3324}
3325
3326/**
3327 * srpt_remove_one() - InfiniBand device removal callback function.
3328 */
3329static void srpt_remove_one(struct ib_device *device)
3330{
3331        struct srpt_device *sdev;
3332        int i;
3333
3334        sdev = ib_get_client_data(device, &srpt_client);
3335        if (!sdev) {
3336                pr_info("%s(%s): nothing to do.\n", __func__, device->name);
3337                return;
3338        }
3339
3340        srpt_unregister_mad_agent(sdev);
3341
3342        ib_unregister_event_handler(&sdev->event_handler);
3343
3344        /* Cancel any work queued by the just unregistered IB event handler. */
3345        for (i = 0; i < sdev->device->phys_port_cnt; i++)
3346                cancel_work_sync(&sdev->port[i].work);
3347
3348        ib_destroy_cm_id(sdev->cm_id);
3349
3350        /*
3351         * Unregistering a target must happen after destroying sdev->cm_id
3352         * such that no new SRP_LOGIN_REQ information units can arrive while
3353         * destroying the target.
3354         */
3355        spin_lock(&srpt_dev_lock);
3356        list_del(&sdev->list);
3357        spin_unlock(&srpt_dev_lock);
3358        srpt_release_sdev(sdev);
3359
3360        ib_destroy_srq(sdev->srq);
3361        ib_dereg_mr(sdev->mr);
3362        ib_dealloc_pd(sdev->pd);
3363
3364        srpt_free_ioctx_ring((struct srpt_ioctx **)sdev->ioctx_ring, sdev,
3365                             sdev->srq_size, srp_max_req_size, DMA_FROM_DEVICE);
3366        sdev->ioctx_ring = NULL;
3367        kfree(sdev);
3368}
3369
3370static struct ib_client srpt_client = {
3371        .name = DRV_NAME,
3372        .add = srpt_add_one,
3373        .remove = srpt_remove_one
3374};
3375
3376static int srpt_check_true(struct se_portal_group *se_tpg)
3377{
3378        return 1;
3379}
3380
3381static int srpt_check_false(struct se_portal_group *se_tpg)
3382{
3383        return 0;
3384}
3385
3386static char *srpt_get_fabric_name(void)
3387{
3388        return "srpt";
3389}
3390
3391static char *srpt_get_fabric_wwn(struct se_portal_group *tpg)
3392{
3393        struct srpt_port *sport = container_of(tpg, struct srpt_port, port_tpg_1);
3394
3395        return sport->port_guid;
3396}
3397
3398static u16 srpt_get_tag(struct se_portal_group *tpg)
3399{
3400        return 1;
3401}
3402
3403static u32 srpt_tpg_get_inst_index(struct se_portal_group *se_tpg)
3404{
3405        return 1;
3406}
3407
3408static void srpt_release_cmd(struct se_cmd *se_cmd)
3409{
3410        struct srpt_send_ioctx *ioctx = container_of(se_cmd,
3411                                struct srpt_send_ioctx, cmd);
3412        struct srpt_rdma_ch *ch = ioctx->ch;
3413        unsigned long flags;
3414
3415        WARN_ON(ioctx->state != SRPT_STATE_DONE);
3416        WARN_ON(ioctx->mapped_sg_count != 0);
3417
3418        if (ioctx->n_rbuf > 1) {
3419                kfree(ioctx->rbufs);
3420                ioctx->rbufs = NULL;
3421                ioctx->n_rbuf = 0;
3422        }
3423
3424        spin_lock_irqsave(&ch->spinlock, flags);
3425        list_add(&ioctx->free_list, &ch->free_list);
3426        spin_unlock_irqrestore(&ch->spinlock, flags);
3427}
3428
3429/**
3430 * srpt_close_session() - Forcibly close a session.
3431 *
3432 * Callback function invoked by the TCM core to clean up sessions associated
3433 * with a node ACL when the user invokes
3434 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3435 */
3436static void srpt_close_session(struct se_session *se_sess)
3437{
3438        DECLARE_COMPLETION_ONSTACK(release_done);
3439        struct srpt_rdma_ch *ch;
3440        struct srpt_device *sdev;
3441        unsigned long res;
3442
3443        ch = se_sess->fabric_sess_ptr;
3444        WARN_ON(ch->sess != se_sess);
3445
3446        pr_debug("ch %p state %d\n", ch, srpt_get_ch_state(ch));
3447
3448        sdev = ch->sport->sdev;
3449        spin_lock_irq(&sdev->spinlock);
3450        BUG_ON(ch->release_done);
3451        ch->release_done = &release_done;
3452        __srpt_close_ch(ch);
3453        spin_unlock_irq(&sdev->spinlock);
3454
3455        res = wait_for_completion_timeout(&release_done, 60 * HZ);
3456        WARN_ON(res == 0);
3457}
3458
3459/**
3460 * srpt_sess_get_index() - Return the value of scsiAttIntrPortIndex (SCSI-MIB).
