linux/drivers/mfd/db8500-prcmu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) STMicroelectronics 2009
   3 * Copyright (C) ST-Ericsson SA 2010
   4 *
   5 * License Terms: GNU General Public License v2
   6 * Author: Kumar Sanghvi <kumar.sanghvi@stericsson.com>
   7 * Author: Sundar Iyer <sundar.iyer@stericsson.com>
   8 * Author: Mattias Nilsson <mattias.i.nilsson@stericsson.com>
   9 *
  10 * U8500 PRCM Unit interface driver
  11 *
  12 */
  13#include <linux/module.h>
  14#include <linux/kernel.h>
  15#include <linux/delay.h>
  16#include <linux/errno.h>
  17#include <linux/err.h>
  18#include <linux/spinlock.h>
  19#include <linux/io.h>
  20#include <linux/slab.h>
  21#include <linux/mutex.h>
  22#include <linux/completion.h>
  23#include <linux/irq.h>
  24#include <linux/jiffies.h>
  25#include <linux/bitops.h>
  26#include <linux/fs.h>
  27#include <linux/of.h>
  28#include <linux/of_irq.h>
  29#include <linux/platform_device.h>
  30#include <linux/uaccess.h>
  31#include <linux/mfd/core.h>
  32#include <linux/mfd/dbx500-prcmu.h>
  33#include <linux/mfd/abx500/ab8500.h>
  34#include <linux/regulator/db8500-prcmu.h>
  35#include <linux/regulator/machine.h>
  36#include <linux/cpufreq.h>
  37#include <linux/platform_data/ux500_wdt.h>
  38#include <linux/platform_data/db8500_thermal.h>
  39#include "dbx500-prcmu-regs.h"
  40
  41/* Index of different voltages to be used when accessing AVSData */
  42#define PRCM_AVS_BASE           0x2FC
  43#define PRCM_AVS_VBB_RET        (PRCM_AVS_BASE + 0x0)
  44#define PRCM_AVS_VBB_MAX_OPP    (PRCM_AVS_BASE + 0x1)
  45#define PRCM_AVS_VBB_100_OPP    (PRCM_AVS_BASE + 0x2)
  46#define PRCM_AVS_VBB_50_OPP     (PRCM_AVS_BASE + 0x3)
  47#define PRCM_AVS_VARM_MAX_OPP   (PRCM_AVS_BASE + 0x4)
  48#define PRCM_AVS_VARM_100_OPP   (PRCM_AVS_BASE + 0x5)
  49#define PRCM_AVS_VARM_50_OPP    (PRCM_AVS_BASE + 0x6)
  50#define PRCM_AVS_VARM_RET       (PRCM_AVS_BASE + 0x7)
  51#define PRCM_AVS_VAPE_100_OPP   (PRCM_AVS_BASE + 0x8)
  52#define PRCM_AVS_VAPE_50_OPP    (PRCM_AVS_BASE + 0x9)
  53#define PRCM_AVS_VMOD_100_OPP   (PRCM_AVS_BASE + 0xA)
  54#define PRCM_AVS_VMOD_50_OPP    (PRCM_AVS_BASE + 0xB)
  55#define PRCM_AVS_VSAFE          (PRCM_AVS_BASE + 0xC)
  56
  57#define PRCM_AVS_VOLTAGE                0
  58#define PRCM_AVS_VOLTAGE_MASK           0x3f
  59#define PRCM_AVS_ISSLOWSTARTUP          6
  60#define PRCM_AVS_ISSLOWSTARTUP_MASK     (1 << PRCM_AVS_ISSLOWSTARTUP)
  61#define PRCM_AVS_ISMODEENABLE           7
  62#define PRCM_AVS_ISMODEENABLE_MASK      (1 << PRCM_AVS_ISMODEENABLE)
  63
  64#define PRCM_BOOT_STATUS        0xFFF
  65#define PRCM_ROMCODE_A2P        0xFFE
  66#define PRCM_ROMCODE_P2A        0xFFD
  67#define PRCM_XP70_CUR_PWR_STATE 0xFFC      /* 4 BYTES */
  68
  69#define PRCM_SW_RST_REASON 0xFF8 /* 2 bytes */
  70
  71#define _PRCM_MBOX_HEADER               0xFE8 /* 16 bytes */
  72#define PRCM_MBOX_HEADER_REQ_MB0        (_PRCM_MBOX_HEADER + 0x0)
  73#define PRCM_MBOX_HEADER_REQ_MB1        (_PRCM_MBOX_HEADER + 0x1)
  74#define PRCM_MBOX_HEADER_REQ_MB2        (_PRCM_MBOX_HEADER + 0x2)
  75#define PRCM_MBOX_HEADER_REQ_MB3        (_PRCM_MBOX_HEADER + 0x3)
  76#define PRCM_MBOX_HEADER_REQ_MB4        (_PRCM_MBOX_HEADER + 0x4)
  77#define PRCM_MBOX_HEADER_REQ_MB5        (_PRCM_MBOX_HEADER + 0x5)
  78#define PRCM_MBOX_HEADER_ACK_MB0        (_PRCM_MBOX_HEADER + 0x8)
  79
  80/* Req Mailboxes */
  81#define PRCM_REQ_MB0 0xFDC /* 12 bytes  */
  82#define PRCM_REQ_MB1 0xFD0 /* 12 bytes  */
  83#define PRCM_REQ_MB2 0xFC0 /* 16 bytes  */
  84#define PRCM_REQ_MB3 0xE4C /* 372 bytes  */
  85#define PRCM_REQ_MB4 0xE48 /* 4 bytes  */
  86#define PRCM_REQ_MB5 0xE44 /* 4 bytes  */
  87
  88/* Ack Mailboxes */
  89#define PRCM_ACK_MB0 0xE08 /* 52 bytes  */
  90#define PRCM_ACK_MB1 0xE04 /* 4 bytes */
  91#define PRCM_ACK_MB2 0xE00 /* 4 bytes */
  92#define PRCM_ACK_MB3 0xDFC /* 4 bytes */
  93#define PRCM_ACK_MB4 0xDF8 /* 4 bytes */
  94#define PRCM_ACK_MB5 0xDF4 /* 4 bytes */
  95
  96/* Mailbox 0 headers */
  97#define MB0H_POWER_STATE_TRANS          0
  98#define MB0H_CONFIG_WAKEUPS_EXE         1
  99#define MB0H_READ_WAKEUP_ACK            3
 100#define MB0H_CONFIG_WAKEUPS_SLEEP       4
 101
 102#define MB0H_WAKEUP_EXE 2
 103#define MB0H_WAKEUP_SLEEP 5
 104
 105/* Mailbox 0 REQs */
 106#define PRCM_REQ_MB0_AP_POWER_STATE     (PRCM_REQ_MB0 + 0x0)
 107#define PRCM_REQ_MB0_AP_PLL_STATE       (PRCM_REQ_MB0 + 0x1)
 108#define PRCM_REQ_MB0_ULP_CLOCK_STATE    (PRCM_REQ_MB0 + 0x2)
 109#define PRCM_REQ_MB0_DO_NOT_WFI         (PRCM_REQ_MB0 + 0x3)
 110#define PRCM_REQ_MB0_WAKEUP_8500        (PRCM_REQ_MB0 + 0x4)
 111#define PRCM_REQ_MB0_WAKEUP_4500        (PRCM_REQ_MB0 + 0x8)
 112
 113/* Mailbox 0 ACKs */
 114#define PRCM_ACK_MB0_AP_PWRSTTR_STATUS  (PRCM_ACK_MB0 + 0x0)
 115#define PRCM_ACK_MB0_READ_POINTER       (PRCM_ACK_MB0 + 0x1)
 116#define PRCM_ACK_MB0_WAKEUP_0_8500      (PRCM_ACK_MB0 + 0x4)
 117#define PRCM_ACK_MB0_WAKEUP_0_4500      (PRCM_ACK_MB0 + 0x8)
 118#define PRCM_ACK_MB0_WAKEUP_1_8500      (PRCM_ACK_MB0 + 0x1C)
 119#define PRCM_ACK_MB0_WAKEUP_1_4500      (PRCM_ACK_MB0 + 0x20)
 120#define PRCM_ACK_MB0_EVENT_4500_NUMBERS 20
 121
 122/* Mailbox 1 headers */
 123#define MB1H_ARM_APE_OPP 0x0
 124#define MB1H_RESET_MODEM 0x2
 125#define MB1H_REQUEST_APE_OPP_100_VOLT 0x3
 126#define MB1H_RELEASE_APE_OPP_100_VOLT 0x4
 127#define MB1H_RELEASE_USB_WAKEUP 0x5
 128#define MB1H_PLL_ON_OFF 0x6
 129
 130/* Mailbox 1 Requests */
 131#define PRCM_REQ_MB1_ARM_OPP                    (PRCM_REQ_MB1 + 0x0)
 132#define PRCM_REQ_MB1_APE_OPP                    (PRCM_REQ_MB1 + 0x1)
 133#define PRCM_REQ_MB1_PLL_ON_OFF                 (PRCM_REQ_MB1 + 0x4)
 134#define PLL_SOC0_OFF    0x1
 135#define PLL_SOC0_ON     0x2
 136#define PLL_SOC1_OFF    0x4
 137#define PLL_SOC1_ON     0x8
 138
 139/* Mailbox 1 ACKs */
 140#define PRCM_ACK_MB1_CURRENT_ARM_OPP    (PRCM_ACK_MB1 + 0x0)
 141#define PRCM_ACK_MB1_CURRENT_APE_OPP    (PRCM_ACK_MB1 + 0x1)
 142#define PRCM_ACK_MB1_APE_VOLTAGE_STATUS (PRCM_ACK_MB1 + 0x2)
 143#define PRCM_ACK_MB1_DVFS_STATUS        (PRCM_ACK_MB1 + 0x3)
 144
 145/* Mailbox 2 headers */
 146#define MB2H_DPS        0x0
 147#define MB2H_AUTO_PWR   0x1
 148
 149/* Mailbox 2 REQs */
 150#define PRCM_REQ_MB2_SVA_MMDSP          (PRCM_REQ_MB2 + 0x0)
 151#define PRCM_REQ_MB2_SVA_PIPE           (PRCM_REQ_MB2 + 0x1)
 152#define PRCM_REQ_MB2_SIA_MMDSP          (PRCM_REQ_MB2 + 0x2)
 153#define PRCM_REQ_MB2_SIA_PIPE           (PRCM_REQ_MB2 + 0x3)
 154#define PRCM_REQ_MB2_SGA                (PRCM_REQ_MB2 + 0x4)
 155#define PRCM_REQ_MB2_B2R2_MCDE          (PRCM_REQ_MB2 + 0x5)
 156#define PRCM_REQ_MB2_ESRAM12            (PRCM_REQ_MB2 + 0x6)
 157#define PRCM_REQ_MB2_ESRAM34            (PRCM_REQ_MB2 + 0x7)
 158#define PRCM_REQ_MB2_AUTO_PM_SLEEP      (PRCM_REQ_MB2 + 0x8)
 159#define PRCM_REQ_MB2_AUTO_PM_IDLE       (PRCM_REQ_MB2 + 0xC)
 160
 161/* Mailbox 2 ACKs */
 162#define PRCM_ACK_MB2_DPS_STATUS (PRCM_ACK_MB2 + 0x0)
 163#define HWACC_PWR_ST_OK 0xFE
 164
 165/* Mailbox 3 headers */
 166#define MB3H_ANC        0x0
 167#define MB3H_SIDETONE   0x1
 168#define MB3H_SYSCLK     0xE
 169
 170/* Mailbox 3 Requests */
 171#define PRCM_REQ_MB3_ANC_FIR_COEFF      (PRCM_REQ_MB3 + 0x0)
 172#define PRCM_REQ_MB3_ANC_IIR_COEFF      (PRCM_REQ_MB3 + 0x20)
 173#define PRCM_REQ_MB3_ANC_SHIFTER        (PRCM_REQ_MB3 + 0x60)
 174#define PRCM_REQ_MB3_ANC_WARP           (PRCM_REQ_MB3 + 0x64)
 175#define PRCM_REQ_MB3_SIDETONE_FIR_GAIN  (PRCM_REQ_MB3 + 0x68)
 176#define PRCM_REQ_MB3_SIDETONE_FIR_COEFF (PRCM_REQ_MB3 + 0x6C)
 177#define PRCM_REQ_MB3_SYSCLK_MGT         (PRCM_REQ_MB3 + 0x16C)
 178
 179/* Mailbox 4 headers */
 180#define MB4H_DDR_INIT   0x0
 181#define MB4H_MEM_ST     0x1
 182#define MB4H_HOTDOG     0x12
 183#define MB4H_HOTMON     0x13
 184#define MB4H_HOT_PERIOD 0x14
 185#define MB4H_A9WDOG_CONF 0x16
 186#define MB4H_A9WDOG_EN   0x17
 187#define MB4H_A9WDOG_DIS  0x18
 188#define MB4H_A9WDOG_LOAD 0x19
 189#define MB4H_A9WDOG_KICK 0x20
 190
 191/* Mailbox 4 Requests */
 192#define PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE       (PRCM_REQ_MB4 + 0x0)
 193#define PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE        (PRCM_REQ_MB4 + 0x1)
 194#define PRCM_REQ_MB4_ESRAM0_ST                  (PRCM_REQ_MB4 + 0x3)
 195#define PRCM_REQ_MB4_HOTDOG_THRESHOLD           (PRCM_REQ_MB4 + 0x0)
 196#define PRCM_REQ_MB4_HOTMON_LOW                 (PRCM_REQ_MB4 + 0x0)
 197#define PRCM_REQ_MB4_HOTMON_HIGH                (PRCM_REQ_MB4 + 0x1)
 198#define PRCM_REQ_MB4_HOTMON_CONFIG              (PRCM_REQ_MB4 + 0x2)
 199#define PRCM_REQ_MB4_HOT_PERIOD                 (PRCM_REQ_MB4 + 0x0)
 200#define HOTMON_CONFIG_LOW                       BIT(0)
 201#define HOTMON_CONFIG_HIGH                      BIT(1)
 202#define PRCM_REQ_MB4_A9WDOG_0                   (PRCM_REQ_MB4 + 0x0)
 203#define PRCM_REQ_MB4_A9WDOG_1                   (PRCM_REQ_MB4 + 0x1)
 204#define PRCM_REQ_MB4_A9WDOG_2                   (PRCM_REQ_MB4 + 0x2)
 205#define PRCM_REQ_MB4_A9WDOG_3                   (PRCM_REQ_MB4 + 0x3)
 206#define A9WDOG_AUTO_OFF_EN                      BIT(7)
 207#define A9WDOG_AUTO_OFF_DIS                     0
 208#define A9WDOG_ID_MASK                          0xf
 209
 210/* Mailbox 5 Requests */
 211#define PRCM_REQ_MB5_I2C_SLAVE_OP       (PRCM_REQ_MB5 + 0x0)
 212#define PRCM_REQ_MB5_I2C_HW_BITS        (PRCM_REQ_MB5 + 0x1)
 213#define PRCM_REQ_MB5_I2C_REG            (PRCM_REQ_MB5 + 0x2)
 214#define PRCM_REQ_MB5_I2C_VAL            (PRCM_REQ_MB5 + 0x3)
 215#define PRCMU_I2C_WRITE(slave) (((slave) << 1) | BIT(6))
 216#define PRCMU_I2C_READ(slave) (((slave) << 1) | BIT(0) | BIT(6))
 217#define PRCMU_I2C_STOP_EN               BIT(3)
 218
 219/* Mailbox 5 ACKs */
 220#define PRCM_ACK_MB5_I2C_STATUS (PRCM_ACK_MB5 + 0x1)
 221#define PRCM_ACK_MB5_I2C_VAL    (PRCM_ACK_MB5 + 0x3)
 222#define I2C_WR_OK 0x1
 223#define I2C_RD_OK 0x2
 224
 225#define NUM_MB 8
 226#define MBOX_BIT BIT
 227#define ALL_MBOX_BITS (MBOX_BIT(NUM_MB) - 1)
 228
 229/*
 230 * Wakeups/IRQs
 231 */
 232
 233#define WAKEUP_BIT_RTC BIT(0)
 234#define WAKEUP_BIT_RTT0 BIT(1)
 235#define WAKEUP_BIT_RTT1 BIT(2)
 236#define WAKEUP_BIT_HSI0 BIT(3)
 237#define WAKEUP_BIT_HSI1 BIT(4)
 238#define WAKEUP_BIT_CA_WAKE BIT(5)
 239#define WAKEUP_BIT_USB BIT(6)
 240#define WAKEUP_BIT_ABB BIT(7)
 241#define WAKEUP_BIT_ABB_FIFO BIT(8)
 242#define WAKEUP_BIT_SYSCLK_OK BIT(9)
 243#define WAKEUP_BIT_CA_SLEEP BIT(10)
 244#define WAKEUP_BIT_AC_WAKE_ACK BIT(11)
 245#define WAKEUP_BIT_SIDE_TONE_OK BIT(12)
 246#define WAKEUP_BIT_ANC_OK BIT(13)
 247#define WAKEUP_BIT_SW_ERROR BIT(14)
 248#define WAKEUP_BIT_AC_SLEEP_ACK BIT(15)
 249#define WAKEUP_BIT_ARM BIT(17)
 250#define WAKEUP_BIT_HOTMON_LOW BIT(18)
 251#define WAKEUP_BIT_HOTMON_HIGH BIT(19)
 252#define WAKEUP_BIT_MODEM_SW_RESET_REQ BIT(20)
 253#define WAKEUP_BIT_GPIO0 BIT(23)
 254#define WAKEUP_BIT_GPIO1 BIT(24)
 255#define WAKEUP_BIT_GPIO2 BIT(25)
 256#define WAKEUP_BIT_GPIO3 BIT(26)
 257#define WAKEUP_BIT_GPIO4 BIT(27)
 258#define WAKEUP_BIT_GPIO5 BIT(28)
 259#define WAKEUP_BIT_GPIO6 BIT(29)
 260#define WAKEUP_BIT_GPIO7 BIT(30)
 261#define WAKEUP_BIT_GPIO8 BIT(31)
 262
 263static struct {
 264        bool valid;
 265        struct prcmu_fw_version version;
 266} fw_info;
 267
 268static struct irq_domain *db8500_irq_domain;
 269
 270/*
 271 * This vector maps irq numbers to the bits in the bit field used in
 272 * communication with the PRCMU firmware.
 273 *
 274 * The reason for having this is to keep the irq numbers contiguous even though
 275 * the bits in the bit field are not. (The bits also have a tendency to move
 276 * around, to further complicate matters.)
 277 */
 278#define IRQ_INDEX(_name) ((IRQ_PRCMU_##_name))
 279#define IRQ_ENTRY(_name)[IRQ_INDEX(_name)] = (WAKEUP_BIT_##_name)
 280
 281#define IRQ_PRCMU_RTC 0
 282#define IRQ_PRCMU_RTT0 1
 283#define IRQ_PRCMU_RTT1 2
 284#define IRQ_PRCMU_HSI0 3
 285#define IRQ_PRCMU_HSI1 4
 286#define IRQ_PRCMU_CA_WAKE 5
 287#define IRQ_PRCMU_USB 6
 288#define IRQ_PRCMU_ABB 7
 289#define IRQ_PRCMU_ABB_FIFO 8
 290#define IRQ_PRCMU_ARM 9
 291#define IRQ_PRCMU_MODEM_SW_RESET_REQ 10
 292#define IRQ_PRCMU_GPIO0 11
 293#define IRQ_PRCMU_GPIO1 12
 294#define IRQ_PRCMU_GPIO2 13
 295#define IRQ_PRCMU_GPIO3 14
 296#define IRQ_PRCMU_GPIO4 15
 297#define IRQ_PRCMU_GPIO5 16
 298#define IRQ_PRCMU_GPIO6 17
 299#define IRQ_PRCMU_GPIO7 18
 300#define IRQ_PRCMU_GPIO8 19
 301#define IRQ_PRCMU_CA_SLEEP 20
 302#define IRQ_PRCMU_HOTMON_LOW 21
 303#define IRQ_PRCMU_HOTMON_HIGH 22
 304#define NUM_PRCMU_WAKEUPS 23
 305
 306static u32 prcmu_irq_bit[NUM_PRCMU_WAKEUPS] = {
 307        IRQ_ENTRY(RTC),
 308        IRQ_ENTRY(RTT0),
 309        IRQ_ENTRY(RTT1),
 310        IRQ_ENTRY(HSI0),
 311        IRQ_ENTRY(HSI1),
 312        IRQ_ENTRY(CA_WAKE),
 313        IRQ_ENTRY(USB),
 314        IRQ_ENTRY(ABB),
 315        IRQ_ENTRY(ABB_FIFO),
 316        IRQ_ENTRY(CA_SLEEP),
 317        IRQ_ENTRY(ARM),
 318        IRQ_ENTRY(HOTMON_LOW),
 319        IRQ_ENTRY(HOTMON_HIGH),
 320        IRQ_ENTRY(MODEM_SW_RESET_REQ),
 321        IRQ_ENTRY(GPIO0),
 322        IRQ_ENTRY(GPIO1),
 323        IRQ_ENTRY(GPIO2),
 324        IRQ_ENTRY(GPIO3),
 325        IRQ_ENTRY(GPIO4),
 326        IRQ_ENTRY(GPIO5),
 327        IRQ_ENTRY(GPIO6),
 328        IRQ_ENTRY(GPIO7),
 329        IRQ_ENTRY(GPIO8)
 330};
 331
 332#define VALID_WAKEUPS (BIT(NUM_PRCMU_WAKEUP_INDICES) - 1)
 333#define WAKEUP_ENTRY(_name)[PRCMU_WAKEUP_INDEX_##_name] = (WAKEUP_BIT_##_name)
 334static u32 prcmu_wakeup_bit[NUM_PRCMU_WAKEUP_INDICES] = {
 335        WAKEUP_ENTRY(RTC),
 336        WAKEUP_ENTRY(RTT0),
 337        WAKEUP_ENTRY(RTT1),
 338        WAKEUP_ENTRY(HSI0),
 339        WAKEUP_ENTRY(HSI1),
 340        WAKEUP_ENTRY(USB),
 341        WAKEUP_ENTRY(ABB),
 342        WAKEUP_ENTRY(ABB_FIFO),
 343        WAKEUP_ENTRY(ARM)
 344};
 345
 346/*
 347 * mb0_transfer - state needed for mailbox 0 communication.
 348 * @lock:               The transaction lock.
 349 * @dbb_events_lock:    A lock used to handle concurrent access to (parts of)
 350 *                      the request data.
 351 * @mask_work:          Work structure used for (un)masking wakeup interrupts.
 352 * @req:                Request data that need to persist between requests.
 353 */
 354static struct {
 355        spinlock_t lock;
 356        spinlock_t dbb_irqs_lock;
 357        struct work_struct mask_work;
 358        struct mutex ac_wake_lock;
 359        struct completion ac_wake_work;
 360        struct {
 361                u32 dbb_irqs;
 362                u32 dbb_wakeups;
 363                u32 abb_events;
 364        } req;
 365} mb0_transfer;
 366
 367/*
 368 * mb1_transfer - state needed for mailbox 1 communication.
 369 * @lock:       The transaction lock.
 370 * @work:       The transaction completion structure.
 371 * @ape_opp:    The current APE OPP.
 372 * @ack:        Reply ("acknowledge") data.
 373 */
 374static struct {
 375        struct mutex lock;
 376        struct completion work;
 377        u8 ape_opp;
 378        struct {
 379                u8 header;
 380                u8 arm_opp;
 381                u8 ape_opp;
 382                u8 ape_voltage_status;
 383        } ack;
 384} mb1_transfer;
 385
 386/*
 387 * mb2_transfer - state needed for mailbox 2 communication.
 388 * @lock:            The transaction lock.
 389 * @work:            The transaction completion structure.
 390 * @auto_pm_lock:    The autonomous power management configuration lock.
 391 * @auto_pm_enabled: A flag indicating whether autonomous PM is enabled.
 392 * @req:             Request data that need to persist between requests.
 393 * @ack:             Reply ("acknowledge") data.
 394 */
 395static struct {
 396        struct mutex lock;
 397        struct completion work;
 398        spinlock_t auto_pm_lock;
 399        bool auto_pm_enabled;
 400        struct {
 401                u8 status;
 402        } ack;
 403} mb2_transfer;
 404
 405/*
 406 * mb3_transfer - state needed for mailbox 3 communication.
 407 * @lock:               The request lock.
 408 * @sysclk_lock:        A lock used to handle concurrent sysclk requests.
 409 * @sysclk_work:        Work structure used for sysclk requests.
 410 */
 411static struct {
 412        spinlock_t lock;
 413        struct mutex sysclk_lock;
 414        struct completion sysclk_work;
 415} mb3_transfer;
 416
 417/*
 418 * mb4_transfer - state needed for mailbox 4 communication.
 419 * @lock:       The transaction lock.
 420 * @work:       The transaction completion structure.
 421 */
 422static struct {
 423        struct mutex lock;
 424        struct completion work;
 425} mb4_transfer;
 426
 427/*
 428 * mb5_transfer - state needed for mailbox 5 communication.
 429 * @lock:       The transaction lock.
 430 * @work:       The transaction completion structure.
 431 * @ack:        Reply ("acknowledge") data.
 432 */
 433static struct {
 434        struct mutex lock;
 435        struct completion work;
 436        struct {
 437                u8 status;
 438                u8 value;
 439        } ack;
 440} mb5_transfer;
 441
 442static atomic_t ac_wake_req_state = ATOMIC_INIT(0);
 443
 444/* Spinlocks */
 445static DEFINE_SPINLOCK(prcmu_lock);
 446static DEFINE_SPINLOCK(clkout_lock);
 447
 448/* Global var to runtime determine TCDM base for v2 or v1 */
 449static __iomem void *tcdm_base;
 450static __iomem void *prcmu_base;
 451
 452struct clk_mgt {
 453        u32 offset;
 454        u32 pllsw;
 455        int branch;
 456        bool clk38div;
 457};
 458
 459enum {
 460        PLL_RAW,
 461        PLL_FIX,
 462        PLL_DIV
 463};
 464
 465static DEFINE_SPINLOCK(clk_mgt_lock);
 466
 467#define CLK_MGT_ENTRY(_name, _branch, _clk38div)[PRCMU_##_name] = \
 468        { (PRCM_##_name##_MGT), 0 , _branch, _clk38div}
 469static struct clk_mgt clk_mgt[PRCMU_NUM_REG_CLOCKS] = {
 470        CLK_MGT_ENTRY(SGACLK, PLL_DIV, false),
 471        CLK_MGT_ENTRY(UARTCLK, PLL_FIX, true),
 472        CLK_MGT_ENTRY(MSP02CLK, PLL_FIX, true),
 473        CLK_MGT_ENTRY(MSP1CLK, PLL_FIX, true),
 474        CLK_MGT_ENTRY(I2CCLK, PLL_FIX, true),
 475        CLK_MGT_ENTRY(SDMMCCLK, PLL_DIV, true),
 476        CLK_MGT_ENTRY(SLIMCLK, PLL_FIX, true),
 477        CLK_MGT_ENTRY(PER1CLK, PLL_DIV, true),
 478        CLK_MGT_ENTRY(PER2CLK, PLL_DIV, true),
 479        CLK_MGT_ENTRY(PER3CLK, PLL_DIV, true),
 480        CLK_MGT_ENTRY(PER5CLK, PLL_DIV, true),
 481        CLK_MGT_ENTRY(PER6CLK, PLL_DIV, true),
 482        CLK_MGT_ENTRY(PER7CLK, PLL_DIV, true),
 483        CLK_MGT_ENTRY(LCDCLK, PLL_FIX, true),
 484        CLK_MGT_ENTRY(BMLCLK, PLL_DIV, true),
 485        CLK_MGT_ENTRY(HSITXCLK, PLL_DIV, true),
 486        CLK_MGT_ENTRY(HSIRXCLK, PLL_DIV, true),
 487        CLK_MGT_ENTRY(HDMICLK, PLL_FIX, false),
 488        CLK_MGT_ENTRY(APEATCLK, PLL_DIV, true),
 489        CLK_MGT_ENTRY(APETRACECLK, PLL_DIV, true),
 490        CLK_MGT_ENTRY(MCDECLK, PLL_DIV, true),
 491        CLK_MGT_ENTRY(IPI2CCLK, PLL_FIX, true),
 492        CLK_MGT_ENTRY(DSIALTCLK, PLL_FIX, false),
 493        CLK_MGT_ENTRY(DMACLK, PLL_DIV, true),
 494        CLK_MGT_ENTRY(B2R2CLK, PLL_DIV, true),
 495        CLK_MGT_ENTRY(TVCLK, PLL_FIX, true),
 496        CLK_MGT_ENTRY(SSPCLK, PLL_FIX, true),
 497        CLK_MGT_ENTRY(RNGCLK, PLL_FIX, true),
 498        CLK_MGT_ENTRY(UICCCLK, PLL_FIX, false),
 499};
 500
 501struct dsiclk {
 502        u32 divsel_mask;
 503        u32 divsel_shift;
 504        u32 divsel;
 505};
 506
 507static struct dsiclk dsiclk[2] = {
 508        {
 509                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_MASK,
 510                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI0_PLLOUT_DIVSEL_SHIFT,
 511                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 512        },
 513        {
 514                .divsel_mask = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_MASK,
 515                .divsel_shift = PRCM_DSI_PLLOUT_SEL_DSI1_PLLOUT_DIVSEL_SHIFT,
 516                .divsel = PRCM_DSI_PLLOUT_SEL_PHI,
 517        }
 518};
 519
 520struct dsiescclk {
 521        u32 en;
 522        u32 div_mask;
 523        u32 div_shift;
 524};
 525
 526static struct dsiescclk dsiescclk[3] = {
 527        {
 528                .en = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_EN,
 529                .div_mask = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_MASK,
 530                .div_shift = PRCM_DSITVCLK_DIV_DSI0_ESC_CLK_DIV_SHIFT,
 531        },
 532        {
 533                .en = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_EN,
 534                .div_mask = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_MASK,
 535                .div_shift = PRCM_DSITVCLK_DIV_DSI1_ESC_CLK_DIV_SHIFT,
 536        },
 537        {
 538                .en = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_EN,
 539                .div_mask = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_MASK,
 540                .div_shift = PRCM_DSITVCLK_DIV_DSI2_ESC_CLK_DIV_SHIFT,
 541        }
 542};
 543
 544
 545/*
 546* Used by MCDE to setup all necessary PRCMU registers
 547*/
 548#define PRCMU_RESET_DSIPLL              0x00004000
 549#define PRCMU_UNCLAMP_DSIPLL            0x00400800
 550
 551#define PRCMU_CLK_PLL_DIV_SHIFT         0
 552#define PRCMU_CLK_PLL_SW_SHIFT          5
 553#define PRCMU_CLK_38                    (1 << 9)
 554#define PRCMU_CLK_38_SRC                (1 << 10)
 555#define PRCMU_CLK_38_DIV                (1 << 11)
 556
 557/* PLLDIV=12, PLLSW=4 (PLLDDR) */
 558#define PRCMU_DSI_CLOCK_SETTING         0x0000008C
 559
 560/* DPI 50000000 Hz */
 561#define PRCMU_DPI_CLOCK_SETTING         ((1 << PRCMU_CLK_PLL_SW_SHIFT) | \
 562                                          (16 << PRCMU_CLK_PLL_DIV_SHIFT))
 563#define PRCMU_DSI_LP_CLOCK_SETTING      0x00000E00
 564
 565/* D=101, N=1, R=4, SELDIV2=0 */
 566#define PRCMU_PLLDSI_FREQ_SETTING       0x00040165
 567
 568#define PRCMU_ENABLE_PLLDSI             0x00000001
 569#define PRCMU_DISABLE_PLLDSI            0x00000000
 570#define PRCMU_RELEASE_RESET_DSS         0x0000400C
 571#define PRCMU_DSI_PLLOUT_SEL_SETTING    0x00000202
 572/* ESC clk, div0=1, div1=1, div2=3 */
 573#define PRCMU_ENABLE_ESCAPE_CLOCK_DIV   0x07030101
 574#define PRCMU_DISABLE_ESCAPE_CLOCK_DIV  0x00030101
 575#define PRCMU_DSI_RESET_SW              0x00000007
 576
 577#define PRCMU_PLLDSI_LOCKP_LOCKED       0x3
 578
 579int db8500_prcmu_enable_dsipll(void)
 580{
 581        int i;
 582
 583        /* Clear DSIPLL_RESETN */
 584        writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_CLR);
 585        /* Unclamp DSIPLL in/out */
 586        writel(PRCMU_UNCLAMP_DSIPLL, PRCM_MMIP_LS_CLAMP_CLR);
 587
 588        /* Set DSI PLL FREQ */
 589        writel(PRCMU_PLLDSI_FREQ_SETTING, PRCM_PLLDSI_FREQ);
 590        writel(PRCMU_DSI_PLLOUT_SEL_SETTING, PRCM_DSI_PLLOUT_SEL);
 591        /* Enable Escape clocks */
 592        writel(PRCMU_ENABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 593
 594        /* Start DSI PLL */
 595        writel(PRCMU_ENABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 596        /* Reset DSI PLL */
 597        writel(PRCMU_DSI_RESET_SW, PRCM_DSI_SW_RESET);
 598        for (i = 0; i < 10; i++) {
 599                if ((readl(PRCM_PLLDSI_LOCKP) & PRCMU_PLLDSI_LOCKP_LOCKED)
 600                                        == PRCMU_PLLDSI_LOCKP_LOCKED)
 601                        break;
 602                udelay(100);
 603        }
 604        /* Set DSIPLL_RESETN */
 605        writel(PRCMU_RESET_DSIPLL, PRCM_APE_RESETN_SET);
 606        return 0;
 607}
 608
 609int db8500_prcmu_disable_dsipll(void)
 610{
 611        /* Disable dsi pll */
 612        writel(PRCMU_DISABLE_PLLDSI, PRCM_PLLDSI_ENABLE);
 613        /* Disable  escapeclock */
 614        writel(PRCMU_DISABLE_ESCAPE_CLOCK_DIV, PRCM_DSITVCLK_DIV);
 615        return 0;
 616}
 617
 618int db8500_prcmu_set_display_clocks(void)
 619{
 620        unsigned long flags;
 621
 622        spin_lock_irqsave(&clk_mgt_lock, flags);
 623
 624        /* Grab the HW semaphore. */
 625        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 626                cpu_relax();
 627
 628        writel(PRCMU_DSI_CLOCK_SETTING, prcmu_base + PRCM_HDMICLK_MGT);
 629        writel(PRCMU_DSI_LP_CLOCK_SETTING, prcmu_base + PRCM_TVCLK_MGT);
 630        writel(PRCMU_DPI_CLOCK_SETTING, prcmu_base + PRCM_LCDCLK_MGT);
 631
 632        /* Release the HW semaphore. */
 633        writel(0, PRCM_SEM);
 634
 635        spin_unlock_irqrestore(&clk_mgt_lock, flags);