3461 *
3462 * A quote from RFC 4455 (SCSI-MIB) about this MIB object:
3463 * This object represents an arbitrary integer used to uniquely identify a
3464 * particular attached remote initiator port to a particular SCSI target port
3465 * within a particular SCSI target device within a particular SCSI instance.
3466 */
3467static u32 srpt_sess_get_index(struct se_session *se_sess)
3468{
3469        return 0;
3470}
3471
3472static void srpt_set_default_node_attrs(struct se_node_acl *nacl)
3473{
3474}
3475
3476/* Note: only used from inside debug printk's by the TCM core. */
3477static int srpt_get_tcm_cmd_state(struct se_cmd *se_cmd)
3478{
3479        struct srpt_send_ioctx *ioctx;
3480
3481        ioctx = container_of(se_cmd, struct srpt_send_ioctx, cmd);
3482        return srpt_get_cmd_state(ioctx);
3483}
3484
3485/**
3486 * srpt_parse_i_port_id() - Parse an initiator port ID.
3487 * @name: ASCII representation of a 128-bit initiator port ID.
3488 * @i_port_id: Binary 128-bit port ID.
3489 */
3490static int srpt_parse_i_port_id(u8 i_port_id[16], const char *name)
3491{
3492        const char *p;
3493        unsigned len, count, leading_zero_bytes;
3494        int ret, rc;
3495
3496        p = name;
3497        if (strncasecmp(p, "0x", 2) == 0)
3498                p += 2;
3499        ret = -EINVAL;
3500        len = strlen(p);
3501        if (len % 2)
3502                goto out;
3503        count = min(len / 2, 16U);
3504        leading_zero_bytes = 16 - count;
3505        memset(i_port_id, 0, leading_zero_bytes);
3506        rc = hex2bin(i_port_id + leading_zero_bytes, p, count);
3507        if (rc < 0)
3508                pr_debug("hex2bin failed for srpt_parse_i_port_id: %d\n", rc);
3509        ret = 0;
3510out:
3511        return ret;
3512}
3513
3514/*
3515 * configfs callback function invoked for
3516 * mkdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3517 */
3518static int srpt_init_nodeacl(struct se_node_acl *se_nacl, const char *name)
3519{
3520        struct srpt_port *sport =
3521                container_of(se_nacl->se_tpg, struct srpt_port, port_tpg_1);
3522        struct srpt_node_acl *nacl =
3523                container_of(se_nacl, struct srpt_node_acl, nacl);
3524        u8 i_port_id[16];
3525
3526        if (srpt_parse_i_port_id(i_port_id, name) < 0) {
3527                pr_err("invalid initiator port ID %s\n", name);
3528                return -EINVAL;
3529        }
3530
3531        memcpy(&nacl->i_port_id[0], &i_port_id[0], 16);
3532        nacl->sport = sport;
3533
3534        spin_lock_irq(&sport->port_acl_lock);
3535        list_add_tail(&nacl->list, &sport->port_acl_list);
3536        spin_unlock_irq(&sport->port_acl_lock);
3537
3538        return 0;
3539}
3540
3541/*
3542 * configfs callback function invoked for
3543 * rmdir /sys/kernel/config/target/$driver/$port/$tpg/acls/$i_port_id
3544 */
3545static void srpt_cleanup_nodeacl(struct se_node_acl *se_nacl)
3546{
3547        struct srpt_node_acl *nacl =
3548                container_of(se_nacl, struct srpt_node_acl, nacl);
3549        struct srpt_port *sport = nacl->sport;
3550
3551        spin_lock_irq(&sport->port_acl_lock);
3552        list_del(&nacl->list);
3553        spin_unlock_irq(&sport->port_acl_lock);
3554}
3555
3556static ssize_t srpt_tpg_attrib_show_srp_max_rdma_size(
3557        struct se_portal_group *se_tpg,
3558        char *page)
3559{
3560        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3561
3562        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rdma_size);
3563}
3564
3565static ssize_t srpt_tpg_attrib_store_srp_max_rdma_size(
3566        struct se_portal_group *se_tpg,
3567        const char *page,
3568        size_t count)
3569{
3570        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3571        unsigned long val;
3572        int ret;
3573
3574        ret = kstrtoul(page, 0, &val);
3575        if (ret < 0) {