 636
 637        return 0;
 638}
 639
 640u32 db8500_prcmu_read(unsigned int reg)
 641{
 642        return readl(prcmu_base + reg);
 643}
 644
 645void db8500_prcmu_write(unsigned int reg, u32 value)
 646{
 647        unsigned long flags;
 648
 649        spin_lock_irqsave(&prcmu_lock, flags);
 650        writel(value, (prcmu_base + reg));
 651        spin_unlock_irqrestore(&prcmu_lock, flags);
 652}
 653
 654void db8500_prcmu_write_masked(unsigned int reg, u32 mask, u32 value)
 655{
 656        u32 val;
 657        unsigned long flags;
 658
 659        spin_lock_irqsave(&prcmu_lock, flags);
 660        val = readl(prcmu_base + reg);
 661        val = ((val & ~mask) | (value & mask));
 662        writel(val, (prcmu_base + reg));
 663        spin_unlock_irqrestore(&prcmu_lock, flags);
 664}
 665
 666struct prcmu_fw_version *prcmu_get_fw_version(void)
 667{
 668        return fw_info.valid ? &fw_info.version : NULL;
 669}
 670
 671bool prcmu_has_arm_maxopp(void)
 672{
 673        return (readb(tcdm_base + PRCM_AVS_VARM_MAX_OPP) &
 674                PRCM_AVS_ISMODEENABLE_MASK) == PRCM_AVS_ISMODEENABLE_MASK;
 675}
 676
 677/**
 678 * prcmu_set_rc_a2p - This function is used to run few power state sequences
 679 * @val: Value to be set, i.e. transition requested
 680 * Returns: 0 on success, -EINVAL on invalid argument
 681 *
 682 * This function is used to run the following power state sequences -
 683 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 684 */
 685int prcmu_set_rc_a2p(enum romcode_write val)
 686{
 687        if (val < RDY_2_DS || val > RDY_2_XP70_RST)
 688                return -EINVAL;
 689        writeb(val, (tcdm_base + PRCM_ROMCODE_A2P));
 690        return 0;
 691}
 692
 693/**
 694 * prcmu_get_rc_p2a - This function is used to get power state sequences
 695 * Returns: the power transition that has last happened
 696 *
 697 * This function can return the following transitions-
 698 * any state to ApReset,  ApDeepSleep to ApExecute, ApExecute to ApDeepSleep
 699 */
 700enum romcode_read prcmu_get_rc_p2a(void)
 701{
 702        return readb(tcdm_base + PRCM_ROMCODE_P2A);
 703}
 704
 705/**
 706 * prcmu_get_current_mode - Return the current XP70 power mode
 707 * Returns: Returns the current AP(ARM) power mode: init,
 708 * apBoot, apExecute, apDeepSleep, apSleep, apIdle, apReset
 709 */
 710enum ap_pwrst prcmu_get_xp70_current_state(void)
 711{
 712        return readb(tcdm_base + PRCM_XP70_CUR_PWR_STATE);
 713}
 714
 715/**
 716 * prcmu_config_clkout - Configure one of the programmable clock outputs.
 717 * @clkout:     The CLKOUT number (0 or 1).
 718 * @source:     The clock to be used (one of the PRCMU_CLKSRC_*).
 719 * @div:        The divider to be applied.
 720 *
 721 * Configures one of the programmable clock outputs (CLKOUTs).
 722 * @div should be in the range [1,63] to request a configuration, or 0 to
 723 * inform that the configuration is no longer requested.
 724 */
 725int prcmu_config_clkout(u8 clkout, u8 source, u8 div)
 726{
 727        static int requests[2];
 728        int r = 0;
 729        unsigned long flags;
 730        u32 val;
 731        u32 bits;
 732        u32 mask;
 733        u32 div_mask;
 734
 735        BUG_ON(clkout > 1);
 736        BUG_ON(div > 63);
 737        BUG_ON((clkout == 0) && (source > PRCMU_CLKSRC_CLK009));
 738
 739        if (!div && !requests[clkout])
 740                return -EINVAL;
 741
 742        switch (clkout) {
 743        case 0:
 744                div_mask = PRCM_CLKOCR_CLKODIV0_MASK;
 745                mask = (PRCM_CLKOCR_CLKODIV0_MASK | PRCM_CLKOCR_CLKOSEL0_MASK);
 746                bits = ((source << PRCM_CLKOCR_CLKOSEL0_SHIFT) |
 747                        (div << PRCM_CLKOCR_CLKODIV0_SHIFT));
 748                break;
 749        case 1:
 750                div_mask = PRCM_CLKOCR_CLKODIV1_MASK;
 751                mask = (PRCM_CLKOCR_CLKODIV1_MASK | PRCM_CLKOCR_CLKOSEL1_MASK |
 752                        PRCM_CLKOCR_CLK1TYPE);
 753                bits = ((source << PRCM_CLKOCR_CLKOSEL1_SHIFT) |
 754                        (div << PRCM_CLKOCR_CLKODIV1_SHIFT));
 755                break;
 756        }
 757        bits &= mask;
 758
 759        spin_lock_irqsave(&clkout_lock, flags);
 760
 761        val = readl(PRCM_CLKOCR);
 762        if (val & div_mask) {
 763                if (div) {
 764                        if ((val & mask) != bits) {
 765                                r = -EBUSY;
 766                                goto unlock_and_return;
 767                        }
 768                } else {
 769                        if ((val & mask & ~div_mask) != bits) {
 770                                r = -EINVAL;
 771                                goto unlock_and_return;
 772                        }
 773                }
 774        }
 775        writel((bits | (val & ~mask)), PRCM_CLKOCR);
 776        requests[clkout] += (div ? 1 : -1);
 777
 778unlock_and_return:
 779        spin_unlock_irqrestore(&clkout_lock, flags);
 780
 781        return r;
 782}
 783
 784int db8500_prcmu_set_power_state(u8 state, bool keep_ulp_clk, bool keep_ap_pll)
 785{
 786        unsigned long flags;
 787
 788        BUG_ON((state < PRCMU_AP_SLEEP) || (PRCMU_AP_DEEP_IDLE < state));
 789
 790        spin_lock_irqsave(&mb0_transfer.lock, flags);
 791
 792        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 793                cpu_relax();
 794
 795        writeb(MB0H_POWER_STATE_TRANS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 796        writeb(state, (tcdm_base + PRCM_REQ_MB0_AP_POWER_STATE));
 797        writeb((keep_ap_pll ? 1 : 0), (tcdm_base + PRCM_REQ_MB0_AP_PLL_STATE));
 798        writeb((keep_ulp_clk ? 1 : 0),
 799                (tcdm_base + PRCM_REQ_MB0_ULP_CLOCK_STATE));
 800        writeb(0, (tcdm_base + PRCM_REQ_MB0_DO_NOT_WFI));
 801        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 802
 803        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 804
 805        return 0;
 806}
 807
 808u8 db8500_prcmu_get_power_state_result(void)
 809{
 810        return readb(tcdm_base + PRCM_ACK_MB0_AP_PWRSTTR_STATUS);
 811}
 812
 813/* This function should only be called while mb0_transfer.lock is held. */
 814static void config_wakeups(void)
 815{
 816        const u8 header[2] = {
 817                MB0H_CONFIG_WAKEUPS_EXE,
 818                MB0H_CONFIG_WAKEUPS_SLEEP
 819        };
 820        static u32 last_dbb_events;
 821        static u32 last_abb_events;
 822        u32 dbb_events;
 823        u32 abb_events;
 824        unsigned int i;
 825
 826        dbb_events = mb0_transfer.req.dbb_irqs | mb0_transfer.req.dbb_wakeups;
 827        dbb_events |= (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK);
 828
 829        abb_events = mb0_transfer.req.abb_events;
 830
 831        if ((dbb_events == last_dbb_events) && (abb_events == last_abb_events))
 832                return;
 833
 834        for (i = 0; i < 2; i++) {
 835                while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
 836                        cpu_relax();
 837                writel(dbb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_8500));
 838                writel(abb_events, (tcdm_base + PRCM_REQ_MB0_WAKEUP_4500));
 839                writeb(header[i], (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
 840                writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
 841        }
 842        last_dbb_events = dbb_events;
 843        last_abb_events = abb_events;
 844}
 845
 846void db8500_prcmu_enable_wakeups(u32 wakeups)
 847{
 848        unsigned long flags;
 849        u32 bits;
 850        int i;
 851
 852        BUG_ON(wakeups != (wakeups & VALID_WAKEUPS));
 853
 854        for (i = 0, bits = 0; i < NUM_PRCMU_WAKEUP_INDICES; i++) {
 855                if (wakeups & BIT(i))
 856                        bits |= prcmu_wakeup_bit[i];
 857        }
 858
 859        spin_lock_irqsave(&mb0_transfer.lock, flags);
 860
 861        mb0_transfer.req.dbb_wakeups = bits;
 862        config_wakeups();
 863
 864        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 865}
 866
 867void db8500_prcmu_config_abb_event_readout(u32 abb_events)
 868{
 869        unsigned long flags;
 870
 871        spin_lock_irqsave(&mb0_transfer.lock, flags);
 872
 873        mb0_transfer.req.abb_events = abb_events;
 874        config_wakeups();
 875
 876        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
 877}
 878
 879void db8500_prcmu_get_abb_event_buffer(void __iomem **buf)
 880{
 881        if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
 882                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_1_4500);
 883        else
 884                *buf = (tcdm_base + PRCM_ACK_MB0_WAKEUP_0_4500);
 885}
 886
 887/**
 888 * db8500_prcmu_set_arm_opp - set the appropriate ARM OPP
 889 * @opp: The new ARM operating point to which transition is to be made
 890 * Returns: 0 on success, non-zero on failure
 891 *
 892 * This function sets the the operating point of the ARM.
 893 */
 894int db8500_prcmu_set_arm_opp(u8 opp)
 895{
 896        int r;
 897
 898        if (opp < ARM_NO_CHANGE || opp > ARM_EXTCLK)
 899                return -EINVAL;
 900
 901        r = 0;
 902
 903        mutex_lock(&mb1_transfer.lock);
 904
 905        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
 906                cpu_relax();
 907
 908        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
 909        writeb(opp, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
 910        writeb(APE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_APE_OPP));
 911
 912        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
 913        wait_for_completion(&mb1_transfer.work);
 914
 915        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
 916                (mb1_transfer.ack.arm_opp != opp))
 917                r = -EIO;
 918
 919        mutex_unlock(&mb1_transfer.lock);
 920
 921        return r;
 922}
 923
 924/**
 925 * db8500_prcmu_get_arm_opp - get the current ARM OPP
 926 *
 927 * Returns: the current ARM OPP
 928 */
 929int db8500_prcmu_get_arm_opp(void)
 930{
 931        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_ARM_OPP);
 932}
 933
 934/**
 935 * db8500_prcmu_get_ddr_opp - get the current DDR OPP
 936 *
 937 * Returns: the current DDR OPP
 938 */
 939int db8500_prcmu_get_ddr_opp(void)
 940{
 941        return readb(PRCM_DDR_SUBSYS_APE_MINBW);
 942}
 943
 944/**
 945 * db8500_set_ddr_opp - set the appropriate DDR OPP
 946 * @opp: The new DDR operating point to which transition is to be made
 947 * Returns: 0 on success, non-zero on failure
 948 *
 949 * This function sets the operating point of the DDR.
 950 */
 951static bool enable_set_ddr_opp;
 952int db8500_prcmu_set_ddr_opp(u8 opp)
 953{
 954        if (opp < DDR_100_OPP || opp > DDR_25_OPP)
 955                return -EINVAL;
 956        /* Changing the DDR OPP can hang the hardware pre-v21 */
 957        if (enable_set_ddr_opp)
 958                writeb(opp, PRCM_DDR_SUBSYS_APE_MINBW);
 959
 960        return 0;
 961}
 962
 963/* Divide the frequency of certain clocks by 2 for APE_50_PARTLY_25_OPP. */
 964static void request_even_slower_clocks(bool enable)
 965{
 966        u32 clock_reg[] = {
 967                PRCM_ACLK_MGT,
 968                PRCM_DMACLK_MGT
 969        };
 970        unsigned long flags;
 971        unsigned int i;
 972
 973        spin_lock_irqsave(&clk_mgt_lock, flags);
 974
 975        /* Grab the HW semaphore. */
 976        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
 977                cpu_relax();
 978
 979        for (i = 0; i < ARRAY_SIZE(clock_reg); i++) {
 980                u32 val;
 981                u32 div;
 982
 983                val = readl(prcmu_base + clock_reg[i]);
 984                div = (val & PRCM_CLK_MGT_CLKPLLDIV_MASK);
 985                if (enable) {
 986                        if ((div <= 1) || (div > 15)) {
 987                                pr_err("prcmu: Bad clock divider %d in %s\n",
 988                                        div, __func__);
 989                                goto unlock_and_return;
 990                        }
 991                        div <<= 1;
 992                } else {
 993                        if (div <= 2)
 994                                goto unlock_and_return;
 995                        div >>= 1;
 996                }
 997                val = ((val & ~PRCM_CLK_MGT_CLKPLLDIV_MASK) |
 998                        (div & PRCM_CLK_MGT_CLKPLLDIV_MASK));
 999                writel(val, prcmu_base + clock_reg[i]);
1000        }
1001
1002unlock_and_return:
1003        /* Release the HW semaphore. */
1004        writel(0, PRCM_SEM);
1005
1006        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1007}
1008
1009/**
1010 * db8500_set_ape_opp - set the appropriate APE OPP
1011 * @opp: The new APE operating point to which transition is to be made
1012 * Returns: 0 on success, non-zero on failure
1013 *
1014 * This function sets the operating point of the APE.
1015 */
1016int db8500_prcmu_set_ape_opp(u8 opp)
1017{
1018        int r = 0;
1019
1020        if (opp == mb1_transfer.ape_opp)
1021                return 0;
1022
1023        mutex_lock(&mb1_transfer.lock);
1024
1025        if (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)
1026                request_even_slower_clocks(false);
1027
1028        if ((opp != APE_100_OPP) && (mb1_transfer.ape_opp != APE_100_OPP))
1029                goto skip_message;
1030
1031        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1032                cpu_relax();
1033
1034        writeb(MB1H_ARM_APE_OPP, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1035        writeb(ARM_NO_CHANGE, (tcdm_base + PRCM_REQ_MB1_ARM_OPP));
1036        writeb(((opp == APE_50_PARTLY_25_OPP) ? APE_50_OPP : opp),
1037                (tcdm_base + PRCM_REQ_MB1_APE_OPP));
1038
1039        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1040        wait_for_completion(&mb1_transfer.work);
1041
1042        if ((mb1_transfer.ack.header != MB1H_ARM_APE_OPP) ||
1043                (mb1_transfer.ack.ape_opp != opp))
1044                r = -EIO;
1045
1046skip_message:
1047        if ((!r && (opp == APE_50_PARTLY_25_OPP)) ||
1048                (r && (mb1_transfer.ape_opp == APE_50_PARTLY_25_OPP)))
1049                request_even_slower_clocks(true);
1050        if (!r)
1051                mb1_transfer.ape_opp = opp;
1052
1053        mutex_unlock(&mb1_transfer.lock);
1054
1055        return r;
1056}
1057
1058/**
1059 * db8500_prcmu_get_ape_opp - get the current APE OPP
1060 *
1061 * Returns: the current APE OPP
1062 */
1063int db8500_prcmu_get_ape_opp(void)
1064{
1065        return readb(tcdm_base + PRCM_ACK_MB1_CURRENT_APE_OPP);
1066}
1067
1068/**
1069 * db8500_prcmu_request_ape_opp_100_voltage - Request APE OPP 100% voltage
1070 * @enable: true to request the higher voltage, false to drop a request.
1071 *
1072 * Calls to this function to enable and disable requests must be balanced.
1073 */
1074int db8500_prcmu_request_ape_opp_100_voltage(bool enable)
1075{
1076        int r = 0;
1077        u8 header;
1078        static unsigned int requests;
1079
1080        mutex_lock(&mb1_transfer.lock);
1081
1082        if (enable) {
1083                if (0 != requests++)
1084                        goto unlock_and_return;
1085                header = MB1H_REQUEST_APE_OPP_100_VOLT;
1086        } else {
1087                if (requests == 0) {
1088                        r = -EIO;
1089                        goto unlock_and_return;
1090                } else if (1 != requests--) {
1091                        goto unlock_and_return;
1092                }
1093                header = MB1H_RELEASE_APE_OPP_100_VOLT;
1094        }
1095
1096        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1097                cpu_relax();
1098
1099        writeb(header, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1100
1101        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1102        wait_for_completion(&mb1_transfer.work);
1103
1104        if ((mb1_transfer.ack.header != header) ||
1105                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1106                r = -EIO;
1107
1108unlock_and_return:
1109        mutex_unlock(&mb1_transfer.lock);
1110
1111        return r;
1112}
1113
1114/**
1115 * prcmu_release_usb_wakeup_state - release the state required by a USB wakeup
1116 *
1117 * This function releases the power state requirements of a USB wakeup.
1118 */
1119int prcmu_release_usb_wakeup_state(void)
1120{
1121        int r = 0;
1122
1123        mutex_lock(&mb1_transfer.lock);
1124
1125        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1126                cpu_relax();
1127
1128        writeb(MB1H_RELEASE_USB_WAKEUP,
1129                (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1130
1131        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1132        wait_for_completion(&mb1_transfer.work);
1133
1134        if ((mb1_transfer.ack.header != MB1H_RELEASE_USB_WAKEUP) ||
1135                ((mb1_transfer.ack.ape_voltage_status & BIT(0)) != 0))
1136                r = -EIO;
1137
1138        mutex_unlock(&mb1_transfer.lock);
1139
1140        return r;
1141}
1142
1143static int request_pll(u8 clock, bool enable)
1144{
1145        int r = 0;
1146
1147        if (clock == PRCMU_PLLSOC0)
1148                clock = (enable ? PLL_SOC0_ON : PLL_SOC0_OFF);
1149        else if (clock == PRCMU_PLLSOC1)
1150                clock = (enable ? PLL_SOC1_ON : PLL_SOC1_OFF);
1151        else
1152                return -EINVAL;
1153
1154        mutex_lock(&mb1_transfer.lock);
1155
1156        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
1157                cpu_relax();
1158
1159        writeb(MB1H_PLL_ON_OFF, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
1160        writeb(clock, (tcdm_base + PRCM_REQ_MB1_PLL_ON_OFF));
1161
1162        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
1163        wait_for_completion(&mb1_transfer.work);
1164
1165        if (mb1_transfer.ack.header != MB1H_PLL_ON_OFF)
1166                r = -EIO;
1167
1168        mutex_unlock(&mb1_transfer.lock);
1169
1170        return r;
1171}
1172
1173/**
1174 * db8500_prcmu_set_epod - set the state of a EPOD (power domain)
1175 * @epod_id: The EPOD to set
1176 * @epod_state: The new EPOD state
1177 *
1178 * This function sets the state of a EPOD (power domain). It may not be called
1179 * from interrupt context.
1180 */
1181int db8500_prcmu_set_epod(u16 epod_id, u8 epod_state)
1182{
1183        int r = 0;
1184        bool ram_retention = false;
1185        int i;
1186
1187        /* check argument */
1188        BUG_ON(epod_id >= NUM_EPOD_ID);
1189
1190        /* set flag if retention is possible */
1191        switch (epod_id) {
1192        case EPOD_ID_SVAMMDSP:
1193        case EPOD_ID_SIAMMDSP:
1194        case EPOD_ID_ESRAM12:
1195        case EPOD_ID_ESRAM34:
1196                ram_retention = true;
1197                break;
1198        }
1199
1200        /* check argument */
1201        BUG_ON(epod_state > EPOD_STATE_ON);
1202        BUG_ON(epod_state == EPOD_STATE_RAMRET && !ram_retention);
1203
1204        /* get lock */
1205        mutex_lock(&mb2_transfer.lock);
1206
1207        /* wait for mailbox */
1208        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(2))
1209                cpu_relax();
1210
1211        /* fill in mailbox */
1212        for (i = 0; i < NUM_EPOD_ID; i++)
1213                writeb(EPOD_STATE_NO_CHANGE, (tcdm_base + PRCM_REQ_MB2 + i));
1214        writeb(epod_state, (tcdm_base + PRCM_REQ_MB2 + epod_id));
1215
1216        writeb(MB2H_DPS, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB2));
1217
1218        writel(MBOX_BIT(2), PRCM_MBOX_CPU_SET);
1219
1220        /*
1221         * The current firmware version does not handle errors correctly,
1222         * and we cannot recover if there is an error.
1223         * This is expected to change when the firmware is updated.
1224         */
1225        if (!wait_for_completion_timeout(&mb2_transfer.work,
1226                        msecs_to_jiffies(20000))) {
1227                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1228                        __func__);
1229                r = -EIO;
1230                goto unlock_and_return;
1231        }
1232
1233        if (mb2_transfer.ack.status != HWACC_PWR_ST_OK)
1234                r = -EIO;
1235
1236unlock_and_return:
1237        mutex_unlock(&mb2_transfer.lock);
1238        return r;
1239}
1240
1241/**
1242 * prcmu_configure_auto_pm - Configure autonomous power management.
1243 * @sleep: Configuration for ApSleep.
1244 * @idle:  Configuration for ApIdle.
1245 */
1246void prcmu_configure_auto_pm(struct prcmu_auto_pm_config *sleep,
1247        struct prcmu_auto_pm_config *idle)
1248{
1249        u32 sleep_cfg;
1250        u32 idle_cfg;
1251        unsigned long flags;
1252
1253        BUG_ON((sleep == NULL) || (idle == NULL));
1254
1255        sleep_cfg = (sleep->sva_auto_pm_enable & 0xF);
1256        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_auto_pm_enable & 0xF));
1257        sleep_cfg = ((sleep_cfg << 8) | (sleep->sva_power_on & 0xFF));
1258        sleep_cfg = ((sleep_cfg << 8) | (sleep->sia_power_on & 0xFF));
1259        sleep_cfg = ((sleep_cfg << 4) | (sleep->sva_policy & 0xF));
1260        sleep_cfg = ((sleep_cfg << 4) | (sleep->sia_policy & 0xF));
1261
1262        idle_cfg = (idle->sva_auto_pm_enable & 0xF);
1263        idle_cfg = ((idle_cfg << 4) | (idle->sia_auto_pm_enable & 0xF));
1264        idle_cfg = ((idle_cfg << 8) | (idle->sva_power_on & 0xFF));
1265        idle_cfg = ((idle_cfg << 8) | (idle->sia_power_on & 0xFF));
1266        idle_cfg = ((idle_cfg << 4) | (idle->sva_policy & 0xF));
1267        idle_cfg = ((idle_cfg << 4) | (idle->sia_policy & 0xF));
1268
1269        spin_lock_irqsave(&mb2_transfer.auto_pm_lock, flags);
1270
1271        /*
1272         * The autonomous power management configuration is done through
1273         * fields in mailbox 2, but these fields are only used as shared
1274         * variables - i.e. there is no need to send a message.
1275         */
1276        writel(sleep_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_SLEEP));
1277        writel(idle_cfg, (tcdm_base + PRCM_REQ_MB2_AUTO_PM_IDLE));
1278
1279        mb2_transfer.auto_pm_enabled =
1280                ((sleep->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1281                 (sleep->sia_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1282                 (idle->sva_auto_pm_enable == PRCMU_AUTO_PM_ON) ||
1283                 (idle->sia_auto_pm_enable == PRCMU_AUTO_PM_ON));
1284
1285        spin_unlock_irqrestore(&mb2_transfer.auto_pm_lock, flags);
1286}
1287EXPORT_SYMBOL(prcmu_configure_auto_pm);
1288
1289bool prcmu_is_auto_pm_enabled(void)
1290{
1291        return mb2_transfer.auto_pm_enabled;
1292}
1293
1294static int request_sysclk(bool enable)
1295{
1296        int r;
1297        unsigned long flags;
1298
1299        r = 0;
1300
1301        mutex_lock(&mb3_transfer.sysclk_lock);
1302
1303        spin_lock_irqsave(&mb3_transfer.lock, flags);
1304
1305        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(3))
1306                cpu_relax();
1307
1308        writeb((enable ? ON : OFF), (tcdm_base + PRCM_REQ_MB3_SYSCLK_MGT));
1309
1310        writeb(MB3H_SYSCLK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB3));
1311        writel(MBOX_BIT(3), PRCM_MBOX_CPU_SET);
1312
1313        spin_unlock_irqrestore(&mb3_transfer.lock, flags);
1314
1315        /*
1316         * The firmware only sends an ACK if we want to enable the
1317         * SysClk, and it succeeds.
1318         */
1319        if (enable && !wait_for_completion_timeout(&mb3_transfer.sysclk_work,
1320                        msecs_to_jiffies(20000))) {
1321                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
1322                        __func__);
1323                r = -EIO;
1324        }
1325
1326        mutex_unlock(&mb3_transfer.sysclk_lock);
1327
1328        return r;
1329}
1330
1331static int request_timclk(bool enable)
1332{
1333        u32 val = (PRCM_TCR_DOZE_MODE | PRCM_TCR_TENSEL_MASK);
1334
1335        if (!enable)
1336                val |= PRCM_TCR_STOP_TIMERS;
1337        writel(val, PRCM_TCR);
1338
1339        return 0;
1340}
1341
1342static int request_clock(u8 clock, bool enable)
1343{
1344        u32 val;
1345        unsigned long flags;
1346
1347        spin_lock_irqsave(&clk_mgt_lock, flags);
1348
1349        /* Grab the HW semaphore. */
1350        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1351                cpu_relax();
1352
1353        val = readl(prcmu_base + clk_mgt[clock].offset);
1354        if (enable) {
1355                val |= (PRCM_CLK_MGT_CLKEN | clk_mgt[clock].pllsw);
1356        } else {
1357                clk_mgt[clock].pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1358                val &= ~(PRCM_CLK_MGT_CLKEN | PRCM_CLK_MGT_CLKPLLSW_MASK);
1359        }
1360        writel(val, prcmu_base + clk_mgt[clock].offset);
1361
1362        /* Release the HW semaphore. */
1363        writel(0, PRCM_SEM);
1364
1365        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1366
1367        return 0;
1368}
1369
1370static int request_sga_clock(u8 clock, bool enable)
1371{
1372        u32 val;
1373        int ret;
1374
1375        if (enable) {
1376                val = readl(PRCM_CGATING_BYPASS);
1377                writel(val | PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1378        }
1379
1380        ret = request_clock(clock, enable);
1381
1382        if (!ret && !enable) {
1383                val = readl(PRCM_CGATING_BYPASS);
1384                writel(val & ~PRCM_CGATING_BYPASS_ICN2, PRCM_CGATING_BYPASS);
1385        }
1386
1387        return ret;
1388}
1389
1390static inline bool plldsi_locked(void)
1391{
1392        return (readl(PRCM_PLLDSI_LOCKP) &
1393                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1394                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3)) ==
1395                (PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP10 |
1396                 PRCM_PLLDSI_LOCKP_PRCM_PLLDSI_LOCKP3);
1397}
1398
1399static int request_plldsi(bool enable)
1400{
1401        int r = 0;
1402        u32 val;
1403
1404        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1405                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI), (enable ?
1406                PRCM_MMIP_LS_CLAMP_CLR : PRCM_MMIP_LS_CLAMP_SET));
1407
1408        val = readl(PRCM_PLLDSI_ENABLE);
1409        if (enable)
1410                val |= PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1411        else
1412                val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1413        writel(val, PRCM_PLLDSI_ENABLE);
1414
1415        if (enable) {
1416                unsigned int i;
1417                bool locked = plldsi_locked();
1418
1419                for (i = 10; !locked && (i > 0); --i) {
1420                        udelay(100);
1421                        locked = plldsi_locked();
1422                }
1423                if (locked) {
1424                        writel(PRCM_APE_RESETN_DSIPLL_RESETN,
1425                                PRCM_APE_RESETN_SET);
1426                } else {
1427                        writel((PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMP |
1428                                PRCM_MMIP_LS_CLAMP_DSIPLL_CLAMPI),
1429                                PRCM_MMIP_LS_CLAMP_SET);
1430                        val &= ~PRCM_PLLDSI_ENABLE_PRCM_PLLDSI_ENABLE;
1431                        writel(val, PRCM_PLLDSI_ENABLE);
1432                        r = -EAGAIN;
1433                }
1434        } else {
1435                writel(PRCM_APE_RESETN_DSIPLL_RESETN, PRCM_APE_RESETN_CLR);
1436        }
1437        return r;
1438}
1439
1440static int request_dsiclk(u8 n, bool enable)
1441{
1442        u32 val;
1443
1444        val = readl(PRCM_DSI_PLLOUT_SEL);
1445        val &= ~dsiclk[n].divsel_mask;
1446        val |= ((enable ? dsiclk[n].divsel : PRCM_DSI_PLLOUT_SEL_OFF) <<
1447                dsiclk[n].divsel_shift);
1448        writel(val, PRCM_DSI_PLLOUT_SEL);
1449        return 0;
1450}
1451
1452static int request_dsiescclk(u8 n, bool enable)
1453{
1454        u32 val;
1455
1456        val = readl(PRCM_DSITVCLK_DIV);
1457        enable ? (val |= dsiescclk[n].en) : (val &= ~dsiescclk[n].en);
1458        writel(val, PRCM_DSITVCLK_DIV);
1459        return 0;
1460}
1461
1462/**
1463 * db8500_prcmu_request_clock() - Request for a clock to be enabled or disabled.
1464 * @clock:      The clock for which the request is made.
1465 * @enable:     Whether the clock should be enabled (true) or disabled (false).
1466 *
1467 * This function should only be used by the clock implementation.
1468 * Do not use it from any other place!