3576                pr_err("kstrtoul() failed with ret: %d\n", ret);
3577                return -EINVAL;
3578        }
3579        if (val > MAX_SRPT_RDMA_SIZE) {
3580                pr_err("val: %lu exceeds MAX_SRPT_RDMA_SIZE: %d\n", val,
3581                        MAX_SRPT_RDMA_SIZE);
3582                return -EINVAL;
3583        }
3584        if (val < DEFAULT_MAX_RDMA_SIZE) {
3585                pr_err("val: %lu smaller than DEFAULT_MAX_RDMA_SIZE: %d\n",
3586                        val, DEFAULT_MAX_RDMA_SIZE);
3587                return -EINVAL;
3588        }
3589        sport->port_attrib.srp_max_rdma_size = val;
3590
3591        return count;
3592}
3593
3594TF_TPG_ATTRIB_ATTR(srpt, srp_max_rdma_size, S_IRUGO | S_IWUSR);
3595
3596static ssize_t srpt_tpg_attrib_show_srp_max_rsp_size(
3597        struct se_portal_group *se_tpg,
3598        char *page)
3599{
3600        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3601
3602        return sprintf(page, "%u\n", sport->port_attrib.srp_max_rsp_size);
3603}
3604
3605static ssize_t srpt_tpg_attrib_store_srp_max_rsp_size(
3606        struct se_portal_group *se_tpg,
3607        const char *page,
3608        size_t count)
3609{
3610        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3611        unsigned long val;
3612        int ret;
3613
3614        ret = kstrtoul(page, 0, &val);
3615        if (ret < 0) {
3616                pr_err("kstrtoul() failed with ret: %d\n", ret);
3617                return -EINVAL;
3618        }
3619        if (val > MAX_SRPT_RSP_SIZE) {
3620                pr_err("val: %lu exceeds MAX_SRPT_RSP_SIZE: %d\n", val,
3621                        MAX_SRPT_RSP_SIZE);
3622                return -EINVAL;
3623        }
3624        if (val < MIN_MAX_RSP_SIZE) {
3625                pr_err("val: %lu smaller than MIN_MAX_RSP_SIZE: %d\n", val,
3626                        MIN_MAX_RSP_SIZE);
3627                return -EINVAL;
3628        }
3629        sport->port_attrib.srp_max_rsp_size = val;
3630
3631        return count;
3632}
3633
3634TF_TPG_ATTRIB_ATTR(srpt, srp_max_rsp_size, S_IRUGO | S_IWUSR);
3635
3636static ssize_t srpt_tpg_attrib_show_srp_sq_size(
3637        struct se_portal_group *se_tpg,
3638        char *page)
3639{
3640        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3641
3642        return sprintf(page, "%u\n", sport->port_attrib.srp_sq_size);
3643}
3644
3645static ssize_t srpt_tpg_attrib_store_srp_sq_size(
3646        struct se_portal_group *se_tpg,
3647        const char *page,
3648        size_t count)
3649{
3650        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3651        unsigned long val;
3652        int ret;
3653
3654        ret = kstrtoul(page, 0, &val);
3655        if (ret < 0) {
3656                pr_err("kstrtoul() failed with ret: %d\n", ret);
3657                return -EINVAL;
3658        }
3659        if (val > MAX_SRPT_SRQ_SIZE) {
3660                pr_err("val: %lu exceeds MAX_SRPT_SRQ_SIZE: %d\n", val,
3661                        MAX_SRPT_SRQ_SIZE);
3662                return -EINVAL;
3663        }
3664        if (val < MIN_SRPT_SRQ_SIZE) {
3665                pr_err("val: %lu smaller than MIN_SRPT_SRQ_SIZE: %d\n", val,
3666                        MIN_SRPT_SRQ_SIZE);
3667                return -EINVAL;
3668        }
3669        sport->port_attrib.srp_sq_size = val;
3670
3671        return count;
3672}
3673
3674TF_TPG_ATTRIB_ATTR(srpt, srp_sq_size, S_IRUGO | S_IWUSR);
3675
3676static struct configfs_attribute *srpt_tpg_attrib_attrs[] = {
3677        &srpt_tpg_attrib_srp_max_rdma_size.attr,
3678        &srpt_tpg_attrib_srp_max_rsp_size.attr,
3679        &srpt_tpg_attrib_srp_sq_size.attr,
3680        NULL,
3681};
3682
3683static ssize_t srpt_tpg_show_enable(
3684        struct se_portal_group *se_tpg,
3685        char *page)
3686{
3687        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3688
3689        return snprintf(page, PAGE_SIZE, "%d\n", (sport->enabled) ? 1: 0);