1469 */
1470int db8500_prcmu_request_clock(u8 clock, bool enable)
1471{
1472        if (clock == PRCMU_SGACLK)
1473                return request_sga_clock(clock, enable);
1474        else if (clock < PRCMU_NUM_REG_CLOCKS)
1475                return request_clock(clock, enable);
1476        else if (clock == PRCMU_TIMCLK)
1477                return request_timclk(enable);
1478        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1479                return request_dsiclk((clock - PRCMU_DSI0CLK), enable);
1480        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1481                return request_dsiescclk((clock - PRCMU_DSI0ESCCLK), enable);
1482        else if (clock == PRCMU_PLLDSI)
1483                return request_plldsi(enable);
1484        else if (clock == PRCMU_SYSCLK)
1485                return request_sysclk(enable);
1486        else if ((clock == PRCMU_PLLSOC0) || (clock == PRCMU_PLLSOC1))
1487                return request_pll(clock, enable);
1488        else
1489                return -EINVAL;
1490}
1491
1492static unsigned long pll_rate(void __iomem *reg, unsigned long src_rate,
1493        int branch)
1494{
1495        u64 rate;
1496        u32 val;
1497        u32 d;
1498        u32 div = 1;
1499
1500        val = readl(reg);
1501
1502        rate = src_rate;
1503        rate *= ((val & PRCM_PLL_FREQ_D_MASK) >> PRCM_PLL_FREQ_D_SHIFT);
1504
1505        d = ((val & PRCM_PLL_FREQ_N_MASK) >> PRCM_PLL_FREQ_N_SHIFT);
1506        if (d > 1)
1507                div *= d;
1508
1509        d = ((val & PRCM_PLL_FREQ_R_MASK) >> PRCM_PLL_FREQ_R_SHIFT);
1510        if (d > 1)
1511                div *= d;
1512
1513        if (val & PRCM_PLL_FREQ_SELDIV2)
1514                div *= 2;
1515
1516        if ((branch == PLL_FIX) || ((branch == PLL_DIV) &&
1517                (val & PRCM_PLL_FREQ_DIV2EN) &&
1518                ((reg == PRCM_PLLSOC0_FREQ) ||
1519                 (reg == PRCM_PLLARM_FREQ) ||
1520                 (reg == PRCM_PLLDDR_FREQ))))
1521                div *= 2;
1522
1523        (void)do_div(rate, div);
1524
1525        return (unsigned long)rate;
1526}
1527
1528#define ROOT_CLOCK_RATE 38400000
1529
1530static unsigned long clock_rate(u8 clock)
1531{
1532        u32 val;
1533        u32 pllsw;
1534        unsigned long rate = ROOT_CLOCK_RATE;
1535
1536        val = readl(prcmu_base + clk_mgt[clock].offset);
1537
1538        if (val & PRCM_CLK_MGT_CLK38) {
1539                if (clk_mgt[clock].clk38div && (val & PRCM_CLK_MGT_CLK38DIV))
1540                        rate /= 2;
1541                return rate;
1542        }
1543
1544        val |= clk_mgt[clock].pllsw;
1545        pllsw = (val & PRCM_CLK_MGT_CLKPLLSW_MASK);
1546
1547        if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1548                rate = pll_rate(PRCM_PLLSOC0_FREQ, rate, clk_mgt[clock].branch);
1549        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1550                rate = pll_rate(PRCM_PLLSOC1_FREQ, rate, clk_mgt[clock].branch);
1551        else if (pllsw == PRCM_CLK_MGT_CLKPLLSW_DDR)
1552                rate = pll_rate(PRCM_PLLDDR_FREQ, rate, clk_mgt[clock].branch);
1553        else
1554                return 0;
1555
1556        if ((clock == PRCMU_SGACLK) &&
1557                (val & PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN)) {
1558                u64 r = (rate * 10);
1559
1560                (void)do_div(r, 25);
1561                return (unsigned long)r;
1562        }
1563        val &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1564        if (val)
1565                return rate / val;
1566        else
1567                return 0;
1568}
1569
1570static unsigned long armss_rate(void)
1571{
1572        u32 r;
1573        unsigned long rate;
1574
1575        r = readl(PRCM_ARM_CHGCLKREQ);
1576
1577        if (r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_CHGCLKREQ) {
1578                /* External ARMCLKFIX clock */
1579
1580                rate = pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_FIX);
1581
1582                /* Check PRCM_ARM_CHGCLKREQ divider */
1583                if (!(r & PRCM_ARM_CHGCLKREQ_PRCM_ARM_DIVSEL))
1584                        rate /= 2;
1585
1586                /* Check PRCM_ARMCLKFIX_MGT divider */
1587                r = readl(PRCM_ARMCLKFIX_MGT);
1588                r &= PRCM_CLK_MGT_CLKPLLDIV_MASK;
1589                rate /= r;
1590
1591        } else {/* ARM PLL */
1592                rate = pll_rate(PRCM_PLLARM_FREQ, ROOT_CLOCK_RATE, PLL_DIV);
1593        }
1594
1595        return rate;
1596}
1597
1598static unsigned long dsiclk_rate(u8 n)
1599{
1600        u32 divsel;
1601        u32 div = 1;
1602
1603        divsel = readl(PRCM_DSI_PLLOUT_SEL);
1604        divsel = ((divsel & dsiclk[n].divsel_mask) >> dsiclk[n].divsel_shift);
1605
1606        if (divsel == PRCM_DSI_PLLOUT_SEL_OFF)
1607                divsel = dsiclk[n].divsel;
1608        else
1609                dsiclk[n].divsel = divsel;
1610
1611        switch (divsel) {
1612        case PRCM_DSI_PLLOUT_SEL_PHI_4:
1613                div *= 2;
1614        case PRCM_DSI_PLLOUT_SEL_PHI_2:
1615                div *= 2;
1616        case PRCM_DSI_PLLOUT_SEL_PHI:
1617                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1618                        PLL_RAW) / div;
1619        default:
1620                return 0;
1621        }
1622}
1623
1624static unsigned long dsiescclk_rate(u8 n)
1625{
1626        u32 div;
1627
1628        div = readl(PRCM_DSITVCLK_DIV);
1629        div = ((div & dsiescclk[n].div_mask) >> (dsiescclk[n].div_shift));
1630        return clock_rate(PRCMU_TVCLK) / max((u32)1, div);
1631}
1632
1633unsigned long prcmu_clock_rate(u8 clock)
1634{
1635        if (clock < PRCMU_NUM_REG_CLOCKS)
1636                return clock_rate(clock);
1637        else if (clock == PRCMU_TIMCLK)
1638                return ROOT_CLOCK_RATE / 16;
1639        else if (clock == PRCMU_SYSCLK)
1640                return ROOT_CLOCK_RATE;
1641        else if (clock == PRCMU_PLLSOC0)
1642                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1643        else if (clock == PRCMU_PLLSOC1)
1644                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1645        else if (clock == PRCMU_ARMSS)
1646                return armss_rate();
1647        else if (clock == PRCMU_PLLDDR)
1648                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, PLL_RAW);
1649        else if (clock == PRCMU_PLLDSI)
1650                return pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1651                        PLL_RAW);
1652        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1653                return dsiclk_rate(clock - PRCMU_DSI0CLK);
1654        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1655                return dsiescclk_rate(clock - PRCMU_DSI0ESCCLK);
1656        else
1657                return 0;
1658}
1659
1660static unsigned long clock_source_rate(u32 clk_mgt_val, int branch)
1661{
1662        if (clk_mgt_val & PRCM_CLK_MGT_CLK38)
1663                return ROOT_CLOCK_RATE;
1664        clk_mgt_val &= PRCM_CLK_MGT_CLKPLLSW_MASK;
1665        if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC0)
1666                return pll_rate(PRCM_PLLSOC0_FREQ, ROOT_CLOCK_RATE, branch);
1667        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_SOC1)
1668                return pll_rate(PRCM_PLLSOC1_FREQ, ROOT_CLOCK_RATE, branch);
1669        else if (clk_mgt_val == PRCM_CLK_MGT_CLKPLLSW_DDR)
1670                return pll_rate(PRCM_PLLDDR_FREQ, ROOT_CLOCK_RATE, branch);
1671        else
1672                return 0;
1673}
1674
1675static u32 clock_divider(unsigned long src_rate, unsigned long rate)
1676{
1677        u32 div;
1678
1679        div = (src_rate / rate);
1680        if (div == 0)
1681                return 1;
1682        if (rate < (src_rate / div))
1683                div++;
1684        return div;
1685}
1686
1687static long round_clock_rate(u8 clock, unsigned long rate)
1688{
1689        u32 val;
1690        u32 div;
1691        unsigned long src_rate;
1692        long rounded_rate;
1693
1694        val = readl(prcmu_base + clk_mgt[clock].offset);
1695        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1696                clk_mgt[clock].branch);
1697        div = clock_divider(src_rate, rate);
1698        if (val & PRCM_CLK_MGT_CLK38) {
1699                if (clk_mgt[clock].clk38div) {
1700                        if (div > 2)
1701                                div = 2;
1702                } else {
1703                        div = 1;
1704                }
1705        } else if ((clock == PRCMU_SGACLK) && (div == 3)) {
1706                u64 r = (src_rate * 10);
1707
1708                (void)do_div(r, 25);
1709                if (r <= rate)
1710                        return (unsigned long)r;
1711        }
1712        rounded_rate = (src_rate / min(div, (u32)31));
1713
1714        return rounded_rate;
1715}
1716
1717/* CPU FREQ table, may be changed due to if MAX_OPP is supported. */
1718static struct cpufreq_frequency_table db8500_cpufreq_table[] = {
1719        { .frequency = 200000, .driver_data = ARM_EXTCLK,},
1720        { .frequency = 400000, .driver_data = ARM_50_OPP,},
1721        { .frequency = 800000, .driver_data = ARM_100_OPP,},
1722        { .frequency = CPUFREQ_TABLE_END,}, /* To be used for MAX_OPP. */
1723        { .frequency = CPUFREQ_TABLE_END,},
1724};
1725
1726static long round_armss_rate(unsigned long rate)
1727{
1728        struct cpufreq_frequency_table *pos;
1729        long freq = 0;
1730
1731        /* cpufreq table frequencies is in KHz. */
1732        rate = rate / 1000;
1733
1734        /* Find the corresponding arm opp from the cpufreq table. */
1735        cpufreq_for_each_entry(pos, db8500_cpufreq_table) {
1736                freq = pos->frequency;
1737                if (freq == rate)
1738                        break;
1739        }
1740
1741        /* Return the last valid value, even if a match was not found. */
1742        return freq * 1000;
1743}
1744
1745#define MIN_PLL_VCO_RATE 600000000ULL
1746#define MAX_PLL_VCO_RATE 1680640000ULL
1747
1748static long round_plldsi_rate(unsigned long rate)
1749{
1750        long rounded_rate = 0;
1751        unsigned long src_rate;
1752        unsigned long rem;
1753        u32 r;
1754
1755        src_rate = clock_rate(PRCMU_HDMICLK);
1756        rem = rate;
1757
1758        for (r = 7; (rem > 0) && (r > 0); r--) {
1759                u64 d;
1760
1761                d = (r * rate);
1762                (void)do_div(d, src_rate);
1763                if (d < 6)
1764                        d = 6;
1765                else if (d > 255)
1766                        d = 255;
1767                d *= src_rate;
1768                if (((2 * d) < (r * MIN_PLL_VCO_RATE)) ||
1769                        ((r * MAX_PLL_VCO_RATE) < (2 * d)))
1770                        continue;
1771                (void)do_div(d, r);
1772                if (rate < d) {
1773                        if (rounded_rate == 0)
1774                                rounded_rate = (long)d;
1775                        break;
1776                }
1777                if ((rate - d) < rem) {
1778                        rem = (rate - d);
1779                        rounded_rate = (long)d;
1780                }
1781        }
1782        return rounded_rate;
1783}
1784
1785static long round_dsiclk_rate(unsigned long rate)
1786{
1787        u32 div;
1788        unsigned long src_rate;
1789        long rounded_rate;
1790
1791        src_rate = pll_rate(PRCM_PLLDSI_FREQ, clock_rate(PRCMU_HDMICLK),
1792                PLL_RAW);
1793        div = clock_divider(src_rate, rate);
1794        rounded_rate = (src_rate / ((div > 2) ? 4 : div));
1795
1796        return rounded_rate;
1797}
1798
1799static long round_dsiescclk_rate(unsigned long rate)
1800{
1801        u32 div;
1802        unsigned long src_rate;
1803        long rounded_rate;
1804
1805        src_rate = clock_rate(PRCMU_TVCLK);
1806        div = clock_divider(src_rate, rate);
1807        rounded_rate = (src_rate / min(div, (u32)255));
1808
1809        return rounded_rate;
1810}
1811
1812long prcmu_round_clock_rate(u8 clock, unsigned long rate)
1813{
1814        if (clock < PRCMU_NUM_REG_CLOCKS)
1815                return round_clock_rate(clock, rate);
1816        else if (clock == PRCMU_ARMSS)
1817                return round_armss_rate(rate);
1818        else if (clock == PRCMU_PLLDSI)
1819                return round_plldsi_rate(rate);
1820        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1821                return round_dsiclk_rate(rate);
1822        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1823                return round_dsiescclk_rate(rate);
1824        else
1825                return (long)prcmu_clock_rate(clock);
1826}
1827
1828static void set_clock_rate(u8 clock, unsigned long rate)
1829{
1830        u32 val;
1831        u32 div;
1832        unsigned long src_rate;
1833        unsigned long flags;
1834
1835        spin_lock_irqsave(&clk_mgt_lock, flags);
1836
1837        /* Grab the HW semaphore. */
1838        while ((readl(PRCM_SEM) & PRCM_SEM_PRCM_SEM) != 0)
1839                cpu_relax();
1840
1841        val = readl(prcmu_base + clk_mgt[clock].offset);
1842        src_rate = clock_source_rate((val | clk_mgt[clock].pllsw),
1843                clk_mgt[clock].branch);
1844        div = clock_divider(src_rate, rate);
1845        if (val & PRCM_CLK_MGT_CLK38) {
1846                if (clk_mgt[clock].clk38div) {
1847                        if (div > 1)
1848                                val |= PRCM_CLK_MGT_CLK38DIV;
1849                        else
1850                                val &= ~PRCM_CLK_MGT_CLK38DIV;
1851                }
1852        } else if (clock == PRCMU_SGACLK) {
1853                val &= ~(PRCM_CLK_MGT_CLKPLLDIV_MASK |
1854                        PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN);
1855                if (div == 3) {
1856                        u64 r = (src_rate * 10);
1857
1858                        (void)do_div(r, 25);
1859                        if (r <= rate) {
1860                                val |= PRCM_SGACLK_MGT_SGACLKDIV_BY_2_5_EN;
1861                                div = 0;
1862                        }
1863                }
1864                val |= min(div, (u32)31);
1865        } else {
1866                val &= ~PRCM_CLK_MGT_CLKPLLDIV_MASK;
1867                val |= min(div, (u32)31);
1868        }
1869        writel(val, prcmu_base + clk_mgt[clock].offset);
1870
1871        /* Release the HW semaphore. */
1872        writel(0, PRCM_SEM);
1873
1874        spin_unlock_irqrestore(&clk_mgt_lock, flags);
1875}
1876
1877static int set_armss_rate(unsigned long rate)
1878{
1879        struct cpufreq_frequency_table *pos;
1880
1881        /* cpufreq table frequencies is in KHz. */
1882        rate = rate / 1000;
1883
1884        /* Find the corresponding arm opp from the cpufreq table. */
1885        cpufreq_for_each_entry(pos, db8500_cpufreq_table)
1886                if (pos->frequency == rate)
1887                        break;
1888
1889        if (pos->frequency != rate)
1890                return -EINVAL;
1891
1892        /* Set the new arm opp. */
1893        return db8500_prcmu_set_arm_opp(pos->driver_data);
1894}
1895
1896static int set_plldsi_rate(unsigned long rate)
1897{
1898        unsigned long src_rate;
1899        unsigned long rem;
1900        u32 pll_freq = 0;
1901        u32 r;
1902
1903        src_rate = clock_rate(PRCMU_HDMICLK);
1904        rem = rate;
1905
1906        for (r = 7; (rem > 0) && (r > 0); r--) {
1907                u64 d;
1908                u64 hwrate;
1909
1910                d = (r * rate);
1911                (void)do_div(d, src_rate);
1912                if (d < 6)
1913                        d = 6;
1914                else if (d > 255)
1915                        d = 255;
1916                hwrate = (d * src_rate);
1917                if (((2 * hwrate) < (r * MIN_PLL_VCO_RATE)) ||
1918                        ((r * MAX_PLL_VCO_RATE) < (2 * hwrate)))
1919                        continue;
1920                (void)do_div(hwrate, r);
1921                if (rate < hwrate) {
1922                        if (pll_freq == 0)
1923                                pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1924                                        (r << PRCM_PLL_FREQ_R_SHIFT));
1925                        break;
1926                }
1927                if ((rate - hwrate) < rem) {
1928                        rem = (rate - hwrate);
1929                        pll_freq = (((u32)d << PRCM_PLL_FREQ_D_SHIFT) |
1930                                (r << PRCM_PLL_FREQ_R_SHIFT));
1931                }
1932        }
1933        if (pll_freq == 0)
1934                return -EINVAL;
1935
1936        pll_freq |= (1 << PRCM_PLL_FREQ_N_SHIFT);
1937        writel(pll_freq, PRCM_PLLDSI_FREQ);
1938
1939        return 0;
1940}
1941
1942static void set_dsiclk_rate(u8 n, unsigned long rate)
1943{
1944        u32 val;
1945        u32 div;
1946
1947        div = clock_divider(pll_rate(PRCM_PLLDSI_FREQ,
1948                        clock_rate(PRCMU_HDMICLK), PLL_RAW), rate);
1949
1950        dsiclk[n].divsel = (div == 1) ? PRCM_DSI_PLLOUT_SEL_PHI :
1951                           (div == 2) ? PRCM_DSI_PLLOUT_SEL_PHI_2 :
1952                           /* else */   PRCM_DSI_PLLOUT_SEL_PHI_4;
1953
1954        val = readl(PRCM_DSI_PLLOUT_SEL);
1955        val &= ~dsiclk[n].divsel_mask;
1956        val |= (dsiclk[n].divsel << dsiclk[n].divsel_shift);
1957        writel(val, PRCM_DSI_PLLOUT_SEL);
1958}
1959
1960static void set_dsiescclk_rate(u8 n, unsigned long rate)
1961{
1962        u32 val;
1963        u32 div;
1964
1965        div = clock_divider(clock_rate(PRCMU_TVCLK), rate);
1966        val = readl(PRCM_DSITVCLK_DIV);
1967        val &= ~dsiescclk[n].div_mask;
1968        val |= (min(div, (u32)255) << dsiescclk[n].div_shift);
1969        writel(val, PRCM_DSITVCLK_DIV);
1970}
1971
1972int prcmu_set_clock_rate(u8 clock, unsigned long rate)
1973{
1974        if (clock < PRCMU_NUM_REG_CLOCKS)
1975                set_clock_rate(clock, rate);
1976        else if (clock == PRCMU_ARMSS)
1977                return set_armss_rate(rate);
1978        else if (clock == PRCMU_PLLDSI)
1979                return set_plldsi_rate(rate);
1980        else if ((clock == PRCMU_DSI0CLK) || (clock == PRCMU_DSI1CLK))
1981                set_dsiclk_rate((clock - PRCMU_DSI0CLK), rate);
1982        else if ((PRCMU_DSI0ESCCLK <= clock) && (clock <= PRCMU_DSI2ESCCLK))
1983                set_dsiescclk_rate((clock - PRCMU_DSI0ESCCLK), rate);
1984        return 0;
1985}
1986
1987int db8500_prcmu_config_esram0_deep_sleep(u8 state)
1988{
1989        if ((state > ESRAM0_DEEP_SLEEP_STATE_RET) ||
1990            (state < ESRAM0_DEEP_SLEEP_STATE_OFF))
1991                return -EINVAL;
1992
1993        mutex_lock(&mb4_transfer.lock);
1994
1995        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
1996                cpu_relax();
1997
1998        writeb(MB4H_MEM_ST, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
1999        writeb(((DDR_PWR_STATE_OFFHIGHLAT << 4) | DDR_PWR_STATE_ON),
2000               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_SLEEP_IDLE));
2001        writeb(DDR_PWR_STATE_ON,
2002               (tcdm_base + PRCM_REQ_MB4_DDR_ST_AP_DEEP_IDLE));
2003        writeb(state, (tcdm_base + PRCM_REQ_MB4_ESRAM0_ST));
2004
2005        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2006        wait_for_completion(&mb4_transfer.work);
2007
2008        mutex_unlock(&mb4_transfer.lock);
2009
2010        return 0;
2011}
2012
2013int db8500_prcmu_config_hotdog(u8 threshold)
2014{
2015        mutex_lock(&mb4_transfer.lock);
2016
2017        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2018                cpu_relax();
2019
2020        writeb(threshold, (tcdm_base + PRCM_REQ_MB4_HOTDOG_THRESHOLD));
2021        writeb(MB4H_HOTDOG, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2022
2023        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2024        wait_for_completion(&mb4_transfer.work);
2025
2026        mutex_unlock(&mb4_transfer.lock);
2027
2028        return 0;
2029}
2030
2031int db8500_prcmu_config_hotmon(u8 low, u8 high)
2032{
2033        mutex_lock(&mb4_transfer.lock);
2034
2035        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2036                cpu_relax();
2037
2038        writeb(low, (tcdm_base + PRCM_REQ_MB4_HOTMON_LOW));
2039        writeb(high, (tcdm_base + PRCM_REQ_MB4_HOTMON_HIGH));
2040        writeb((HOTMON_CONFIG_LOW | HOTMON_CONFIG_HIGH),
2041                (tcdm_base + PRCM_REQ_MB4_HOTMON_CONFIG));
2042        writeb(MB4H_HOTMON, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2043
2044        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2045        wait_for_completion(&mb4_transfer.work);
2046
2047        mutex_unlock(&mb4_transfer.lock);
2048
2049        return 0;
2050}
2051
2052static int config_hot_period(u16 val)
2053{
2054        mutex_lock(&mb4_transfer.lock);
2055
2056        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2057                cpu_relax();
2058
2059        writew(val, (tcdm_base + PRCM_REQ_MB4_HOT_PERIOD));
2060        writeb(MB4H_HOT_PERIOD, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2061
2062        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2063        wait_for_completion(&mb4_transfer.work);
2064
2065        mutex_unlock(&mb4_transfer.lock);
2066
2067        return 0;
2068}
2069
2070int db8500_prcmu_start_temp_sense(u16 cycles32k)
2071{
2072        if (cycles32k == 0xFFFF)
2073                return -EINVAL;
2074
2075        return config_hot_period(cycles32k);
2076}
2077
2078int db8500_prcmu_stop_temp_sense(void)
2079{
2080        return config_hot_period(0xFFFF);
2081}
2082
2083static int prcmu_a9wdog(u8 cmd, u8 d0, u8 d1, u8 d2, u8 d3)
2084{
2085
2086        mutex_lock(&mb4_transfer.lock);
2087
2088        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(4))
2089                cpu_relax();
2090
2091        writeb(d0, (tcdm_base + PRCM_REQ_MB4_A9WDOG_0));
2092        writeb(d1, (tcdm_base + PRCM_REQ_MB4_A9WDOG_1));
2093        writeb(d2, (tcdm_base + PRCM_REQ_MB4_A9WDOG_2));
2094        writeb(d3, (tcdm_base + PRCM_REQ_MB4_A9WDOG_3));
2095
2096        writeb(cmd, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB4));
2097
2098        writel(MBOX_BIT(4), PRCM_MBOX_CPU_SET);
2099        wait_for_completion(&mb4_transfer.work);
2100
2101        mutex_unlock(&mb4_transfer.lock);
2102
2103        return 0;
2104
2105}
2106
2107int db8500_prcmu_config_a9wdog(u8 num, bool sleep_auto_off)
2108{
2109        BUG_ON(num == 0 || num > 0xf);
2110        return prcmu_a9wdog(MB4H_A9WDOG_CONF, num, 0, 0,
2111                            sleep_auto_off ? A9WDOG_AUTO_OFF_EN :
2112                            A9WDOG_AUTO_OFF_DIS);
2113}
2114EXPORT_SYMBOL(db8500_prcmu_config_a9wdog);
2115
2116int db8500_prcmu_enable_a9wdog(u8 id)
2117{
2118        return prcmu_a9wdog(MB4H_A9WDOG_EN, id, 0, 0, 0);
2119}
2120EXPORT_SYMBOL(db8500_prcmu_enable_a9wdog);
2121
2122int db8500_prcmu_disable_a9wdog(u8 id)
2123{
2124        return prcmu_a9wdog(MB4H_A9WDOG_DIS, id, 0, 0, 0);
2125}
2126EXPORT_SYMBOL(db8500_prcmu_disable_a9wdog);
2127
2128int db8500_prcmu_kick_a9wdog(u8 id)
2129{
2130        return prcmu_a9wdog(MB4H_A9WDOG_KICK, id, 0, 0, 0);
2131}
2132EXPORT_SYMBOL(db8500_prcmu_kick_a9wdog);
2133
2134/*
2135 * timeout is 28 bit, in ms.
2136 */
2137int db8500_prcmu_load_a9wdog(u8 id, u32 timeout)
2138{
2139        return prcmu_a9wdog(MB4H_A9WDOG_LOAD,
2140                            (id & A9WDOG_ID_MASK) |
2141                            /*
2142                             * Put the lowest 28 bits of timeout at
2143                             * offset 4. Four first bits are used for id.
2144                             */
2145                            (u8)((timeout << 4) & 0xf0),
2146                            (u8)((timeout >> 4) & 0xff),
2147                            (u8)((timeout >> 12) & 0xff),
2148                            (u8)((timeout >> 20) & 0xff));
2149}
2150EXPORT_SYMBOL(db8500_prcmu_load_a9wdog);
2151
2152/**
2153 * prcmu_abb_read() - Read register value(s) from the ABB.
2154 * @slave:      The I2C slave address.
2155 * @reg:        The (start) register address.
2156 * @value:      The read out value(s).
2157 * @size:       The number of registers to read.
2158 *
2159 * Reads register value(s) from the ABB.
2160 * @size has to be 1 for the current firmware version.
2161 */
2162int prcmu_abb_read(u8 slave, u8 reg, u8 *value, u8 size)
2163{
2164        int r;
2165
2166        if (size != 1)
2167                return -EINVAL;
2168
2169        mutex_lock(&mb5_transfer.lock);
2170
2171        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2172                cpu_relax();
2173
2174        writeb(0, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2175        writeb(PRCMU_I2C_READ(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2176        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2177        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2178        writeb(0, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2179
2180        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2181
2182        if (!wait_for_completion_timeout(&mb5_transfer.work,
2183                                msecs_to_jiffies(20000))) {
2184                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2185                        __func__);
2186                r = -EIO;
2187        } else {
2188                r = ((mb5_transfer.ack.status == I2C_RD_OK) ? 0 : -EIO);
2189        }
2190
2191        if (!r)
2192                *value = mb5_transfer.ack.value;
2193
2194        mutex_unlock(&mb5_transfer.lock);
2195
2196        return r;
2197}
2198
2199/**
2200 * prcmu_abb_write_masked() - Write masked register value(s) to the ABB.
2201 * @slave:      The I2C slave address.
2202 * @reg:        The (start) register address.
2203 * @value:      The value(s) to write.
2204 * @mask:       The mask(s) to use.
2205 * @size:       The number of registers to write.
2206 *
2207 * Writes masked register value(s) to the ABB.
2208 * For each @value, only the bits set to 1 in the corresponding @mask
2209 * will be written. The other bits are not changed.
2210 * @size has to be 1 for the current firmware version.
2211 */
2212int prcmu_abb_write_masked(u8 slave, u8 reg, u8 *value, u8 *mask, u8 size)
2213{
2214        int r;
2215
2216        if (size != 1)
2217                return -EINVAL;
2218
2219        mutex_lock(&mb5_transfer.lock);
2220
2221        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(5))
2222                cpu_relax();
2223
2224        writeb(~*mask, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB5));
2225        writeb(PRCMU_I2C_WRITE(slave), (tcdm_base + PRCM_REQ_MB5_I2C_SLAVE_OP));
2226        writeb(PRCMU_I2C_STOP_EN, (tcdm_base + PRCM_REQ_MB5_I2C_HW_BITS));
2227        writeb(reg, (tcdm_base + PRCM_REQ_MB5_I2C_REG));
2228        writeb(*value, (tcdm_base + PRCM_REQ_MB5_I2C_VAL));
2229
2230        writel(MBOX_BIT(5), PRCM_MBOX_CPU_SET);
2231
2232        if (!wait_for_completion_timeout(&mb5_transfer.work,
2233                                msecs_to_jiffies(20000))) {
2234                pr_err("prcmu: %s timed out (20 s) waiting for a reply.\n",
2235                        __func__);
2236                r = -EIO;
2237        } else {
2238                r = ((mb5_transfer.ack.status == I2C_WR_OK) ? 0 : -EIO);
2239        }
2240
2241        mutex_unlock(&mb5_transfer.lock);
2242
2243        return r;
2244}
2245
2246/**
2247 * prcmu_abb_write() - Write register value(s) to the ABB.
2248 * @slave:      The I2C slave address.
2249 * @reg:        The (start) register address.
2250 * @value:      The value(s) to write.
2251 * @size:       The number of registers to write.
2252 *
2253 * Writes register value(s) to the ABB.
2254 * @size has to be 1 for the current firmware version.
2255 */
2256int prcmu_abb_write(u8 slave, u8 reg, u8 *value, u8 size)
2257{
2258        u8 mask = ~0;
2259
2260        return prcmu_abb_write_masked(slave, reg, value, &mask, size);
2261}
2262
2263/**
2264 * prcmu_ac_wake_req - should be called whenever ARM wants to wakeup Modem
2265 */
2266int prcmu_ac_wake_req(void)
2267{
2268        u32 val;
2269        int ret = 0;
2270
2271        mutex_lock(&mb0_transfer.ac_wake_lock);
2272
2273        val = readl(PRCM_HOSTACCESS_REQ);
2274        if (val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ)
2275                goto unlock_and_return;
2276
2277        atomic_set(&ac_wake_req_state, 1);
2278
2279        /*
2280         * Force Modem Wake-up before hostaccess_req ping-pong.
2281         * It prevents Modem to enter in Sleep while acking the hostaccess
2282         * request. The 31us delay has been calculated by HWI.
2283         */
2284        val |= PRCM_HOSTACCESS_REQ_WAKE_REQ;
2285        writel(val, PRCM_HOSTACCESS_REQ);
2286
2287        udelay(31);
2288
2289        val |= PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ;
2290        writel(val, PRCM_HOSTACCESS_REQ);
2291
2292        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2293                        msecs_to_jiffies(5000))) {
2294                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2295                        __func__);
2296                ret = -EFAULT;
2297        }
2298
2299unlock_and_return:
2300        mutex_unlock(&mb0_transfer.ac_wake_lock);
2301        return ret;
2302}
2303
2304/**
2305 * prcmu_ac_sleep_req - called when ARM no longer needs to talk to modem
2306 */
2307void prcmu_ac_sleep_req(void)
2308{
2309        u32 val;
2310
2311        mutex_lock(&mb0_transfer.ac_wake_lock);
2312
2313        val = readl(PRCM_HOSTACCESS_REQ);
2314        if (!(val & PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ))
2315                goto unlock_and_return;
2316
2317        writel((val & ~PRCM_HOSTACCESS_REQ_HOSTACCESS_REQ),
2318                PRCM_HOSTACCESS_REQ);
2319
2320        if (!wait_for_completion_timeout(&mb0_transfer.ac_wake_work,
2321                        msecs_to_jiffies(5000))) {
2322                pr_crit("prcmu: %s timed out (5 s) waiting for a reply.\n",
2323                        __func__);
2324        }
2325
2326        atomic_set(&ac_wake_req_state, 0);
2327
2328unlock_and_return:
2329        mutex_unlock(&mb0_transfer.ac_wake_lock);
2330}
2331
2332bool db8500_prcmu_is_ac_wake_requested(void)
2333{
2334        return (atomic_read(&ac_wake_req_state) != 0);
2335}
2336
2337/**
2338 * db8500_prcmu_system_reset - System reset
2339 *
2340 * Saves the reset reason code and then sets the APE_SOFTRST register which
2341 * fires interrupt to fw
2342 */
2343void db8500_prcmu_system_reset(u16 reset_code)
2344{
2345        writew(reset_code, (tcdm_base + PRCM_SW_RST_REASON));
2346        writel(1, PRCM_APE_SOFTRST);
2347}
2348
2349/**
2350 * db8500_prcmu_get_reset_code - Retrieve SW reset reason code
2351 *
2352 * Retrieves the reset reason code stored by prcmu_system_reset() before
2353 * last restart.