3690}
3691
3692static ssize_t srpt_tpg_store_enable(
3693        struct se_portal_group *se_tpg,
3694        const char *page,
3695        size_t count)
3696{
3697        struct srpt_port *sport = container_of(se_tpg, struct srpt_port, port_tpg_1);
3698        unsigned long tmp;
3699        int ret;
3700
3701        ret = kstrtoul(page, 0, &tmp);
3702        if (ret < 0) {
3703                pr_err("Unable to extract srpt_tpg_store_enable\n");
3704                return -EINVAL;
3705        }
3706
3707        if ((tmp != 0) && (tmp != 1)) {
3708                pr_err("Illegal value for srpt_tpg_store_enable: %lu\n", tmp);
3709                return -EINVAL;
3710        }
3711        if (tmp == 1)
3712                sport->enabled = true;
3713        else
3714                sport->enabled = false;
3715
3716        return count;
3717}
3718
3719TF_TPG_BASE_ATTR(srpt, enable, S_IRUGO | S_IWUSR);
3720
3721static struct configfs_attribute *srpt_tpg_attrs[] = {
3722        &srpt_tpg_enable.attr,
3723        NULL,
3724};
3725
3726/**
3727 * configfs callback invoked for
3728 * mkdir /sys/kernel/config/target/$driver/$port/$tpg
3729 */
3730static struct se_portal_group *srpt_make_tpg(struct se_wwn *wwn,
3731                                             struct config_group *group,
3732                                             const char *name)
3733{
3734        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3735        int res;
3736
3737        /* Initialize sport->port_wwn and sport->port_tpg_1 */
3738        res = core_tpg_register(&sport->port_wwn, &sport->port_tpg_1, SCSI_PROTOCOL_SRP);
3739        if (res)
3740                return ERR_PTR(res);
3741
3742        return &sport->port_tpg_1;
3743}
3744
3745/**
3746 * configfs callback invoked for
3747 * rmdir /sys/kernel/config/target/$driver/$port/$tpg
3748 */
3749static void srpt_drop_tpg(struct se_portal_group *tpg)
3750{
3751        struct srpt_port *sport = container_of(tpg,
3752                                struct srpt_port, port_tpg_1);
3753
3754        sport->enabled = false;
3755        core_tpg_deregister(&sport->port_tpg_1);
3756}
3757
3758/**
3759 * configfs callback invoked for
3760 * mkdir /sys/kernel/config/target/$driver/$port
3761 */
3762static struct se_wwn *srpt_make_tport(struct target_fabric_configfs *tf,
3763                                      struct config_group *group,
3764                                      const char *name)
3765{
3766        struct srpt_port *sport;
3767        int ret;
3768
3769        sport = srpt_lookup_port(name);
3770        pr_debug("make_tport(%s)\n", name);
3771        ret = -EINVAL;
3772        if (!sport)
3773                goto err;
3774
3775        return &sport->port_wwn;
3776
3777err:
3778        return ERR_PTR(ret);
3779}
3780
3781/**
3782 * configfs callback invoked for
3783 * rmdir /sys/kernel/config/target/$driver/$port
3784 */
3785static void srpt_drop_tport(struct se_wwn *wwn)
3786{
3787        struct srpt_port *sport = container_of(wwn, struct srpt_port, port_wwn);
3788
3789        pr_debug("drop_tport(%s\n", config_item_name(&sport->port_wwn.wwn_group.cg_item));
3790}
3791
3792static ssize_t srpt_wwn_show_attr_version(struct target_fabric_configfs *tf,
3793                                              char *buf)
3794{
3795        return scnprintf(buf, PAGE_SIZE, "%s\n", DRV_VERSION);
3796}
3797
3798TF_WWN_ATTR_RO(srpt, version);
3799
3800static struct configfs_attribute *srpt_wwn_attrs[] = {
3801        &srpt_wwn_version.attr,
3802        NULL,
3803};
3804
3805static const struct target_core_fabric_ops srpt_template = {
3806        .module                         = THIS_MODULE,
3807        .name                           = "srpt",
3808        .node_acl_size                  = sizeof(struct srpt_node_acl),
3809        .get_fabric_name                = srpt_get_fabric_name,
3810        .tpg_get_wwn                    = srpt_get_fabric_wwn,