2354 */
2355u16 db8500_prcmu_get_reset_code(void)
2356{
2357        return readw(tcdm_base + PRCM_SW_RST_REASON);
2358}
2359
2360/**
2361 * db8500_prcmu_reset_modem - ask the PRCMU to reset modem
2362 */
2363void db8500_prcmu_modem_reset(void)
2364{
2365        mutex_lock(&mb1_transfer.lock);
2366
2367        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(1))
2368                cpu_relax();
2369
2370        writeb(MB1H_RESET_MODEM, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB1));
2371        writel(MBOX_BIT(1), PRCM_MBOX_CPU_SET);
2372        wait_for_completion(&mb1_transfer.work);
2373
2374        /*
2375         * No need to check return from PRCMU as modem should go in reset state
2376         * This state is already managed by upper layer
2377         */
2378
2379        mutex_unlock(&mb1_transfer.lock);
2380}
2381
2382static void ack_dbb_wakeup(void)
2383{
2384        unsigned long flags;
2385
2386        spin_lock_irqsave(&mb0_transfer.lock, flags);
2387
2388        while (readl(PRCM_MBOX_CPU_VAL) & MBOX_BIT(0))
2389                cpu_relax();
2390
2391        writeb(MB0H_READ_WAKEUP_ACK, (tcdm_base + PRCM_MBOX_HEADER_REQ_MB0));
2392        writel(MBOX_BIT(0), PRCM_MBOX_CPU_SET);
2393
2394        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2395}
2396
2397static inline void print_unknown_header_warning(u8 n, u8 header)
2398{
2399        pr_warning("prcmu: Unknown message header (%d) in mailbox %d.\n",
2400                header, n);
2401}
2402
2403static bool read_mailbox_0(void)
2404{
2405        bool r;
2406        u32 ev;
2407        unsigned int n;
2408        u8 header;
2409
2410        header = readb(tcdm_base + PRCM_MBOX_HEADER_ACK_MB0);
2411        switch (header) {
2412        case MB0H_WAKEUP_EXE:
2413        case MB0H_WAKEUP_SLEEP:
2414                if (readb(tcdm_base + PRCM_ACK_MB0_READ_POINTER) & 1)
2415                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_1_8500);
2416                else
2417                        ev = readl(tcdm_base + PRCM_ACK_MB0_WAKEUP_0_8500);
2418
2419                if (ev & (WAKEUP_BIT_AC_WAKE_ACK | WAKEUP_BIT_AC_SLEEP_ACK))
2420                        complete(&mb0_transfer.ac_wake_work);
2421                if (ev & WAKEUP_BIT_SYSCLK_OK)
2422                        complete(&mb3_transfer.sysclk_work);
2423
2424                ev &= mb0_transfer.req.dbb_irqs;
2425
2426                for (n = 0; n < NUM_PRCMU_WAKEUPS; n++) {
2427                        if (ev & prcmu_irq_bit[n])
2428                                generic_handle_irq(irq_find_mapping(db8500_irq_domain, n));
2429                }
2430                r = true;
2431                break;
2432        default:
2433                print_unknown_header_warning(0, header);
2434                r = false;
2435                break;
2436        }
2437        writel(MBOX_BIT(0), PRCM_ARM_IT1_CLR);
2438        return r;
2439}
2440
2441static bool read_mailbox_1(void)
2442{
2443        mb1_transfer.ack.header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB1);
2444        mb1_transfer.ack.arm_opp = readb(tcdm_base +
2445                PRCM_ACK_MB1_CURRENT_ARM_OPP);
2446        mb1_transfer.ack.ape_opp = readb(tcdm_base +
2447                PRCM_ACK_MB1_CURRENT_APE_OPP);
2448        mb1_transfer.ack.ape_voltage_status = readb(tcdm_base +
2449                PRCM_ACK_MB1_APE_VOLTAGE_STATUS);
2450        writel(MBOX_BIT(1), PRCM_ARM_IT1_CLR);
2451        complete(&mb1_transfer.work);
2452        return false;
2453}
2454
2455static bool read_mailbox_2(void)
2456{
2457        mb2_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB2_DPS_STATUS);
2458        writel(MBOX_BIT(2), PRCM_ARM_IT1_CLR);
2459        complete(&mb2_transfer.work);
2460        return false;
2461}
2462
2463static bool read_mailbox_3(void)
2464{
2465        writel(MBOX_BIT(3), PRCM_ARM_IT1_CLR);
2466        return false;
2467}
2468
2469static bool read_mailbox_4(void)
2470{
2471        u8 header;
2472        bool do_complete = true;
2473
2474        header = readb(tcdm_base + PRCM_MBOX_HEADER_REQ_MB4);
2475        switch (header) {
2476        case MB4H_MEM_ST:
2477        case MB4H_HOTDOG:
2478        case MB4H_HOTMON:
2479        case MB4H_HOT_PERIOD:
2480        case MB4H_A9WDOG_CONF:
2481        case MB4H_A9WDOG_EN:
2482        case MB4H_A9WDOG_DIS:
2483        case MB4H_A9WDOG_LOAD:
2484        case MB4H_A9WDOG_KICK:
2485                break;
2486        default:
2487                print_unknown_header_warning(4, header);
2488                do_complete = false;
2489                break;
2490        }
2491
2492        writel(MBOX_BIT(4), PRCM_ARM_IT1_CLR);
2493
2494        if (do_complete)
2495                complete(&mb4_transfer.work);
2496
2497        return false;
2498}
2499
2500static bool read_mailbox_5(void)
2501{
2502        mb5_transfer.ack.status = readb(tcdm_base + PRCM_ACK_MB5_I2C_STATUS);
2503        mb5_transfer.ack.value = readb(tcdm_base + PRCM_ACK_MB5_I2C_VAL);
2504        writel(MBOX_BIT(5), PRCM_ARM_IT1_CLR);
2505        complete(&mb5_transfer.work);
2506        return false;
2507}
2508
2509static bool read_mailbox_6(void)
2510{
2511        writel(MBOX_BIT(6), PRCM_ARM_IT1_CLR);
2512        return false;
2513}
2514
2515static bool read_mailbox_7(void)
2516{
2517        writel(MBOX_BIT(7), PRCM_ARM_IT1_CLR);
2518        return false;
2519}
2520
2521static bool (* const read_mailbox[NUM_MB])(void) = {
2522        read_mailbox_0,
2523        read_mailbox_1,
2524        read_mailbox_2,
2525        read_mailbox_3,
2526        read_mailbox_4,
2527        read_mailbox_5,
2528        read_mailbox_6,
2529        read_mailbox_7
2530};
2531
2532static irqreturn_t prcmu_irq_handler(int irq, void *data)
2533{
2534        u32 bits;
2535        u8 n;
2536        irqreturn_t r;
2537
2538        bits = (readl(PRCM_ARM_IT1_VAL) & ALL_MBOX_BITS);
2539        if (unlikely(!bits))
2540                return IRQ_NONE;
2541
2542        r = IRQ_HANDLED;
2543        for (n = 0; bits; n++) {
2544                if (bits & MBOX_BIT(n)) {
2545                        bits -= MBOX_BIT(n);
2546                        if (read_mailbox[n]())
2547                                r = IRQ_WAKE_THREAD;
2548                }
2549        }
2550        return r;
2551}
2552
2553static irqreturn_t prcmu_irq_thread_fn(int irq, void *data)
2554{
2555        ack_dbb_wakeup();
2556        return IRQ_HANDLED;
2557}
2558
2559static void prcmu_mask_work(struct work_struct *work)
2560{
2561        unsigned long flags;
2562
2563        spin_lock_irqsave(&mb0_transfer.lock, flags);
2564
2565        config_wakeups();
2566
2567        spin_unlock_irqrestore(&mb0_transfer.lock, flags);
2568}
2569
2570static void prcmu_irq_mask(struct irq_data *d)
2571{
2572        unsigned long flags;
2573
2574        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2575
2576        mb0_transfer.req.dbb_irqs &= ~prcmu_irq_bit[d->hwirq];
2577
2578        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2579
2580        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2581                schedule_work(&mb0_transfer.mask_work);
2582}
2583
2584static void prcmu_irq_unmask(struct irq_data *d)
2585{
2586        unsigned long flags;
2587
2588        spin_lock_irqsave(&mb0_transfer.dbb_irqs_lock, flags);
2589
2590        mb0_transfer.req.dbb_irqs |= prcmu_irq_bit[d->hwirq];
2591
2592        spin_unlock_irqrestore(&mb0_transfer.dbb_irqs_lock, flags);
2593
2594        if (d->irq != IRQ_PRCMU_CA_SLEEP)
2595                schedule_work(&mb0_transfer.mask_work);
2596}
2597
2598static void noop(struct irq_data *d)
2599{
2600}
2601
2602static struct irq_chip prcmu_irq_chip = {
2603        .name           = "prcmu",
2604        .irq_disable    = prcmu_irq_mask,
2605        .irq_ack        = noop,
2606        .irq_mask       = prcmu_irq_mask,
2607        .irq_unmask     = prcmu_irq_unmask,
2608};
2609
2610static __init char *fw_project_name(u32 project)
2611{
2612        switch (project) {
2613        case PRCMU_FW_PROJECT_U8500:
2614                return "U8500";
2615        case PRCMU_FW_PROJECT_U8400:
2616                return "U8400";
2617        case PRCMU_FW_PROJECT_U9500:
2618                return "U9500";
2619        case PRCMU_FW_PROJECT_U8500_MBB:
2620                return "U8500 MBB";
2621        case PRCMU_FW_PROJECT_U8500_C1:
2622                return "U8500 C1";
2623        case PRCMU_FW_PROJECT_U8500_C2:
2624                return "U8500 C2";
2625        case PRCMU_FW_PROJECT_U8500_C3:
2626                return "U8500 C3";
2627        case PRCMU_FW_PROJECT_U8500_C4:
2628                return "U8500 C4";
2629        case PRCMU_FW_PROJECT_U9500_MBL:
2630                return "U9500 MBL";
2631        case PRCMU_FW_PROJECT_U8500_MBL:
2632                return "U8500 MBL";
2633        case PRCMU_FW_PROJECT_U8500_MBL2:
2634                return "U8500 MBL2";
2635        case PRCMU_FW_PROJECT_U8520:
2636                return "U8520 MBL";
2637        case PRCMU_FW_PROJECT_U8420:
2638                return "U8420";
2639        case PRCMU_FW_PROJECT_U9540:
2640                return "U9540";
2641        case PRCMU_FW_PROJECT_A9420:
2642                return "A9420";
2643        case PRCMU_FW_PROJECT_L8540:
2644                return "L8540";
2645        case PRCMU_FW_PROJECT_L8580:
2646                return "L8580";
2647        default:
2648                return "Unknown";
2649        }
2650}
2651
2652static int db8500_irq_map(struct irq_domain *d, unsigned int virq,
2653                                irq_hw_number_t hwirq)
2654{
2655        irq_set_chip_and_handler(virq, &prcmu_irq_chip,
2656                                handle_simple_irq);
2657        set_irq_flags(virq, IRQF_VALID);
2658
2659        return 0;
2660}
2661
2662static const struct irq_domain_ops db8500_irq_ops = {
2663        .map    = db8500_irq_map,
2664        .xlate  = irq_domain_xlate_twocell,
2665};
2666
2667static int db8500_irq_init(struct device_node *np)
2668{
2669        int i;
2670
2671        db8500_irq_domain = irq_domain_add_simple(
2672                np, NUM_PRCMU_WAKEUPS, 0,
2673                &db8500_irq_ops, NULL);
2674
2675        if (!db8500_irq_domain) {
2676                pr_err("Failed to create irqdomain\n");
2677                return -ENOSYS;
2678        }
2679
2680        /* All wakeups will be used, so create mappings for all */
2681        for (i = 0; i < NUM_PRCMU_WAKEUPS; i++)
2682                irq_create_mapping(db8500_irq_domain, i);
2683
2684        return 0;
2685}
2686
2687static void dbx500_fw_version_init(struct platform_device *pdev,
2688                            u32 version_offset)
2689{
2690        struct resource *res;
2691        void __iomem *tcpm_base;
2692        u32 version;
2693
2694        res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
2695                                           "prcmu-tcpm");
2696        if (!res) {
2697                dev_err(&pdev->dev,
2698                        "Error: no prcmu tcpm memory region provided\n");
2699                return;
2700        }
2701        tcpm_base = ioremap(res->start, resource_size(res));
2702        if (!tcpm_base) {
2703                dev_err(&pdev->dev, "no prcmu tcpm mem region provided\n");
2704                return;
2705        }
2706
2707        version = readl(tcpm_base + version_offset);
2708        fw_info.version.project = (version & 0xFF);
2709        fw_info.version.api_version = (version >> 8) & 0xFF;
2710        fw_info.version.func_version = (version >> 16) & 0xFF;
2711        fw_info.version.errata = (version >> 24) & 0xFF;
2712        strncpy(fw_info.version.project_name,
2713                fw_project_name(fw_info.version.project),
2714                PRCMU_FW_PROJECT_NAME_LEN);
2715        fw_info.valid = true;
2716        pr_info("PRCMU firmware: %s(%d), version %d.%d.%d\n",
2717                fw_info.version.project_name,
2718                fw_info.version.project,
2719                fw_info.version.api_version,
2720                fw_info.version.func_version,
2721                fw_info.version.errata);
2722        iounmap(tcpm_base);
2723}
2724
2725void __init db8500_prcmu_early_init(u32 phy_base, u32 size)
2726{
2727        /*
2728         * This is a temporary remap to bring up the clocks. It is
2729         * subsequently replaces with a real remap. After the merge of
2730         * the mailbox subsystem all of this early code goes away, and the
2731         * clock driver can probe independently. An early initcall will
2732         * still be needed, but it can be diverted into drivers/clk/ux500.