3811        .tpg_get_tag                    = srpt_get_tag,
3812        .tpg_check_demo_mode            = srpt_check_false,
3813        .tpg_check_demo_mode_cache      = srpt_check_true,
3814        .tpg_check_demo_mode_write_protect = srpt_check_true,
3815        .tpg_check_prod_mode_write_protect = srpt_check_false,
3816        .tpg_get_inst_index             = srpt_tpg_get_inst_index,
3817        .release_cmd                    = srpt_release_cmd,
3818        .check_stop_free                = srpt_check_stop_free,
3819        .shutdown_session               = srpt_shutdown_session,
3820        .close_session                  = srpt_close_session,
3821        .sess_get_index                 = srpt_sess_get_index,
3822        .sess_get_initiator_sid         = NULL,
3823        .write_pending                  = srpt_write_pending,
3824        .write_pending_status           = srpt_write_pending_status,
3825        .set_default_node_attributes    = srpt_set_default_node_attrs,
3826        .get_cmd_state                  = srpt_get_tcm_cmd_state,
3827        .queue_data_in                  = srpt_queue_data_in,
3828        .queue_status                   = srpt_queue_status,
3829        .queue_tm_rsp                   = srpt_queue_tm_rsp,
3830        .aborted_task                   = srpt_aborted_task,
3831        /*
3832         * Setup function pointers for generic logic in
3833         * target_core_fabric_configfs.c
3834         */
3835        .fabric_make_wwn                = srpt_make_tport,
3836        .fabric_drop_wwn                = srpt_drop_tport,
3837        .fabric_make_tpg                = srpt_make_tpg,
3838        .fabric_drop_tpg                = srpt_drop_tpg,
3839        .fabric_init_nodeacl            = srpt_init_nodeacl,
3840        .fabric_cleanup_nodeacl         = srpt_cleanup_nodeacl,
3841
3842        .tfc_wwn_attrs                  = srpt_wwn_attrs,
3843        .tfc_tpg_base_attrs             = srpt_tpg_attrs,
3844        .tfc_tpg_attrib_attrs           = srpt_tpg_attrib_attrs,
3845};
3846
3847/**
3848 * srpt_init_module() - Kernel module initialization.
3849 *
3850 * Note: Since ib_register_client() registers callback functions, and since at
3851 * least one of these callback functions (srpt_add_one()) calls target core
3852 * functions, this driver must be registered with the target core before
3853 * ib_register_client() is called.
3854 */
3855static int __init srpt_init_module(void)
3856{
3857        int ret;
3858
3859        ret = -EINVAL;
3860        if (srp_max_req_size < MIN_MAX_REQ_SIZE) {
3861                pr_err("invalid value %d for kernel module parameter"
3862                       " srp_max_req_size -- must be at least %d.\n",
3863                       srp_max_req_size, MIN_MAX_REQ_SIZE);
3864                goto out;
3865        }
3866
3867        if (srpt_srq_size < MIN_SRPT_SRQ_SIZE
3868            || srpt_srq_size > MAX_SRPT_SRQ_SIZE) {
3869                pr_err("invalid value %d for kernel module parameter"
3870                       " srpt_srq_size -- must be in the range [%d..%d].\n",
3871                       srpt_srq_size, MIN_SRPT_SRQ_SIZE, MAX_SRPT_SRQ_SIZE);
3872                goto out;
3873        }
3874
3875        ret = target_register_template(&srpt_template);
3876        if (ret)
3877                goto out;
3878
3879        ret = ib_register_client(&srpt_client);
3880        if (ret) {
3881                pr_err("couldn't register IB client\n");
3882                goto out_unregister_target;
3883        }
3884
3885        return 0;
3886
3887out_unregister_target:
3888        target_unregister_template(&srpt_template);
3889out:
3890        return ret;
3891}
3892
3893static void __exit srpt_cleanup_module(void)
3894{
3895        ib_unregister_client(&srpt_client);
3896        target_unregister_template(&srpt_template);
3897}
3898
3899module_init(srpt_init_module);
3900module_exit(srpt_cleanup_module);
3901