2733         */
2734        prcmu_base = ioremap(phy_base, size);
2735        if (!prcmu_base)
2736                pr_err("%s: ioremap() of prcmu registers failed!\n", __func__);
2737
2738        spin_lock_init(&mb0_transfer.lock);
2739        spin_lock_init(&mb0_transfer.dbb_irqs_lock);
2740        mutex_init(&mb0_transfer.ac_wake_lock);
2741        init_completion(&mb0_transfer.ac_wake_work);
2742        mutex_init(&mb1_transfer.lock);
2743        init_completion(&mb1_transfer.work);
2744        mb1_transfer.ape_opp = APE_NO_CHANGE;
2745        mutex_init(&mb2_transfer.lock);
2746        init_completion(&mb2_transfer.work);
2747        spin_lock_init(&mb2_transfer.auto_pm_lock);
2748        spin_lock_init(&mb3_transfer.lock);
2749        mutex_init(&mb3_transfer.sysclk_lock);
2750        init_completion(&mb3_transfer.sysclk_work);
2751        mutex_init(&mb4_transfer.lock);
2752        init_completion(&mb4_transfer.work);
2753        mutex_init(&mb5_transfer.lock);
2754        init_completion(&mb5_transfer.work);
2755
2756        INIT_WORK(&mb0_transfer.mask_work, prcmu_mask_work);
2757}
2758
2759static void __init init_prcm_registers(void)
2760{
2761        u32 val;
2762
2763        val = readl(PRCM_A9PL_FORCE_CLKEN);
2764        val &= ~(PRCM_A9PL_FORCE_CLKEN_PRCM_A9PL_FORCE_CLKEN |
2765                PRCM_A9PL_FORCE_CLKEN_PRCM_A9AXI_FORCE_CLKEN);
2766        writel(val, (PRCM_A9PL_FORCE_CLKEN));
2767}
2768
2769/*
2770 * Power domain switches (ePODs) modeled as regulators for the DB8500 SoC
2771 */
2772static struct regulator_consumer_supply db8500_vape_consumers[] = {
2773        REGULATOR_SUPPLY("v-ape", NULL),
2774        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.0"),
2775        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.1"),
2776        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.2"),
2777        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.3"),
2778        REGULATOR_SUPPLY("v-i2c", "nmk-i2c.4"),
2779        /* "v-mmc" changed to "vcore" in the mainline kernel */
2780        REGULATOR_SUPPLY("vcore", "sdi0"),
2781        REGULATOR_SUPPLY("vcore", "sdi1"),
2782        REGULATOR_SUPPLY("vcore", "sdi2"),
2783        REGULATOR_SUPPLY("vcore", "sdi3"),
2784        REGULATOR_SUPPLY("vcore", "sdi4"),
2785        REGULATOR_SUPPLY("v-dma", "dma40.0"),
2786        REGULATOR_SUPPLY("v-ape", "ab8500-usb.0"),
2787        /* "v-uart" changed to "vcore" in the mainline kernel */
2788        REGULATOR_SUPPLY("vcore", "uart0"),
2789        REGULATOR_SUPPLY("vcore", "uart1"),
2790        REGULATOR_SUPPLY("vcore", "uart2"),
2791        REGULATOR_SUPPLY("v-ape", "nmk-ske-keypad.0"),
2792        REGULATOR_SUPPLY("v-hsi", "ste_hsi.0"),
2793        REGULATOR_SUPPLY("vddvario", "smsc911x.0"),
2794};
2795
2796static struct regulator_consumer_supply db8500_vsmps2_consumers[] = {
2797        REGULATOR_SUPPLY("musb_1v8", "ab8500-usb.0"),
2798        /* AV8100 regulator */
2799        REGULATOR_SUPPLY("hdmi_1v8", "0-0070"),
2800};
2801
2802static struct regulator_consumer_supply db8500_b2r2_mcde_consumers[] = {
2803        REGULATOR_SUPPLY("vsupply", "b2r2_bus"),
2804        REGULATOR_SUPPLY("vsupply", "mcde"),
2805};
2806
2807/* SVA MMDSP regulator switch */
2808static struct regulator_consumer_supply db8500_svammdsp_consumers[] = {
2809        REGULATOR_SUPPLY("sva-mmdsp", "cm_control"),
2810};
2811
2812/* SVA pipe regulator switch */
2813static struct regulator_consumer_supply db8500_svapipe_consumers[] = {
2814        REGULATOR_SUPPLY("sva-pipe", "cm_control"),
2815};
2816
2817/* SIA MMDSP regulator switch */
2818static struct regulator_consumer_supply db8500_siammdsp_consumers[] = {
2819        REGULATOR_SUPPLY("sia-mmdsp", "cm_control"),
2820};
2821
2822/* SIA pipe regulator switch */
2823static struct regulator_consumer_supply db8500_siapipe_consumers[] = {
2824        REGULATOR_SUPPLY("sia-pipe", "cm_control"),
2825};
2826
2827static struct regulator_consumer_supply db8500_sga_consumers[] = {
2828        REGULATOR_SUPPLY("v-mali", NULL),
2829};
2830
2831/* ESRAM1 and 2 regulator switch */
2832static struct regulator_consumer_supply db8500_esram12_consumers[] = {
2833        REGULATOR_SUPPLY("esram12", "cm_control"),
2834};
2835
2836/* ESRAM3 and 4 regulator switch */
2837static struct regulator_consumer_supply db8500_esram34_consumers[] = {
2838        REGULATOR_SUPPLY("v-esram34", "mcde"),
2839        REGULATOR_SUPPLY("esram34", "cm_control"),
2840        REGULATOR_SUPPLY("lcla_esram", "dma40.0"),
2841};
2842
2843static struct regulator_init_data db8500_regulators[DB8500_NUM_REGULATORS] = {
2844        [DB8500_REGULATOR_VAPE] = {
2845                .constraints = {
2846                        .name = "db8500-vape",
2847                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2848                        .always_on = true,
2849                },
2850                .consumer_supplies = db8500_vape_consumers,
2851                .num_consumer_supplies = ARRAY_SIZE(db8500_vape_consumers),
2852        },
2853        [DB8500_REGULATOR_VARM] = {
2854                .constraints = {
2855                        .name = "db8500-varm",
2856                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2857                },
2858        },
2859        [DB8500_REGULATOR_VMODEM] = {
2860                .constraints = {
2861                        .name = "db8500-vmodem",
2862                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2863                },
2864        },
2865        [DB8500_REGULATOR_VPLL] = {
2866                .constraints = {
2867                        .name = "db8500-vpll",
2868                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2869                },
2870        },
2871        [DB8500_REGULATOR_VSMPS1] = {
2872                .constraints = {
2873                        .name = "db8500-vsmps1",
2874                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2875                },
2876        },
2877        [DB8500_REGULATOR_VSMPS2] = {
2878                .constraints = {
2879                        .name = "db8500-vsmps2",
2880                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2881                },
2882                .consumer_supplies = db8500_vsmps2_consumers,
2883                .num_consumer_supplies = ARRAY_SIZE(db8500_vsmps2_consumers),
2884        },
2885        [DB8500_REGULATOR_VSMPS3] = {
2886                .constraints = {
2887                        .name = "db8500-vsmps3",
2888                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2889                },
2890        },
2891        [DB8500_REGULATOR_VRF1] = {
2892                .constraints = {
2893                        .name = "db8500-vrf1",
2894                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2895                },
2896        },
2897        [DB8500_REGULATOR_SWITCH_SVAMMDSP] = {
2898                /* dependency to u8500-vape is handled outside regulator framework */
2899                .constraints = {
2900                        .name = "db8500-sva-mmdsp",
2901                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2902                },
2903                .consumer_supplies = db8500_svammdsp_consumers,
2904                .num_consumer_supplies = ARRAY_SIZE(db8500_svammdsp_consumers),
2905        },
2906        [DB8500_REGULATOR_SWITCH_SVAMMDSPRET] = {
2907                .constraints = {
2908                        /* "ret" means "retention" */
2909                        .name = "db8500-sva-mmdsp-ret",
2910                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2911                },
2912        },
2913        [DB8500_REGULATOR_SWITCH_SVAPIPE] = {
2914                /* dependency to u8500-vape is handled outside regulator framework */
2915                .constraints = {
2916                        .name = "db8500-sva-pipe",
2917                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2918                },
2919                .consumer_supplies = db8500_svapipe_consumers,
2920                .num_consumer_supplies = ARRAY_SIZE(db8500_svapipe_consumers),
2921        },
2922        [DB8500_REGULATOR_SWITCH_SIAMMDSP] = {
2923                /* dependency to u8500-vape is handled outside regulator framework */
2924                .constraints = {
2925                        .name = "db8500-sia-mmdsp",
2926                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2927                },
2928                .consumer_supplies = db8500_siammdsp_consumers,
2929                .num_consumer_supplies = ARRAY_SIZE(db8500_siammdsp_consumers),
2930        },
2931        [DB8500_REGULATOR_SWITCH_SIAMMDSPRET] = {
2932                .constraints = {
2933                        .name = "db8500-sia-mmdsp-ret",
2934                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2935                },
2936        },
2937        [DB8500_REGULATOR_SWITCH_SIAPIPE] = {
2938                /* dependency to u8500-vape is handled outside regulator framework */
2939                .constraints = {
2940                        .name = "db8500-sia-pipe",
2941                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2942                },
2943                .consumer_supplies = db8500_siapipe_consumers,
2944                .num_consumer_supplies = ARRAY_SIZE(db8500_siapipe_consumers),
2945        },
2946        [DB8500_REGULATOR_SWITCH_SGA] = {
2947                .supply_regulator = "db8500-vape",
2948                .constraints = {
2949                        .name = "db8500-sga",
2950                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2951                },
2952                .consumer_supplies = db8500_sga_consumers,
2953                .num_consumer_supplies = ARRAY_SIZE(db8500_sga_consumers),
2954
2955        },
2956        [DB8500_REGULATOR_SWITCH_B2R2_MCDE] = {
2957                .supply_regulator = "db8500-vape",
2958                .constraints = {
2959                        .name = "db8500-b2r2-mcde",
2960                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2961                },
2962                .consumer_supplies = db8500_b2r2_mcde_consumers,
2963                .num_consumer_supplies = ARRAY_SIZE(db8500_b2r2_mcde_consumers),
2964        },
2965        [DB8500_REGULATOR_SWITCH_ESRAM12] = {
2966                /*
2967                 * esram12 is set in retention and supplied by Vsafe when Vape is off,
2968                 * no need to hold Vape
2969                 */
2970                .constraints = {
2971                        .name = "db8500-esram12",
2972                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2973                },
2974                .consumer_supplies = db8500_esram12_consumers,
2975                .num_consumer_supplies = ARRAY_SIZE(db8500_esram12_consumers),
2976        },
2977        [DB8500_REGULATOR_SWITCH_ESRAM12RET] = {
2978                .constraints = {
2979                        .name = "db8500-esram12-ret",
2980                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2981                },
2982        },
2983        [DB8500_REGULATOR_SWITCH_ESRAM34] = {
2984                /*
2985                 * esram34 is set in retention and supplied by Vsafe when Vape is off,
2986                 * no need to hold Vape
2987                 */
2988                .constraints = {
2989                        .name = "db8500-esram34",
2990                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2991                },
2992                .consumer_supplies = db8500_esram34_consumers,
2993                .num_consumer_supplies = ARRAY_SIZE(db8500_esram34_consumers),
2994        },
2995        [DB8500_REGULATOR_SWITCH_ESRAM34RET] = {
2996                .constraints = {
2997                        .name = "db8500-esram34-ret",
2998                        .valid_ops_mask = REGULATOR_CHANGE_STATUS,
2999                },
3000        },
3001};
3002
3003static struct ux500_wdt_data db8500_wdt_pdata = {
3004        .timeout = 600, /* 10 minutes */
3005        .has_28_bits_resolution = true,
3006};
3007/*
3008 * Thermal Sensor
3009 */
3010
3011static struct resource db8500_thsens_resources[] = {
3012        {
3013                .name = "IRQ_HOTMON_LOW",
3014                .start  = IRQ_PRCMU_HOTMON_LOW,
3015                .end    = IRQ_PRCMU_HOTMON_LOW,
3016                .flags  = IORESOURCE_IRQ,
3017        },
3018        {
3019                .name = "IRQ_HOTMON_HIGH",
3020                .start  = IRQ_PRCMU_HOTMON_HIGH,
3021                .end    = IRQ_PRCMU_HOTMON_HIGH,
3022                .flags  = IORESOURCE_IRQ,
3023        },
3024};
3025
3026static struct db8500_thsens_platform_data db8500_thsens_data = {
3027        .trip_points[0] = {
3028                .temp = 70000,
3029                .type = THERMAL_TRIP_ACTIVE,
3030                .cdev_name = {
3031                        [0] = "thermal-cpufreq-0",
3032                },
3033        },
3034        .trip_points[1] = {
3035                .temp = 75000,
3036                .type = THERMAL_TRIP_ACTIVE,
3037                .cdev_name = {
3038                        [0] = "thermal-cpufreq-0",
3039                },
3040        },
3041        .trip_points[2] = {
3042                .temp = 80000,
3043                .type = THERMAL_TRIP_ACTIVE,
3044                .cdev_name = {
3045                        [0] = "thermal-cpufreq-0",
3046                },
3047        },
3048        .trip_points[3] = {
3049                .temp = 85000,
3050                .type = THERMAL_TRIP_CRITICAL,
3051        },
3052        .num_trips = 4,
3053};
3054
3055static const struct mfd_cell common_prcmu_devs[] = {
3056        {
3057                .name = "ux500_wdt",
3058                .platform_data = &db8500_wdt_pdata,
3059                .pdata_size = sizeof(db8500_wdt_pdata),
3060                .id = -1,
3061        },
3062};
3063
3064static const struct mfd_cell db8500_prcmu_devs[] = {
3065        {
3066                .name = "db8500-prcmu-regulators",
3067                .of_compatible = "stericsson,db8500-prcmu-regulator",
3068                .platform_data = &db8500_regulators,
3069                .pdata_size = sizeof(db8500_regulators),
3070        },
3071        {
3072                .name = "cpufreq-ux500",
3073                .of_compatible = "stericsson,cpufreq-ux500",
3074                .platform_data = &db8500_cpufreq_table,
3075                .pdata_size = sizeof(db8500_cpufreq_table),
3076        },
3077        {
3078                .name = "cpuidle-dbx500",
3079                .of_compatible = "stericsson,cpuidle-dbx500",
3080        },
3081        {
3082                .name = "db8500-thermal",
3083                .num_resources = ARRAY_SIZE(db8500_thsens_resources),
3084                .resources = db8500_thsens_resources,
3085                .platform_data = &db8500_thsens_data,
3086                .pdata_size = sizeof(db8500_thsens_data),
3087        },
3088};
3089
3090static void db8500_prcmu_update_cpufreq(void)
3091{
3092        if (prcmu_has_arm_maxopp()) {
3093                db8500_cpufreq_table[3].frequency = 1000000;
3094                db8500_cpufreq_table[3].driver_data = ARM_MAX_OPP;
3095        }
3096}
3097
3098static int db8500_prcmu_register_ab8500(struct device *parent,
3099                                        struct ab8500_platform_data *pdata)
3100{
3101        struct device_node *np;
3102        struct resource ab8500_resource;
3103        const struct mfd_cell ab8500_cell = {
3104                .name = "ab8500-core",
3105                .of_compatible = "stericsson,ab8500",
3106                .id = AB8500_VERSION_AB8500,
3107                .platform_data = pdata,
3108                .pdata_size = sizeof(struct ab8500_platform_data),
3109                .resources = &ab8500_resource,
3110                .num_resources = 1,
3111        };
3112
3113        if (!parent->of_node)
3114                return -ENODEV;
3115
3116        /* Look up the device node, sneak the IRQ out of it */
3117        for_each_child_of_node(parent->of_node, np) {
3118                if (of_device_is_compatible(np, ab8500_cell.of_compatible))
3119                        break;
3120        }
3121        if (!np) {
3122                dev_info(parent, "could not find AB8500 node in the device tree\n");
3123                return -ENODEV;
3124        }
3125        of_irq_to_resource_table(np, &ab8500_resource, 1);
3126
3127        return mfd_add_devices(parent, 0, &ab8500_cell, 1, NULL, 0, NULL);
3128}
3129
3130/**
3131 * prcmu_fw_init - arch init call for the Linux PRCMU fw init logic
3132 *
3133 */
3134static int db8500_prcmu_probe(struct platform_device *pdev)
3135{
3136        struct device_node *np = pdev->dev.of_node;
3137        struct prcmu_pdata *pdata = dev_get_platdata(&pdev->dev);
3138        int irq = 0, err = 0;
3139        struct resource *res;
3140
3141        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu");
3142        if (!res) {
3143                dev_err(&pdev->dev, "no prcmu memory region provided\n");
3144                return -EINVAL;
3145        }
3146        prcmu_base = devm_ioremap(&pdev->dev, res->start, resource_size(res));
3147        if (!prcmu_base) {
3148                dev_err(&pdev->dev,
3149                        "failed to ioremap prcmu register memory\n");
3150                return -ENOMEM;
3151        }
3152        init_prcm_registers();
3153        dbx500_fw_version_init(pdev, pdata->version_offset);
3154        res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "prcmu-tcdm");
3155        if (!res) {
3156                dev_err(&pdev->dev, "no prcmu tcdm region provided\n");
3157                return -EINVAL;
3158        }
3159        tcdm_base = devm_ioremap(&pdev->dev, res->start,
3160                        resource_size(res));
3161        if (!tcdm_base) {
3162                dev_err(&pdev->dev,
3163                        "failed to ioremap prcmu-tcdm register memory\n");
3164                return -ENOMEM;
3165        }
3166
3167        /* Clean up the mailbox interrupts after pre-kernel code. */
3168        writel(ALL_MBOX_BITS, PRCM_ARM_IT1_CLR);
3169
3170        irq = platform_get_irq(pdev, 0);
3171        if (irq <= 0) {
3172                dev_err(&pdev->dev, "no prcmu irq provided\n");
3173                return irq;
3174        }
3175
3176        err = request_threaded_irq(irq, prcmu_irq_handler,
3177                prcmu_irq_thread_fn, IRQF_NO_SUSPEND, "prcmu", NULL);
3178        if (err < 0) {
3179                pr_err("prcmu: Failed to allocate IRQ_DB8500_PRCMU1.\n");
3180                return err;
3181        }
3182
3183        db8500_irq_init(np);
3184
3185        prcmu_config_esram0_deep_sleep(ESRAM0_DEEP_SLEEP_STATE_RET);
3186
3187        db8500_prcmu_update_cpufreq();
3188
3189        err = mfd_add_devices(&pdev->dev, 0, common_prcmu_devs,
3190                              ARRAY_SIZE(common_prcmu_devs), NULL, 0, db8500_irq_domain);
3191        if (err) {
3192                pr_err("prcmu: Failed to add subdevices\n");
3193                return err;
3194        }
3195
3196        /* TODO: Remove restriction when clk definitions are available. */
3197        if (!of_machine_is_compatible("st-ericsson,u8540")) {
3198                err = mfd_add_devices(&pdev->dev, 0, db8500_prcmu_devs,
3199                                      ARRAY_SIZE(db8500_prcmu_devs), NULL, 0,
3200                                      db8500_irq_domain);
3201                if (err) {
3202                        mfd_remove_devices(&pdev->dev);
3203                        pr_err("prcmu: Failed to add subdevices\n");
3204                        return err;
3205                }
3206        }
3207
3208        err = db8500_prcmu_register_ab8500(&pdev->dev, pdata->ab_platdata);
3209        if (err) {
3210                mfd_remove_devices(&pdev->dev);
3211                pr_err("prcmu: Failed to add ab8500 subdevice\n");
3212                return err;
3213        }
3214
3215        pr_info("DB8500 PRCMU initialized\n");
3216        return err;
3217}
3218static const struct of_device_id db8500_prcmu_match[] = {
3219        { .compatible = "stericsson,db8500-prcmu"},
3220        { },
3221};
3222
3223static struct platform_driver db8500_prcmu_driver = {
3224        .driver = {
3225                .name = "db8500-prcmu",
3226                .of_match_table = db8500_prcmu_match,
3227        },
3228        .probe = db8500_prcmu_probe,
3229};
3230
3231static int __init db8500_prcmu_init(void)
3232{
3233        return platform_driver_register(&db8500_prcmu_driver);
3234}
3235
3236core_initcall(db8500_prcmu_init);
3237
3238MODULE_AUTHOR("Mattias Nilsson <mattias.i.nilsson@stericsson.com>");
3239MODULE_DESCRIPTION("DB8500 PRCM Unit driver");
3240MODULE_LICENSE("GPL v2");
3241